f42112e1805498a08b800aa50e8024dffdc5eb73
[soc.git] / src / soc / fu / alu / test / test_pipe_caller.py
1 from nmigen import Module, Signal
2 from nmigen.back.pysim import Simulator, Delay, Settle
3 from nmigen.test.utils import FHDLTestCase
4 from nmigen.cli import rtlil
5 import unittest
6 from soc.decoder.isa.caller import ISACaller, special_sprs
7 from soc.decoder.power_decoder import (create_pdecode)
8 from soc.decoder.power_decoder2 import (PowerDecode2)
9 from soc.decoder.power_enums import (XER_bits, Function, InternalOp)
10 from soc.decoder.selectable_int import SelectableInt
11 from soc.simulator.program import Program
12 from soc.decoder.isa.all import ISA
13
14
15 from soc.alu.pipeline import ALUBasePipe
16 from soc.alu.alu_input_record import CompALUOpSubset
17 from soc.alu.pipe_data import ALUPipeSpec
18 import random
19
20 class TestCase:
21 def __init__(self, program, regs, sprs, name):
22 self.program = program
23 self.regs = regs
24 self.sprs = sprs
25 self.name = name
26
27 def get_rec_width(rec):
28 recwidth = 0
29 # Setup random inputs for dut.op
30 for p in rec.ports():
31 width = p.width
32 recwidth += width
33 return recwidth
34
35 def set_alu_inputs(alu, dec2, sim):
36 # TODO: see https://bugs.libre-soc.org/show_bug.cgi?id=305#c43
37 # detect the immediate here (with m.If(self.i.ctx.op.imm_data.imm_ok))
38 # and place it into data_i.b
39
40 reg3_ok = yield dec2.e.read_reg3.ok
41 reg1_ok = yield dec2.e.read_reg1.ok
42 assert reg3_ok != reg1_ok
43 if reg3_ok:
44 data1 = yield dec2.e.read_reg3.data
45 data1 = sim.gpr(data1).value
46 elif reg1_ok:
47 data1 = yield dec2.e.read_reg1.data
48 data1 = sim.gpr(data1).value
49 else:
50 data1 = 0
51
52 yield alu.p.data_i.a.eq(data1)
53
54 # If there's an immediate, set the B operand to that
55 reg2_ok = yield dec2.e.read_reg2.ok
56 imm_ok = yield dec2.e.imm_data.imm_ok
57 if imm_ok:
58 data2 = yield dec2.e.imm_data.imm
59 elif reg2_ok:
60 data2 = yield dec2.e.read_reg2.data
61 data2 = sim.gpr(data2).value
62 else:
63 data2 = 0
64 yield alu.p.data_i.b.eq(data2)
65
66
67
68 def set_extra_alu_inputs(alu, dec2, sim):
69 carry = 1 if sim.spr['XER'][XER_bits['CA']] else 0
70 yield alu.p.data_i.carry_in.eq(carry)
71 so = 1 if sim.spr['XER'][XER_bits['SO']] else 0
72 yield alu.p.data_i.so.eq(so)
73
74
75 # This test bench is a bit different than is usual. Initially when I
76 # was writing it, I had all of the tests call a function to create a
77 # device under test and simulator, initialize the dut, run the
78 # simulation for ~2 cycles, and assert that the dut output what it
79 # should have. However, this was really slow, since it needed to
80 # create and tear down the dut and simulator for every test case.
81
82 # Now, instead of doing that, every test case in ALUTestCase puts some
83 # data into the test_data list below, describing the instructions to
84 # be tested and the initial state. Once all the tests have been run,
85 # test_data gets passed to TestRunner which then sets up the DUT and
86 # simulator once, runs all the data through it, and asserts that the
87 # results match the pseudocode sim at every cycle.
88
89 # By doing this, I've reduced the time it takes to run the test suite
90 # massively. Before, it took around 1 minute on my computer, now it
91 # takes around 3 seconds
92
93 test_data = []
94
95
96 class ALUTestCase(FHDLTestCase):
97 def __init__(self, name):
98 super().__init__(name)
99 self.test_name = name
100 def run_tst_program(self, prog, initial_regs=[0] * 32, initial_sprs={}):
101 tc = TestCase(prog, initial_regs, initial_sprs, self.test_name)
102 test_data.append(tc)
103
104 def test_rand(self):
105 insns = ["add", "add.", "subf"]
106 for i in range(40):
107 choice = random.choice(insns)
108 lst = [f"{choice} 3, 1, 2"]
109 initial_regs = [0] * 32
110 initial_regs[1] = random.randint(0, (1<<64)-1)
111 initial_regs[2] = random.randint(0, (1<<64)-1)
112 self.run_tst_program(Program(lst), initial_regs)
113
114 def test_rand_imm(self):
115 insns = ["addi", "addis", "subfic"]
116 for i in range(10):
117 choice = random.choice(insns)
118 imm = random.randint(-(1<<15), (1<<15)-1)
119 lst = [f"{choice} 3, 1, {imm}"]
120 print(lst)
121 initial_regs = [0] * 32
122 initial_regs[1] = random.randint(0, (1<<64)-1)
123 self.run_tst_program(Program(lst), initial_regs)
124
125 def test_adde(self):
126 lst = ["adde. 5, 6, 7"]
127 initial_regs = [0] * 32
128 initial_regs[6] = random.randint(0, (1<<64)-1)
129 initial_regs[7] = random.randint(0, (1<<64)-1)
130 initial_sprs = {}
131 xer = SelectableInt(0, 64)
132 xer[XER_bits['CA']] = 1
133 initial_sprs[special_sprs['XER']] = xer
134 self.run_tst_program(Program(lst), initial_regs, initial_sprs)
135
136 def test_cmp(self):
137 lst = ["subf. 1, 6, 7",
138 "cmp cr2, 1, 6, 7"]
139 initial_regs = [0] * 32
140 initial_regs[6] = 0x10
141 initial_regs[7] = 0x05
142 self.run_tst_program(Program(lst), initial_regs, {})
143
144 def test_extsb(self):
145 insns = ["extsb", "extsh", "extsw"]
146 for i in range(10):
147 choice = random.choice(insns)
148 lst = [f"{choice} 3, 1"]
149 print(lst)
150 initial_regs = [0] * 32
151 initial_regs[1] = random.randint(0, (1<<64)-1)
152 self.run_tst_program(Program(lst), initial_regs)
153
154 def test_cmpeqb(self):
155 lst = ["cmpeqb cr0, 1, 2"]
156 for i in range(20):
157 initial_regs = [0] * 32
158 initial_regs[1] = i
159 initial_regs[2] = 0x01030507090b0d0f11
160 self.run_tst_program(Program(lst), initial_regs, {})
161
162 def test_ilang(self):
163 rec = CompALUOpSubset()
164
165 pspec = ALUPipeSpec(id_wid=2, op_wid=get_rec_width(rec))
166 alu = ALUBasePipe(pspec)
167 vl = rtlil.convert(alu, ports=alu.ports())
168 with open("pipeline.il", "w") as f:
169 f.write(vl)
170
171
172 class TestRunner(FHDLTestCase):
173 def __init__(self, test_data):
174 super().__init__("run_all")
175 self.test_data = test_data
176
177 def run_all(self):
178 m = Module()
179 comb = m.d.comb
180 instruction = Signal(32)
181
182 pdecode = create_pdecode()
183
184 m.submodules.pdecode2 = pdecode2 = PowerDecode2(pdecode)
185
186 rec = CompALUOpSubset()
187
188 pspec = ALUPipeSpec(id_wid=2, op_wid=get_rec_width(rec))
189 m.submodules.alu = alu = ALUBasePipe(pspec)
190
191 comb += alu.p.data_i.ctx.op.eq_from_execute1(pdecode2.e)
192 comb += alu.p.valid_i.eq(1)
193 comb += alu.n.ready_i.eq(1)
194 comb += pdecode2.dec.raw_opcode_in.eq(instruction)
195 sim = Simulator(m)
196
197 sim.add_clock(1e-6)
198 def process():
199 for test in self.test_data:
200 print(test.name)
201 program = test.program
202 self.subTest(test.name)
203 simulator = ISA(pdecode2, test.regs, test.sprs, 0)
204 gen = program.generate_instructions()
205 instructions = list(zip(gen, program.assembly.splitlines()))
206
207 index = simulator.pc.CIA.value//4
208 while index < len(instructions):
209 ins, code = instructions[index]
210
211 print("0x{:X}".format(ins & 0xffffffff))
212 print(code)
213
214 # ask the decoder to decode this binary data (endian'd)
215 yield pdecode2.dec.bigendian.eq(0) # little / big?
216 yield instruction.eq(ins) # raw binary instr.
217 yield Settle()
218 fn_unit = yield pdecode2.e.fn_unit
219 self.assertEqual(fn_unit, Function.ALU.value)
220 yield from set_alu_inputs(alu, pdecode2, simulator)
221 yield from set_extra_alu_inputs(alu, pdecode2, simulator)
222 yield
223 opname = code.split(' ')[0]
224 yield from simulator.call(opname)
225 index = simulator.pc.CIA.value//4
226
227 vld = yield alu.n.valid_o
228 while not vld:
229 yield
230 vld = yield alu.n.valid_o
231 yield
232 alu_out = yield alu.n.data_o.o
233 out_reg_valid = yield pdecode2.e.write_reg.ok
234 if out_reg_valid:
235 write_reg_idx = yield pdecode2.e.write_reg.data
236 expected = simulator.gpr(write_reg_idx).value
237 print(f"expected {expected:x}, actual: {alu_out:x}")
238 self.assertEqual(expected, alu_out)
239 yield from self.check_extra_alu_outputs(alu, pdecode2,
240 simulator, code)
241
242 sim.add_sync_process(process)
243 with sim.write_vcd("simulator.vcd", "simulator.gtkw",
244 traces=[]):
245 sim.run()
246
247 def check_extra_alu_outputs(self, alu, dec2, sim, code):
248 rc = yield dec2.e.rc.data
249 if rc:
250 cr_expected = sim.crl[0].get_range().value
251 cr_actual = yield alu.n.data_o.cr0
252 self.assertEqual(cr_expected, cr_actual, code)
253
254 op = yield dec2.e.insn_type
255 if op == InternalOp.OP_CMP.value or \
256 op == InternalOp.OP_CMPEQB.value:
257 bf = yield dec2.dec.BF
258 cr_actual = yield alu.n.data_o.cr0
259 cr_expected = sim.crl[bf].get_range().value
260 self.assertEqual(cr_expected, cr_actual, code)
261
262
263
264 if __name__ == "__main__":
265 unittest.main(exit=False)
266 suite = unittest.TestSuite()
267 suite.addTest(TestRunner(test_data))
268
269 runner = unittest.TextTestRunner()
270 runner.run(suite)