decoding assembly instruction name, move to separate function
[soc.git] / src / soc / decoder / isa / caller.py
index 53b29c09e1ea51346a452eb14eb99c411d001070..7ca27b10cf89c0a08ae642e20b34c4cb7c232487 100644 (file)
@@ -1,11 +1,19 @@
+"""core of the python-based POWER9 simulator
+
+this is part of a cycle-accurate POWER9 simulator.  its primary purpose is
+not speed, it is for both learning and educational purposes, as well as
+a method of verifying the HDL.
+"""
+
 from functools import wraps
 from soc.decoder.orderedset import OrderedSet
 from soc.decoder.selectable_int import (FieldSelectableInt, SelectableInt,
                                         selectconcat)
-from soc.decoder.power_enums import spr_dict, XER_bits
+from soc.decoder.power_enums import spr_dict, XER_bits, insns, InternalOp
 from soc.decoder.helpers import exts
 from collections import namedtuple
 import math
+import sys
 
 instruction_info = namedtuple('instruction_info',
                               'func read_regs uninit_regs write_regs ' + \
@@ -19,6 +27,12 @@ special_sprs = {
     'VRSAVE': 256}
 
 
+def swap_order(x, nbytes):
+    x = x.to_bytes(nbytes, byteorder='little')
+    x = int.from_bytes(x, byteorder='big', signed=False)
+    return x
+
+
 def create_args(reglist, extra=None):
     args = OrderedSet()
     for reg in reglist:
@@ -31,50 +45,82 @@ def create_args(reglist, extra=None):
 
 class Mem:
 
-    def __init__(self, bytes_per_word=8):
+    def __init__(self, row_bytes=8, initial_mem=None):
         self.mem = {}
-        self.bytes_per_word = bytes_per_word
-        self.word_log2 = math.ceil(math.log2(bytes_per_word))
-
-    def _get_shifter_mask(self, width, remainder):
-        shifter = ((self.bytes_per_word - width) - remainder) * \
+        self.bytes_per_word = row_bytes
+        self.word_log2 = math.ceil(math.log2(row_bytes))
+        print ("Sim-Mem", initial_mem, self.bytes_per_word, self.word_log2)
+        if not initial_mem:
+            return
+
+        # different types of memory data structures recognised (for convenience)
+        if isinstance(initial_mem, list):
+            initial_mem = (0, initial_mem)
+        if isinstance(initial_mem, tuple):
+            startaddr, mem = initial_mem
+            initial_mem = {}
+            for i, val in enumerate(mem):
+                initial_mem[startaddr + row_bytes*i] = (val, row_bytes)
+
+        for addr, (val, width) in initial_mem.items():
+            #val = swap_order(val, width)
+            self.st(addr, val, width, swap=False)
+
+    def _get_shifter_mask(self, wid, remainder):
+        shifter = ((self.bytes_per_word - wid) - remainder) * \
             8  # bits per byte
-        mask = (1 << (width * 8)) - 1
+        # XXX https://bugs.libre-soc.org/show_bug.cgi?id=377
+        # BE/LE mode?
+        shifter = remainder * 8
+        mask = (1 << (wid * 8)) - 1
+        print ("width,rem,shift,mask", wid, remainder, hex(shifter), hex(mask))
         return shifter, mask
 
     # TODO: Implement ld/st of lesser width
-    def ld(self, address, width=8):
+    def ld(self, address, width=8, swap=True, check_in_mem=False):
+        print("ld from addr 0x{:x} width {:d}".format(address, width))
         remainder = address & (self.bytes_per_word - 1)
         address = address >> self.word_log2
         assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
         if address in self.mem:
             val = self.mem[address]
+        elif check_in_mem:
+            return None
         else:
             val = 0
+        print("mem @ 0x{:x} rem {:d} : 0x{:x}".format(address, remainder, val))
 
         if width != self.bytes_per_word:
             shifter, mask = self._get_shifter_mask(width, remainder)
+            print ("masking", hex(val), hex(mask<<shifter), shifter)
             val = val & (mask << shifter)
             val >>= shifter
-        print("Read {:x} from addr {:x}".format(val, address))
+        if swap:
+            val = swap_order(val, width)
+        print("Read 0x{:x} from addr 0x{:x}".format(val, address))
         return val
 
-    def st(self, address, value, width=8):
-        remainder = address & (self.bytes_per_word - 1)
-        address = address >> self.word_log2
+    def st(self, addr, v, width=8, swap=True):
+        staddr = addr
+        remainder = addr & (self.bytes_per_word - 1)
+        addr = addr >> self.word_log2
+        print("Writing 0x{:x} to ST 0x{:x} memaddr 0x{:x}/{:x}".format(v,
+                        staddr, addr, remainder, swap))
         assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
-        print("Writing {:x} to addr {:x}".format(value, address))
+        if swap:
+            v = swap_order(v, width)
         if width != self.bytes_per_word:
-            if address in self.mem:
-                val = self.mem[address]
+            if addr in self.mem:
+                val = self.mem[addr]
             else:
                 val = 0
             shifter, mask = self._get_shifter_mask(width, remainder)
             val &= ~(mask << shifter)
-            val |= value << shifter
-            self.mem[address] = val
+            val |= v << shifter
+            self.mem[addr] = val
         else:
-            self.mem[address] = value
+            self.mem[addr] = v
+        print("mem @ 0x{:x}: 0x{:x}".format(addr, self.mem[addr]))
 
     def __call__(self, addr, sz):
         val = self.ld(addr.value, sz)
@@ -151,7 +197,8 @@ class SPR(dict):
             return dict.__getitem__(self, key)
         else:
             info = spr_dict[key]
-            return SelectableInt(0, info.length)
+            dict.__setitem__(self, key, SelectableInt(0, info.length))
+            return dict.__getitem__(self, key)
 
     def __setitem__(self, key, value):
         if isinstance(key, SelectableInt):
@@ -161,17 +208,49 @@ class SPR(dict):
 
     def __call__(self, ridx):
         return self[ridx]
-        
-        
+
 
 class ISACaller:
     # decoder2 - an instance of power_decoder2
     # regfile - a list of initial values for the registers
-    def __init__(self, decoder2, regfile, initial_sprs={}):
+    # initial_{etc} - initial values for SPRs, Condition Register, Mem, MSR
+    # respect_pc - tracks the program counter.  requires initial_insns
+    def __init__(self, decoder2, regfile, initial_sprs=None, initial_cr=0,
+                       initial_mem=None, initial_msr=0,
+                       initial_insns=None, respect_pc=False,
+                       disassembly=None):
+
+        self.respect_pc = respect_pc
+        if initial_sprs is None:
+            initial_sprs = {}
+        if initial_mem is None:
+            initial_mem = {}
+        if initial_insns is None:
+            initial_insns = {}
+            assert self.respect_pc == False, "instructions required to honor pc"
+
+        print ("ISACaller insns", respect_pc, initial_insns, disassembly)
+
+        # "fake program counter" mode (for unit testing)
+        self.fake_pc = 0
+        if not respect_pc:
+            if isinstance(initial_mem, tuple):
+                self.fake_pc = initial_mem[0]
+
+        # disassembly: we need this for now (not given from the decoder)
+        self.disassembly = {}
+        if disassembly:
+            for i, code in enumerate(disassembly):
+                self.disassembly[i*4 + self.fake_pc] = code
+
+        # set up registers, instruction memory, data memory, PC, SPRs, MSR
         self.gpr = GPR(decoder2, regfile)
-        self.mem = Mem()
+        self.mem = Mem(row_bytes=8, initial_mem=initial_mem)
+        self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
         self.pc = PC()
         self.spr = SPR(decoder2, initial_sprs)
+        self.msr = SelectableInt(initial_msr, 64) # underlying reg
+
         # TODO, needed here:
         # FPR (same as GPR except for FP nums)
         # 4.2.2 p124 FPSCR (definitely "separate" - not in SPR)
@@ -186,7 +265,7 @@ class ISACaller:
         # 3.2.3 p46 p232 VRSAVE (actually SPR #256)
 
         # create CR then allow portions of it to be "selectable" (below)
-        self._cr = SelectableInt(0, 64) # underlying reg
+        self._cr = SelectableInt(initial_cr, 64) # underlying reg
         self.cr = FieldSelectableInt(self._cr, list(range(32,64)))
 
         # "undefined", just set to variable-bit-width int (use exts "max")
@@ -199,6 +278,7 @@ class ISACaller:
                           'NIA': self.pc.NIA,
                           'CIA': self.pc.CIA,
                           'CR': self.cr,
+                          'MSR': self.msr,
                           'undefined': self.undefined,
                           'mode_is_64bit': True,
                           'SO': XER_bits['SO']
@@ -215,6 +295,11 @@ class ISACaller:
         self.decoder = decoder2.dec
         self.dec2 = decoder2
 
+    def TRAP(self, trap_addr=0x700):
+        print ("TRAP: TODO")
+        # store CIA(+4?) in SRR0, set NIA to 0x700
+        # store MSR in SRR1, set MSR to um errr something, have to check spec
+
     def memassign(self, ea, sz, val):
         self.mem.memassign(ea, sz, val)
 
@@ -231,25 +316,71 @@ class ISACaller:
             else:
                 sig = getattr(fields, name)
             val = yield sig
-            if name == 'BF':
+            if name in ['BF', 'BFA']:
                 self.namespace[name] = val
             else:
                 self.namespace[name] = SelectableInt(val, sig.width)
 
         self.namespace['XER'] = self.spr['XER']
         self.namespace['CA'] = self.spr['XER'][XER_bits['CA']].value
+        self.namespace['CA32'] = self.spr['XER'][XER_bits['CA32']].value
 
-    def handle_carry(self, inputs, outputs):
-        inv_a = yield self.dec2.invert_a
+    def handle_carry_(self, inputs, outputs, already_done):
+        inv_a = yield self.dec2.e.invert_a
         if inv_a:
             inputs[0] = ~inputs[0]
+
+        imm_ok = yield self.dec2.e.imm_data.ok
+        if imm_ok:
+            imm = yield self.dec2.e.imm_data.data
+            inputs.append(SelectableInt(imm, 64))
         assert len(outputs) >= 1
         output = outputs[0]
-        gts = [(x > output) == SelectableInt(1, 1) for x in inputs]
+        gts = [(x > output) for x in inputs]
         print(gts)
-        if all(gts):
-            return True
-        return False
+        cy = 1 if any(gts) else 0
+        if not (1 & already_done):
+            self.spr['XER'][XER_bits['CA']] = cy
+
+        print ("inputs", inputs)
+        # 32 bit carry
+        gts = [(x[32:64] > output[32:64]) == SelectableInt(1, 1)
+               for x in inputs]
+        cy32 = 1 if any(gts) else 0
+        if not (2 & already_done):
+            self.spr['XER'][XER_bits['CA32']] = cy32
+
+    def handle_overflow(self, inputs, outputs):
+        inv_a = yield self.dec2.e.invert_a
+        if inv_a:
+            inputs[0] = ~inputs[0]
+
+        imm_ok = yield self.dec2.e.imm_data.ok
+        if imm_ok:
+            imm = yield self.dec2.e.imm_data.data
+            inputs.append(SelectableInt(imm, 64))
+        assert len(outputs) >= 1
+        print ("handle_overflow", inputs, outputs)
+        if len(inputs) >= 2:
+            output = outputs[0]
+
+            # OV (64-bit)
+            input_sgn = [exts(x.value, x.bits) < 0 for x in inputs]
+            output_sgn = exts(output.value, output.bits) < 0
+            ov = 1 if input_sgn[0] == input_sgn[1] and \
+                output_sgn != input_sgn[0] else 0
+
+            # OV (32-bit)
+            input32_sgn = [exts(x.value, 32) < 0 for x in inputs]
+            output32_sgn = exts(output.value, 32) < 0
+            ov32 = 1 if input32_sgn[0] == input32_sgn[1] and \
+                output32_sgn != input32_sgn[0] else 0
+
+            self.spr['XER'][XER_bits['OV']] = ov
+            self.spr['XER'][XER_bits['OV32']] = ov32
+            so = self.spr['XER'][XER_bits['SO']]
+            so = so | ov
+            self.spr['XER'][XER_bits['SO']] = so
 
     def handle_comparison(self, outputs):
         out = outputs[0]
@@ -257,18 +388,89 @@ class ISACaller:
         zero = SelectableInt(out == 0, 1)
         positive = SelectableInt(out > 0, 1)
         negative = SelectableInt(out < 0, 1)
-        SO = SelectableInt(0, 1)
+        SO = self.spr['XER'][XER_bits['SO']]
         cr_field = selectconcat(negative, positive, zero, SO)
         self.crl[0].eq(cr_field)
 
     def set_pc(self, pc_val):
         self.namespace['NIA'] = SelectableInt(pc_val, 64)
         self.pc.update(self.namespace)
-        
+
+    def setup_one(self):
+        """set up one instruction
+        """
+        if self.respect_pc:
+            pc = self.pc.CIA.value
+        else:
+            pc = self.fake_pc
+        self._pc = pc
+        ins = self.imem.ld(pc, 4, False, True)
+        if ins is None:
+            raise KeyError("no instruction at 0x%x" % pc)
+        print("setup: 0x%x 0x%x %s" % (pc, ins & 0xffffffff, bin(ins)))
+        print ("NIA, CIA", self.pc.CIA.value, self.pc.NIA.value)
+
+        yield self.dec2.dec.raw_opcode_in.eq(ins)
+        yield self.dec2.dec.bigendian.eq(0)  # little / big?
+
+    def execute_one(self):
+        """execute one instruction
+        """
+        # get the disassembly code for this instruction
+        code = self.disassembly[self._pc]
+        print("sim-execute", hex(self._pc), code)
+        opname = code.split(' ')[0]
+        yield from self.call(opname)
+
+        if not self.respect_pc:
+            self.fake_pc += 4
+        print ("NIA, CIA", self.pc.CIA.value, self.pc.NIA.value)
+
+    def get_assembly_name(self):
+        # TODO, asmregs is from the spec, e.g. add RT,RA,RB
+        # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
+        asmcode = yield self.dec2.dec.op.asmcode
+        asmop = insns.get(asmcode, None)
+
+        # sigh reconstruct the assembly instruction name
+        ov_en = yield self.dec2.e.oe.oe
+        ov_ok = yield self.dec2.e.oe.ok
+        if ov_en & ov_ok:
+            asmop += "."
+        lk = yield self.dec2.e.lk
+        if lk:
+            asmop += "l"
+        int_op = yield self.dec2.dec.op.internal_op
+        print ("int_op", int_op)
+        if int_op in [InternalOp.OP_B.value, InternalOp.OP_BC.value]:
+            AA = yield self.dec2.dec.fields.FormI.AA[0:-1]
+            print ("AA", AA)
+            if AA:
+                asmop += "a"
+        if int_op == InternalOp.OP_MFCR.value:
+            dec_insn = yield self.dec2.e.insn
+            if dec_insn & (1<<20) != 0: # sigh
+                asmop = 'mfocrf'
+            else:
+                asmop = 'mfcr'
+        # for whatever weird reason this doesn't work
+        if int_op == InternalOp.OP_MTCRF.value:
+            dec_insn = yield self.dec2.e.insn
+            print ("mtcrf", bin(dec_insn), (dec_insn & (1<<20)))
+            if dec_insn & (1<<21) != 0: # sigh
+                asmop = 'mtocrf'
+            else:
+                asmop = 'mtcrf'
+        return asmop
 
     def call(self, name):
         # TODO, asmregs is from the spec, e.g. add RT,RA,RB
         # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
+        asmop = yield from self.get_assembly_name()
+        print  ("call", name, asmop)
+        if name not in ['mtcrf', 'mtocrf']:
+            assert name == asmop, "name %s != %s" % (name, asmop)
+
         info = self.instrs[name]
         yield from self.prep_namespace(info.form, info.op_fields)
 
@@ -296,20 +498,41 @@ class ISACaller:
         results = info.func(self, *inputs)
         print(results)
 
-        carry_en = yield self.dec2.e.rc.data
+        # detect if CA/CA32 already in outputs (sra*, basically)
+        already_done = 0
+        if info.write_regs:
+            output_names = create_args(info.write_regs)
+            for name in output_names:
+                if name == 'CA':
+                    already_done |= 1
+                if name == 'CA32':
+                    already_done |= 2
+
+        print ("carry already done?", bin(already_done))
+        carry_en = yield self.dec2.e.output_carry
         if carry_en:
-            cy = self.handle_carry(inputs, results)
-
+            yield from self.handle_carry_(inputs, results, already_done)
+        ov_en = yield self.dec2.e.oe.oe
+        ov_ok = yield self.dec2.e.oe.ok
+        if ov_en & ov_ok:
+            yield from self.handle_overflow(inputs, results)
+        rc_en = yield self.dec2.e.rc.data
+        if rc_en:
             self.handle_comparison(results)
 
         # any modified return results?
         if info.write_regs:
-            output_names = create_args(info.write_regs)
             for name, output in zip(output_names, results):
                 if isinstance(output, int):
                     output = SelectableInt(output, 256)
-                if name in info.special_regs:
-                    print('writing special %s' % name, output)
+                if name in ['CA', 'CA32']:
+                    if carry_en:
+                        print ("writing %s to XER" % name, output)
+                        self.spr['XER'][XER_bits[name]] = output.value
+                    else:
+                        print ("NOT writing %s to XER" % name, output)
+                elif name in info.special_regs:
+                    print('writing special %s' % name, output, special_sprs)
                     if name in special_sprs:
                         self.spr[name] = output
                     else:
@@ -326,7 +549,17 @@ class ISACaller:
 
 
 def inject():
-    """ Decorator factory. """
+    """Decorator factory.
+
+    this decorator will "inject" variables into the function's namespace,
+    from the *dictionary* in self.namespace.  it therefore becomes possible
+    to make it look like a whole stack of variables which would otherwise
+    need "self." inserted in front of them (*and* for those variables to be
+    added to the instance) "appear" in the function.
+
+    "self.namespace['SI']" for example becomes accessible as just "SI" but
+    *only* inside the function, when decorated.
+    """
     def variable_injector(func):
         @wraps(func)
         def decorator(*args, **kwargs):
@@ -335,7 +568,7 @@ def inject():
             except AttributeError:
                 func_globals = func.func_globals  # Earlier versions.
 
-            context = args[0].namespace
+            context = args[0].namespace # variables to be injected
             saved_values = func_globals.copy()  # Shallow copy of dict.
             func_globals.update(context)
             result = func(*args, **kwargs)