sort out SelectableInt bit-ordering for identifying SVP64 fields
[soc.git] / src / soc / decoder / isa / caller.py
1 # SPDX-License-Identifier: LGPLv3+
2 # Copyright (C) 2020, 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
3 # Copyright (C) 2020 Michael Nolan
4 # Funded by NLnet http://nlnet.nl
5 """core of the python-based POWER9 simulator
6
7 this is part of a cycle-accurate POWER9 simulator. its primary purpose is
8 not speed, it is for both learning and educational purposes, as well as
9 a method of verifying the HDL.
10
11 related bugs:
12
13 * https://bugs.libre-soc.org/show_bug.cgi?id=424
14 """
15
16 from nmigen.back.pysim import Settle
17 from functools import wraps
18 from copy import copy
19 from soc.decoder.orderedset import OrderedSet
20 from soc.decoder.selectable_int import (FieldSelectableInt, SelectableInt,
21 selectconcat)
22 from soc.decoder.power_enums import (spr_dict, spr_byname, XER_bits,
23 insns, MicrOp)
24 from soc.decoder.helpers import exts, gtu, ltu, undefined
25 from soc.consts import PIb, MSRb # big-endian (PowerISA versions)
26
27 from collections import namedtuple
28 import math
29 import sys
30
31 instruction_info = namedtuple('instruction_info',
32 'func read_regs uninit_regs write_regs ' +
33 'special_regs op_fields form asmregs')
34
35 special_sprs = {
36 'LR': 8,
37 'CTR': 9,
38 'TAR': 815,
39 'XER': 1,
40 'VRSAVE': 256}
41
42
43 def swap_order(x, nbytes):
44 x = x.to_bytes(nbytes, byteorder='little')
45 x = int.from_bytes(x, byteorder='big', signed=False)
46 return x
47
48
49 REG_SORT_ORDER = {
50 # TODO (lkcl): adjust other registers that should be in a particular order
51 # probably CA, CA32, and CR
52 "RT": 0,
53 "RA": 0,
54 "RB": 0,
55 "RS": 0,
56 "CR": 0,
57 "LR": 0,
58 "CTR": 0,
59 "TAR": 0,
60 "CA": 0,
61 "CA32": 0,
62 "MSR": 0,
63
64 "overflow": 1,
65 }
66
67
68 def create_args(reglist, extra=None):
69 retval = list(OrderedSet(reglist))
70 retval.sort(key=lambda reg: REG_SORT_ORDER[reg])
71 if extra is not None:
72 return [extra] + retval
73 return retval
74
75
76 class Mem:
77
78 def __init__(self, row_bytes=8, initial_mem=None):
79 self.mem = {}
80 self.bytes_per_word = row_bytes
81 self.word_log2 = math.ceil(math.log2(row_bytes))
82 print("Sim-Mem", initial_mem, self.bytes_per_word, self.word_log2)
83 if not initial_mem:
84 return
85
86 # different types of memory data structures recognised (for convenience)
87 if isinstance(initial_mem, list):
88 initial_mem = (0, initial_mem)
89 if isinstance(initial_mem, tuple):
90 startaddr, mem = initial_mem
91 initial_mem = {}
92 for i, val in enumerate(mem):
93 initial_mem[startaddr + row_bytes*i] = (val, row_bytes)
94
95 for addr, (val, width) in initial_mem.items():
96 #val = swap_order(val, width)
97 self.st(addr, val, width, swap=False)
98
99 def _get_shifter_mask(self, wid, remainder):
100 shifter = ((self.bytes_per_word - wid) - remainder) * \
101 8 # bits per byte
102 # XXX https://bugs.libre-soc.org/show_bug.cgi?id=377
103 # BE/LE mode?
104 shifter = remainder * 8
105 mask = (1 << (wid * 8)) - 1
106 print("width,rem,shift,mask", wid, remainder, hex(shifter), hex(mask))
107 return shifter, mask
108
109 # TODO: Implement ld/st of lesser width
110 def ld(self, address, width=8, swap=True, check_in_mem=False):
111 print("ld from addr 0x{:x} width {:d}".format(address, width))
112 remainder = address & (self.bytes_per_word - 1)
113 address = address >> self.word_log2
114 assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
115 if address in self.mem:
116 val = self.mem[address]
117 elif check_in_mem:
118 return None
119 else:
120 val = 0
121 print("mem @ 0x{:x} rem {:d} : 0x{:x}".format(address, remainder, val))
122
123 if width != self.bytes_per_word:
124 shifter, mask = self._get_shifter_mask(width, remainder)
125 print("masking", hex(val), hex(mask << shifter), shifter)
126 val = val & (mask << shifter)
127 val >>= shifter
128 if swap:
129 val = swap_order(val, width)
130 print("Read 0x{:x} from addr 0x{:x}".format(val, address))
131 return val
132
133 def st(self, addr, v, width=8, swap=True):
134 staddr = addr
135 remainder = addr & (self.bytes_per_word - 1)
136 addr = addr >> self.word_log2
137 print("Writing 0x{:x} to ST 0x{:x} "
138 "memaddr 0x{:x}/{:x}".format(v, staddr, addr, remainder, swap))
139 assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
140 if swap:
141 v = swap_order(v, width)
142 if width != self.bytes_per_word:
143 if addr in self.mem:
144 val = self.mem[addr]
145 else:
146 val = 0
147 shifter, mask = self._get_shifter_mask(width, remainder)
148 val &= ~(mask << shifter)
149 val |= v << shifter
150 self.mem[addr] = val
151 else:
152 self.mem[addr] = v
153 print("mem @ 0x{:x}: 0x{:x}".format(addr, self.mem[addr]))
154
155 def __call__(self, addr, sz):
156 val = self.ld(addr.value, sz, swap=False)
157 print("memread", addr, sz, val)
158 return SelectableInt(val, sz*8)
159
160 def memassign(self, addr, sz, val):
161 print("memassign", addr, sz, val)
162 self.st(addr.value, val.value, sz, swap=False)
163
164
165 class GPR(dict):
166 def __init__(self, decoder, regfile):
167 dict.__init__(self)
168 self.sd = decoder
169 for i in range(32):
170 self[i] = SelectableInt(regfile[i], 64)
171
172 def __call__(self, ridx):
173 return self[ridx]
174
175 def set_form(self, form):
176 self.form = form
177
178 def getz(self, rnum):
179 # rnum = rnum.value # only SelectableInt allowed
180 print("GPR getzero", rnum)
181 if rnum == 0:
182 return SelectableInt(0, 64)
183 return self[rnum]
184
185 def _get_regnum(self, attr):
186 getform = self.sd.sigforms[self.form]
187 rnum = getattr(getform, attr)
188 return rnum
189
190 def ___getitem__(self, attr):
191 print("GPR getitem", attr)
192 rnum = self._get_regnum(attr)
193 return self.regfile[rnum]
194
195 def dump(self):
196 for i in range(0, len(self), 8):
197 s = []
198 for j in range(8):
199 s.append("%08x" % self[i+j].value)
200 s = ' '.join(s)
201 print("reg", "%2d" % i, s)
202
203
204 class PC:
205 def __init__(self, pc_init=0):
206 self.CIA = SelectableInt(pc_init, 64)
207 self.NIA = self.CIA + SelectableInt(4, 64)
208
209 def update(self, namespace):
210 self.CIA = namespace['NIA'].narrow(64)
211 self.NIA = self.CIA + SelectableInt(4, 64)
212 namespace['CIA'] = self.CIA
213 namespace['NIA'] = self.NIA
214
215
216 # Simple-V: see https://libre-soc.org/openpower/sv
217 class SVP64State:
218 def __init__(self, init=0):
219 self.spr = SelectableInt(init, 32)
220 # fields of SVSTATE, see https://libre-soc.org/openpower/sv/sprs/
221 self.maxvl = FieldSelectableInt(self.spr, tuple(range(0,7)))
222 self.vl = FieldSelectableInt(self.spr, tuple(range(7,14)))
223 self.srcstep = FieldSelectableInt(self.spr, tuple(range(14,21)))
224 self.dststep = FieldSelectableInt(self.spr, tuple(range(21,28)))
225 self.subvl = FieldSelectableInt(self.spr, tuple(range(28,30)))
226 self.svstep = FieldSelectableInt(self.spr, tuple(range(30,32)))
227
228
229 # SVP64 ReMap field
230 class SVP64RMFields:
231 def __init__(self, init=0):
232 self.spr = SelectableInt(init, 24)
233 # SVP64 RM fields: see https://libre-soc.org/openpower/sv/svp64/
234 self.mmode = FieldSelectableInt(self.spr, [0])
235 self.mask = FieldSelectableInt(self.spr, tuple(range(1,4)))
236 self.elwidth = FieldSelectableInt(self.spr, tuple(range(4,6)))
237 self.ewsrc = FieldSelectableInt(self.spr, tuple(range(6,8)))
238 self.subvl = FieldSelectableInt(self.spr, tuple(range(8,10)))
239 self.extra = FieldSelectableInt(self.spr, tuple(range(10,19)))
240 self.mode = FieldSelectableInt(self.spr, tuple(range(19,24)))
241
242
243 # SVP64 Prefix fields: see https://libre-soc.org/openpower/sv/svp64/
244 class SVP64PrefixFields:
245 def __init__(self):
246 self.insn = SelectableInt(0, 32)
247 # 6 bit major opcode EXT001, 2 bits "identifying" (7, 9), 24 SV ReMap
248 self.major = FieldSelectableInt(self.insn, tuple(range(0,6)))
249 self.pid = FieldSelectableInt(self.insn, (7, 9)) # must be 0b11
250 rmfields = [6, 8] + list(range(10,32)) # SVP64 24-bit RM
251 self.rm = FieldSelectableInt(self.insn, rmfields)
252
253
254 class SPR(dict):
255 def __init__(self, dec2, initial_sprs={}):
256 self.sd = dec2
257 dict.__init__(self)
258 for key, v in initial_sprs.items():
259 if isinstance(key, SelectableInt):
260 key = key.value
261 key = special_sprs.get(key, key)
262 if isinstance(key, int):
263 info = spr_dict[key]
264 else:
265 info = spr_byname[key]
266 if not isinstance(v, SelectableInt):
267 v = SelectableInt(v, info.length)
268 self[key] = v
269
270 def __getitem__(self, key):
271 print("get spr", key)
272 print("dict", self.items())
273 # if key in special_sprs get the special spr, otherwise return key
274 if isinstance(key, SelectableInt):
275 key = key.value
276 if isinstance(key, int):
277 key = spr_dict[key].SPR
278 key = special_sprs.get(key, key)
279 if key == 'HSRR0': # HACK!
280 key = 'SRR0'
281 if key == 'HSRR1': # HACK!
282 key = 'SRR1'
283 if key in self:
284 res = dict.__getitem__(self, key)
285 else:
286 if isinstance(key, int):
287 info = spr_dict[key]
288 else:
289 info = spr_byname[key]
290 dict.__setitem__(self, key, SelectableInt(0, info.length))
291 res = dict.__getitem__(self, key)
292 print("spr returning", key, res)
293 return res
294
295 def __setitem__(self, key, value):
296 if isinstance(key, SelectableInt):
297 key = key.value
298 if isinstance(key, int):
299 key = spr_dict[key].SPR
300 print("spr key", key)
301 key = special_sprs.get(key, key)
302 if key == 'HSRR0': # HACK!
303 self.__setitem__('SRR0', value)
304 if key == 'HSRR1': # HACK!
305 self.__setitem__('SRR1', value)
306 print("setting spr", key, value)
307 dict.__setitem__(self, key, value)
308
309 def __call__(self, ridx):
310 return self[ridx]
311
312
313 class ISACaller:
314 # decoder2 - an instance of power_decoder2
315 # regfile - a list of initial values for the registers
316 # initial_{etc} - initial values for SPRs, Condition Register, Mem, MSR
317 # respect_pc - tracks the program counter. requires initial_insns
318 def __init__(self, decoder2, regfile, initial_sprs=None, initial_cr=0,
319 initial_mem=None, initial_msr=0,
320 initial_svstate=0,
321 initial_insns=None, respect_pc=False,
322 disassembly=None,
323 initial_pc=0,
324 bigendian=False):
325
326 self.bigendian = bigendian
327 self.halted = False
328 self.respect_pc = respect_pc
329 if initial_sprs is None:
330 initial_sprs = {}
331 if initial_mem is None:
332 initial_mem = {}
333 if initial_insns is None:
334 initial_insns = {}
335 assert self.respect_pc == False, "instructions required to honor pc"
336
337 print("ISACaller insns", respect_pc, initial_insns, disassembly)
338 print("ISACaller initial_msr", initial_msr)
339
340 # "fake program counter" mode (for unit testing)
341 self.fake_pc = 0
342 disasm_start = 0
343 if not respect_pc:
344 if isinstance(initial_mem, tuple):
345 self.fake_pc = initial_mem[0]
346 disasm_start = self.fake_pc
347 else:
348 disasm_start = initial_pc
349
350 # disassembly: we need this for now (not given from the decoder)
351 self.disassembly = {}
352 if disassembly:
353 for i, code in enumerate(disassembly):
354 self.disassembly[i*4 + disasm_start] = code
355
356 # set up registers, instruction memory, data memory, PC, SPRs, MSR
357 self.gpr = GPR(decoder2, regfile)
358 self.mem = Mem(row_bytes=8, initial_mem=initial_mem)
359 self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
360 self.pc = PC()
361 self.svstate = SVP64State(initial_svstate)
362 self.spr = SPR(decoder2, initial_sprs)
363 self.msr = SelectableInt(initial_msr, 64) # underlying reg
364
365 # TODO, needed here:
366 # FPR (same as GPR except for FP nums)
367 # 4.2.2 p124 FPSCR (definitely "separate" - not in SPR)
368 # note that mffs, mcrfs, mtfsf "manage" this FPSCR
369 # 2.3.1 CR (and sub-fields CR0..CR6 - CR0 SO comes from XER.SO)
370 # note that mfocrf, mfcr, mtcr, mtocrf, mcrxrx "manage" CRs
371 # -- Done
372 # 2.3.2 LR (actually SPR #8) -- Done
373 # 2.3.3 CTR (actually SPR #9) -- Done
374 # 2.3.4 TAR (actually SPR #815)
375 # 3.2.2 p45 XER (actually SPR #1) -- Done
376 # 3.2.3 p46 p232 VRSAVE (actually SPR #256)
377
378 # create CR then allow portions of it to be "selectable" (below)
379 #rev_cr = int('{:016b}'.format(initial_cr)[::-1], 2)
380 self.cr = SelectableInt(initial_cr, 64) # underlying reg
381 #self.cr = FieldSelectableInt(self._cr, list(range(32, 64)))
382
383 # "undefined", just set to variable-bit-width int (use exts "max")
384 #self.undefined = SelectableInt(0, 256) # TODO, not hard-code 256!
385
386 self.namespace = {}
387 self.namespace.update(self.spr)
388 self.namespace.update({'GPR': self.gpr,
389 'MEM': self.mem,
390 'SPR': self.spr,
391 'memassign': self.memassign,
392 'NIA': self.pc.NIA,
393 'CIA': self.pc.CIA,
394 'CR': self.cr,
395 'MSR': self.msr,
396 'undefined': undefined,
397 'mode_is_64bit': True,
398 'SO': XER_bits['SO']
399 })
400
401 # update pc to requested start point
402 self.set_pc(initial_pc)
403
404 # field-selectable versions of Condition Register TODO check bitranges?
405 self.crl = []
406 for i in range(8):
407 bits = tuple(range(i*4+32, (i+1)*4+32)) # errr... maybe?
408 _cr = FieldSelectableInt(self.cr, bits)
409 self.crl.append(_cr)
410 self.namespace["CR%d" % i] = _cr
411
412 self.decoder = decoder2.dec
413 self.dec2 = decoder2
414
415 def TRAP(self, trap_addr=0x700, trap_bit=PIb.TRAP):
416 print("TRAP:", hex(trap_addr), hex(self.namespace['MSR'].value))
417 # store CIA(+4?) in SRR0, set NIA to 0x700
418 # store MSR in SRR1, set MSR to um errr something, have to check spec
419 self.spr['SRR0'].value = self.pc.CIA.value
420 self.spr['SRR1'].value = self.namespace['MSR'].value
421 self.trap_nia = SelectableInt(trap_addr, 64)
422 self.spr['SRR1'][trap_bit] = 1 # change *copy* of MSR in SRR1
423
424 # set exception bits. TODO: this should, based on the address
425 # in figure 66 p1065 V3.0B and the table figure 65 p1063 set these
426 # bits appropriately. however it turns out that *for now* in all
427 # cases (all trap_addrs) the exact same thing is needed.
428 self.msr[MSRb.IR] = 0
429 self.msr[MSRb.DR] = 0
430 self.msr[MSRb.FE0] = 0
431 self.msr[MSRb.FE1] = 0
432 self.msr[MSRb.EE] = 0
433 self.msr[MSRb.RI] = 0
434 self.msr[MSRb.SF] = 1
435 self.msr[MSRb.TM] = 0
436 self.msr[MSRb.VEC] = 0
437 self.msr[MSRb.VSX] = 0
438 self.msr[MSRb.PR] = 0
439 self.msr[MSRb.FP] = 0
440 self.msr[MSRb.PMM] = 0
441 self.msr[MSRb.TEs] = 0
442 self.msr[MSRb.TEe] = 0
443 self.msr[MSRb.UND] = 0
444 self.msr[MSRb.LE] = 1
445
446 def memassign(self, ea, sz, val):
447 self.mem.memassign(ea, sz, val)
448
449 def prep_namespace(self, formname, op_fields):
450 # TODO: get field names from form in decoder*1* (not decoder2)
451 # decoder2 is hand-created, and decoder1.sigform is auto-generated
452 # from spec
453 # then "yield" fields only from op_fields rather than hard-coded
454 # list, here.
455 fields = self.decoder.sigforms[formname]
456 for name in op_fields:
457 if name == 'spr':
458 sig = getattr(fields, name.upper())
459 else:
460 sig = getattr(fields, name)
461 val = yield sig
462 # these are all opcode fields involved in index-selection of CR,
463 # and need to do "standard" arithmetic. CR[BA+32] for example
464 # would, if using SelectableInt, only be 5-bit.
465 if name in ['BF', 'BFA', 'BC', 'BA', 'BB', 'BT', 'BI']:
466 self.namespace[name] = val
467 else:
468 self.namespace[name] = SelectableInt(val, sig.width)
469
470 self.namespace['XER'] = self.spr['XER']
471 self.namespace['CA'] = self.spr['XER'][XER_bits['CA']].value
472 self.namespace['CA32'] = self.spr['XER'][XER_bits['CA32']].value
473
474 def handle_carry_(self, inputs, outputs, already_done):
475 inv_a = yield self.dec2.e.do.invert_in
476 if inv_a:
477 inputs[0] = ~inputs[0]
478
479 imm_ok = yield self.dec2.e.do.imm_data.ok
480 if imm_ok:
481 imm = yield self.dec2.e.do.imm_data.data
482 inputs.append(SelectableInt(imm, 64))
483 assert len(outputs) >= 1
484 print("outputs", repr(outputs))
485 if isinstance(outputs, list) or isinstance(outputs, tuple):
486 output = outputs[0]
487 else:
488 output = outputs
489 gts = []
490 for x in inputs:
491 print("gt input", x, output)
492 gt = (gtu(x, output))
493 gts.append(gt)
494 print(gts)
495 cy = 1 if any(gts) else 0
496 print("CA", cy, gts)
497 if not (1 & already_done):
498 self.spr['XER'][XER_bits['CA']] = cy
499
500 print("inputs", already_done, inputs)
501 # 32 bit carry
502 # ARGH... different for OP_ADD... *sigh*...
503 op = yield self.dec2.e.do.insn_type
504 if op == MicrOp.OP_ADD.value:
505 res32 = (output.value & (1 << 32)) != 0
506 a32 = (inputs[0].value & (1 << 32)) != 0
507 if len(inputs) >= 2:
508 b32 = (inputs[1].value & (1 << 32)) != 0
509 else:
510 b32 = False
511 cy32 = res32 ^ a32 ^ b32
512 print("CA32 ADD", cy32)
513 else:
514 gts = []
515 for x in inputs:
516 print("input", x, output)
517 print(" x[32:64]", x, x[32:64])
518 print(" o[32:64]", output, output[32:64])
519 gt = (gtu(x[32:64], output[32:64])) == SelectableInt(1, 1)
520 gts.append(gt)
521 cy32 = 1 if any(gts) else 0
522 print("CA32", cy32, gts)
523 if not (2 & already_done):
524 self.spr['XER'][XER_bits['CA32']] = cy32
525
526 def handle_overflow(self, inputs, outputs, div_overflow):
527 if hasattr(self.dec2.e.do, "invert_in"):
528 inv_a = yield self.dec2.e.do.invert_in
529 if inv_a:
530 inputs[0] = ~inputs[0]
531
532 imm_ok = yield self.dec2.e.do.imm_data.ok
533 if imm_ok:
534 imm = yield self.dec2.e.do.imm_data.data
535 inputs.append(SelectableInt(imm, 64))
536 assert len(outputs) >= 1
537 print("handle_overflow", inputs, outputs, div_overflow)
538 if len(inputs) < 2 and div_overflow is None:
539 return
540
541 # div overflow is different: it's returned by the pseudo-code
542 # because it's more complex than can be done by analysing the output
543 if div_overflow is not None:
544 ov, ov32 = div_overflow, div_overflow
545 # arithmetic overflow can be done by analysing the input and output
546 elif len(inputs) >= 2:
547 output = outputs[0]
548
549 # OV (64-bit)
550 input_sgn = [exts(x.value, x.bits) < 0 for x in inputs]
551 output_sgn = exts(output.value, output.bits) < 0
552 ov = 1 if input_sgn[0] == input_sgn[1] and \
553 output_sgn != input_sgn[0] else 0
554
555 # OV (32-bit)
556 input32_sgn = [exts(x.value, 32) < 0 for x in inputs]
557 output32_sgn = exts(output.value, 32) < 0
558 ov32 = 1 if input32_sgn[0] == input32_sgn[1] and \
559 output32_sgn != input32_sgn[0] else 0
560
561 self.spr['XER'][XER_bits['OV']] = ov
562 self.spr['XER'][XER_bits['OV32']] = ov32
563 so = self.spr['XER'][XER_bits['SO']]
564 so = so | ov
565 self.spr['XER'][XER_bits['SO']] = so
566
567 def handle_comparison(self, outputs):
568 out = outputs[0]
569 assert isinstance(out, SelectableInt), \
570 "out zero not a SelectableInt %s" % repr(outputs)
571 print("handle_comparison", out.bits, hex(out.value))
572 # TODO - XXX *processor* in 32-bit mode
573 # https://bugs.libre-soc.org/show_bug.cgi?id=424
574 # if is_32bit:
575 # o32 = exts(out.value, 32)
576 # print ("handle_comparison exts 32 bit", hex(o32))
577 out = exts(out.value, out.bits)
578 print("handle_comparison exts", hex(out))
579 zero = SelectableInt(out == 0, 1)
580 positive = SelectableInt(out > 0, 1)
581 negative = SelectableInt(out < 0, 1)
582 SO = self.spr['XER'][XER_bits['SO']]
583 print("handle_comparison SO", SO)
584 cr_field = selectconcat(negative, positive, zero, SO)
585 self.crl[0].eq(cr_field)
586
587 def set_pc(self, pc_val):
588 self.namespace['NIA'] = SelectableInt(pc_val, 64)
589 self.pc.update(self.namespace)
590
591 def setup_one(self):
592 """set up one instruction
593 """
594 if self.respect_pc:
595 pc = self.pc.CIA.value
596 else:
597 pc = self.fake_pc
598 self._pc = pc
599 ins = self.imem.ld(pc, 4, False, True)
600 if ins is None:
601 raise KeyError("no instruction at 0x%x" % pc)
602 print("setup: 0x%x 0x%x %s" % (pc, ins & 0xffffffff, bin(ins)))
603 print("CIA NIA", self.respect_pc, self.pc.CIA.value, self.pc.NIA.value)
604
605 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff)
606 yield self.dec2.dec.bigendian.eq(self.bigendian)
607 yield self.dec2.state.msr.eq(self.msr.value)
608 yield self.dec2.state.pc.eq(pc)
609
610 # SVP64. first, check if the opcode is EXT001
611 yield Settle()
612 opcode = yield self.dec2.dec.opcode_in
613 pfx = SVP64PrefixFields()
614 pfx.insn.value = opcode
615 major = pfx.major.asint(msb0=True) # MSB0 inversion
616 print ("prefix test: opcode:", major, bin(major),
617 pfx.insn[7] == 0b1, pfx.insn[9] == 0b1,
618 bin(pfx.rm.asint(msb0=True)))
619
620 def execute_one(self):
621 """execute one instruction
622 """
623 # get the disassembly code for this instruction
624 code = self.disassembly[self._pc]
625 print("sim-execute", hex(self._pc), code)
626 opname = code.split(' ')[0]
627 yield from self.call(opname)
628
629 if not self.respect_pc:
630 self.fake_pc += 4
631 print("execute one, CIA NIA", self.pc.CIA.value, self.pc.NIA.value)
632
633 def get_assembly_name(self):
634 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
635 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
636 dec_insn = yield self.dec2.e.do.insn
637 asmcode = yield self.dec2.dec.op.asmcode
638 print("get assembly name asmcode", asmcode, hex(dec_insn))
639 asmop = insns.get(asmcode, None)
640 int_op = yield self.dec2.dec.op.internal_op
641
642 # sigh reconstruct the assembly instruction name
643 if hasattr(self.dec2.e.do, "oe"):
644 ov_en = yield self.dec2.e.do.oe.oe
645 ov_ok = yield self.dec2.e.do.oe.ok
646 else:
647 ov_en = False
648 ov_ok = False
649 if hasattr(self.dec2.e.do, "rc"):
650 rc_en = yield self.dec2.e.do.rc.rc
651 rc_ok = yield self.dec2.e.do.rc.ok
652 else:
653 rc_en = False
654 rc_ok = False
655 # grrrr have to special-case MUL op (see DecodeOE)
656 print("ov %d en %d rc %d en %d op %d" %
657 (ov_ok, ov_en, rc_ok, rc_en, int_op))
658 if int_op in [MicrOp.OP_MUL_H64.value, MicrOp.OP_MUL_H32.value]:
659 print("mul op")
660 if rc_en & rc_ok:
661 asmop += "."
662 else:
663 if not asmop.endswith("."): # don't add "." to "andis."
664 if rc_en & rc_ok:
665 asmop += "."
666 if hasattr(self.dec2.e.do, "lk"):
667 lk = yield self.dec2.e.do.lk
668 if lk:
669 asmop += "l"
670 print("int_op", int_op)
671 if int_op in [MicrOp.OP_B.value, MicrOp.OP_BC.value]:
672 AA = yield self.dec2.dec.fields.FormI.AA[0:-1]
673 print("AA", AA)
674 if AA:
675 asmop += "a"
676 spr_msb = yield from self.get_spr_msb()
677 if int_op == MicrOp.OP_MFCR.value:
678 if spr_msb:
679 asmop = 'mfocrf'
680 else:
681 asmop = 'mfcr'
682 # XXX TODO: for whatever weird reason this doesn't work
683 # https://bugs.libre-soc.org/show_bug.cgi?id=390
684 if int_op == MicrOp.OP_MTCRF.value:
685 if spr_msb:
686 asmop = 'mtocrf'
687 else:
688 asmop = 'mtcrf'
689 return asmop
690
691 def get_spr_msb(self):
692 dec_insn = yield self.dec2.e.do.insn
693 return dec_insn & (1 << 20) != 0 # sigh - XFF.spr[-1]?
694
695 def call(self, name):
696 name = name.strip() # remove spaces if not already done so
697 if self.halted:
698 print("halted - not executing", name)
699 return
700
701 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
702 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
703 asmop = yield from self.get_assembly_name()
704 print("call", name, asmop)
705
706 # check privileged
707 int_op = yield self.dec2.dec.op.internal_op
708 spr_msb = yield from self.get_spr_msb()
709
710 instr_is_privileged = False
711 if int_op in [MicrOp.OP_ATTN.value,
712 MicrOp.OP_MFMSR.value,
713 MicrOp.OP_MTMSR.value,
714 MicrOp.OP_MTMSRD.value,
715 # TODO: OP_TLBIE
716 MicrOp.OP_RFID.value]:
717 instr_is_privileged = True
718 if int_op in [MicrOp.OP_MFSPR.value,
719 MicrOp.OP_MTSPR.value] and spr_msb:
720 instr_is_privileged = True
721
722 print("is priv", instr_is_privileged, hex(self.msr.value),
723 self.msr[MSRb.PR])
724 # check MSR priv bit and whether op is privileged: if so, throw trap
725 if instr_is_privileged and self.msr[MSRb.PR] == 1:
726 self.TRAP(0x700, PIb.PRIV)
727 self.namespace['NIA'] = self.trap_nia
728 self.pc.update(self.namespace)
729 return
730
731 # check halted condition
732 if name == 'attn':
733 self.halted = True
734 return
735
736 # check illegal instruction
737 illegal = False
738 if name not in ['mtcrf', 'mtocrf']:
739 illegal = name != asmop
740
741 if illegal:
742 print("illegal", name, asmop)
743 self.TRAP(0x700, PIb.ILLEG)
744 self.namespace['NIA'] = self.trap_nia
745 self.pc.update(self.namespace)
746 print("name %s != %s - calling ILLEGAL trap, PC: %x" %
747 (name, asmop, self.pc.CIA.value))
748 return
749
750 info = self.instrs[name]
751 yield from self.prep_namespace(info.form, info.op_fields)
752
753 # preserve order of register names
754 input_names = create_args(list(info.read_regs) +
755 list(info.uninit_regs))
756 print(input_names)
757
758 # main registers (RT, RA ...)
759 inputs = []
760 for name in input_names:
761 regnum = yield getattr(self.decoder, name)
762 regname = "_" + name
763 self.namespace[regname] = regnum
764 print('reading reg %d' % regnum)
765 inputs.append(self.gpr(regnum))
766
767 # "special" registers
768 for special in info.special_regs:
769 if special in special_sprs:
770 inputs.append(self.spr[special])
771 else:
772 inputs.append(self.namespace[special])
773
774 # clear trap (trap) NIA
775 self.trap_nia = None
776
777 print(inputs)
778 results = info.func(self, *inputs)
779 print(results)
780
781 # "inject" decorator takes namespace from function locals: we need to
782 # overwrite NIA being overwritten (sigh)
783 if self.trap_nia is not None:
784 self.namespace['NIA'] = self.trap_nia
785
786 print("after func", self.namespace['CIA'], self.namespace['NIA'])
787
788 # detect if CA/CA32 already in outputs (sra*, basically)
789 already_done = 0
790 if info.write_regs:
791 output_names = create_args(info.write_regs)
792 for name in output_names:
793 if name == 'CA':
794 already_done |= 1
795 if name == 'CA32':
796 already_done |= 2
797
798 print("carry already done?", bin(already_done))
799 if hasattr(self.dec2.e.do, "output_carry"):
800 carry_en = yield self.dec2.e.do.output_carry
801 else:
802 carry_en = False
803 if carry_en:
804 yield from self.handle_carry_(inputs, results, already_done)
805
806 # detect if overflow was in return result
807 overflow = None
808 if info.write_regs:
809 for name, output in zip(output_names, results):
810 if name == 'overflow':
811 overflow = output
812
813 if hasattr(self.dec2.e.do, "oe"):
814 ov_en = yield self.dec2.e.do.oe.oe
815 ov_ok = yield self.dec2.e.do.oe.ok
816 else:
817 ov_en = False
818 ov_ok = False
819 print("internal overflow", overflow, ov_en, ov_ok)
820 if ov_en & ov_ok:
821 yield from self.handle_overflow(inputs, results, overflow)
822
823 if hasattr(self.dec2.e.do, "rc"):
824 rc_en = yield self.dec2.e.do.rc.rc
825 else:
826 rc_en = False
827 if rc_en:
828 self.handle_comparison(results)
829
830 # any modified return results?
831 if info.write_regs:
832 for name, output in zip(output_names, results):
833 if name == 'overflow': # ignore, done already (above)
834 continue
835 if isinstance(output, int):
836 output = SelectableInt(output, 256)
837 if name in ['CA', 'CA32']:
838 if carry_en:
839 print("writing %s to XER" % name, output)
840 self.spr['XER'][XER_bits[name]] = output.value
841 else:
842 print("NOT writing %s to XER" % name, output)
843 elif name in info.special_regs:
844 print('writing special %s' % name, output, special_sprs)
845 if name in special_sprs:
846 self.spr[name] = output
847 else:
848 self.namespace[name].eq(output)
849 if name == 'MSR':
850 print('msr written', hex(self.msr.value))
851 else:
852 regnum = yield getattr(self.decoder, name)
853 print('writing reg %d %s' % (regnum, str(output)))
854 if output.bits > 64:
855 output = SelectableInt(output.value, 64)
856 self.gpr[regnum] = output
857
858 print("end of call", self.namespace['CIA'], self.namespace['NIA'])
859 # UPDATE program counter
860 self.pc.update(self.namespace)
861
862
863 def inject():
864 """Decorator factory.
865
866 this decorator will "inject" variables into the function's namespace,
867 from the *dictionary* in self.namespace. it therefore becomes possible
868 to make it look like a whole stack of variables which would otherwise
869 need "self." inserted in front of them (*and* for those variables to be
870 added to the instance) "appear" in the function.
871
872 "self.namespace['SI']" for example becomes accessible as just "SI" but
873 *only* inside the function, when decorated.
874 """
875 def variable_injector(func):
876 @wraps(func)
877 def decorator(*args, **kwargs):
878 try:
879 func_globals = func.__globals__ # Python 2.6+
880 except AttributeError:
881 func_globals = func.func_globals # Earlier versions.
882
883 context = args[0].namespace # variables to be injected
884 saved_values = func_globals.copy() # Shallow copy of dict.
885 func_globals.update(context)
886 result = func(*args, **kwargs)
887 print("globals after", func_globals['CIA'], func_globals['NIA'])
888 print("args[0]", args[0].namespace['CIA'],
889 args[0].namespace['NIA'])
890 args[0].namespace = func_globals
891 #exec (func.__code__, func_globals)
892
893 # finally:
894 # func_globals = saved_values # Undo changes.
895
896 return result
897
898 return decorator
899
900 return variable_injector