multithreading tests from 152 lab 5
[riscv-tests.git] / mt / ba_matmul / matmul_mi.c
diff --git a/mt/ba_matmul/matmul_mi.c b/mt/ba_matmul/matmul_mi.c
new file mode 100755 (executable)
index 0000000..da9a764
--- /dev/null
@@ -0,0 +1,271 @@
+//**************************************************************************
+// Multi-threaded Matrix Multiply benchmark
+//--------------------------------------------------------------------------
+// TA     : Christopher Celio
+// Student: 
+//
+//
+// This benchmark multiplies two 2-D arrays together and writes the results to
+// a third vector. The input data (and reference data) should be generated
+// using the matmul_gendata.pl perl script and dumped to a file named
+// dataset.h. 
+
+
+// print out arrays, etc.
+//#define DEBUG
+
+//--------------------------------------------------------------------------
+// Includes 
+
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+
+//--------------------------------------------------------------------------
+// Input/Reference Data
+
+typedef float data_t;
+#include "dataset.h"
+  
+//--------------------------------------------------------------------------
+// Basic Utilities and Multi-thread Support
+
+__thread unsigned long coreid;
+unsigned long ncores;
+
+#include "util.h"
+   
+#define stringify_1(s) #s
+#define stringify(s) stringify_1(s)
+#define stats(code) do { \
+    unsigned long _c = -rdcycle(), _i = -rdinstret(); \
+    code; \
+    _c += rdcycle(), _i += rdinstret(); \
+    if (coreid == 0) \
+      printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
+             stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
+  } while(0)
+
+//--------------------------------------------------------------------------
+// Helper functions
+    
+void printArray( char name[], int n, data_t arr[] )
+{
+   int i;
+   if (coreid != 0)
+      return;
+  
+   printf( " %10s :", name );
+   for ( i = 0; i < n; i++ )
+      printf( " %3ld ", (long) arr[i] );
+   printf( "\n" );
+}
+      
+void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
+{
+   if (coreid != 0)
+      return;
+
+   size_t i;
+   for (i = 0; i < n; i++)
+   {
+      if (test[i] != correct[i])
+      {
+         printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n", 
+            i, (long)test[i], i, (long)correct[i]);
+         exit(-1);
+      }
+   }
+   
+   return;
+}
+//--------------------------------------------------------------------------
+// matmul function
+// single-thread, naive version
+void __attribute__((noinline)) matmul_naive(const int lda,  const data_t A[], const data_t B[], data_t C[] )
+{
+/*
+   int i, j, k;
+
+   if (coreid > 0)
+      return;
+  
+   for ( i = 0; i < lda; i++ )
+      for ( j = 0; j < lda; j++ )  
+      {
+         for ( k = 0; k < lda; k++ ) 
+         {
+            C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
+         }
+      }
+*/
+}
+
+
+void __attribute__((noinline)) matmul(const int lda,  const data_t A[], const data_t B[], data_t C[] )
+{
+       size_t c_start = lda / ncores * coreid;
+       size_t c_row;
+       size_t c_col;
+       size_t colSplit = 0;
+       size_t i;
+       size_t useSplit = 0;
+       data_t a1;
+       data_t a2;
+       data_t a3;
+       data_t a4;
+       data_t a5;      
+       data_t a6;
+       data_t a7;
+       data_t a8;
+       data_t c1;
+       data_t c2;
+       data_t c3;
+       data_t c4;
+       data_t c5;
+       data_t c6;
+       data_t c7;
+       data_t c8;
+       size_t block;
+       for (block = 0; block < 2; block++) {   
+               for (colSplit = 0; colSplit < 4; colSplit++) {
+                       useSplit = (coreid == 0) ? colSplit : (colSplit + 2 ) % 4;
+                       for (c_row = c_start + block * 8; c_row < c_start + block * 8 + 8; c_row += 2) {
+                               for (c_col = 0; c_col < lda; c_col+=4) {
+                                       c1 = C[c_row*lda+c_col];
+                                       c2 = C[(c_row+1)*lda+c_col];
+                                       c3 = C[c_row*lda+c_col+1];
+                                       c4 = C[(c_row+1)*lda+c_col+1];
+                                       c5 = C[c_row*lda+c_col+2];
+                                       c6 = C[(c_row+1)*lda+c_col+2];
+                                       c7 = C[c_row*lda+c_col+3];
+                                       c8 = C[(c_row+1)*lda+c_col+3];
+                                       for (i = useSplit * lda / 4; i < (useSplit + 1) * lda / 4; i+=4) {
+                                               a1 = A[c_row*lda+i];
+                                               a2 = A[(c_row+1)*lda+i];
+                                               a3 = A[c_row*lda+i+1];
+                                               a4 = A[(c_row+1)*lda+i+1];
+                                               a5 = A[c_row*lda+i+2];
+                                               a6 = A[(c_row+1)*lda+i+2];
+                                               a7 = A[c_row*lda+i+3];
+                                               a8 = A[(c_row+1)*lda+i+3];
+
+                                               c1 += a1 * B[i*lda+c_col];
+                                               c2 += a2 * B[i*lda+c_col];
+
+                                               c1 += a3 * B[(i+1)*lda+c_col];
+                                               c2 += a4 * B[(i+1)*lda+c_col];
+
+                                               c1 += a5 * B[(i+2)*lda+c_col];
+                                               c2 += a6 * B[(i+2)*lda+c_col];
+
+                                               c1 += a7 * B[(i+3)*lda+c_col];
+                                               c2 += a8 * B[(i+3)*lda+c_col];
+
+                                               c3 += a1 * B[i*lda+c_col+1];
+                                               c4 += a2 * B[i*lda+c_col+1];
+
+                                               c3 += a3 * B[(i+1)*lda+c_col+1];
+                                               c4 += a4 * B[(i+1)*lda+c_col+1];
+
+                                               c3 += a5 * B[(i+2)*lda+c_col+1];
+                                               c4 += a6 * B[(i+2)*lda+c_col+1];
+
+                                               c3 += a7 * B[(i+3)*lda+c_col+1];
+                                               c4 += a8 * B[(i+3)*lda+c_col+1];
+
+                                               c5 += a1 * B[i*lda+c_col+2];
+                                               c6 += a2 * B[i*lda+c_col+2];
+
+                                               c5 += a3 * B[(i+1)*lda+c_col+2];
+                                               c6 += a4 * B[(i+1)*lda+c_col+2];
+
+                                               c5 += a5 * B[(i+2)*lda+c_col+2];
+                                               c6 += a6 * B[(i+2)*lda+c_col+2];
+
+                                               c5 += a7 * B[(i+3)*lda+c_col+2];
+                                               c6 += a8 * B[(i+3)*lda+c_col+2];
+
+                                               c7 += a1 * B[i*lda+c_col+3];
+                                               c8 += a2 * B[i*lda+c_col+3];
+
+                                               c7 += a3 * B[(i+1)*lda+c_col+3];
+                                               c8 += a4 * B[(i+1)*lda+c_col+3];
+
+                                               c7 += a5 * B[(i+2)*lda+c_col+3];
+                                               c8 += a6 * B[(i+2)*lda+c_col+3];
+
+                                               c7 += a7 * B[(i+3)*lda+c_col+3];
+                                               c8 += a8 * B[(i+3)*lda+c_col+3];
+                                       }
+
+                                       C[c_row*lda+c_col] = c1;
+                                       C[(c_row+1)*lda+c_col] = c2;
+
+                                       C[c_row*lda+c_col+1] = c3;
+                                       C[(c_row+1)*lda+c_col+1] = c4;
+
+                                       C[c_row*lda+c_col+2] = c5;
+                                       C[(c_row+1)*lda+c_col+2] = c6;
+
+                                       C[c_row*lda+c_col+3] = c7;
+                                       C[(c_row+1)*lda+c_col+3] = c8;
+                               }
+                       }
+               }
+       }
+}
+
+//--------------------------------------------------------------------------
+// Main
+//
+// all threads start executing thread_entry(). Use their "coreid" to
+// differentiate between threads (each thread is running on a separate core).
+  
+void thread_entry(int cid, int nc)
+{
+   coreid = cid;
+   ncores = nc;
+
+   // static allocates data in the binary, which is visible to both threads
+   static data_t results_data[ARRAY_SIZE];
+
+
+   // Execute the provided, naive matmul
+//   barrier();
+//   stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+   
+   // verify
+//   verify(ARRAY_SIZE, results_data, verify_data);
+   
+   // clear results from the first trial
+//   size_t i;
+//   if (coreid == 0) 
+//      for (i=0; i < ARRAY_SIZE; i++)
+//         results_data[i] = 0;
+//   barrier();
+
+   
+   // Execute your faster matmul
+   barrier();
+   stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+#ifdef DEBUG
+   printArray("results:", ARRAY_SIZE, results_data);
+   printArray("verify :", ARRAY_SIZE, verify_data);
+#endif
+   
+   // verify
+   verify(ARRAY_SIZE, results_data, verify_data);
+   barrier();
+
+   exit(0);
+}
+