Add a GTKWave document to the ALU test case
[soc.git] / src / soc / experiment / test / test_compalu_multi.py
1 """Computation Unit (aka "ALU Manager").
2
3 Manages a Pipeline or FSM, ensuring that the start and end time are 100%
4 monitored. At no time may the ALU proceed without this module notifying
5 the Dependency Matrices. At no time is a result production "abandoned".
6 This module blocks (indicates busy) starting from when it first receives
7 an opcode until it receives notification that
8 its result(s) have been successfully stored in the regfile(s)
9
10 Documented at http://libre-soc.org/3d_gpu/architecture/compunit
11 """
12
13 from soc.experiment.alu_fsm import Shifter, CompFSMOpSubset
14 from soc.fu.alu.alu_input_record import CompALUOpSubset
15 from soc.experiment.alu_hier import ALU, DummyALU
16 from soc.experiment.compalu_multi import MultiCompUnit
17 from soc.decoder.power_enums import MicrOp
18 from nmutil.gtkw import write_gtkw
19 from nmigen import Module, Signal
20 from nmigen.cli import rtlil
21
22 # NOTE: to use cxxsim, export NMIGEN_SIM_MODE=cxxsim from the shell
23 # Also, check out the cxxsim nmigen branch, and latest yosys from git
24 from nmutil.sim_tmp_alternative import (Simulator, Settle, is_engine_pysim,
25 Passive)
26
27
28 def wrap(process):
29 def wrapper():
30 yield from process
31 return wrapper
32
33
34 class OperandProducer:
35 """
36 Produces an operand when requested by the Computation Unit
37 (`dut` parameter), using the `rel_o` / `go_i` handshake.
38
39 Attaches itself to the `dut` operand indexed by `op_index`.
40
41 Has a programmable delay between the assertion of `rel_o` and the
42 `go_i` pulse.
43
44 Data is presented only during the cycle in which `go_i` is active.
45
46 It adds itself as a passive process to the simulation (`sim` parameter).
47 Since it is passive, it will not hang the simulation, and does not need a
48 flag to terminate itself.
49 """
50 def __init__(self, sim, dut, op_index):
51 self.count = Signal(8, name=f"src{op_index + 1}_count")
52 """ transaction counter"""
53 # data and handshake signals from the DUT
54 self.port = dut.src_i[op_index]
55 self.go_i = dut.rd.go_i[op_index]
56 self.rel_o = dut.rd.rel_o[op_index]
57 # transaction parameters, passed via signals
58 self.delay = Signal(8)
59 self.data = Signal.like(self.port)
60 # add ourselves to the simulation process list
61 sim.add_sync_process(self._process)
62
63 def _process(self):
64 yield Passive()
65 while True:
66 # Settle() is needed to give a quick response to
67 # the zero delay case
68 yield Settle()
69 # wait for rel_o to become active
70 while not (yield self.rel_o):
71 yield
72 yield Settle()
73 # read the transaction parameters
74 delay = (yield self.delay)
75 data = (yield self.data)
76 # wait for `delay` cycles
77 for _ in range(delay):
78 yield
79 # activate go_i and present data, for one cycle
80 yield self.go_i.eq(1)
81 yield self.port.eq(data)
82 yield self.count.eq(self.count + 1)
83 yield
84 yield self.go_i.eq(0)
85 yield self.port.eq(0)
86
87 def send(self, data, delay):
88 """
89 Schedules the module to send some `data`, counting `delay` cycles after
90 `rel_i` becomes active.
91
92 To be called from the main test-bench process,
93 it returns in the same cycle.
94
95 Communication with the worker process is done by means of
96 combinatorial simulation-only signals.
97
98 """
99 yield self.data.eq(data)
100 yield self.delay.eq(delay)
101
102
103 class ResultConsumer:
104 """
105 Consumes a result when requested by the Computation Unit
106 (`dut` parameter), using the `rel_o` / `go_i` handshake.
107
108 Attaches itself to the `dut` result indexed by `op_index`.
109
110 Has a programmable delay between the assertion of `rel_o` and the
111 `go_i` pulse.
112
113 Data is retrieved only during the cycle in which `go_i` is active.
114
115 It adds itself as a passive process to the simulation (`sim` parameter).
116 Since it is passive, it will not hang the simulation, and does not need a
117 flag to terminate itself.
118 """
119 def __init__(self, sim, dut, op_index):
120 self.count = Signal(8, name=f"dest{op_index + 1}_count")
121 """ transaction counter"""
122 # data and handshake signals from the DUT
123 self.port = dut.dest[op_index]
124 self.go_i = dut.wr.go_i[op_index]
125 self.rel_o = dut.wr.rel_o[op_index]
126 # transaction parameters, passed via signals
127 self.delay = Signal(8)
128 self.expected = Signal.like(self.port)
129 # add ourselves to the simulation process list
130 sim.add_sync_process(self._process)
131
132 def _process(self):
133 yield Passive()
134 while True:
135 # Settle() is needed to give a quick response to
136 # the zero delay case
137 yield Settle()
138 # wait for rel_o to become active
139 while not (yield self.rel_o):
140 yield
141 yield Settle()
142 # read the transaction parameters
143 delay = (yield self.delay)
144 expected = (yield self.expected)
145 # wait for `delay` cycles
146 for _ in range(delay):
147 yield
148 # activate go_i for one cycle
149 yield self.go_i.eq(1)
150 yield self.count.eq(self.count + 1)
151 yield
152 # check received data against the expected value
153 result = (yield self.port)
154 assert result == expected,\
155 f"expected {expected}, received {result}"
156 yield self.go_i.eq(0)
157 yield self.port.eq(0)
158
159 def receive(self, expected, delay):
160 """
161 Schedules the module to receive some result,
162 counting `delay` cycles after `rel_i` becomes active.
163 As 'go_i' goes active, check the result with `expected`.
164
165 To be called from the main test-bench process,
166 it returns in the same cycle.
167
168 Communication with the worker process is done by means of
169 combinatorial simulation-only signals.
170 """
171 yield self.expected.eq(expected)
172 yield self.delay.eq(delay)
173
174
175 def op_sim(dut, a, b, op, inv_a=0, imm=0, imm_ok=0, zero_a=0):
176 yield dut.issue_i.eq(0)
177 yield
178 yield dut.src_i[0].eq(a)
179 yield dut.src_i[1].eq(b)
180 yield dut.oper_i.insn_type.eq(op)
181 yield dut.oper_i.invert_in.eq(inv_a)
182 yield dut.oper_i.imm_data.data.eq(imm)
183 yield dut.oper_i.imm_data.ok.eq(imm_ok)
184 yield dut.oper_i.zero_a.eq(zero_a)
185 yield dut.issue_i.eq(1)
186 yield
187 yield dut.issue_i.eq(0)
188 yield
189 if not imm_ok or not zero_a:
190 yield dut.rd.go_i.eq(0b11)
191 while True:
192 yield
193 rd_rel_o = yield dut.rd.rel_o
194 print("rd_rel", rd_rel_o)
195 if rd_rel_o:
196 break
197 yield dut.rd.go_i.eq(0)
198 else:
199 print("no go rd")
200
201 if len(dut.src_i) == 3:
202 yield dut.rd.go_i.eq(0b100)
203 while True:
204 yield
205 rd_rel_o = yield dut.rd.rel_o
206 print("rd_rel", rd_rel_o)
207 if rd_rel_o:
208 break
209 yield dut.rd.go_i.eq(0)
210 else:
211 print("no 3rd rd")
212
213 req_rel_o = yield dut.wr.rel_o
214 result = yield dut.data_o
215 print("req_rel", req_rel_o, result)
216 while True:
217 req_rel_o = yield dut.wr.rel_o
218 result = yield dut.data_o
219 print("req_rel", req_rel_o, result)
220 if req_rel_o:
221 break
222 yield
223 yield dut.wr.go_i[0].eq(1)
224 yield Settle()
225 result = yield dut.data_o
226 yield
227 print("result", result)
228 yield dut.wr.go_i[0].eq(0)
229 yield
230 return result
231
232
233 def scoreboard_sim_fsm(dut, producers, consumers):
234
235 # stores the operation count
236 op_count = 0
237
238 def op_sim_fsm(a, b, direction, expected, delays):
239 print("op_sim_fsm", a, b, direction, expected)
240 yield dut.issue_i.eq(0)
241 yield
242 # forward data and delays to the producers and consumers
243 yield from producers[0].send(a, delays[0])
244 yield from producers[1].send(b, delays[1])
245 yield from consumers[0].receive(expected, delays[2])
246 # submit operation, and assert issue_i for one cycle
247 yield dut.oper_i.sdir.eq(direction)
248 yield dut.issue_i.eq(1)
249 yield
250 yield dut.issue_i.eq(0)
251 # wait for busy to be negated
252 yield Settle()
253 while (yield dut.busy_o):
254 yield
255 yield Settle()
256 # update the operation count
257 nonlocal op_count
258 op_count = (op_count + 1) & 255
259 # check that producers and consumers have the same count
260 # this assures that no data was left unused or was lost
261 assert (yield producers[0].count) == op_count
262 assert (yield producers[1].count) == op_count
263 assert (yield consumers[0].count) == op_count
264
265 # 13 >> 2 = 3
266 # operand 1 arrives immediately
267 # operand 2 arrives after operand 1
268 # write data is accepted immediately
269 yield from op_sim_fsm(13, 2, 1, 3, [0, 2, 0])
270 # 3 << 4 = 48
271 # operand 2 arrives immediately
272 # operand 1 arrives after operand 2
273 # write data is accepted after some delay
274 yield from op_sim_fsm(3, 4, 0, 48, [2, 0, 2])
275 # 21 << 0 = 21
276 # operands 1 and 2 arrive at the same time
277 # write data is accepted after some delay
278 yield from op_sim_fsm(21, 0, 0, 21, [1, 1, 1])
279
280
281 def scoreboard_sim_dummy(dut):
282 result = yield from op_sim(dut, 5, 2, MicrOp.OP_NOP, inv_a=0,
283 imm=8, imm_ok=1)
284 assert result == 5, result
285
286 result = yield from op_sim(dut, 9, 2, MicrOp.OP_NOP, inv_a=0,
287 imm=8, imm_ok=1)
288 assert result == 9, result
289
290
291 def scoreboard_sim(dut):
292 # zero (no) input operands test
293 result = yield from op_sim(dut, 5, 2, MicrOp.OP_ADD, zero_a=1,
294 imm=8, imm_ok=1)
295 assert result == 8
296
297 result = yield from op_sim(dut, 5, 2, MicrOp.OP_ADD, inv_a=0,
298 imm=8, imm_ok=1)
299 assert result == 13
300
301 result = yield from op_sim(dut, 5, 2, MicrOp.OP_ADD)
302 assert result == 7
303
304 result = yield from op_sim(dut, 5, 2, MicrOp.OP_ADD, inv_a=1)
305 assert result == 65532
306
307 result = yield from op_sim(dut, 5, 2, MicrOp.OP_ADD, zero_a=1)
308 assert result == 2
309
310 # test combinatorial zero-delay operation
311 # In the test ALU, any operation other than ADD, MUL or SHR
312 # is zero-delay, and do a subtraction.
313 result = yield from op_sim(dut, 5, 2, MicrOp.OP_NOP)
314 assert result == 3
315
316
317 def test_compunit_fsm():
318 top = "top.cu" if is_engine_pysim() else "cu"
319 style = {
320 'in': {'color': 'orange'},
321 'out': {'color': 'yellow'},
322 }
323 traces = [
324 'clk',
325 ('operation port', {'color': 'red'}, [
326 'cu_issue_i', 'cu_busy_o',
327 {'comment': 'operation'},
328 'oper_i_None__sdir']),
329 ('operand 1 port', 'in', [
330 ('cu_rd__rel_o[1:0]', {'bit': 1}),
331 ('cu_rd__go_i[1:0]', {'bit': 1}),
332 'src1_i[7:0]']),
333 ('operand 2 port', 'in', [
334 ('cu_rd__rel_o[1:0]', {'bit': 0}),
335 ('cu_rd__go_i[1:0]', {'bit': 0}),
336 'src2_i[7:0]']),
337 ('result port', 'out', [
338 'cu_wr__rel_o', 'cu_wr__go_i', 'dest1_o[7:0]']),
339 ('alu', {'module': top+'.alu'}, [
340 ('prev port', 'in', [
341 'op__sdir', 'p_data_i[7:0]', 'p_shift_i[7:0]',
342 'p_valid_i', 'p_ready_o']),
343 ('next port', 'out', [
344 'n_data_o[7:0]', 'n_valid_o', 'n_ready_i']),
345 ]),
346 ('debug', {'module': 'top'},
347 ['src1_count[7:0]', 'src2_count[7:0]', 'dest1_count[7:0]'])
348
349 ]
350 write_gtkw(
351 "test_compunit_fsm1.gtkw",
352 "test_compunit_fsm1.vcd",
353 traces, style,
354 module=top
355 )
356 m = Module()
357 alu = Shifter(8)
358 dut = MultiCompUnit(8, alu, CompFSMOpSubset)
359 m.submodules.cu = dut
360
361 vl = rtlil.convert(dut, ports=dut.ports())
362 with open("test_compunit_fsm1.il", "w") as f:
363 f.write(vl)
364
365 sim = Simulator(m)
366 sim.add_clock(1e-6)
367
368 # create one operand producer for each input port
369 prod_a = OperandProducer(sim, dut, 0)
370 prod_b = OperandProducer(sim, dut, 1)
371 # create an result consumer for the output port
372 cons = ResultConsumer(sim, dut, 0)
373 sim.add_sync_process(wrap(scoreboard_sim_fsm(dut,
374 [prod_a, prod_b],
375 [cons])))
376 sim_writer = sim.write_vcd('test_compunit_fsm1.vcd',
377 traces=[prod_a.count,
378 prod_b.count,
379 cons.count])
380 with sim_writer:
381 sim.run()
382
383
384 def test_compunit():
385
386 m = Module()
387 alu = ALU(16)
388 dut = MultiCompUnit(16, alu, CompALUOpSubset)
389 m.submodules.cu = dut
390
391 vl = rtlil.convert(dut, ports=dut.ports())
392 with open("test_compunit1.il", "w") as f:
393 f.write(vl)
394
395 sim = Simulator(m)
396 sim.add_clock(1e-6)
397
398 sim.add_sync_process(wrap(scoreboard_sim(dut)))
399 sim_writer = sim.write_vcd('test_compunit1.vcd')
400 with sim_writer:
401 sim.run()
402
403
404 class CompUnitParallelTest:
405 def __init__(self, dut):
406 self.dut = dut
407
408 # Operation cycle should not take longer than this:
409 self.MAX_BUSY_WAIT = 50
410
411 # Minimum duration in which issue_i will be kept inactive,
412 # during which busy_o must remain low.
413 self.MIN_BUSY_LOW = 5
414
415 # Number of cycles to stall until the assertion of go.
416 # One value, for each port. Can be zero, for no delay.
417 self.RD_GO_DELAY = [0, 3]
418
419 # store common data for the input operation of the processes
420 # input operation:
421 self.op = 0
422 self.inv_a = self.zero_a = 0
423 self.imm = self.imm_ok = 0
424 self.imm_control = (0, 0)
425 self.rdmaskn = (0, 0)
426 # input data:
427 self.operands = (0, 0)
428
429 # Indicates completion of the sub-processes
430 self.rd_complete = [False, False]
431
432 def driver(self):
433 print("Begin parallel test.")
434 yield from self.operation(5, 2, MicrOp.OP_ADD)
435
436 def operation(self, a, b, op, inv_a=0, imm=0, imm_ok=0, zero_a=0,
437 rdmaskn=(0, 0)):
438 # store data for the operation
439 self.operands = (a, b)
440 self.op = op
441 self.inv_a = inv_a
442 self.imm = imm
443 self.imm_ok = imm_ok
444 self.zero_a = zero_a
445 self.imm_control = (zero_a, imm_ok)
446 self.rdmaskn = rdmaskn
447
448 # Initialize completion flags
449 self.rd_complete = [False, False]
450
451 # trigger operation cycle
452 yield from self.issue()
453
454 # check that the sub-processes completed, before the busy_o cycle ended
455 for completion in self.rd_complete:
456 assert completion
457
458 def issue(self):
459 # issue_i starts inactive
460 yield self.dut.issue_i.eq(0)
461
462 for n in range(self.MIN_BUSY_LOW):
463 yield
464 # busy_o must remain inactive. It cannot rise on its own.
465 busy_o = yield self.dut.busy_o
466 assert not busy_o
467
468 # activate issue_i to begin the operation cycle
469 yield self.dut.issue_i.eq(1)
470
471 # at the same time, present the operation
472 yield self.dut.oper_i.insn_type.eq(self.op)
473 yield self.dut.oper_i.invert_in.eq(self.inv_a)
474 yield self.dut.oper_i.imm_data.data.eq(self.imm)
475 yield self.dut.oper_i.imm_data.ok.eq(self.imm_ok)
476 yield self.dut.oper_i.zero_a.eq(self.zero_a)
477 rdmaskn = self.rdmaskn[0] | (self.rdmaskn[1] << 1)
478 yield self.dut.rdmaskn.eq(rdmaskn)
479
480 # give one cycle for the CompUnit to latch the data
481 yield
482
483 # busy_o must keep being low in this cycle, because issue_i was
484 # low on the previous cycle.
485 # It cannot rise on its own.
486 # Also, busy_o and issue_i must never be active at the same time, ever.
487 busy_o = yield self.dut.busy_o
488 assert not busy_o
489
490 # Lower issue_i
491 yield self.dut.issue_i.eq(0)
492
493 # deactivate inputs along with issue_i, so we can be sure the data
494 # was latched at the correct cycle
495 # note: rdmaskn must be held, while busy_o is active
496 # TODO: deactivate rdmaskn when the busy_o cycle ends
497 yield self.dut.oper_i.insn_type.eq(0)
498 yield self.dut.oper_i.invert_in.eq(0)
499 yield self.dut.oper_i.imm_data.data.eq(0)
500 yield self.dut.oper_i.imm_data.ok.eq(0)
501 yield self.dut.oper_i.zero_a.eq(0)
502 yield
503
504 # wait for busy_o to lower
505 # timeout after self.MAX_BUSY_WAIT cycles
506 for n in range(self.MAX_BUSY_WAIT):
507 # sample busy_o in the current cycle
508 busy_o = yield self.dut.busy_o
509 if not busy_o:
510 # operation cycle ends when busy_o becomes inactive
511 break
512 yield
513
514 # if busy_o is still active, a timeout has occurred
515 # TODO: Uncomment this, once the test is complete:
516 # assert not busy_o
517
518 if busy_o:
519 print("If you are reading this, "
520 "it's because the above test failed, as expected,\n"
521 "with a timeout. It must pass, once the test is complete.")
522 return
523
524 print("If you are reading this, "
525 "it's because the above test unexpectedly passed.")
526
527 def rd(self, rd_idx):
528 # wait for issue_i to rise
529 while True:
530 issue_i = yield self.dut.issue_i
531 if issue_i:
532 break
533 # issue_i has not risen yet, so rd must keep low
534 rel = yield self.dut.rd.rel_o[rd_idx]
535 assert not rel
536 yield
537
538 # we do not want rd to rise on an immediate operand
539 # if it is immediate, exit the process
540 # likewise, if the read mask is active
541 # TODO: don't exit the process, monitor rd instead to ensure it
542 # doesn't rise on its own
543 if self.rdmaskn[rd_idx] or self.imm_control[rd_idx]:
544 self.rd_complete[rd_idx] = True
545 return
546
547 # issue_i has risen. rel must rise on the next cycle
548 rel = yield self.dut.rd.rel_o[rd_idx]
549 assert not rel
550
551 # stall for additional cycles. Check that rel doesn't fall on its own
552 for n in range(self.RD_GO_DELAY[rd_idx]):
553 yield
554 rel = yield self.dut.rd.rel_o[rd_idx]
555 assert rel
556
557 # Before asserting "go", make sure "rel" has risen.
558 # The use of Settle allows "go" to be set combinatorially,
559 # rising on the same cycle as "rel".
560 yield Settle()
561 rel = yield self.dut.rd.rel_o[rd_idx]
562 assert rel
563
564 # assert go for one cycle, passing along the operand value
565 yield self.dut.rd.go_i[rd_idx].eq(1)
566 yield self.dut.src_i[rd_idx].eq(self.operands[rd_idx])
567 # check that the operand was sent to the alu
568 # TODO: Properly check the alu protocol
569 yield Settle()
570 alu_input = yield self.dut.get_in(rd_idx)
571 assert alu_input == self.operands[rd_idx]
572 yield
573
574 # rel must keep high, since go was inactive in the last cycle
575 rel = yield self.dut.rd.rel_o[rd_idx]
576 assert rel
577
578 # finish the go one-clock pulse
579 yield self.dut.rd.go_i[rd_idx].eq(0)
580 yield self.dut.src_i[rd_idx].eq(0)
581 yield
582
583 # rel must have gone low in response to go being high
584 # on the previous cycle
585 rel = yield self.dut.rd.rel_o[rd_idx]
586 assert not rel
587
588 self.rd_complete[rd_idx] = True
589
590 # TODO: check that rel doesn't rise again until the end of the
591 # busy_o cycle
592
593 def wr(self, wr_idx):
594 # monitor self.dut.wr.req[rd_idx] and sets dut.wr.go[idx] for one cycle
595 yield
596 # TODO: also when dut.wr.go is set, check the output against the
597 # self.expected_o and assert. use dut.get_out(wr_idx) to do so.
598
599 def run_simulation(self, vcd_name):
600 m = Module()
601 m.submodules.cu = self.dut
602 sim = Simulator(m)
603 sim.add_clock(1e-6)
604
605 sim.add_sync_process(wrap(self.driver()))
606 sim.add_sync_process(wrap(self.rd(0)))
607 sim.add_sync_process(wrap(self.rd(1)))
608 sim.add_sync_process(wrap(self.wr(0)))
609 sim_writer = sim.write_vcd(vcd_name)
610 with sim_writer:
611 sim.run()
612
613
614 def test_compunit_regspec2_fsm():
615
616 inspec = [('INT', 'data', '0:15'),
617 ('INT', 'shift', '0:15'),
618 ]
619 outspec = [('INT', 'data', '0:15'),
620 ]
621
622 regspec = (inspec, outspec)
623
624 m = Module()
625 alu = Shifter(8)
626 dut = MultiCompUnit(regspec, alu, CompFSMOpSubset)
627 m.submodules.cu = dut
628
629 sim = Simulator(m)
630 sim.add_clock(1e-6)
631
632 # create one operand producer for each input port
633 prod_a = OperandProducer(sim, dut, 0)
634 prod_b = OperandProducer(sim, dut, 1)
635 # create an result consumer for the output port
636 cons = ResultConsumer(sim, dut, 0)
637 sim.add_sync_process(wrap(scoreboard_sim_fsm(dut,
638 [prod_a, prod_b],
639 [cons])))
640 sim_writer = sim.write_vcd('test_compunit_regspec2_fsm.vcd',
641 traces=[prod_a.count,
642 prod_b.count,
643 cons.count])
644 with sim_writer:
645 sim.run()
646
647
648 def test_compunit_regspec3():
649
650 inspec = [('INT', 'a', '0:15'),
651 ('INT', 'b', '0:15'),
652 ('INT', 'c', '0:15')]
653 outspec = [('INT', 'o', '0:15'),
654 ]
655
656 regspec = (inspec, outspec)
657
658 m = Module()
659 alu = DummyALU(16)
660 dut = MultiCompUnit(regspec, alu, CompALUOpSubset)
661 m.submodules.cu = dut
662
663 sim = Simulator(m)
664 sim.add_clock(1e-6)
665
666 sim.add_sync_process(wrap(scoreboard_sim_dummy(dut)))
667 sim_writer = sim.write_vcd('test_compunit_regspec3.vcd')
668 with sim_writer:
669 sim.run()
670
671
672 def test_compunit_regspec1():
673
674 style = {
675 'in': {'color': 'orange'},
676 'out': {'color': 'yellow'},
677 }
678 traces = [
679 'clk',
680 ('operation port', {'color': 'red'}, [
681 'cu_issue_i', 'cu_busy_o',
682 {'comment': 'operation'},
683 ('oper_i_None__insn_type', {'display': 'insn_type'}),
684 ('oper_i_None__invert_in', {'display': 'invert_in'}),
685 ('oper_i_None__imm_data__data[63:0]', {'display': 'data[63:0]'}),
686 ('oper_i_None__imm_data__imm_ok', {'display': 'imm_ok'}),
687 ('oper_i_None__zero_a', {'display': 'zero_a'})]),
688 ('operand 1 port', 'in', [
689 ('cu_rd__rel_o[1:0]', {'bit': 1}),
690 ('cu_rd__go_i[1:0]', {'bit': 1}),
691 'src1_i[15:0]']),
692 ('operand 2 port', 'in', [
693 ('cu_rd__rel_o[1:0]', {'bit': 0}),
694 ('cu_rd__go_i[1:0]', {'bit': 0}),
695 'src2_i[15:0]']),
696 ('result port', 'out', [
697 'cu_wr__rel_o', 'cu_wr__go_i', 'dest1_o[15:0]']),
698 ('alu', {'module': 'top.cu.alu'}, [
699 ('prev port', 'in', [
700 'op__insn_type', 'op__invert_i', 'a[15:0]', 'b[15:0]',
701 'valid_i', 'ready_o']),
702 ('next port', 'out', [
703 'alu_o[15:0]', 'valid_o', 'ready_i'])])]
704 write_gtkw("test_compunit_regspec1.gtkw",
705 "test_compunit_regspec1.vcd",
706 traces, style,
707 clk_period=1e-6,
708 module='top.cu')
709
710 inspec = [('INT', 'a', '0:15'),
711 ('INT', 'b', '0:15')]
712 outspec = [('INT', 'o', '0:15'),
713 ]
714
715 regspec = (inspec, outspec)
716
717 m = Module()
718 alu = ALU(16)
719 dut = MultiCompUnit(regspec, alu, CompALUOpSubset)
720 m.submodules.cu = dut
721
722 vl = rtlil.convert(dut, ports=dut.ports())
723 with open("test_compunit_regspec1.il", "w") as f:
724 f.write(vl)
725
726 sim = Simulator(m)
727 sim.add_clock(1e-6)
728
729 sim.add_sync_process(wrap(scoreboard_sim(dut)))
730 sim_writer = sim.write_vcd('test_compunit_regspec1.vcd')
731 with sim_writer:
732 sim.run()
733
734 test = CompUnitParallelTest(dut)
735 test.run_simulation("test_compunit_parallel.vcd")
736
737
738 if __name__ == '__main__':
739 test_compunit()
740 test_compunit_fsm()
741 test_compunit_regspec1()
742 test_compunit_regspec2_fsm()
743 test_compunit_regspec3()