add SVP64 dststep incrementing in PowerDecoder2, Testissuer and ISACaller
[soc.git] / src / soc / decoder / isa / caller.py
1 # SPDX-License-Identifier: LGPLv3+
2 # Copyright (C) 2020, 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
3 # Copyright (C) 2020 Michael Nolan
4 # Funded by NLnet http://nlnet.nl
5 """core of the python-based POWER9 simulator
6
7 this is part of a cycle-accurate POWER9 simulator. its primary purpose is
8 not speed, it is for both learning and educational purposes, as well as
9 a method of verifying the HDL.
10
11 related bugs:
12
13 * https://bugs.libre-soc.org/show_bug.cgi?id=424
14 """
15
16 from nmigen.back.pysim import Settle
17 from functools import wraps
18 from copy import copy
19 from soc.decoder.orderedset import OrderedSet
20 from soc.decoder.selectable_int import (FieldSelectableInt, SelectableInt,
21 selectconcat)
22 from soc.decoder.power_enums import (spr_dict, spr_byname, XER_bits,
23 insns, MicrOp, In1Sel, In2Sel, In3Sel,
24 OutSel, CROutSel,
25 SVP64RMMode, SVP64PredMode,
26 SVP64PredInt, SVP64PredCR)
27
28 from soc.decoder.power_enums import SVPtype
29
30 from soc.decoder.helpers import exts, gtu, ltu, undefined
31 from soc.consts import PIb, MSRb # big-endian (PowerISA versions)
32 from soc.consts import SVP64CROffs
33 from soc.decoder.power_svp64 import SVP64RM, decode_extra
34
35 from soc.decoder.isa.radixmmu import RADIX
36 from soc.decoder.isa.mem import Mem, swap_order
37
38 from collections import namedtuple
39 import math
40 import sys
41
42 instruction_info = namedtuple('instruction_info',
43 'func read_regs uninit_regs write_regs ' +
44 'special_regs op_fields form asmregs')
45
46 special_sprs = {
47 'LR': 8,
48 'CTR': 9,
49 'TAR': 815,
50 'XER': 1,
51 'VRSAVE': 256}
52
53
54 REG_SORT_ORDER = {
55 # TODO (lkcl): adjust other registers that should be in a particular order
56 # probably CA, CA32, and CR
57 "RT": 0,
58 "RA": 0,
59 "RB": 0,
60 "RS": 0,
61 "CR": 0,
62 "LR": 0,
63 "CTR": 0,
64 "TAR": 0,
65 "CA": 0,
66 "CA32": 0,
67 "MSR": 0,
68 "SVSTATE": 0,
69
70 "overflow": 1,
71 }
72
73
74 def create_args(reglist, extra=None):
75 retval = list(OrderedSet(reglist))
76 retval.sort(key=lambda reg: REG_SORT_ORDER[reg])
77 if extra is not None:
78 return [extra] + retval
79 return retval
80
81
82
83 class GPR(dict):
84 def __init__(self, decoder, isacaller, svstate, regfile):
85 dict.__init__(self)
86 self.sd = decoder
87 self.isacaller = isacaller
88 self.svstate = svstate
89 for i in range(32):
90 self[i] = SelectableInt(regfile[i], 64)
91
92 def __call__(self, ridx):
93 return self[ridx]
94
95 def set_form(self, form):
96 self.form = form
97
98 def getz(self, rnum):
99 # rnum = rnum.value # only SelectableInt allowed
100 print("GPR getzero?", rnum)
101 if rnum == 0:
102 return SelectableInt(0, 64)
103 return self[rnum]
104
105 def _get_regnum(self, attr):
106 getform = self.sd.sigforms[self.form]
107 rnum = getattr(getform, attr)
108 return rnum
109
110 def ___getitem__(self, attr):
111 """ XXX currently not used
112 """
113 rnum = self._get_regnum(attr)
114 offs = self.svstate.srcstep
115 print("GPR getitem", attr, rnum, "srcoffs", offs)
116 return self.regfile[rnum]
117
118 def dump(self):
119 for i in range(0, len(self), 8):
120 s = []
121 for j in range(8):
122 s.append("%08x" % self[i+j].value)
123 s = ' '.join(s)
124 print("reg", "%2d" % i, s)
125
126
127 class PC:
128 def __init__(self, pc_init=0):
129 self.CIA = SelectableInt(pc_init, 64)
130 self.NIA = self.CIA + SelectableInt(4, 64) # only true for v3.0B!
131
132 def update_nia(self, is_svp64):
133 increment = 8 if is_svp64 else 4
134 self.NIA = self.CIA + SelectableInt(increment, 64)
135
136 def update(self, namespace, is_svp64):
137 """updates the program counter (PC) by 4 if v3.0B mode or 8 if SVP64
138 """
139 self.CIA = namespace['NIA'].narrow(64)
140 self.update_nia(is_svp64)
141 namespace['CIA'] = self.CIA
142 namespace['NIA'] = self.NIA
143
144
145 # Simple-V: see https://libre-soc.org/openpower/sv
146 class SVP64State:
147 def __init__(self, init=0):
148 self.spr = SelectableInt(init, 32)
149 # fields of SVSTATE, see https://libre-soc.org/openpower/sv/sprs/
150 self.maxvl = FieldSelectableInt(self.spr, tuple(range(0,7)))
151 self.vl = FieldSelectableInt(self.spr, tuple(range(7,14)))
152 self.srcstep = FieldSelectableInt(self.spr, tuple(range(14,21)))
153 self.dststep = FieldSelectableInt(self.spr, tuple(range(21,28)))
154 self.subvl = FieldSelectableInt(self.spr, tuple(range(28,30)))
155 self.svstep = FieldSelectableInt(self.spr, tuple(range(30,32)))
156
157
158 # SVP64 ReMap field
159 class SVP64RMFields:
160 def __init__(self, init=0):
161 self.spr = SelectableInt(init, 24)
162 # SVP64 RM fields: see https://libre-soc.org/openpower/sv/svp64/
163 self.mmode = FieldSelectableInt(self.spr, [0])
164 self.mask = FieldSelectableInt(self.spr, tuple(range(1,4)))
165 self.elwidth = FieldSelectableInt(self.spr, tuple(range(4,6)))
166 self.ewsrc = FieldSelectableInt(self.spr, tuple(range(6,8)))
167 self.subvl = FieldSelectableInt(self.spr, tuple(range(8,10)))
168 self.extra = FieldSelectableInt(self.spr, tuple(range(10,19)))
169 self.mode = FieldSelectableInt(self.spr, tuple(range(19,24)))
170 # these cover the same extra field, split into parts as EXTRA2
171 self.extra2 = list(range(4))
172 self.extra2[0] = FieldSelectableInt(self.spr, tuple(range(10,12)))
173 self.extra2[1] = FieldSelectableInt(self.spr, tuple(range(12,14)))
174 self.extra2[2] = FieldSelectableInt(self.spr, tuple(range(14,16)))
175 self.extra2[3] = FieldSelectableInt(self.spr, tuple(range(16,18)))
176 self.smask = FieldSelectableInt(self.spr, tuple(range(16,19)))
177 # and here as well, but EXTRA3
178 self.extra3 = list(range(3))
179 self.extra3[0] = FieldSelectableInt(self.spr, tuple(range(10,13)))
180 self.extra3[1] = FieldSelectableInt(self.spr, tuple(range(13,16)))
181 self.extra3[2] = FieldSelectableInt(self.spr, tuple(range(16,19)))
182
183
184 SVP64RM_MMODE_SIZE = len(SVP64RMFields().mmode.br)
185 SVP64RM_MASK_SIZE = len(SVP64RMFields().mask.br)
186 SVP64RM_ELWIDTH_SIZE = len(SVP64RMFields().elwidth.br)
187 SVP64RM_EWSRC_SIZE = len(SVP64RMFields().ewsrc.br)
188 SVP64RM_SUBVL_SIZE = len(SVP64RMFields().subvl.br)
189 SVP64RM_EXTRA2_SPEC_SIZE = len(SVP64RMFields().extra2[0].br)
190 SVP64RM_EXTRA3_SPEC_SIZE = len(SVP64RMFields().extra3[0].br)
191 SVP64RM_SMASK_SIZE = len(SVP64RMFields().smask.br)
192 SVP64RM_MODE_SIZE = len(SVP64RMFields().mode.br)
193
194
195 # SVP64 Prefix fields: see https://libre-soc.org/openpower/sv/svp64/
196 class SVP64PrefixFields:
197 def __init__(self):
198 self.insn = SelectableInt(0, 32)
199 # 6 bit major opcode EXT001, 2 bits "identifying" (7, 9), 24 SV ReMap
200 self.major = FieldSelectableInt(self.insn, tuple(range(0,6)))
201 self.pid = FieldSelectableInt(self.insn, (7, 9)) # must be 0b11
202 rmfields = [6, 8] + list(range(10,32)) # SVP64 24-bit RM (ReMap)
203 self.rm = FieldSelectableInt(self.insn, rmfields)
204
205
206 SV64P_MAJOR_SIZE = len(SVP64PrefixFields().major.br)
207 SV64P_PID_SIZE = len(SVP64PrefixFields().pid.br)
208 SV64P_RM_SIZE = len(SVP64PrefixFields().rm.br)
209
210 # decode SVP64 predicate integer to reg number and invert
211 def get_predint(gpr, mask):
212 r10 = gpr(10)
213 r30 = gpr(30)
214 if mask == SVP64PredInt.ALWAYS.value:
215 return 0xffff_ffff_ffff_ffff
216 if mask == SVP64PredInt.R3_UNARY.value:
217 return 1 << (gpr(3).value & 0b111111)
218 if mask == SVP64PredInt.R3.value:
219 return gpr(3).value
220 if mask == SVP64PredInt.R3_N.value:
221 return ~gpr(3).value
222 if mask == SVP64PredInt.R10.value:
223 return gpr(10).value
224 if mask == SVP64PredInt.R10_N.value:
225 return ~gpr(10).value
226 if mask == SVP64PredInt.R30.value:
227 return gpr(30).value
228 if mask == SVP64PredInt.R30_N.value:
229 return ~gpr(30).value
230
231 # decode SVP64 predicate CR to reg number and invert
232 def _get_predcr(mask):
233 if mask == SVP64PredCR.LT.value:
234 return 0, 1
235 if mask == SVP64PredCR.GE.value:
236 return 0, 0
237 if mask == SVP64PredCR.GT.value:
238 return 1, 1
239 if mask == SVP64PredCR.LE.value:
240 return 1, 0
241 if mask == SVP64PredCR.EQ.value:
242 return 2, 1
243 if mask == SVP64PredCR.NE.value:
244 return 2, 0
245 if mask == SVP64PredCR.SO.value:
246 return 3, 1
247 if mask == SVP64PredCR.NS.value:
248 return 3, 0
249
250 def get_predcr(crl, mask, vl):
251 idx, noninv = _get_predcr(mask)
252 mask = 0
253 for i in range(vl):
254 cr = crl[i+SVP64CROffs.CRPred]
255 if cr[idx].value == noninv:
256 mask |= (1<<i)
257 return mask
258
259
260 class SPR(dict):
261 def __init__(self, dec2, initial_sprs={}):
262 self.sd = dec2
263 dict.__init__(self)
264 for key, v in initial_sprs.items():
265 if isinstance(key, SelectableInt):
266 key = key.value
267 key = special_sprs.get(key, key)
268 if isinstance(key, int):
269 info = spr_dict[key]
270 else:
271 info = spr_byname[key]
272 if not isinstance(v, SelectableInt):
273 v = SelectableInt(v, info.length)
274 self[key] = v
275
276 def __getitem__(self, key):
277 print("get spr", key)
278 print("dict", self.items())
279 # if key in special_sprs get the special spr, otherwise return key
280 if isinstance(key, SelectableInt):
281 key = key.value
282 if isinstance(key, int):
283 key = spr_dict[key].SPR
284 key = special_sprs.get(key, key)
285 if key == 'HSRR0': # HACK!
286 key = 'SRR0'
287 if key == 'HSRR1': # HACK!
288 key = 'SRR1'
289 if key in self:
290 res = dict.__getitem__(self, key)
291 else:
292 if isinstance(key, int):
293 info = spr_dict[key]
294 else:
295 info = spr_byname[key]
296 dict.__setitem__(self, key, SelectableInt(0, info.length))
297 res = dict.__getitem__(self, key)
298 print("spr returning", key, res)
299 return res
300
301 def __setitem__(self, key, value):
302 if isinstance(key, SelectableInt):
303 key = key.value
304 if isinstance(key, int):
305 key = spr_dict[key].SPR
306 print("spr key", key)
307 key = special_sprs.get(key, key)
308 if key == 'HSRR0': # HACK!
309 self.__setitem__('SRR0', value)
310 if key == 'HSRR1': # HACK!
311 self.__setitem__('SRR1', value)
312 print("setting spr", key, value)
313 dict.__setitem__(self, key, value)
314
315 def __call__(self, ridx):
316 return self[ridx]
317
318 def get_pdecode_idx_in(dec2, name):
319 op = dec2.dec.op
320 in1_sel = yield op.in1_sel
321 in2_sel = yield op.in2_sel
322 in3_sel = yield op.in3_sel
323 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
324 in1 = yield dec2.e.read_reg1.data
325 in2 = yield dec2.e.read_reg2.data
326 in3 = yield dec2.e.read_reg3.data
327 in1_isvec = yield dec2.in1_isvec
328 in2_isvec = yield dec2.in2_isvec
329 in3_isvec = yield dec2.in3_isvec
330 print ("get_pdecode_idx_in in1", name, in1_sel, In1Sel.RA.value,
331 in1, in1_isvec)
332 print ("get_pdecode_idx_in in2", name, in2_sel, In2Sel.RB.value,
333 in2, in2_isvec)
334 print ("get_pdecode_idx_in in3", name, in3_sel, In3Sel.RS.value,
335 in3, in3_isvec)
336 # identify which regnames map to in1/2/3
337 if name == 'RA':
338 if (in1_sel == In1Sel.RA.value or
339 (in1_sel == In1Sel.RA_OR_ZERO.value and in1 != 0)):
340 return in1, in1_isvec
341 if in1_sel == In1Sel.RA_OR_ZERO.value:
342 return in1, in1_isvec
343 elif name == 'RB':
344 if in2_sel == In2Sel.RB.value:
345 return in2, in2_isvec
346 if in3_sel == In3Sel.RB.value:
347 return in3, in3_isvec
348 # XXX TODO, RC doesn't exist yet!
349 elif name == 'RC':
350 assert False, "RC does not exist yet"
351 elif name == 'RS':
352 if in1_sel == In1Sel.RS.value:
353 return in1, in1_isvec
354 if in2_sel == In2Sel.RS.value:
355 return in2, in2_isvec
356 if in3_sel == In3Sel.RS.value:
357 return in3, in3_isvec
358 return None, False
359
360
361 def get_pdecode_cr_out(dec2, name):
362 op = dec2.dec.op
363 out_sel = yield op.cr_out
364 out_bitfield = yield dec2.dec_cr_out.cr_bitfield.data
365 sv_cr_out = yield op.sv_cr_out
366 spec = yield dec2.crout_svdec.spec
367 sv_override = yield dec2.dec_cr_out.sv_override
368 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
369 out = yield dec2.e.write_cr.data
370 o_isvec = yield dec2.o_isvec
371 print ("get_pdecode_cr_out", out_sel, CROutSel.CR0.value, out, o_isvec)
372 print (" sv_cr_out", sv_cr_out)
373 print (" cr_bf", out_bitfield)
374 print (" spec", spec)
375 print (" override", sv_override)
376 # identify which regnames map to out / o2
377 if name == 'CR0':
378 if out_sel == CROutSel.CR0.value:
379 return out, o_isvec
380 print ("get_pdecode_idx_out not found", name)
381 return None, False
382
383
384 def get_pdecode_idx_out(dec2, name):
385 op = dec2.dec.op
386 out_sel = yield op.out_sel
387 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
388 out = yield dec2.e.write_reg.data
389 o_isvec = yield dec2.o_isvec
390 # identify which regnames map to out / o2
391 if name == 'RA':
392 print ("get_pdecode_idx_out", out_sel, OutSel.RA.value, out, o_isvec)
393 if out_sel == OutSel.RA.value:
394 return out, o_isvec
395 elif name == 'RT':
396 print ("get_pdecode_idx_out", out_sel, OutSel.RT.value,
397 OutSel.RT_OR_ZERO.value, out, o_isvec)
398 if out_sel == OutSel.RT.value:
399 return out, o_isvec
400 print ("get_pdecode_idx_out not found", name)
401 return None, False
402
403
404 # XXX TODO
405 def get_pdecode_idx_out2(dec2, name):
406 op = dec2.dec.op
407 print ("TODO: get_pdecode_idx_out2", name)
408 return None, False
409
410
411 class ISACaller:
412 # decoder2 - an instance of power_decoder2
413 # regfile - a list of initial values for the registers
414 # initial_{etc} - initial values for SPRs, Condition Register, Mem, MSR
415 # respect_pc - tracks the program counter. requires initial_insns
416 def __init__(self, decoder2, regfile, initial_sprs=None, initial_cr=0,
417 initial_mem=None, initial_msr=0,
418 initial_svstate=0,
419 initial_insns=None, respect_pc=False,
420 disassembly=None,
421 initial_pc=0,
422 bigendian=False,
423 mmu=False):
424
425 self.bigendian = bigendian
426 self.halted = False
427 self.is_svp64_mode = False
428 self.respect_pc = respect_pc
429 if initial_sprs is None:
430 initial_sprs = {}
431 if initial_mem is None:
432 initial_mem = {}
433 if initial_insns is None:
434 initial_insns = {}
435 assert self.respect_pc == False, "instructions required to honor pc"
436
437 print("ISACaller insns", respect_pc, initial_insns, disassembly)
438 print("ISACaller initial_msr", initial_msr)
439
440 # "fake program counter" mode (for unit testing)
441 self.fake_pc = 0
442 disasm_start = 0
443 if not respect_pc:
444 if isinstance(initial_mem, tuple):
445 self.fake_pc = initial_mem[0]
446 disasm_start = self.fake_pc
447 else:
448 disasm_start = initial_pc
449
450 # disassembly: we need this for now (not given from the decoder)
451 self.disassembly = {}
452 if disassembly:
453 for i, code in enumerate(disassembly):
454 self.disassembly[i*4 + disasm_start] = code
455
456 # set up registers, instruction memory, data memory, PC, SPRs, MSR
457 self.svp64rm = SVP64RM()
458 if initial_svstate is None:
459 initial_svstate = 0
460 if isinstance(initial_svstate, int):
461 initial_svstate = SVP64State(initial_svstate)
462 self.svstate = initial_svstate
463 self.gpr = GPR(decoder2, self, self.svstate, regfile)
464 self.spr = SPR(decoder2, initial_sprs) # initialise SPRs before MMU
465 self.mem = Mem(row_bytes=8, initial_mem=initial_mem)
466 self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
467 # MMU mode, redirect underlying Mem through RADIX
468 if mmu:
469 self.mem = RADIX(self.mem, self)
470 self.imem = RADIX(self.imem, self)
471 self.pc = PC()
472 self.msr = SelectableInt(initial_msr, 64) # underlying reg
473
474 # TODO, needed here:
475 # FPR (same as GPR except for FP nums)
476 # 4.2.2 p124 FPSCR (definitely "separate" - not in SPR)
477 # note that mffs, mcrfs, mtfsf "manage" this FPSCR
478 # 2.3.1 CR (and sub-fields CR0..CR6 - CR0 SO comes from XER.SO)
479 # note that mfocrf, mfcr, mtcr, mtocrf, mcrxrx "manage" CRs
480 # -- Done
481 # 2.3.2 LR (actually SPR #8) -- Done
482 # 2.3.3 CTR (actually SPR #9) -- Done
483 # 2.3.4 TAR (actually SPR #815)
484 # 3.2.2 p45 XER (actually SPR #1) -- Done
485 # 3.2.3 p46 p232 VRSAVE (actually SPR #256)
486
487 # create CR then allow portions of it to be "selectable" (below)
488 #rev_cr = int('{:016b}'.format(initial_cr)[::-1], 2)
489 self.cr = SelectableInt(initial_cr, 64) # underlying reg
490 #self.cr = FieldSelectableInt(self._cr, list(range(32, 64)))
491
492 # "undefined", just set to variable-bit-width int (use exts "max")
493 #self.undefined = SelectableInt(0, 256) # TODO, not hard-code 256!
494
495 self.namespace = {}
496 self.namespace.update(self.spr)
497 self.namespace.update({'GPR': self.gpr,
498 'MEM': self.mem,
499 'SPR': self.spr,
500 'memassign': self.memassign,
501 'NIA': self.pc.NIA,
502 'CIA': self.pc.CIA,
503 'SVSTATE': self.svstate.spr,
504 'CR': self.cr,
505 'MSR': self.msr,
506 'undefined': undefined,
507 'mode_is_64bit': True,
508 'SO': XER_bits['SO']
509 })
510
511 # update pc to requested start point
512 self.set_pc(initial_pc)
513
514 # field-selectable versions of Condition Register TODO check bitranges?
515 self.crl = []
516 for i in range(8):
517 bits = tuple(range(i*4+32, (i+1)*4+32)) # errr... maybe?
518 _cr = FieldSelectableInt(self.cr, bits)
519 self.crl.append(_cr)
520 self.namespace["CR%d" % i] = _cr
521
522 self.decoder = decoder2.dec
523 self.dec2 = decoder2
524
525 def TRAP(self, trap_addr=0x700, trap_bit=PIb.TRAP):
526 print("TRAP:", hex(trap_addr), hex(self.namespace['MSR'].value))
527 # store CIA(+4?) in SRR0, set NIA to 0x700
528 # store MSR in SRR1, set MSR to um errr something, have to check spec
529 self.spr['SRR0'].value = self.pc.CIA.value
530 self.spr['SRR1'].value = self.namespace['MSR'].value
531 self.trap_nia = SelectableInt(trap_addr, 64)
532 self.spr['SRR1'][trap_bit] = 1 # change *copy* of MSR in SRR1
533
534 # set exception bits. TODO: this should, based on the address
535 # in figure 66 p1065 V3.0B and the table figure 65 p1063 set these
536 # bits appropriately. however it turns out that *for now* in all
537 # cases (all trap_addrs) the exact same thing is needed.
538 self.msr[MSRb.IR] = 0
539 self.msr[MSRb.DR] = 0
540 self.msr[MSRb.FE0] = 0
541 self.msr[MSRb.FE1] = 0
542 self.msr[MSRb.EE] = 0
543 self.msr[MSRb.RI] = 0
544 self.msr[MSRb.SF] = 1
545 self.msr[MSRb.TM] = 0
546 self.msr[MSRb.VEC] = 0
547 self.msr[MSRb.VSX] = 0
548 self.msr[MSRb.PR] = 0
549 self.msr[MSRb.FP] = 0
550 self.msr[MSRb.PMM] = 0
551 self.msr[MSRb.TEs] = 0
552 self.msr[MSRb.TEe] = 0
553 self.msr[MSRb.UND] = 0
554 self.msr[MSRb.LE] = 1
555
556 def memassign(self, ea, sz, val):
557 self.mem.memassign(ea, sz, val)
558
559 def prep_namespace(self, formname, op_fields):
560 # TODO: get field names from form in decoder*1* (not decoder2)
561 # decoder2 is hand-created, and decoder1.sigform is auto-generated
562 # from spec
563 # then "yield" fields only from op_fields rather than hard-coded
564 # list, here.
565 fields = self.decoder.sigforms[formname]
566 for name in op_fields:
567 if name == 'spr':
568 sig = getattr(fields, name.upper())
569 else:
570 sig = getattr(fields, name)
571 val = yield sig
572 # these are all opcode fields involved in index-selection of CR,
573 # and need to do "standard" arithmetic. CR[BA+32] for example
574 # would, if using SelectableInt, only be 5-bit.
575 if name in ['BF', 'BFA', 'BC', 'BA', 'BB', 'BT', 'BI']:
576 self.namespace[name] = val
577 else:
578 self.namespace[name] = SelectableInt(val, sig.width)
579
580 self.namespace['XER'] = self.spr['XER']
581 self.namespace['CA'] = self.spr['XER'][XER_bits['CA']].value
582 self.namespace['CA32'] = self.spr['XER'][XER_bits['CA32']].value
583
584 def handle_carry_(self, inputs, outputs, already_done):
585 inv_a = yield self.dec2.e.do.invert_in
586 if inv_a:
587 inputs[0] = ~inputs[0]
588
589 imm_ok = yield self.dec2.e.do.imm_data.ok
590 if imm_ok:
591 imm = yield self.dec2.e.do.imm_data.data
592 inputs.append(SelectableInt(imm, 64))
593 assert len(outputs) >= 1
594 print("outputs", repr(outputs))
595 if isinstance(outputs, list) or isinstance(outputs, tuple):
596 output = outputs[0]
597 else:
598 output = outputs
599 gts = []
600 for x in inputs:
601 print("gt input", x, output)
602 gt = (gtu(x, output))
603 gts.append(gt)
604 print(gts)
605 cy = 1 if any(gts) else 0
606 print("CA", cy, gts)
607 if not (1 & already_done):
608 self.spr['XER'][XER_bits['CA']] = cy
609
610 print("inputs", already_done, inputs)
611 # 32 bit carry
612 # ARGH... different for OP_ADD... *sigh*...
613 op = yield self.dec2.e.do.insn_type
614 if op == MicrOp.OP_ADD.value:
615 res32 = (output.value & (1 << 32)) != 0
616 a32 = (inputs[0].value & (1 << 32)) != 0
617 if len(inputs) >= 2:
618 b32 = (inputs[1].value & (1 << 32)) != 0
619 else:
620 b32 = False
621 cy32 = res32 ^ a32 ^ b32
622 print("CA32 ADD", cy32)
623 else:
624 gts = []
625 for x in inputs:
626 print("input", x, output)
627 print(" x[32:64]", x, x[32:64])
628 print(" o[32:64]", output, output[32:64])
629 gt = (gtu(x[32:64], output[32:64])) == SelectableInt(1, 1)
630 gts.append(gt)
631 cy32 = 1 if any(gts) else 0
632 print("CA32", cy32, gts)
633 if not (2 & already_done):
634 self.spr['XER'][XER_bits['CA32']] = cy32
635
636 def handle_overflow(self, inputs, outputs, div_overflow):
637 if hasattr(self.dec2.e.do, "invert_in"):
638 inv_a = yield self.dec2.e.do.invert_in
639 if inv_a:
640 inputs[0] = ~inputs[0]
641
642 imm_ok = yield self.dec2.e.do.imm_data.ok
643 if imm_ok:
644 imm = yield self.dec2.e.do.imm_data.data
645 inputs.append(SelectableInt(imm, 64))
646 assert len(outputs) >= 1
647 print("handle_overflow", inputs, outputs, div_overflow)
648 if len(inputs) < 2 and div_overflow is None:
649 return
650
651 # div overflow is different: it's returned by the pseudo-code
652 # because it's more complex than can be done by analysing the output
653 if div_overflow is not None:
654 ov, ov32 = div_overflow, div_overflow
655 # arithmetic overflow can be done by analysing the input and output
656 elif len(inputs) >= 2:
657 output = outputs[0]
658
659 # OV (64-bit)
660 input_sgn = [exts(x.value, x.bits) < 0 for x in inputs]
661 output_sgn = exts(output.value, output.bits) < 0
662 ov = 1 if input_sgn[0] == input_sgn[1] and \
663 output_sgn != input_sgn[0] else 0
664
665 # OV (32-bit)
666 input32_sgn = [exts(x.value, 32) < 0 for x in inputs]
667 output32_sgn = exts(output.value, 32) < 0
668 ov32 = 1 if input32_sgn[0] == input32_sgn[1] and \
669 output32_sgn != input32_sgn[0] else 0
670
671 self.spr['XER'][XER_bits['OV']] = ov
672 self.spr['XER'][XER_bits['OV32']] = ov32
673 so = self.spr['XER'][XER_bits['SO']]
674 so = so | ov
675 self.spr['XER'][XER_bits['SO']] = so
676
677 def handle_comparison(self, outputs, cr_idx=0):
678 out = outputs[0]
679 assert isinstance(out, SelectableInt), \
680 "out zero not a SelectableInt %s" % repr(outputs)
681 print("handle_comparison", out.bits, hex(out.value))
682 # TODO - XXX *processor* in 32-bit mode
683 # https://bugs.libre-soc.org/show_bug.cgi?id=424
684 # if is_32bit:
685 # o32 = exts(out.value, 32)
686 # print ("handle_comparison exts 32 bit", hex(o32))
687 out = exts(out.value, out.bits)
688 print("handle_comparison exts", hex(out))
689 zero = SelectableInt(out == 0, 1)
690 positive = SelectableInt(out > 0, 1)
691 negative = SelectableInt(out < 0, 1)
692 SO = self.spr['XER'][XER_bits['SO']]
693 print("handle_comparison SO", SO)
694 cr_field = selectconcat(negative, positive, zero, SO)
695 self.crl[cr_idx].eq(cr_field)
696
697 def set_pc(self, pc_val):
698 self.namespace['NIA'] = SelectableInt(pc_val, 64)
699 self.pc.update(self.namespace, self.is_svp64_mode)
700
701 def setup_one(self):
702 """set up one instruction
703 """
704 if self.respect_pc:
705 pc = self.pc.CIA.value
706 else:
707 pc = self.fake_pc
708 self._pc = pc
709 ins = self.imem.ld(pc, 4, False, True, instr_fetch=True)
710 if ins is None:
711 raise KeyError("no instruction at 0x%x" % pc)
712 print("setup: 0x%x 0x%x %s" % (pc, ins & 0xffffffff, bin(ins)))
713 print("CIA NIA", self.respect_pc, self.pc.CIA.value, self.pc.NIA.value)
714
715 yield self.dec2.sv_rm.eq(0)
716 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff)
717 yield self.dec2.dec.bigendian.eq(self.bigendian)
718 yield self.dec2.state.msr.eq(self.msr.value)
719 yield self.dec2.state.pc.eq(pc)
720 if self.svstate is not None:
721 yield self.dec2.state.svstate.eq(self.svstate.spr.value)
722
723 # SVP64. first, check if the opcode is EXT001, and SVP64 id bits set
724 yield Settle()
725 opcode = yield self.dec2.dec.opcode_in
726 pfx = SVP64PrefixFields() # TODO should probably use SVP64PrefixDecoder
727 pfx.insn.value = opcode
728 major = pfx.major.asint(msb0=True) # MSB0 inversion
729 print ("prefix test: opcode:", major, bin(major),
730 pfx.insn[7] == 0b1, pfx.insn[9] == 0b1)
731 self.is_svp64_mode = ((major == 0b000001) and
732 pfx.insn[7].value == 0b1 and
733 pfx.insn[9].value == 0b1)
734 self.pc.update_nia(self.is_svp64_mode)
735 self.namespace['NIA'] = self.pc.NIA
736 self.namespace['SVSTATE'] = self.svstate.spr
737 if not self.is_svp64_mode:
738 return
739
740 # in SVP64 mode. decode/print out svp64 prefix, get v3.0B instruction
741 print ("svp64.rm", bin(pfx.rm.asint(msb0=True)))
742 print (" svstate.vl", self.svstate.vl.asint(msb0=True))
743 print (" svstate.mvl", self.svstate.maxvl.asint(msb0=True))
744 sv_rm = pfx.rm.asint(msb0=True)
745 ins = self.imem.ld(pc+4, 4, False, True, instr_fetch=True)
746 print(" svsetup: 0x%x 0x%x %s" % (pc+4, ins & 0xffffffff, bin(ins)))
747 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff) # v3.0B suffix
748 yield self.dec2.sv_rm.eq(sv_rm) # svp64 prefix
749 yield Settle()
750
751 def execute_one(self):
752 """execute one instruction
753 """
754 # get the disassembly code for this instruction
755 if self.is_svp64_mode:
756 code = self.disassembly[self._pc+4]
757 print(" svp64 sim-execute", hex(self._pc), code)
758 else:
759 code = self.disassembly[self._pc]
760 print("sim-execute", hex(self._pc), code)
761 opname = code.split(' ')[0]
762 yield from self.call(opname)
763
764 # don't use this except in special circumstances
765 if not self.respect_pc:
766 self.fake_pc += 4
767
768 print("execute one, CIA NIA", self.pc.CIA.value, self.pc.NIA.value)
769
770 def get_assembly_name(self):
771 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
772 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
773 dec_insn = yield self.dec2.e.do.insn
774 asmcode = yield self.dec2.dec.op.asmcode
775 print("get assembly name asmcode", asmcode, hex(dec_insn))
776 asmop = insns.get(asmcode, None)
777 int_op = yield self.dec2.dec.op.internal_op
778
779 # sigh reconstruct the assembly instruction name
780 if hasattr(self.dec2.e.do, "oe"):
781 ov_en = yield self.dec2.e.do.oe.oe
782 ov_ok = yield self.dec2.e.do.oe.ok
783 else:
784 ov_en = False
785 ov_ok = False
786 if hasattr(self.dec2.e.do, "rc"):
787 rc_en = yield self.dec2.e.do.rc.rc
788 rc_ok = yield self.dec2.e.do.rc.ok
789 else:
790 rc_en = False
791 rc_ok = False
792 # grrrr have to special-case MUL op (see DecodeOE)
793 print("ov %d en %d rc %d en %d op %d" %
794 (ov_ok, ov_en, rc_ok, rc_en, int_op))
795 if int_op in [MicrOp.OP_MUL_H64.value, MicrOp.OP_MUL_H32.value]:
796 print("mul op")
797 if rc_en & rc_ok:
798 asmop += "."
799 else:
800 if not asmop.endswith("."): # don't add "." to "andis."
801 if rc_en & rc_ok:
802 asmop += "."
803 if hasattr(self.dec2.e.do, "lk"):
804 lk = yield self.dec2.e.do.lk
805 if lk:
806 asmop += "l"
807 print("int_op", int_op)
808 if int_op in [MicrOp.OP_B.value, MicrOp.OP_BC.value]:
809 AA = yield self.dec2.dec.fields.FormI.AA[0:-1]
810 print("AA", AA)
811 if AA:
812 asmop += "a"
813 spr_msb = yield from self.get_spr_msb()
814 if int_op == MicrOp.OP_MFCR.value:
815 if spr_msb:
816 asmop = 'mfocrf'
817 else:
818 asmop = 'mfcr'
819 # XXX TODO: for whatever weird reason this doesn't work
820 # https://bugs.libre-soc.org/show_bug.cgi?id=390
821 if int_op == MicrOp.OP_MTCRF.value:
822 if spr_msb:
823 asmop = 'mtocrf'
824 else:
825 asmop = 'mtcrf'
826 return asmop
827
828 def get_spr_msb(self):
829 dec_insn = yield self.dec2.e.do.insn
830 return dec_insn & (1 << 20) != 0 # sigh - XFF.spr[-1]?
831
832 def call(self, name):
833 """call(opcode) - the primary execution point for instructions
834 """
835 name = name.strip() # remove spaces if not already done so
836 if self.halted:
837 print("halted - not executing", name)
838 return
839
840 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
841 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
842 asmop = yield from self.get_assembly_name()
843 print("call", name, asmop)
844
845 # check privileged
846 int_op = yield self.dec2.dec.op.internal_op
847 spr_msb = yield from self.get_spr_msb()
848
849 instr_is_privileged = False
850 if int_op in [MicrOp.OP_ATTN.value,
851 MicrOp.OP_MFMSR.value,
852 MicrOp.OP_MTMSR.value,
853 MicrOp.OP_MTMSRD.value,
854 # TODO: OP_TLBIE
855 MicrOp.OP_RFID.value]:
856 instr_is_privileged = True
857 if int_op in [MicrOp.OP_MFSPR.value,
858 MicrOp.OP_MTSPR.value] and spr_msb:
859 instr_is_privileged = True
860
861 print("is priv", instr_is_privileged, hex(self.msr.value),
862 self.msr[MSRb.PR])
863 # check MSR priv bit and whether op is privileged: if so, throw trap
864 if instr_is_privileged and self.msr[MSRb.PR] == 1:
865 self.TRAP(0x700, PIb.PRIV)
866 self.namespace['NIA'] = self.trap_nia
867 self.pc.update(self.namespace, self.is_svp64_mode)
868 return
869
870 # check halted condition
871 if name == 'attn':
872 self.halted = True
873 return
874
875 # check illegal instruction
876 illegal = False
877 if name not in ['mtcrf', 'mtocrf']:
878 illegal = name != asmop
879
880 # sigh deal with setvl not being supported by binutils (.long)
881 if asmop.startswith('setvl'):
882 illegal = False
883 name = 'setvl'
884
885 if illegal:
886 print("illegal", name, asmop)
887 self.TRAP(0x700, PIb.ILLEG)
888 self.namespace['NIA'] = self.trap_nia
889 self.pc.update(self.namespace, self.is_svp64_mode)
890 print("name %s != %s - calling ILLEGAL trap, PC: %x" %
891 (name, asmop, self.pc.CIA.value))
892 return
893
894 info = self.instrs[name]
895 yield from self.prep_namespace(info.form, info.op_fields)
896
897 # preserve order of register names
898 input_names = create_args(list(info.read_regs) +
899 list(info.uninit_regs))
900 print(input_names)
901
902 # get SVP64 entry for the current instruction
903 sv_rm = self.svp64rm.instrs.get(name)
904 if sv_rm is not None:
905 dest_cr, src_cr, src_byname, dest_byname = decode_extra(sv_rm)
906 else:
907 dest_cr, src_cr, src_byname, dest_byname = False, False, {}, {}
908 print ("sv rm", sv_rm, dest_cr, src_cr, src_byname, dest_byname)
909
910 # get SVSTATE VL (oh and print out some debug stuff)
911 if self.is_svp64_mode:
912 vl = self.svstate.vl.asint(msb0=True)
913 srcstep = self.svstate.srcstep.asint(msb0=True)
914 dststep = self.svstate.srcstep.asint(msb0=True)
915 sv_a_nz = yield self.dec2.sv_a_nz
916 in1 = yield self.dec2.e.read_reg1.data
917 print ("SVP64: VL, srcstep, dststep, sv_a_nz, in1",
918 vl, srcstep, dststep, sv_a_nz, in1)
919
920 # get predicate mask
921 srcmask = dstmask = 0xffff_ffff_ffff_ffff
922 if self.is_svp64_mode:
923 pmode = yield self.dec2.rm_dec.predmode
924 sv_ptype = yield self.dec2.dec.op.SV_Ptype
925 srcpred = yield self.dec2.rm_dec.srcpred
926 dstpred = yield self.dec2.rm_dec.dstpred
927 if pmode == SVP64PredMode.INT.value:
928 srcmask = dstmask = get_predint(self.gpr, dstpred)
929 if sv_ptype == SVPtype.P2.value:
930 srcmask = get_predint(srcpred)
931 elif pmode == SVP64PredMode.CR.value:
932 srcmask = dstmask = get_predcr(self.crl, dstpred, vl)
933 if sv_ptype == SVPtype.P2.value:
934 srcmask = get_predcr(self.crl, srcpred, vl)
935 print (" pmode", pmode)
936 print (" ptype", sv_ptype)
937 print (" srcmask", bin(srcmask))
938 print (" dstmask", bin(dstmask))
939
940 # okaaay, so here we simply advance srcstep (TODO dststep)
941 # until the predicate mask has a "1" bit... or we run out of VL
942 # let srcstep==VL be the indicator to move to next instruction
943 while (((1<<srcstep) & srcmask) == 0) and (srcstep != vl):
944 print (" skip", bin(1<<srcstep))
945 srcstep += 1
946 dststep += 1
947
948 # update SVSTATE with new srcstep
949 self.svstate.srcstep[0:7] = srcstep
950 self.svstate.dststep[0:7] = dststep
951 self.namespace['SVSTATE'] = self.svstate.spr
952 yield self.dec2.state.svstate.eq(self.svstate.spr.value)
953 yield Settle() # let decoder update
954 srcstep = self.svstate.srcstep.asint(msb0=True)
955 dststep = self.svstate.dststep.asint(msb0=True)
956 print (" srcstep", srcstep)
957 print (" dststep", dststep)
958
959 # check if end reached (we let srcstep overrun, above)
960 # nothing needs doing (TODO zeroing): just do next instruction
961 if srcstep == vl:
962 self.svp64_reset_loop()
963 self.update_pc_next()
964 return
965
966 # VL=0 in SVP64 mode means "do nothing: skip instruction"
967 if self.is_svp64_mode and vl == 0:
968 self.pc.update(self.namespace, self.is_svp64_mode)
969 print("SVP64: VL=0, end of call", self.namespace['CIA'],
970 self.namespace['NIA'])
971 return
972
973 # main input registers (RT, RA ...)
974 inputs = []
975 for name in input_names:
976 # using PowerDecoder2, first, find the decoder index.
977 # (mapping name RA RB RC RS to in1, in2, in3)
978 regnum, is_vec = yield from get_pdecode_idx_in(self.dec2, name)
979 if regnum is None:
980 # doing this is not part of svp64, it's because output
981 # registers, to be modified, need to be in the namespace.
982 regnum, is_vec = yield from get_pdecode_idx_out(self.dec2, name)
983
984 # in case getting the register number is needed, _RA, _RB
985 regname = "_" + name
986 self.namespace[regname] = regnum
987 print('reading reg %s %s' % (name, str(regnum)), is_vec)
988 reg_val = self.gpr(regnum)
989 inputs.append(reg_val)
990
991 # "special" registers
992 for special in info.special_regs:
993 if special in special_sprs:
994 inputs.append(self.spr[special])
995 else:
996 inputs.append(self.namespace[special])
997
998 # clear trap (trap) NIA
999 self.trap_nia = None
1000
1001 # execute actual instruction here
1002 print("inputs", inputs)
1003 results = info.func(self, *inputs)
1004 print("results", results)
1005
1006 # "inject" decorator takes namespace from function locals: we need to
1007 # overwrite NIA being overwritten (sigh)
1008 if self.trap_nia is not None:
1009 self.namespace['NIA'] = self.trap_nia
1010
1011 print("after func", self.namespace['CIA'], self.namespace['NIA'])
1012
1013 # detect if CA/CA32 already in outputs (sra*, basically)
1014 already_done = 0
1015 if info.write_regs:
1016 output_names = create_args(info.write_regs)
1017 for name in output_names:
1018 if name == 'CA':
1019 already_done |= 1
1020 if name == 'CA32':
1021 already_done |= 2
1022
1023 print("carry already done?", bin(already_done))
1024 if hasattr(self.dec2.e.do, "output_carry"):
1025 carry_en = yield self.dec2.e.do.output_carry
1026 else:
1027 carry_en = False
1028 if carry_en:
1029 yield from self.handle_carry_(inputs, results, already_done)
1030
1031 # detect if overflow was in return result
1032 overflow = None
1033 if info.write_regs:
1034 for name, output in zip(output_names, results):
1035 if name == 'overflow':
1036 overflow = output
1037
1038 if hasattr(self.dec2.e.do, "oe"):
1039 ov_en = yield self.dec2.e.do.oe.oe
1040 ov_ok = yield self.dec2.e.do.oe.ok
1041 else:
1042 ov_en = False
1043 ov_ok = False
1044 print("internal overflow", overflow, ov_en, ov_ok)
1045 if ov_en & ov_ok:
1046 yield from self.handle_overflow(inputs, results, overflow)
1047
1048 if hasattr(self.dec2.e.do, "rc"):
1049 rc_en = yield self.dec2.e.do.rc.rc
1050 else:
1051 rc_en = False
1052 if rc_en:
1053 regnum, is_vec = yield from get_pdecode_cr_out(self.dec2, "CR0")
1054 self.handle_comparison(results, regnum)
1055
1056 # any modified return results?
1057 if info.write_regs:
1058 for name, output in zip(output_names, results):
1059 if name == 'overflow': # ignore, done already (above)
1060 continue
1061 if isinstance(output, int):
1062 output = SelectableInt(output, 256)
1063 if name in ['CA', 'CA32']:
1064 if carry_en:
1065 print("writing %s to XER" % name, output)
1066 self.spr['XER'][XER_bits[name]] = output.value
1067 else:
1068 print("NOT writing %s to XER" % name, output)
1069 elif name in info.special_regs:
1070 print('writing special %s' % name, output, special_sprs)
1071 if name in special_sprs:
1072 self.spr[name] = output
1073 else:
1074 self.namespace[name].eq(output)
1075 if name == 'MSR':
1076 print('msr written', hex(self.msr.value))
1077 else:
1078 regnum, is_vec = yield from get_pdecode_idx_out(self.dec2,
1079 name)
1080 if regnum is None:
1081 # temporary hack for not having 2nd output
1082 regnum = yield getattr(self.decoder, name)
1083 is_vec = False
1084 print('writing reg %d %s' % (regnum, str(output)), is_vec)
1085 if output.bits > 64:
1086 output = SelectableInt(output.value, 64)
1087 self.gpr[regnum] = output
1088
1089 # check if it is the SVSTATE.src/dest step that needs incrementing
1090 # this is our Sub-Program-Counter loop from 0 to VL-1
1091 if self.is_svp64_mode:
1092 # XXX twin predication TODO
1093 vl = self.svstate.vl.asint(msb0=True)
1094 mvl = self.svstate.maxvl.asint(msb0=True)
1095 srcstep = self.svstate.srcstep.asint(msb0=True)
1096 dststep = self.svstate.srcstep.asint(msb0=True)
1097 sv_ptype = yield self.dec2.dec.op.SV_Ptype
1098 no_out_vec = not (yield self.dec2.no_out_vec)
1099 no_in_vec = not (yield self.dec2.no_in_vec)
1100 print (" svstate.vl", vl)
1101 print (" svstate.mvl", mvl)
1102 print (" svstate.srcstep", srcstep)
1103 print (" svstate.dststep", dststep)
1104 print (" no_out_vec", no_out_vec)
1105 print (" no_in_vec", no_in_vec)
1106 print (" sv_ptype", sv_ptype, sv_ptype == SVPtype.P2.value)
1107 # check if srcstep needs incrementing by one, stop PC advancing
1108 # svp64 loop can end early if the dest is scalar for single-pred
1109 # but for 2-pred both src/dest have to be checked.
1110 # XXX this might not be true! it may just be LD/ST
1111 if sv_ptype == SVPtype.P2.value:
1112 svp64_is_vector = (no_out_vec or no_in_vec)
1113 else:
1114 svp64_is_vector = no_out_vec
1115 if svp64_is_vector and srcstep != vl-1:
1116 self.svstate.srcstep += SelectableInt(1, 7)
1117 self.svstate.dststep += SelectableInt(1, 7)
1118 self.pc.NIA.value = self.pc.CIA.value
1119 self.namespace['NIA'] = self.pc.NIA
1120 self.namespace['SVSTATE'] = self.svstate.spr
1121 print("end of sub-pc call", self.namespace['CIA'],
1122 self.namespace['NIA'])
1123 return # DO NOT allow PC to update whilst Sub-PC loop running
1124 # reset loop to zero
1125 self.svp64_reset_loop()
1126
1127 self.update_pc_next()
1128
1129 def update_pc_next(self):
1130 # UPDATE program counter
1131 self.pc.update(self.namespace, self.is_svp64_mode)
1132 self.svstate.spr = self.namespace['SVSTATE']
1133 print("end of call", self.namespace['CIA'],
1134 self.namespace['NIA'],
1135 self.namespace['SVSTATE'])
1136
1137 def svp64_reset_loop(self):
1138 self.svstate.srcstep[0:7] = 0
1139 self.svstate.dststep[0:7] = 0
1140 print (" svstate.srcstep loop end (PC to update)")
1141 self.pc.update_nia(self.is_svp64_mode)
1142 self.namespace['NIA'] = self.pc.NIA
1143 self.namespace['SVSTATE'] = self.svstate.spr
1144
1145 def inject():
1146 """Decorator factory.
1147
1148 this decorator will "inject" variables into the function's namespace,
1149 from the *dictionary* in self.namespace. it therefore becomes possible
1150 to make it look like a whole stack of variables which would otherwise
1151 need "self." inserted in front of them (*and* for those variables to be
1152 added to the instance) "appear" in the function.
1153
1154 "self.namespace['SI']" for example becomes accessible as just "SI" but
1155 *only* inside the function, when decorated.
1156 """
1157 def variable_injector(func):
1158 @wraps(func)
1159 def decorator(*args, **kwargs):
1160 try:
1161 func_globals = func.__globals__ # Python 2.6+
1162 except AttributeError:
1163 func_globals = func.func_globals # Earlier versions.
1164
1165 context = args[0].namespace # variables to be injected
1166 saved_values = func_globals.copy() # Shallow copy of dict.
1167 func_globals.update(context)
1168 result = func(*args, **kwargs)
1169 print("globals after", func_globals['CIA'], func_globals['NIA'])
1170 print("args[0]", args[0].namespace['CIA'],
1171 args[0].namespace['NIA'],
1172 args[0].namespace['SVSTATE'])
1173 args[0].namespace = func_globals
1174 #exec (func.__code__, func_globals)
1175
1176 # finally:
1177 # func_globals = saved_values # Undo changes.
1178
1179 return result
1180
1181 return decorator
1182
1183 return variable_injector
1184
1185