rename regspecs to give a consistent naming scheme
[soc.git] / src / soc / fu / compunits / test / test_alu_compunit.py
index 0d83e4c5a7f11c4a64ca60ce9d62f6baa539eb63..124752501b21db14d1f9879c09bbaa26a39d357d 100644 (file)
-from nmigen import Module, Signal
-from nmigen.back.pysim import Simulator, Delay, Settle
-from nmigen.test.utils import FHDLTestCase
-from nmigen.cli import rtlil
 import unittest
-from soc.decoder.isa.caller import ISACaller, special_sprs
-from soc.decoder.power_decoder import (create_pdecode)
-from soc.decoder.power_decoder2 import (PowerDecode2)
-from soc.decoder.power_enums import (XER_bits, Function, InternalOp)
-from soc.decoder.selectable_int import SelectableInt
-from soc.simulator.program import Program
-from soc.decoder.isa.all import ISA
-
-from soc.fu.alu.test.test_pipe_caller import TestCase, ALUTestCase, test_data
-from soc.fu.compunits import ALUFunctionUnit
-import random
-
-
-def set_alu_inputs(alu, dec2, sim):
-    # TODO: see https://bugs.libre-soc.org/show_bug.cgi?id=305#c43
-    # detect the immediate here (with m.If(self.i.ctx.op.imm_data.imm_ok))
-    # and place it into data_i.b
-
-    reg3_ok = yield dec2.e.read_reg3.ok
-    reg1_ok = yield dec2.e.read_reg1.ok
-    assert reg3_ok != reg1_ok
-    if reg3_ok:
-        data1 = yield dec2.e.read_reg3.data
-        data1 = sim.gpr(data1).value
-    elif reg1_ok:
-        data1 = yield dec2.e.read_reg1.data
-        data1 = sim.gpr(data1).value
-    else:
-        data1 = 0
-
-    yield alu.p.data_i.a.eq(data1)
-
-    # If there's an immediate, set the B operand to that
-    reg2_ok = yield dec2.e.read_reg2.ok
-    imm_ok = yield dec2.e.imm_data.imm_ok
-    if imm_ok:
-        data2 = yield dec2.e.imm_data.imm
-    elif reg2_ok:
-        data2 = yield dec2.e.read_reg2.data
-        data2 = sim.gpr(data2).value
-    else:
-        data2 = 0
-    yield alu.p.data_i.b.eq(data2)
-
-
-
-def set_extra_alu_inputs(alu, dec2, sim):
-    carry = 1 if sim.spr['XER'][XER_bits['CA']] else 0
-    carry32 = 1 if sim.spr['XER'][XER_bits['CA32']] else 0
-    yield alu.p.data_i.xer_ca[0].eq(carry)
-    yield alu.p.data_i.xer_ca[1].eq(carry32)
-    so = 1 if sim.spr['XER'][XER_bits['SO']] else 0
-    yield alu.p.data_i.xer_so.eq(so)
-
-
-
-class TestRunner(FHDLTestCase):
+from soc.decoder.power_enums import (XER_bits, Function)
+
+# XXX bad practice: use of global variables
+from soc.fu.alu.test.test_pipe_caller import ALUTestCase # creates the tests
+from soc.fu.alu.test.test_pipe_caller import test_data # imports the data
+
+from soc.fu.compunits.compunits import ALUFunctionUnit
+from soc.fu.compunits.test.test_compunit import TestRunner
+
+
+class ALUTestRunner(TestRunner):
     def __init__(self, test_data):
-        super().__init__("run_all")
-        self.test_data = test_data
-
-    def run_all(self):
-        m = Module()
-        comb = m.d.comb
-        instruction = Signal(32)
-
-        pdecode = create_pdecode()
-
-        m.submodules.pdecode2 = pdecode2 = PowerDecode2(pdecode)
-        m.submodules.cu = cu = ALUFunctionUnit()
-
-        comb += cu.oper_i.eq_from_execute1(pdecode2.e)
-        comb += alu.p.valid_i.eq(1)
-        comb += alu.n.ready_i.eq(1)
-        comb += pdecode2.dec.raw_opcode_in.eq(instruction)
-        sim = Simulator(m)
-
-        sim.add_clock(1e-6)
-        def process():
-            for test in self.test_data:
-                print(test.name)
-                program = test.program
-                self.subTest(test.name)
-                simulator = ISA(pdecode2, test.regs, test.sprs, 0)
-                gen = program.generate_instructions()
-                instructions = list(zip(gen, program.assembly.splitlines()))
-
-                index = simulator.pc.CIA.value//4
-                while index < len(instructions):
-                    ins, code = instructions[index]
-
-                    print("0x{:X}".format(ins & 0xffffffff))
-                    print(code)
-
-                    # ask the decoder to decode this binary data (endian'd)
-                    yield pdecode2.dec.bigendian.eq(0)  # little / big?
-                    yield instruction.eq(ins)          # raw binary instr.
-                    yield Settle()
-                    fn_unit = yield pdecode2.e.fn_unit
-                    self.assertEqual(fn_unit, Function.ALU.value)
-                    yield from set_alu_inputs(alu, pdecode2, simulator)
-                    yield from set_extra_alu_inputs(alu, pdecode2, simulator)
-                    yield
-                    opname = code.split(' ')[0]
-                    yield from simulator.call(opname)
-                    index = simulator.pc.CIA.value//4
-
-                    vld = yield alu.n.valid_o
-                    while not vld:
-                        yield
-                        vld = yield alu.n.valid_o
-                    yield
-                    alu_out = yield alu.n.data_o.o.data
-                    out_reg_valid = yield pdecode2.e.write_reg.ok
-                    if out_reg_valid:
-                        write_reg_idx = yield pdecode2.e.write_reg.data
-                        expected = simulator.gpr(write_reg_idx).value
-                        print(f"expected {expected:x}, actual: {alu_out:x}")
-                        self.assertEqual(expected, alu_out, code)
-                    yield from self.check_extra_alu_outputs(alu, pdecode2,
-                                                            simulator, code)
-
-        sim.add_sync_process(process)
-        with sim.write_vcd("simulator.vcd", "simulator.gtkw",
-                            traces=[]):
-            sim.run()
-
-    def check_extra_alu_outputs(self, alu, dec2, sim, code):
+        super().__init__(test_data, ALUFunctionUnit, self,
+                         Function.ALU)
+
+    def get_cu_inputs(self, dec2, sim):
+        """naming (res) must conform to ALUFunctionUnit input regspec
+        """
+        res = {}
+
+        # RA (or RC)
+        reg1_ok = yield dec2.e.read_reg1.ok
+        if reg1_ok:
+            data1 = yield dec2.e.read_reg1.data
+            res['ra'] = sim.gpr(data1).value
+
+        # RB (or immediate)
+        reg2_ok = yield dec2.e.read_reg2.ok
+        if reg2_ok:
+            data2 = yield dec2.e.read_reg2.data
+            res['rb'] = sim.gpr(data2).value
+
+        # XER.ca
+        carry = 1 if sim.spr['XER'][XER_bits['CA']] else 0
+        carry32 = 1 if sim.spr['XER'][XER_bits['CA32']] else 0
+        res['xer_ca'] = carry | (carry32<<1)
+
+        # XER.so
+        so = 1 if sim.spr['XER'][XER_bits['SO']] else 0
+        res['xer_so'] = so
+
+        return res
+
+    def check_cu_outputs(self, res, dec2, sim, code):
+        """naming (res) must conform to ALUFunctionUnit output regspec
+        """
+
+        # RT
+        out_reg_valid = yield dec2.e.write_reg.ok
+        if out_reg_valid:
+            write_reg_idx = yield dec2.e.write_reg.data
+            expected = sim.gpr(write_reg_idx).value
+            cu_out = res['o']
+            print(f"expected {expected:x}, actual: {cu_out:x}")
+            self.assertEqual(expected, cu_out, code)
+
         rc = yield dec2.e.rc.data
+        op = yield dec2.e.insn_type
+        cridx_ok = yield dec2.e.write_cr.ok
+        cridx = yield dec2.e.write_cr.data
+
+        print ("check extra output", repr(code), cridx_ok, cridx)
+
         if rc:
-            cr_expected = sim.crl[0].get_range().value
-            cr_actual = yield alu.n.data_o.cr0.data
-            self.assertEqual(cr_expected, cr_actual, code)
+            self.assertEqual(cridx_ok, 1, code)
+            self.assertEqual(cridx, 0, code)
 
-        op = yield dec2.e.insn_type
-        if op == InternalOp.OP_CMP.value or \
-           op == InternalOp.OP_CMPEQB.value:
-            bf = yield dec2.dec.BF
-            cr_actual = yield alu.n.data_o.cr0.data
-            cr_expected = sim.crl[bf].get_range().value
-            self.assertEqual(cr_expected, cr_actual, code)
+        # CR (CR0-7)
+        if cridx_ok:
+            cr_expected = sim.crl[cridx].get_range().value
+            cr_actual = res['cr_a']
+            print ("CR", cridx, cr_expected, cr_actual)
+            self.assertEqual(cr_expected, cr_actual, "CR%d %s" % (cridx, code))
 
+        # XER.ca
         cry_out = yield dec2.e.output_carry
         if cry_out:
             expected_carry = 1 if sim.spr['XER'][XER_bits['CA']] else 0
-            real_carry = yield alu.n.data_o.xer_ca.data[0] # XXX CO not CO32
+            xer_ca = res['xer_ca']
+            real_carry = xer_ca & 0b1 # XXX CO not CO32
             self.assertEqual(expected_carry, real_carry, code)
             expected_carry32 = 1 if sim.spr['XER'][XER_bits['CA32']] else 0
-            real_carry32 = yield alu.n.data_o.xer_ca.data[1] # XXX CO32
+            real_carry32 = bool(xer_ca & 0b10) # XXX CO32
             self.assertEqual(expected_carry32, real_carry32, code)
 
+        # TODO: XER.ov and XER.so
+        oe = yield dec2.e.oe.data
+        if oe:
+            xer_ov = res['xer_ov']
+            xer_so = res['xer_so']
 
 
 if __name__ == "__main__":
     unittest.main(exit=False)
     suite = unittest.TestSuite()
-    suite.addTest(TestRunner(test_data))
+    suite.addTest(ALUTestRunner(test_data))
 
     runner = unittest.TextTestRunner()
     runner.run(suite)