start on CRs in SVP64 mode
[soc.git] / src / soc / decoder / isa / caller.py
1 # SPDX-License-Identifier: LGPLv3+
2 # Copyright (C) 2020, 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
3 # Copyright (C) 2020 Michael Nolan
4 # Funded by NLnet http://nlnet.nl
5 """core of the python-based POWER9 simulator
6
7 this is part of a cycle-accurate POWER9 simulator. its primary purpose is
8 not speed, it is for both learning and educational purposes, as well as
9 a method of verifying the HDL.
10
11 related bugs:
12
13 * https://bugs.libre-soc.org/show_bug.cgi?id=424
14 """
15
16 from nmigen.back.pysim import Settle
17 from functools import wraps
18 from copy import copy
19 from soc.decoder.orderedset import OrderedSet
20 from soc.decoder.selectable_int import (FieldSelectableInt, SelectableInt,
21 selectconcat)
22 from soc.decoder.power_enums import (spr_dict, spr_byname, XER_bits,
23 insns, MicrOp, In1Sel, In2Sel, In3Sel,
24 OutSel, CROutSel)
25 from soc.decoder.helpers import exts, gtu, ltu, undefined
26 from soc.consts import PIb, MSRb # big-endian (PowerISA versions)
27 from soc.decoder.power_svp64 import SVP64RM, decode_extra
28
29 from collections import namedtuple
30 import math
31 import sys
32
33 instruction_info = namedtuple('instruction_info',
34 'func read_regs uninit_regs write_regs ' +
35 'special_regs op_fields form asmregs')
36
37 special_sprs = {
38 'LR': 8,
39 'CTR': 9,
40 'TAR': 815,
41 'XER': 1,
42 'VRSAVE': 256}
43
44
45 def swap_order(x, nbytes):
46 x = x.to_bytes(nbytes, byteorder='little')
47 x = int.from_bytes(x, byteorder='big', signed=False)
48 return x
49
50
51 REG_SORT_ORDER = {
52 # TODO (lkcl): adjust other registers that should be in a particular order
53 # probably CA, CA32, and CR
54 "RT": 0,
55 "RA": 0,
56 "RB": 0,
57 "RS": 0,
58 "CR": 0,
59 "LR": 0,
60 "CTR": 0,
61 "TAR": 0,
62 "CA": 0,
63 "CA32": 0,
64 "MSR": 0,
65
66 "overflow": 1,
67 }
68
69
70 def create_args(reglist, extra=None):
71 retval = list(OrderedSet(reglist))
72 retval.sort(key=lambda reg: REG_SORT_ORDER[reg])
73 if extra is not None:
74 return [extra] + retval
75 return retval
76
77
78 class Mem:
79
80 def __init__(self, row_bytes=8, initial_mem=None):
81 self.mem = {}
82 self.bytes_per_word = row_bytes
83 self.word_log2 = math.ceil(math.log2(row_bytes))
84 print("Sim-Mem", initial_mem, self.bytes_per_word, self.word_log2)
85 if not initial_mem:
86 return
87
88 # different types of memory data structures recognised (for convenience)
89 if isinstance(initial_mem, list):
90 initial_mem = (0, initial_mem)
91 if isinstance(initial_mem, tuple):
92 startaddr, mem = initial_mem
93 initial_mem = {}
94 for i, val in enumerate(mem):
95 initial_mem[startaddr + row_bytes*i] = (val, row_bytes)
96
97 for addr, (val, width) in initial_mem.items():
98 #val = swap_order(val, width)
99 self.st(addr, val, width, swap=False)
100
101 def _get_shifter_mask(self, wid, remainder):
102 shifter = ((self.bytes_per_word - wid) - remainder) * \
103 8 # bits per byte
104 # XXX https://bugs.libre-soc.org/show_bug.cgi?id=377
105 # BE/LE mode?
106 shifter = remainder * 8
107 mask = (1 << (wid * 8)) - 1
108 print("width,rem,shift,mask", wid, remainder, hex(shifter), hex(mask))
109 return shifter, mask
110
111 # TODO: Implement ld/st of lesser width
112 def ld(self, address, width=8, swap=True, check_in_mem=False):
113 print("ld from addr 0x{:x} width {:d}".format(address, width))
114 remainder = address & (self.bytes_per_word - 1)
115 address = address >> self.word_log2
116 assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
117 if address in self.mem:
118 val = self.mem[address]
119 elif check_in_mem:
120 return None
121 else:
122 val = 0
123 print("mem @ 0x{:x} rem {:d} : 0x{:x}".format(address, remainder, val))
124
125 if width != self.bytes_per_word:
126 shifter, mask = self._get_shifter_mask(width, remainder)
127 print("masking", hex(val), hex(mask << shifter), shifter)
128 val = val & (mask << shifter)
129 val >>= shifter
130 if swap:
131 val = swap_order(val, width)
132 print("Read 0x{:x} from addr 0x{:x}".format(val, address))
133 return val
134
135 def st(self, addr, v, width=8, swap=True):
136 staddr = addr
137 remainder = addr & (self.bytes_per_word - 1)
138 addr = addr >> self.word_log2
139 print("Writing 0x{:x} to ST 0x{:x} "
140 "memaddr 0x{:x}/{:x}".format(v, staddr, addr, remainder, swap))
141 assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
142 if swap:
143 v = swap_order(v, width)
144 if width != self.bytes_per_word:
145 if addr in self.mem:
146 val = self.mem[addr]
147 else:
148 val = 0
149 shifter, mask = self._get_shifter_mask(width, remainder)
150 val &= ~(mask << shifter)
151 val |= v << shifter
152 self.mem[addr] = val
153 else:
154 self.mem[addr] = v
155 print("mem @ 0x{:x}: 0x{:x}".format(addr, self.mem[addr]))
156
157 def __call__(self, addr, sz):
158 val = self.ld(addr.value, sz, swap=False)
159 print("memread", addr, sz, val)
160 return SelectableInt(val, sz*8)
161
162 def memassign(self, addr, sz, val):
163 print("memassign", addr, sz, val)
164 self.st(addr.value, val.value, sz, swap=False)
165
166
167 class GPR(dict):
168 def __init__(self, decoder, isacaller, svstate, regfile):
169 dict.__init__(self)
170 self.sd = decoder
171 self.isacaller = isacaller
172 self.svstate = svstate
173 for i in range(32):
174 self[i] = SelectableInt(regfile[i], 64)
175
176 def __call__(self, ridx):
177 return self[ridx]
178
179 def set_form(self, form):
180 self.form = form
181
182 def getz(self, rnum):
183 # rnum = rnum.value # only SelectableInt allowed
184 print("GPR getzero", rnum)
185 if rnum == 0:
186 return SelectableInt(0, 64)
187 return self[rnum]
188
189 def _get_regnum(self, attr):
190 getform = self.sd.sigforms[self.form]
191 rnum = getattr(getform, attr)
192 return rnum
193
194 def ___getitem__(self, attr):
195 """ XXX currently not used
196 """
197 rnum = self._get_regnum(attr)
198 offs = self.svstate.srcstep
199 print("GPR getitem", attr, rnum, "srcoffs", offs)
200 return self.regfile[rnum]
201
202 def dump(self):
203 for i in range(0, len(self), 8):
204 s = []
205 for j in range(8):
206 s.append("%08x" % self[i+j].value)
207 s = ' '.join(s)
208 print("reg", "%2d" % i, s)
209
210
211 class PC:
212 def __init__(self, pc_init=0):
213 self.CIA = SelectableInt(pc_init, 64)
214 self.NIA = self.CIA + SelectableInt(4, 64) # only true for v3.0B!
215
216 def update_nia(self, is_svp64):
217 increment = 8 if is_svp64 else 4
218 self.NIA = self.CIA + SelectableInt(increment, 64)
219
220 def update(self, namespace, is_svp64):
221 """updates the program counter (PC) by 4 if v3.0B mode or 8 if SVP64
222 """
223 self.CIA = namespace['NIA'].narrow(64)
224 self.update_nia(is_svp64)
225 namespace['CIA'] = self.CIA
226 namespace['NIA'] = self.NIA
227
228
229 # Simple-V: see https://libre-soc.org/openpower/sv
230 class SVP64State:
231 def __init__(self, init=0):
232 self.spr = SelectableInt(init, 32)
233 # fields of SVSTATE, see https://libre-soc.org/openpower/sv/sprs/
234 self.maxvl = FieldSelectableInt(self.spr, tuple(range(0,7)))
235 self.vl = FieldSelectableInt(self.spr, tuple(range(7,14)))
236 self.srcstep = FieldSelectableInt(self.spr, tuple(range(14,21)))
237 self.dststep = FieldSelectableInt(self.spr, tuple(range(21,28)))
238 self.subvl = FieldSelectableInt(self.spr, tuple(range(28,30)))
239 self.svstep = FieldSelectableInt(self.spr, tuple(range(30,32)))
240
241
242 # SVP64 ReMap field
243 class SVP64RMFields:
244 def __init__(self, init=0):
245 self.spr = SelectableInt(init, 24)
246 # SVP64 RM fields: see https://libre-soc.org/openpower/sv/svp64/
247 self.mmode = FieldSelectableInt(self.spr, [0])
248 self.mask = FieldSelectableInt(self.spr, tuple(range(1,4)))
249 self.elwidth = FieldSelectableInt(self.spr, tuple(range(4,6)))
250 self.ewsrc = FieldSelectableInt(self.spr, tuple(range(6,8)))
251 self.subvl = FieldSelectableInt(self.spr, tuple(range(8,10)))
252 self.extra = FieldSelectableInt(self.spr, tuple(range(10,19)))
253 self.mode = FieldSelectableInt(self.spr, tuple(range(19,24)))
254
255
256 # SVP64 Prefix fields: see https://libre-soc.org/openpower/sv/svp64/
257 class SVP64PrefixFields:
258 def __init__(self):
259 self.insn = SelectableInt(0, 32)
260 # 6 bit major opcode EXT001, 2 bits "identifying" (7, 9), 24 SV ReMap
261 self.major = FieldSelectableInt(self.insn, tuple(range(0,6)))
262 self.pid = FieldSelectableInt(self.insn, (7, 9)) # must be 0b11
263 rmfields = [6, 8] + list(range(10,32)) # SVP64 24-bit RM (ReMap)
264 self.rm = FieldSelectableInt(self.insn, rmfields)
265
266
267 class SPR(dict):
268 def __init__(self, dec2, initial_sprs={}):
269 self.sd = dec2
270 dict.__init__(self)
271 for key, v in initial_sprs.items():
272 if isinstance(key, SelectableInt):
273 key = key.value
274 key = special_sprs.get(key, key)
275 if isinstance(key, int):
276 info = spr_dict[key]
277 else:
278 info = spr_byname[key]
279 if not isinstance(v, SelectableInt):
280 v = SelectableInt(v, info.length)
281 self[key] = v
282
283 def __getitem__(self, key):
284 print("get spr", key)
285 print("dict", self.items())
286 # if key in special_sprs get the special spr, otherwise return key
287 if isinstance(key, SelectableInt):
288 key = key.value
289 if isinstance(key, int):
290 key = spr_dict[key].SPR
291 key = special_sprs.get(key, key)
292 if key == 'HSRR0': # HACK!
293 key = 'SRR0'
294 if key == 'HSRR1': # HACK!
295 key = 'SRR1'
296 if key in self:
297 res = dict.__getitem__(self, key)
298 else:
299 if isinstance(key, int):
300 info = spr_dict[key]
301 else:
302 info = spr_byname[key]
303 dict.__setitem__(self, key, SelectableInt(0, info.length))
304 res = dict.__getitem__(self, key)
305 print("spr returning", key, res)
306 return res
307
308 def __setitem__(self, key, value):
309 if isinstance(key, SelectableInt):
310 key = key.value
311 if isinstance(key, int):
312 key = spr_dict[key].SPR
313 print("spr key", key)
314 key = special_sprs.get(key, key)
315 if key == 'HSRR0': # HACK!
316 self.__setitem__('SRR0', value)
317 if key == 'HSRR1': # HACK!
318 self.__setitem__('SRR1', value)
319 print("setting spr", key, value)
320 dict.__setitem__(self, key, value)
321
322 def __call__(self, ridx):
323 return self[ridx]
324
325 def get_pdecode_idx_in(dec2, name):
326 op = dec2.dec.op
327 in1_sel = yield op.in1_sel
328 in2_sel = yield op.in2_sel
329 in3_sel = yield op.in3_sel
330 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
331 in1 = yield dec2.e.read_reg1.data
332 in2 = yield dec2.e.read_reg2.data
333 in3 = yield dec2.e.read_reg3.data
334 in1_isvec = yield dec2.in1_isvec
335 in2_isvec = yield dec2.in2_isvec
336 in3_isvec = yield dec2.in3_isvec
337 print ("get_pdecode_idx", in1_sel, In1Sel.RA.value, in1, in1_isvec)
338 # identify which regnames map to in1/2/3
339 if name == 'RA':
340 if (in1_sel == In1Sel.RA.value or
341 (in1_sel == In1Sel.RA_OR_ZERO.value and in1 != 0)):
342 return in1, in1_isvec
343 if in1_sel == In1Sel.RA_OR_ZERO.value:
344 return in1, in1_isvec
345 elif name == 'RB':
346 if in2_sel == In2Sel.RB.value:
347 return in2, in2_isvec
348 if in3_sel == In3Sel.RB.value:
349 return in3, in3_isvec
350 # XXX TODO, RC doesn't exist yet!
351 elif name == 'RC':
352 assert False, "RC does not exist yet"
353 elif name == 'RS':
354 if in1_sel == In1Sel.RS.value:
355 return in1, in1_isvec
356 if in2_sel == In2Sel.RS.value:
357 return in2, in2_isvec
358 if in3_sel == In3Sel.RS.value:
359 return in3, in3_isvec
360 return None, False
361
362
363 def get_pdecode_cr_out(dec2, name):
364 op = dec2.dec.op
365 out_sel = yield op.cr_out
366 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
367 out = yield dec2.e.write_cr.data
368 o_isvec = yield dec2.o_isvec
369 print ("get_pdecode_cr_out", out_sel, CROutSel.CR0.value, out, o_isvec)
370 # identify which regnames map to out / o2
371 if name == 'CR0':
372 if out_sel == CROutSel.CR0.value:
373 return out, o_isvec
374 print ("get_pdecode_idx_out not found", name)
375 return None, False
376
377
378 def get_pdecode_idx_out(dec2, name):
379 op = dec2.dec.op
380 out_sel = yield op.out_sel
381 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
382 out = yield dec2.e.write_reg.data
383 o_isvec = yield dec2.o_isvec
384 print ("get_pdecode_idx_out", out_sel, OutSel.RA.value, out, o_isvec)
385 # identify which regnames map to out / o2
386 if name == 'RA':
387 if out_sel == OutSel.RA.value:
388 return out, o_isvec
389 elif name == 'RT':
390 if out_sel == OutSel.RT.value:
391 return out, o_isvec
392 print ("get_pdecode_idx_out not found", name)
393 return None, False
394
395
396 # XXX TODO
397 def get_pdecode_idx_out2(dec2, name):
398 op = dec2.dec.op
399 print ("TODO: get_pdecode_idx_out2", name)
400 return None, False
401
402
403 class ISACaller:
404 # decoder2 - an instance of power_decoder2
405 # regfile - a list of initial values for the registers
406 # initial_{etc} - initial values for SPRs, Condition Register, Mem, MSR
407 # respect_pc - tracks the program counter. requires initial_insns
408 def __init__(self, decoder2, regfile, initial_sprs=None, initial_cr=0,
409 initial_mem=None, initial_msr=0,
410 initial_svstate=0,
411 initial_insns=None, respect_pc=False,
412 disassembly=None,
413 initial_pc=0,
414 bigendian=False):
415
416 self.bigendian = bigendian
417 self.halted = False
418 self.is_svp64_mode = False
419 self.respect_pc = respect_pc
420 if initial_sprs is None:
421 initial_sprs = {}
422 if initial_mem is None:
423 initial_mem = {}
424 if initial_insns is None:
425 initial_insns = {}
426 assert self.respect_pc == False, "instructions required to honor pc"
427
428 print("ISACaller insns", respect_pc, initial_insns, disassembly)
429 print("ISACaller initial_msr", initial_msr)
430
431 # "fake program counter" mode (for unit testing)
432 self.fake_pc = 0
433 disasm_start = 0
434 if not respect_pc:
435 if isinstance(initial_mem, tuple):
436 self.fake_pc = initial_mem[0]
437 disasm_start = self.fake_pc
438 else:
439 disasm_start = initial_pc
440
441 # disassembly: we need this for now (not given from the decoder)
442 self.disassembly = {}
443 if disassembly:
444 for i, code in enumerate(disassembly):
445 self.disassembly[i*4 + disasm_start] = code
446
447 # set up registers, instruction memory, data memory, PC, SPRs, MSR
448 self.svp64rm = SVP64RM()
449 if isinstance(initial_svstate, int):
450 initial_svstate = SVP64State(initial_svstate)
451 self.svstate = initial_svstate
452 self.gpr = GPR(decoder2, self, self.svstate, regfile)
453 self.mem = Mem(row_bytes=8, initial_mem=initial_mem)
454 self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
455 self.pc = PC()
456 self.spr = SPR(decoder2, initial_sprs)
457 self.msr = SelectableInt(initial_msr, 64) # underlying reg
458
459 # TODO, needed here:
460 # FPR (same as GPR except for FP nums)
461 # 4.2.2 p124 FPSCR (definitely "separate" - not in SPR)
462 # note that mffs, mcrfs, mtfsf "manage" this FPSCR
463 # 2.3.1 CR (and sub-fields CR0..CR6 - CR0 SO comes from XER.SO)
464 # note that mfocrf, mfcr, mtcr, mtocrf, mcrxrx "manage" CRs
465 # -- Done
466 # 2.3.2 LR (actually SPR #8) -- Done
467 # 2.3.3 CTR (actually SPR #9) -- Done
468 # 2.3.4 TAR (actually SPR #815)
469 # 3.2.2 p45 XER (actually SPR #1) -- Done
470 # 3.2.3 p46 p232 VRSAVE (actually SPR #256)
471
472 # create CR then allow portions of it to be "selectable" (below)
473 #rev_cr = int('{:016b}'.format(initial_cr)[::-1], 2)
474 self.cr = SelectableInt(initial_cr, 64) # underlying reg
475 #self.cr = FieldSelectableInt(self._cr, list(range(32, 64)))
476
477 # "undefined", just set to variable-bit-width int (use exts "max")
478 #self.undefined = SelectableInt(0, 256) # TODO, not hard-code 256!
479
480 self.namespace = {}
481 self.namespace.update(self.spr)
482 self.namespace.update({'GPR': self.gpr,
483 'MEM': self.mem,
484 'SPR': self.spr,
485 'memassign': self.memassign,
486 'NIA': self.pc.NIA,
487 'CIA': self.pc.CIA,
488 'CR': self.cr,
489 'MSR': self.msr,
490 'undefined': undefined,
491 'mode_is_64bit': True,
492 'SO': XER_bits['SO']
493 })
494
495 # update pc to requested start point
496 self.set_pc(initial_pc)
497
498 # field-selectable versions of Condition Register TODO check bitranges?
499 self.crl = []
500 for i in range(8):
501 bits = tuple(range(i*4+32, (i+1)*4+32)) # errr... maybe?
502 _cr = FieldSelectableInt(self.cr, bits)
503 self.crl.append(_cr)
504 self.namespace["CR%d" % i] = _cr
505
506 self.decoder = decoder2.dec
507 self.dec2 = decoder2
508
509 def TRAP(self, trap_addr=0x700, trap_bit=PIb.TRAP):
510 print("TRAP:", hex(trap_addr), hex(self.namespace['MSR'].value))
511 # store CIA(+4?) in SRR0, set NIA to 0x700
512 # store MSR in SRR1, set MSR to um errr something, have to check spec
513 self.spr['SRR0'].value = self.pc.CIA.value
514 self.spr['SRR1'].value = self.namespace['MSR'].value
515 self.trap_nia = SelectableInt(trap_addr, 64)
516 self.spr['SRR1'][trap_bit] = 1 # change *copy* of MSR in SRR1
517
518 # set exception bits. TODO: this should, based on the address
519 # in figure 66 p1065 V3.0B and the table figure 65 p1063 set these
520 # bits appropriately. however it turns out that *for now* in all
521 # cases (all trap_addrs) the exact same thing is needed.
522 self.msr[MSRb.IR] = 0
523 self.msr[MSRb.DR] = 0
524 self.msr[MSRb.FE0] = 0
525 self.msr[MSRb.FE1] = 0
526 self.msr[MSRb.EE] = 0
527 self.msr[MSRb.RI] = 0
528 self.msr[MSRb.SF] = 1
529 self.msr[MSRb.TM] = 0
530 self.msr[MSRb.VEC] = 0
531 self.msr[MSRb.VSX] = 0
532 self.msr[MSRb.PR] = 0
533 self.msr[MSRb.FP] = 0
534 self.msr[MSRb.PMM] = 0
535 self.msr[MSRb.TEs] = 0
536 self.msr[MSRb.TEe] = 0
537 self.msr[MSRb.UND] = 0
538 self.msr[MSRb.LE] = 1
539
540 def memassign(self, ea, sz, val):
541 self.mem.memassign(ea, sz, val)
542
543 def prep_namespace(self, formname, op_fields):
544 # TODO: get field names from form in decoder*1* (not decoder2)
545 # decoder2 is hand-created, and decoder1.sigform is auto-generated
546 # from spec
547 # then "yield" fields only from op_fields rather than hard-coded
548 # list, here.
549 fields = self.decoder.sigforms[formname]
550 for name in op_fields:
551 if name == 'spr':
552 sig = getattr(fields, name.upper())
553 else:
554 sig = getattr(fields, name)
555 val = yield sig
556 # these are all opcode fields involved in index-selection of CR,
557 # and need to do "standard" arithmetic. CR[BA+32] for example
558 # would, if using SelectableInt, only be 5-bit.
559 if name in ['BF', 'BFA', 'BC', 'BA', 'BB', 'BT', 'BI']:
560 self.namespace[name] = val
561 else:
562 self.namespace[name] = SelectableInt(val, sig.width)
563
564 self.namespace['XER'] = self.spr['XER']
565 self.namespace['CA'] = self.spr['XER'][XER_bits['CA']].value
566 self.namespace['CA32'] = self.spr['XER'][XER_bits['CA32']].value
567
568 def handle_carry_(self, inputs, outputs, already_done):
569 inv_a = yield self.dec2.e.do.invert_in
570 if inv_a:
571 inputs[0] = ~inputs[0]
572
573 imm_ok = yield self.dec2.e.do.imm_data.ok
574 if imm_ok:
575 imm = yield self.dec2.e.do.imm_data.data
576 inputs.append(SelectableInt(imm, 64))
577 assert len(outputs) >= 1
578 print("outputs", repr(outputs))
579 if isinstance(outputs, list) or isinstance(outputs, tuple):
580 output = outputs[0]
581 else:
582 output = outputs
583 gts = []
584 for x in inputs:
585 print("gt input", x, output)
586 gt = (gtu(x, output))
587 gts.append(gt)
588 print(gts)
589 cy = 1 if any(gts) else 0
590 print("CA", cy, gts)
591 if not (1 & already_done):
592 self.spr['XER'][XER_bits['CA']] = cy
593
594 print("inputs", already_done, inputs)
595 # 32 bit carry
596 # ARGH... different for OP_ADD... *sigh*...
597 op = yield self.dec2.e.do.insn_type
598 if op == MicrOp.OP_ADD.value:
599 res32 = (output.value & (1 << 32)) != 0
600 a32 = (inputs[0].value & (1 << 32)) != 0
601 if len(inputs) >= 2:
602 b32 = (inputs[1].value & (1 << 32)) != 0
603 else:
604 b32 = False
605 cy32 = res32 ^ a32 ^ b32
606 print("CA32 ADD", cy32)
607 else:
608 gts = []
609 for x in inputs:
610 print("input", x, output)
611 print(" x[32:64]", x, x[32:64])
612 print(" o[32:64]", output, output[32:64])
613 gt = (gtu(x[32:64], output[32:64])) == SelectableInt(1, 1)
614 gts.append(gt)
615 cy32 = 1 if any(gts) else 0
616 print("CA32", cy32, gts)
617 if not (2 & already_done):
618 self.spr['XER'][XER_bits['CA32']] = cy32
619
620 def handle_overflow(self, inputs, outputs, div_overflow):
621 if hasattr(self.dec2.e.do, "invert_in"):
622 inv_a = yield self.dec2.e.do.invert_in
623 if inv_a:
624 inputs[0] = ~inputs[0]
625
626 imm_ok = yield self.dec2.e.do.imm_data.ok
627 if imm_ok:
628 imm = yield self.dec2.e.do.imm_data.data
629 inputs.append(SelectableInt(imm, 64))
630 assert len(outputs) >= 1
631 print("handle_overflow", inputs, outputs, div_overflow)
632 if len(inputs) < 2 and div_overflow is None:
633 return
634
635 # div overflow is different: it's returned by the pseudo-code
636 # because it's more complex than can be done by analysing the output
637 if div_overflow is not None:
638 ov, ov32 = div_overflow, div_overflow
639 # arithmetic overflow can be done by analysing the input and output
640 elif len(inputs) >= 2:
641 output = outputs[0]
642
643 # OV (64-bit)
644 input_sgn = [exts(x.value, x.bits) < 0 for x in inputs]
645 output_sgn = exts(output.value, output.bits) < 0
646 ov = 1 if input_sgn[0] == input_sgn[1] and \
647 output_sgn != input_sgn[0] else 0
648
649 # OV (32-bit)
650 input32_sgn = [exts(x.value, 32) < 0 for x in inputs]
651 output32_sgn = exts(output.value, 32) < 0
652 ov32 = 1 if input32_sgn[0] == input32_sgn[1] and \
653 output32_sgn != input32_sgn[0] else 0
654
655 self.spr['XER'][XER_bits['OV']] = ov
656 self.spr['XER'][XER_bits['OV32']] = ov32
657 so = self.spr['XER'][XER_bits['SO']]
658 so = so | ov
659 self.spr['XER'][XER_bits['SO']] = so
660
661 def handle_comparison(self, outputs, cr_idx=0):
662 out = outputs[0]
663 assert isinstance(out, SelectableInt), \
664 "out zero not a SelectableInt %s" % repr(outputs)
665 print("handle_comparison", out.bits, hex(out.value))
666 # TODO - XXX *processor* in 32-bit mode
667 # https://bugs.libre-soc.org/show_bug.cgi?id=424
668 # if is_32bit:
669 # o32 = exts(out.value, 32)
670 # print ("handle_comparison exts 32 bit", hex(o32))
671 out = exts(out.value, out.bits)
672 print("handle_comparison exts", hex(out))
673 zero = SelectableInt(out == 0, 1)
674 positive = SelectableInt(out > 0, 1)
675 negative = SelectableInt(out < 0, 1)
676 SO = self.spr['XER'][XER_bits['SO']]
677 print("handle_comparison SO", SO)
678 cr_field = selectconcat(negative, positive, zero, SO)
679 self.crl[cr_idx].eq(cr_field)
680
681 def set_pc(self, pc_val):
682 self.namespace['NIA'] = SelectableInt(pc_val, 64)
683 self.pc.update(self.namespace, self.is_svp64_mode)
684
685 def setup_one(self):
686 """set up one instruction
687 """
688 if self.respect_pc:
689 pc = self.pc.CIA.value
690 else:
691 pc = self.fake_pc
692 self._pc = pc
693 ins = self.imem.ld(pc, 4, False, True)
694 if ins is None:
695 raise KeyError("no instruction at 0x%x" % pc)
696 print("setup: 0x%x 0x%x %s" % (pc, ins & 0xffffffff, bin(ins)))
697 print("CIA NIA", self.respect_pc, self.pc.CIA.value, self.pc.NIA.value)
698
699 yield self.dec2.sv_rm.eq(0)
700 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff)
701 yield self.dec2.dec.bigendian.eq(self.bigendian)
702 yield self.dec2.state.msr.eq(self.msr.value)
703 yield self.dec2.state.pc.eq(pc)
704 yield self.dec2.state.svstate.eq(self.svstate.spr.value)
705
706 # SVP64. first, check if the opcode is EXT001, and SVP64 id bits set
707 yield Settle()
708 opcode = yield self.dec2.dec.opcode_in
709 pfx = SVP64PrefixFields() # TODO should probably use SVP64PrefixDecoder
710 pfx.insn.value = opcode
711 major = pfx.major.asint(msb0=True) # MSB0 inversion
712 print ("prefix test: opcode:", major, bin(major),
713 pfx.insn[7] == 0b1, pfx.insn[9] == 0b1)
714 self.is_svp64_mode = ((major == 0b000001) and
715 pfx.insn[7].value == 0b1 and
716 pfx.insn[9].value == 0b1)
717 self.pc.update_nia(self.is_svp64_mode)
718 if not self.is_svp64_mode:
719 return
720
721 # in SVP64 mode. decode/print out svp64 prefix, get v3.0B instruction
722 print ("svp64.rm", bin(pfx.rm.asint(msb0=True)))
723 print (" svstate.vl", self.svstate.vl.asint(msb0=True))
724 print (" svstate.mvl", self.svstate.maxvl.asint(msb0=True))
725 sv_rm = pfx.rm.asint(msb0=True)
726 ins = self.imem.ld(pc+4, 4, False, True)
727 print(" svsetup: 0x%x 0x%x %s" % (pc+4, ins & 0xffffffff, bin(ins)))
728 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff) # v3.0B suffix
729 yield self.dec2.sv_rm.eq(sv_rm) # svp64 prefix
730 yield Settle()
731
732 def execute_one(self):
733 """execute one instruction
734 """
735 # get the disassembly code for this instruction
736 if self.is_svp64_mode:
737 code = self.disassembly[self._pc+4]
738 print(" svp64 sim-execute", hex(self._pc), code)
739 else:
740 code = self.disassembly[self._pc]
741 print("sim-execute", hex(self._pc), code)
742 opname = code.split(' ')[0]
743 yield from self.call(opname)
744
745 # don't use this except in special circumstances
746 if not self.respect_pc:
747 self.fake_pc += 4
748
749 print("execute one, CIA NIA", self.pc.CIA.value, self.pc.NIA.value)
750
751 def get_assembly_name(self):
752 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
753 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
754 dec_insn = yield self.dec2.e.do.insn
755 asmcode = yield self.dec2.dec.op.asmcode
756 print("get assembly name asmcode", asmcode, hex(dec_insn))
757 asmop = insns.get(asmcode, None)
758 int_op = yield self.dec2.dec.op.internal_op
759
760 # sigh reconstruct the assembly instruction name
761 if hasattr(self.dec2.e.do, "oe"):
762 ov_en = yield self.dec2.e.do.oe.oe
763 ov_ok = yield self.dec2.e.do.oe.ok
764 else:
765 ov_en = False
766 ov_ok = False
767 if hasattr(self.dec2.e.do, "rc"):
768 rc_en = yield self.dec2.e.do.rc.rc
769 rc_ok = yield self.dec2.e.do.rc.ok
770 else:
771 rc_en = False
772 rc_ok = False
773 # grrrr have to special-case MUL op (see DecodeOE)
774 print("ov %d en %d rc %d en %d op %d" %
775 (ov_ok, ov_en, rc_ok, rc_en, int_op))
776 if int_op in [MicrOp.OP_MUL_H64.value, MicrOp.OP_MUL_H32.value]:
777 print("mul op")
778 if rc_en & rc_ok:
779 asmop += "."
780 else:
781 if not asmop.endswith("."): # don't add "." to "andis."
782 if rc_en & rc_ok:
783 asmop += "."
784 if hasattr(self.dec2.e.do, "lk"):
785 lk = yield self.dec2.e.do.lk
786 if lk:
787 asmop += "l"
788 print("int_op", int_op)
789 if int_op in [MicrOp.OP_B.value, MicrOp.OP_BC.value]:
790 AA = yield self.dec2.dec.fields.FormI.AA[0:-1]
791 print("AA", AA)
792 if AA:
793 asmop += "a"
794 spr_msb = yield from self.get_spr_msb()
795 if int_op == MicrOp.OP_MFCR.value:
796 if spr_msb:
797 asmop = 'mfocrf'
798 else:
799 asmop = 'mfcr'
800 # XXX TODO: for whatever weird reason this doesn't work
801 # https://bugs.libre-soc.org/show_bug.cgi?id=390
802 if int_op == MicrOp.OP_MTCRF.value:
803 if spr_msb:
804 asmop = 'mtocrf'
805 else:
806 asmop = 'mtcrf'
807 return asmop
808
809 def get_spr_msb(self):
810 dec_insn = yield self.dec2.e.do.insn
811 return dec_insn & (1 << 20) != 0 # sigh - XFF.spr[-1]?
812
813 def call(self, name):
814 """call(opcode) - the primary execution point for instructions
815 """
816 name = name.strip() # remove spaces if not already done so
817 if self.halted:
818 print("halted - not executing", name)
819 return
820
821 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
822 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
823 asmop = yield from self.get_assembly_name()
824 print("call", name, asmop)
825
826 # check privileged
827 int_op = yield self.dec2.dec.op.internal_op
828 spr_msb = yield from self.get_spr_msb()
829
830 instr_is_privileged = False
831 if int_op in [MicrOp.OP_ATTN.value,
832 MicrOp.OP_MFMSR.value,
833 MicrOp.OP_MTMSR.value,
834 MicrOp.OP_MTMSRD.value,
835 # TODO: OP_TLBIE
836 MicrOp.OP_RFID.value]:
837 instr_is_privileged = True
838 if int_op in [MicrOp.OP_MFSPR.value,
839 MicrOp.OP_MTSPR.value] and spr_msb:
840 instr_is_privileged = True
841
842 print("is priv", instr_is_privileged, hex(self.msr.value),
843 self.msr[MSRb.PR])
844 # check MSR priv bit and whether op is privileged: if so, throw trap
845 if instr_is_privileged and self.msr[MSRb.PR] == 1:
846 self.TRAP(0x700, PIb.PRIV)
847 self.namespace['NIA'] = self.trap_nia
848 self.pc.update(self.namespace, self.is_svp64_mode)
849 return
850
851 # check halted condition
852 if name == 'attn':
853 self.halted = True
854 return
855
856 # check illegal instruction
857 illegal = False
858 if name not in ['mtcrf', 'mtocrf']:
859 illegal = name != asmop
860
861 if illegal:
862 print("illegal", name, asmop)
863 self.TRAP(0x700, PIb.ILLEG)
864 self.namespace['NIA'] = self.trap_nia
865 self.pc.update(self.namespace, self.is_svp64_mode)
866 print("name %s != %s - calling ILLEGAL trap, PC: %x" %
867 (name, asmop, self.pc.CIA.value))
868 return
869
870 info = self.instrs[name]
871 yield from self.prep_namespace(info.form, info.op_fields)
872
873 # preserve order of register names
874 input_names = create_args(list(info.read_regs) +
875 list(info.uninit_regs))
876 print(input_names)
877
878 # get SVP64 entry for the current instruction
879 sv_rm = self.svp64rm.instrs.get(name)
880 if sv_rm is not None:
881 dest_cr, src_cr, src_byname, dest_byname = decode_extra(sv_rm)
882 else:
883 dest_cr, src_cr, src_byname, dest_byname = False, False, {}, {}
884 print ("sv rm", sv_rm, dest_cr, src_cr, src_byname, dest_byname)
885
886 # get SVSTATE srcstep. TODO: dststep (twin predication)
887 srcstep = self.svstate.srcstep.asint(msb0=True)
888 vl = self.svstate.vl.asint(msb0=True)
889 mvl = self.svstate.maxvl.asint(msb0=True)
890
891 # VL=0 in SVP64 mode means "do nothing: skip instruction"
892 if self.is_svp64_mode and vl == 0:
893 self.pc.update(self.namespace, self.is_svp64_mode)
894 print("end of call", self.namespace['CIA'], self.namespace['NIA'])
895 return
896
897 # main input registers (RT, RA ...)
898 inputs = []
899 for name in input_names:
900 # using PowerDecoder2, first, find the decoder index.
901 # (mapping name RA RB RC RS to in1, in2, in3)
902 regnum, is_vec = yield from get_pdecode_idx_in(self.dec2, name)
903 if regnum is None:
904 # doing this is not part of svp64, it's because output
905 # registers, to be modified, need to be in the namespace.
906 regnum, is_vec = yield from get_pdecode_idx_out(self.dec2, name)
907 # here's where we go "vector". TODO: zero-testing (RA_IS_ZERO)
908 # XXX already done by PowerDecoder2, now
909 #if is_vec:
910 # regnum += srcstep # TODO, elwidth overrides
911
912 # in case getting the register number is needed, _RA, _RB
913 regname = "_" + name
914 self.namespace[regname] = regnum
915 print('reading reg %s %d' % (name, regnum), is_vec)
916 reg_val = self.gpr(regnum)
917 inputs.append(reg_val)
918
919 # "special" registers
920 for special in info.special_regs:
921 if special in special_sprs:
922 inputs.append(self.spr[special])
923 else:
924 inputs.append(self.namespace[special])
925
926 # clear trap (trap) NIA
927 self.trap_nia = None
928
929 print(inputs)
930 results = info.func(self, *inputs)
931 print(results)
932
933 # "inject" decorator takes namespace from function locals: we need to
934 # overwrite NIA being overwritten (sigh)
935 if self.trap_nia is not None:
936 self.namespace['NIA'] = self.trap_nia
937
938 print("after func", self.namespace['CIA'], self.namespace['NIA'])
939
940 # detect if CA/CA32 already in outputs (sra*, basically)
941 already_done = 0
942 if info.write_regs:
943 output_names = create_args(info.write_regs)
944 for name in output_names:
945 if name == 'CA':
946 already_done |= 1
947 if name == 'CA32':
948 already_done |= 2
949
950 print("carry already done?", bin(already_done))
951 if hasattr(self.dec2.e.do, "output_carry"):
952 carry_en = yield self.dec2.e.do.output_carry
953 else:
954 carry_en = False
955 if carry_en:
956 yield from self.handle_carry_(inputs, results, already_done)
957
958 # detect if overflow was in return result
959 overflow = None
960 if info.write_regs:
961 for name, output in zip(output_names, results):
962 if name == 'overflow':
963 overflow = output
964
965 if hasattr(self.dec2.e.do, "oe"):
966 ov_en = yield self.dec2.e.do.oe.oe
967 ov_ok = yield self.dec2.e.do.oe.ok
968 else:
969 ov_en = False
970 ov_ok = False
971 print("internal overflow", overflow, ov_en, ov_ok)
972 if ov_en & ov_ok:
973 yield from self.handle_overflow(inputs, results, overflow)
974
975 if hasattr(self.dec2.e.do, "rc"):
976 rc_en = yield self.dec2.e.do.rc.rc
977 else:
978 rc_en = False
979 if rc_en:
980 regnum, is_vec = yield from get_pdecode_cr_out(self.dec2, "CR0")
981 regnum = 0 # TODO fix
982 self.handle_comparison(results, regnum)
983
984 # svp64 loop can end early if the dest is scalar
985 svp64_dest_vector = False
986
987 # any modified return results?
988 if info.write_regs:
989 for name, output in zip(output_names, results):
990 if name == 'overflow': # ignore, done already (above)
991 continue
992 if isinstance(output, int):
993 output = SelectableInt(output, 256)
994 if name in ['CA', 'CA32']:
995 if carry_en:
996 print("writing %s to XER" % name, output)
997 self.spr['XER'][XER_bits[name]] = output.value
998 else:
999 print("NOT writing %s to XER" % name, output)
1000 elif name in info.special_regs:
1001 print('writing special %s' % name, output, special_sprs)
1002 if name in special_sprs:
1003 self.spr[name] = output
1004 else:
1005 self.namespace[name].eq(output)
1006 if name == 'MSR':
1007 print('msr written', hex(self.msr.value))
1008 else:
1009 regnum, is_vec = yield from get_pdecode_idx_out(self.dec2,
1010 name)
1011 if regnum is None:
1012 # temporary hack for not having 2nd output
1013 regnum = yield getattr(self.decoder, name)
1014 is_vec = False
1015 # here's where we go "vector".
1016 if is_vec:
1017 # XXX already done by PowerDecoder2
1018 # regnum += srcstep # TODO, elwidth overrides
1019 svp64_dest_vector = True
1020 print('writing reg %d %s' % (regnum, str(output)), is_vec)
1021 if output.bits > 64:
1022 output = SelectableInt(output.value, 64)
1023 self.gpr[regnum] = output
1024
1025 # check if it is the SVSTATE.src/dest step that needs incrementing
1026 # this is our Sub-Program-Counter loop from 0 to VL-1
1027 if self.is_svp64_mode:
1028 # XXX twin predication TODO
1029 vl = self.svstate.vl.asint(msb0=True)
1030 mvl = self.svstate.maxvl.asint(msb0=True)
1031 srcstep = self.svstate.srcstep.asint(msb0=True)
1032 print (" svstate.vl", vl)
1033 print (" svstate.mvl", mvl)
1034 print (" svstate.srcstep", srcstep)
1035 # check if srcstep needs incrementing by one, stop PC advancing
1036 if svp64_dest_vector and srcstep != vl-1:
1037 self.svstate.srcstep += SelectableInt(1, 7)
1038 self.pc.NIA.value = self.pc.CIA.value
1039 self.namespace['NIA'] = self.pc.NIA
1040 print("end of sub-pc call", self.namespace['CIA'],
1041 self.namespace['NIA'])
1042 return # DO NOT allow PC to update whilst Sub-PC loop running
1043 # reset to zero
1044 self.svstate.srcstep[0:7] = 0
1045 print (" svstate.srcstep loop end (PC to update)")
1046 self.pc.update_nia(self.is_svp64_mode)
1047 self.namespace['NIA'] = self.pc.NIA
1048
1049 # UPDATE program counter
1050 self.pc.update(self.namespace, self.is_svp64_mode)
1051 print("end of call", self.namespace['CIA'], self.namespace['NIA'])
1052
1053
1054 def inject():
1055 """Decorator factory.
1056
1057 this decorator will "inject" variables into the function's namespace,
1058 from the *dictionary* in self.namespace. it therefore becomes possible
1059 to make it look like a whole stack of variables which would otherwise
1060 need "self." inserted in front of them (*and* for those variables to be
1061 added to the instance) "appear" in the function.
1062
1063 "self.namespace['SI']" for example becomes accessible as just "SI" but
1064 *only* inside the function, when decorated.
1065 """
1066 def variable_injector(func):
1067 @wraps(func)
1068 def decorator(*args, **kwargs):
1069 try:
1070 func_globals = func.__globals__ # Python 2.6+
1071 except AttributeError:
1072 func_globals = func.func_globals # Earlier versions.
1073
1074 context = args[0].namespace # variables to be injected
1075 saved_values = func_globals.copy() # Shallow copy of dict.
1076 func_globals.update(context)
1077 result = func(*args, **kwargs)
1078 print("globals after", func_globals['CIA'], func_globals['NIA'])
1079 print("args[0]", args[0].namespace['CIA'],
1080 args[0].namespace['NIA'])
1081 args[0].namespace = func_globals
1082 #exec (func.__code__, func_globals)
1083
1084 # finally:
1085 # func_globals = saved_values # Undo changes.
1086
1087 return result
1088
1089 return decorator
1090
1091 return variable_injector