multithreading tests from 152 lab 5
[riscv-tests.git] / mt / be_matmul / matmul_mi.c
diff --git a/mt/be_matmul/matmul_mi.c b/mt/be_matmul/matmul_mi.c
new file mode 100755 (executable)
index 0000000..da4b531
--- /dev/null
@@ -0,0 +1,314 @@
+//**************************************************************************
+// Multi-threaded Matrix Multiply benchmark
+//--------------------------------------------------------------------------
+// TA     : Christopher Celio
+// Student: 
+//
+//
+// This benchmark multiplies two 2-D arrays together and writes the results to
+// a third vector. The input data (and reference data) should be generated
+// using the matmul_gendata.pl perl script and dumped to a file named
+// dataset.h. 
+
+
+// print out arrays, etc.
+//#define DEBUG
+
+//--------------------------------------------------------------------------
+// Includes 
+
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+
+//--------------------------------------------------------------------------
+// Input/Reference Data
+
+typedef float data_t;
+#include "dataset.h"
+  
+//--------------------------------------------------------------------------
+// Basic Utilities and Multi-thread Support
+
+__thread unsigned long coreid;
+unsigned long ncores;
+
+#include "util.h"
+   
+#define stringify_1(s) #s
+#define stringify(s) stringify_1(s)
+#define stats(code) do { \
+    unsigned long _c = -rdcycle(), _i = -rdinstret(); \
+    code; \
+    _c += rdcycle(), _i += rdinstret(); \
+    if (coreid == 0) \
+      printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
+             stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
+  } while(0)
+
+//--------------------------------------------------------------------------
+// Helper functions
+    
+void printArray( char name[], int n, data_t arr[] )
+{
+   int i;
+   if (coreid != 0)
+      return;
+  
+   printf( " %10s :", name );
+   for ( i = 0; i < n; i++ )
+      printf( " %3ld ", (long) arr[i] );
+   printf( "\n" );
+}
+      
+void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
+{
+   if (coreid != 0)
+      return;
+
+   size_t i;
+   for (i = 0; i < n; i++)
+   {
+      if (test[i] != correct[i])
+      {
+         printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n", 
+            i, (long)test[i], i, (long)correct[i]);
+         exit(-1);
+      }
+   }
+   
+   return;
+}
+//--------------------------------------------------------------------------
+// matmul function
+// single-thread, naive version
+void __attribute__((noinline)) matmul_naive(const int lda,  const data_t A[], const data_t B[], data_t C[] )
+{
+   int i, j, k;
+
+   if (coreid > 0)
+      return;
+  
+   for ( i = 0; i < lda; i++ )
+      for ( j = 0; j < lda; j++ )  
+      {
+         for ( k = 0; k < lda; k++ ) 
+         {
+            C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
+         }
+      }
+
+}
+
+
+void __attribute__((noinline)) matmul(const int lda,  const data_t A[], const data_t B[], data_t C[] )
+{
+   
+   // ***************************** //
+   // **** ADD YOUR CODE HERE ***** //
+   // ***************************** //
+   //
+   // feel free to make a separate function for MI and MSI versions.
+  
+         int i, j, k , jj , kk;
+               int start_i = coreid*lda/2;
+               int end_i = start_i + lda/2;
+               int step_j, step_k;
+               int start_k, end_k, start_j, end_j;
+               int j_lda;
+               int pos_A , pos_B, pos_C;
+               data_t temp00, temp01,temp02,temp03,temp04,temp05,temp06,temp07;
+               data_t temp10, temp11,temp12,temp13,temp14,temp15,temp16,temp17;
+               data_t temp_A0, temp_A1, temp_A2, temp_A3, temp_A4, temp_A5, temp_A6, temp_A7;
+
+               temp00 = 0;
+               temp01 = 0;
+               temp02 = 0;
+               temp03 = 0;
+               temp04 = 0;
+               temp05 = 0;
+               temp06 = 0;
+               temp07 = 0;
+
+               temp10 = 0;
+               temp11 = 0;
+               temp12 = 0;
+               temp13 = 0;
+               temp14 = 0;
+               temp15 = 0;
+               temp16 = 0;
+               temp17 = 0;
+
+               if (coreid == 0)
+               {
+                       step_k = 1;
+                       start_k= 0;
+                       end_k = lda;
+
+                       step_j = 2;
+                       start_j= 0;
+                       end_j = lda;
+
+               }else
+               {
+
+                       step_k = -1;
+                       start_k = lda-1;
+                       end_k = -1;
+
+                       step_j = -2;
+                       start_j= lda-2;
+                       end_j = -2;
+               }
+                       
+               for( kk = start_k ; kk!= end_k ; kk+=(step_k*16) )
+               {
+                       for( jj = start_j ; jj!= end_j ; jj+=(step_j*8) )
+                       {                       
+                               for ( i = start_i; i < end_i; i+=8 )
+                               {
+                                       //pos_C = i + jj*lda;
+                                       for ( j = jj; j != (jj+(step_j*8)) ; j+=step_j )
+                                       {                                       
+                                       
+                                                       pos_C = i + j*lda;
+                                                       temp00 = C[(pos_C + 0)];
+                                                       temp01 = C[(pos_C + 1)];
+                                                       temp02 = C[(pos_C + 2)];
+                                                       temp03 = C[(pos_C + 3)];
+                                                       temp04 = C[(pos_C + 4)];
+                                                       temp05 = C[(pos_C + 5)];
+                                                       temp06 = C[(pos_C + 6)];
+                                                       temp07 = C[(pos_C + 7)];
+                                               
+                                                       //pos_C += lda;
+                                                       pos_C = i + (j+1)*lda;
+
+                                                       temp10 = C[(pos_C + 0)];
+                                                       temp11 = C[(pos_C + 1)];
+                                                       temp12 = C[(pos_C + 2)];
+                                                       temp13 = C[(pos_C + 3)];
+                                                       temp14 = C[(pos_C + 4)];
+                                                       temp15 = C[(pos_C + 5)];
+                                                       temp16 = C[(pos_C + 6)];
+                                                       temp17 = C[(pos_C + 7)];
+                                               
+                                               pos_B = kk*lda + i;
+                                               pos_A = j*lda + kk;
+                                               for ( k = kk; k != (kk+(step_k*16)) ; k+=step_k ) 
+                                               {
+                                                       temp_A0 = A[ pos_A ] ;
+                                                       temp_A1 = A[pos_A +lda];
+                                       
+                                                       temp00 += temp_A0 * B[(pos_B + 0)];
+                                                       temp01 += temp_A0 * B[(pos_B + 1)];
+                                                       temp02 += temp_A0 * B[(pos_B + 2)];
+                                                       temp03 += temp_A0 * B[(pos_B + 3)];
+                                                       temp04 += temp_A0 * B[(pos_B + 4)];
+                                                       temp05 += temp_A0 * B[(pos_B + 5)];
+                                                       temp06 += temp_A0 * B[(pos_B + 6)];
+                                                       temp07 += temp_A0 * B[(pos_B + 7)];
+                                       
+                                                       temp10 += temp_A1 * B[(pos_B + 0)];
+                                                       temp11 += temp_A1 * B[(pos_B + 1)];
+                                                       temp12 += temp_A1 * B[(pos_B + 2)];
+                                                       temp13 += temp_A1 * B[(pos_B + 3)];
+                                                       temp14 += temp_A1 * B[(pos_B + 4)];
+                                                       temp15 += temp_A1 * B[(pos_B + 5)];
+                                                       temp16 += temp_A1 * B[(pos_B + 6)];
+                                                       temp17 += temp_A1 * B[(pos_B + 7)];
+                                                       
+                                                       pos_B += (lda*step_k) ;
+                                                       pos_A += step_k;
+                                               }
+                                               //barrier();
+
+                                               C[(pos_C + 0)] = temp10;
+                                               C[(pos_C + 1)] = temp11;
+                                               C[(pos_C + 2)] = temp12;
+                                               C[(pos_C + 3)] = temp13;
+                                               C[(pos_C + 4)] = temp14;
+                                               C[(pos_C + 5)] = temp15;
+                                               C[(pos_C + 6)] = temp16;
+                                               C[(pos_C + 7)] = temp17;
+                                               //barrier();
+                               
+                                               pos_C = i + j*lda;
+                                               //pos_C -= lda;
+                                               C[(pos_C + 0)] = temp00;
+                                               C[(pos_C + 1)] = temp01;
+                                               C[(pos_C + 2)] = temp02;
+                                               C[(pos_C + 3)] = temp03;
+                                               C[(pos_C + 4)] = temp04;
+                                               C[(pos_C + 5)] = temp05;
+                                               C[(pos_C + 6)] = temp06;
+                                               C[(pos_C + 7)] = temp07;
+                                               //barrier();
+                                               //pos_C += step_j * lda;
+                                       }
+                                       //barrier();
+                               }
+                               //barrier();
+
+                       }
+                       //barrier();
+               }       
+}
+
+//--------------------------------------------------------------------------
+// Main
+//
+// all threads start executing thread_entry(). Use their "coreid" to
+// differentiate between threads (each thread is running on a separate core).
+  
+void thread_entry(int cid, int nc)
+{
+   coreid = cid;
+   ncores = nc;
+
+   // static allocates data in the binary, which is visible to both threads
+   static data_t results_data[ARRAY_SIZE];
+
+       /*
+   // Execute the provided, naive matmul
+   barrier();
+   stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+   
+   // verify
+   verify(ARRAY_SIZE, results_data, verify_data);
+   
+   // clear results from the first trial
+   size_t i;
+   if (coreid == 0) 
+      for (i=0; i < ARRAY_SIZE; i++)
+         results_data[i] = 0;
+   barrier();
+
+   */
+   // Execute your faster matmul
+   barrier();
+   stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+          
+
+
+#ifdef DEBUG
+   printArray("results:", ARRAY_SIZE, results_data);
+   printArray("verify :", ARRAY_SIZE, verify_data);
+#endif
+   
+   // verify
+   verify(ARRAY_SIZE, results_data, verify_data);
+   barrier();
+
+   
+       //printf("input1_data");
+exit(0);
+
+}