attempting to add SPRs to rfid test
[soc.git] / src / soc / decoder / isa / caller.py
index 63b2cf0abe477a230f10b9943a412793db4bfcdb..488df5ceeaa88289edbb157ccf6ab622060e4266 100644 (file)
@@ -1,11 +1,20 @@
+"""core of the python-based POWER9 simulator
+
+this is part of a cycle-accurate POWER9 simulator.  its primary purpose is
+not speed, it is for both learning and educational purposes, as well as
+a method of verifying the HDL.
+"""
+
 from functools import wraps
 from soc.decoder.orderedset import OrderedSet
 from soc.decoder.selectable_int import (FieldSelectableInt, SelectableInt,
                                         selectconcat)
-from soc.decoder.power_enums import spr_dict, XER_bits
-from soc.decoder.helpers import exts
+from soc.decoder.power_enums import (spr_dict, spr_byname, XER_bits,
+                                     insns, InternalOp)
+from soc.decoder.helpers import exts, trunc_div, trunc_rem
 from collections import namedtuple
 import math
+import sys
 
 instruction_info = namedtuple('instruction_info',
                               'func read_regs uninit_regs write_regs ' + \
@@ -19,6 +28,12 @@ special_sprs = {
     'VRSAVE': 256}
 
 
+def swap_order(x, nbytes):
+    x = x.to_bytes(nbytes, byteorder='little')
+    x = int.from_bytes(x, byteorder='big', signed=False)
+    return x
+
+
 def create_args(reglist, extra=None):
     args = OrderedSet()
     for reg in reglist:
@@ -31,31 +46,47 @@ def create_args(reglist, extra=None):
 
 class Mem:
 
-    def __init__(self, bytes_per_word=8, initial_mem=None):
+    def __init__(self, row_bytes=8, initial_mem=None):
         self.mem = {}
-        self.bytes_per_word = bytes_per_word
-        self.word_log2 = math.ceil(math.log2(bytes_per_word))
+        self.bytes_per_word = row_bytes
+        self.word_log2 = math.ceil(math.log2(row_bytes))
+        print ("Sim-Mem", initial_mem, self.bytes_per_word, self.word_log2)
         if not initial_mem:
             return
-        print ("Sim-Mem", initial_mem, self.bytes_per_word)
+
+        # different types of memory data structures recognised (for convenience)
+        if isinstance(initial_mem, list):
+            initial_mem = (0, initial_mem)
+        if isinstance(initial_mem, tuple):
+            startaddr, mem = initial_mem
+            initial_mem = {}
+            for i, val in enumerate(mem):
+                initial_mem[startaddr + row_bytes*i] = (val, row_bytes)
+
         for addr, (val, width) in initial_mem.items():
-            self.st(addr, val, width)
+            #val = swap_order(val, width)
+            self.st(addr, val, width, swap=False)
 
     def _get_shifter_mask(self, wid, remainder):
         shifter = ((self.bytes_per_word - wid) - remainder) * \
             8  # bits per byte
+        # XXX https://bugs.libre-soc.org/show_bug.cgi?id=377
+        # BE/LE mode?
+        shifter = remainder * 8
         mask = (1 << (wid * 8)) - 1
         print ("width,rem,shift,mask", wid, remainder, hex(shifter), hex(mask))
         return shifter, mask
 
     # TODO: Implement ld/st of lesser width
-    def ld(self, address, width=8):
+    def ld(self, address, width=8, swap=True, check_in_mem=False):
         print("ld from addr 0x{:x} width {:d}".format(address, width))
         remainder = address & (self.bytes_per_word - 1)
         address = address >> self.word_log2
         assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
         if address in self.mem:
             val = self.mem[address]
+        elif check_in_mem:
+            return None
         else:
             val = 0
         print("mem @ 0x{:x} rem {:d} : 0x{:x}".format(address, remainder, val))
@@ -65,14 +96,20 @@ class Mem:
             print ("masking", hex(val), hex(mask<<shifter), shifter)
             val = val & (mask << shifter)
             val >>= shifter
+        if swap:
+            val = swap_order(val, width)
         print("Read 0x{:x} from addr 0x{:x}".format(val, address))
         return val
 
-    def st(self, addr, v, width=8):
+    def st(self, addr, v, width=8, swap=True):
+        staddr = addr
         remainder = addr & (self.bytes_per_word - 1)
         addr = addr >> self.word_log2
-        print("Writing 0x{:x} to addr 0x{:x}/{:x}".format(v, addr, remainder))
+        print("Writing 0x{:x} to ST 0x{:x} memaddr 0x{:x}/{:x}".format(v,
+                        staddr, addr, remainder, swap))
         assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
+        if swap:
+            v = swap_order(v, width)
         if width != self.bytes_per_word:
             if addr in self.mem:
                 val = self.mem[addr]
@@ -150,7 +187,14 @@ class SPR(dict):
     def __init__(self, dec2, initial_sprs={}):
         self.sd = dec2
         dict.__init__(self)
-        self.update(initial_sprs)
+        for key, v in initial_sprs.items():
+            if isinstance(key, SelectableInt):
+                key = key.value
+            key = special_sprs.get(key, key)
+            info = spr_byname[key]
+            if not isinstance(v, SelectableInt):
+                v = SelectableInt(v, info.length)
+            self[key] = v
 
     def __getitem__(self, key):
         # if key in special_sprs get the special spr, otherwise return key
@@ -172,23 +216,49 @@ class SPR(dict):
 
     def __call__(self, ridx):
         return self[ridx]
-        
-        
+
 
 class ISACaller:
     # decoder2 - an instance of power_decoder2
     # regfile - a list of initial values for the registers
+    # initial_{etc} - initial values for SPRs, Condition Register, Mem, MSR
+    # respect_pc - tracks the program counter.  requires initial_insns
     def __init__(self, decoder2, regfile, initial_sprs=None, initial_cr=0,
-                       initial_mem=None, initial_msr=0):
+                       initial_mem=None, initial_msr=0,
+                       initial_insns=None, respect_pc=False,
+                       disassembly=None):
+
+        self.respect_pc = respect_pc
         if initial_sprs is None:
             initial_sprs = {}
         if initial_mem is None:
             initial_mem = {}
+        if initial_insns is None:
+            initial_insns = {}
+            assert self.respect_pc == False, "instructions required to honor pc"
+
+        print ("ISACaller insns", respect_pc, initial_insns, disassembly)
+
+        # "fake program counter" mode (for unit testing)
+        self.fake_pc = 0
+        if not respect_pc:
+            if isinstance(initial_mem, tuple):
+                self.fake_pc = initial_mem[0]
+
+        # disassembly: we need this for now (not given from the decoder)
+        self.disassembly = {}
+        if disassembly:
+            for i, code in enumerate(disassembly):
+                self.disassembly[i*4 + self.fake_pc] = code
+
+        # set up registers, instruction memory, data memory, PC, SPRs, MSR
         self.gpr = GPR(decoder2, regfile)
-        self.mem = Mem(initial_mem=initial_mem)
+        self.mem = Mem(row_bytes=8, initial_mem=initial_mem)
+        self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
         self.pc = PC()
         self.spr = SPR(decoder2, initial_sprs)
         self.msr = SelectableInt(initial_msr, 64) # underlying reg
+
         # TODO, needed here:
         # FPR (same as GPR except for FP nums)
         # 4.2.2 p124 FPSCR (definitely "separate" - not in SPR)
@@ -209,7 +279,9 @@ class ISACaller:
         # "undefined", just set to variable-bit-width int (use exts "max")
         self.undefined = SelectableInt(0, 256) # TODO, not hard-code 256!
 
-        self.namespace = {'GPR': self.gpr,
+        self.namespace = {}
+        self.namespace.update(self.spr)
+        self.namespace.update({'GPR': self.gpr,
                           'MEM': self.mem,
                           'SPR': self.spr,
                           'memassign': self.memassign,
@@ -220,7 +292,8 @@ class ISACaller:
                           'undefined': self.undefined,
                           'mode_is_64bit': True,
                           'SO': XER_bits['SO']
-                          }
+                          })
+
 
         # field-selectable versions of Condition Register TODO check bitranges?
         self.crl = []
@@ -235,8 +308,12 @@ class ISACaller:
 
     def TRAP(self, trap_addr=0x700):
         print ("TRAP: TODO")
-        # store PC in SRR0, set PC to 0x700
-        # store MSR in SRR1, set MSR to um errr something
+        #self.namespace['NIA'] = trap_addr
+        #self.SRR0 = self.namespace['CIA'] + 4
+        #self.SRR1 = self.namespace['MSR']
+        #self.namespace['MSR'][45] = 1
+        # store CIA(+4?) in SRR0, set NIA to 0x700
+        # store MSR in SRR1, set MSR to um errr something, have to check spec
 
     def memassign(self, ea, sz, val):
         self.mem.memassign(ea, sz, val)
@@ -263,7 +340,7 @@ class ISACaller:
         self.namespace['CA'] = self.spr['XER'][XER_bits['CA']].value
         self.namespace['CA32'] = self.spr['XER'][XER_bits['CA32']].value
 
-    def handle_carry_(self, inputs, outputs):
+    def handle_carry_(self, inputs, outputs, already_done):
         inv_a = yield self.dec2.e.invert_a
         if inv_a:
             inputs[0] = ~inputs[0]
@@ -273,20 +350,33 @@ class ISACaller:
             imm = yield self.dec2.e.imm_data.data
             inputs.append(SelectableInt(imm, 64))
         assert len(outputs) >= 1
-        output = outputs[0]
-        gts = [(x > output) for x in inputs]
+        print ("outputs", repr(outputs))
+        if isinstance(outputs, list) or isinstance(outputs, tuple):
+            output = outputs[0]
+        else:
+            output = outputs
+        gts = []
+        for x in inputs:
+            print ("gt input", x, output)
+            gt = (x > output)
+            gts.append(gt)
         print(gts)
         cy = 1 if any(gts) else 0
-        self.spr['XER'][XER_bits['CA']] = cy
+        if not (1 & already_done):
+            self.spr['XER'][XER_bits['CA']] = cy
 
         print ("inputs", inputs)
         # 32 bit carry
-        gts = [(x[32:64] > output[32:64]) == SelectableInt(1, 1)
-               for x in inputs]
+        gts = []
+        for x in inputs:
+            print ("input", x, output)
+            gt = (x[32:64] > output[32:64]) == SelectableInt(1, 1)
+            gts.append(gt)
         cy32 = 1 if any(gts) else 0
-        self.spr['XER'][XER_bits['CA32']] = cy32
+        if not (2 & already_done):
+            self.spr['XER'][XER_bits['CA32']] = cy32
 
-    def handle_overflow(self, inputs, outputs):
+    def handle_overflow(self, inputs, outputs, div_overflow):
         inv_a = yield self.dec2.e.invert_a
         if inv_a:
             inputs[0] = ~inputs[0]
@@ -296,19 +386,35 @@ class ISACaller:
             imm = yield self.dec2.e.imm_data.data
             inputs.append(SelectableInt(imm, 64))
         assert len(outputs) >= 1
-        if len(inputs) >= 2:
+        print ("handle_overflow", inputs, outputs, div_overflow)
+        if len(inputs) < 2 and div_overflow != 1:
+            return
+
+        # div overflow is different: it's returned by the pseudo-code
+        # because it's more complex than can be done by analysing the output
+        if div_overflow == 1:
+            ov, ov32 = 1, 1
+        # arithmetic overflow can be done by analysing the input and output
+        elif len(inputs) >= 2:
             output = outputs[0]
+
+            # OV (64-bit)
             input_sgn = [exts(x.value, x.bits) < 0 for x in inputs]
             output_sgn = exts(output.value, output.bits) < 0
             ov = 1 if input_sgn[0] == input_sgn[1] and \
                 output_sgn != input_sgn[0] else 0
 
-            self.spr['XER'][XER_bits['OV']] = ov
-            so = self.spr['XER'][XER_bits['SO']]
-            so = so | ov
-            self.spr['XER'][XER_bits['SO']] = so
-
+            # OV (32-bit)
+            input32_sgn = [exts(x.value, 32) < 0 for x in inputs]
+            output32_sgn = exts(output.value, 32) < 0
+            ov32 = 1 if input32_sgn[0] == input32_sgn[1] and \
+                output32_sgn != input32_sgn[0] else 0
 
+        self.spr['XER'][XER_bits['OV']] = ov
+        self.spr['XER'][XER_bits['OV32']] = ov32
+        so = self.spr['XER'][XER_bits['SO']]
+        so = so | ov
+        self.spr['XER'][XER_bits['SO']] = so
 
     def handle_comparison(self, outputs):
         out = outputs[0]
@@ -323,11 +429,82 @@ class ISACaller:
     def set_pc(self, pc_val):
         self.namespace['NIA'] = SelectableInt(pc_val, 64)
         self.pc.update(self.namespace)
-        
+
+    def setup_one(self):
+        """set up one instruction
+        """
+        if self.respect_pc:
+            pc = self.pc.CIA.value
+        else:
+            pc = self.fake_pc
+        self._pc = pc
+        ins = self.imem.ld(pc, 4, False, True)
+        if ins is None:
+            raise KeyError("no instruction at 0x%x" % pc)
+        print("setup: 0x%x 0x%x %s" % (pc, ins & 0xffffffff, bin(ins)))
+        print ("NIA, CIA", self.pc.CIA.value, self.pc.NIA.value)
+
+        yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff)
+        yield self.dec2.dec.bigendian.eq(0)  # little / big?
+
+    def execute_one(self):
+        """execute one instruction
+        """
+        # get the disassembly code for this instruction
+        code = self.disassembly[self._pc]
+        print("sim-execute", hex(self._pc), code)
+        opname = code.split(' ')[0]
+        yield from self.call(opname)
+
+        if not self.respect_pc:
+            self.fake_pc += 4
+        print ("NIA, CIA", self.pc.CIA.value, self.pc.NIA.value)
+
+    def get_assembly_name(self):
+        # TODO, asmregs is from the spec, e.g. add RT,RA,RB
+        # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
+        asmcode = yield self.dec2.dec.op.asmcode
+        asmop = insns.get(asmcode, None)
+
+        # sigh reconstruct the assembly instruction name
+        ov_en = yield self.dec2.e.oe.oe
+        ov_ok = yield self.dec2.e.oe.ok
+        if ov_en & ov_ok:
+            asmop += "."
+        lk = yield self.dec2.e.lk
+        if lk:
+            asmop += "l"
+        int_op = yield self.dec2.dec.op.internal_op
+        print ("int_op", int_op)
+        if int_op in [InternalOp.OP_B.value, InternalOp.OP_BC.value]:
+            AA = yield self.dec2.dec.fields.FormI.AA[0:-1]
+            print ("AA", AA)
+            if AA:
+                asmop += "a"
+        if int_op == InternalOp.OP_MFCR.value:
+            dec_insn = yield self.dec2.e.insn
+            if dec_insn & (1<<20) != 0: # sigh
+                asmop = 'mfocrf'
+            else:
+                asmop = 'mfcr'
+        # XXX TODO: for whatever weird reason this doesn't work
+        # https://bugs.libre-soc.org/show_bug.cgi?id=390
+        if int_op == InternalOp.OP_MTCRF.value:
+            dec_insn = yield self.dec2.e.insn
+            if dec_insn & (1<<20) != 0: # sigh
+                asmop = 'mtocrf'
+            else:
+                asmop = 'mtcrf'
+        return asmop
 
     def call(self, name):
         # TODO, asmregs is from the spec, e.g. add RT,RA,RB
         # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
+        asmop = yield from self.get_assembly_name()
+        print  ("call", name, asmop)
+        if name not in ['mtcrf', 'mtocrf']:
+            assert name == asmop, "name %s != %s" % (name, asmop)
+
         info = self.instrs[name]
         yield from self.prep_namespace(info.form, info.op_fields)
 
@@ -355,26 +532,49 @@ class ISACaller:
         results = info.func(self, *inputs)
         print(results)
 
+        # detect if CA/CA32 already in outputs (sra*, basically)
+        already_done = 0
+        if info.write_regs:
+            output_names = create_args(info.write_regs)
+            for name in output_names:
+                if name == 'CA':
+                    already_done |= 1
+                if name == 'CA32':
+                    already_done |= 2
+
+        print ("carry already done?", bin(already_done))
         carry_en = yield self.dec2.e.output_carry
         if carry_en:
-            yield from self.handle_carry_(inputs, results)
-        ov_en = yield self.dec2.e.oe
-        if ov_en:
-            yield from self.handle_overflow(inputs, results)
+            yield from self.handle_carry_(inputs, results, already_done)
+
+        # detect if overflow was in return result
+        overflow = None
+        if info.write_regs:
+            for name, output in zip(output_names, results):
+                if name == 'overflow':
+                    overflow = output
+
+        ov_en = yield self.dec2.e.oe.oe
+        ov_ok = yield self.dec2.e.oe.ok
+        print ("internal overflow", overflow)
+        if ov_en & ov_ok:
+            yield from self.handle_overflow(inputs, results, overflow)
+
         rc_en = yield self.dec2.e.rc.data
         if rc_en:
             self.handle_comparison(results)
 
         # any modified return results?
         if info.write_regs:
-            output_names = create_args(info.write_regs)
             for name, output in zip(output_names, results):
+                if name == 'overflow': # ignore, done already (above)
+                    continue
                 if isinstance(output, int):
                     output = SelectableInt(output, 256)
                 if name in ['CA', 'CA32']:
                     if carry_en:
                         print ("writing %s to XER" % name, output)
-                        self.spr['XER'][XER_bits[name]].eq(output)
+                        self.spr['XER'][XER_bits[name]] = output.value
                     else:
                         print ("NOT writing %s to XER" % name, output)
                 elif name in info.special_regs: