reorganise from moving sv_pred_* and sv_reg_* tables into processor_t
[riscv-isa-sim.git] / riscv / sv.cc
1 #include "sv.h"
2 #include "sv_decode.h"
3
4 sv_pred_entry* sv_insn_t::get_predentry(uint64_t reg, bool intreg)
5 {
6 // okaay so first determine which map to use. intreg is passed
7 // in (ultimately) from id_regs.py's examination of the use of
8 // FRS1/RS1, WRITE_FRD/WRITE_RD, which in turn gets passed
9 // in from sv_insn_t::fimap...
10 sv_pred_entry *r;
11 if (intreg)
12 {
13 return &p->get_state()->sv_pred_int_tb[reg];
14 }
15 else
16 {
17 return &p->get_state()->sv_pred_fp_tb[reg];
18 }
19 }
20
21 sv_reg_entry* sv_insn_t::get_regentry(uint64_t reg, bool intreg)
22 {
23 // okaay so first determine which map to use. intreg is passed
24 // in (ultimately) from id_regs.py's examination of the use of
25 // FRS1/RS1, WRITE_FRD/WRITE_RD, which in turn gets passed
26 // in from sv_insn_t::fimap...
27 sv_reg_entry *r;
28 if (intreg)
29 {
30 return &p->get_state()->sv_int_tb[reg];
31 }
32 else
33 {
34 return &p->get_state()->sv_fp_tb[reg];
35 }
36 }
37
38 bool sv_insn_t::sv_check_reg(bool intreg, uint64_t reg)
39 {
40 sv_reg_entry *r = get_regentry(reg, intreg);
41 if (r->elwidth != 0)
42 {
43 // XXX raise exception
44 }
45 if (r->active && r->isvec)
46 {
47 return true;
48 }
49 return false;
50 }
51
52 /* this is the "remap" function. note that registers can STILL BE REDIRECTED
53 * yet NOT BE MARKED AS A VECTOR.
54 *
55 * reg 5 -> active=false, regidx=XX, isvec=XX -> returns 5
56 * reg 5 -> active=true , regidx=35, isvec=false -> returns 35
57 * reg 5 -> active=true , regidx=35, isvec=true -> returns 35 *PLUS LOOP*
58 *
59 * so it is possible for example to use the remap system for C instructions
60 * to get access to the *full* range of registers x0..x63 (yes 63 because
61 * SV doubles both the int and fp regfile sizes), by setting
62 * "active=true, isvec=false" for any of x8..x15
63 *
64 * where "active=true, isvec=true" this is the "expected" behaviour
65 * of SV. it's "supposed" to "just" be a vectorisation API. it isn't:
66 * it's quite a bit more.
67 */
68 uint64_t sv_insn_t::remap(uint64_t reg, bool intreg, int &voffs)
69 {
70 // okaay so first determine which map to use. intreg is passed
71 // in (ultimately) from id_regs.py's examination of the use of
72 // FRS1/RS1, WRITE_FRD/WRITE_RD, which in turn gets passed
73 // in from sv_insn_t::fimap...
74 sv_reg_entry *r = get_regentry(reg, intreg);
75
76 // next we check if this entry is active. if not, the register
77 // is not being "redirected", so just return the actual reg.
78 if (!r->active)
79 {
80 return reg; // not active: return as-is
81 }
82
83 // next we go through the lookup table. *THIS* is why the
84 // sv_reg_entry table is 32 entries (5-bit) *NOT* 6 bits
85 // the *KEY* (reg) is 5-bit, the *VALUE* (actual target reg) is 6-bit
86 // XXX TODO: must actually double NXPR and NXFR in processor.h to cope!!
87 reg = r->regidx;
88
89 // now we determine if this is a scalar/vector: if it's scalar
90 // we return the re-mapped register...
91 if (!r->isvec) // scalar
92 {
93 return reg; // ... remapped at this point...
94 }
95
96 // aaand now, as it's a "vector", FINALLY we can add on the loop-offset
97 // which was passed in to the sv_insn_t constructor (by reference)
98 // and, at last, we have "parallelism" a la contiguous registers.
99 reg += voffs; // wheww :)
100
101 // however... before returning, we increment the loop-offset for
102 // this particular register, so that on the next loop the next
103 // contiguous register will be used.
104 voffs += 1;
105 return reg;
106 }
107
108 /* gets the predication value (if active). returns all-1s if not active
109 * also returns whether zeroing is enabled/disabled for this register.
110 *
111 * uses the same sort of lookup logic as remap:
112 *
113 * - first thing to note is, there is one CSR table for FP and one for INT
114 * (so, FP regs can be predicated separately from INT ones)
115 * - redirection occurs if the CSR entry for the register is "active".
116 * - inversion of the predication can be set (so it's possible to have
117 * the same actual register value be unchanged yet be referred to by
118 * *TWO* redirections, one with inversion, one with not).
119 *
120 * note that this function *actually* returns the value of the (integer)
121 * register file, hence why processor_t has to be passed in
122 *
123 * note also that *even scalar* ops will be predicated (i.e. if a register
124 * has been set active=true and isvec=false in sv_int_tb or sv_fp_tb).
125 * the way to ensure that scalar ops are not predicated is: set VLEN=0,
126 * set active=false in sv_int_tb/sv_fp_tb for that register, or switch off
127 * the predication for that register (sv_pred_int_tb/sv_pred_fb_tb).
128 *
129 * note also that the hard limit on SV maximum vector length is actually
130 * down to the number of bits in the predication i.e. the bitwidth of integer
131 * registers (i.e. XLEN bits).
132 */
133 reg_t sv_insn_t::predicate(uint64_t reg, bool intreg, bool &zeroing)
134 {
135 sv_pred_entry *r = get_predentry(reg, intreg);
136 if (!r->active)
137 {
138 return ~0x0; // not active: return all-1s (unconditional "on")
139 }
140 zeroing = r->zero;
141 reg = r->regidx;
142 reg_t predicate = READ_REG(reg); // macros go through processor_t state
143 if (r->inv)
144 {
145 return ~predicate;
146 }
147 return predicate;
148 }