comments / code-shuffle
[soc.git] / src / soc / decoder / isa / caller.py
1 # SPDX-License-Identifier: LGPLv3+
2 # Copyright (C) 2020, 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
3 # Copyright (C) 2020 Michael Nolan
4 # Funded by NLnet http://nlnet.nl
5 """core of the python-based POWER9 simulator
6
7 this is part of a cycle-accurate POWER9 simulator. its primary purpose is
8 not speed, it is for both learning and educational purposes, as well as
9 a method of verifying the HDL.
10
11 related bugs:
12
13 * https://bugs.libre-soc.org/show_bug.cgi?id=424
14 """
15
16 from nmigen.back.pysim import Settle
17 from functools import wraps
18 from copy import copy
19 from soc.decoder.orderedset import OrderedSet
20 from soc.decoder.selectable_int import (FieldSelectableInt, SelectableInt,
21 selectconcat)
22 from soc.decoder.power_enums import (spr_dict, spr_byname, XER_bits,
23 insns, MicrOp, In1Sel, In2Sel, In3Sel,
24 OutSel, CROutSel,
25 SVP64RMMode, SVP64PredMode,
26 SVP64PredInt, SVP64PredCR)
27
28 from soc.decoder.power_enums import SVPtype
29
30 from soc.decoder.helpers import exts, gtu, ltu, undefined
31 from soc.consts import PIb, MSRb # big-endian (PowerISA versions)
32 from soc.consts import SVP64CROffs
33 from soc.decoder.power_svp64 import SVP64RM, decode_extra
34
35 from soc.decoder.isa.radixmmu import RADIX
36 from soc.decoder.isa.mem import Mem, swap_order
37
38 from collections import namedtuple
39 import math
40 import sys
41
42 instruction_info = namedtuple('instruction_info',
43 'func read_regs uninit_regs write_regs ' +
44 'special_regs op_fields form asmregs')
45
46 special_sprs = {
47 'LR': 8,
48 'CTR': 9,
49 'TAR': 815,
50 'XER': 1,
51 'VRSAVE': 256}
52
53
54 REG_SORT_ORDER = {
55 # TODO (lkcl): adjust other registers that should be in a particular order
56 # probably CA, CA32, and CR
57 "RT": 0,
58 "RA": 0,
59 "RB": 0,
60 "RS": 0,
61 "CR": 0,
62 "LR": 0,
63 "CTR": 0,
64 "TAR": 0,
65 "CA": 0,
66 "CA32": 0,
67 "MSR": 0,
68 "SVSTATE": 0,
69
70 "overflow": 1,
71 }
72
73
74 def create_args(reglist, extra=None):
75 retval = list(OrderedSet(reglist))
76 retval.sort(key=lambda reg: REG_SORT_ORDER[reg])
77 if extra is not None:
78 return [extra] + retval
79 return retval
80
81
82
83 class GPR(dict):
84 def __init__(self, decoder, isacaller, svstate, regfile):
85 dict.__init__(self)
86 self.sd = decoder
87 self.isacaller = isacaller
88 self.svstate = svstate
89 for i in range(32):
90 self[i] = SelectableInt(regfile[i], 64)
91
92 def __call__(self, ridx):
93 return self[ridx]
94
95 def set_form(self, form):
96 self.form = form
97
98 def getz(self, rnum):
99 # rnum = rnum.value # only SelectableInt allowed
100 print("GPR getzero?", rnum)
101 if rnum == 0:
102 return SelectableInt(0, 64)
103 return self[rnum]
104
105 def _get_regnum(self, attr):
106 getform = self.sd.sigforms[self.form]
107 rnum = getattr(getform, attr)
108 return rnum
109
110 def ___getitem__(self, attr):
111 """ XXX currently not used
112 """
113 rnum = self._get_regnum(attr)
114 offs = self.svstate.srcstep
115 print("GPR getitem", attr, rnum, "srcoffs", offs)
116 return self.regfile[rnum]
117
118 def dump(self):
119 for i in range(0, len(self), 8):
120 s = []
121 for j in range(8):
122 s.append("%08x" % self[i+j].value)
123 s = ' '.join(s)
124 print("reg", "%2d" % i, s)
125
126
127 class SPR(dict):
128 def __init__(self, dec2, initial_sprs={}):
129 self.sd = dec2
130 dict.__init__(self)
131 for key, v in initial_sprs.items():
132 if isinstance(key, SelectableInt):
133 key = key.value
134 key = special_sprs.get(key, key)
135 if isinstance(key, int):
136 info = spr_dict[key]
137 else:
138 info = spr_byname[key]
139 if not isinstance(v, SelectableInt):
140 v = SelectableInt(v, info.length)
141 self[key] = v
142
143 def __getitem__(self, key):
144 print("get spr", key)
145 print("dict", self.items())
146 # if key in special_sprs get the special spr, otherwise return key
147 if isinstance(key, SelectableInt):
148 key = key.value
149 if isinstance(key, int):
150 key = spr_dict[key].SPR
151 key = special_sprs.get(key, key)
152 if key == 'HSRR0': # HACK!
153 key = 'SRR0'
154 if key == 'HSRR1': # HACK!
155 key = 'SRR1'
156 if key in self:
157 res = dict.__getitem__(self, key)
158 else:
159 if isinstance(key, int):
160 info = spr_dict[key]
161 else:
162 info = spr_byname[key]
163 dict.__setitem__(self, key, SelectableInt(0, info.length))
164 res = dict.__getitem__(self, key)
165 print("spr returning", key, res)
166 return res
167
168 def __setitem__(self, key, value):
169 if isinstance(key, SelectableInt):
170 key = key.value
171 if isinstance(key, int):
172 key = spr_dict[key].SPR
173 print("spr key", key)
174 key = special_sprs.get(key, key)
175 if key == 'HSRR0': # HACK!
176 self.__setitem__('SRR0', value)
177 if key == 'HSRR1': # HACK!
178 self.__setitem__('SRR1', value)
179 print("setting spr", key, value)
180 dict.__setitem__(self, key, value)
181
182 def __call__(self, ridx):
183 return self[ridx]
184
185
186 class PC:
187 def __init__(self, pc_init=0):
188 self.CIA = SelectableInt(pc_init, 64)
189 self.NIA = self.CIA + SelectableInt(4, 64) # only true for v3.0B!
190
191 def update_nia(self, is_svp64):
192 increment = 8 if is_svp64 else 4
193 self.NIA = self.CIA + SelectableInt(increment, 64)
194
195 def update(self, namespace, is_svp64):
196 """updates the program counter (PC) by 4 if v3.0B mode or 8 if SVP64
197 """
198 self.CIA = namespace['NIA'].narrow(64)
199 self.update_nia(is_svp64)
200 namespace['CIA'] = self.CIA
201 namespace['NIA'] = self.NIA
202
203
204 # Simple-V: see https://libre-soc.org/openpower/sv
205 class SVP64State:
206 def __init__(self, init=0):
207 self.spr = SelectableInt(init, 32)
208 # fields of SVSTATE, see https://libre-soc.org/openpower/sv/sprs/
209 self.maxvl = FieldSelectableInt(self.spr, tuple(range(0,7)))
210 self.vl = FieldSelectableInt(self.spr, tuple(range(7,14)))
211 self.srcstep = FieldSelectableInt(self.spr, tuple(range(14,21)))
212 self.dststep = FieldSelectableInt(self.spr, tuple(range(21,28)))
213 self.subvl = FieldSelectableInt(self.spr, tuple(range(28,30)))
214 self.svstep = FieldSelectableInt(self.spr, tuple(range(30,32)))
215
216
217 # SVP64 ReMap field
218 class SVP64RMFields:
219 def __init__(self, init=0):
220 self.spr = SelectableInt(init, 24)
221 # SVP64 RM fields: see https://libre-soc.org/openpower/sv/svp64/
222 self.mmode = FieldSelectableInt(self.spr, [0])
223 self.mask = FieldSelectableInt(self.spr, tuple(range(1,4)))
224 self.elwidth = FieldSelectableInt(self.spr, tuple(range(4,6)))
225 self.ewsrc = FieldSelectableInt(self.spr, tuple(range(6,8)))
226 self.subvl = FieldSelectableInt(self.spr, tuple(range(8,10)))
227 self.extra = FieldSelectableInt(self.spr, tuple(range(10,19)))
228 self.mode = FieldSelectableInt(self.spr, tuple(range(19,24)))
229 # these cover the same extra field, split into parts as EXTRA2
230 self.extra2 = list(range(4))
231 self.extra2[0] = FieldSelectableInt(self.spr, tuple(range(10,12)))
232 self.extra2[1] = FieldSelectableInt(self.spr, tuple(range(12,14)))
233 self.extra2[2] = FieldSelectableInt(self.spr, tuple(range(14,16)))
234 self.extra2[3] = FieldSelectableInt(self.spr, tuple(range(16,18)))
235 self.smask = FieldSelectableInt(self.spr, tuple(range(16,19)))
236 # and here as well, but EXTRA3
237 self.extra3 = list(range(3))
238 self.extra3[0] = FieldSelectableInt(self.spr, tuple(range(10,13)))
239 self.extra3[1] = FieldSelectableInt(self.spr, tuple(range(13,16)))
240 self.extra3[2] = FieldSelectableInt(self.spr, tuple(range(16,19)))
241
242
243 SVP64RM_MMODE_SIZE = len(SVP64RMFields().mmode.br)
244 SVP64RM_MASK_SIZE = len(SVP64RMFields().mask.br)
245 SVP64RM_ELWIDTH_SIZE = len(SVP64RMFields().elwidth.br)
246 SVP64RM_EWSRC_SIZE = len(SVP64RMFields().ewsrc.br)
247 SVP64RM_SUBVL_SIZE = len(SVP64RMFields().subvl.br)
248 SVP64RM_EXTRA2_SPEC_SIZE = len(SVP64RMFields().extra2[0].br)
249 SVP64RM_EXTRA3_SPEC_SIZE = len(SVP64RMFields().extra3[0].br)
250 SVP64RM_SMASK_SIZE = len(SVP64RMFields().smask.br)
251 SVP64RM_MODE_SIZE = len(SVP64RMFields().mode.br)
252
253
254 # SVP64 Prefix fields: see https://libre-soc.org/openpower/sv/svp64/
255 class SVP64PrefixFields:
256 def __init__(self):
257 self.insn = SelectableInt(0, 32)
258 # 6 bit major opcode EXT001, 2 bits "identifying" (7, 9), 24 SV ReMap
259 self.major = FieldSelectableInt(self.insn, tuple(range(0,6)))
260 self.pid = FieldSelectableInt(self.insn, (7, 9)) # must be 0b11
261 rmfields = [6, 8] + list(range(10,32)) # SVP64 24-bit RM (ReMap)
262 self.rm = FieldSelectableInt(self.insn, rmfields)
263
264
265 SV64P_MAJOR_SIZE = len(SVP64PrefixFields().major.br)
266 SV64P_PID_SIZE = len(SVP64PrefixFields().pid.br)
267 SV64P_RM_SIZE = len(SVP64PrefixFields().rm.br)
268
269 # decode SVP64 predicate integer to reg number and invert
270 def get_predint(gpr, mask):
271 r10 = gpr(10)
272 r30 = gpr(30)
273 if mask == SVP64PredInt.ALWAYS.value:
274 return 0xffff_ffff_ffff_ffff
275 if mask == SVP64PredInt.R3_UNARY.value:
276 return 1 << (gpr(3).value & 0b111111)
277 if mask == SVP64PredInt.R3.value:
278 return gpr(3).value
279 if mask == SVP64PredInt.R3_N.value:
280 return ~gpr(3).value
281 if mask == SVP64PredInt.R10.value:
282 return gpr(10).value
283 if mask == SVP64PredInt.R10_N.value:
284 return ~gpr(10).value
285 if mask == SVP64PredInt.R30.value:
286 return gpr(30).value
287 if mask == SVP64PredInt.R30_N.value:
288 return ~gpr(30).value
289
290 # decode SVP64 predicate CR to reg number and invert status
291 def _get_predcr(mask):
292 if mask == SVP64PredCR.LT.value:
293 return 0, 1
294 if mask == SVP64PredCR.GE.value:
295 return 0, 0
296 if mask == SVP64PredCR.GT.value:
297 return 1, 1
298 if mask == SVP64PredCR.LE.value:
299 return 1, 0
300 if mask == SVP64PredCR.EQ.value:
301 return 2, 1
302 if mask == SVP64PredCR.NE.value:
303 return 2, 0
304 if mask == SVP64PredCR.SO.value:
305 return 3, 1
306 if mask == SVP64PredCR.NS.value:
307 return 3, 0
308
309 # read individual CR fields (0..VL-1), extract the required bit
310 # and construct the mask
311 def get_predcr(crl, mask, vl):
312 idx, noninv = _get_predcr(mask)
313 mask = 0
314 for i in range(vl):
315 cr = crl[i+SVP64CROffs.CRPred]
316 if cr[idx].value == noninv:
317 mask |= (1<<i)
318 return mask
319
320
321 def get_pdecode_idx_in(dec2, name):
322 op = dec2.dec.op
323 in1_sel = yield op.in1_sel
324 in2_sel = yield op.in2_sel
325 in3_sel = yield op.in3_sel
326 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
327 in1 = yield dec2.e.read_reg1.data
328 in2 = yield dec2.e.read_reg2.data
329 in3 = yield dec2.e.read_reg3.data
330 in1_isvec = yield dec2.in1_isvec
331 in2_isvec = yield dec2.in2_isvec
332 in3_isvec = yield dec2.in3_isvec
333 print ("get_pdecode_idx_in in1", name, in1_sel, In1Sel.RA.value,
334 in1, in1_isvec)
335 print ("get_pdecode_idx_in in2", name, in2_sel, In2Sel.RB.value,
336 in2, in2_isvec)
337 print ("get_pdecode_idx_in in3", name, in3_sel, In3Sel.RS.value,
338 in3, in3_isvec)
339 # identify which regnames map to in1/2/3
340 if name == 'RA':
341 if (in1_sel == In1Sel.RA.value or
342 (in1_sel == In1Sel.RA_OR_ZERO.value and in1 != 0)):
343 return in1, in1_isvec
344 if in1_sel == In1Sel.RA_OR_ZERO.value:
345 return in1, in1_isvec
346 elif name == 'RB':
347 if in2_sel == In2Sel.RB.value:
348 return in2, in2_isvec
349 if in3_sel == In3Sel.RB.value:
350 return in3, in3_isvec
351 # XXX TODO, RC doesn't exist yet!
352 elif name == 'RC':
353 assert False, "RC does not exist yet"
354 elif name == 'RS':
355 if in1_sel == In1Sel.RS.value:
356 return in1, in1_isvec
357 if in2_sel == In2Sel.RS.value:
358 return in2, in2_isvec
359 if in3_sel == In3Sel.RS.value:
360 return in3, in3_isvec
361 return None, False
362
363
364 def get_pdecode_cr_out(dec2, name):
365 op = dec2.dec.op
366 out_sel = yield op.cr_out
367 out_bitfield = yield dec2.dec_cr_out.cr_bitfield.data
368 sv_cr_out = yield op.sv_cr_out
369 spec = yield dec2.crout_svdec.spec
370 sv_override = yield dec2.dec_cr_out.sv_override
371 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
372 out = yield dec2.e.write_cr.data
373 o_isvec = yield dec2.o_isvec
374 print ("get_pdecode_cr_out", out_sel, CROutSel.CR0.value, out, o_isvec)
375 print (" sv_cr_out", sv_cr_out)
376 print (" cr_bf", out_bitfield)
377 print (" spec", spec)
378 print (" override", sv_override)
379 # identify which regnames map to out / o2
380 if name == 'CR0':
381 if out_sel == CROutSel.CR0.value:
382 return out, o_isvec
383 print ("get_pdecode_idx_out not found", name)
384 return None, False
385
386
387 def get_pdecode_idx_out(dec2, name):
388 op = dec2.dec.op
389 out_sel = yield op.out_sel
390 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
391 out = yield dec2.e.write_reg.data
392 o_isvec = yield dec2.o_isvec
393 # identify which regnames map to out / o2
394 if name == 'RA':
395 print ("get_pdecode_idx_out", out_sel, OutSel.RA.value, out, o_isvec)
396 if out_sel == OutSel.RA.value:
397 return out, o_isvec
398 elif name == 'RT':
399 print ("get_pdecode_idx_out", out_sel, OutSel.RT.value,
400 OutSel.RT_OR_ZERO.value, out, o_isvec)
401 if out_sel == OutSel.RT.value:
402 return out, o_isvec
403 print ("get_pdecode_idx_out not found", name)
404 return None, False
405
406
407 # XXX TODO
408 def get_pdecode_idx_out2(dec2, name):
409 op = dec2.dec.op
410 print ("TODO: get_pdecode_idx_out2", name)
411 return None, False
412
413
414 class ISACaller:
415 # decoder2 - an instance of power_decoder2
416 # regfile - a list of initial values for the registers
417 # initial_{etc} - initial values for SPRs, Condition Register, Mem, MSR
418 # respect_pc - tracks the program counter. requires initial_insns
419 def __init__(self, decoder2, regfile, initial_sprs=None, initial_cr=0,
420 initial_mem=None, initial_msr=0,
421 initial_svstate=0,
422 initial_insns=None, respect_pc=False,
423 disassembly=None,
424 initial_pc=0,
425 bigendian=False,
426 mmu=False):
427
428 self.bigendian = bigendian
429 self.halted = False
430 self.is_svp64_mode = False
431 self.respect_pc = respect_pc
432 if initial_sprs is None:
433 initial_sprs = {}
434 if initial_mem is None:
435 initial_mem = {}
436 if initial_insns is None:
437 initial_insns = {}
438 assert self.respect_pc == False, "instructions required to honor pc"
439
440 print("ISACaller insns", respect_pc, initial_insns, disassembly)
441 print("ISACaller initial_msr", initial_msr)
442
443 # "fake program counter" mode (for unit testing)
444 self.fake_pc = 0
445 disasm_start = 0
446 if not respect_pc:
447 if isinstance(initial_mem, tuple):
448 self.fake_pc = initial_mem[0]
449 disasm_start = self.fake_pc
450 else:
451 disasm_start = initial_pc
452
453 # disassembly: we need this for now (not given from the decoder)
454 self.disassembly = {}
455 if disassembly:
456 for i, code in enumerate(disassembly):
457 self.disassembly[i*4 + disasm_start] = code
458
459 # set up registers, instruction memory, data memory, PC, SPRs, MSR
460 self.svp64rm = SVP64RM()
461 if initial_svstate is None:
462 initial_svstate = 0
463 if isinstance(initial_svstate, int):
464 initial_svstate = SVP64State(initial_svstate)
465 self.svstate = initial_svstate
466 self.gpr = GPR(decoder2, self, self.svstate, regfile)
467 self.spr = SPR(decoder2, initial_sprs) # initialise SPRs before MMU
468 self.mem = Mem(row_bytes=8, initial_mem=initial_mem)
469 self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
470 # MMU mode, redirect underlying Mem through RADIX
471 if mmu:
472 self.mem = RADIX(self.mem, self)
473 self.imem = RADIX(self.imem, self)
474 self.pc = PC()
475 self.msr = SelectableInt(initial_msr, 64) # underlying reg
476
477 # TODO, needed here:
478 # FPR (same as GPR except for FP nums)
479 # 4.2.2 p124 FPSCR (definitely "separate" - not in SPR)
480 # note that mffs, mcrfs, mtfsf "manage" this FPSCR
481 # 2.3.1 CR (and sub-fields CR0..CR6 - CR0 SO comes from XER.SO)
482 # note that mfocrf, mfcr, mtcr, mtocrf, mcrxrx "manage" CRs
483 # -- Done
484 # 2.3.2 LR (actually SPR #8) -- Done
485 # 2.3.3 CTR (actually SPR #9) -- Done
486 # 2.3.4 TAR (actually SPR #815)
487 # 3.2.2 p45 XER (actually SPR #1) -- Done
488 # 3.2.3 p46 p232 VRSAVE (actually SPR #256)
489
490 # create CR then allow portions of it to be "selectable" (below)
491 #rev_cr = int('{:016b}'.format(initial_cr)[::-1], 2)
492 self.cr = SelectableInt(initial_cr, 64) # underlying reg
493 #self.cr = FieldSelectableInt(self._cr, list(range(32, 64)))
494
495 # "undefined", just set to variable-bit-width int (use exts "max")
496 #self.undefined = SelectableInt(0, 256) # TODO, not hard-code 256!
497
498 self.namespace = {}
499 self.namespace.update(self.spr)
500 self.namespace.update({'GPR': self.gpr,
501 'MEM': self.mem,
502 'SPR': self.spr,
503 'memassign': self.memassign,
504 'NIA': self.pc.NIA,
505 'CIA': self.pc.CIA,
506 'SVSTATE': self.svstate.spr,
507 'CR': self.cr,
508 'MSR': self.msr,
509 'undefined': undefined,
510 'mode_is_64bit': True,
511 'SO': XER_bits['SO']
512 })
513
514 # update pc to requested start point
515 self.set_pc(initial_pc)
516
517 # field-selectable versions of Condition Register TODO check bitranges?
518 self.crl = []
519 for i in range(8):
520 bits = tuple(range(i*4+32, (i+1)*4+32)) # errr... maybe?
521 _cr = FieldSelectableInt(self.cr, bits)
522 self.crl.append(_cr)
523 self.namespace["CR%d" % i] = _cr
524
525 self.decoder = decoder2.dec
526 self.dec2 = decoder2
527
528 def TRAP(self, trap_addr=0x700, trap_bit=PIb.TRAP):
529 print("TRAP:", hex(trap_addr), hex(self.namespace['MSR'].value))
530 # store CIA(+4?) in SRR0, set NIA to 0x700
531 # store MSR in SRR1, set MSR to um errr something, have to check spec
532 self.spr['SRR0'].value = self.pc.CIA.value
533 self.spr['SRR1'].value = self.namespace['MSR'].value
534 self.trap_nia = SelectableInt(trap_addr, 64)
535 self.spr['SRR1'][trap_bit] = 1 # change *copy* of MSR in SRR1
536
537 # set exception bits. TODO: this should, based on the address
538 # in figure 66 p1065 V3.0B and the table figure 65 p1063 set these
539 # bits appropriately. however it turns out that *for now* in all
540 # cases (all trap_addrs) the exact same thing is needed.
541 self.msr[MSRb.IR] = 0
542 self.msr[MSRb.DR] = 0
543 self.msr[MSRb.FE0] = 0
544 self.msr[MSRb.FE1] = 0
545 self.msr[MSRb.EE] = 0
546 self.msr[MSRb.RI] = 0
547 self.msr[MSRb.SF] = 1
548 self.msr[MSRb.TM] = 0
549 self.msr[MSRb.VEC] = 0
550 self.msr[MSRb.VSX] = 0
551 self.msr[MSRb.PR] = 0
552 self.msr[MSRb.FP] = 0
553 self.msr[MSRb.PMM] = 0
554 self.msr[MSRb.TEs] = 0
555 self.msr[MSRb.TEe] = 0
556 self.msr[MSRb.UND] = 0
557 self.msr[MSRb.LE] = 1
558
559 def memassign(self, ea, sz, val):
560 self.mem.memassign(ea, sz, val)
561
562 def prep_namespace(self, formname, op_fields):
563 # TODO: get field names from form in decoder*1* (not decoder2)
564 # decoder2 is hand-created, and decoder1.sigform is auto-generated
565 # from spec
566 # then "yield" fields only from op_fields rather than hard-coded
567 # list, here.
568 fields = self.decoder.sigforms[formname]
569 for name in op_fields:
570 if name == 'spr':
571 sig = getattr(fields, name.upper())
572 else:
573 sig = getattr(fields, name)
574 val = yield sig
575 # these are all opcode fields involved in index-selection of CR,
576 # and need to do "standard" arithmetic. CR[BA+32] for example
577 # would, if using SelectableInt, only be 5-bit.
578 if name in ['BF', 'BFA', 'BC', 'BA', 'BB', 'BT', 'BI']:
579 self.namespace[name] = val
580 else:
581 self.namespace[name] = SelectableInt(val, sig.width)
582
583 self.namespace['XER'] = self.spr['XER']
584 self.namespace['CA'] = self.spr['XER'][XER_bits['CA']].value
585 self.namespace['CA32'] = self.spr['XER'][XER_bits['CA32']].value
586
587 def handle_carry_(self, inputs, outputs, already_done):
588 inv_a = yield self.dec2.e.do.invert_in
589 if inv_a:
590 inputs[0] = ~inputs[0]
591
592 imm_ok = yield self.dec2.e.do.imm_data.ok
593 if imm_ok:
594 imm = yield self.dec2.e.do.imm_data.data
595 inputs.append(SelectableInt(imm, 64))
596 assert len(outputs) >= 1
597 print("outputs", repr(outputs))
598 if isinstance(outputs, list) or isinstance(outputs, tuple):
599 output = outputs[0]
600 else:
601 output = outputs
602 gts = []
603 for x in inputs:
604 print("gt input", x, output)
605 gt = (gtu(x, output))
606 gts.append(gt)
607 print(gts)
608 cy = 1 if any(gts) else 0
609 print("CA", cy, gts)
610 if not (1 & already_done):
611 self.spr['XER'][XER_bits['CA']] = cy
612
613 print("inputs", already_done, inputs)
614 # 32 bit carry
615 # ARGH... different for OP_ADD... *sigh*...
616 op = yield self.dec2.e.do.insn_type
617 if op == MicrOp.OP_ADD.value:
618 res32 = (output.value & (1 << 32)) != 0
619 a32 = (inputs[0].value & (1 << 32)) != 0
620 if len(inputs) >= 2:
621 b32 = (inputs[1].value & (1 << 32)) != 0
622 else:
623 b32 = False
624 cy32 = res32 ^ a32 ^ b32
625 print("CA32 ADD", cy32)
626 else:
627 gts = []
628 for x in inputs:
629 print("input", x, output)
630 print(" x[32:64]", x, x[32:64])
631 print(" o[32:64]", output, output[32:64])
632 gt = (gtu(x[32:64], output[32:64])) == SelectableInt(1, 1)
633 gts.append(gt)
634 cy32 = 1 if any(gts) else 0
635 print("CA32", cy32, gts)
636 if not (2 & already_done):
637 self.spr['XER'][XER_bits['CA32']] = cy32
638
639 def handle_overflow(self, inputs, outputs, div_overflow):
640 if hasattr(self.dec2.e.do, "invert_in"):
641 inv_a = yield self.dec2.e.do.invert_in
642 if inv_a:
643 inputs[0] = ~inputs[0]
644
645 imm_ok = yield self.dec2.e.do.imm_data.ok
646 if imm_ok:
647 imm = yield self.dec2.e.do.imm_data.data
648 inputs.append(SelectableInt(imm, 64))
649 assert len(outputs) >= 1
650 print("handle_overflow", inputs, outputs, div_overflow)
651 if len(inputs) < 2 and div_overflow is None:
652 return
653
654 # div overflow is different: it's returned by the pseudo-code
655 # because it's more complex than can be done by analysing the output
656 if div_overflow is not None:
657 ov, ov32 = div_overflow, div_overflow
658 # arithmetic overflow can be done by analysing the input and output
659 elif len(inputs) >= 2:
660 output = outputs[0]
661
662 # OV (64-bit)
663 input_sgn = [exts(x.value, x.bits) < 0 for x in inputs]
664 output_sgn = exts(output.value, output.bits) < 0
665 ov = 1 if input_sgn[0] == input_sgn[1] and \
666 output_sgn != input_sgn[0] else 0
667
668 # OV (32-bit)
669 input32_sgn = [exts(x.value, 32) < 0 for x in inputs]
670 output32_sgn = exts(output.value, 32) < 0
671 ov32 = 1 if input32_sgn[0] == input32_sgn[1] and \
672 output32_sgn != input32_sgn[0] else 0
673
674 self.spr['XER'][XER_bits['OV']] = ov
675 self.spr['XER'][XER_bits['OV32']] = ov32
676 so = self.spr['XER'][XER_bits['SO']]
677 so = so | ov
678 self.spr['XER'][XER_bits['SO']] = so
679
680 def handle_comparison(self, outputs, cr_idx=0):
681 out = outputs[0]
682 assert isinstance(out, SelectableInt), \
683 "out zero not a SelectableInt %s" % repr(outputs)
684 print("handle_comparison", out.bits, hex(out.value))
685 # TODO - XXX *processor* in 32-bit mode
686 # https://bugs.libre-soc.org/show_bug.cgi?id=424
687 # if is_32bit:
688 # o32 = exts(out.value, 32)
689 # print ("handle_comparison exts 32 bit", hex(o32))
690 out = exts(out.value, out.bits)
691 print("handle_comparison exts", hex(out))
692 zero = SelectableInt(out == 0, 1)
693 positive = SelectableInt(out > 0, 1)
694 negative = SelectableInt(out < 0, 1)
695 SO = self.spr['XER'][XER_bits['SO']]
696 print("handle_comparison SO", SO)
697 cr_field = selectconcat(negative, positive, zero, SO)
698 self.crl[cr_idx].eq(cr_field)
699
700 def set_pc(self, pc_val):
701 self.namespace['NIA'] = SelectableInt(pc_val, 64)
702 self.pc.update(self.namespace, self.is_svp64_mode)
703
704 def setup_one(self):
705 """set up one instruction
706 """
707 if self.respect_pc:
708 pc = self.pc.CIA.value
709 else:
710 pc = self.fake_pc
711 self._pc = pc
712 ins = self.imem.ld(pc, 4, False, True, instr_fetch=True)
713 if ins is None:
714 raise KeyError("no instruction at 0x%x" % pc)
715 print("setup: 0x%x 0x%x %s" % (pc, ins & 0xffffffff, bin(ins)))
716 print("CIA NIA", self.respect_pc, self.pc.CIA.value, self.pc.NIA.value)
717
718 yield self.dec2.sv_rm.eq(0)
719 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff)
720 yield self.dec2.dec.bigendian.eq(self.bigendian)
721 yield self.dec2.state.msr.eq(self.msr.value)
722 yield self.dec2.state.pc.eq(pc)
723 if self.svstate is not None:
724 yield self.dec2.state.svstate.eq(self.svstate.spr.value)
725
726 # SVP64. first, check if the opcode is EXT001, and SVP64 id bits set
727 yield Settle()
728 opcode = yield self.dec2.dec.opcode_in
729 pfx = SVP64PrefixFields() # TODO should probably use SVP64PrefixDecoder
730 pfx.insn.value = opcode
731 major = pfx.major.asint(msb0=True) # MSB0 inversion
732 print ("prefix test: opcode:", major, bin(major),
733 pfx.insn[7] == 0b1, pfx.insn[9] == 0b1)
734 self.is_svp64_mode = ((major == 0b000001) and
735 pfx.insn[7].value == 0b1 and
736 pfx.insn[9].value == 0b1)
737 self.pc.update_nia(self.is_svp64_mode)
738 self.namespace['NIA'] = self.pc.NIA
739 self.namespace['SVSTATE'] = self.svstate.spr
740 if not self.is_svp64_mode:
741 return
742
743 # in SVP64 mode. decode/print out svp64 prefix, get v3.0B instruction
744 print ("svp64.rm", bin(pfx.rm.asint(msb0=True)))
745 print (" svstate.vl", self.svstate.vl.asint(msb0=True))
746 print (" svstate.mvl", self.svstate.maxvl.asint(msb0=True))
747 sv_rm = pfx.rm.asint(msb0=True)
748 ins = self.imem.ld(pc+4, 4, False, True, instr_fetch=True)
749 print(" svsetup: 0x%x 0x%x %s" % (pc+4, ins & 0xffffffff, bin(ins)))
750 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff) # v3.0B suffix
751 yield self.dec2.sv_rm.eq(sv_rm) # svp64 prefix
752 yield Settle()
753
754 def execute_one(self):
755 """execute one instruction
756 """
757 # get the disassembly code for this instruction
758 if self.is_svp64_mode:
759 code = self.disassembly[self._pc+4]
760 print(" svp64 sim-execute", hex(self._pc), code)
761 else:
762 code = self.disassembly[self._pc]
763 print("sim-execute", hex(self._pc), code)
764 opname = code.split(' ')[0]
765 yield from self.call(opname)
766
767 # don't use this except in special circumstances
768 if not self.respect_pc:
769 self.fake_pc += 4
770
771 print("execute one, CIA NIA", self.pc.CIA.value, self.pc.NIA.value)
772
773 def get_assembly_name(self):
774 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
775 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
776 dec_insn = yield self.dec2.e.do.insn
777 asmcode = yield self.dec2.dec.op.asmcode
778 print("get assembly name asmcode", asmcode, hex(dec_insn))
779 asmop = insns.get(asmcode, None)
780 int_op = yield self.dec2.dec.op.internal_op
781
782 # sigh reconstruct the assembly instruction name
783 if hasattr(self.dec2.e.do, "oe"):
784 ov_en = yield self.dec2.e.do.oe.oe
785 ov_ok = yield self.dec2.e.do.oe.ok
786 else:
787 ov_en = False
788 ov_ok = False
789 if hasattr(self.dec2.e.do, "rc"):
790 rc_en = yield self.dec2.e.do.rc.rc
791 rc_ok = yield self.dec2.e.do.rc.ok
792 else:
793 rc_en = False
794 rc_ok = False
795 # grrrr have to special-case MUL op (see DecodeOE)
796 print("ov %d en %d rc %d en %d op %d" %
797 (ov_ok, ov_en, rc_ok, rc_en, int_op))
798 if int_op in [MicrOp.OP_MUL_H64.value, MicrOp.OP_MUL_H32.value]:
799 print("mul op")
800 if rc_en & rc_ok:
801 asmop += "."
802 else:
803 if not asmop.endswith("."): # don't add "." to "andis."
804 if rc_en & rc_ok:
805 asmop += "."
806 if hasattr(self.dec2.e.do, "lk"):
807 lk = yield self.dec2.e.do.lk
808 if lk:
809 asmop += "l"
810 print("int_op", int_op)
811 if int_op in [MicrOp.OP_B.value, MicrOp.OP_BC.value]:
812 AA = yield self.dec2.dec.fields.FormI.AA[0:-1]
813 print("AA", AA)
814 if AA:
815 asmop += "a"
816 spr_msb = yield from self.get_spr_msb()
817 if int_op == MicrOp.OP_MFCR.value:
818 if spr_msb:
819 asmop = 'mfocrf'
820 else:
821 asmop = 'mfcr'
822 # XXX TODO: for whatever weird reason this doesn't work
823 # https://bugs.libre-soc.org/show_bug.cgi?id=390
824 if int_op == MicrOp.OP_MTCRF.value:
825 if spr_msb:
826 asmop = 'mtocrf'
827 else:
828 asmop = 'mtcrf'
829 return asmop
830
831 def get_spr_msb(self):
832 dec_insn = yield self.dec2.e.do.insn
833 return dec_insn & (1 << 20) != 0 # sigh - XFF.spr[-1]?
834
835 def call(self, name):
836 """call(opcode) - the primary execution point for instructions
837 """
838 name = name.strip() # remove spaces if not already done so
839 if self.halted:
840 print("halted - not executing", name)
841 return
842
843 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
844 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
845 asmop = yield from self.get_assembly_name()
846 print("call", name, asmop)
847
848 # check privileged
849 int_op = yield self.dec2.dec.op.internal_op
850 spr_msb = yield from self.get_spr_msb()
851
852 instr_is_privileged = False
853 if int_op in [MicrOp.OP_ATTN.value,
854 MicrOp.OP_MFMSR.value,
855 MicrOp.OP_MTMSR.value,
856 MicrOp.OP_MTMSRD.value,
857 # TODO: OP_TLBIE
858 MicrOp.OP_RFID.value]:
859 instr_is_privileged = True
860 if int_op in [MicrOp.OP_MFSPR.value,
861 MicrOp.OP_MTSPR.value] and spr_msb:
862 instr_is_privileged = True
863
864 print("is priv", instr_is_privileged, hex(self.msr.value),
865 self.msr[MSRb.PR])
866 # check MSR priv bit and whether op is privileged: if so, throw trap
867 if instr_is_privileged and self.msr[MSRb.PR] == 1:
868 self.TRAP(0x700, PIb.PRIV)
869 self.namespace['NIA'] = self.trap_nia
870 self.pc.update(self.namespace, self.is_svp64_mode)
871 return
872
873 # check halted condition
874 if name == 'attn':
875 self.halted = True
876 return
877
878 # check illegal instruction
879 illegal = False
880 if name not in ['mtcrf', 'mtocrf']:
881 illegal = name != asmop
882
883 # sigh deal with setvl not being supported by binutils (.long)
884 if asmop.startswith('setvl'):
885 illegal = False
886 name = 'setvl'
887
888 if illegal:
889 print("illegal", name, asmop)
890 self.TRAP(0x700, PIb.ILLEG)
891 self.namespace['NIA'] = self.trap_nia
892 self.pc.update(self.namespace, self.is_svp64_mode)
893 print("name %s != %s - calling ILLEGAL trap, PC: %x" %
894 (name, asmop, self.pc.CIA.value))
895 return
896
897 info = self.instrs[name]
898 yield from self.prep_namespace(info.form, info.op_fields)
899
900 # preserve order of register names
901 input_names = create_args(list(info.read_regs) +
902 list(info.uninit_regs))
903 print(input_names)
904
905 # get SVP64 entry for the current instruction
906 sv_rm = self.svp64rm.instrs.get(name)
907 if sv_rm is not None:
908 dest_cr, src_cr, src_byname, dest_byname = decode_extra(sv_rm)
909 else:
910 dest_cr, src_cr, src_byname, dest_byname = False, False, {}, {}
911 print ("sv rm", sv_rm, dest_cr, src_cr, src_byname, dest_byname)
912
913 # get SVSTATE VL (oh and print out some debug stuff)
914 if self.is_svp64_mode:
915 vl = self.svstate.vl.asint(msb0=True)
916 srcstep = self.svstate.srcstep.asint(msb0=True)
917 dststep = self.svstate.srcstep.asint(msb0=True)
918 sv_a_nz = yield self.dec2.sv_a_nz
919 in1 = yield self.dec2.e.read_reg1.data
920 print ("SVP64: VL, srcstep, dststep, sv_a_nz, in1",
921 vl, srcstep, dststep, sv_a_nz, in1)
922
923 # get predicate mask
924 srcmask = dstmask = 0xffff_ffff_ffff_ffff
925 if self.is_svp64_mode:
926 pmode = yield self.dec2.rm_dec.predmode
927 sv_ptype = yield self.dec2.dec.op.SV_Ptype
928 srcpred = yield self.dec2.rm_dec.srcpred
929 dstpred = yield self.dec2.rm_dec.dstpred
930 if pmode == SVP64PredMode.INT.value:
931 srcmask = dstmask = get_predint(self.gpr, dstpred)
932 if sv_ptype == SVPtype.P2.value:
933 srcmask = get_predint(self.gpr, srcpred)
934 elif pmode == SVP64PredMode.CR.value:
935 srcmask = dstmask = get_predcr(self.crl, dstpred, vl)
936 if sv_ptype == SVPtype.P2.value:
937 srcmask = get_predcr(self.crl, srcpred, vl)
938 print (" pmode", pmode)
939 print (" ptype", sv_ptype)
940 print (" srcmask", bin(srcmask))
941 print (" dstmask", bin(dstmask))
942
943 # okaaay, so here we simply advance srcstep (TODO dststep)
944 # until the predicate mask has a "1" bit... or we run out of VL
945 # let srcstep==VL be the indicator to move to next instruction
946 while (((1<<srcstep) & srcmask) == 0) and (srcstep != vl):
947 print (" skip", bin(1<<srcstep))
948 srcstep += 1
949 # same for dststep
950 while (((1<<dststep) & dstmask) == 0) and (dststep != vl):
951 print (" skip", bin(1<<dststep))
952 dststep += 1
953
954 # update SVSTATE with new srcstep
955 self.svstate.srcstep[0:7] = srcstep
956 self.svstate.dststep[0:7] = dststep
957 self.namespace['SVSTATE'] = self.svstate.spr
958 yield self.dec2.state.svstate.eq(self.svstate.spr.value)
959 yield Settle() # let decoder update
960 srcstep = self.svstate.srcstep.asint(msb0=True)
961 dststep = self.svstate.dststep.asint(msb0=True)
962 print (" srcstep", srcstep)
963 print (" dststep", dststep)
964
965 # check if end reached (we let srcstep overrun, above)
966 # nothing needs doing (TODO zeroing): just do next instruction
967 if srcstep == vl:
968 self.svp64_reset_loop()
969 self.update_pc_next()
970 return
971
972 # VL=0 in SVP64 mode means "do nothing: skip instruction"
973 if self.is_svp64_mode and vl == 0:
974 self.pc.update(self.namespace, self.is_svp64_mode)
975 print("SVP64: VL=0, end of call", self.namespace['CIA'],
976 self.namespace['NIA'])
977 return
978
979 # main input registers (RT, RA ...)
980 inputs = []
981 for name in input_names:
982 # using PowerDecoder2, first, find the decoder index.
983 # (mapping name RA RB RC RS to in1, in2, in3)
984 regnum, is_vec = yield from get_pdecode_idx_in(self.dec2, name)
985 if regnum is None:
986 # doing this is not part of svp64, it's because output
987 # registers, to be modified, need to be in the namespace.
988 regnum, is_vec = yield from get_pdecode_idx_out(self.dec2, name)
989
990 # in case getting the register number is needed, _RA, _RB
991 regname = "_" + name
992 self.namespace[regname] = regnum
993 print('reading reg %s %s' % (name, str(regnum)), is_vec)
994 reg_val = self.gpr(regnum)
995 inputs.append(reg_val)
996
997 # "special" registers
998 for special in info.special_regs:
999 if special in special_sprs:
1000 inputs.append(self.spr[special])
1001 else:
1002 inputs.append(self.namespace[special])
1003
1004 # clear trap (trap) NIA
1005 self.trap_nia = None
1006
1007 # execute actual instruction here
1008 print("inputs", inputs)
1009 results = info.func(self, *inputs)
1010 print("results", results)
1011
1012 # "inject" decorator takes namespace from function locals: we need to
1013 # overwrite NIA being overwritten (sigh)
1014 if self.trap_nia is not None:
1015 self.namespace['NIA'] = self.trap_nia
1016
1017 print("after func", self.namespace['CIA'], self.namespace['NIA'])
1018
1019 # detect if CA/CA32 already in outputs (sra*, basically)
1020 already_done = 0
1021 if info.write_regs:
1022 output_names = create_args(info.write_regs)
1023 for name in output_names:
1024 if name == 'CA':
1025 already_done |= 1
1026 if name == 'CA32':
1027 already_done |= 2
1028
1029 print("carry already done?", bin(already_done))
1030 if hasattr(self.dec2.e.do, "output_carry"):
1031 carry_en = yield self.dec2.e.do.output_carry
1032 else:
1033 carry_en = False
1034 if carry_en:
1035 yield from self.handle_carry_(inputs, results, already_done)
1036
1037 # detect if overflow was in return result
1038 overflow = None
1039 if info.write_regs:
1040 for name, output in zip(output_names, results):
1041 if name == 'overflow':
1042 overflow = output
1043
1044 if hasattr(self.dec2.e.do, "oe"):
1045 ov_en = yield self.dec2.e.do.oe.oe
1046 ov_ok = yield self.dec2.e.do.oe.ok
1047 else:
1048 ov_en = False
1049 ov_ok = False
1050 print("internal overflow", overflow, ov_en, ov_ok)
1051 if ov_en & ov_ok:
1052 yield from self.handle_overflow(inputs, results, overflow)
1053
1054 if hasattr(self.dec2.e.do, "rc"):
1055 rc_en = yield self.dec2.e.do.rc.rc
1056 else:
1057 rc_en = False
1058 if rc_en:
1059 regnum, is_vec = yield from get_pdecode_cr_out(self.dec2, "CR0")
1060 self.handle_comparison(results, regnum)
1061
1062 # any modified return results?
1063 if info.write_regs:
1064 for name, output in zip(output_names, results):
1065 if name == 'overflow': # ignore, done already (above)
1066 continue
1067 if isinstance(output, int):
1068 output = SelectableInt(output, 256)
1069 if name in ['CA', 'CA32']:
1070 if carry_en:
1071 print("writing %s to XER" % name, output)
1072 self.spr['XER'][XER_bits[name]] = output.value
1073 else:
1074 print("NOT writing %s to XER" % name, output)
1075 elif name in info.special_regs:
1076 print('writing special %s' % name, output, special_sprs)
1077 if name in special_sprs:
1078 self.spr[name] = output
1079 else:
1080 self.namespace[name].eq(output)
1081 if name == 'MSR':
1082 print('msr written', hex(self.msr.value))
1083 else:
1084 regnum, is_vec = yield from get_pdecode_idx_out(self.dec2,
1085 name)
1086 if regnum is None:
1087 # temporary hack for not having 2nd output
1088 regnum = yield getattr(self.decoder, name)
1089 is_vec = False
1090 print('writing reg %d %s' % (regnum, str(output)), is_vec)
1091 if output.bits > 64:
1092 output = SelectableInt(output.value, 64)
1093 self.gpr[regnum] = output
1094
1095 # check if it is the SVSTATE.src/dest step that needs incrementing
1096 # this is our Sub-Program-Counter loop from 0 to VL-1
1097 if self.is_svp64_mode:
1098 # XXX twin predication TODO
1099 vl = self.svstate.vl.asint(msb0=True)
1100 mvl = self.svstate.maxvl.asint(msb0=True)
1101 srcstep = self.svstate.srcstep.asint(msb0=True)
1102 dststep = self.svstate.srcstep.asint(msb0=True)
1103 sv_ptype = yield self.dec2.dec.op.SV_Ptype
1104 no_out_vec = not (yield self.dec2.no_out_vec)
1105 no_in_vec = not (yield self.dec2.no_in_vec)
1106 print (" svstate.vl", vl)
1107 print (" svstate.mvl", mvl)
1108 print (" svstate.srcstep", srcstep)
1109 print (" svstate.dststep", dststep)
1110 print (" no_out_vec", no_out_vec)
1111 print (" no_in_vec", no_in_vec)
1112 print (" sv_ptype", sv_ptype, sv_ptype == SVPtype.P2.value)
1113 # check if srcstep needs incrementing by one, stop PC advancing
1114 # svp64 loop can end early if the dest is scalar for single-pred
1115 # but for 2-pred both src/dest have to be checked.
1116 # XXX this might not be true! it may just be LD/ST
1117 if sv_ptype == SVPtype.P2.value:
1118 svp64_is_vector = (no_out_vec or no_in_vec)
1119 else:
1120 svp64_is_vector = no_out_vec
1121 if svp64_is_vector and srcstep != vl-1:
1122 self.svstate.srcstep += SelectableInt(1, 7)
1123 self.svstate.dststep += SelectableInt(1, 7)
1124 self.pc.NIA.value = self.pc.CIA.value
1125 self.namespace['NIA'] = self.pc.NIA
1126 self.namespace['SVSTATE'] = self.svstate.spr
1127 print("end of sub-pc call", self.namespace['CIA'],
1128 self.namespace['NIA'])
1129 return # DO NOT allow PC to update whilst Sub-PC loop running
1130 # reset loop to zero
1131 self.svp64_reset_loop()
1132
1133 self.update_pc_next()
1134
1135 def update_pc_next(self):
1136 # UPDATE program counter
1137 self.pc.update(self.namespace, self.is_svp64_mode)
1138 self.svstate.spr = self.namespace['SVSTATE']
1139 print("end of call", self.namespace['CIA'],
1140 self.namespace['NIA'],
1141 self.namespace['SVSTATE'])
1142
1143 def svp64_reset_loop(self):
1144 self.svstate.srcstep[0:7] = 0
1145 self.svstate.dststep[0:7] = 0
1146 print (" svstate.srcstep loop end (PC to update)")
1147 self.pc.update_nia(self.is_svp64_mode)
1148 self.namespace['NIA'] = self.pc.NIA
1149 self.namespace['SVSTATE'] = self.svstate.spr
1150
1151 def inject():
1152 """Decorator factory.
1153
1154 this decorator will "inject" variables into the function's namespace,
1155 from the *dictionary* in self.namespace. it therefore becomes possible
1156 to make it look like a whole stack of variables which would otherwise
1157 need "self." inserted in front of them (*and* for those variables to be
1158 added to the instance) "appear" in the function.
1159
1160 "self.namespace['SI']" for example becomes accessible as just "SI" but
1161 *only* inside the function, when decorated.
1162 """
1163 def variable_injector(func):
1164 @wraps(func)
1165 def decorator(*args, **kwargs):
1166 try:
1167 func_globals = func.__globals__ # Python 2.6+
1168 except AttributeError:
1169 func_globals = func.func_globals # Earlier versions.
1170
1171 context = args[0].namespace # variables to be injected
1172 saved_values = func_globals.copy() # Shallow copy of dict.
1173 func_globals.update(context)
1174 result = func(*args, **kwargs)
1175 print("globals after", func_globals['CIA'], func_globals['NIA'])
1176 print("args[0]", args[0].namespace['CIA'],
1177 args[0].namespace['NIA'],
1178 args[0].namespace['SVSTATE'])
1179 args[0].namespace = func_globals
1180 #exec (func.__code__, func_globals)
1181
1182 # finally:
1183 # func_globals = saved_values # Undo changes.
1184
1185 return result
1186
1187 return decorator
1188
1189 return variable_injector
1190
1191