98ffcc3e729fd928e83ae20e63c60cc61e574bd4
[soc.git] / src / soc / experiment / test / test_compalu_multi.py
1 """Computation Unit (aka "ALU Manager").
2
3 Manages a Pipeline or FSM, ensuring that the start and end time are 100%
4 monitored. At no time may the ALU proceed without this module notifying
5 the Dependency Matrices. At no time is a result production "abandoned".
6 This module blocks (indicates busy) starting from when it first receives
7 an opcode until it receives notification that
8 its result(s) have been successfully stored in the regfile(s)
9
10 Documented at http://libre-soc.org/3d_gpu/architecture/compunit
11 """
12
13 from soc.experiment.alu_fsm import Shifter, CompFSMOpSubset
14 from soc.fu.alu.alu_input_record import CompALUOpSubset
15 from soc.fu.cr.cr_input_record import CompCROpSubset
16 from soc.experiment.alu_hier import ALU, DummyALU
17 from soc.experiment.compalu_multi import MultiCompUnit
18 from soc.decoder.power_enums import MicrOp
19 from nmutil.gtkw import write_gtkw
20 from nmigen import Module, Signal
21 from nmigen.cli import rtlil
22
23 # NOTE: to use cxxsim, export NMIGEN_SIM_MODE=cxxsim from the shell
24 # Also, check out the cxxsim nmigen branch, and latest yosys from git
25 from nmutil.sim_tmp_alternative import (Simulator, Settle, is_engine_pysim,
26 Passive)
27
28
29 def wrap(process):
30 def wrapper():
31 yield from process
32 return wrapper
33
34
35 class OperandProducer:
36 """
37 Produces an operand when requested by the Computation Unit
38 (`dut` parameter), using the `rel_o` / `go_i` handshake.
39
40 Attaches itself to the `dut` operand indexed by `op_index`.
41
42 Has a programmable delay between the assertion of `rel_o` and the
43 `go_i` pulse.
44
45 Data is presented only during the cycle in which `go_i` is active.
46
47 It adds itself as a passive process to the simulation (`sim` parameter).
48 Since it is passive, it will not hang the simulation, and does not need a
49 flag to terminate itself.
50 """
51 def __init__(self, sim, dut, op_index):
52 self.count = Signal(8, name=f"src{op_index + 1}_count")
53 """ transaction counter"""
54 # data and handshake signals from the DUT
55 self.port = dut.src_i[op_index]
56 self.go_i = dut.rd.go_i[op_index]
57 self.rel_o = dut.rd.rel_o[op_index]
58 # transaction parameters, passed via signals
59 self.delay = Signal(8)
60 self.data = Signal.like(self.port)
61 # add ourselves to the simulation process list
62 sim.add_sync_process(self._process)
63
64 def _process(self):
65 yield Passive()
66 while True:
67 # Settle() is needed to give a quick response to
68 # the zero delay case
69 yield Settle()
70 # wait for rel_o to become active
71 while not (yield self.rel_o):
72 yield
73 yield Settle()
74 # read the transaction parameters
75 delay = (yield self.delay)
76 data = (yield self.data)
77 # wait for `delay` cycles
78 for _ in range(delay):
79 yield
80 # activate go_i and present data, for one cycle
81 yield self.go_i.eq(1)
82 yield self.port.eq(data)
83 yield self.count.eq(self.count + 1)
84 yield
85 yield self.go_i.eq(0)
86 yield self.port.eq(0)
87
88 def send(self, data, delay):
89 """
90 Schedules the module to send some `data`, counting `delay` cycles after
91 `rel_i` becomes active.
92
93 To be called from the main test-bench process,
94 it returns in the same cycle.
95
96 Communication with the worker process is done by means of
97 combinatorial simulation-only signals.
98
99 """
100 yield self.data.eq(data)
101 yield self.delay.eq(delay)
102
103
104 class ResultConsumer:
105 """
106 Consumes a result when requested by the Computation Unit
107 (`dut` parameter), using the `rel_o` / `go_i` handshake.
108
109 Attaches itself to the `dut` result indexed by `op_index`.
110
111 Has a programmable delay between the assertion of `rel_o` and the
112 `go_i` pulse.
113
114 Data is retrieved only during the cycle in which `go_i` is active.
115
116 It adds itself as a passive process to the simulation (`sim` parameter).
117 Since it is passive, it will not hang the simulation, and does not need a
118 flag to terminate itself.
119 """
120 def __init__(self, sim, dut, op_index):
121 self.count = Signal(8, name=f"dest{op_index + 1}_count")
122 """ transaction counter"""
123 # data and handshake signals from the DUT
124 self.port = dut.dest[op_index]
125 self.go_i = dut.wr.go_i[op_index]
126 self.rel_o = dut.wr.rel_o[op_index]
127 # transaction parameters, passed via signals
128 self.delay = Signal(8)
129 self.expected = Signal.like(self.port)
130 # add ourselves to the simulation process list
131 sim.add_sync_process(self._process)
132
133 def _process(self):
134 yield Passive()
135 while True:
136 # Settle() is needed to give a quick response to
137 # the zero delay case
138 yield Settle()
139 # wait for rel_o to become active
140 while not (yield self.rel_o):
141 yield
142 yield Settle()
143 # read the transaction parameters
144 delay = (yield self.delay)
145 expected = (yield self.expected)
146 # wait for `delay` cycles
147 for _ in range(delay):
148 yield
149 # activate go_i for one cycle
150 yield self.go_i.eq(1)
151 yield self.count.eq(self.count + 1)
152 yield
153 # check received data against the expected value
154 result = (yield self.port)
155 assert result == expected,\
156 f"expected {expected}, received {result}"
157 yield self.go_i.eq(0)
158 yield self.port.eq(0)
159
160 def receive(self, expected, delay):
161 """
162 Schedules the module to receive some result,
163 counting `delay` cycles after `rel_i` becomes active.
164 As 'go_i' goes active, check the result with `expected`.
165
166 To be called from the main test-bench process,
167 it returns in the same cycle.
168
169 Communication with the worker process is done by means of
170 combinatorial simulation-only signals.
171 """
172 yield self.expected.eq(expected)
173 yield self.delay.eq(delay)
174
175
176 def op_sim(dut, a, b, op, inv_a=0, imm=0, imm_ok=0, zero_a=0):
177 yield dut.issue_i.eq(0)
178 yield
179 yield dut.src_i[0].eq(a)
180 yield dut.src_i[1].eq(b)
181 yield dut.oper_i.insn_type.eq(op)
182 yield dut.oper_i.invert_in.eq(inv_a)
183 yield dut.oper_i.imm_data.data.eq(imm)
184 yield dut.oper_i.imm_data.ok.eq(imm_ok)
185 yield dut.oper_i.zero_a.eq(zero_a)
186 yield dut.issue_i.eq(1)
187 yield
188 yield dut.issue_i.eq(0)
189 yield
190 if not imm_ok or not zero_a:
191 yield dut.rd.go_i.eq(0b11)
192 while True:
193 yield
194 rd_rel_o = yield dut.rd.rel_o
195 print("rd_rel", rd_rel_o)
196 if rd_rel_o:
197 break
198 yield dut.rd.go_i.eq(0)
199 else:
200 print("no go rd")
201
202 if len(dut.src_i) == 3:
203 yield dut.rd.go_i.eq(0b100)
204 while True:
205 yield
206 rd_rel_o = yield dut.rd.rel_o
207 print("rd_rel", rd_rel_o)
208 if rd_rel_o:
209 break
210 yield dut.rd.go_i.eq(0)
211 else:
212 print("no 3rd rd")
213
214 req_rel_o = yield dut.wr.rel_o
215 result = yield dut.data_o
216 print("req_rel", req_rel_o, result)
217 while True:
218 req_rel_o = yield dut.wr.rel_o
219 result = yield dut.data_o
220 print("req_rel", req_rel_o, result)
221 if req_rel_o:
222 break
223 yield
224 yield dut.wr.go_i[0].eq(1)
225 yield Settle()
226 result = yield dut.data_o
227 yield
228 print("result", result)
229 yield dut.wr.go_i[0].eq(0)
230 yield
231 return result
232
233
234 def scoreboard_sim_fsm(dut, producers, consumers):
235
236 # stores the operation count
237 op_count = 0
238
239 def op_sim_fsm(a, b, direction, expected, delays):
240 print("op_sim_fsm", a, b, direction, expected)
241 yield dut.issue_i.eq(0)
242 yield
243 # forward data and delays to the producers and consumers
244 yield from producers[0].send(a, delays[0])
245 yield from producers[1].send(b, delays[1])
246 yield from consumers[0].receive(expected, delays[2])
247 # submit operation, and assert issue_i for one cycle
248 yield dut.oper_i.sdir.eq(direction)
249 yield dut.issue_i.eq(1)
250 yield
251 yield dut.issue_i.eq(0)
252 # wait for busy to be negated
253 yield Settle()
254 while (yield dut.busy_o):
255 yield
256 yield Settle()
257 # update the operation count
258 nonlocal op_count
259 op_count = (op_count + 1) & 255
260 # check that producers and consumers have the same count
261 # this assures that no data was left unused or was lost
262 assert (yield producers[0].count) == op_count
263 assert (yield producers[1].count) == op_count
264 assert (yield consumers[0].count) == op_count
265
266 # 13 >> 2 = 3
267 # operand 1 arrives immediately
268 # operand 2 arrives after operand 1
269 # write data is accepted immediately
270 yield from op_sim_fsm(13, 2, 1, 3, [0, 2, 0])
271 # 3 << 4 = 48
272 # operand 2 arrives immediately
273 # operand 1 arrives after operand 2
274 # write data is accepted after some delay
275 yield from op_sim_fsm(3, 4, 0, 48, [2, 0, 2])
276 # 21 << 0 = 21
277 # operands 1 and 2 arrive at the same time
278 # write data is accepted after some delay
279 yield from op_sim_fsm(21, 0, 0, 21, [1, 1, 1])
280
281
282 def scoreboard_sim_dummy(op):
283 yield from op.issue([5, 2, 0], MicrOp.OP_NOP, [5],
284 src_delays=[0, 2, 1], dest_delays=[0])
285 yield from op.issue([9, 2, 0], MicrOp.OP_NOP, [9],
286 src_delays=[2, 1, 0], dest_delays=[2])
287 # test all combinations of masked input ports
288 yield from op.issue([5, 2, 0], MicrOp.OP_NOP, [0],
289 rdmaskn=[1, 0, 0],
290 src_delays=[0, 2, 1], dest_delays=[0])
291 yield from op.issue([9, 2, 0], MicrOp.OP_NOP, [9],
292 rdmaskn=[0, 1, 0],
293 src_delays=[2, 1, 0], dest_delays=[2])
294 yield from op.issue([5, 2, 0], MicrOp.OP_NOP, [5],
295 rdmaskn=[0, 0, 1],
296 src_delays=[2, 1, 0], dest_delays=[2])
297 yield from op.issue([9, 2, 0], MicrOp.OP_NOP, [9],
298 rdmaskn=[0, 1, 1],
299 src_delays=[2, 1, 0], dest_delays=[2])
300 yield from op.issue([9, 2, 0], MicrOp.OP_NOP, [0],
301 rdmaskn=[1, 1, 0],
302 src_delays=[2, 1, 0], dest_delays=[2])
303 yield from op.issue([9, 2, 0], MicrOp.OP_NOP, [0],
304 rdmaskn=[1, 1, 1],
305 src_delays=[2, 1, 0], dest_delays=[2])
306
307
308 class OpSim:
309 """ALU Operation issuer
310
311 Issues operations to the DUT"""
312 def __init__(self, dut, sim):
313 self.op_count = 0
314 self.zero_a_count = 0
315 self.imm_ok_count = 0
316 self.rdmaskn_count = [0] * len(dut.src_i)
317 self.dut = dut
318 # create one operand producer for each input port
319 self.producers = list()
320 for i in range(len(dut.src_i)):
321 self.producers.append(OperandProducer(sim, dut, i))
322 # create one result consumer for each output port
323 self.consumers = list()
324 for i in range(len(dut.dest)):
325 self.consumers.append(ResultConsumer(sim, dut, i))
326 def issue(self, src_i, op, expected, src_delays, dest_delays,
327 inv_a=0, imm=0, imm_ok=0, zero_a=0, rdmaskn=None):
328 """Executes the issue operation"""
329 dut = self.dut
330 producers = self.producers
331 consumers = self.consumers
332 if rdmaskn is None:
333 rdmaskn = [0] * len(src_i)
334 yield dut.issue_i.eq(0)
335 yield
336 # forward data and delays to the producers and consumers
337 # first, send special cases (with zero_a and/or imm_ok)
338 if not zero_a:
339 yield from producers[0].send(src_i[0], src_delays[0])
340 if not imm_ok:
341 yield from producers[1].send(src_i[1], src_delays[1])
342 # then, send the rest (if any)
343 for i in range(2, len(producers)):
344 yield from producers[i].send(src_i[i], src_delays[i])
345 for i in range(len(consumers)):
346 yield from consumers[i].receive(expected[i], dest_delays[i])
347 # submit operation, and assert issue_i for one cycle
348 yield dut.oper_i.insn_type.eq(op)
349 if hasattr(dut.oper_i, "invert_in"):
350 yield dut.oper_i.invert_in.eq(inv_a)
351 if hasattr(dut.oper_i, "imm_data"):
352 yield dut.oper_i.imm_data.data.eq(imm)
353 yield dut.oper_i.imm_data.ok.eq(imm_ok)
354 if hasattr(dut.oper_i, "zero_a"):
355 yield dut.oper_i.zero_a.eq(zero_a)
356 if hasattr(dut, "rdmaskn"):
357 rdmaskn_bits = 0
358 for i in range(len(rdmaskn)):
359 rdmaskn_bits |= rdmaskn[i] << i
360 yield dut.rdmaskn.eq(rdmaskn_bits)
361 yield dut.issue_i.eq(1)
362 yield
363 yield dut.issue_i.eq(0)
364 # deactivate decoder inputs along with issue_i, so we can be sure they
365 # were latched at the correct cycle
366 # note: rdmaskn is not latched, and must be held as long as
367 # busy_o is active
368 # todo: is the above restriction on rdmaskn intentional?
369 # todo: shouldn't it be latched by issue_i, like the others?
370 yield self.dut.oper_i.insn_type.eq(0)
371 if hasattr(dut.oper_i, "invert_in"):
372 yield self.dut.oper_i.invert_in.eq(0)
373 if hasattr(dut.oper_i, "imm_data"):
374 yield self.dut.oper_i.imm_data.data.eq(0)
375 yield self.dut.oper_i.imm_data.ok.eq(0)
376 if hasattr(dut.oper_i, "zero_a"):
377 yield self.dut.oper_i.zero_a.eq(0)
378 # wait for busy to be negated
379 yield Settle()
380 while (yield dut.busy_o):
381 yield
382 yield Settle()
383 # now, deactivate rdmaskn
384 if hasattr(dut, "rdmaskn"):
385 yield dut.rdmaskn.eq(0)
386 # update the operation count
387 self.op_count = (self.op_count + 1) & 255
388 # On zero_a, imm_ok and rdmaskn executions, the producer counters will
389 # fall behind. But, by summing the following counts, the invariant is
390 # preserved.
391 if zero_a and not rdmaskn[0]:
392 self.zero_a_count = self.zero_a_count + 1
393 if imm_ok and not rdmaskn[1]:
394 self.imm_ok_count = self.imm_ok_count + 1
395 for i in range(len(rdmaskn)):
396 if rdmaskn[i]:
397 self.rdmaskn_count[i] = self.rdmaskn_count[i] + 1
398 # check that producers and consumers have the same count
399 # this assures that no data was left unused or was lost
400 # first, check special cases (zero_a and imm_ok)
401 port_a_cnt = \
402 (yield producers[0].count) \
403 + self.zero_a_count \
404 + self.rdmaskn_count[0]
405 port_b_cnt = \
406 (yield producers[1].count) \
407 + self.imm_ok_count \
408 + self.rdmaskn_count[1]
409 assert port_a_cnt == self.op_count
410 assert port_b_cnt == self.op_count
411 # then, check the rest (if any)
412 for i in range(2, len(producers)):
413 port_cnt = (yield producers[i].count) + self.rdmaskn_count[i]
414 assert port_cnt == self.op_count
415 # check write counter
416 for i in range(len(consumers)):
417 assert (yield consumers[i].count) == self.op_count
418
419
420 def scoreboard_sim(op):
421 # zero (no) input operands test
422 # 0 + 8 = 8
423 yield from op.issue([5, 2], MicrOp.OP_ADD, [8],
424 zero_a=1, imm=8, imm_ok=1,
425 src_delays=[0, 2], dest_delays=[0])
426 # 5 + 8 = 13
427 yield from op.issue([5, 2], MicrOp.OP_ADD, [13],
428 inv_a=0, imm=8, imm_ok=1,
429 src_delays=[2, 0], dest_delays=[2])
430 # 5 + 2 = 7
431 yield from op.issue([5, 2], MicrOp.OP_ADD, [7],
432 src_delays=[1, 1], dest_delays=[1])
433 # (-6) + 2 = (-4)
434 yield from op.issue([5, 2], MicrOp.OP_ADD, [65532],
435 inv_a=1,
436 src_delays=[1, 2], dest_delays=[0])
437 # 0 + 2 = 2
438 yield from op.issue([5, 2], MicrOp.OP_ADD, [2],
439 zero_a=1,
440 src_delays=[2, 0], dest_delays=[1])
441
442 # test combinatorial zero-delay operation
443 # In the test ALU, any operation other than ADD, MUL or SHR
444 # is zero-delay, and do a subtraction.
445 # 5 - 2 = 3
446 yield from op.issue([5, 2], MicrOp.OP_NOP, [3],
447 src_delays=[0, 1], dest_delays=[2])
448 # test all combinations of masked input ports
449 # 5 + 0 (masked) = 5
450 yield from op.issue([5, 2], MicrOp.OP_ADD, [5],
451 rdmaskn=[0, 1],
452 src_delays=[2, 1], dest_delays=[0])
453 # 0 (masked) + 2 = 2
454 yield from op.issue([5, 2], MicrOp.OP_ADD, [2],
455 rdmaskn=[1, 0],
456 src_delays=[1, 2], dest_delays=[1])
457 # 0 (masked) + 0 (masked) = 0
458 yield from op.issue([5, 2], MicrOp.OP_ADD, [0],
459 rdmaskn=[1, 1],
460 src_delays=[1, 2], dest_delays=[1])
461
462
463 def test_compunit_fsm():
464 style = {
465 'in': {'color': 'orange'},
466 'out': {'color': 'yellow'},
467 }
468 traces = [
469 'clk',
470 ('operation port', {'color': 'red'}, [
471 'cu_issue_i', 'cu_busy_o',
472 {'comment': 'operation'},
473 'oper_i_None__sdir']),
474 ('operand 1 port', 'in', [
475 ('cu_rd__rel_o[1:0]', {'bit': 1}),
476 ('cu_rd__go_i[1:0]', {'bit': 1}),
477 'src1_i[7:0]']),
478 ('operand 2 port', 'in', [
479 ('cu_rd__rel_o[1:0]', {'bit': 0}),
480 ('cu_rd__go_i[1:0]', {'bit': 0}),
481 'src2_i[7:0]']),
482 ('result port', 'out', [
483 'cu_wr__rel_o', 'cu_wr__go_i', 'dest1_o[7:0]']),
484 ('alu', {'submodule': 'alu'}, [
485 ('prev port', 'in', [
486 'op__sdir', 'p_data_i[7:0]', 'p_shift_i[7:0]',
487 ({'submodule': 'p'},
488 ['p_valid_i', 'p_ready_o'])]),
489 ('next port', 'out', [
490 'n_data_o[7:0]',
491 ({'submodule': 'n'},
492 ['n_valid_o', 'n_ready_i'])])]),
493 ('debug', {'module': 'top'},
494 ['src1_count[7:0]', 'src2_count[7:0]', 'dest1_count[7:0]'])]
495
496 write_gtkw(
497 "test_compunit_fsm1.gtkw",
498 "test_compunit_fsm1.vcd",
499 traces, style,
500 module='top.cu'
501 )
502 m = Module()
503 alu = Shifter(8)
504 dut = MultiCompUnit(8, alu, CompFSMOpSubset)
505 m.submodules.cu = dut
506
507 vl = rtlil.convert(dut, ports=dut.ports())
508 with open("test_compunit_fsm1.il", "w") as f:
509 f.write(vl)
510
511 sim = Simulator(m)
512 sim.add_clock(1e-6)
513
514 # create one operand producer for each input port
515 prod_a = OperandProducer(sim, dut, 0)
516 prod_b = OperandProducer(sim, dut, 1)
517 # create an result consumer for the output port
518 cons = ResultConsumer(sim, dut, 0)
519 sim.add_sync_process(wrap(scoreboard_sim_fsm(dut,
520 [prod_a, prod_b],
521 [cons])))
522 sim_writer = sim.write_vcd('test_compunit_fsm1.vcd',
523 traces=[prod_a.count,
524 prod_b.count,
525 cons.count])
526 with sim_writer:
527 sim.run()
528
529
530 def test_compunit():
531
532 m = Module()
533 alu = ALU(16)
534 dut = MultiCompUnit(16, alu, CompALUOpSubset)
535 m.submodules.cu = dut
536
537 vl = rtlil.convert(dut, ports=dut.ports())
538 with open("test_compunit1.il", "w") as f:
539 f.write(vl)
540
541 sim = Simulator(m)
542 sim.add_clock(1e-6)
543
544 # create an operation issuer
545 op = OpSim(dut, sim)
546 sim.add_sync_process(wrap(scoreboard_sim(op)))
547 sim_writer = sim.write_vcd('test_compunit1.vcd')
548 with sim_writer:
549 sim.run()
550
551
552 def test_compunit_regspec2_fsm():
553
554 inspec = [('INT', 'data', '0:15'),
555 ('INT', 'shift', '0:15')]
556 outspec = [('INT', 'data', '0:15')]
557
558 regspec = (inspec, outspec)
559
560 m = Module()
561 alu = Shifter(8)
562 dut = MultiCompUnit(regspec, alu, CompFSMOpSubset)
563 m.submodules.cu = dut
564
565 sim = Simulator(m)
566 sim.add_clock(1e-6)
567
568 # create one operand producer for each input port
569 prod_a = OperandProducer(sim, dut, 0)
570 prod_b = OperandProducer(sim, dut, 1)
571 # create an result consumer for the output port
572 cons = ResultConsumer(sim, dut, 0)
573 sim.add_sync_process(wrap(scoreboard_sim_fsm(dut,
574 [prod_a, prod_b],
575 [cons])))
576 sim_writer = sim.write_vcd('test_compunit_regspec2_fsm.vcd',
577 traces=[prod_a.count,
578 prod_b.count,
579 cons.count])
580 with sim_writer:
581 sim.run()
582
583
584 def test_compunit_regspec3():
585
586 style = {
587 'in': {'color': 'orange'},
588 'out': {'color': 'yellow'},
589 }
590 traces = [
591 'clk',
592 ('operation port', {'color': 'red'}, [
593 'cu_issue_i', 'cu_busy_o',
594 {'comment': 'operation'},
595 ('oper_i_None__insn_type'
596 + ('' if is_engine_pysim() else '[6:0]'),
597 {'display': 'insn_type'})]),
598 ('operand 1 port', 'in', [
599 ('cu_rd__rel_o[2:0]', {'bit': 2}),
600 ('cu_rd__go_i[2:0]', {'bit': 2}),
601 'src1_i[15:0]']),
602 ('operand 2 port', 'in', [
603 ('cu_rd__rel_o[2:0]', {'bit': 1}),
604 ('cu_rd__go_i[2:0]', {'bit': 1}),
605 'src2_i[15:0]']),
606 ('operand 3 port', 'in', [
607 ('cu_rd__rel_o[2:0]', {'bit': 0}),
608 ('cu_rd__go_i[2:0]', {'bit': 0}),
609 'src1_i[15:0]']),
610 ('result port', 'out', [
611 'cu_wr__rel_o', 'cu_wr__go_i', 'dest1_o[15:0]']),
612 ('alu', {'submodule': 'alu'}, [
613 ('prev port', 'in', [
614 'oper_i_None__insn_type', 'i1[15:0]',
615 'valid_i', 'ready_o']),
616 ('next port', 'out', [
617 'alu_o[15:0]', 'valid_o', 'ready_i'])])]
618
619 write_gtkw("test_compunit_regspec3.gtkw",
620 "test_compunit_regspec3.vcd",
621 traces, style,
622 clk_period=1e-6,
623 module='top.cu')
624
625 inspec = [('INT', 'a', '0:15'),
626 ('INT', 'b', '0:15'),
627 ('INT', 'c', '0:15')]
628 outspec = [('INT', 'o', '0:15')]
629
630 regspec = (inspec, outspec)
631
632 m = Module()
633 alu = DummyALU(16)
634 dut = MultiCompUnit(regspec, alu, CompCROpSubset)
635 m.submodules.cu = dut
636
637 sim = Simulator(m)
638 sim.add_clock(1e-6)
639
640 # create an operation issuer
641 op = OpSim(dut, sim)
642 sim.add_sync_process(wrap(scoreboard_sim_dummy(op)))
643 sim_writer = sim.write_vcd('test_compunit_regspec3.vcd')
644 with sim_writer:
645 sim.run()
646
647
648 def test_compunit_regspec1():
649
650 style = {
651 'in': {'color': 'orange'},
652 'out': {'color': 'yellow'},
653 }
654 traces = [
655 'clk',
656 ('operation port', {'color': 'red'}, [
657 'cu_issue_i', 'cu_busy_o',
658 {'comment': 'operation'},
659 ('oper_i_None__insn_type'
660 + ('' if is_engine_pysim() else '[6:0]'),
661 {'display': 'insn_type'}),
662 ('oper_i_None__invert_in', {'display': 'invert_in'}),
663 ('oper_i_None__imm_data__data[63:0]', {'display': 'data[63:0]'}),
664 ('oper_i_None__imm_data__ok', {'display': 'imm_ok'}),
665 ('oper_i_None__zero_a', {'display': 'zero_a'})]),
666 ('operand 1 port', 'in', [
667 ('cu_rd__rel_o[1:0]', {'bit': 1}),
668 ('cu_rd__go_i[1:0]', {'bit': 1}),
669 'src1_i[15:0]']),
670 ('operand 2 port', 'in', [
671 ('cu_rd__rel_o[1:0]', {'bit': 0}),
672 ('cu_rd__go_i[1:0]', {'bit': 0}),
673 'src2_i[15:0]']),
674 ('result port', 'out', [
675 'cu_wr__rel_o', 'cu_wr__go_i', 'dest1_o[15:0]']),
676 ('alu', {'submodule': 'alu'}, [
677 ('prev port', 'in', [
678 'op__insn_type', 'op__invert_in', 'a[15:0]', 'b[15:0]',
679 'valid_i', 'ready_o']),
680 ('next port', 'out', [
681 'alu_o[15:0]', 'valid_o', 'ready_i'])]),
682 ('debug', {'module': 'top'},
683 ['src1_count[7:0]', 'src2_count[7:0]', 'dest1_count[7:0]'])]
684
685 write_gtkw("test_compunit_regspec1.gtkw",
686 "test_compunit_regspec1.vcd",
687 traces, style,
688 clk_period=1e-6,
689 module='top.cu')
690
691 inspec = [('INT', 'a', '0:15'),
692 ('INT', 'b', '0:15')]
693 outspec = [('INT', 'o', '0:15')]
694
695 regspec = (inspec, outspec)
696
697 m = Module()
698 alu = ALU(16)
699 dut = MultiCompUnit(regspec, alu, CompALUOpSubset)
700 m.submodules.cu = dut
701
702 vl = rtlil.convert(dut, ports=dut.ports())
703 with open("test_compunit_regspec1.il", "w") as f:
704 f.write(vl)
705
706 sim = Simulator(m)
707 sim.add_clock(1e-6)
708
709 # create an operation issuer
710 op = OpSim(dut, sim)
711 sim.add_sync_process(wrap(scoreboard_sim(op)))
712 sim_writer = sim.write_vcd('test_compunit_regspec1.vcd',
713 traces=[op.producers[0].count,
714 op.producers[1].count,
715 op.consumers[0].count])
716 with sim_writer:
717 sim.run()
718
719
720 if __name__ == '__main__':
721 test_compunit()
722 test_compunit_fsm()
723 test_compunit_regspec1()
724 test_compunit_regspec2_fsm()
725 test_compunit_regspec3()