getting sim instruction decoder to reproduce asm instruction disassembly
[soc.git] / src / soc / decoder / isa / caller.py
index 532957e87467ecc9496fa872ce6ba249c11d690d..5de6de592708bdbd7de139bfefb610d73c52ef32 100644 (file)
@@ -9,10 +9,11 @@ from functools import wraps
 from soc.decoder.orderedset import OrderedSet
 from soc.decoder.selectable_int import (FieldSelectableInt, SelectableInt,
                                         selectconcat)
-from soc.decoder.power_enums import spr_dict, XER_bits
+from soc.decoder.power_enums import spr_dict, XER_bits, insns, InternalOp
 from soc.decoder.helpers import exts
 from collections import namedtuple
 import math
+import sys
 
 instruction_info = namedtuple('instruction_info',
                               'func read_regs uninit_regs write_regs ' + \
@@ -26,6 +27,12 @@ special_sprs = {
     'VRSAVE': 256}
 
 
+def swap_order(x, nbytes):
+    x = x.to_bytes(nbytes, byteorder='little')
+    x = int.from_bytes(x, byteorder='big', signed=False)
+    return x
+
+
 def create_args(reglist, extra=None):
     args = OrderedSet()
     for reg in reglist:
@@ -38,31 +45,47 @@ def create_args(reglist, extra=None):
 
 class Mem:
 
-    def __init__(self, bytes_per_word=8, initial_mem=None):
+    def __init__(self, row_bytes=8, initial_mem=None):
         self.mem = {}
-        self.bytes_per_word = bytes_per_word
-        self.word_log2 = math.ceil(math.log2(bytes_per_word))
+        self.bytes_per_word = row_bytes
+        self.word_log2 = math.ceil(math.log2(row_bytes))
+        print ("Sim-Mem", initial_mem, self.bytes_per_word, self.word_log2)
         if not initial_mem:
             return
-        print ("Sim-Mem", initial_mem, self.bytes_per_word)
+
+        # different types of memory data structures recognised (for convenience)
+        if isinstance(initial_mem, list):
+            initial_mem = (0, initial_mem)
+        if isinstance(initial_mem, tuple):
+            startaddr, mem = initial_mem
+            initial_mem = {}
+            for i, val in enumerate(mem):
+                initial_mem[startaddr + row_bytes*i] = (val, row_bytes)
+
         for addr, (val, width) in initial_mem.items():
-            self.st(addr, val, width)
+            #val = swap_order(val, width)
+            self.st(addr, val, width, swap=False)
 
     def _get_shifter_mask(self, wid, remainder):
         shifter = ((self.bytes_per_word - wid) - remainder) * \
             8  # bits per byte
+        # XXX https://bugs.libre-soc.org/show_bug.cgi?id=377
+        # BE/LE mode?
+        shifter = remainder * 8
         mask = (1 << (wid * 8)) - 1
         print ("width,rem,shift,mask", wid, remainder, hex(shifter), hex(mask))
         return shifter, mask
 
     # TODO: Implement ld/st of lesser width
-    def ld(self, address, width=8):
+    def ld(self, address, width=8, swap=True, check_in_mem=False):
         print("ld from addr 0x{:x} width {:d}".format(address, width))
         remainder = address & (self.bytes_per_word - 1)
         address = address >> self.word_log2
         assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
         if address in self.mem:
             val = self.mem[address]
+        elif check_in_mem:
+            return None
         else:
             val = 0
         print("mem @ 0x{:x} rem {:d} : 0x{:x}".format(address, remainder, val))
@@ -72,14 +95,20 @@ class Mem:
             print ("masking", hex(val), hex(mask<<shifter), shifter)
             val = val & (mask << shifter)
             val >>= shifter
+        if swap:
+            val = swap_order(val, width)
         print("Read 0x{:x} from addr 0x{:x}".format(val, address))
         return val
 
-    def st(self, addr, v, width=8):
+    def st(self, addr, v, width=8, swap=True):
+        staddr = addr
         remainder = addr & (self.bytes_per_word - 1)
         addr = addr >> self.word_log2
-        print("Writing 0x{:x} to addr 0x{:x}/{:x}".format(v, addr, remainder))
+        print("Writing 0x{:x} to ST 0x{:x} memaddr 0x{:x}/{:x}".format(v,
+                        staddr, addr, remainder, swap))
         assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
+        if swap:
+            v = swap_order(v, width)
         if width != self.bytes_per_word:
             if addr in self.mem:
                 val = self.mem[addr]
@@ -179,23 +208,49 @@ class SPR(dict):
 
     def __call__(self, ridx):
         return self[ridx]
-        
-        
+
 
 class ISACaller:
     # decoder2 - an instance of power_decoder2
     # regfile - a list of initial values for the registers
+    # initial_{etc} - initial values for SPRs, Condition Register, Mem, MSR
+    # respect_pc - tracks the program counter.  requires initial_insns
     def __init__(self, decoder2, regfile, initial_sprs=None, initial_cr=0,
-                       initial_mem=None, initial_msr=0):
+                       initial_mem=None, initial_msr=0,
+                       initial_insns=None, respect_pc=False,
+                       disassembly=None):
+
+        self.respect_pc = respect_pc
         if initial_sprs is None:
             initial_sprs = {}
         if initial_mem is None:
             initial_mem = {}
+        if initial_insns is None:
+            initial_insns = {}
+            assert self.respect_pc == False, "instructions required to honor pc"
+
+        print ("ISACaller insns", respect_pc, initial_insns, disassembly)
+
+        # "fake program counter" mode (for unit testing)
+        self.fake_pc = 0
+        if not respect_pc:
+            if isinstance(initial_mem, tuple):
+                self.fake_pc = initial_mem[0]
+
+        # disassembly: we need this for now (not given from the decoder)
+        self.disassembly = {}
+        if disassembly:
+            for i, code in enumerate(disassembly):
+                self.disassembly[i*4 + self.fake_pc] = code
+
+        # set up registers, instruction memory, data memory, PC, SPRs, MSR
         self.gpr = GPR(decoder2, regfile)
-        self.mem = Mem(initial_mem=initial_mem)
+        self.mem = Mem(row_bytes=8, initial_mem=initial_mem)
+        self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
         self.pc = PC()
         self.spr = SPR(decoder2, initial_sprs)
         self.msr = SelectableInt(initial_msr, 64) # underlying reg
+
         # TODO, needed here:
         # FPR (same as GPR except for FP nums)
         # 4.2.2 p124 FPSCR (definitely "separate" - not in SPR)
@@ -305,6 +360,7 @@ class ISACaller:
             imm = yield self.dec2.e.imm_data.data
             inputs.append(SelectableInt(imm, 64))
         assert len(outputs) >= 1
+        print ("handle_overflow", inputs, outputs)
         if len(inputs) >= 2:
             output = outputs[0]
 
@@ -326,8 +382,6 @@ class ISACaller:
             so = so | ov
             self.spr['XER'][XER_bits['SO']] = so
 
-
-
     def handle_comparison(self, outputs):
         out = outputs[0]
         out = exts(out.value, out.bits)
@@ -341,11 +395,73 @@ class ISACaller:
     def set_pc(self, pc_val):
         self.namespace['NIA'] = SelectableInt(pc_val, 64)
         self.pc.update(self.namespace)
-        
+
+    def setup_one(self):
+        """set up one instruction
+        """
+        if self.respect_pc:
+            pc = self.pc.CIA.value
+        else:
+            pc = self.fake_pc
+        self._pc = pc
+        ins = self.imem.ld(pc, 4, False, True)
+        if ins is None:
+            raise KeyError("no instruction at 0x%x" % pc)
+        print("setup: 0x%x 0x%x %s" % (pc, ins & 0xffffffff, bin(ins)))
+        print ("NIA, CIA", self.pc.CIA.value, self.pc.NIA.value)
+
+        yield self.dec2.dec.raw_opcode_in.eq(ins)
+        yield self.dec2.dec.bigendian.eq(0)  # little / big?
+
+    def execute_one(self):
+        """execute one instruction
+        """
+        # get the disassembly code for this instruction
+        code = self.disassembly[self._pc]
+        print("sim-execute", hex(self._pc), code)
+        opname = code.split(' ')[0]
+        yield from self.call(opname)
+
+        if not self.respect_pc:
+            self.fake_pc += 4
+        print ("NIA, CIA", self.pc.CIA.value, self.pc.NIA.value)
 
     def call(self, name):
         # TODO, asmregs is from the spec, e.g. add RT,RA,RB
         # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
+        asmcode = yield self.dec2.dec.op.asmcode
+        asmop = insns.get(asmcode, None)
+
+        # sigh reconstruct the assembly instruction name
+        ov_en = yield self.dec2.e.oe.oe
+        ov_ok = yield self.dec2.e.oe.ok
+        if ov_en & ov_ok:
+            asmop += "."
+        lk = yield self.dec2.e.lk
+        if lk:
+            asmop += "l"
+        int_op = yield self.dec2.dec.op.internal_op
+        print ("int_op", int_op)
+        if int_op in [InternalOp.OP_B.value, InternalOp.OP_BC.value]:
+            AA = yield self.dec2.dec.fields.FormI.AA[0:-1]
+            print ("AA", AA)
+            if AA:
+                asmop += "a"
+        if int_op == InternalOp.OP_MFCR.value:
+            dec_insn = yield self.dec2.e.insn
+            if dec_insn & (1<<20): # sigh
+                asmop = 'mfocrf'
+            else:
+                asmop = 'mfcr'
+        if int_op == InternalOp.OP_MTCRF.value:
+            dec_insn = yield self.dec2.e.insn
+            if dec_insn & (1<<20): # sigh
+                asmop = 'mtocrf'
+            else:
+                asmop = 'mtcrf'
+        print  ("call", name, asmcode, asmop)
+        assert name == asmop, "name %s != %s" % (name, asmop)
+
         info = self.instrs[name]
         yield from self.prep_namespace(info.form, info.op_fields)