multithreading tests from 152 lab 5
[riscv-tests.git] / mt / ae_matmul / ae_matmul.c
diff --git a/mt/ae_matmul/ae_matmul.c b/mt/ae_matmul/ae_matmul.c
new file mode 100755 (executable)
index 0000000..7d4ad80
--- /dev/null
@@ -0,0 +1,263 @@
+//**************************************************************************
+// Multi-threaded Matrix Multiply benchmark
+//--------------------------------------------------------------------------
+// TA     : Christopher Celio
+// Student: 
+//
+//
+// This benchmark multiplies two 2-D arrays together and writes the results to
+// a third vector. The input data (and reference data) should be generated
+// using the matmul_gendata.pl perl script and dumped to a file named
+// dataset.h. 
+
+
+// print out arrays, etc.
+//#define DEBUG
+
+//--------------------------------------------------------------------------
+// Includes 
+
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+
+//--------------------------------------------------------------------------
+// Input/Reference Data
+
+typedef float data_t;
+#include "dataset.h"
+  
+//--------------------------------------------------------------------------
+// Basic Utilities and Multi-thread Support
+
+__thread unsigned long coreid;
+unsigned long ncores;
+
+#include "util.h"
+   
+#define stringify_1(s) #s
+#define stringify(s) stringify_1(s)
+#define stats(code) do { \
+    unsigned long _c = -rdcycle(), _i = -rdinstret(); \
+    code; \
+    _c += rdcycle(), _i += rdinstret(); \
+    if (coreid == 0) \
+      printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
+             stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
+  } while(0)
+
+//--------------------------------------------------------------------------
+// Helper functions
+    
+void printArray( char name[], int n, data_t arr[] )
+{
+   int i;
+   if (coreid != 0)
+      return;
+  
+   printf( " %10s :", name );
+   for ( i = 0; i < n; i++ )
+      printf( " %3ld ", (long) arr[i] );
+   printf( "\n" );
+}
+      
+void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
+{
+   if (coreid != 0)
+      return;
+
+   size_t i;
+   for (i = 0; i < n; i++)
+   {
+      if (test[i] != correct[i])
+      {
+         printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n", 
+            i, (long)test[i], i, (long)correct[i]);
+         exit(-1);
+      }
+   }
+   
+   return;
+}
+//--------------------------------------------------------------------------
+// matmul function
+// single-thread, naive version
+void __attribute__((noinline)) matmul_naive(const int lda,  const data_t A[], const data_t B[], data_t C[] )
+{
+   int i, j, k;
+
+   if (coreid > 0)
+      return;
+  
+   for ( i = 0; i < lda; i++ )
+      for ( j = 0; j < lda; j++ )  
+      {
+         for ( k = 0; k < lda; k++ ) 
+         {
+            C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
+         }
+      }
+
+}
+
+void __attribute__((noinline)) matmul(const int lda,  const data_t A[], const data_t B[], data_t C[] )
+{
+   
+   // ***************************** //
+   // **** ADD YOUR CODE HERE ***** //
+   // ***************************** //
+   //
+   // feel free to make a separate function for MI and MSI versions.
+
+
+       data_t *b1;
+       data_t *b2;
+       data_t *b3;
+       data_t *b4;
+       data_t c1;
+       data_t c2;
+       data_t c3;
+       data_t c4;
+       data_t a1;
+       data_t a2;
+       data_t a3;
+       data_t a4;
+       data_t a5;
+       data_t a6;
+       data_t a7;
+       data_t a8;
+       int i, j, k;
+       static data_t BB[1024];
+
+
+
+       //transpose B
+       if (coreid == 0 | coreid == 1) {
+               for ( k = 0; k < lda; k++) {
+                       for ( i = coreid*(lda/2); i < (coreid+1)*(lda/2); i++ )  {
+                               BB[i*lda + k] = B[k*lda + i];
+                       }
+               }
+       }
+       barrier();
+
+       for ( i = 0; i < lda; i+=4 ) {
+               for ( j = coreid*(lda/ncores); j < (coreid+1)*(lda/ncores); j++ )  {
+                       c1 = 0; c2 = 0; c3 = 0; c4 = 0;
+                       b1 = &BB[(i+0)*lda];
+                       b2 = &BB[(i+1)*lda];
+                       b3 = &BB[(i+2)*lda];
+                       b4 = &BB[(i+3)*lda];
+                       for ( k = 0; k < lda; k+=8 ) { 
+
+                               a1 = A[j*lda + k+0];
+                               a2 = A[j*lda + k+1];
+                               a3 = A[j*lda + k+2];
+                               a4 = A[j*lda + k+3];
+                               a5 = A[j*lda + k+4];
+                               a6 = A[j*lda + k+5];
+                               a7 = A[j*lda + k+6];
+                               a8 = A[j*lda + k+7];
+
+                               c1 += a1 * b1[k+0];
+                               c1 += a2 * b1[k+1];
+                               c1 += a3 * b1[k+2];
+                               c1 += a4 * b1[k+3];
+                               c1 += a5 * b1[k+4];
+                               c1 += a6 * b1[k+5];
+                               c1 += a7 * b1[k+6];
+                               c1 += a8 * b1[k+7];
+
+                               c2 += a1 * b2[k+0];
+                               c2 += a2 * b2[k+1];
+                               c2 += a3 * b2[k+2];
+                               c2 += a4 * b2[k+3];
+                               c2 += a5 * b2[k+4];
+                               c2 += a6 * b2[k+5];
+                               c2 += a7 * b2[k+6];
+                               c2 += a8 * b2[k+7];
+
+                               c3 += a1 * b3[k+0];
+                               c3 += a2 * b3[k+1];
+                               c3 += a3 * b3[k+2];
+                               c3 += a4 * b3[k+3];
+                               c3 += a5 * b3[k+4];
+                               c3 += a6 * b3[k+5];
+                               c3 += a7 * b3[k+6];
+                               c3 += a8 * b3[k+7];
+
+                               c4 += a1 * b4[k+0];
+                               c4 += a2 * b4[k+1];
+                               c4 += a3 * b4[k+2];
+                               c4 += a4 * b4[k+3];
+                               c4 += a5 * b4[k+4];
+                               c4 += a6 * b4[k+5];
+                               c4 += a7 * b4[k+6];
+                               c4 += a8 * b4[k+7];
+
+
+                       }
+                       C[i+0 + j*lda] = c1;
+                       C[i+1 + j*lda] = c2;
+                       C[i+2 + j*lda] = c3;
+                       C[i+3 + j*lda] = c4;
+               }
+       }
+
+}
+
+//--------------------------------------------------------------------------
+// Main
+//
+// all threads start executing thread_entry(). Use their "coreid" to
+// differentiate between threads (each thread is running on a separate core).
+  
+void thread_entry(int cid, int nc)
+{
+   coreid = cid;
+   ncores = nc;
+
+   // static allocates data in the binary, which is visible to both threads
+   static data_t results_data[ARRAY_SIZE];
+
+/*
+   // Execute the provided, naive matmul
+   barrier();
+   stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+   
+   // verify
+   verify(ARRAY_SIZE, results_data, verify_data);
+   
+   // clear results from the first trial
+   size_t i;
+   if (coreid == 0) 
+      for (i=0; i < ARRAY_SIZE; i++)
+         results_data[i] = 0;
+   barrier();
+*/
+
+   
+   // Execute your faster matmul
+   barrier();
+   stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+#ifdef DEBUG
+   printArray("results:", ARRAY_SIZE, results_data);
+   printArray("verify :", ARRAY_SIZE, verify_data);
+#endif
+   
+   // verify
+   verify(ARRAY_SIZE, results_data, verify_data);
+   barrier();
+
+   exit(0);
+}
+