bec44541b8f9404f2a5828165f7122b24bd656a2
[soc.git] / src / soc / decoder / isa / caller.py
1 # SPDX-License-Identifier: LGPLv3+
2 # Copyright (C) 2020, 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
3 # Copyright (C) 2020 Michael Nolan
4 # Funded by NLnet http://nlnet.nl
5 """core of the python-based POWER9 simulator
6
7 this is part of a cycle-accurate POWER9 simulator. its primary purpose is
8 not speed, it is for both learning and educational purposes, as well as
9 a method of verifying the HDL.
10
11 related bugs:
12
13 * https://bugs.libre-soc.org/show_bug.cgi?id=424
14 """
15
16 from functools import wraps
17 from copy import copy
18 from soc.decoder.orderedset import OrderedSet
19 from soc.decoder.selectable_int import (FieldSelectableInt, SelectableInt,
20 selectconcat)
21 from soc.decoder.power_enums import (spr_dict, spr_byname, XER_bits,
22 insns, MicrOp)
23 from soc.decoder.helpers import exts, gtu, ltu, undefined
24 from soc.consts import PIb, MSRb # big-endian (PowerISA versions)
25
26 from collections import namedtuple
27 import math
28 import sys
29
30 instruction_info = namedtuple('instruction_info',
31 'func read_regs uninit_regs write_regs ' +
32 'special_regs op_fields form asmregs')
33
34 special_sprs = {
35 'LR': 8,
36 'CTR': 9,
37 'TAR': 815,
38 'XER': 1,
39 'VRSAVE': 256}
40
41
42 def swap_order(x, nbytes):
43 x = x.to_bytes(nbytes, byteorder='little')
44 x = int.from_bytes(x, byteorder='big', signed=False)
45 return x
46
47
48 REG_SORT_ORDER = {
49 # TODO (lkcl): adjust other registers that should be in a particular order
50 # probably CA, CA32, and CR
51 "RT": 0,
52 "RA": 0,
53 "RB": 0,
54 "RS": 0,
55 "CR": 0,
56 "LR": 0,
57 "CTR": 0,
58 "TAR": 0,
59 "CA": 0,
60 "CA32": 0,
61 "MSR": 0,
62
63 "overflow": 1,
64 }
65
66
67 def create_args(reglist, extra=None):
68 retval = list(OrderedSet(reglist))
69 retval.sort(key=lambda reg: REG_SORT_ORDER[reg])
70 if extra is not None:
71 return [extra] + retval
72 return retval
73
74
75 class Mem:
76
77 def __init__(self, row_bytes=8, initial_mem=None):
78 self.mem = {}
79 self.bytes_per_word = row_bytes
80 self.word_log2 = math.ceil(math.log2(row_bytes))
81 print("Sim-Mem", initial_mem, self.bytes_per_word, self.word_log2)
82 if not initial_mem:
83 return
84
85 # different types of memory data structures recognised (for convenience)
86 if isinstance(initial_mem, list):
87 initial_mem = (0, initial_mem)
88 if isinstance(initial_mem, tuple):
89 startaddr, mem = initial_mem
90 initial_mem = {}
91 for i, val in enumerate(mem):
92 initial_mem[startaddr + row_bytes*i] = (val, row_bytes)
93
94 for addr, (val, width) in initial_mem.items():
95 #val = swap_order(val, width)
96 self.st(addr, val, width, swap=False)
97
98 def _get_shifter_mask(self, wid, remainder):
99 shifter = ((self.bytes_per_word - wid) - remainder) * \
100 8 # bits per byte
101 # XXX https://bugs.libre-soc.org/show_bug.cgi?id=377
102 # BE/LE mode?
103 shifter = remainder * 8
104 mask = (1 << (wid * 8)) - 1
105 print("width,rem,shift,mask", wid, remainder, hex(shifter), hex(mask))
106 return shifter, mask
107
108 # TODO: Implement ld/st of lesser width
109 def ld(self, address, width=8, swap=True, check_in_mem=False):
110 print("ld from addr 0x{:x} width {:d}".format(address, width))
111 remainder = address & (self.bytes_per_word - 1)
112 address = address >> self.word_log2
113 assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
114 if address in self.mem:
115 val = self.mem[address]
116 elif check_in_mem:
117 return None
118 else:
119 val = 0
120 print("mem @ 0x{:x} rem {:d} : 0x{:x}".format(address, remainder, val))
121
122 if width != self.bytes_per_word:
123 shifter, mask = self._get_shifter_mask(width, remainder)
124 print("masking", hex(val), hex(mask << shifter), shifter)
125 val = val & (mask << shifter)
126 val >>= shifter
127 if swap:
128 val = swap_order(val, width)
129 print("Read 0x{:x} from addr 0x{:x}".format(val, address))
130 return val
131
132 def st(self, addr, v, width=8, swap=True):
133 staddr = addr
134 remainder = addr & (self.bytes_per_word - 1)
135 addr = addr >> self.word_log2
136 print("Writing 0x{:x} to ST 0x{:x} "
137 "memaddr 0x{:x}/{:x}".format(v, staddr, addr, remainder, swap))
138 assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
139 if swap:
140 v = swap_order(v, width)
141 if width != self.bytes_per_word:
142 if addr in self.mem:
143 val = self.mem[addr]
144 else:
145 val = 0
146 shifter, mask = self._get_shifter_mask(width, remainder)
147 val &= ~(mask << shifter)
148 val |= v << shifter
149 self.mem[addr] = val
150 else:
151 self.mem[addr] = v
152 print("mem @ 0x{:x}: 0x{:x}".format(addr, self.mem[addr]))
153
154 def __call__(self, addr, sz):
155 val = self.ld(addr.value, sz, swap=False)
156 print("memread", addr, sz, val)
157 return SelectableInt(val, sz*8)
158
159 def memassign(self, addr, sz, val):
160 print("memassign", addr, sz, val)
161 self.st(addr.value, val.value, sz, swap=False)
162
163
164 class GPR(dict):
165 def __init__(self, decoder, regfile):
166 dict.__init__(self)
167 self.sd = decoder
168 for i in range(32):
169 self[i] = SelectableInt(regfile[i], 64)
170
171 def __call__(self, ridx):
172 return self[ridx]
173
174 def set_form(self, form):
175 self.form = form
176
177 def getz(self, rnum):
178 # rnum = rnum.value # only SelectableInt allowed
179 print("GPR getzero", rnum)
180 if rnum == 0:
181 return SelectableInt(0, 64)
182 return self[rnum]
183
184 def _get_regnum(self, attr):
185 getform = self.sd.sigforms[self.form]
186 rnum = getattr(getform, attr)
187 return rnum
188
189 def ___getitem__(self, attr):
190 print("GPR getitem", attr)
191 rnum = self._get_regnum(attr)
192 return self.regfile[rnum]
193
194 def dump(self):
195 for i in range(0, len(self), 8):
196 s = []
197 for j in range(8):
198 s.append("%08x" % self[i+j].value)
199 s = ' '.join(s)
200 print("reg", "%2d" % i, s)
201
202
203 class PC:
204 def __init__(self, pc_init=0):
205 self.CIA = SelectableInt(pc_init, 64)
206 self.NIA = self.CIA + SelectableInt(4, 64)
207
208 def update(self, namespace):
209 self.CIA = namespace['NIA'].narrow(64)
210 self.NIA = self.CIA + SelectableInt(4, 64)
211 namespace['CIA'] = self.CIA
212 namespace['NIA'] = self.NIA
213
214
215 # Simple-V: see https://libre-soc.org/openpower/sv
216 # also soc.sv.svp64 SVP64Rec
217 class SVSTATE:
218 def __init__(self, init=0):
219 self.spr = SelectableInt(init, 32)
220 # fields of SVSTATE, see https://libre-soc.org/openpower/sv/sprs/
221 self.mmode = FieldSelectableInt(self.spr, [0])
222 self.mask = FieldSelectableInt(self.spr, tuple(range(1,4)))
223 self.elwidth = FieldSelectableInt(self.spr, tuple(range(4,6)))
224 self.ewsrc = FieldSelectableInt(self.spr, tuple(range(6,8)))
225 self.subvl = FieldSelectableInt(self.spr, tuple(range(8,10)))
226 self.extra = FieldSelectableInt(self.spr, tuple(range(10,19)))
227 self.mode = FieldSelectableInt(self.spr, tuple(range(19,24)))
228
229
230 class SPR(dict):
231 def __init__(self, dec2, initial_sprs={}):
232 self.sd = dec2
233 dict.__init__(self)
234 for key, v in initial_sprs.items():
235 if isinstance(key, SelectableInt):
236 key = key.value
237 key = special_sprs.get(key, key)
238 if isinstance(key, int):
239 info = spr_dict[key]
240 else:
241 info = spr_byname[key]
242 if not isinstance(v, SelectableInt):
243 v = SelectableInt(v, info.length)
244 self[key] = v
245
246 def __getitem__(self, key):
247 print("get spr", key)
248 print("dict", self.items())
249 # if key in special_sprs get the special spr, otherwise return key
250 if isinstance(key, SelectableInt):
251 key = key.value
252 if isinstance(key, int):
253 key = spr_dict[key].SPR
254 key = special_sprs.get(key, key)
255 if key == 'HSRR0': # HACK!
256 key = 'SRR0'
257 if key == 'HSRR1': # HACK!
258 key = 'SRR1'
259 if key in self:
260 res = dict.__getitem__(self, key)
261 else:
262 if isinstance(key, int):
263 info = spr_dict[key]
264 else:
265 info = spr_byname[key]
266 dict.__setitem__(self, key, SelectableInt(0, info.length))
267 res = dict.__getitem__(self, key)
268 print("spr returning", key, res)
269 return res
270
271 def __setitem__(self, key, value):
272 if isinstance(key, SelectableInt):
273 key = key.value
274 if isinstance(key, int):
275 key = spr_dict[key].SPR
276 print("spr key", key)
277 key = special_sprs.get(key, key)
278 if key == 'HSRR0': # HACK!
279 self.__setitem__('SRR0', value)
280 if key == 'HSRR1': # HACK!
281 self.__setitem__('SRR1', value)
282 print("setting spr", key, value)
283 dict.__setitem__(self, key, value)
284
285 def __call__(self, ridx):
286 return self[ridx]
287
288
289 class ISACaller:
290 # decoder2 - an instance of power_decoder2
291 # regfile - a list of initial values for the registers
292 # initial_{etc} - initial values for SPRs, Condition Register, Mem, MSR
293 # respect_pc - tracks the program counter. requires initial_insns
294 def __init__(self, decoder2, regfile, initial_sprs=None, initial_cr=0,
295 initial_mem=None, initial_msr=0,
296 initial_svstate=0,
297 initial_insns=None, respect_pc=False,
298 disassembly=None,
299 initial_pc=0,
300 bigendian=False):
301
302 self.bigendian = bigendian
303 self.halted = False
304 self.respect_pc = respect_pc
305 if initial_sprs is None:
306 initial_sprs = {}
307 if initial_mem is None:
308 initial_mem = {}
309 if initial_insns is None:
310 initial_insns = {}
311 assert self.respect_pc == False, "instructions required to honor pc"
312
313 print("ISACaller insns", respect_pc, initial_insns, disassembly)
314 print("ISACaller initial_msr", initial_msr)
315
316 # "fake program counter" mode (for unit testing)
317 self.fake_pc = 0
318 disasm_start = 0
319 if not respect_pc:
320 if isinstance(initial_mem, tuple):
321 self.fake_pc = initial_mem[0]
322 disasm_start = self.fake_pc
323 else:
324 disasm_start = initial_pc
325
326 # disassembly: we need this for now (not given from the decoder)
327 self.disassembly = {}
328 if disassembly:
329 for i, code in enumerate(disassembly):
330 self.disassembly[i*4 + disasm_start] = code
331
332 # set up registers, instruction memory, data memory, PC, SPRs, MSR
333 self.gpr = GPR(decoder2, regfile)
334 self.mem = Mem(row_bytes=8, initial_mem=initial_mem)
335 self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
336 self.pc = PC()
337 self.svstate = SVSTATE(initial_svstate)
338 self.spr = SPR(decoder2, initial_sprs)
339 self.msr = SelectableInt(initial_msr, 64) # underlying reg
340
341 # TODO, needed here:
342 # FPR (same as GPR except for FP nums)
343 # 4.2.2 p124 FPSCR (definitely "separate" - not in SPR)
344 # note that mffs, mcrfs, mtfsf "manage" this FPSCR
345 # 2.3.1 CR (and sub-fields CR0..CR6 - CR0 SO comes from XER.SO)
346 # note that mfocrf, mfcr, mtcr, mtocrf, mcrxrx "manage" CRs
347 # -- Done
348 # 2.3.2 LR (actually SPR #8) -- Done
349 # 2.3.3 CTR (actually SPR #9) -- Done
350 # 2.3.4 TAR (actually SPR #815)
351 # 3.2.2 p45 XER (actually SPR #1) -- Done
352 # 3.2.3 p46 p232 VRSAVE (actually SPR #256)
353
354 # create CR then allow portions of it to be "selectable" (below)
355 #rev_cr = int('{:016b}'.format(initial_cr)[::-1], 2)
356 self.cr = SelectableInt(initial_cr, 64) # underlying reg
357 #self.cr = FieldSelectableInt(self._cr, list(range(32, 64)))
358
359 # "undefined", just set to variable-bit-width int (use exts "max")
360 #self.undefined = SelectableInt(0, 256) # TODO, not hard-code 256!
361
362 self.namespace = {}
363 self.namespace.update(self.spr)
364 self.namespace.update({'GPR': self.gpr,
365 'MEM': self.mem,
366 'SPR': self.spr,
367 'memassign': self.memassign,
368 'NIA': self.pc.NIA,
369 'CIA': self.pc.CIA,
370 'CR': self.cr,
371 'MSR': self.msr,
372 'undefined': undefined,
373 'mode_is_64bit': True,
374 'SO': XER_bits['SO']
375 })
376
377 # update pc to requested start point
378 self.set_pc(initial_pc)
379
380 # field-selectable versions of Condition Register TODO check bitranges?
381 self.crl = []
382 for i in range(8):
383 bits = tuple(range(i*4+32, (i+1)*4+32)) # errr... maybe?
384 _cr = FieldSelectableInt(self.cr, bits)
385 self.crl.append(_cr)
386 self.namespace["CR%d" % i] = _cr
387
388 self.decoder = decoder2.dec
389 self.dec2 = decoder2
390
391 def TRAP(self, trap_addr=0x700, trap_bit=PIb.TRAP):
392 print("TRAP:", hex(trap_addr), hex(self.namespace['MSR'].value))
393 # store CIA(+4?) in SRR0, set NIA to 0x700
394 # store MSR in SRR1, set MSR to um errr something, have to check spec
395 self.spr['SRR0'].value = self.pc.CIA.value
396 self.spr['SRR1'].value = self.namespace['MSR'].value
397 self.trap_nia = SelectableInt(trap_addr, 64)
398 self.spr['SRR1'][trap_bit] = 1 # change *copy* of MSR in SRR1
399
400 # set exception bits. TODO: this should, based on the address
401 # in figure 66 p1065 V3.0B and the table figure 65 p1063 set these
402 # bits appropriately. however it turns out that *for now* in all
403 # cases (all trap_addrs) the exact same thing is needed.
404 self.msr[MSRb.IR] = 0
405 self.msr[MSRb.DR] = 0
406 self.msr[MSRb.FE0] = 0
407 self.msr[MSRb.FE1] = 0
408 self.msr[MSRb.EE] = 0
409 self.msr[MSRb.RI] = 0
410 self.msr[MSRb.SF] = 1
411 self.msr[MSRb.TM] = 0
412 self.msr[MSRb.VEC] = 0
413 self.msr[MSRb.VSX] = 0
414 self.msr[MSRb.PR] = 0
415 self.msr[MSRb.FP] = 0
416 self.msr[MSRb.PMM] = 0
417 self.msr[MSRb.TEs] = 0
418 self.msr[MSRb.TEe] = 0
419 self.msr[MSRb.UND] = 0
420 self.msr[MSRb.LE] = 1
421
422 def memassign(self, ea, sz, val):
423 self.mem.memassign(ea, sz, val)
424
425 def prep_namespace(self, formname, op_fields):
426 # TODO: get field names from form in decoder*1* (not decoder2)
427 # decoder2 is hand-created, and decoder1.sigform is auto-generated
428 # from spec
429 # then "yield" fields only from op_fields rather than hard-coded
430 # list, here.
431 fields = self.decoder.sigforms[formname]
432 for name in op_fields:
433 if name == 'spr':
434 sig = getattr(fields, name.upper())
435 else:
436 sig = getattr(fields, name)
437 val = yield sig
438 # these are all opcode fields involved in index-selection of CR,
439 # and need to do "standard" arithmetic. CR[BA+32] for example
440 # would, if using SelectableInt, only be 5-bit.
441 if name in ['BF', 'BFA', 'BC', 'BA', 'BB', 'BT', 'BI']:
442 self.namespace[name] = val
443 else:
444 self.namespace[name] = SelectableInt(val, sig.width)
445
446 self.namespace['XER'] = self.spr['XER']
447 self.namespace['CA'] = self.spr['XER'][XER_bits['CA']].value
448 self.namespace['CA32'] = self.spr['XER'][XER_bits['CA32']].value
449
450 def handle_carry_(self, inputs, outputs, already_done):
451 inv_a = yield self.dec2.e.do.invert_in
452 if inv_a:
453 inputs[0] = ~inputs[0]
454
455 imm_ok = yield self.dec2.e.do.imm_data.ok
456 if imm_ok:
457 imm = yield self.dec2.e.do.imm_data.data
458 inputs.append(SelectableInt(imm, 64))
459 assert len(outputs) >= 1
460 print("outputs", repr(outputs))
461 if isinstance(outputs, list) or isinstance(outputs, tuple):
462 output = outputs[0]
463 else:
464 output = outputs
465 gts = []
466 for x in inputs:
467 print("gt input", x, output)
468 gt = (gtu(x, output))
469 gts.append(gt)
470 print(gts)
471 cy = 1 if any(gts) else 0
472 print("CA", cy, gts)
473 if not (1 & already_done):
474 self.spr['XER'][XER_bits['CA']] = cy
475
476 print("inputs", already_done, inputs)
477 # 32 bit carry
478 # ARGH... different for OP_ADD... *sigh*...
479 op = yield self.dec2.e.do.insn_type
480 if op == MicrOp.OP_ADD.value:
481 res32 = (output.value & (1 << 32)) != 0
482 a32 = (inputs[0].value & (1 << 32)) != 0
483 if len(inputs) >= 2:
484 b32 = (inputs[1].value & (1 << 32)) != 0
485 else:
486 b32 = False
487 cy32 = res32 ^ a32 ^ b32
488 print("CA32 ADD", cy32)
489 else:
490 gts = []
491 for x in inputs:
492 print("input", x, output)
493 print(" x[32:64]", x, x[32:64])
494 print(" o[32:64]", output, output[32:64])
495 gt = (gtu(x[32:64], output[32:64])) == SelectableInt(1, 1)
496 gts.append(gt)
497 cy32 = 1 if any(gts) else 0
498 print("CA32", cy32, gts)
499 if not (2 & already_done):
500 self.spr['XER'][XER_bits['CA32']] = cy32
501
502 def handle_overflow(self, inputs, outputs, div_overflow):
503 if hasattr(self.dec2.e.do, "invert_in"):
504 inv_a = yield self.dec2.e.do.invert_in
505 if inv_a:
506 inputs[0] = ~inputs[0]
507
508 imm_ok = yield self.dec2.e.do.imm_data.ok
509 if imm_ok:
510 imm = yield self.dec2.e.do.imm_data.data
511 inputs.append(SelectableInt(imm, 64))
512 assert len(outputs) >= 1
513 print("handle_overflow", inputs, outputs, div_overflow)
514 if len(inputs) < 2 and div_overflow is None:
515 return
516
517 # div overflow is different: it's returned by the pseudo-code
518 # because it's more complex than can be done by analysing the output
519 if div_overflow is not None:
520 ov, ov32 = div_overflow, div_overflow
521 # arithmetic overflow can be done by analysing the input and output
522 elif len(inputs) >= 2:
523 output = outputs[0]
524
525 # OV (64-bit)
526 input_sgn = [exts(x.value, x.bits) < 0 for x in inputs]
527 output_sgn = exts(output.value, output.bits) < 0
528 ov = 1 if input_sgn[0] == input_sgn[1] and \
529 output_sgn != input_sgn[0] else 0
530
531 # OV (32-bit)
532 input32_sgn = [exts(x.value, 32) < 0 for x in inputs]
533 output32_sgn = exts(output.value, 32) < 0
534 ov32 = 1 if input32_sgn[0] == input32_sgn[1] and \
535 output32_sgn != input32_sgn[0] else 0
536
537 self.spr['XER'][XER_bits['OV']] = ov
538 self.spr['XER'][XER_bits['OV32']] = ov32
539 so = self.spr['XER'][XER_bits['SO']]
540 so = so | ov
541 self.spr['XER'][XER_bits['SO']] = so
542
543 def handle_comparison(self, outputs):
544 out = outputs[0]
545 assert isinstance(out, SelectableInt), \
546 "out zero not a SelectableInt %s" % repr(outputs)
547 print("handle_comparison", out.bits, hex(out.value))
548 # TODO - XXX *processor* in 32-bit mode
549 # https://bugs.libre-soc.org/show_bug.cgi?id=424
550 # if is_32bit:
551 # o32 = exts(out.value, 32)
552 # print ("handle_comparison exts 32 bit", hex(o32))
553 out = exts(out.value, out.bits)
554 print("handle_comparison exts", hex(out))
555 zero = SelectableInt(out == 0, 1)
556 positive = SelectableInt(out > 0, 1)
557 negative = SelectableInt(out < 0, 1)
558 SO = self.spr['XER'][XER_bits['SO']]
559 print("handle_comparison SO", SO)
560 cr_field = selectconcat(negative, positive, zero, SO)
561 self.crl[0].eq(cr_field)
562
563 def set_pc(self, pc_val):
564 self.namespace['NIA'] = SelectableInt(pc_val, 64)
565 self.pc.update(self.namespace)
566
567 def setup_one(self):
568 """set up one instruction
569 """
570 if self.respect_pc:
571 pc = self.pc.CIA.value
572 else:
573 pc = self.fake_pc
574 self._pc = pc
575 ins = self.imem.ld(pc, 4, False, True)
576 if ins is None:
577 raise KeyError("no instruction at 0x%x" % pc)
578 print("setup: 0x%x 0x%x %s" % (pc, ins & 0xffffffff, bin(ins)))
579 print("CIA NIA", self.respect_pc, self.pc.CIA.value, self.pc.NIA.value)
580
581 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff)
582 yield self.dec2.dec.bigendian.eq(self.bigendian)
583 yield self.dec2.state.msr.eq(self.msr.value)
584 yield self.dec2.state.pc.eq(pc)
585
586 def execute_one(self):
587 """execute one instruction
588 """
589 # get the disassembly code for this instruction
590 code = self.disassembly[self._pc]
591 print("sim-execute", hex(self._pc), code)
592 opname = code.split(' ')[0]
593 yield from self.call(opname)
594
595 if not self.respect_pc:
596 self.fake_pc += 4
597 print("execute one, CIA NIA", self.pc.CIA.value, self.pc.NIA.value)
598
599 def get_assembly_name(self):
600 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
601 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
602 dec_insn = yield self.dec2.e.do.insn
603 asmcode = yield self.dec2.dec.op.asmcode
604 print("get assembly name asmcode", asmcode, hex(dec_insn))
605 asmop = insns.get(asmcode, None)
606 int_op = yield self.dec2.dec.op.internal_op
607
608 # sigh reconstruct the assembly instruction name
609 if hasattr(self.dec2.e.do, "oe"):
610 ov_en = yield self.dec2.e.do.oe.oe
611 ov_ok = yield self.dec2.e.do.oe.ok
612 else:
613 ov_en = False
614 ov_ok = False
615 if hasattr(self.dec2.e.do, "rc"):
616 rc_en = yield self.dec2.e.do.rc.rc
617 rc_ok = yield self.dec2.e.do.rc.ok
618 else:
619 rc_en = False
620 rc_ok = False
621 # grrrr have to special-case MUL op (see DecodeOE)
622 print("ov %d en %d rc %d en %d op %d" %
623 (ov_ok, ov_en, rc_ok, rc_en, int_op))
624 if int_op in [MicrOp.OP_MUL_H64.value, MicrOp.OP_MUL_H32.value]:
625 print("mul op")
626 if rc_en & rc_ok:
627 asmop += "."
628 else:
629 if not asmop.endswith("."): # don't add "." to "andis."
630 if rc_en & rc_ok:
631 asmop += "."
632 if hasattr(self.dec2.e.do, "lk"):
633 lk = yield self.dec2.e.do.lk
634 if lk:
635 asmop += "l"
636 print("int_op", int_op)
637 if int_op in [MicrOp.OP_B.value, MicrOp.OP_BC.value]:
638 AA = yield self.dec2.dec.fields.FormI.AA[0:-1]
639 print("AA", AA)
640 if AA:
641 asmop += "a"
642 spr_msb = yield from self.get_spr_msb()
643 if int_op == MicrOp.OP_MFCR.value:
644 if spr_msb:
645 asmop = 'mfocrf'
646 else:
647 asmop = 'mfcr'
648 # XXX TODO: for whatever weird reason this doesn't work
649 # https://bugs.libre-soc.org/show_bug.cgi?id=390
650 if int_op == MicrOp.OP_MTCRF.value:
651 if spr_msb:
652 asmop = 'mtocrf'
653 else:
654 asmop = 'mtcrf'
655 return asmop
656
657 def get_spr_msb(self):
658 dec_insn = yield self.dec2.e.do.insn
659 return dec_insn & (1 << 20) != 0 # sigh - XFF.spr[-1]?
660
661 def call(self, name):
662 name = name.strip() # remove spaces if not already done so
663 if self.halted:
664 print("halted - not executing", name)
665 return
666
667 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
668 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
669 asmop = yield from self.get_assembly_name()
670 print("call", name, asmop)
671
672 # check privileged
673 int_op = yield self.dec2.dec.op.internal_op
674 spr_msb = yield from self.get_spr_msb()
675
676 instr_is_privileged = False
677 if int_op in [MicrOp.OP_ATTN.value,
678 MicrOp.OP_MFMSR.value,
679 MicrOp.OP_MTMSR.value,
680 MicrOp.OP_MTMSRD.value,
681 # TODO: OP_TLBIE
682 MicrOp.OP_RFID.value]:
683 instr_is_privileged = True
684 if int_op in [MicrOp.OP_MFSPR.value,
685 MicrOp.OP_MTSPR.value] and spr_msb:
686 instr_is_privileged = True
687
688 print("is priv", instr_is_privileged, hex(self.msr.value),
689 self.msr[MSRb.PR])
690 # check MSR priv bit and whether op is privileged: if so, throw trap
691 if instr_is_privileged and self.msr[MSRb.PR] == 1:
692 self.TRAP(0x700, PIb.PRIV)
693 self.namespace['NIA'] = self.trap_nia
694 self.pc.update(self.namespace)
695 return
696
697 # check halted condition
698 if name == 'attn':
699 self.halted = True
700 return
701
702 # check illegal instruction
703 illegal = False
704 if name not in ['mtcrf', 'mtocrf']:
705 illegal = name != asmop
706
707 if illegal:
708 print("illegal", name, asmop)
709 self.TRAP(0x700, PIb.ILLEG)
710 self.namespace['NIA'] = self.trap_nia
711 self.pc.update(self.namespace)
712 print("name %s != %s - calling ILLEGAL trap, PC: %x" %
713 (name, asmop, self.pc.CIA.value))
714 return
715
716 info = self.instrs[name]
717 yield from self.prep_namespace(info.form, info.op_fields)
718
719 # preserve order of register names
720 input_names = create_args(list(info.read_regs) +
721 list(info.uninit_regs))
722 print(input_names)
723
724 # main registers (RT, RA ...)
725 inputs = []
726 for name in input_names:
727 regnum = yield getattr(self.decoder, name)
728 regname = "_" + name
729 self.namespace[regname] = regnum
730 print('reading reg %d' % regnum)
731 inputs.append(self.gpr(regnum))
732
733 # "special" registers
734 for special in info.special_regs:
735 if special in special_sprs:
736 inputs.append(self.spr[special])
737 else:
738 inputs.append(self.namespace[special])
739
740 # clear trap (trap) NIA
741 self.trap_nia = None
742
743 print(inputs)
744 results = info.func(self, *inputs)
745 print(results)
746
747 # "inject" decorator takes namespace from function locals: we need to
748 # overwrite NIA being overwritten (sigh)
749 if self.trap_nia is not None:
750 self.namespace['NIA'] = self.trap_nia
751
752 print("after func", self.namespace['CIA'], self.namespace['NIA'])
753
754 # detect if CA/CA32 already in outputs (sra*, basically)
755 already_done = 0
756 if info.write_regs:
757 output_names = create_args(info.write_regs)
758 for name in output_names:
759 if name == 'CA':
760 already_done |= 1
761 if name == 'CA32':
762 already_done |= 2
763
764 print("carry already done?", bin(already_done))
765 if hasattr(self.dec2.e.do, "output_carry"):
766 carry_en = yield self.dec2.e.do.output_carry
767 else:
768 carry_en = False
769 if carry_en:
770 yield from self.handle_carry_(inputs, results, already_done)
771
772 # detect if overflow was in return result
773 overflow = None
774 if info.write_regs:
775 for name, output in zip(output_names, results):
776 if name == 'overflow':
777 overflow = output
778
779 if hasattr(self.dec2.e.do, "oe"):
780 ov_en = yield self.dec2.e.do.oe.oe
781 ov_ok = yield self.dec2.e.do.oe.ok
782 else:
783 ov_en = False
784 ov_ok = False
785 print("internal overflow", overflow, ov_en, ov_ok)
786 if ov_en & ov_ok:
787 yield from self.handle_overflow(inputs, results, overflow)
788
789 if hasattr(self.dec2.e.do, "rc"):
790 rc_en = yield self.dec2.e.do.rc.rc
791 else:
792 rc_en = False
793 if rc_en:
794 self.handle_comparison(results)
795
796 # any modified return results?
797 if info.write_regs:
798 for name, output in zip(output_names, results):
799 if name == 'overflow': # ignore, done already (above)
800 continue
801 if isinstance(output, int):
802 output = SelectableInt(output, 256)
803 if name in ['CA', 'CA32']:
804 if carry_en:
805 print("writing %s to XER" % name, output)
806 self.spr['XER'][XER_bits[name]] = output.value
807 else:
808 print("NOT writing %s to XER" % name, output)
809 elif name in info.special_regs:
810 print('writing special %s' % name, output, special_sprs)
811 if name in special_sprs:
812 self.spr[name] = output
813 else:
814 self.namespace[name].eq(output)
815 if name == 'MSR':
816 print('msr written', hex(self.msr.value))
817 else:
818 regnum = yield getattr(self.decoder, name)
819 print('writing reg %d %s' % (regnum, str(output)))
820 if output.bits > 64:
821 output = SelectableInt(output.value, 64)
822 self.gpr[regnum] = output
823
824 print("end of call", self.namespace['CIA'], self.namespace['NIA'])
825 # UPDATE program counter
826 self.pc.update(self.namespace)
827
828
829 def inject():
830 """Decorator factory.
831
832 this decorator will "inject" variables into the function's namespace,
833 from the *dictionary* in self.namespace. it therefore becomes possible
834 to make it look like a whole stack of variables which would otherwise
835 need "self." inserted in front of them (*and* for those variables to be
836 added to the instance) "appear" in the function.
837
838 "self.namespace['SI']" for example becomes accessible as just "SI" but
839 *only* inside the function, when decorated.
840 """
841 def variable_injector(func):
842 @wraps(func)
843 def decorator(*args, **kwargs):
844 try:
845 func_globals = func.__globals__ # Python 2.6+
846 except AttributeError:
847 func_globals = func.func_globals # Earlier versions.
848
849 context = args[0].namespace # variables to be injected
850 saved_values = func_globals.copy() # Shallow copy of dict.
851 func_globals.update(context)
852 result = func(*args, **kwargs)
853 print("globals after", func_globals['CIA'], func_globals['NIA'])
854 print("args[0]", args[0].namespace['CIA'],
855 args[0].namespace['NIA'])
856 args[0].namespace = func_globals
857 #exec (func.__code__, func_globals)
858
859 # finally:
860 # func_globals = saved_values # Undo changes.
861
862 return result
863
864 return decorator
865
866 return variable_injector