Read FP registers, and general CSRs*
[riscv-isa-sim.git] / riscv / gdbserver.cc
1 #include <arpa/inet.h>
2 #include <errno.h>
3 #include <fcntl.h>
4 #include <stdlib.h>
5 #include <string.h>
6 #include <sys/socket.h>
7 #include <sys/types.h>
8 #include <unistd.h>
9
10 #include <algorithm>
11 #include <cassert>
12 #include <cstdio>
13 #include <vector>
14
15 #include "disasm.h"
16 #include "sim.h"
17 #include "gdbserver.h"
18 #include "mmu.h"
19
20 #define C_EBREAK 0x9002
21 #define EBREAK 0x00100073
22
23 //////////////////////////////////////// Utility Functions
24
25 void die(const char* msg)
26 {
27 fprintf(stderr, "gdbserver code died: %s\n", msg);
28 abort();
29 }
30
31 // gdb's register list is defined in riscv_gdb_reg_names gdb/riscv-tdep.c in
32 // its source tree. We must interpret the numbers the same here.
33 enum {
34 REG_XPR0 = 0,
35 REG_XPR31 = 31,
36 REG_PC = 32,
37 REG_FPR0 = 33,
38 REG_FPR31 = 64,
39 REG_CSR0 = 65,
40 REG_CSR4095 = 4160,
41 REG_END = 4161
42 };
43
44 //////////////////////////////////////// Functions to generate RISC-V opcodes.
45
46 // TODO: Does this already exist somewhere?
47
48 // Using regnames.cc as source. The RVG Calling Convention of the 2.0 RISC-V
49 // spec says it should be 2 and 3.
50 #define S0 8
51 #define S1 9
52 static uint32_t bits(uint32_t value, unsigned int hi, unsigned int lo) {
53 return (value >> lo) & ((1 << (hi+1-lo)) - 1);
54 }
55
56 static uint32_t bit(uint32_t value, unsigned int b) {
57 return (value >> b) & 1;
58 }
59
60 static uint32_t jal(unsigned int rd, uint32_t imm) {
61 return (bit(imm, 20) << 31) |
62 (bits(imm, 10, 1) << 21) |
63 (bit(imm, 11) << 20) |
64 (bits(imm, 19, 12) << 12) |
65 (rd << 7) |
66 MATCH_JAL;
67 }
68
69 static uint32_t csrsi(unsigned int csr, uint8_t imm) {
70 return (csr << 20) |
71 (bits(imm, 4, 0) << 15) |
72 MATCH_CSRRSI;
73 }
74
75 static uint32_t csrci(unsigned int csr, uint8_t imm) {
76 return (csr << 20) |
77 (bits(imm, 4, 0) << 15) |
78 MATCH_CSRRCI;
79 }
80
81 static uint32_t csrr(unsigned int rd, unsigned int csr) {
82 return (csr << 20) | (rd << 7) | MATCH_CSRRS;
83 }
84
85 static uint32_t sw(unsigned int src, unsigned int base, uint16_t offset)
86 {
87 return (bits(offset, 11, 5) << 25) |
88 (src << 20) |
89 (base << 15) |
90 (bits(offset, 4, 0) << 7) |
91 MATCH_SW;
92 }
93
94 static uint32_t sd(unsigned int src, unsigned int base, uint16_t offset)
95 {
96 return (bits(offset, 11, 5) << 25) |
97 (bits(src, 4, 0) << 20) |
98 (base << 15) |
99 (bits(offset, 4, 0) << 7) |
100 MATCH_SD;
101 }
102
103 static uint32_t fsd(unsigned int src, unsigned int base, uint16_t offset)
104 {
105 return (bits(offset, 11, 5) << 25) |
106 (bits(src, 4, 0) << 20) |
107 (base << 15) |
108 (bits(offset, 4, 0) << 7) |
109 MATCH_FSD;
110 }
111
112 static uint32_t addi(unsigned int dest, unsigned int src, uint16_t imm)
113 {
114 return (bits(imm, 11, 0) << 20) |
115 (src << 15) |
116 (dest << 7) |
117 MATCH_ADDI;
118 }
119
120 static uint32_t nop()
121 {
122 return addi(0, 0, 0);
123 }
124
125 template <typename T>
126 unsigned int circular_buffer_t<T>::size() const
127 {
128 if (end >= start)
129 return end - start;
130 else
131 return end + capacity - start;
132 }
133
134 template <typename T>
135 void circular_buffer_t<T>::consume(unsigned int bytes)
136 {
137 start = (start + bytes) % capacity;
138 }
139
140 template <typename T>
141 unsigned int circular_buffer_t<T>::contiguous_empty_size() const
142 {
143 if (end >= start)
144 if (start == 0)
145 return capacity - end - 1;
146 else
147 return capacity - end;
148 else
149 return start - end - 1;
150 }
151
152 template <typename T>
153 unsigned int circular_buffer_t<T>::contiguous_data_size() const
154 {
155 if (end >= start)
156 return end - start;
157 else
158 return capacity - start;
159 }
160
161 template <typename T>
162 void circular_buffer_t<T>::data_added(unsigned int bytes)
163 {
164 end += bytes;
165 assert(end <= capacity);
166 if (end == capacity)
167 end = 0;
168 }
169
170 template <typename T>
171 void circular_buffer_t<T>::reset()
172 {
173 start = 0;
174 end = 0;
175 }
176
177 template <typename T>
178 void circular_buffer_t<T>::append(const T *src, unsigned int count)
179 {
180 unsigned int copy = std::min(count, contiguous_empty_size());
181 memcpy(contiguous_empty(), src, copy * sizeof(T));
182 data_added(copy);
183 count -= copy;
184 if (count > 0) {
185 assert(count < contiguous_empty_size());
186 memcpy(contiguous_empty(), src, count * sizeof(T));
187 data_added(count);
188 }
189 }
190
191 ////////////////////////////// Debug Operations
192
193 class halt_op_t : public operation_t
194 {
195 public:
196 halt_op_t(gdbserver_t& gdbserver) : operation_t(gdbserver) {};
197
198 bool start()
199 {
200 // TODO: For now we just assume the target is 64-bit.
201 gs.write_debug_ram(0, csrsi(DCSR_ADDRESS, DCSR_HALT_MASK));
202 gs.write_debug_ram(1, csrr(S0, DPC_ADDRESS));
203 gs.write_debug_ram(2, sd(S0, 0, (uint16_t) DEBUG_RAM_START));
204 gs.write_debug_ram(3, csrr(S0, DCSR_ADDRESS));
205 gs.write_debug_ram(4, sd(S0, 0, (uint16_t) DEBUG_RAM_START + 8));
206 gs.write_debug_ram(5, jal(0, (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*5))));
207 gs.set_interrupt(0);
208 return false;
209 }
210
211 bool step()
212 {
213 return true;
214 }
215 };
216
217 class general_registers_read_op_t : public operation_t
218 {
219 // Register order that gdb expects is:
220 // "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
221 // "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
222 // "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
223 // "x24", "x25", "x26", "x27", "x28", "x29", "x30", "x31",
224
225 // Each byte of register data is described by two hex digits. The bytes with
226 // the register are transmitted in target byte order. The size of each
227 // register and their position within the ‘g’ packet are determined by the
228 // gdb internal gdbarch functions DEPRECATED_REGISTER_RAW_SIZE and
229 // gdbarch_register_name.
230
231 public:
232 general_registers_read_op_t(gdbserver_t& gdbserver) :
233 operation_t(gdbserver), current_reg(0) {};
234
235 bool start()
236 {
237 gs.start_packet();
238
239 // x0 is always zero.
240 gs.send((reg_t) 0);
241
242 gs.write_debug_ram(0, sd(1, 0, (uint16_t) DEBUG_RAM_START + 16));
243 gs.write_debug_ram(1, sd(2, 0, (uint16_t) DEBUG_RAM_START + 0));
244 gs.write_debug_ram(2, jal(0, (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*2))));
245 gs.set_interrupt(0);
246 current_reg = 1;
247 return false;
248 }
249
250 bool step()
251 {
252 fprintf(stderr, "step %d\n", current_reg);
253 gs.send(((uint64_t) gs.read_debug_ram(5) << 32) | gs.read_debug_ram(4));
254 if (current_reg >= 31) {
255 gs.end_packet();
256 return true;
257 }
258
259 gs.send(((uint64_t) gs.read_debug_ram(1) << 32) | gs.read_debug_ram(0));
260
261 current_reg += 2;
262 // TODO properly read s0 and s1
263 gs.write_debug_ram(0, sd(current_reg, 0, (uint16_t) DEBUG_RAM_START + 16));
264 gs.write_debug_ram(1, sd(current_reg+1, 0, (uint16_t) DEBUG_RAM_START + 0));
265 gs.write_debug_ram(2, jal(0, (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*2))));
266 gs.set_interrupt(0);
267
268 return false;
269 }
270
271 private:
272 unsigned int current_reg;
273 };
274
275 class register_read_op_t : public operation_t
276 {
277 public:
278 register_read_op_t(gdbserver_t& gdbserver, unsigned int reg) :
279 operation_t(gdbserver), reg(reg) {};
280
281 bool start()
282 {
283 if (reg >= REG_XPR0 && reg <= REG_XPR31) {
284 die("handle_register_read");
285 // send(p->state.XPR[reg - REG_XPR0]);
286 } else if (reg == REG_PC) {
287 gs.write_debug_ram(0, csrr(S0, DPC_ADDRESS));
288 gs.write_debug_ram(1, sd(S0, 0, (uint16_t) DEBUG_RAM_START + 16));
289 gs.write_debug_ram(2, jal(0, (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*2))));
290 } else if (reg >= REG_FPR0 && reg <= REG_FPR31) {
291 // send(p->state.FPR[reg - REG_FPR0]);
292 gs.write_debug_ram(0, fsd(reg - REG_FPR0, 0, (uint16_t) DEBUG_RAM_START + 16));
293 gs.write_debug_ram(1, jal(0, (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*1))));
294 } else if (reg >= REG_CSR0 && reg <= REG_CSR4095) {
295 gs.write_debug_ram(0, csrr(S0, reg - REG_CSR0));
296 gs.write_debug_ram(1, sd(S0, 0, (uint16_t) DEBUG_RAM_START + 16));
297 gs.write_debug_ram(2, jal(0, (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*2))));
298 } else {
299 gs.send_packet("E02");
300 return true;
301 }
302
303 gs.set_interrupt(0);
304
305 return false;
306 }
307
308 bool step()
309 {
310 gs.start_packet();
311 gs.send(((uint64_t) gs.read_debug_ram(5) << 32) | gs.read_debug_ram(4));
312 gs.end_packet();
313 return true;
314 }
315
316 private:
317 unsigned int reg;
318 };
319
320 ////////////////////////////// gdbserver itself
321
322 gdbserver_t::gdbserver_t(uint16_t port, sim_t *sim) :
323 sim(sim),
324 client_fd(0),
325 recv_buf(64 * 1024), send_buf(64 * 1024),
326 operation(NULL)
327 {
328 socket_fd = socket(AF_INET, SOCK_STREAM, 0);
329 if (socket_fd == -1) {
330 fprintf(stderr, "failed to make socket: %s (%d)\n", strerror(errno), errno);
331 abort();
332 }
333
334 fcntl(socket_fd, F_SETFL, O_NONBLOCK);
335 int reuseaddr = 1;
336 if (setsockopt(socket_fd, SOL_SOCKET, SO_REUSEADDR, &reuseaddr,
337 sizeof(int)) == -1) {
338 fprintf(stderr, "failed setsockopt: %s (%d)\n", strerror(errno), errno);
339 abort();
340 }
341
342 struct sockaddr_in addr;
343 memset(&addr, 0, sizeof(addr));
344 addr.sin_family = AF_INET;
345 addr.sin_addr.s_addr = INADDR_ANY;
346 addr.sin_port = htons(port);
347
348 if (bind(socket_fd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {
349 fprintf(stderr, "failed to bind socket: %s (%d)\n", strerror(errno), errno);
350 abort();
351 }
352
353 if (listen(socket_fd, 1) == -1) {
354 fprintf(stderr, "failed to listen on socket: %s (%d)\n", strerror(errno), errno);
355 abort();
356 }
357 }
358
359 void gdbserver_t::write_debug_ram(unsigned int index, uint32_t value)
360 {
361 sim->debug_module.ram_write32(index, value);
362 }
363
364 uint32_t gdbserver_t::read_debug_ram(unsigned int index)
365 {
366 return sim->debug_module.ram_read32(index);
367 }
368
369 void gdbserver_t::set_operation(operation_t* operation)
370 {
371 assert(this->operation == NULL || operation == NULL);
372 if (operation && operation->start()) {
373 delete operation;
374 } else {
375 this->operation = operation;
376 }
377 }
378
379 void gdbserver_t::accept()
380 {
381 client_fd = ::accept(socket_fd, NULL, NULL);
382 if (client_fd == -1) {
383 if (errno == EAGAIN) {
384 // No client waiting to connect right now.
385 } else {
386 fprintf(stderr, "failed to accept on socket: %s (%d)\n", strerror(errno),
387 errno);
388 abort();
389 }
390 } else {
391 fcntl(client_fd, F_SETFL, O_NONBLOCK);
392
393 expect_ack = false;
394 extended_mode = false;
395
396 // gdb wants the core to be halted when it attaches.
397 set_operation(new halt_op_t(*this));
398 }
399 }
400
401 void gdbserver_t::read()
402 {
403 // Reading from a non-blocking socket still blocks if there is no data
404 // available.
405
406 size_t count = recv_buf.contiguous_empty_size();
407 assert(count > 0);
408 ssize_t bytes = ::read(client_fd, recv_buf.contiguous_empty(), count);
409 if (bytes == -1) {
410 if (errno == EAGAIN) {
411 // We'll try again the next call.
412 } else {
413 fprintf(stderr, "failed to read on socket: %s (%d)\n", strerror(errno), errno);
414 abort();
415 }
416 } else if (bytes == 0) {
417 // The remote disconnected.
418 client_fd = 0;
419 processor_t *p = sim->get_core(0);
420 // TODO p->set_halted(false, HR_NONE);
421 recv_buf.reset();
422 send_buf.reset();
423 } else {
424 recv_buf.data_added(bytes);
425 }
426 }
427
428 void gdbserver_t::write()
429 {
430 if (send_buf.empty())
431 return;
432
433 while (!send_buf.empty()) {
434 unsigned int count = send_buf.contiguous_data_size();
435 assert(count > 0);
436 ssize_t bytes = ::write(client_fd, send_buf.contiguous_data(), count);
437 if (bytes == -1) {
438 fprintf(stderr, "failed to write to socket: %s (%d)\n", strerror(errno), errno);
439 abort();
440 } else if (bytes == 0) {
441 // Client can't take any more data right now.
442 break;
443 } else {
444 fprintf(stderr, "wrote %ld bytes: ", bytes);
445 for (unsigned int i = 0; i < bytes; i++) {
446 fprintf(stderr, "%c", send_buf[i]);
447 }
448 fprintf(stderr, "\n");
449 send_buf.consume(bytes);
450 }
451 }
452 }
453
454 void print_packet(const std::vector<uint8_t> &packet)
455 {
456 for (uint8_t c : packet) {
457 if (c >= ' ' and c <= '~')
458 fprintf(stderr, "%c", c);
459 else
460 fprintf(stderr, "\\x%x", c);
461 }
462 fprintf(stderr, "\n");
463 }
464
465 uint8_t compute_checksum(const std::vector<uint8_t> &packet)
466 {
467 uint8_t checksum = 0;
468 for (auto i = packet.begin() + 1; i != packet.end() - 3; i++ ) {
469 checksum += *i;
470 }
471 return checksum;
472 }
473
474 uint8_t character_hex_value(uint8_t character)
475 {
476 if (character >= '0' && character <= '9')
477 return character - '0';
478 if (character >= 'a' && character <= 'f')
479 return 10 + character - 'a';
480 if (character >= 'A' && character <= 'F')
481 return 10 + character - 'A';
482 return 0xff;
483 }
484
485 uint8_t extract_checksum(const std::vector<uint8_t> &packet)
486 {
487 return character_hex_value(*(packet.end() - 1)) +
488 16 * character_hex_value(*(packet.end() - 2));
489 }
490
491 void gdbserver_t::process_requests()
492 {
493 // See https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html
494
495 while (!recv_buf.empty()) {
496 std::vector<uint8_t> packet;
497 for (unsigned int i = 0; i < recv_buf.size(); i++) {
498 uint8_t b = recv_buf[i];
499
500 if (packet.empty() && expect_ack && b == '+') {
501 recv_buf.consume(1);
502 break;
503 }
504
505 if (packet.empty() && b == 3) {
506 fprintf(stderr, "Received interrupt\n");
507 recv_buf.consume(1);
508 handle_interrupt();
509 break;
510 }
511
512 if (b == '$') {
513 // Start of new packet.
514 if (!packet.empty()) {
515 fprintf(stderr, "Received malformed %ld-byte packet from debug client: ",
516 packet.size());
517 print_packet(packet);
518 recv_buf.consume(i);
519 break;
520 }
521 }
522
523 packet.push_back(b);
524
525 // Packets consist of $<packet-data>#<checksum>
526 // where <checksum> is
527 if (packet.size() >= 4 &&
528 packet[packet.size()-3] == '#') {
529 handle_packet(packet);
530 recv_buf.consume(i+1);
531 break;
532 }
533 }
534 // There's a partial packet in the buffer. Wait until we get more data to
535 // process it.
536 if (packet.size()) {
537 break;
538 }
539 }
540 }
541
542 void gdbserver_t::handle_halt_reason(const std::vector<uint8_t> &packet)
543 {
544 send_packet("S00");
545 }
546
547 void gdbserver_t::handle_general_registers_read(const std::vector<uint8_t> &packet)
548 {
549 set_operation(new general_registers_read_op_t(*this));
550 }
551
552 void gdbserver_t::set_interrupt(uint32_t hartid) {
553 sim->debug_module.set_interrupt(hartid);
554 }
555
556 // First byte is the most-significant one.
557 // Eg. "08675309" becomes 0x08675309.
558 uint64_t consume_hex_number(std::vector<uint8_t>::const_iterator &iter,
559 std::vector<uint8_t>::const_iterator end)
560 {
561 uint64_t value = 0;
562
563 while (iter != end) {
564 uint8_t c = *iter;
565 uint64_t c_value = character_hex_value(c);
566 if (c_value > 15)
567 break;
568 iter++;
569 value <<= 4;
570 value += c_value;
571 }
572 return value;
573 }
574
575 // First byte is the least-significant one.
576 // Eg. "08675309" becomes 0x09536708
577 uint64_t consume_hex_number_le(std::vector<uint8_t>::const_iterator &iter,
578 std::vector<uint8_t>::const_iterator end)
579 {
580 uint64_t value = 0;
581 unsigned int shift = 4;
582
583 while (iter != end) {
584 uint8_t c = *iter;
585 uint64_t c_value = character_hex_value(c);
586 if (c_value > 15)
587 break;
588 iter++;
589 value |= c_value << shift;
590 if ((shift % 8) == 0)
591 shift += 12;
592 else
593 shift -= 4;
594 }
595 return value;
596 }
597
598 void consume_string(std::string &str, std::vector<uint8_t>::const_iterator &iter,
599 std::vector<uint8_t>::const_iterator end, uint8_t separator)
600 {
601 while (iter != end && *iter != separator) {
602 str.append(1, (char) *iter);
603 iter++;
604 }
605 }
606
607 void gdbserver_t::handle_register_read(const std::vector<uint8_t> &packet)
608 {
609 // p n
610
611 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
612 unsigned int n = consume_hex_number(iter, packet.end());
613 if (*iter != '#')
614 return send_packet("E01");
615
616 set_operation(new register_read_op_t(*this, n));
617 }
618
619 void gdbserver_t::handle_register_write(const std::vector<uint8_t> &packet)
620 {
621 // P n...=r...
622
623 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
624 unsigned int n = consume_hex_number(iter, packet.end());
625 if (*iter != '=')
626 return send_packet("E05");
627 iter++;
628
629 reg_t value = consume_hex_number_le(iter, packet.end());
630 if (*iter != '#')
631 return send_packet("E06");
632
633 processor_t *p = sim->get_core(0);
634
635 die("handle_register_write");
636 /*
637 if (n >= REG_XPR0 && n <= REG_XPR31) {
638 p->state.XPR.write(n - REG_XPR0, value);
639 } else if (n == REG_PC) {
640 p->state.pc = value;
641 } else if (n >= REG_FPR0 && n <= REG_FPR31) {
642 p->state.FPR.write(n - REG_FPR0, value);
643 } else if (n >= REG_CSR0 && n <= REG_CSR4095) {
644 try {
645 p->set_csr(n - REG_CSR0, value);
646 } catch(trap_t& t) {
647 return send_packet("EFF");
648 }
649 } else {
650 return send_packet("E07");
651 }
652 */
653
654 return send_packet("OK");
655 }
656
657 void gdbserver_t::handle_memory_read(const std::vector<uint8_t> &packet)
658 {
659 // m addr,length
660 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
661 reg_t address = consume_hex_number(iter, packet.end());
662 if (*iter != ',')
663 return send_packet("E10");
664 iter++;
665 reg_t length = consume_hex_number(iter, packet.end());
666 if (*iter != '#')
667 return send_packet("E11");
668
669 start_packet();
670 char buffer[3];
671 processor_t *p = sim->get_core(0);
672 mmu_t* mmu = sim->debug_mmu;
673
674 for (reg_t i = 0; i < length; i++) {
675 sprintf(buffer, "%02x", mmu->load_uint8(address + i));
676 send(buffer);
677 }
678 end_packet();
679 }
680
681 void gdbserver_t::handle_memory_binary_write(const std::vector<uint8_t> &packet)
682 {
683 // X addr,length:XX...
684 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
685 reg_t address = consume_hex_number(iter, packet.end());
686 if (*iter != ',')
687 return send_packet("E20");
688 iter++;
689 reg_t length = consume_hex_number(iter, packet.end());
690 if (*iter != ':')
691 return send_packet("E21");
692 iter++;
693
694 processor_t *p = sim->get_core(0);
695 mmu_t* mmu = sim->debug_mmu;
696 for (unsigned int i = 0; i < length; i++) {
697 if (iter == packet.end()) {
698 return send_packet("E22");
699 }
700 mmu->store_uint8(address + i, *iter);
701 iter++;
702 }
703 if (*iter != '#')
704 return send_packet("E4b"); // EOVERFLOW
705
706 send_packet("OK");
707 }
708
709 void gdbserver_t::handle_continue(const std::vector<uint8_t> &packet)
710 {
711 // c [addr]
712 processor_t *p = sim->get_core(0);
713 if (packet[2] != '#') {
714 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
715 die("handle_continue");
716 // p->state.pc = consume_hex_number(iter, packet.end());
717 if (*iter != '#')
718 return send_packet("E30");
719 }
720
721 write_debug_ram(0, csrci(DCSR_ADDRESS, DCSR_HALT_MASK));
722 write_debug_ram(1, jal(0, (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 1*5))));
723 set_interrupt(0);
724
725 // TODO p->set_halted(false, HR_NONE);
726 // TODO running = true;
727 }
728
729 void gdbserver_t::handle_step(const std::vector<uint8_t> &packet)
730 {
731 // s [addr]
732 processor_t *p = sim->get_core(0);
733 if (packet[2] != '#') {
734 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
735 die("handle_step");
736 //p->state.pc = consume_hex_number(iter, packet.end());
737 if (*iter != '#')
738 return send_packet("E40");
739 }
740
741 // TODO: p->set_single_step(true);
742 // TODO running = true;
743 }
744
745 void gdbserver_t::handle_kill(const std::vector<uint8_t> &packet)
746 {
747 // k
748 // The exact effect of this packet is not specified.
749 // Looks like OpenOCD disconnects?
750 // TODO
751 }
752
753 void gdbserver_t::handle_extended(const std::vector<uint8_t> &packet)
754 {
755 // Enable extended mode. In extended mode, the remote server is made
756 // persistent. The ‘R’ packet is used to restart the program being debugged.
757 send_packet("OK");
758 extended_mode = true;
759 }
760
761 void software_breakpoint_t::insert(mmu_t* mmu)
762 {
763 if (size == 2) {
764 instruction = mmu->load_uint16(address);
765 mmu->store_uint16(address, C_EBREAK);
766 } else {
767 instruction = mmu->load_uint32(address);
768 mmu->store_uint32(address, EBREAK);
769 }
770 fprintf(stderr, ">>> Read %x from %lx\n", instruction, address);
771 }
772
773 void software_breakpoint_t::remove(mmu_t* mmu)
774 {
775 fprintf(stderr, ">>> write %x to %lx\n", instruction, address);
776 if (size == 2) {
777 mmu->store_uint16(address, instruction);
778 } else {
779 mmu->store_uint32(address, instruction);
780 }
781 }
782
783 void gdbserver_t::handle_breakpoint(const std::vector<uint8_t> &packet)
784 {
785 // insert: Z type,addr,kind
786 // remove: z type,addr,kind
787
788 software_breakpoint_t bp;
789 bool insert = (packet[1] == 'Z');
790 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
791 int type = consume_hex_number(iter, packet.end());
792 if (*iter != ',')
793 return send_packet("E50");
794 iter++;
795 bp.address = consume_hex_number(iter, packet.end());
796 if (*iter != ',')
797 return send_packet("E51");
798 iter++;
799 bp.size = consume_hex_number(iter, packet.end());
800 // There may be more options after a ; here, but we don't support that.
801 if (*iter != '#')
802 return send_packet("E52");
803
804 if (bp.size != 2 && bp.size != 4) {
805 return send_packet("E53");
806 }
807
808 processor_t *p = sim->get_core(0);
809 die("handle_breakpoint");
810 /*
811 mmu_t* mmu = p->mmu;
812 if (insert) {
813 bp.insert(mmu);
814 breakpoints[bp.address] = bp;
815
816 } else {
817 bp = breakpoints[bp.address];
818 bp.remove(mmu);
819 breakpoints.erase(bp.address);
820 }
821 mmu->flush_icache();
822 sim->debug_mmu->flush_icache();
823 */
824 return send_packet("OK");
825 }
826
827 void gdbserver_t::handle_query(const std::vector<uint8_t> &packet)
828 {
829 std::string name;
830 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
831
832 consume_string(name, iter, packet.end(), ':');
833 if (iter != packet.end())
834 iter++;
835 if (name == "Supported") {
836 start_packet();
837 while (iter != packet.end()) {
838 std::string feature;
839 consume_string(feature, iter, packet.end(), ';');
840 if (iter != packet.end())
841 iter++;
842 if (feature == "swbreak+") {
843 send("swbreak+;");
844 }
845 }
846 return end_packet();
847 }
848
849 fprintf(stderr, "Unsupported query %s\n", name.c_str());
850 return send_packet("");
851 }
852
853 void gdbserver_t::handle_packet(const std::vector<uint8_t> &packet)
854 {
855 if (compute_checksum(packet) != extract_checksum(packet)) {
856 fprintf(stderr, "Received %ld-byte packet with invalid checksum\n", packet.size());
857 fprintf(stderr, "Computed checksum: %x\n", compute_checksum(packet));
858 print_packet(packet);
859 send("-");
860 return;
861 }
862
863 fprintf(stderr, "Received %ld-byte packet from debug client: ", packet.size());
864 print_packet(packet);
865 send("+");
866
867 switch (packet[1]) {
868 case '!':
869 return handle_extended(packet);
870 case '?':
871 return handle_halt_reason(packet);
872 case 'g':
873 return handle_general_registers_read(packet);
874 case 'k':
875 return handle_kill(packet);
876 case 'm':
877 return handle_memory_read(packet);
878 // case 'M':
879 // return handle_memory_write(packet);
880 case 'X':
881 return handle_memory_binary_write(packet);
882 case 'p':
883 return handle_register_read(packet);
884 case 'P':
885 return handle_register_write(packet);
886 case 'c':
887 return handle_continue(packet);
888 case 's':
889 return handle_step(packet);
890 case 'z':
891 case 'Z':
892 return handle_breakpoint(packet);
893 case 'q':
894 case 'Q':
895 return handle_query(packet);
896 }
897
898 // Not supported.
899 fprintf(stderr, "** Unsupported packet: ");
900 print_packet(packet);
901 send_packet("");
902 }
903
904 void gdbserver_t::handle_interrupt()
905 {
906 processor_t *p = sim->get_core(0);
907 // TODO p->set_halted(true, HR_INTERRUPT);
908 send_packet("S02"); // Pretend program received SIGINT.
909 // TODO running = false;
910 }
911
912 void gdbserver_t::handle()
913 {
914 if (client_fd > 0) {
915 processor_t *p = sim->get_core(0);
916
917 bool interrupt = sim->debug_module.get_interrupt(0);
918
919 if (!interrupt) {
920 if (operation && operation->step()) {
921 delete operation;
922 set_operation(NULL);
923 }
924
925 /*
926 switch (state) {
927 case STATE_HALTING:
928 // gdb requested a halt and now it's done.
929 send_packet("T05");
930 fprintf(stderr, "DPC: 0x%x\n", read_debug_ram(0));
931 fprintf(stderr, "DCSR: 0x%x\n", read_debug_ram(2));
932 state = STATE_HALTED;
933 break;
934 }
935 */
936 }
937
938 /* TODO
939 if (running && p->halted) {
940 // The core was running, but now it's halted. Better tell gdb.
941 switch (p->halt_reason) {
942 case HR_NONE:
943 fprintf(stderr, "Internal error. Processor halted without reason.\n");
944 abort();
945 case HR_STEPPED:
946 case HR_INTERRUPT:
947 case HR_CMDLINE:
948 case HR_ATTACHED:
949 // There's no gdb code for this.
950 send_packet("T05");
951 break;
952 case HR_SWBP:
953 send_packet("T05swbreak:;");
954 break;
955 }
956 send_packet("T00");
957 // TODO: Actually include register values here
958 running = false;
959 }
960 */
961
962 this->read();
963 this->write();
964
965 } else {
966 this->accept();
967 }
968
969 if (!operation) {
970 this->process_requests();
971 }
972 }
973
974 void gdbserver_t::send(const char* msg)
975 {
976 unsigned int length = strlen(msg);
977 for (const char *c = msg; *c; c++)
978 running_checksum += *c;
979 send_buf.append((const uint8_t *) msg, length);
980 }
981
982 void gdbserver_t::send(uint64_t value)
983 {
984 char buffer[3];
985 for (unsigned int i = 0; i < 8; i++) {
986 sprintf(buffer, "%02x", (int) (value & 0xff));
987 send(buffer);
988 value >>= 8;
989 }
990 }
991
992 void gdbserver_t::send(uint32_t value)
993 {
994 char buffer[3];
995 for (unsigned int i = 0; i < 4; i++) {
996 sprintf(buffer, "%02x", (int) (value & 0xff));
997 send(buffer);
998 value >>= 8;
999 }
1000 }
1001
1002 void gdbserver_t::send_packet(const char* data)
1003 {
1004 start_packet();
1005 send(data);
1006 end_packet();
1007 expect_ack = true;
1008 }
1009
1010 void gdbserver_t::start_packet()
1011 {
1012 send("$");
1013 running_checksum = 0;
1014 }
1015
1016 void gdbserver_t::end_packet(const char* data)
1017 {
1018 if (data) {
1019 send(data);
1020 }
1021
1022 char checksum_string[4];
1023 sprintf(checksum_string, "#%02x", running_checksum);
1024 send(checksum_string);
1025 expect_ack = true;
1026 }