add setvl unit test assertions, add 2nd test
[soc.git] / src / soc / decoder / isa / caller.py
1 # SPDX-License-Identifier: LGPLv3+
2 # Copyright (C) 2020, 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
3 # Copyright (C) 2020 Michael Nolan
4 # Funded by NLnet http://nlnet.nl
5 """core of the python-based POWER9 simulator
6
7 this is part of a cycle-accurate POWER9 simulator. its primary purpose is
8 not speed, it is for both learning and educational purposes, as well as
9 a method of verifying the HDL.
10
11 related bugs:
12
13 * https://bugs.libre-soc.org/show_bug.cgi?id=424
14 """
15
16 from nmigen.back.pysim import Settle
17 from functools import wraps
18 from copy import copy
19 from soc.decoder.orderedset import OrderedSet
20 from soc.decoder.selectable_int import (FieldSelectableInt, SelectableInt,
21 selectconcat)
22 from soc.decoder.power_enums import (spr_dict, spr_byname, XER_bits,
23 insns, MicrOp, In1Sel, In2Sel, In3Sel,
24 OutSel, CROutSel)
25
26 from soc.decoder.power_enums import SVPtype
27
28 from soc.decoder.helpers import exts, gtu, ltu, undefined
29 from soc.consts import PIb, MSRb # big-endian (PowerISA versions)
30 from soc.decoder.power_svp64 import SVP64RM, decode_extra
31
32 from soc.decoder.isa.radixmmu import RADIX
33 from soc.decoder.isa.mem import Mem, swap_order
34
35 from collections import namedtuple
36 import math
37 import sys
38
39 instruction_info = namedtuple('instruction_info',
40 'func read_regs uninit_regs write_regs ' +
41 'special_regs op_fields form asmregs')
42
43 special_sprs = {
44 'LR': 8,
45 'CTR': 9,
46 'TAR': 815,
47 'XER': 1,
48 'VRSAVE': 256}
49
50
51 REG_SORT_ORDER = {
52 # TODO (lkcl): adjust other registers that should be in a particular order
53 # probably CA, CA32, and CR
54 "RT": 0,
55 "RA": 0,
56 "RB": 0,
57 "RS": 0,
58 "CR": 0,
59 "LR": 0,
60 "CTR": 0,
61 "TAR": 0,
62 "CA": 0,
63 "CA32": 0,
64 "MSR": 0,
65 "SVSTATE": 0,
66
67 "overflow": 1,
68 }
69
70
71 def create_args(reglist, extra=None):
72 retval = list(OrderedSet(reglist))
73 retval.sort(key=lambda reg: REG_SORT_ORDER[reg])
74 if extra is not None:
75 return [extra] + retval
76 return retval
77
78
79
80 class GPR(dict):
81 def __init__(self, decoder, isacaller, svstate, regfile):
82 dict.__init__(self)
83 self.sd = decoder
84 self.isacaller = isacaller
85 self.svstate = svstate
86 for i in range(32):
87 self[i] = SelectableInt(regfile[i], 64)
88
89 def __call__(self, ridx):
90 return self[ridx]
91
92 def set_form(self, form):
93 self.form = form
94
95 def getz(self, rnum):
96 # rnum = rnum.value # only SelectableInt allowed
97 print("GPR getzero?", rnum)
98 if rnum == 0:
99 return SelectableInt(0, 64)
100 return self[rnum]
101
102 def _get_regnum(self, attr):
103 getform = self.sd.sigforms[self.form]
104 rnum = getattr(getform, attr)
105 return rnum
106
107 def ___getitem__(self, attr):
108 """ XXX currently not used
109 """
110 rnum = self._get_regnum(attr)
111 offs = self.svstate.srcstep
112 print("GPR getitem", attr, rnum, "srcoffs", offs)
113 return self.regfile[rnum]
114
115 def dump(self):
116 for i in range(0, len(self), 8):
117 s = []
118 for j in range(8):
119 s.append("%08x" % self[i+j].value)
120 s = ' '.join(s)
121 print("reg", "%2d" % i, s)
122
123
124 class PC:
125 def __init__(self, pc_init=0):
126 self.CIA = SelectableInt(pc_init, 64)
127 self.NIA = self.CIA + SelectableInt(4, 64) # only true for v3.0B!
128
129 def update_nia(self, is_svp64):
130 increment = 8 if is_svp64 else 4
131 self.NIA = self.CIA + SelectableInt(increment, 64)
132
133 def update(self, namespace, is_svp64):
134 """updates the program counter (PC) by 4 if v3.0B mode or 8 if SVP64
135 """
136 self.CIA = namespace['NIA'].narrow(64)
137 self.update_nia(is_svp64)
138 namespace['CIA'] = self.CIA
139 namespace['NIA'] = self.NIA
140
141
142 # Simple-V: see https://libre-soc.org/openpower/sv
143 class SVP64State:
144 def __init__(self, init=0):
145 self.spr = SelectableInt(init, 32)
146 # fields of SVSTATE, see https://libre-soc.org/openpower/sv/sprs/
147 self.maxvl = FieldSelectableInt(self.spr, tuple(range(0,7)))
148 self.vl = FieldSelectableInt(self.spr, tuple(range(7,14)))
149 self.srcstep = FieldSelectableInt(self.spr, tuple(range(14,21)))
150 self.dststep = FieldSelectableInt(self.spr, tuple(range(21,28)))
151 self.subvl = FieldSelectableInt(self.spr, tuple(range(28,30)))
152 self.svstep = FieldSelectableInt(self.spr, tuple(range(30,32)))
153
154
155 # SVP64 ReMap field
156 class SVP64RMFields:
157 def __init__(self, init=0):
158 self.spr = SelectableInt(init, 24)
159 # SVP64 RM fields: see https://libre-soc.org/openpower/sv/svp64/
160 self.mmode = FieldSelectableInt(self.spr, [0])
161 self.mask = FieldSelectableInt(self.spr, tuple(range(1,4)))
162 self.elwidth = FieldSelectableInt(self.spr, tuple(range(4,6)))
163 self.ewsrc = FieldSelectableInt(self.spr, tuple(range(6,8)))
164 self.subvl = FieldSelectableInt(self.spr, tuple(range(8,10)))
165 self.extra = FieldSelectableInt(self.spr, tuple(range(10,19)))
166 self.mode = FieldSelectableInt(self.spr, tuple(range(19,24)))
167 # these cover the same extra field, split into parts as EXTRA2
168 self.extra2 = list(range(4))
169 self.extra2[0] = FieldSelectableInt(self.spr, tuple(range(10,12)))
170 self.extra2[1] = FieldSelectableInt(self.spr, tuple(range(12,14)))
171 self.extra2[2] = FieldSelectableInt(self.spr, tuple(range(14,16)))
172 self.extra2[3] = FieldSelectableInt(self.spr, tuple(range(16,18)))
173 self.smask = FieldSelectableInt(self.spr, tuple(range(16,19)))
174 # and here as well, but EXTRA3
175 self.extra3 = list(range(3))
176 self.extra3[0] = FieldSelectableInt(self.spr, tuple(range(10,13)))
177 self.extra3[1] = FieldSelectableInt(self.spr, tuple(range(13,16)))
178 self.extra3[2] = FieldSelectableInt(self.spr, tuple(range(16,19)))
179
180
181 SVP64RM_MMODE_SIZE = len(SVP64RMFields().mmode.br)
182 SVP64RM_MASK_SIZE = len(SVP64RMFields().mask.br)
183 SVP64RM_ELWIDTH_SIZE = len(SVP64RMFields().elwidth.br)
184 SVP64RM_EWSRC_SIZE = len(SVP64RMFields().ewsrc.br)
185 SVP64RM_SUBVL_SIZE = len(SVP64RMFields().subvl.br)
186 SVP64RM_EXTRA2_SPEC_SIZE = len(SVP64RMFields().extra2[0].br)
187 SVP64RM_EXTRA3_SPEC_SIZE = len(SVP64RMFields().extra3[0].br)
188 SVP64RM_SMASK_SIZE = len(SVP64RMFields().smask.br)
189 SVP64RM_MODE_SIZE = len(SVP64RMFields().mode.br)
190
191
192 # SVP64 Prefix fields: see https://libre-soc.org/openpower/sv/svp64/
193 class SVP64PrefixFields:
194 def __init__(self):
195 self.insn = SelectableInt(0, 32)
196 # 6 bit major opcode EXT001, 2 bits "identifying" (7, 9), 24 SV ReMap
197 self.major = FieldSelectableInt(self.insn, tuple(range(0,6)))
198 self.pid = FieldSelectableInt(self.insn, (7, 9)) # must be 0b11
199 rmfields = [6, 8] + list(range(10,32)) # SVP64 24-bit RM (ReMap)
200 self.rm = FieldSelectableInt(self.insn, rmfields)
201
202
203 SV64P_MAJOR_SIZE = len(SVP64PrefixFields().major.br)
204 SV64P_PID_SIZE = len(SVP64PrefixFields().pid.br)
205 SV64P_RM_SIZE = len(SVP64PrefixFields().rm.br)
206
207
208 class SPR(dict):
209 def __init__(self, dec2, initial_sprs={}):
210 self.sd = dec2
211 dict.__init__(self)
212 for key, v in initial_sprs.items():
213 if isinstance(key, SelectableInt):
214 key = key.value
215 key = special_sprs.get(key, key)
216 if isinstance(key, int):
217 info = spr_dict[key]
218 else:
219 info = spr_byname[key]
220 if not isinstance(v, SelectableInt):
221 v = SelectableInt(v, info.length)
222 self[key] = v
223
224 def __getitem__(self, key):
225 print("get spr", key)
226 print("dict", self.items())
227 # if key in special_sprs get the special spr, otherwise return key
228 if isinstance(key, SelectableInt):
229 key = key.value
230 if isinstance(key, int):
231 key = spr_dict[key].SPR
232 key = special_sprs.get(key, key)
233 if key == 'HSRR0': # HACK!
234 key = 'SRR0'
235 if key == 'HSRR1': # HACK!
236 key = 'SRR1'
237 if key in self:
238 res = dict.__getitem__(self, key)
239 else:
240 if isinstance(key, int):
241 info = spr_dict[key]
242 else:
243 info = spr_byname[key]
244 dict.__setitem__(self, key, SelectableInt(0, info.length))
245 res = dict.__getitem__(self, key)
246 print("spr returning", key, res)
247 return res
248
249 def __setitem__(self, key, value):
250 if isinstance(key, SelectableInt):
251 key = key.value
252 if isinstance(key, int):
253 key = spr_dict[key].SPR
254 print("spr key", key)
255 key = special_sprs.get(key, key)
256 if key == 'HSRR0': # HACK!
257 self.__setitem__('SRR0', value)
258 if key == 'HSRR1': # HACK!
259 self.__setitem__('SRR1', value)
260 print("setting spr", key, value)
261 dict.__setitem__(self, key, value)
262
263 def __call__(self, ridx):
264 return self[ridx]
265
266 def get_pdecode_idx_in(dec2, name):
267 op = dec2.dec.op
268 in1_sel = yield op.in1_sel
269 in2_sel = yield op.in2_sel
270 in3_sel = yield op.in3_sel
271 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
272 in1 = yield dec2.e.read_reg1.data
273 in2 = yield dec2.e.read_reg2.data
274 in3 = yield dec2.e.read_reg3.data
275 in1_isvec = yield dec2.in1_isvec
276 in2_isvec = yield dec2.in2_isvec
277 in3_isvec = yield dec2.in3_isvec
278 print ("get_pdecode_idx_in in1", name, in1_sel, In1Sel.RA.value,
279 in1, in1_isvec)
280 print ("get_pdecode_idx_in in2", name, in2_sel, In2Sel.RB.value,
281 in2, in2_isvec)
282 print ("get_pdecode_idx_in in3", name, in3_sel, In3Sel.RS.value,
283 in3, in3_isvec)
284 # identify which regnames map to in1/2/3
285 if name == 'RA':
286 if (in1_sel == In1Sel.RA.value or
287 (in1_sel == In1Sel.RA_OR_ZERO.value and in1 != 0)):
288 return in1, in1_isvec
289 if in1_sel == In1Sel.RA_OR_ZERO.value:
290 return in1, in1_isvec
291 elif name == 'RB':
292 if in2_sel == In2Sel.RB.value:
293 return in2, in2_isvec
294 if in3_sel == In3Sel.RB.value:
295 return in3, in3_isvec
296 # XXX TODO, RC doesn't exist yet!
297 elif name == 'RC':
298 assert False, "RC does not exist yet"
299 elif name == 'RS':
300 if in1_sel == In1Sel.RS.value:
301 return in1, in1_isvec
302 if in2_sel == In2Sel.RS.value:
303 return in2, in2_isvec
304 if in3_sel == In3Sel.RS.value:
305 return in3, in3_isvec
306 return None, False
307
308
309 def get_pdecode_cr_out(dec2, name):
310 op = dec2.dec.op
311 out_sel = yield op.cr_out
312 out_bitfield = yield dec2.dec_cr_out.cr_bitfield.data
313 sv_cr_out = yield op.sv_cr_out
314 spec = yield dec2.crout_svdec.spec
315 sv_override = yield dec2.dec_cr_out.sv_override
316 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
317 out = yield dec2.e.write_cr.data
318 o_isvec = yield dec2.o_isvec
319 print ("get_pdecode_cr_out", out_sel, CROutSel.CR0.value, out, o_isvec)
320 print (" sv_cr_out", sv_cr_out)
321 print (" cr_bf", out_bitfield)
322 print (" spec", spec)
323 print (" override", sv_override)
324 # identify which regnames map to out / o2
325 if name == 'CR0':
326 if out_sel == CROutSel.CR0.value:
327 return out, o_isvec
328 print ("get_pdecode_idx_out not found", name)
329 return None, False
330
331
332 def get_pdecode_idx_out(dec2, name):
333 op = dec2.dec.op
334 out_sel = yield op.out_sel
335 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
336 out = yield dec2.e.write_reg.data
337 o_isvec = yield dec2.o_isvec
338 # identify which regnames map to out / o2
339 if name == 'RA':
340 print ("get_pdecode_idx_out", out_sel, OutSel.RA.value, out, o_isvec)
341 if out_sel == OutSel.RA.value:
342 return out, o_isvec
343 elif name == 'RT':
344 print ("get_pdecode_idx_out", out_sel, OutSel.RT.value,
345 OutSel.RT_OR_ZERO.value, out, o_isvec)
346 if out_sel == OutSel.RT.value:
347 return out, o_isvec
348 print ("get_pdecode_idx_out not found", name)
349 return None, False
350
351
352 # XXX TODO
353 def get_pdecode_idx_out2(dec2, name):
354 op = dec2.dec.op
355 print ("TODO: get_pdecode_idx_out2", name)
356 return None, False
357
358
359 class ISACaller:
360 # decoder2 - an instance of power_decoder2
361 # regfile - a list of initial values for the registers
362 # initial_{etc} - initial values for SPRs, Condition Register, Mem, MSR
363 # respect_pc - tracks the program counter. requires initial_insns
364 def __init__(self, decoder2, regfile, initial_sprs=None, initial_cr=0,
365 initial_mem=None, initial_msr=0,
366 initial_svstate=0,
367 initial_insns=None, respect_pc=False,
368 disassembly=None,
369 initial_pc=0,
370 bigendian=False,
371 mmu=False):
372
373 self.bigendian = bigendian
374 self.halted = False
375 self.is_svp64_mode = False
376 self.respect_pc = respect_pc
377 if initial_sprs is None:
378 initial_sprs = {}
379 if initial_mem is None:
380 initial_mem = {}
381 if initial_insns is None:
382 initial_insns = {}
383 assert self.respect_pc == False, "instructions required to honor pc"
384
385 print("ISACaller insns", respect_pc, initial_insns, disassembly)
386 print("ISACaller initial_msr", initial_msr)
387
388 # "fake program counter" mode (for unit testing)
389 self.fake_pc = 0
390 disasm_start = 0
391 if not respect_pc:
392 if isinstance(initial_mem, tuple):
393 self.fake_pc = initial_mem[0]
394 disasm_start = self.fake_pc
395 else:
396 disasm_start = initial_pc
397
398 # disassembly: we need this for now (not given from the decoder)
399 self.disassembly = {}
400 if disassembly:
401 for i, code in enumerate(disassembly):
402 self.disassembly[i*4 + disasm_start] = code
403
404 # set up registers, instruction memory, data memory, PC, SPRs, MSR
405 self.svp64rm = SVP64RM()
406 if initial_svstate is None:
407 initial_svstate = 0
408 if isinstance(initial_svstate, int):
409 initial_svstate = SVP64State(initial_svstate)
410 self.svstate = initial_svstate
411 self.gpr = GPR(decoder2, self, self.svstate, regfile)
412 self.spr = SPR(decoder2, initial_sprs) # initialise SPRs before MMU
413 self.mem = Mem(row_bytes=8, initial_mem=initial_mem)
414 if mmu:
415 self.mem = RADIX(self.mem, self)
416 self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
417 self.pc = PC()
418 self.msr = SelectableInt(initial_msr, 64) # underlying reg
419
420 # TODO, needed here:
421 # FPR (same as GPR except for FP nums)
422 # 4.2.2 p124 FPSCR (definitely "separate" - not in SPR)
423 # note that mffs, mcrfs, mtfsf "manage" this FPSCR
424 # 2.3.1 CR (and sub-fields CR0..CR6 - CR0 SO comes from XER.SO)
425 # note that mfocrf, mfcr, mtcr, mtocrf, mcrxrx "manage" CRs
426 # -- Done
427 # 2.3.2 LR (actually SPR #8) -- Done
428 # 2.3.3 CTR (actually SPR #9) -- Done
429 # 2.3.4 TAR (actually SPR #815)
430 # 3.2.2 p45 XER (actually SPR #1) -- Done
431 # 3.2.3 p46 p232 VRSAVE (actually SPR #256)
432
433 # create CR then allow portions of it to be "selectable" (below)
434 #rev_cr = int('{:016b}'.format(initial_cr)[::-1], 2)
435 self.cr = SelectableInt(initial_cr, 64) # underlying reg
436 #self.cr = FieldSelectableInt(self._cr, list(range(32, 64)))
437
438 # "undefined", just set to variable-bit-width int (use exts "max")
439 #self.undefined = SelectableInt(0, 256) # TODO, not hard-code 256!
440
441 self.namespace = {}
442 self.namespace.update(self.spr)
443 self.namespace.update({'GPR': self.gpr,
444 'MEM': self.mem,
445 'SPR': self.spr,
446 'memassign': self.memassign,
447 'NIA': self.pc.NIA,
448 'CIA': self.pc.CIA,
449 'SVSTATE': self.svstate.spr,
450 'CR': self.cr,
451 'MSR': self.msr,
452 'undefined': undefined,
453 'mode_is_64bit': True,
454 'SO': XER_bits['SO']
455 })
456
457 # update pc to requested start point
458 self.set_pc(initial_pc)
459
460 # field-selectable versions of Condition Register TODO check bitranges?
461 self.crl = []
462 for i in range(8):
463 bits = tuple(range(i*4+32, (i+1)*4+32)) # errr... maybe?
464 _cr = FieldSelectableInt(self.cr, bits)
465 self.crl.append(_cr)
466 self.namespace["CR%d" % i] = _cr
467
468 self.decoder = decoder2.dec
469 self.dec2 = decoder2
470
471 def TRAP(self, trap_addr=0x700, trap_bit=PIb.TRAP):
472 print("TRAP:", hex(trap_addr), hex(self.namespace['MSR'].value))
473 # store CIA(+4?) in SRR0, set NIA to 0x700
474 # store MSR in SRR1, set MSR to um errr something, have to check spec
475 self.spr['SRR0'].value = self.pc.CIA.value
476 self.spr['SRR1'].value = self.namespace['MSR'].value
477 self.trap_nia = SelectableInt(trap_addr, 64)
478 self.spr['SRR1'][trap_bit] = 1 # change *copy* of MSR in SRR1
479
480 # set exception bits. TODO: this should, based on the address
481 # in figure 66 p1065 V3.0B and the table figure 65 p1063 set these
482 # bits appropriately. however it turns out that *for now* in all
483 # cases (all trap_addrs) the exact same thing is needed.
484 self.msr[MSRb.IR] = 0
485 self.msr[MSRb.DR] = 0
486 self.msr[MSRb.FE0] = 0
487 self.msr[MSRb.FE1] = 0
488 self.msr[MSRb.EE] = 0
489 self.msr[MSRb.RI] = 0
490 self.msr[MSRb.SF] = 1
491 self.msr[MSRb.TM] = 0
492 self.msr[MSRb.VEC] = 0
493 self.msr[MSRb.VSX] = 0
494 self.msr[MSRb.PR] = 0
495 self.msr[MSRb.FP] = 0
496 self.msr[MSRb.PMM] = 0
497 self.msr[MSRb.TEs] = 0
498 self.msr[MSRb.TEe] = 0
499 self.msr[MSRb.UND] = 0
500 self.msr[MSRb.LE] = 1
501
502 def memassign(self, ea, sz, val):
503 self.mem.memassign(ea, sz, val)
504
505 def prep_namespace(self, formname, op_fields):
506 # TODO: get field names from form in decoder*1* (not decoder2)
507 # decoder2 is hand-created, and decoder1.sigform is auto-generated
508 # from spec
509 # then "yield" fields only from op_fields rather than hard-coded
510 # list, here.
511 fields = self.decoder.sigforms[formname]
512 for name in op_fields:
513 if name == 'spr':
514 sig = getattr(fields, name.upper())
515 else:
516 sig = getattr(fields, name)
517 val = yield sig
518 # these are all opcode fields involved in index-selection of CR,
519 # and need to do "standard" arithmetic. CR[BA+32] for example
520 # would, if using SelectableInt, only be 5-bit.
521 if name in ['BF', 'BFA', 'BC', 'BA', 'BB', 'BT', 'BI']:
522 self.namespace[name] = val
523 else:
524 self.namespace[name] = SelectableInt(val, sig.width)
525
526 self.namespace['XER'] = self.spr['XER']
527 self.namespace['CA'] = self.spr['XER'][XER_bits['CA']].value
528 self.namespace['CA32'] = self.spr['XER'][XER_bits['CA32']].value
529
530 def handle_carry_(self, inputs, outputs, already_done):
531 inv_a = yield self.dec2.e.do.invert_in
532 if inv_a:
533 inputs[0] = ~inputs[0]
534
535 imm_ok = yield self.dec2.e.do.imm_data.ok
536 if imm_ok:
537 imm = yield self.dec2.e.do.imm_data.data
538 inputs.append(SelectableInt(imm, 64))
539 assert len(outputs) >= 1
540 print("outputs", repr(outputs))
541 if isinstance(outputs, list) or isinstance(outputs, tuple):
542 output = outputs[0]
543 else:
544 output = outputs
545 gts = []
546 for x in inputs:
547 print("gt input", x, output)
548 gt = (gtu(x, output))
549 gts.append(gt)
550 print(gts)
551 cy = 1 if any(gts) else 0
552 print("CA", cy, gts)
553 if not (1 & already_done):
554 self.spr['XER'][XER_bits['CA']] = cy
555
556 print("inputs", already_done, inputs)
557 # 32 bit carry
558 # ARGH... different for OP_ADD... *sigh*...
559 op = yield self.dec2.e.do.insn_type
560 if op == MicrOp.OP_ADD.value:
561 res32 = (output.value & (1 << 32)) != 0
562 a32 = (inputs[0].value & (1 << 32)) != 0
563 if len(inputs) >= 2:
564 b32 = (inputs[1].value & (1 << 32)) != 0
565 else:
566 b32 = False
567 cy32 = res32 ^ a32 ^ b32
568 print("CA32 ADD", cy32)
569 else:
570 gts = []
571 for x in inputs:
572 print("input", x, output)
573 print(" x[32:64]", x, x[32:64])
574 print(" o[32:64]", output, output[32:64])
575 gt = (gtu(x[32:64], output[32:64])) == SelectableInt(1, 1)
576 gts.append(gt)
577 cy32 = 1 if any(gts) else 0
578 print("CA32", cy32, gts)
579 if not (2 & already_done):
580 self.spr['XER'][XER_bits['CA32']] = cy32
581
582 def handle_overflow(self, inputs, outputs, div_overflow):
583 if hasattr(self.dec2.e.do, "invert_in"):
584 inv_a = yield self.dec2.e.do.invert_in
585 if inv_a:
586 inputs[0] = ~inputs[0]
587
588 imm_ok = yield self.dec2.e.do.imm_data.ok
589 if imm_ok:
590 imm = yield self.dec2.e.do.imm_data.data
591 inputs.append(SelectableInt(imm, 64))
592 assert len(outputs) >= 1
593 print("handle_overflow", inputs, outputs, div_overflow)
594 if len(inputs) < 2 and div_overflow is None:
595 return
596
597 # div overflow is different: it's returned by the pseudo-code
598 # because it's more complex than can be done by analysing the output
599 if div_overflow is not None:
600 ov, ov32 = div_overflow, div_overflow
601 # arithmetic overflow can be done by analysing the input and output
602 elif len(inputs) >= 2:
603 output = outputs[0]
604
605 # OV (64-bit)
606 input_sgn = [exts(x.value, x.bits) < 0 for x in inputs]
607 output_sgn = exts(output.value, output.bits) < 0
608 ov = 1 if input_sgn[0] == input_sgn[1] and \
609 output_sgn != input_sgn[0] else 0
610
611 # OV (32-bit)
612 input32_sgn = [exts(x.value, 32) < 0 for x in inputs]
613 output32_sgn = exts(output.value, 32) < 0
614 ov32 = 1 if input32_sgn[0] == input32_sgn[1] and \
615 output32_sgn != input32_sgn[0] else 0
616
617 self.spr['XER'][XER_bits['OV']] = ov
618 self.spr['XER'][XER_bits['OV32']] = ov32
619 so = self.spr['XER'][XER_bits['SO']]
620 so = so | ov
621 self.spr['XER'][XER_bits['SO']] = so
622
623 def handle_comparison(self, outputs, cr_idx=0):
624 out = outputs[0]
625 assert isinstance(out, SelectableInt), \
626 "out zero not a SelectableInt %s" % repr(outputs)
627 print("handle_comparison", out.bits, hex(out.value))
628 # TODO - XXX *processor* in 32-bit mode
629 # https://bugs.libre-soc.org/show_bug.cgi?id=424
630 # if is_32bit:
631 # o32 = exts(out.value, 32)
632 # print ("handle_comparison exts 32 bit", hex(o32))
633 out = exts(out.value, out.bits)
634 print("handle_comparison exts", hex(out))
635 zero = SelectableInt(out == 0, 1)
636 positive = SelectableInt(out > 0, 1)
637 negative = SelectableInt(out < 0, 1)
638 SO = self.spr['XER'][XER_bits['SO']]
639 print("handle_comparison SO", SO)
640 cr_field = selectconcat(negative, positive, zero, SO)
641 self.crl[cr_idx].eq(cr_field)
642
643 def set_pc(self, pc_val):
644 self.namespace['NIA'] = SelectableInt(pc_val, 64)
645 self.pc.update(self.namespace, self.is_svp64_mode)
646
647 def setup_one(self):
648 """set up one instruction
649 """
650 if self.respect_pc:
651 pc = self.pc.CIA.value
652 else:
653 pc = self.fake_pc
654 self._pc = pc
655 ins = self.imem.ld(pc, 4, False, True)
656 if ins is None:
657 raise KeyError("no instruction at 0x%x" % pc)
658 print("setup: 0x%x 0x%x %s" % (pc, ins & 0xffffffff, bin(ins)))
659 print("CIA NIA", self.respect_pc, self.pc.CIA.value, self.pc.NIA.value)
660
661 yield self.dec2.sv_rm.eq(0)
662 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff)
663 yield self.dec2.dec.bigendian.eq(self.bigendian)
664 yield self.dec2.state.msr.eq(self.msr.value)
665 yield self.dec2.state.pc.eq(pc)
666 if self.svstate is not None:
667 yield self.dec2.state.svstate.eq(self.svstate.spr.value)
668
669 # SVP64. first, check if the opcode is EXT001, and SVP64 id bits set
670 yield Settle()
671 opcode = yield self.dec2.dec.opcode_in
672 pfx = SVP64PrefixFields() # TODO should probably use SVP64PrefixDecoder
673 pfx.insn.value = opcode
674 major = pfx.major.asint(msb0=True) # MSB0 inversion
675 print ("prefix test: opcode:", major, bin(major),
676 pfx.insn[7] == 0b1, pfx.insn[9] == 0b1)
677 self.is_svp64_mode = ((major == 0b000001) and
678 pfx.insn[7].value == 0b1 and
679 pfx.insn[9].value == 0b1)
680 self.pc.update_nia(self.is_svp64_mode)
681 self.namespace['NIA'] = self.pc.NIA
682 self.namespace['SVSTATE'] = self.svstate.spr
683 if not self.is_svp64_mode:
684 return
685
686 # in SVP64 mode. decode/print out svp64 prefix, get v3.0B instruction
687 print ("svp64.rm", bin(pfx.rm.asint(msb0=True)))
688 print (" svstate.vl", self.svstate.vl.asint(msb0=True))
689 print (" svstate.mvl", self.svstate.maxvl.asint(msb0=True))
690 sv_rm = pfx.rm.asint(msb0=True)
691 ins = self.imem.ld(pc+4, 4, False, True)
692 print(" svsetup: 0x%x 0x%x %s" % (pc+4, ins & 0xffffffff, bin(ins)))
693 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff) # v3.0B suffix
694 yield self.dec2.sv_rm.eq(sv_rm) # svp64 prefix
695 yield Settle()
696
697 def execute_one(self):
698 """execute one instruction
699 """
700 # get the disassembly code for this instruction
701 if self.is_svp64_mode:
702 code = self.disassembly[self._pc+4]
703 print(" svp64 sim-execute", hex(self._pc), code)
704 else:
705 code = self.disassembly[self._pc]
706 print("sim-execute", hex(self._pc), code)
707 opname = code.split(' ')[0]
708 yield from self.call(opname)
709
710 # don't use this except in special circumstances
711 if not self.respect_pc:
712 self.fake_pc += 4
713
714 print("execute one, CIA NIA", self.pc.CIA.value, self.pc.NIA.value)
715
716 def get_assembly_name(self):
717 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
718 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
719 dec_insn = yield self.dec2.e.do.insn
720 asmcode = yield self.dec2.dec.op.asmcode
721 print("get assembly name asmcode", asmcode, hex(dec_insn))
722 asmop = insns.get(asmcode, None)
723 int_op = yield self.dec2.dec.op.internal_op
724
725 # sigh reconstruct the assembly instruction name
726 if hasattr(self.dec2.e.do, "oe"):
727 ov_en = yield self.dec2.e.do.oe.oe
728 ov_ok = yield self.dec2.e.do.oe.ok
729 else:
730 ov_en = False
731 ov_ok = False
732 if hasattr(self.dec2.e.do, "rc"):
733 rc_en = yield self.dec2.e.do.rc.rc
734 rc_ok = yield self.dec2.e.do.rc.ok
735 else:
736 rc_en = False
737 rc_ok = False
738 # grrrr have to special-case MUL op (see DecodeOE)
739 print("ov %d en %d rc %d en %d op %d" %
740 (ov_ok, ov_en, rc_ok, rc_en, int_op))
741 if int_op in [MicrOp.OP_MUL_H64.value, MicrOp.OP_MUL_H32.value]:
742 print("mul op")
743 if rc_en & rc_ok:
744 asmop += "."
745 else:
746 if not asmop.endswith("."): # don't add "." to "andis."
747 if rc_en & rc_ok:
748 asmop += "."
749 if hasattr(self.dec2.e.do, "lk"):
750 lk = yield self.dec2.e.do.lk
751 if lk:
752 asmop += "l"
753 print("int_op", int_op)
754 if int_op in [MicrOp.OP_B.value, MicrOp.OP_BC.value]:
755 AA = yield self.dec2.dec.fields.FormI.AA[0:-1]
756 print("AA", AA)
757 if AA:
758 asmop += "a"
759 spr_msb = yield from self.get_spr_msb()
760 if int_op == MicrOp.OP_MFCR.value:
761 if spr_msb:
762 asmop = 'mfocrf'
763 else:
764 asmop = 'mfcr'
765 # XXX TODO: for whatever weird reason this doesn't work
766 # https://bugs.libre-soc.org/show_bug.cgi?id=390
767 if int_op == MicrOp.OP_MTCRF.value:
768 if spr_msb:
769 asmop = 'mtocrf'
770 else:
771 asmop = 'mtcrf'
772 return asmop
773
774 def get_spr_msb(self):
775 dec_insn = yield self.dec2.e.do.insn
776 return dec_insn & (1 << 20) != 0 # sigh - XFF.spr[-1]?
777
778 def call(self, name):
779 """call(opcode) - the primary execution point for instructions
780 """
781 name = name.strip() # remove spaces if not already done so
782 if self.halted:
783 print("halted - not executing", name)
784 return
785
786 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
787 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
788 asmop = yield from self.get_assembly_name()
789 print("call", name, asmop)
790
791 # check privileged
792 int_op = yield self.dec2.dec.op.internal_op
793 spr_msb = yield from self.get_spr_msb()
794
795 instr_is_privileged = False
796 if int_op in [MicrOp.OP_ATTN.value,
797 MicrOp.OP_MFMSR.value,
798 MicrOp.OP_MTMSR.value,
799 MicrOp.OP_MTMSRD.value,
800 # TODO: OP_TLBIE
801 MicrOp.OP_RFID.value]:
802 instr_is_privileged = True
803 if int_op in [MicrOp.OP_MFSPR.value,
804 MicrOp.OP_MTSPR.value] and spr_msb:
805 instr_is_privileged = True
806
807 print("is priv", instr_is_privileged, hex(self.msr.value),
808 self.msr[MSRb.PR])
809 # check MSR priv bit and whether op is privileged: if so, throw trap
810 if instr_is_privileged and self.msr[MSRb.PR] == 1:
811 self.TRAP(0x700, PIb.PRIV)
812 self.namespace['NIA'] = self.trap_nia
813 self.pc.update(self.namespace, self.is_svp64_mode)
814 return
815
816 # check halted condition
817 if name == 'attn':
818 self.halted = True
819 return
820
821 # check illegal instruction
822 illegal = False
823 if name not in ['mtcrf', 'mtocrf']:
824 illegal = name != asmop
825
826 # sigh deal with setvl not being supported by binutils (.long)
827 if asmop.startswith('setvl'):
828 illegal = False
829 name = 'setvl'
830
831 if illegal:
832 print("illegal", name, asmop)
833 self.TRAP(0x700, PIb.ILLEG)
834 self.namespace['NIA'] = self.trap_nia
835 self.pc.update(self.namespace, self.is_svp64_mode)
836 print("name %s != %s - calling ILLEGAL trap, PC: %x" %
837 (name, asmop, self.pc.CIA.value))
838 return
839
840 info = self.instrs[name]
841 yield from self.prep_namespace(info.form, info.op_fields)
842
843 # preserve order of register names
844 input_names = create_args(list(info.read_regs) +
845 list(info.uninit_regs))
846 print(input_names)
847
848 # get SVP64 entry for the current instruction
849 sv_rm = self.svp64rm.instrs.get(name)
850 if sv_rm is not None:
851 dest_cr, src_cr, src_byname, dest_byname = decode_extra(sv_rm)
852 else:
853 dest_cr, src_cr, src_byname, dest_byname = False, False, {}, {}
854 print ("sv rm", sv_rm, dest_cr, src_cr, src_byname, dest_byname)
855
856 # get SVSTATE VL (oh and print out some debug stuff)
857 if self.is_svp64_mode:
858 vl = self.svstate.vl.asint(msb0=True)
859 srcstep = self.svstate.srcstep.asint(msb0=True)
860 sv_a_nz = yield self.dec2.sv_a_nz
861 in1 = yield self.dec2.e.read_reg1.data
862 print ("SVP64: VL, srcstep, sv_a_nz, in1",
863 vl, srcstep, sv_a_nz, in1)
864
865 # VL=0 in SVP64 mode means "do nothing: skip instruction"
866 if self.is_svp64_mode and vl == 0:
867 self.pc.update(self.namespace, self.is_svp64_mode)
868 print("SVP64: VL=0, end of call", self.namespace['CIA'],
869 self.namespace['NIA'])
870 return
871
872 # main input registers (RT, RA ...)
873 inputs = []
874 for name in input_names:
875 # using PowerDecoder2, first, find the decoder index.
876 # (mapping name RA RB RC RS to in1, in2, in3)
877 regnum, is_vec = yield from get_pdecode_idx_in(self.dec2, name)
878 if regnum is None:
879 # doing this is not part of svp64, it's because output
880 # registers, to be modified, need to be in the namespace.
881 regnum, is_vec = yield from get_pdecode_idx_out(self.dec2, name)
882
883 # in case getting the register number is needed, _RA, _RB
884 regname = "_" + name
885 self.namespace[regname] = regnum
886 print('reading reg %s %s' % (name, str(regnum)), is_vec)
887 reg_val = self.gpr(regnum)
888 inputs.append(reg_val)
889
890 # "special" registers
891 for special in info.special_regs:
892 if special in special_sprs:
893 inputs.append(self.spr[special])
894 else:
895 inputs.append(self.namespace[special])
896
897 # clear trap (trap) NIA
898 self.trap_nia = None
899
900 print("inputs", inputs)
901 results = info.func(self, *inputs)
902 print("results", results)
903
904 # "inject" decorator takes namespace from function locals: we need to
905 # overwrite NIA being overwritten (sigh)
906 if self.trap_nia is not None:
907 self.namespace['NIA'] = self.trap_nia
908
909 print("after func", self.namespace['CIA'], self.namespace['NIA'])
910
911 # detect if CA/CA32 already in outputs (sra*, basically)
912 already_done = 0
913 if info.write_regs:
914 output_names = create_args(info.write_regs)
915 for name in output_names:
916 if name == 'CA':
917 already_done |= 1
918 if name == 'CA32':
919 already_done |= 2
920
921 print("carry already done?", bin(already_done))
922 if hasattr(self.dec2.e.do, "output_carry"):
923 carry_en = yield self.dec2.e.do.output_carry
924 else:
925 carry_en = False
926 if carry_en:
927 yield from self.handle_carry_(inputs, results, already_done)
928
929 # detect if overflow was in return result
930 overflow = None
931 if info.write_regs:
932 for name, output in zip(output_names, results):
933 if name == 'overflow':
934 overflow = output
935
936 if hasattr(self.dec2.e.do, "oe"):
937 ov_en = yield self.dec2.e.do.oe.oe
938 ov_ok = yield self.dec2.e.do.oe.ok
939 else:
940 ov_en = False
941 ov_ok = False
942 print("internal overflow", overflow, ov_en, ov_ok)
943 if ov_en & ov_ok:
944 yield from self.handle_overflow(inputs, results, overflow)
945
946 if hasattr(self.dec2.e.do, "rc"):
947 rc_en = yield self.dec2.e.do.rc.rc
948 else:
949 rc_en = False
950 if rc_en:
951 regnum, is_vec = yield from get_pdecode_cr_out(self.dec2, "CR0")
952 self.handle_comparison(results, regnum)
953
954 # any modified return results?
955 if info.write_regs:
956 for name, output in zip(output_names, results):
957 if name == 'overflow': # ignore, done already (above)
958 continue
959 if isinstance(output, int):
960 output = SelectableInt(output, 256)
961 if name in ['CA', 'CA32']:
962 if carry_en:
963 print("writing %s to XER" % name, output)
964 self.spr['XER'][XER_bits[name]] = output.value
965 else:
966 print("NOT writing %s to XER" % name, output)
967 elif name in info.special_regs:
968 print('writing special %s' % name, output, special_sprs)
969 if name in special_sprs:
970 self.spr[name] = output
971 else:
972 self.namespace[name].eq(output)
973 if name == 'MSR':
974 print('msr written', hex(self.msr.value))
975 else:
976 regnum, is_vec = yield from get_pdecode_idx_out(self.dec2,
977 name)
978 if regnum is None:
979 # temporary hack for not having 2nd output
980 regnum = yield getattr(self.decoder, name)
981 is_vec = False
982 print('writing reg %d %s' % (regnum, str(output)), is_vec)
983 if output.bits > 64:
984 output = SelectableInt(output.value, 64)
985 self.gpr[regnum] = output
986
987 # check if it is the SVSTATE.src/dest step that needs incrementing
988 # this is our Sub-Program-Counter loop from 0 to VL-1
989 if self.is_svp64_mode:
990 # XXX twin predication TODO
991 vl = self.svstate.vl.asint(msb0=True)
992 mvl = self.svstate.maxvl.asint(msb0=True)
993 srcstep = self.svstate.srcstep.asint(msb0=True)
994 sv_ptype = yield self.dec2.dec.op.SV_Ptype
995 no_out_vec = not (yield self.dec2.no_out_vec)
996 no_in_vec = not (yield self.dec2.no_in_vec)
997 print (" svstate.vl", vl)
998 print (" svstate.mvl", mvl)
999 print (" svstate.srcstep", srcstep)
1000 print (" no_out_vec", no_out_vec)
1001 print (" no_in_vec", no_in_vec)
1002 print (" sv_ptype", sv_ptype, sv_ptype == SVPtype.P2.value)
1003 # check if srcstep needs incrementing by one, stop PC advancing
1004 # svp64 loop can end early if the dest is scalar for single-pred
1005 # but for 2-pred both src/dest have to be checked.
1006 # XXX this might not be true! it may just be LD/ST
1007 if sv_ptype == SVPtype.P2.value:
1008 svp64_is_vector = (no_out_vec or no_in_vec)
1009 else:
1010 svp64_is_vector = no_out_vec
1011 if svp64_is_vector and srcstep != vl-1:
1012 self.svstate.srcstep += SelectableInt(1, 7)
1013 self.pc.NIA.value = self.pc.CIA.value
1014 self.namespace['NIA'] = self.pc.NIA
1015 self.namespace['SVSTATE'] = self.svstate.spr
1016 print("end of sub-pc call", self.namespace['CIA'],
1017 self.namespace['NIA'])
1018 return # DO NOT allow PC to update whilst Sub-PC loop running
1019 # reset to zero
1020 self.svstate.srcstep[0:7] = 0
1021 print (" svstate.srcstep loop end (PC to update)")
1022 self.pc.update_nia(self.is_svp64_mode)
1023 self.namespace['NIA'] = self.pc.NIA
1024 self.namespace['SVSTATE'] = self.svstate.spr
1025
1026 # UPDATE program counter
1027 self.pc.update(self.namespace, self.is_svp64_mode)
1028 self.svstate.spr = self.namespace['SVSTATE']
1029 print("end of call", self.namespace['CIA'],
1030 self.namespace['NIA'],
1031 self.namespace['SVSTATE'])
1032
1033
1034 def inject():
1035 """Decorator factory.
1036
1037 this decorator will "inject" variables into the function's namespace,
1038 from the *dictionary* in self.namespace. it therefore becomes possible
1039 to make it look like a whole stack of variables which would otherwise
1040 need "self." inserted in front of them (*and* for those variables to be
1041 added to the instance) "appear" in the function.
1042
1043 "self.namespace['SI']" for example becomes accessible as just "SI" but
1044 *only* inside the function, when decorated.
1045 """
1046 def variable_injector(func):
1047 @wraps(func)
1048 def decorator(*args, **kwargs):
1049 try:
1050 func_globals = func.__globals__ # Python 2.6+
1051 except AttributeError:
1052 func_globals = func.func_globals # Earlier versions.
1053
1054 context = args[0].namespace # variables to be injected
1055 saved_values = func_globals.copy() # Shallow copy of dict.
1056 func_globals.update(context)
1057 result = func(*args, **kwargs)
1058 print("globals after", func_globals['CIA'], func_globals['NIA'])
1059 print("args[0]", args[0].namespace['CIA'],
1060 args[0].namespace['NIA'],
1061 args[0].namespace['SVSTATE'])
1062 args[0].namespace = func_globals
1063 #exec (func.__code__, func_globals)
1064
1065 # finally:
1066 # func_globals = saved_values # Undo changes.
1067
1068 return result
1069
1070 return decorator
1071
1072 return variable_injector
1073
1074