aco: implement 16-bit nir_op_frexp_sig/nir_op_frexp_exp
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool uniform_has_then_branch;
89 bool then_branch_divergent;
90 Block BB_invert;
91 Block BB_endif;
92 };
93
94 static bool visit_cf_list(struct isel_context *ctx,
95 struct exec_list *list);
96
97 static void add_logical_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->logical_preds.emplace_back(pred_idx);
100 }
101
102
103 static void add_linear_edge(unsigned pred_idx, Block *succ)
104 {
105 succ->linear_preds.emplace_back(pred_idx);
106 }
107
108 static void add_edge(unsigned pred_idx, Block *succ)
109 {
110 add_logical_edge(pred_idx, succ);
111 add_linear_edge(pred_idx, succ);
112 }
113
114 static void append_logical_start(Block *b)
115 {
116 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
117 }
118
119 static void append_logical_end(Block *b)
120 {
121 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
122 }
123
124 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
125 {
126 assert(ctx->allocated[def->index].id());
127 return ctx->allocated[def->index];
128 }
129
130 Temp emit_mbcnt(isel_context *ctx, Definition dst,
131 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
132 {
133 Builder bld(ctx->program, ctx->block);
134 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
135 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
136
137 if (ctx->program->wave_size == 32) {
138 return thread_id_lo;
139 } else {
140 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
141 return thread_id_hi;
142 }
143 }
144
145 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
146 {
147 Builder bld(ctx->program, ctx->block);
148
149 if (!dst.id())
150 dst = bld.tmp(src.regClass());
151
152 assert(src.size() == dst.size());
153
154 if (ctx->stage != fragment_fs) {
155 if (!dst.id())
156 return src;
157
158 bld.copy(Definition(dst), src);
159 return dst;
160 }
161
162 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
163 ctx->program->needs_wqm |= program_needs_wqm;
164 return dst;
165 }
166
167 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
168 {
169 if (index.regClass() == s1)
170 return bld.readlane(bld.def(s1), data, index);
171
172 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
173
174 /* Currently not implemented on GFX6-7 */
175 assert(ctx->options->chip_class >= GFX8);
176
177 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
178 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
179 }
180
181 /* GFX10, wave64 mode:
182 * The bpermute instruction is limited to half-wave operation, which means that it can't
183 * properly support subgroup shuffle like older generations (or wave32 mode), so we
184 * emulate it here.
185 */
186 if (!ctx->has_gfx10_wave64_bpermute) {
187 ctx->has_gfx10_wave64_bpermute = true;
188 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
189 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
190 }
191
192 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
193 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
194 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
195 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
196
197 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
198 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
199 }
200
201 Temp as_vgpr(isel_context *ctx, Temp val)
202 {
203 if (val.type() == RegType::sgpr) {
204 Builder bld(ctx->program, ctx->block);
205 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
206 }
207 assert(val.type() == RegType::vgpr);
208 return val;
209 }
210
211 //assumes a != 0xffffffff
212 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
213 {
214 assert(b != 0);
215 Builder bld(ctx->program, ctx->block);
216
217 if (util_is_power_of_two_or_zero(b)) {
218 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
219 return;
220 }
221
222 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
223
224 assert(info.multiplier <= 0xffffffff);
225
226 bool pre_shift = info.pre_shift != 0;
227 bool increment = info.increment != 0;
228 bool multiply = true;
229 bool post_shift = info.post_shift != 0;
230
231 if (!pre_shift && !increment && !multiply && !post_shift) {
232 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
233 return;
234 }
235
236 Temp pre_shift_dst = a;
237 if (pre_shift) {
238 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
239 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
240 }
241
242 Temp increment_dst = pre_shift_dst;
243 if (increment) {
244 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
245 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
246 }
247
248 Temp multiply_dst = increment_dst;
249 if (multiply) {
250 multiply_dst = post_shift ? bld.tmp(v1) : dst;
251 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
252 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
253 }
254
255 if (post_shift) {
256 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
257 }
258 }
259
260 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
261 {
262 Builder bld(ctx->program, ctx->block);
263 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
264 }
265
266
267 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
268 {
269 /* no need to extract the whole vector */
270 if (src.regClass() == dst_rc) {
271 assert(idx == 0);
272 return src;
273 }
274
275 assert(src.bytes() > (idx * dst_rc.bytes()));
276 Builder bld(ctx->program, ctx->block);
277 auto it = ctx->allocated_vec.find(src.id());
278 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
279 if (it->second[idx].regClass() == dst_rc) {
280 return it->second[idx];
281 } else {
282 assert(!dst_rc.is_subdword());
283 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
284 return bld.copy(bld.def(dst_rc), it->second[idx]);
285 }
286 }
287
288 if (dst_rc.is_subdword())
289 src = as_vgpr(ctx, src);
290
291 if (src.bytes() == dst_rc.bytes()) {
292 assert(idx == 0);
293 return bld.copy(bld.def(dst_rc), src);
294 } else {
295 Temp dst = bld.tmp(dst_rc);
296 emit_extract_vector(ctx, src, idx, dst);
297 return dst;
298 }
299 }
300
301 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
302 {
303 if (num_components == 1)
304 return;
305 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
306 return;
307 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
308 split->operands[0] = Operand(vec_src);
309 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
310 RegClass rc;
311 if (num_components > vec_src.size()) {
312 if (vec_src.type() == RegType::sgpr)
313 return;
314
315 /* sub-dword split */
316 assert(vec_src.type() == RegType::vgpr);
317 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
318 } else {
319 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
320 }
321 for (unsigned i = 0; i < num_components; i++) {
322 elems[i] = {ctx->program->allocateId(), rc};
323 split->definitions[i] = Definition(elems[i]);
324 }
325 ctx->block->instructions.emplace_back(std::move(split));
326 ctx->allocated_vec.emplace(vec_src.id(), elems);
327 }
328
329 /* This vector expansion uses a mask to determine which elements in the new vector
330 * come from the original vector. The other elements are undefined. */
331 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
332 {
333 emit_split_vector(ctx, vec_src, util_bitcount(mask));
334
335 if (vec_src == dst)
336 return;
337
338 Builder bld(ctx->program, ctx->block);
339 if (num_components == 1) {
340 if (dst.type() == RegType::sgpr)
341 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
342 else
343 bld.copy(Definition(dst), vec_src);
344 return;
345 }
346
347 unsigned component_size = dst.size() / num_components;
348 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
349
350 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
351 vec->definitions[0] = Definition(dst);
352 unsigned k = 0;
353 for (unsigned i = 0; i < num_components; i++) {
354 if (mask & (1 << i)) {
355 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
356 if (dst.type() == RegType::sgpr)
357 src = bld.as_uniform(src);
358 vec->operands[i] = Operand(src);
359 } else {
360 vec->operands[i] = Operand(0u);
361 }
362 elems[i] = vec->operands[i].getTemp();
363 }
364 ctx->block->instructions.emplace_back(std::move(vec));
365 ctx->allocated_vec.emplace(dst.id(), elems);
366 }
367
368 /* adjust misaligned small bit size loads */
369 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
370 {
371 Builder bld(ctx->program, ctx->block);
372 Operand shift;
373 Temp select = Temp();
374 if (offset.isConstant()) {
375 assert(offset.constantValue() && offset.constantValue() < 4);
376 shift = Operand(offset.constantValue() * 8);
377 } else {
378 /* bit_offset = 8 * (offset & 0x3) */
379 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
380 select = bld.tmp(s1);
381 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
382 }
383
384 if (vec.size() == 1) {
385 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
386 } else if (vec.size() == 2) {
387 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
388 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
389 if (tmp == dst)
390 emit_split_vector(ctx, dst, 2);
391 else
392 emit_extract_vector(ctx, tmp, 0, dst);
393 } else if (vec.size() == 4) {
394 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
395 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
396 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
397 if (select != Temp())
398 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), select);
399 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
400 Temp mid = bld.tmp(s1);
401 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
402 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
403 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
405 emit_split_vector(ctx, dst, 2);
406 }
407 }
408
409 /* this function trims subdword vectors:
410 * if dst is vgpr - split the src and create a shrunk version according to the mask.
411 * if dst is sgpr - split the src, but move the original to sgpr. */
412 void trim_subdword_vector(isel_context *ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
413 {
414 assert(vec_src.type() == RegType::vgpr);
415 emit_split_vector(ctx, vec_src, num_components);
416
417 Builder bld(ctx->program, ctx->block);
418 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
419 unsigned component_size = vec_src.bytes() / num_components;
420 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
421
422 unsigned k = 0;
423 for (unsigned i = 0; i < num_components; i++) {
424 if (mask & (1 << i))
425 elems[k++] = emit_extract_vector(ctx, vec_src, i, rc);
426 }
427
428 if (dst.type() == RegType::vgpr) {
429 assert(dst.bytes() == k * component_size);
430 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, k, 1)};
431 for (unsigned i = 0; i < k; i++)
432 vec->operands[i] = Operand(elems[i]);
433 vec->definitions[0] = Definition(dst);
434 bld.insert(std::move(vec));
435 } else {
436 // TODO: alignbyte if mask doesn't start with 1?
437 assert(mask & 1);
438 assert(dst.size() == vec_src.size());
439 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
440 }
441 ctx->allocated_vec.emplace(dst.id(), elems);
442 }
443
444 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
445 {
446 Builder bld(ctx->program, ctx->block);
447 if (!dst.id())
448 dst = bld.tmp(bld.lm);
449
450 assert(val.regClass() == s1);
451 assert(dst.regClass() == bld.lm);
452
453 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
454 }
455
456 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
457 {
458 Builder bld(ctx->program, ctx->block);
459 if (!dst.id())
460 dst = bld.tmp(s1);
461
462 assert(val.regClass() == bld.lm);
463 assert(dst.regClass() == s1);
464
465 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
466 Temp tmp = bld.tmp(s1);
467 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
468 return emit_wqm(ctx, tmp, dst);
469 }
470
471 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
472 {
473 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
474 return get_ssa_temp(ctx, src.src.ssa);
475
476 if (src.src.ssa->num_components == size) {
477 bool identity_swizzle = true;
478 for (unsigned i = 0; identity_swizzle && i < size; i++) {
479 if (src.swizzle[i] != i)
480 identity_swizzle = false;
481 }
482 if (identity_swizzle)
483 return get_ssa_temp(ctx, src.src.ssa);
484 }
485
486 Temp vec = get_ssa_temp(ctx, src.src.ssa);
487 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
488 assert(elem_size > 0);
489 assert(vec.bytes() % elem_size == 0);
490
491 if (elem_size < 4 && vec.type() == RegType::sgpr) {
492 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
493 assert(size == 1);
494 unsigned swizzle = src.swizzle[0];
495 if (vec.size() > 1) {
496 assert(src.src.ssa->bit_size == 16);
497 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
498 swizzle = swizzle & 1;
499 }
500 if (swizzle == 0)
501 return vec;
502
503 Temp dst{ctx->program->allocateId(), s1};
504 aco_ptr<SOP2_instruction> bfe{create_instruction<SOP2_instruction>(aco_opcode::s_bfe_u32, Format::SOP2, 2, 1)};
505 bfe->operands[0] = Operand(vec);
506 bfe->operands[1] = Operand(uint32_t((src.src.ssa->bit_size << 16) | (src.src.ssa->bit_size * swizzle)));
507 bfe->definitions[0] = Definition(dst);
508 ctx->block->instructions.emplace_back(std::move(bfe));
509 return dst;
510 }
511
512 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
513 if (size == 1) {
514 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
515 } else {
516 assert(size <= 4);
517 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
518 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
519 for (unsigned i = 0; i < size; ++i) {
520 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
521 vec_instr->operands[i] = Operand{elems[i]};
522 }
523 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
524 vec_instr->definitions[0] = Definition(dst);
525 ctx->block->instructions.emplace_back(std::move(vec_instr));
526 ctx->allocated_vec.emplace(dst.id(), elems);
527 return dst;
528 }
529 }
530
531 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
532 {
533 if (ptr.size() == 2)
534 return ptr;
535 Builder bld(ctx->program, ctx->block);
536 if (ptr.type() == RegType::vgpr)
537 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
538 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
539 ptr, Operand((unsigned)ctx->options->address32_hi));
540 }
541
542 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
543 {
544 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
545 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
546 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
547 sop2->definitions[0] = Definition(dst);
548 if (writes_scc)
549 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
550 ctx->block->instructions.emplace_back(std::move(sop2));
551 }
552
553 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
554 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
555 {
556 Builder bld(ctx->program, ctx->block);
557 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
558 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
559 if (src1.type() == RegType::sgpr) {
560 if (commutative && src0.type() == RegType::vgpr) {
561 Temp t = src0;
562 src0 = src1;
563 src1 = t;
564 } else if (src0.type() == RegType::vgpr &&
565 op != aco_opcode::v_madmk_f32 &&
566 op != aco_opcode::v_madak_f32 &&
567 op != aco_opcode::v_madmk_f16 &&
568 op != aco_opcode::v_madak_f16) {
569 /* If the instruction is not commutative, we emit a VOP3A instruction */
570 bld.vop2_e64(op, Definition(dst), src0, src1);
571 return;
572 } else {
573 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
574 }
575 }
576
577 if (flush_denorms && ctx->program->chip_class < GFX9) {
578 assert(dst.size() == 1);
579 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
580 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
581 } else {
582 bld.vop2(op, Definition(dst), src0, src1);
583 }
584 }
585
586 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
587 bool flush_denorms = false)
588 {
589 Temp src0 = get_alu_src(ctx, instr->src[0]);
590 Temp src1 = get_alu_src(ctx, instr->src[1]);
591 Temp src2 = get_alu_src(ctx, instr->src[2]);
592
593 /* ensure that the instruction has at most 1 sgpr operand
594 * The optimizer will inline constants for us */
595 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
596 src0 = as_vgpr(ctx, src0);
597 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
598 src1 = as_vgpr(ctx, src1);
599 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
600 src2 = as_vgpr(ctx, src2);
601
602 Builder bld(ctx->program, ctx->block);
603 if (flush_denorms && ctx->program->chip_class < GFX9) {
604 assert(dst.size() == 1);
605 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
606 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
607 } else {
608 bld.vop3(op, Definition(dst), src0, src1, src2);
609 }
610 }
611
612 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
613 {
614 Builder bld(ctx->program, ctx->block);
615 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
616 }
617
618 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
619 {
620 Temp src0 = get_alu_src(ctx, instr->src[0]);
621 Temp src1 = get_alu_src(ctx, instr->src[1]);
622 assert(src0.size() == src1.size());
623
624 aco_ptr<Instruction> vopc;
625 if (src1.type() == RegType::sgpr) {
626 if (src0.type() == RegType::vgpr) {
627 /* to swap the operands, we might also have to change the opcode */
628 switch (op) {
629 case aco_opcode::v_cmp_lt_f32:
630 op = aco_opcode::v_cmp_gt_f32;
631 break;
632 case aco_opcode::v_cmp_ge_f32:
633 op = aco_opcode::v_cmp_le_f32;
634 break;
635 case aco_opcode::v_cmp_lt_i32:
636 op = aco_opcode::v_cmp_gt_i32;
637 break;
638 case aco_opcode::v_cmp_ge_i32:
639 op = aco_opcode::v_cmp_le_i32;
640 break;
641 case aco_opcode::v_cmp_lt_u32:
642 op = aco_opcode::v_cmp_gt_u32;
643 break;
644 case aco_opcode::v_cmp_ge_u32:
645 op = aco_opcode::v_cmp_le_u32;
646 break;
647 case aco_opcode::v_cmp_lt_f64:
648 op = aco_opcode::v_cmp_gt_f64;
649 break;
650 case aco_opcode::v_cmp_ge_f64:
651 op = aco_opcode::v_cmp_le_f64;
652 break;
653 case aco_opcode::v_cmp_lt_i64:
654 op = aco_opcode::v_cmp_gt_i64;
655 break;
656 case aco_opcode::v_cmp_ge_i64:
657 op = aco_opcode::v_cmp_le_i64;
658 break;
659 case aco_opcode::v_cmp_lt_u64:
660 op = aco_opcode::v_cmp_gt_u64;
661 break;
662 case aco_opcode::v_cmp_ge_u64:
663 op = aco_opcode::v_cmp_le_u64;
664 break;
665 default: /* eq and ne are commutative */
666 break;
667 }
668 Temp t = src0;
669 src0 = src1;
670 src1 = t;
671 } else {
672 src1 = as_vgpr(ctx, src1);
673 }
674 }
675
676 Builder bld(ctx->program, ctx->block);
677 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
678 }
679
680 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
681 {
682 Temp src0 = get_alu_src(ctx, instr->src[0]);
683 Temp src1 = get_alu_src(ctx, instr->src[1]);
684 Builder bld(ctx->program, ctx->block);
685
686 assert(dst.regClass() == bld.lm);
687 assert(src0.type() == RegType::sgpr);
688 assert(src1.type() == RegType::sgpr);
689 assert(src0.regClass() == src1.regClass());
690
691 /* Emit the SALU comparison instruction */
692 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
693 /* Turn the result into a per-lane bool */
694 bool_to_vector_condition(ctx, cmp, dst);
695 }
696
697 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
698 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
699 {
700 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
701 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
702 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
703 bool use_valu = s_op == aco_opcode::num_opcodes ||
704 divergent_vals ||
705 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
706 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
707 aco_opcode op = use_valu ? v_op : s_op;
708 assert(op != aco_opcode::num_opcodes);
709 assert(dst.regClass() == ctx->program->lane_mask);
710
711 if (use_valu)
712 emit_vopc_instruction(ctx, instr, op, dst);
713 else
714 emit_sopc_instruction(ctx, instr, op, dst);
715 }
716
717 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
718 {
719 Builder bld(ctx->program, ctx->block);
720 Temp src0 = get_alu_src(ctx, instr->src[0]);
721 Temp src1 = get_alu_src(ctx, instr->src[1]);
722
723 assert(dst.regClass() == bld.lm);
724 assert(src0.regClass() == bld.lm);
725 assert(src1.regClass() == bld.lm);
726
727 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
728 }
729
730 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
731 {
732 Builder bld(ctx->program, ctx->block);
733 Temp cond = get_alu_src(ctx, instr->src[0]);
734 Temp then = get_alu_src(ctx, instr->src[1]);
735 Temp els = get_alu_src(ctx, instr->src[2]);
736
737 assert(cond.regClass() == bld.lm);
738
739 if (dst.type() == RegType::vgpr) {
740 aco_ptr<Instruction> bcsel;
741 if (dst.size() == 1) {
742 then = as_vgpr(ctx, then);
743 els = as_vgpr(ctx, els);
744
745 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
746 } else if (dst.size() == 2) {
747 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
748 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
749 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
750 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
751
752 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
753 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
754
755 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
756 } else {
757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
758 nir_print_instr(&instr->instr, stderr);
759 fprintf(stderr, "\n");
760 }
761 return;
762 }
763
764 if (instr->dest.dest.ssa.bit_size == 1) {
765 assert(dst.regClass() == bld.lm);
766 assert(then.regClass() == bld.lm);
767 assert(els.regClass() == bld.lm);
768 }
769
770 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
771 if (dst.regClass() == s1 || dst.regClass() == s2) {
772 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
773 assert(dst.size() == then.size());
774 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
775 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
776 } else {
777 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
778 nir_print_instr(&instr->instr, stderr);
779 fprintf(stderr, "\n");
780 }
781 return;
782 }
783
784 /* divergent boolean bcsel
785 * this implements bcsel on bools: dst = s0 ? s1 : s2
786 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
787 assert(instr->dest.dest.ssa.bit_size == 1);
788
789 if (cond.id() != then.id())
790 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
791
792 if (cond.id() == els.id())
793 bld.sop1(Builder::s_mov, Definition(dst), then);
794 else
795 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
796 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
797 }
798
799 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
800 aco_opcode op, uint32_t undo)
801 {
802 /* multiply by 16777216 to handle denormals */
803 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
804 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
805 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
806 scaled = bld.vop1(op, bld.def(v1), scaled);
807 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
808
809 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
810
811 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
812 }
813
814 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
815 {
816 if (ctx->block->fp_mode.denorm32 == 0) {
817 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
818 return;
819 }
820
821 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
822 }
823
824 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
825 {
826 if (ctx->block->fp_mode.denorm32 == 0) {
827 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
828 return;
829 }
830
831 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
832 }
833
834 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
835 {
836 if (ctx->block->fp_mode.denorm32 == 0) {
837 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
838 return;
839 }
840
841 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
842 }
843
844 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
845 {
846 if (ctx->block->fp_mode.denorm32 == 0) {
847 bld.vop1(aco_opcode::v_log_f32, dst, val);
848 return;
849 }
850
851 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
852 }
853
854 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
855 {
856 if (ctx->options->chip_class >= GFX7)
857 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
858
859 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
860 /* TODO: create more efficient code! */
861 if (val.type() == RegType::sgpr)
862 val = as_vgpr(ctx, val);
863
864 /* Split the input value. */
865 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
866 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
867
868 /* Extract the exponent and compute the unbiased value. */
869 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
870
871 /* Extract the fractional part. */
872 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
873 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
874
875 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
876 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
877
878 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
879 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
880 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
881 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
882 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
883
884 /* Get the sign bit. */
885 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
886
887 /* Decide the operation to apply depending on the unbiased exponent. */
888 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
889 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
890 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
891 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
892 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
893 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
894
895 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
896 }
897
898 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
899 {
900 if (ctx->options->chip_class >= GFX7)
901 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
902
903 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
904 Temp src0 = as_vgpr(ctx, val);
905
906 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
907 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
908
909 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
910 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
911 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
912
913 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
914 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
915 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
916 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
917
918 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
919 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
920
921 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
922
923 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
924 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
925
926 return add->definitions[0].getTemp();
927 }
928
929 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
930 {
931 if (!instr->dest.dest.is_ssa) {
932 fprintf(stderr, "nir alu dst not in ssa: ");
933 nir_print_instr(&instr->instr, stderr);
934 fprintf(stderr, "\n");
935 abort();
936 }
937 Builder bld(ctx->program, ctx->block);
938 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
939 switch(instr->op) {
940 case nir_op_vec2:
941 case nir_op_vec3:
942 case nir_op_vec4: {
943 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
944 unsigned num = instr->dest.dest.ssa.num_components;
945 for (unsigned i = 0; i < num; ++i)
946 elems[i] = get_alu_src(ctx, instr->src[i]);
947
948 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
949 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
950 for (unsigned i = 0; i < num; ++i)
951 vec->operands[i] = Operand{elems[i]};
952 vec->definitions[0] = Definition(dst);
953 ctx->block->instructions.emplace_back(std::move(vec));
954 ctx->allocated_vec.emplace(dst.id(), elems);
955 } else {
956 // TODO: that is a bit suboptimal..
957 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
958 for (unsigned i = 0; i < num - 1; ++i)
959 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
960 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
961 for (unsigned i = 0; i < num; ++i) {
962 unsigned bit = i * instr->dest.dest.ssa.bit_size;
963 if (bit % 32 == 0) {
964 elems[bit / 32] = elems[i];
965 } else {
966 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
967 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
968 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
969 }
970 }
971 if (dst.size() == 1)
972 bld.copy(Definition(dst), elems[0]);
973 else
974 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
975 }
976 break;
977 }
978 case nir_op_mov: {
979 Temp src = get_alu_src(ctx, instr->src[0]);
980 aco_ptr<Instruction> mov;
981 if (dst.type() == RegType::sgpr) {
982 if (src.type() == RegType::vgpr)
983 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
984 else if (src.regClass() == s1)
985 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
986 else if (src.regClass() == s2)
987 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
988 else
989 unreachable("wrong src register class for nir_op_imov");
990 } else if (dst.regClass() == v1) {
991 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
992 } else if (dst.regClass() == v2) {
993 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
994 } else {
995 nir_print_instr(&instr->instr, stderr);
996 unreachable("Should have been lowered to scalar.");
997 }
998 break;
999 }
1000 case nir_op_inot: {
1001 Temp src = get_alu_src(ctx, instr->src[0]);
1002 if (instr->dest.dest.ssa.bit_size == 1) {
1003 assert(src.regClass() == bld.lm);
1004 assert(dst.regClass() == bld.lm);
1005 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1006 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1007 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1008 } else if (dst.regClass() == v1) {
1009 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1010 } else if (dst.type() == RegType::sgpr) {
1011 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1012 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1013 } else {
1014 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1015 nir_print_instr(&instr->instr, stderr);
1016 fprintf(stderr, "\n");
1017 }
1018 break;
1019 }
1020 case nir_op_ineg: {
1021 Temp src = get_alu_src(ctx, instr->src[0]);
1022 if (dst.regClass() == v1) {
1023 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1024 } else if (dst.regClass() == s1) {
1025 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1026 } else if (dst.size() == 2) {
1027 Temp src0 = bld.tmp(dst.type(), 1);
1028 Temp src1 = bld.tmp(dst.type(), 1);
1029 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1030
1031 if (dst.regClass() == s2) {
1032 Temp carry = bld.tmp(s1);
1033 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1034 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1035 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1036 } else {
1037 Temp lower = bld.tmp(v1);
1038 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1039 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1040 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1041 }
1042 } else {
1043 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1044 nir_print_instr(&instr->instr, stderr);
1045 fprintf(stderr, "\n");
1046 }
1047 break;
1048 }
1049 case nir_op_iabs: {
1050 if (dst.regClass() == s1) {
1051 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1052 } else if (dst.regClass() == v1) {
1053 Temp src = get_alu_src(ctx, instr->src[0]);
1054 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1055 } else {
1056 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1057 nir_print_instr(&instr->instr, stderr);
1058 fprintf(stderr, "\n");
1059 }
1060 break;
1061 }
1062 case nir_op_isign: {
1063 Temp src = get_alu_src(ctx, instr->src[0]);
1064 if (dst.regClass() == s1) {
1065 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
1066 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
1067 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
1068 } else if (dst.regClass() == s2) {
1069 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1070 Temp neqz;
1071 if (ctx->program->chip_class >= GFX8)
1072 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1073 else
1074 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1075 /* SCC gets zero-extended to 64 bit */
1076 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1077 } else if (dst.regClass() == v1) {
1078 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
1079 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1080 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
1081 } else if (dst.regClass() == v2) {
1082 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1083 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1084 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1085 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1086 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1087 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_imax: {
1096 if (dst.regClass() == v1) {
1097 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1098 } else if (dst.regClass() == s1) {
1099 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1100 } else {
1101 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1102 nir_print_instr(&instr->instr, stderr);
1103 fprintf(stderr, "\n");
1104 }
1105 break;
1106 }
1107 case nir_op_umax: {
1108 if (dst.regClass() == v1) {
1109 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1110 } else if (dst.regClass() == s1) {
1111 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1112 } else {
1113 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1114 nir_print_instr(&instr->instr, stderr);
1115 fprintf(stderr, "\n");
1116 }
1117 break;
1118 }
1119 case nir_op_imin: {
1120 if (dst.regClass() == v1) {
1121 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1122 } else if (dst.regClass() == s1) {
1123 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1124 } else {
1125 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1126 nir_print_instr(&instr->instr, stderr);
1127 fprintf(stderr, "\n");
1128 }
1129 break;
1130 }
1131 case nir_op_umin: {
1132 if (dst.regClass() == v1) {
1133 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1134 } else if (dst.regClass() == s1) {
1135 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1136 } else {
1137 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1138 nir_print_instr(&instr->instr, stderr);
1139 fprintf(stderr, "\n");
1140 }
1141 break;
1142 }
1143 case nir_op_ior: {
1144 if (instr->dest.dest.ssa.bit_size == 1) {
1145 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1146 } else if (dst.regClass() == v1) {
1147 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1148 } else if (dst.regClass() == s1) {
1149 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1150 } else if (dst.regClass() == s2) {
1151 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1152 } else {
1153 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1154 nir_print_instr(&instr->instr, stderr);
1155 fprintf(stderr, "\n");
1156 }
1157 break;
1158 }
1159 case nir_op_iand: {
1160 if (instr->dest.dest.ssa.bit_size == 1) {
1161 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1162 } else if (dst.regClass() == v1) {
1163 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1164 } else if (dst.regClass() == s1) {
1165 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1166 } else if (dst.regClass() == s2) {
1167 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1168 } else {
1169 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1170 nir_print_instr(&instr->instr, stderr);
1171 fprintf(stderr, "\n");
1172 }
1173 break;
1174 }
1175 case nir_op_ixor: {
1176 if (instr->dest.dest.ssa.bit_size == 1) {
1177 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1178 } else if (dst.regClass() == v1) {
1179 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1180 } else if (dst.regClass() == s1) {
1181 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1182 } else if (dst.regClass() == s2) {
1183 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1184 } else {
1185 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1186 nir_print_instr(&instr->instr, stderr);
1187 fprintf(stderr, "\n");
1188 }
1189 break;
1190 }
1191 case nir_op_ushr: {
1192 if (dst.regClass() == v1) {
1193 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1194 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1195 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1196 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1197 } else if (dst.regClass() == v2) {
1198 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1199 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1200 } else if (dst.regClass() == s2) {
1201 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1202 } else if (dst.regClass() == s1) {
1203 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1204 } else {
1205 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1206 nir_print_instr(&instr->instr, stderr);
1207 fprintf(stderr, "\n");
1208 }
1209 break;
1210 }
1211 case nir_op_ishl: {
1212 if (dst.regClass() == v1) {
1213 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1214 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1215 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1216 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1217 } else if (dst.regClass() == v2) {
1218 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1219 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1220 } else if (dst.regClass() == s1) {
1221 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1222 } else if (dst.regClass() == s2) {
1223 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1224 } else {
1225 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1226 nir_print_instr(&instr->instr, stderr);
1227 fprintf(stderr, "\n");
1228 }
1229 break;
1230 }
1231 case nir_op_ishr: {
1232 if (dst.regClass() == v1) {
1233 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1234 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1235 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1236 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1237 } else if (dst.regClass() == v2) {
1238 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1239 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1240 } else if (dst.regClass() == s1) {
1241 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1242 } else if (dst.regClass() == s2) {
1243 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1244 } else {
1245 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1246 nir_print_instr(&instr->instr, stderr);
1247 fprintf(stderr, "\n");
1248 }
1249 break;
1250 }
1251 case nir_op_find_lsb: {
1252 Temp src = get_alu_src(ctx, instr->src[0]);
1253 if (src.regClass() == s1) {
1254 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1255 } else if (src.regClass() == v1) {
1256 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1257 } else if (src.regClass() == s2) {
1258 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1259 } else {
1260 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1261 nir_print_instr(&instr->instr, stderr);
1262 fprintf(stderr, "\n");
1263 }
1264 break;
1265 }
1266 case nir_op_ufind_msb:
1267 case nir_op_ifind_msb: {
1268 Temp src = get_alu_src(ctx, instr->src[0]);
1269 if (src.regClass() == s1 || src.regClass() == s2) {
1270 aco_opcode op = src.regClass() == s2 ?
1271 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1272 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1273 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1274
1275 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1276 Operand(src.size() * 32u - 1u), msb_rev);
1277 Temp msb = sub.def(0).getTemp();
1278 Temp carry = sub.def(1).getTemp();
1279
1280 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1281 } else if (src.regClass() == v1) {
1282 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1283 Temp msb_rev = bld.tmp(v1);
1284 emit_vop1_instruction(ctx, instr, op, msb_rev);
1285 Temp msb = bld.tmp(v1);
1286 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1287 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1288 } else {
1289 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1290 nir_print_instr(&instr->instr, stderr);
1291 fprintf(stderr, "\n");
1292 }
1293 break;
1294 }
1295 case nir_op_bitfield_reverse: {
1296 if (dst.regClass() == s1) {
1297 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1298 } else if (dst.regClass() == v1) {
1299 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1300 } else {
1301 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1302 nir_print_instr(&instr->instr, stderr);
1303 fprintf(stderr, "\n");
1304 }
1305 break;
1306 }
1307 case nir_op_iadd: {
1308 if (dst.regClass() == s1) {
1309 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1310 break;
1311 }
1312
1313 Temp src0 = get_alu_src(ctx, instr->src[0]);
1314 Temp src1 = get_alu_src(ctx, instr->src[1]);
1315 if (dst.regClass() == v1) {
1316 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1317 break;
1318 }
1319
1320 assert(src0.size() == 2 && src1.size() == 2);
1321 Temp src00 = bld.tmp(src0.type(), 1);
1322 Temp src01 = bld.tmp(dst.type(), 1);
1323 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1324 Temp src10 = bld.tmp(src1.type(), 1);
1325 Temp src11 = bld.tmp(dst.type(), 1);
1326 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1327
1328 if (dst.regClass() == s2) {
1329 Temp carry = bld.tmp(s1);
1330 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1331 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1332 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1333 } else if (dst.regClass() == v2) {
1334 Temp dst0 = bld.tmp(v1);
1335 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1336 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1337 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1338 } else {
1339 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1340 nir_print_instr(&instr->instr, stderr);
1341 fprintf(stderr, "\n");
1342 }
1343 break;
1344 }
1345 case nir_op_uadd_sat: {
1346 Temp src0 = get_alu_src(ctx, instr->src[0]);
1347 Temp src1 = get_alu_src(ctx, instr->src[1]);
1348 if (dst.regClass() == s1) {
1349 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1350 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1351 src0, src1);
1352 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1353 } else if (dst.regClass() == v1) {
1354 if (ctx->options->chip_class >= GFX9) {
1355 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1356 add->operands[0] = Operand(src0);
1357 add->operands[1] = Operand(src1);
1358 add->definitions[0] = Definition(dst);
1359 add->clamp = 1;
1360 ctx->block->instructions.emplace_back(std::move(add));
1361 } else {
1362 if (src1.regClass() != v1)
1363 std::swap(src0, src1);
1364 assert(src1.regClass() == v1);
1365 Temp tmp = bld.tmp(v1);
1366 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1367 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1368 }
1369 } else {
1370 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1371 nir_print_instr(&instr->instr, stderr);
1372 fprintf(stderr, "\n");
1373 }
1374 break;
1375 }
1376 case nir_op_uadd_carry: {
1377 Temp src0 = get_alu_src(ctx, instr->src[0]);
1378 Temp src1 = get_alu_src(ctx, instr->src[1]);
1379 if (dst.regClass() == s1) {
1380 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1381 break;
1382 }
1383 if (dst.regClass() == v1) {
1384 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1385 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1386 break;
1387 }
1388
1389 Temp src00 = bld.tmp(src0.type(), 1);
1390 Temp src01 = bld.tmp(dst.type(), 1);
1391 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1392 Temp src10 = bld.tmp(src1.type(), 1);
1393 Temp src11 = bld.tmp(dst.type(), 1);
1394 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1395 if (dst.regClass() == s2) {
1396 Temp carry = bld.tmp(s1);
1397 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1398 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1399 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1400 } else if (dst.regClass() == v2) {
1401 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1402 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1403 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1405 } else {
1406 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1407 nir_print_instr(&instr->instr, stderr);
1408 fprintf(stderr, "\n");
1409 }
1410 break;
1411 }
1412 case nir_op_isub: {
1413 if (dst.regClass() == s1) {
1414 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1415 break;
1416 }
1417
1418 Temp src0 = get_alu_src(ctx, instr->src[0]);
1419 Temp src1 = get_alu_src(ctx, instr->src[1]);
1420 if (dst.regClass() == v1) {
1421 bld.vsub32(Definition(dst), src0, src1);
1422 break;
1423 }
1424
1425 Temp src00 = bld.tmp(src0.type(), 1);
1426 Temp src01 = bld.tmp(dst.type(), 1);
1427 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1428 Temp src10 = bld.tmp(src1.type(), 1);
1429 Temp src11 = bld.tmp(dst.type(), 1);
1430 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1431 if (dst.regClass() == s2) {
1432 Temp carry = bld.tmp(s1);
1433 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1434 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1435 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1436 } else if (dst.regClass() == v2) {
1437 Temp lower = bld.tmp(v1);
1438 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1439 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1440 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1441 } else {
1442 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1443 nir_print_instr(&instr->instr, stderr);
1444 fprintf(stderr, "\n");
1445 }
1446 break;
1447 }
1448 case nir_op_usub_borrow: {
1449 Temp src0 = get_alu_src(ctx, instr->src[0]);
1450 Temp src1 = get_alu_src(ctx, instr->src[1]);
1451 if (dst.regClass() == s1) {
1452 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1453 break;
1454 } else if (dst.regClass() == v1) {
1455 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1456 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1457 break;
1458 }
1459
1460 Temp src00 = bld.tmp(src0.type(), 1);
1461 Temp src01 = bld.tmp(dst.type(), 1);
1462 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1463 Temp src10 = bld.tmp(src1.type(), 1);
1464 Temp src11 = bld.tmp(dst.type(), 1);
1465 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1466 if (dst.regClass() == s2) {
1467 Temp borrow = bld.tmp(s1);
1468 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1469 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1470 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1471 } else if (dst.regClass() == v2) {
1472 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1473 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1474 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1475 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1476 } else {
1477 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1478 nir_print_instr(&instr->instr, stderr);
1479 fprintf(stderr, "\n");
1480 }
1481 break;
1482 }
1483 case nir_op_imul: {
1484 if (dst.regClass() == v1) {
1485 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1486 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1487 } else if (dst.regClass() == s1) {
1488 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1489 } else {
1490 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1491 nir_print_instr(&instr->instr, stderr);
1492 fprintf(stderr, "\n");
1493 }
1494 break;
1495 }
1496 case nir_op_umul_high: {
1497 if (dst.regClass() == v1) {
1498 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1499 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1500 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1501 } else if (dst.regClass() == s1) {
1502 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1503 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1504 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1505 } else {
1506 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1507 nir_print_instr(&instr->instr, stderr);
1508 fprintf(stderr, "\n");
1509 }
1510 break;
1511 }
1512 case nir_op_imul_high: {
1513 if (dst.regClass() == v1) {
1514 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1515 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1516 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1517 } else if (dst.regClass() == s1) {
1518 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1519 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1520 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1521 } else {
1522 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1523 nir_print_instr(&instr->instr, stderr);
1524 fprintf(stderr, "\n");
1525 }
1526 break;
1527 }
1528 case nir_op_fmul: {
1529 if (dst.size() == 1) {
1530 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1531 } else if (dst.size() == 2) {
1532 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1533 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1534 } else {
1535 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1536 nir_print_instr(&instr->instr, stderr);
1537 fprintf(stderr, "\n");
1538 }
1539 break;
1540 }
1541 case nir_op_fadd: {
1542 if (dst.size() == 1) {
1543 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1544 } else if (dst.size() == 2) {
1545 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1546 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1547 } else {
1548 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1549 nir_print_instr(&instr->instr, stderr);
1550 fprintf(stderr, "\n");
1551 }
1552 break;
1553 }
1554 case nir_op_fsub: {
1555 Temp src0 = get_alu_src(ctx, instr->src[0]);
1556 Temp src1 = get_alu_src(ctx, instr->src[1]);
1557 if (dst.size() == 1) {
1558 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1559 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1560 else
1561 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1562 } else if (dst.size() == 2) {
1563 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1564 get_alu_src(ctx, instr->src[0]),
1565 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1566 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1567 sub->neg[1] = true;
1568 } else {
1569 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1570 nir_print_instr(&instr->instr, stderr);
1571 fprintf(stderr, "\n");
1572 }
1573 break;
1574 }
1575 case nir_op_fmax: {
1576 if (dst.size() == 1) {
1577 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1578 } else if (dst.size() == 2) {
1579 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1580 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1581 get_alu_src(ctx, instr->src[0]),
1582 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1583 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1584 } else {
1585 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1586 get_alu_src(ctx, instr->src[0]),
1587 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1588 }
1589 } else {
1590 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1591 nir_print_instr(&instr->instr, stderr);
1592 fprintf(stderr, "\n");
1593 }
1594 break;
1595 }
1596 case nir_op_fmin: {
1597 if (dst.size() == 1) {
1598 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1599 } else if (dst.size() == 2) {
1600 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1601 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1602 get_alu_src(ctx, instr->src[0]),
1603 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1604 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1605 } else {
1606 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1607 get_alu_src(ctx, instr->src[0]),
1608 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1609 }
1610 } else {
1611 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1612 nir_print_instr(&instr->instr, stderr);
1613 fprintf(stderr, "\n");
1614 }
1615 break;
1616 }
1617 case nir_op_fmax3: {
1618 if (dst.size() == 1) {
1619 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1620 } else {
1621 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1622 nir_print_instr(&instr->instr, stderr);
1623 fprintf(stderr, "\n");
1624 }
1625 break;
1626 }
1627 case nir_op_fmin3: {
1628 if (dst.size() == 1) {
1629 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1630 } else {
1631 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1632 nir_print_instr(&instr->instr, stderr);
1633 fprintf(stderr, "\n");
1634 }
1635 break;
1636 }
1637 case nir_op_fmed3: {
1638 if (dst.size() == 1) {
1639 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1640 } else {
1641 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1642 nir_print_instr(&instr->instr, stderr);
1643 fprintf(stderr, "\n");
1644 }
1645 break;
1646 }
1647 case nir_op_umax3: {
1648 if (dst.size() == 1) {
1649 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1650 } else {
1651 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1652 nir_print_instr(&instr->instr, stderr);
1653 fprintf(stderr, "\n");
1654 }
1655 break;
1656 }
1657 case nir_op_umin3: {
1658 if (dst.size() == 1) {
1659 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1660 } else {
1661 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1662 nir_print_instr(&instr->instr, stderr);
1663 fprintf(stderr, "\n");
1664 }
1665 break;
1666 }
1667 case nir_op_umed3: {
1668 if (dst.size() == 1) {
1669 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1670 } else {
1671 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1672 nir_print_instr(&instr->instr, stderr);
1673 fprintf(stderr, "\n");
1674 }
1675 break;
1676 }
1677 case nir_op_imax3: {
1678 if (dst.size() == 1) {
1679 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1680 } else {
1681 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1682 nir_print_instr(&instr->instr, stderr);
1683 fprintf(stderr, "\n");
1684 }
1685 break;
1686 }
1687 case nir_op_imin3: {
1688 if (dst.size() == 1) {
1689 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1690 } else {
1691 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1692 nir_print_instr(&instr->instr, stderr);
1693 fprintf(stderr, "\n");
1694 }
1695 break;
1696 }
1697 case nir_op_imed3: {
1698 if (dst.size() == 1) {
1699 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1700 } else {
1701 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1702 nir_print_instr(&instr->instr, stderr);
1703 fprintf(stderr, "\n");
1704 }
1705 break;
1706 }
1707 case nir_op_cube_face_coord: {
1708 Temp in = get_alu_src(ctx, instr->src[0], 3);
1709 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1710 emit_extract_vector(ctx, in, 1, v1),
1711 emit_extract_vector(ctx, in, 2, v1) };
1712 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1713 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1714 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1715 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1716 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1717 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1718 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1719 break;
1720 }
1721 case nir_op_cube_face_index: {
1722 Temp in = get_alu_src(ctx, instr->src[0], 3);
1723 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1724 emit_extract_vector(ctx, in, 1, v1),
1725 emit_extract_vector(ctx, in, 2, v1) };
1726 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1727 break;
1728 }
1729 case nir_op_bcsel: {
1730 emit_bcsel(ctx, instr, dst);
1731 break;
1732 }
1733 case nir_op_frsq: {
1734 if (dst.size() == 1) {
1735 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1736 } else if (dst.size() == 2) {
1737 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1738 } else {
1739 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1740 nir_print_instr(&instr->instr, stderr);
1741 fprintf(stderr, "\n");
1742 }
1743 break;
1744 }
1745 case nir_op_fneg: {
1746 Temp src = get_alu_src(ctx, instr->src[0]);
1747 if (dst.size() == 1) {
1748 if (ctx->block->fp_mode.must_flush_denorms32)
1749 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1750 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1751 } else if (dst.size() == 2) {
1752 if (ctx->block->fp_mode.must_flush_denorms16_64)
1753 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1754 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1755 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1756 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1757 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1758 } else {
1759 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1760 nir_print_instr(&instr->instr, stderr);
1761 fprintf(stderr, "\n");
1762 }
1763 break;
1764 }
1765 case nir_op_fabs: {
1766 Temp src = get_alu_src(ctx, instr->src[0]);
1767 if (dst.size() == 1) {
1768 if (ctx->block->fp_mode.must_flush_denorms32)
1769 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1770 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1771 } else if (dst.size() == 2) {
1772 if (ctx->block->fp_mode.must_flush_denorms16_64)
1773 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1774 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1775 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1776 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1777 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1778 } else {
1779 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1780 nir_print_instr(&instr->instr, stderr);
1781 fprintf(stderr, "\n");
1782 }
1783 break;
1784 }
1785 case nir_op_fsat: {
1786 Temp src = get_alu_src(ctx, instr->src[0]);
1787 if (dst.size() == 1) {
1788 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1789 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1790 // TODO: confirm that this holds under any circumstances
1791 } else if (dst.size() == 2) {
1792 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1793 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1794 vop3->clamp = true;
1795 } else {
1796 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1797 nir_print_instr(&instr->instr, stderr);
1798 fprintf(stderr, "\n");
1799 }
1800 break;
1801 }
1802 case nir_op_flog2: {
1803 if (dst.size() == 1) {
1804 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1805 } else {
1806 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1807 nir_print_instr(&instr->instr, stderr);
1808 fprintf(stderr, "\n");
1809 }
1810 break;
1811 }
1812 case nir_op_frcp: {
1813 if (dst.size() == 1) {
1814 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1815 } else if (dst.size() == 2) {
1816 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1817 } else {
1818 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1819 nir_print_instr(&instr->instr, stderr);
1820 fprintf(stderr, "\n");
1821 }
1822 break;
1823 }
1824 case nir_op_fexp2: {
1825 if (dst.size() == 1) {
1826 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1827 } else {
1828 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1829 nir_print_instr(&instr->instr, stderr);
1830 fprintf(stderr, "\n");
1831 }
1832 break;
1833 }
1834 case nir_op_fsqrt: {
1835 if (dst.size() == 1) {
1836 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1837 } else if (dst.size() == 2) {
1838 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1839 } else {
1840 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1841 nir_print_instr(&instr->instr, stderr);
1842 fprintf(stderr, "\n");
1843 }
1844 break;
1845 }
1846 case nir_op_ffract: {
1847 if (dst.size() == 1) {
1848 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1849 } else if (dst.size() == 2) {
1850 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1851 } else {
1852 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1853 nir_print_instr(&instr->instr, stderr);
1854 fprintf(stderr, "\n");
1855 }
1856 break;
1857 }
1858 case nir_op_ffloor: {
1859 if (dst.size() == 1) {
1860 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1861 } else if (dst.size() == 2) {
1862 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1863 } else {
1864 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1865 nir_print_instr(&instr->instr, stderr);
1866 fprintf(stderr, "\n");
1867 }
1868 break;
1869 }
1870 case nir_op_fceil: {
1871 if (dst.size() == 1) {
1872 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1873 } else if (dst.size() == 2) {
1874 if (ctx->options->chip_class >= GFX7) {
1875 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1876 } else {
1877 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1878 Temp src0 = get_alu_src(ctx, instr->src[0]);
1879
1880 /* trunc = trunc(src0)
1881 * if (src0 > 0.0 && src0 != trunc)
1882 * trunc += 1.0
1883 */
1884 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1885 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1886 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1887 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1888 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1889 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1890 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1891 }
1892 } else {
1893 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1894 nir_print_instr(&instr->instr, stderr);
1895 fprintf(stderr, "\n");
1896 }
1897 break;
1898 }
1899 case nir_op_ftrunc: {
1900 if (dst.size() == 1) {
1901 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1902 } else if (dst.size() == 2) {
1903 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1904 } else {
1905 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1906 nir_print_instr(&instr->instr, stderr);
1907 fprintf(stderr, "\n");
1908 }
1909 break;
1910 }
1911 case nir_op_fround_even: {
1912 if (dst.size() == 1) {
1913 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1914 } else if (dst.size() == 2) {
1915 if (ctx->options->chip_class >= GFX7) {
1916 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1917 } else {
1918 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1919 Temp src0 = get_alu_src(ctx, instr->src[0]);
1920
1921 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1922 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1923
1924 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1925 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1926 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1927 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1928 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1929 tmp = sub->definitions[0].getTemp();
1930
1931 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1932 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1933 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1934 Temp cond = vop3->definitions[0].getTemp();
1935
1936 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1937 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1938 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1939 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1940
1941 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1942 }
1943 } else {
1944 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1945 nir_print_instr(&instr->instr, stderr);
1946 fprintf(stderr, "\n");
1947 }
1948 break;
1949 }
1950 case nir_op_fsin:
1951 case nir_op_fcos: {
1952 Temp src = get_alu_src(ctx, instr->src[0]);
1953 aco_ptr<Instruction> norm;
1954 if (dst.size() == 1) {
1955 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1956 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1957
1958 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1959 if (ctx->options->chip_class < GFX9)
1960 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1961
1962 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1963 bld.vop1(opcode, Definition(dst), tmp);
1964 } else {
1965 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1966 nir_print_instr(&instr->instr, stderr);
1967 fprintf(stderr, "\n");
1968 }
1969 break;
1970 }
1971 case nir_op_ldexp: {
1972 if (dst.size() == 1) {
1973 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1974 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1975 get_alu_src(ctx, instr->src[1]));
1976 } else if (dst.size() == 2) {
1977 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1978 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1979 get_alu_src(ctx, instr->src[1]));
1980 } else {
1981 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1982 nir_print_instr(&instr->instr, stderr);
1983 fprintf(stderr, "\n");
1984 }
1985 break;
1986 }
1987 case nir_op_frexp_sig: {
1988 Temp src = get_alu_src(ctx, instr->src[0]);
1989 if (dst.regClass() == v2b) {
1990 Temp tmp = bld.vop1(aco_opcode::v_frexp_mant_f16, bld.def(v1), src);
1991 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1992 } else if (dst.regClass() == v1) {
1993 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
1994 } else if (dst.regClass() == v2) {
1995 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
1996 } else {
1997 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1998 nir_print_instr(&instr->instr, stderr);
1999 fprintf(stderr, "\n");
2000 }
2001 break;
2002 }
2003 case nir_op_frexp_exp: {
2004 Temp src = get_alu_src(ctx, instr->src[0]);
2005 if (instr->src[0].src.ssa->bit_size == 16) {
2006 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2007 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), tmp, Operand(0u));
2008 } else if (instr->src[0].src.ssa->bit_size == 32) {
2009 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2010 } else if (instr->src[0].src.ssa->bit_size == 64) {
2011 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2012 } else {
2013 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2014 nir_print_instr(&instr->instr, stderr);
2015 fprintf(stderr, "\n");
2016 }
2017 break;
2018 }
2019 case nir_op_fsign: {
2020 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2021 if (dst.size() == 1) {
2022 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2023 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2024 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2025 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2026 } else if (dst.size() == 2) {
2027 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2028 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2029 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2030
2031 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2032 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2033 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2034
2035 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2036 } else {
2037 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2038 nir_print_instr(&instr->instr, stderr);
2039 fprintf(stderr, "\n");
2040 }
2041 break;
2042 }
2043 case nir_op_f2f16:
2044 case nir_op_f2f16_rtne: {
2045 Temp src = get_alu_src(ctx, instr->src[0]);
2046 if (instr->src[0].src.ssa->bit_size == 64)
2047 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2048 src = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2049 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2050 break;
2051 }
2052 case nir_op_f2f16_rtz: {
2053 Temp src = get_alu_src(ctx, instr->src[0]);
2054 if (instr->src[0].src.ssa->bit_size == 64)
2055 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2056 src = bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, bld.def(v1), src, Operand(0u));
2057 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2058 break;
2059 }
2060 case nir_op_f2f32: {
2061 if (instr->src[0].src.ssa->bit_size == 16) {
2062 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2063 } else if (instr->src[0].src.ssa->bit_size == 64) {
2064 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2065 } else {
2066 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2067 nir_print_instr(&instr->instr, stderr);
2068 fprintf(stderr, "\n");
2069 }
2070 break;
2071 }
2072 case nir_op_f2f64: {
2073 Temp src = get_alu_src(ctx, instr->src[0]);
2074 if (instr->src[0].src.ssa->bit_size == 16)
2075 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2076 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2077 break;
2078 }
2079 case nir_op_i2f32: {
2080 assert(dst.size() == 1);
2081 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
2082 break;
2083 }
2084 case nir_op_i2f64: {
2085 if (instr->src[0].src.ssa->bit_size == 32) {
2086 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
2087 } else if (instr->src[0].src.ssa->bit_size == 64) {
2088 Temp src = get_alu_src(ctx, instr->src[0]);
2089 RegClass rc = RegClass(src.type(), 1);
2090 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2091 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2092 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2093 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2094 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2095 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2096
2097 } else {
2098 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2099 nir_print_instr(&instr->instr, stderr);
2100 fprintf(stderr, "\n");
2101 }
2102 break;
2103 }
2104 case nir_op_u2f32: {
2105 assert(dst.size() == 1);
2106 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
2107 break;
2108 }
2109 case nir_op_u2f64: {
2110 if (instr->src[0].src.ssa->bit_size == 32) {
2111 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
2112 } else if (instr->src[0].src.ssa->bit_size == 64) {
2113 Temp src = get_alu_src(ctx, instr->src[0]);
2114 RegClass rc = RegClass(src.type(), 1);
2115 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2116 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2117 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2118 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2119 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2120 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2121 } else {
2122 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2123 nir_print_instr(&instr->instr, stderr);
2124 fprintf(stderr, "\n");
2125 }
2126 break;
2127 }
2128 case nir_op_f2i16: {
2129 Temp src = get_alu_src(ctx, instr->src[0]);
2130 if (instr->src[0].src.ssa->bit_size == 16)
2131 src = bld.vop1(aco_opcode::v_cvt_i16_f16, bld.def(v1), src);
2132 else if (instr->src[0].src.ssa->bit_size == 32)
2133 src = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src);
2134 else
2135 src = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src);
2136
2137 if (dst.type() == RegType::vgpr)
2138 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2139 else
2140 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2141 break;
2142 }
2143 case nir_op_f2u16: {
2144 Temp src = get_alu_src(ctx, instr->src[0]);
2145 if (instr->src[0].src.ssa->bit_size == 16)
2146 src = bld.vop1(aco_opcode::v_cvt_u16_f16, bld.def(v1), src);
2147 else if (instr->src[0].src.ssa->bit_size == 32)
2148 src = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src);
2149 else
2150 src = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src);
2151
2152 if (dst.type() == RegType::vgpr)
2153 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2154 else
2155 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2156 break;
2157 }
2158 case nir_op_f2i32: {
2159 Temp src = get_alu_src(ctx, instr->src[0]);
2160 if (instr->src[0].src.ssa->bit_size == 32) {
2161 if (dst.type() == RegType::vgpr)
2162 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
2163 else
2164 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2165 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
2166
2167 } else if (instr->src[0].src.ssa->bit_size == 64) {
2168 if (dst.type() == RegType::vgpr)
2169 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
2170 else
2171 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2172 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
2173
2174 } else {
2175 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2176 nir_print_instr(&instr->instr, stderr);
2177 fprintf(stderr, "\n");
2178 }
2179 break;
2180 }
2181 case nir_op_f2u32: {
2182 Temp src = get_alu_src(ctx, instr->src[0]);
2183 if (instr->src[0].src.ssa->bit_size == 32) {
2184 if (dst.type() == RegType::vgpr)
2185 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2186 else
2187 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2188 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2189
2190 } else if (instr->src[0].src.ssa->bit_size == 64) {
2191 if (dst.type() == RegType::vgpr)
2192 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2193 else
2194 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2195 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2196
2197 } else {
2198 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2199 nir_print_instr(&instr->instr, stderr);
2200 fprintf(stderr, "\n");
2201 }
2202 break;
2203 }
2204 case nir_op_f2i64: {
2205 Temp src = get_alu_src(ctx, instr->src[0]);
2206 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2207 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2208 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2209 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2210 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2211 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2212 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2213 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2214 Temp new_exponent = bld.tmp(v1);
2215 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2216 if (ctx->program->chip_class >= GFX8)
2217 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2218 else
2219 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2220 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2221 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2222 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2223 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2224 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2225 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2226 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2227 Temp new_lower = bld.tmp(v1);
2228 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2229 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2230 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2231
2232 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2233 if (src.type() == RegType::vgpr)
2234 src = bld.as_uniform(src);
2235 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2236 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2237 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2238 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2239 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2240 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2241 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2242 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2243 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2244 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2245 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2246 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2247 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2248 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2249 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2250 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2251 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2252 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2253 Temp borrow = bld.tmp(s1);
2254 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2255 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2256 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2257
2258 } else if (instr->src[0].src.ssa->bit_size == 64) {
2259 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2260 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2261 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2262 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2263 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2264 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2265 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2266 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2267 if (dst.type() == RegType::sgpr) {
2268 lower = bld.as_uniform(lower);
2269 upper = bld.as_uniform(upper);
2270 }
2271 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2272
2273 } else {
2274 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2275 nir_print_instr(&instr->instr, stderr);
2276 fprintf(stderr, "\n");
2277 }
2278 break;
2279 }
2280 case nir_op_f2u64: {
2281 Temp src = get_alu_src(ctx, instr->src[0]);
2282 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2283 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2284 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2285 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2286 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2287 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2288 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2289 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2290 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2291 Temp new_exponent = bld.tmp(v1);
2292 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2293 if (ctx->program->chip_class >= GFX8)
2294 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2295 else
2296 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2297 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2298 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2299 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2300 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2301 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2302 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2303 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2304
2305 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2306 if (src.type() == RegType::vgpr)
2307 src = bld.as_uniform(src);
2308 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2309 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2310 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2311 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2312 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2313 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2314 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2315 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2316 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2317 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2318 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2319 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2320 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2321 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2322 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2323 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2324 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2325 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2326
2327 } else if (instr->src[0].src.ssa->bit_size == 64) {
2328 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2329 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2330 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2331 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2332 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2333 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2334 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2335 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2336 if (dst.type() == RegType::sgpr) {
2337 lower = bld.as_uniform(lower);
2338 upper = bld.as_uniform(upper);
2339 }
2340 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2341
2342 } else {
2343 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2344 nir_print_instr(&instr->instr, stderr);
2345 fprintf(stderr, "\n");
2346 }
2347 break;
2348 }
2349 case nir_op_b2f32: {
2350 Temp src = get_alu_src(ctx, instr->src[0]);
2351 assert(src.regClass() == bld.lm);
2352
2353 if (dst.regClass() == s1) {
2354 src = bool_to_scalar_condition(ctx, src);
2355 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2356 } else if (dst.regClass() == v1) {
2357 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2358 } else {
2359 unreachable("Wrong destination register class for nir_op_b2f32.");
2360 }
2361 break;
2362 }
2363 case nir_op_b2f64: {
2364 Temp src = get_alu_src(ctx, instr->src[0]);
2365 assert(src.regClass() == bld.lm);
2366
2367 if (dst.regClass() == s2) {
2368 src = bool_to_scalar_condition(ctx, src);
2369 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2370 } else if (dst.regClass() == v2) {
2371 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2372 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2373 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2374 } else {
2375 unreachable("Wrong destination register class for nir_op_b2f64.");
2376 }
2377 break;
2378 }
2379 case nir_op_i2i8:
2380 case nir_op_u2u8: {
2381 Temp src = get_alu_src(ctx, instr->src[0]);
2382 /* we can actually just say dst = src */
2383 if (src.regClass() == s1)
2384 bld.copy(Definition(dst), src);
2385 else
2386 emit_extract_vector(ctx, src, 0, dst);
2387 break;
2388 }
2389 case nir_op_i2i16: {
2390 Temp src = get_alu_src(ctx, instr->src[0]);
2391 if (instr->src[0].src.ssa->bit_size == 8) {
2392 if (dst.regClass() == s1) {
2393 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(dst), Operand(src));
2394 } else {
2395 assert(src.regClass() == v1b);
2396 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2397 sdwa->operands[0] = Operand(src);
2398 sdwa->definitions[0] = Definition(dst);
2399 sdwa->sel[0] = sdwa_sbyte;
2400 sdwa->dst_sel = sdwa_sword;
2401 ctx->block->instructions.emplace_back(std::move(sdwa));
2402 }
2403 } else {
2404 Temp src = get_alu_src(ctx, instr->src[0]);
2405 /* we can actually just say dst = src */
2406 if (src.regClass() == s1)
2407 bld.copy(Definition(dst), src);
2408 else
2409 emit_extract_vector(ctx, src, 0, dst);
2410 }
2411 break;
2412 }
2413 case nir_op_u2u16: {
2414 Temp src = get_alu_src(ctx, instr->src[0]);
2415 if (instr->src[0].src.ssa->bit_size == 8) {
2416 if (dst.regClass() == s1)
2417 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFu), src);
2418 else {
2419 assert(src.regClass() == v1b);
2420 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2421 sdwa->operands[0] = Operand(src);
2422 sdwa->definitions[0] = Definition(dst);
2423 sdwa->sel[0] = sdwa_ubyte;
2424 sdwa->dst_sel = sdwa_uword;
2425 ctx->block->instructions.emplace_back(std::move(sdwa));
2426 }
2427 } else {
2428 Temp src = get_alu_src(ctx, instr->src[0]);
2429 /* we can actually just say dst = src */
2430 if (src.regClass() == s1)
2431 bld.copy(Definition(dst), src);
2432 else
2433 emit_extract_vector(ctx, src, 0, dst);
2434 }
2435 break;
2436 }
2437 case nir_op_i2i32: {
2438 Temp src = get_alu_src(ctx, instr->src[0]);
2439 if (instr->src[0].src.ssa->bit_size == 8) {
2440 if (dst.regClass() == s1) {
2441 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(dst), Operand(src));
2442 } else {
2443 assert(src.regClass() == v1b);
2444 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2445 sdwa->operands[0] = Operand(src);
2446 sdwa->definitions[0] = Definition(dst);
2447 sdwa->sel[0] = sdwa_sbyte;
2448 sdwa->dst_sel = sdwa_sdword;
2449 ctx->block->instructions.emplace_back(std::move(sdwa));
2450 }
2451 } else if (instr->src[0].src.ssa->bit_size == 16) {
2452 if (dst.regClass() == s1) {
2453 bld.sop1(aco_opcode::s_sext_i32_i16, Definition(dst), Operand(src));
2454 } else {
2455 assert(src.regClass() == v2b);
2456 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2457 sdwa->operands[0] = Operand(src);
2458 sdwa->definitions[0] = Definition(dst);
2459 sdwa->sel[0] = sdwa_sword;
2460 sdwa->dst_sel = sdwa_udword;
2461 ctx->block->instructions.emplace_back(std::move(sdwa));
2462 }
2463 } else if (instr->src[0].src.ssa->bit_size == 64) {
2464 /* we can actually just say dst = src, as it would map the lower register */
2465 emit_extract_vector(ctx, src, 0, dst);
2466 } else {
2467 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2468 nir_print_instr(&instr->instr, stderr);
2469 fprintf(stderr, "\n");
2470 }
2471 break;
2472 }
2473 case nir_op_u2u32: {
2474 Temp src = get_alu_src(ctx, instr->src[0]);
2475 if (instr->src[0].src.ssa->bit_size == 8) {
2476 if (dst.regClass() == s1)
2477 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFu), src);
2478 else {
2479 assert(src.regClass() == v1b);
2480 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2481 sdwa->operands[0] = Operand(src);
2482 sdwa->definitions[0] = Definition(dst);
2483 sdwa->sel[0] = sdwa_ubyte;
2484 sdwa->dst_sel = sdwa_udword;
2485 ctx->block->instructions.emplace_back(std::move(sdwa));
2486 }
2487 } else if (instr->src[0].src.ssa->bit_size == 16) {
2488 if (dst.regClass() == s1) {
2489 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2490 } else {
2491 assert(src.regClass() == v2b);
2492 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2493 sdwa->operands[0] = Operand(src);
2494 sdwa->definitions[0] = Definition(dst);
2495 sdwa->sel[0] = sdwa_uword;
2496 sdwa->dst_sel = sdwa_udword;
2497 ctx->block->instructions.emplace_back(std::move(sdwa));
2498 }
2499 } else if (instr->src[0].src.ssa->bit_size == 64) {
2500 /* we can actually just say dst = src, as it would map the lower register */
2501 emit_extract_vector(ctx, src, 0, dst);
2502 } else {
2503 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2504 nir_print_instr(&instr->instr, stderr);
2505 fprintf(stderr, "\n");
2506 }
2507 break;
2508 }
2509 case nir_op_i2i64: {
2510 Temp src = get_alu_src(ctx, instr->src[0]);
2511 if (src.regClass() == s1) {
2512 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2513 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2514 } else if (src.regClass() == v1) {
2515 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2516 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2517 } else {
2518 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2519 nir_print_instr(&instr->instr, stderr);
2520 fprintf(stderr, "\n");
2521 }
2522 break;
2523 }
2524 case nir_op_u2u64: {
2525 Temp src = get_alu_src(ctx, instr->src[0]);
2526 if (instr->src[0].src.ssa->bit_size == 32) {
2527 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2528 } else {
2529 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2530 nir_print_instr(&instr->instr, stderr);
2531 fprintf(stderr, "\n");
2532 }
2533 break;
2534 }
2535 case nir_op_b2b32:
2536 case nir_op_b2i32: {
2537 Temp src = get_alu_src(ctx, instr->src[0]);
2538 assert(src.regClass() == bld.lm);
2539
2540 if (dst.regClass() == s1) {
2541 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2542 bool_to_scalar_condition(ctx, src, dst);
2543 } else if (dst.regClass() == v1) {
2544 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2545 } else {
2546 unreachable("Invalid register class for b2i32");
2547 }
2548 break;
2549 }
2550 case nir_op_b2b1:
2551 case nir_op_i2b1: {
2552 Temp src = get_alu_src(ctx, instr->src[0]);
2553 assert(dst.regClass() == bld.lm);
2554
2555 if (src.type() == RegType::vgpr) {
2556 assert(src.regClass() == v1 || src.regClass() == v2);
2557 assert(dst.regClass() == bld.lm);
2558 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2559 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2560 } else {
2561 assert(src.regClass() == s1 || src.regClass() == s2);
2562 Temp tmp;
2563 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2564 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2565 } else {
2566 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2567 bld.scc(bld.def(s1)), Operand(0u), src);
2568 }
2569 bool_to_vector_condition(ctx, tmp, dst);
2570 }
2571 break;
2572 }
2573 case nir_op_pack_64_2x32_split: {
2574 Temp src0 = get_alu_src(ctx, instr->src[0]);
2575 Temp src1 = get_alu_src(ctx, instr->src[1]);
2576
2577 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2578 break;
2579 }
2580 case nir_op_unpack_64_2x32_split_x:
2581 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2582 break;
2583 case nir_op_unpack_64_2x32_split_y:
2584 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2585 break;
2586 case nir_op_unpack_32_2x16_split_x:
2587 if (dst.type() == RegType::vgpr) {
2588 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2589 } else {
2590 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2591 }
2592 break;
2593 case nir_op_unpack_32_2x16_split_y:
2594 if (dst.type() == RegType::vgpr) {
2595 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2596 } else {
2597 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2598 }
2599 break;
2600 case nir_op_pack_32_2x16_split: {
2601 Temp src0 = get_alu_src(ctx, instr->src[0]);
2602 Temp src1 = get_alu_src(ctx, instr->src[1]);
2603 if (dst.regClass() == v1) {
2604 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2605 } else {
2606 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2607 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2608 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2609 }
2610 break;
2611 }
2612 case nir_op_pack_half_2x16: {
2613 Temp src = get_alu_src(ctx, instr->src[0], 2);
2614
2615 if (dst.regClass() == v1) {
2616 Temp src0 = bld.tmp(v1);
2617 Temp src1 = bld.tmp(v1);
2618 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2619 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2620 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2621 else
2622 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2623 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2624 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2625 } else {
2626 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2627 nir_print_instr(&instr->instr, stderr);
2628 fprintf(stderr, "\n");
2629 }
2630 break;
2631 }
2632 case nir_op_unpack_half_2x16_split_x: {
2633 if (dst.regClass() == v1) {
2634 Builder bld(ctx->program, ctx->block);
2635 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2636 } else {
2637 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2638 nir_print_instr(&instr->instr, stderr);
2639 fprintf(stderr, "\n");
2640 }
2641 break;
2642 }
2643 case nir_op_unpack_half_2x16_split_y: {
2644 if (dst.regClass() == v1) {
2645 Builder bld(ctx->program, ctx->block);
2646 /* TODO: use SDWA here */
2647 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2648 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2649 } else {
2650 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2651 nir_print_instr(&instr->instr, stderr);
2652 fprintf(stderr, "\n");
2653 }
2654 break;
2655 }
2656 case nir_op_fquantize2f16: {
2657 Temp src = get_alu_src(ctx, instr->src[0]);
2658 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2659 Temp f32, cmp_res;
2660
2661 if (ctx->program->chip_class >= GFX8) {
2662 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2663 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2664 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2665 } else {
2666 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2667 * so compare the result and flush to 0 if it's smaller.
2668 */
2669 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2670 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2671 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2672 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2673 cmp_res = vop3->definitions[0].getTemp();
2674 }
2675
2676 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2677 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2678 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2679 } else {
2680 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2681 }
2682 break;
2683 }
2684 case nir_op_bfm: {
2685 Temp bits = get_alu_src(ctx, instr->src[0]);
2686 Temp offset = get_alu_src(ctx, instr->src[1]);
2687
2688 if (dst.regClass() == s1) {
2689 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2690 } else if (dst.regClass() == v1) {
2691 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2692 } else {
2693 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2694 nir_print_instr(&instr->instr, stderr);
2695 fprintf(stderr, "\n");
2696 }
2697 break;
2698 }
2699 case nir_op_bitfield_select: {
2700 /* (mask & insert) | (~mask & base) */
2701 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2702 Temp insert = get_alu_src(ctx, instr->src[1]);
2703 Temp base = get_alu_src(ctx, instr->src[2]);
2704
2705 /* dst = (insert & bitmask) | (base & ~bitmask) */
2706 if (dst.regClass() == s1) {
2707 aco_ptr<Instruction> sop2;
2708 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2709 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2710 Operand lhs;
2711 if (const_insert && const_bitmask) {
2712 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2713 } else {
2714 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2715 lhs = Operand(insert);
2716 }
2717
2718 Operand rhs;
2719 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2720 if (const_base && const_bitmask) {
2721 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2722 } else {
2723 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2724 rhs = Operand(base);
2725 }
2726
2727 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2728
2729 } else if (dst.regClass() == v1) {
2730 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2731 base = as_vgpr(ctx, base);
2732 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2733 insert = as_vgpr(ctx, insert);
2734
2735 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2736
2737 } else {
2738 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2739 nir_print_instr(&instr->instr, stderr);
2740 fprintf(stderr, "\n");
2741 }
2742 break;
2743 }
2744 case nir_op_ubfe:
2745 case nir_op_ibfe: {
2746 Temp base = get_alu_src(ctx, instr->src[0]);
2747 Temp offset = get_alu_src(ctx, instr->src[1]);
2748 Temp bits = get_alu_src(ctx, instr->src[2]);
2749
2750 if (dst.type() == RegType::sgpr) {
2751 Operand extract;
2752 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2753 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2754 if (const_offset && const_bits) {
2755 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2756 extract = Operand(const_extract);
2757 } else {
2758 Operand width;
2759 if (const_bits) {
2760 width = Operand(const_bits->u32 << 16);
2761 } else {
2762 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2763 }
2764 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2765 }
2766
2767 aco_opcode opcode;
2768 if (dst.regClass() == s1) {
2769 if (instr->op == nir_op_ubfe)
2770 opcode = aco_opcode::s_bfe_u32;
2771 else
2772 opcode = aco_opcode::s_bfe_i32;
2773 } else if (dst.regClass() == s2) {
2774 if (instr->op == nir_op_ubfe)
2775 opcode = aco_opcode::s_bfe_u64;
2776 else
2777 opcode = aco_opcode::s_bfe_i64;
2778 } else {
2779 unreachable("Unsupported BFE bit size");
2780 }
2781
2782 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2783
2784 } else {
2785 aco_opcode opcode;
2786 if (dst.regClass() == v1) {
2787 if (instr->op == nir_op_ubfe)
2788 opcode = aco_opcode::v_bfe_u32;
2789 else
2790 opcode = aco_opcode::v_bfe_i32;
2791 } else {
2792 unreachable("Unsupported BFE bit size");
2793 }
2794
2795 emit_vop3a_instruction(ctx, instr, opcode, dst);
2796 }
2797 break;
2798 }
2799 case nir_op_bit_count: {
2800 Temp src = get_alu_src(ctx, instr->src[0]);
2801 if (src.regClass() == s1) {
2802 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2803 } else if (src.regClass() == v1) {
2804 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2805 } else if (src.regClass() == v2) {
2806 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2807 emit_extract_vector(ctx, src, 1, v1),
2808 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2809 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2810 } else if (src.regClass() == s2) {
2811 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2812 } else {
2813 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2814 nir_print_instr(&instr->instr, stderr);
2815 fprintf(stderr, "\n");
2816 }
2817 break;
2818 }
2819 case nir_op_flt: {
2820 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2821 break;
2822 }
2823 case nir_op_fge: {
2824 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2825 break;
2826 }
2827 case nir_op_feq: {
2828 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2829 break;
2830 }
2831 case nir_op_fne: {
2832 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2833 break;
2834 }
2835 case nir_op_ilt: {
2836 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2837 break;
2838 }
2839 case nir_op_ige: {
2840 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2841 break;
2842 }
2843 case nir_op_ieq: {
2844 if (instr->src[0].src.ssa->bit_size == 1)
2845 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2846 else
2847 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2848 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2849 break;
2850 }
2851 case nir_op_ine: {
2852 if (instr->src[0].src.ssa->bit_size == 1)
2853 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2854 else
2855 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2856 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2857 break;
2858 }
2859 case nir_op_ult: {
2860 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2861 break;
2862 }
2863 case nir_op_uge: {
2864 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2865 break;
2866 }
2867 case nir_op_fddx:
2868 case nir_op_fddy:
2869 case nir_op_fddx_fine:
2870 case nir_op_fddy_fine:
2871 case nir_op_fddx_coarse:
2872 case nir_op_fddy_coarse: {
2873 Temp src = get_alu_src(ctx, instr->src[0]);
2874 uint16_t dpp_ctrl1, dpp_ctrl2;
2875 if (instr->op == nir_op_fddx_fine) {
2876 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2877 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2878 } else if (instr->op == nir_op_fddy_fine) {
2879 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2880 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2881 } else {
2882 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2883 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2884 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2885 else
2886 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2887 }
2888
2889 Temp tmp;
2890 if (ctx->program->chip_class >= GFX8) {
2891 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2892 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2893 } else {
2894 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2895 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2896 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2897 }
2898 emit_wqm(ctx, tmp, dst, true);
2899 break;
2900 }
2901 default:
2902 fprintf(stderr, "Unknown NIR ALU instr: ");
2903 nir_print_instr(&instr->instr, stderr);
2904 fprintf(stderr, "\n");
2905 }
2906 }
2907
2908 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2909 {
2910 Temp dst = get_ssa_temp(ctx, &instr->def);
2911
2912 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2913 // which get truncated the lsb if double and msb if int
2914 // for now, we only use s_mov_b64 with 64bit inline constants
2915 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2916 assert(dst.type() == RegType::sgpr);
2917
2918 Builder bld(ctx->program, ctx->block);
2919
2920 if (instr->def.bit_size == 1) {
2921 assert(dst.regClass() == bld.lm);
2922 int val = instr->value[0].b ? -1 : 0;
2923 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2924 bld.sop1(Builder::s_mov, Definition(dst), op);
2925 } else if (dst.size() == 1) {
2926 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2927 } else {
2928 assert(dst.size() != 1);
2929 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2930 if (instr->def.bit_size == 64)
2931 for (unsigned i = 0; i < dst.size(); i++)
2932 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2933 else {
2934 for (unsigned i = 0; i < dst.size(); i++)
2935 vec->operands[i] = Operand{instr->value[i].u32};
2936 }
2937 vec->definitions[0] = Definition(dst);
2938 ctx->block->instructions.emplace_back(std::move(vec));
2939 }
2940 }
2941
2942 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2943 {
2944 uint32_t new_mask = 0;
2945 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2946 if (mask & (1u << i))
2947 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2948 return new_mask;
2949 }
2950
2951 Operand load_lds_size_m0(isel_context *ctx)
2952 {
2953 /* TODO: m0 does not need to be initialized on GFX9+ */
2954 Builder bld(ctx->program, ctx->block);
2955 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2956 }
2957
2958 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2959 Temp address, unsigned base_offset, unsigned align)
2960 {
2961 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2962
2963 Builder bld(ctx->program, ctx->block);
2964
2965 Operand m = load_lds_size_m0(ctx);
2966
2967 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2968 unsigned bytes_read = 0;
2969 unsigned result_size = 0;
2970 unsigned total_bytes = num_components * elem_size_bytes;
2971 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2972 bool large_ds_read = ctx->options->chip_class >= GFX7;
2973 bool usable_read2 = ctx->options->chip_class >= GFX7;
2974
2975 while (bytes_read < total_bytes) {
2976 unsigned todo = total_bytes - bytes_read;
2977 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2978 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2979
2980 aco_opcode op = aco_opcode::last_opcode;
2981 bool read2 = false;
2982 if (todo >= 16 && aligned16 && large_ds_read) {
2983 op = aco_opcode::ds_read_b128;
2984 todo = 16;
2985 } else if (todo >= 16 && aligned8 && usable_read2) {
2986 op = aco_opcode::ds_read2_b64;
2987 read2 = true;
2988 todo = 16;
2989 } else if (todo >= 12 && aligned16 && large_ds_read) {
2990 op = aco_opcode::ds_read_b96;
2991 todo = 12;
2992 } else if (todo >= 8 && aligned8) {
2993 op = aco_opcode::ds_read_b64;
2994 todo = 8;
2995 } else if (todo >= 8 && usable_read2) {
2996 op = aco_opcode::ds_read2_b32;
2997 read2 = true;
2998 todo = 8;
2999 } else if (todo >= 4) {
3000 op = aco_opcode::ds_read_b32;
3001 todo = 4;
3002 } else {
3003 assert(false);
3004 }
3005 assert(todo % elem_size_bytes == 0);
3006 unsigned num_elements = todo / elem_size_bytes;
3007 unsigned offset = base_offset + bytes_read;
3008 unsigned max_offset = read2 ? 1019 : 65535;
3009
3010 Temp address_offset = address;
3011 if (offset > max_offset) {
3012 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3013 offset = bytes_read;
3014 }
3015 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
3016
3017 Temp res;
3018 if (num_components == 1 && dst.type() == RegType::vgpr)
3019 res = dst;
3020 else
3021 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
3022
3023 if (read2)
3024 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
3025 else
3026 res = bld.ds(op, Definition(res), address_offset, m, offset);
3027
3028 if (num_components == 1) {
3029 assert(todo == total_bytes);
3030 if (dst.type() == RegType::sgpr)
3031 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
3032 return dst;
3033 }
3034
3035 if (dst.type() == RegType::sgpr) {
3036 Temp new_res = bld.tmp(RegType::sgpr, res.size());
3037 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
3038 res = new_res;
3039 }
3040
3041 if (num_elements == 1) {
3042 result[result_size++] = res;
3043 } else {
3044 assert(res != dst && res.size() % num_elements == 0);
3045 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
3046 split->operands[0] = Operand(res);
3047 for (unsigned i = 0; i < num_elements; i++)
3048 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
3049 ctx->block->instructions.emplace_back(std::move(split));
3050 }
3051
3052 bytes_read += todo;
3053 }
3054
3055 assert(result_size == num_components && result_size > 1);
3056 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
3057 for (unsigned i = 0; i < result_size; i++)
3058 vec->operands[i] = Operand(result[i]);
3059 vec->definitions[0] = Definition(dst);
3060 ctx->block->instructions.emplace_back(std::move(vec));
3061 ctx->allocated_vec.emplace(dst.id(), result);
3062
3063 return dst;
3064 }
3065
3066 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
3067 {
3068 if (start == 0 && size == data.size())
3069 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
3070
3071 unsigned size_hint = 1;
3072 auto it = ctx->allocated_vec.find(data.id());
3073 if (it != ctx->allocated_vec.end())
3074 size_hint = it->second[0].size();
3075 if (size % size_hint || start % size_hint)
3076 size_hint = 1;
3077
3078 start /= size_hint;
3079 size /= size_hint;
3080
3081 Temp elems[size];
3082 for (unsigned i = 0; i < size; i++)
3083 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
3084
3085 if (size == 1)
3086 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
3087
3088 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
3089 for (unsigned i = 0; i < size; i++)
3090 vec->operands[i] = Operand(elems[i]);
3091 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
3092 vec->definitions[0] = Definition(res);
3093 ctx->block->instructions.emplace_back(std::move(vec));
3094 return res;
3095 }
3096
3097 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
3098 {
3099 Builder bld(ctx->program, ctx->block);
3100 unsigned bytes_written = 0;
3101 bool large_ds_write = ctx->options->chip_class >= GFX7;
3102 bool usable_write2 = ctx->options->chip_class >= GFX7;
3103
3104 while (bytes_written < total_size * 4) {
3105 unsigned todo = total_size * 4 - bytes_written;
3106 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
3107 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
3108
3109 aco_opcode op = aco_opcode::last_opcode;
3110 bool write2 = false;
3111 unsigned size = 0;
3112 if (todo >= 16 && aligned16 && large_ds_write) {
3113 op = aco_opcode::ds_write_b128;
3114 size = 4;
3115 } else if (todo >= 16 && aligned8 && usable_write2) {
3116 op = aco_opcode::ds_write2_b64;
3117 write2 = true;
3118 size = 4;
3119 } else if (todo >= 12 && aligned16 && large_ds_write) {
3120 op = aco_opcode::ds_write_b96;
3121 size = 3;
3122 } else if (todo >= 8 && aligned8) {
3123 op = aco_opcode::ds_write_b64;
3124 size = 2;
3125 } else if (todo >= 8 && usable_write2) {
3126 op = aco_opcode::ds_write2_b32;
3127 write2 = true;
3128 size = 2;
3129 } else if (todo >= 4) {
3130 op = aco_opcode::ds_write_b32;
3131 size = 1;
3132 } else {
3133 assert(false);
3134 }
3135
3136 unsigned offset = offset0 + offset1 + bytes_written;
3137 unsigned max_offset = write2 ? 1020 : 65535;
3138 Temp address_offset = address;
3139 if (offset > max_offset) {
3140 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
3141 offset = offset1 + bytes_written;
3142 }
3143 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
3144
3145 if (write2) {
3146 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
3147 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
3148 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
3149 } else {
3150 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
3151 bld.ds(op, address_offset, val, m, offset);
3152 }
3153
3154 bytes_written += size * 4;
3155 }
3156 }
3157
3158 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3159 Temp address, unsigned base_offset, unsigned align)
3160 {
3161 assert(util_is_power_of_two_nonzero(align) && align >= 4);
3162 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3163
3164 Operand m = load_lds_size_m0(ctx);
3165
3166 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
3167 assert(wrmask <= 0x0f);
3168 int start[2], count[2];
3169 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
3170 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
3171 assert(wrmask == 0);
3172
3173 /* one combined store is sufficient */
3174 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
3175 Builder bld(ctx->program, ctx->block);
3176
3177 Temp address_offset = address;
3178 if ((base_offset / elem_size_bytes) + start[1] > 255) {
3179 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3180 base_offset = 0;
3181 }
3182
3183 assert(count[0] == 1);
3184 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
3185
3186 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
3187 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
3188 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3189 base_offset = base_offset / elem_size_bytes;
3190 bld.ds(op, address_offset, val0, val1, m,
3191 base_offset + start[0], base_offset + start[1]);
3192 return;
3193 }
3194
3195 for (unsigned i = 0; i < 2; i++) {
3196 if (count[i] == 0)
3197 continue;
3198
3199 unsigned elem_size_words = elem_size_bytes / 4;
3200 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
3201 base_offset, start[i] * elem_size_bytes, align);
3202 }
3203 return;
3204 }
3205
3206 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3207 {
3208 unsigned align = 16;
3209 if (const_offset)
3210 align = std::min(align, 1u << (ffs(const_offset) - 1));
3211
3212 return align;
3213 }
3214
3215
3216 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3217 unsigned split_cnt = 0u, Temp dst = Temp())
3218 {
3219 Builder bld(ctx->program, ctx->block);
3220 unsigned dword_size = elem_size_bytes / 4;
3221
3222 if (!dst.id())
3223 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3224
3225 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3226 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3227 instr->definitions[0] = Definition(dst);
3228
3229 for (unsigned i = 0; i < cnt; ++i) {
3230 if (arr[i].id()) {
3231 assert(arr[i].size() == dword_size);
3232 allocated_vec[i] = arr[i];
3233 instr->operands[i] = Operand(arr[i]);
3234 } else {
3235 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3236 allocated_vec[i] = zero;
3237 instr->operands[i] = Operand(zero);
3238 }
3239 }
3240
3241 bld.insert(std::move(instr));
3242
3243 if (split_cnt)
3244 emit_split_vector(ctx, dst, split_cnt);
3245 else
3246 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3247
3248 return dst;
3249 }
3250
3251 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3252 {
3253 if (const_offset >= 4096) {
3254 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3255 const_offset %= 4096u;
3256
3257 if (!voffset.id())
3258 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3259 else if (unlikely(voffset.regClass() == s1))
3260 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3261 else if (likely(voffset.regClass() == v1))
3262 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3263 else
3264 unreachable("Unsupported register class of voffset");
3265 }
3266
3267 return const_offset;
3268 }
3269
3270 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3271 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
3272 {
3273 assert(vdata.id());
3274 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3275 assert(vdata.size() >= 1 && vdata.size() <= 4);
3276
3277 Builder bld(ctx->program, ctx->block);
3278 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
3279 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3280
3281 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3282 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3283 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3284 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3285 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
3286
3287 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3288 }
3289
3290 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3291 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3292 bool allow_combining = true, bool reorder = true, bool slc = false)
3293 {
3294 Builder bld(ctx->program, ctx->block);
3295 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3296 assert(write_mask);
3297
3298 if (elem_size_bytes == 8) {
3299 elem_size_bytes = 4;
3300 write_mask = widen_mask(write_mask, 2);
3301 }
3302
3303 while (write_mask) {
3304 int start = 0;
3305 int count = 0;
3306 u_bit_scan_consecutive_range(&write_mask, &start, &count);
3307 assert(count > 0);
3308 assert(start >= 0);
3309
3310 while (count > 0) {
3311 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
3312 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
3313
3314 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
3315 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
3316 sub_count = 2;
3317
3318 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
3319 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
3320
3321 count -= sub_count;
3322 start += sub_count;
3323 }
3324
3325 assert(count == 0);
3326 }
3327 }
3328
3329 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3330 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3331 {
3332 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3333 assert(size_dwords >= 1 && size_dwords <= 4);
3334
3335 Builder bld(ctx->program, ctx->block);
3336 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3337 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3338 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3339
3340 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3341 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3342 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3343 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3344 /* disable_wqm */ false, /* glc */ true,
3345 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3346
3347 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3348
3349 return vdata;
3350 }
3351
3352 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3353 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3354 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3355 {
3356 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3357 assert((num_components * elem_size_bytes / 4) == dst.size());
3358 assert(!!stride != allow_combining);
3359
3360 Builder bld(ctx->program, ctx->block);
3361 unsigned split_cnt = num_components;
3362
3363 if (elem_size_bytes == 8) {
3364 elem_size_bytes = 4;
3365 num_components *= 2;
3366 }
3367
3368 if (!stride)
3369 stride = elem_size_bytes;
3370
3371 unsigned load_size = 1;
3372 if (allow_combining) {
3373 if ((num_components % 4) == 0)
3374 load_size = 4;
3375 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3376 load_size = 3;
3377 else if ((num_components % 2) == 0)
3378 load_size = 2;
3379 }
3380
3381 unsigned num_loads = num_components / load_size;
3382 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3383
3384 for (unsigned i = 0; i < num_loads; ++i) {
3385 unsigned const_offset = i * stride * load_size + base_const_offset;
3386 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3387 }
3388
3389 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, load_size * 4u, split_cnt, dst);
3390 }
3391
3392 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3393 {
3394 Builder bld(ctx->program, ctx->block);
3395 Temp offset = base_offset.first;
3396 unsigned const_offset = base_offset.second;
3397
3398 if (!nir_src_is_const(*off_src)) {
3399 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3400 Temp with_stride;
3401
3402 /* Calculate indirect offset with stride */
3403 if (likely(indirect_offset_arg.regClass() == v1))
3404 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3405 else if (indirect_offset_arg.regClass() == s1)
3406 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3407 else
3408 unreachable("Unsupported register class of indirect offset");
3409
3410 /* Add to the supplied base offset */
3411 if (offset.id() == 0)
3412 offset = with_stride;
3413 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3414 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3415 else if (offset.size() == 1 && with_stride.size() == 1)
3416 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3417 else
3418 unreachable("Unsupported register class of indirect offset");
3419 } else {
3420 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3421 const_offset += const_offset_arg * stride;
3422 }
3423
3424 return std::make_pair(offset, const_offset);
3425 }
3426
3427 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3428 {
3429 Builder bld(ctx->program, ctx->block);
3430 Temp offset;
3431
3432 if (off1.first.id() && off2.first.id()) {
3433 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3434 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3435 else if (off1.first.size() == 1 && off2.first.size() == 1)
3436 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3437 else
3438 unreachable("Unsupported register class of indirect offset");
3439 } else {
3440 offset = off1.first.id() ? off1.first : off2.first;
3441 }
3442
3443 return std::make_pair(offset, off1.second + off2.second);
3444 }
3445
3446 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3447 {
3448 Builder bld(ctx->program, ctx->block);
3449 unsigned const_offset = offs.second * multiplier;
3450
3451 if (!offs.first.id())
3452 return std::make_pair(offs.first, const_offset);
3453
3454 Temp offset = unlikely(offs.first.regClass() == s1)
3455 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3456 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3457
3458 return std::make_pair(offset, const_offset);
3459 }
3460
3461 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3462 {
3463 Builder bld(ctx->program, ctx->block);
3464
3465 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3466 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3467 /* component is in bytes */
3468 const_offset += nir_intrinsic_component(instr) * component_stride;
3469
3470 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3471 nir_src *off_src = nir_get_io_offset_src(instr);
3472 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3473 }
3474
3475 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3476 {
3477 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3478 }
3479
3480 Temp get_tess_rel_patch_id(isel_context *ctx)
3481 {
3482 Builder bld(ctx->program, ctx->block);
3483
3484 switch (ctx->shader->info.stage) {
3485 case MESA_SHADER_TESS_CTRL:
3486 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3487 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3488 case MESA_SHADER_TESS_EVAL:
3489 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3490 default:
3491 unreachable("Unsupported stage in get_tess_rel_patch_id");
3492 }
3493 }
3494
3495 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3496 {
3497 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3498 Builder bld(ctx->program, ctx->block);
3499
3500 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3501 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3502
3503 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3504
3505 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3506 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3507
3508 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3509 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3510 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3511
3512 return offset_mul(ctx, offs, 4u);
3513 }
3514
3515 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3516 {
3517 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3518 Builder bld(ctx->program, ctx->block);
3519
3520 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3521 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3522 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3523 uint32_t output_vertex_size = num_tcs_outputs * 16;
3524 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3525 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3526
3527 std::pair<Temp, unsigned> offs = instr
3528 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3529 : std::make_pair(Temp(), 0u);
3530
3531 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3532 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3533
3534 if (per_vertex) {
3535 assert(instr);
3536
3537 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3538 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3539
3540 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3541 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3542 } else {
3543 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3544 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3545 }
3546
3547 return offs;
3548 }
3549
3550 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3551 {
3552 Builder bld(ctx->program, ctx->block);
3553
3554 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3555 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3556
3557 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3558
3559 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3560 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3561 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3562
3563 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3564 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3565
3566 return offs;
3567 }
3568
3569 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3570 {
3571 Builder bld(ctx->program, ctx->block);
3572
3573 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3574 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3575 : ctx->args->options->key.tes.tcs_num_outputs;
3576
3577 unsigned output_vertex_size = num_tcs_outputs * 16;
3578 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3579 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3580 unsigned attr_stride = ctx->tcs_num_patches;
3581
3582 std::pair<Temp, unsigned> offs = instr
3583 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3584 : std::make_pair(Temp(), 0u);
3585
3586 if (const_base_offset)
3587 offs.second += const_base_offset * attr_stride;
3588
3589 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3590 Temp patch_off = bld.v_mul_imm(bld.def(v1), rel_patch_id, 16u);
3591 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3592
3593 return offs;
3594 }
3595
3596 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
3597 {
3598 unsigned off = nir_intrinsic_base(instr) * 4u;
3599 nir_src *off_src = nir_get_io_offset_src(instr);
3600
3601 if (!nir_src_is_const(*off_src)) {
3602 *indirect = true;
3603 return false;
3604 }
3605
3606 *indirect = false;
3607 off += nir_src_as_uint(*off_src) * 16u;
3608
3609 while (mask) {
3610 unsigned slot = u_bit_scan64(&mask) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
3611 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
3612 return true;
3613 }
3614
3615 return false;
3616 }
3617
3618 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
3619 {
3620 unsigned write_mask = nir_intrinsic_write_mask(instr);
3621 unsigned component = nir_intrinsic_component(instr);
3622 unsigned idx = nir_intrinsic_base(instr) + component;
3623
3624 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3625 if (off_instr->type != nir_instr_type_load_const)
3626 return false;
3627
3628 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3629 idx += nir_src_as_uint(instr->src[1]) * 4u;
3630
3631 if (instr->src[0].ssa->bit_size == 64)
3632 write_mask = widen_mask(write_mask, 2);
3633
3634 for (unsigned i = 0; i < 8; ++i) {
3635 if (write_mask & (1 << i)) {
3636 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3637 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, v1);
3638 }
3639 idx++;
3640 }
3641
3642 return true;
3643 }
3644
3645 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
3646 {
3647 /* Only TCS per-vertex inputs are supported by this function.
3648 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
3649 */
3650 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
3651 return false;
3652
3653 nir_src *off_src = nir_get_io_offset_src(instr);
3654 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3655 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
3656 bool can_use_temps = nir_src_is_const(*off_src) &&
3657 vertex_index_instr->type == nir_instr_type_intrinsic &&
3658 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
3659
3660 if (!can_use_temps)
3661 return false;
3662
3663 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
3664 Temp *src = &ctx->inputs.temps[idx];
3665 Temp vec = create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u);
3666 assert(vec.size() == dst.size());
3667
3668 Builder bld(ctx->program, ctx->block);
3669 bld.copy(Definition(dst), vec);
3670 return true;
3671 }
3672
3673 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
3674 {
3675 Builder bld(ctx->program, ctx->block);
3676
3677 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
3678 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3679 unsigned write_mask = nir_intrinsic_write_mask(instr);
3680 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3681
3682 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
3683 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
3684 bool indirect_write;
3685 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
3686 if (temp_only_input && !indirect_write)
3687 return;
3688 }
3689
3690 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
3691 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
3692 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3693 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
3694 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
3695 } else {
3696 Temp lds_base;
3697
3698 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3699 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
3700 unsigned itemsize = ctx->stage == vertex_geometry_gs
3701 ? ctx->program->info->vs.es_info.esgs_itemsize
3702 : ctx->program->info->tes.es_info.esgs_itemsize;
3703 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
3704 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3705 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
3706 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3707 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3708 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
3709 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
3710 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
3711 */
3712 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
3713 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
3714 lds_base = bld.v_mul_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
3715 } else {
3716 unreachable("Invalid LS or ES stage");
3717 }
3718
3719 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
3720 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3721 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
3722 }
3723 }
3724
3725 bool should_write_tcs_patch_output_to_vmem(isel_context *ctx, nir_intrinsic_instr *instr)
3726 {
3727 unsigned off = nir_intrinsic_base(instr) * 4u;
3728 return off != ctx->tcs_tess_lvl_out_loc &&
3729 off != ctx->tcs_tess_lvl_in_loc;
3730 }
3731
3732 bool should_write_tcs_output_to_lds(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3733 {
3734 /* When none of the appropriate outputs are read, we are OK to never write to LDS */
3735 if (per_vertex ? ctx->shader->info.outputs_read == 0U : ctx->shader->info.patch_outputs_read == 0u)
3736 return false;
3737
3738 uint64_t mask = per_vertex
3739 ? ctx->shader->info.outputs_read
3740 : ctx->shader->info.patch_outputs_read;
3741 bool indirect_write;
3742 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
3743 return indirect_write || output_read;
3744 }
3745
3746 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3747 {
3748 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3749 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3750
3751 Builder bld(ctx->program, ctx->block);
3752
3753 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
3754 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3755 unsigned write_mask = nir_intrinsic_write_mask(instr);
3756
3757 /* Only write to VMEM if the output is per-vertex or it's per-patch non tess factor */
3758 bool write_to_vmem = per_vertex || should_write_tcs_patch_output_to_vmem(ctx, instr);
3759 /* Only write to LDS if the output is read by the shader, or it's per-patch tess factor */
3760 bool write_to_lds = !write_to_vmem || should_write_tcs_output_to_lds(ctx, instr, per_vertex);
3761
3762 if (write_to_vmem) {
3763 std::pair<Temp, unsigned> vmem_offs = per_vertex
3764 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
3765 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
3766
3767 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3768 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3769 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
3770 }
3771
3772 if (write_to_lds) {
3773 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3774 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3775 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
3776 }
3777 }
3778
3779 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3780 {
3781 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3782 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3783
3784 Builder bld(ctx->program, ctx->block);
3785
3786 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3787 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3788 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3789 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3790
3791 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
3792 }
3793
3794 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3795 {
3796 if (ctx->stage == vertex_vs ||
3797 ctx->stage == tess_eval_vs ||
3798 ctx->stage == fragment_fs ||
3799 ctx->stage == ngg_vertex_gs ||
3800 ctx->stage == ngg_tess_eval_gs ||
3801 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3802 bool stored_to_temps = store_output_to_temps(ctx, instr);
3803 if (!stored_to_temps) {
3804 fprintf(stderr, "Unimplemented output offset instruction:\n");
3805 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
3806 fprintf(stderr, "\n");
3807 abort();
3808 }
3809 } else if (ctx->stage == vertex_es ||
3810 ctx->stage == vertex_ls ||
3811 ctx->stage == tess_eval_es ||
3812 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3813 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3814 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
3815 visit_store_ls_or_es_output(ctx, instr);
3816 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
3817 visit_store_tcs_output(ctx, instr, false);
3818 } else {
3819 unreachable("Shader stage not implemented");
3820 }
3821 }
3822
3823 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
3824 {
3825 visit_load_tcs_output(ctx, instr, false);
3826 }
3827
3828 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3829 {
3830 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3831 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3832
3833 Builder bld(ctx->program, ctx->block);
3834 Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3835 if (ctx->program->has_16bank_lds)
3836 interp_p1.instr->operands[0].setLateKill(true);
3837 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component);
3838 }
3839
3840 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3841 {
3842 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3843 for (unsigned i = 0; i < num_components; i++)
3844 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3845 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3846 assert(num_components == 4);
3847 Builder bld(ctx->program, ctx->block);
3848 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3849 }
3850
3851 for (Operand& op : vec->operands)
3852 op = op.isUndefined() ? Operand(0u) : op;
3853
3854 vec->definitions[0] = Definition(dst);
3855 ctx->block->instructions.emplace_back(std::move(vec));
3856 emit_split_vector(ctx, dst, num_components);
3857 return;
3858 }
3859
3860 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3861 {
3862 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3863 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3864 unsigned idx = nir_intrinsic_base(instr);
3865 unsigned component = nir_intrinsic_component(instr);
3866 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3867
3868 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3869 if (offset) {
3870 assert(offset->u32 == 0);
3871 } else {
3872 /* the lower 15bit of the prim_mask contain the offset into LDS
3873 * while the upper bits contain the number of prims */
3874 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3875 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3876 Builder bld(ctx->program, ctx->block);
3877 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3878 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3879 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3880 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3881 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3882 }
3883
3884 if (instr->dest.ssa.num_components == 1) {
3885 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3886 } else {
3887 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3888 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3889 {
3890 Temp tmp = {ctx->program->allocateId(), v1};
3891 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3892 vec->operands[i] = Operand(tmp);
3893 }
3894 vec->definitions[0] = Definition(dst);
3895 ctx->block->instructions.emplace_back(std::move(vec));
3896 }
3897 }
3898
3899 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3900 unsigned offset, unsigned stride, unsigned channels)
3901 {
3902 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3903 if (vtx_info->chan_byte_size != 4 && channels == 3)
3904 return false;
3905 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3906 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3907 }
3908
3909 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3910 unsigned offset, unsigned stride, unsigned *channels)
3911 {
3912 if (!vtx_info->chan_byte_size) {
3913 *channels = vtx_info->num_channels;
3914 return vtx_info->chan_format;
3915 }
3916
3917 unsigned num_channels = *channels;
3918 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3919 unsigned new_channels = num_channels + 1;
3920 /* first, assume more loads is worse and try using a larger data format */
3921 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3922 new_channels++;
3923 /* don't make the attribute potentially out-of-bounds */
3924 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3925 new_channels = 5;
3926 }
3927
3928 if (new_channels == 5) {
3929 /* then try decreasing load size (at the cost of more loads) */
3930 new_channels = *channels;
3931 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3932 new_channels--;
3933 }
3934
3935 if (new_channels < *channels)
3936 *channels = new_channels;
3937 num_channels = new_channels;
3938 }
3939
3940 switch (vtx_info->chan_format) {
3941 case V_008F0C_BUF_DATA_FORMAT_8:
3942 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3943 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3944 case V_008F0C_BUF_DATA_FORMAT_16:
3945 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3946 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3947 case V_008F0C_BUF_DATA_FORMAT_32:
3948 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3949 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3950 }
3951 unreachable("shouldn't reach here");
3952 return V_008F0C_BUF_DATA_FORMAT_INVALID;
3953 }
3954
3955 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3956 * so we may need to fix it up. */
3957 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3958 {
3959 Builder bld(ctx->program, ctx->block);
3960
3961 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3962 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3963
3964 /* For the integer-like cases, do a natural sign extension.
3965 *
3966 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3967 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3968 * exponent.
3969 */
3970 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3971 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3972
3973 /* Convert back to the right type. */
3974 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3975 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3976 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3977 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3978 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3979 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3980 }
3981
3982 return alpha;
3983 }
3984
3985 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3986 {
3987 Builder bld(ctx->program, ctx->block);
3988 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3989 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
3990
3991 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3992 if (off_instr->type != nir_instr_type_load_const) {
3993 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3994 nir_print_instr(off_instr, stderr);
3995 fprintf(stderr, "\n");
3996 }
3997 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3998
3999 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4000
4001 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4002 unsigned component = nir_intrinsic_component(instr);
4003 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4004 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4005 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4006 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4007
4008 unsigned dfmt = attrib_format & 0xf;
4009 unsigned nfmt = (attrib_format >> 4) & 0x7;
4010 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4011
4012 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4013 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4014 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4015 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4016 if (post_shuffle)
4017 num_channels = MAX2(num_channels, 3);
4018
4019 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4020 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4021
4022 Temp index;
4023 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4024 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4025 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4026 if (divisor) {
4027 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4028 if (divisor != 1) {
4029 Temp divided = bld.tmp(v1);
4030 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4031 index = bld.vadd32(bld.def(v1), start_instance, divided);
4032 } else {
4033 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4034 }
4035 } else {
4036 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4037 }
4038 } else {
4039 index = bld.vadd32(bld.def(v1),
4040 get_arg(ctx, ctx->args->ac.base_vertex),
4041 get_arg(ctx, ctx->args->ac.vertex_id));
4042 }
4043
4044 Temp channels[num_channels];
4045 unsigned channel_start = 0;
4046 bool direct_fetch = false;
4047
4048 /* skip unused channels at the start */
4049 if (vtx_info->chan_byte_size && !post_shuffle) {
4050 channel_start = ffs(mask) - 1;
4051 for (unsigned i = 0; i < channel_start; i++)
4052 channels[i] = Temp(0, s1);
4053 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4054 num_channels = 3 - (ffs(mask) - 1);
4055 }
4056
4057 /* load channels */
4058 while (channel_start < num_channels) {
4059 unsigned fetch_size = num_channels - channel_start;
4060 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4061 bool expanded = false;
4062
4063 /* use MUBUF when possible to avoid possible alignment issues */
4064 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4065 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4066 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4067 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4068 vtx_info->chan_byte_size == 4;
4069 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4070 if (!use_mubuf) {
4071 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
4072 } else {
4073 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
4074 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4075 fetch_size = 4;
4076 expanded = true;
4077 }
4078 }
4079
4080 Temp fetch_index = index;
4081 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4082 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4083 fetch_offset = fetch_offset % attrib_stride;
4084 }
4085
4086 Operand soffset(0u);
4087 if (fetch_offset >= 4096) {
4088 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4089 fetch_offset %= 4096;
4090 }
4091
4092 aco_opcode opcode;
4093 switch (fetch_size) {
4094 case 1:
4095 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4096 break;
4097 case 2:
4098 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4099 break;
4100 case 3:
4101 assert(ctx->options->chip_class >= GFX7 ||
4102 (!use_mubuf && ctx->options->chip_class == GFX6));
4103 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4104 break;
4105 case 4:
4106 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4107 break;
4108 default:
4109 unreachable("Unimplemented load_input vector size");
4110 }
4111
4112 Temp fetch_dst;
4113 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
4114 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4115 num_channels <= 3)) {
4116 direct_fetch = true;
4117 fetch_dst = dst;
4118 } else {
4119 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
4120 }
4121
4122 if (use_mubuf) {
4123 Instruction *mubuf = bld.mubuf(opcode,
4124 Definition(fetch_dst), list, fetch_index, soffset,
4125 fetch_offset, false, true).instr;
4126 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
4127 } else {
4128 Instruction *mtbuf = bld.mtbuf(opcode,
4129 Definition(fetch_dst), list, fetch_index, soffset,
4130 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4131 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
4132 }
4133
4134 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4135
4136 if (fetch_size == 1) {
4137 channels[channel_start] = fetch_dst;
4138 } else {
4139 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
4140 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
4141 }
4142
4143 channel_start += fetch_size;
4144 }
4145
4146 if (!direct_fetch) {
4147 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4148 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4149
4150 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4151 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4152 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4153
4154 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4155 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4156 unsigned num_temp = 0;
4157 for (unsigned i = 0; i < dst.size(); i++) {
4158 unsigned idx = i + component;
4159 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4160 Temp channel = channels[swizzle[idx]];
4161 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4162 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4163 vec->operands[i] = Operand(channel);
4164
4165 num_temp++;
4166 elems[i] = channel;
4167 } else if (is_float && idx == 3) {
4168 vec->operands[i] = Operand(0x3f800000u);
4169 } else if (!is_float && idx == 3) {
4170 vec->operands[i] = Operand(1u);
4171 } else {
4172 vec->operands[i] = Operand(0u);
4173 }
4174 }
4175 vec->definitions[0] = Definition(dst);
4176 ctx->block->instructions.emplace_back(std::move(vec));
4177 emit_split_vector(ctx, dst, dst.size());
4178
4179 if (num_temp == dst.size())
4180 ctx->allocated_vec.emplace(dst.id(), elems);
4181 }
4182 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4183 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4184 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4185 if (off_instr->type != nir_instr_type_load_const ||
4186 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4187 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4188 nir_print_instr(off_instr, stderr);
4189 fprintf(stderr, "\n");
4190 }
4191
4192 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4193 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4194 if (offset) {
4195 assert(offset->u32 == 0);
4196 } else {
4197 /* the lower 15bit of the prim_mask contain the offset into LDS
4198 * while the upper bits contain the number of prims */
4199 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4200 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4201 Builder bld(ctx->program, ctx->block);
4202 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4203 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4204 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4205 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4206 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4207 }
4208
4209 unsigned idx = nir_intrinsic_base(instr);
4210 unsigned component = nir_intrinsic_component(instr);
4211 unsigned vertex_id = 2; /* P0 */
4212
4213 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4214 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4215 switch (src0->u32) {
4216 case 0:
4217 vertex_id = 2; /* P0 */
4218 break;
4219 case 1:
4220 vertex_id = 0; /* P10 */
4221 break;
4222 case 2:
4223 vertex_id = 1; /* P20 */
4224 break;
4225 default:
4226 unreachable("invalid vertex index");
4227 }
4228 }
4229
4230 if (dst.size() == 1) {
4231 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4232 } else {
4233 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4234 for (unsigned i = 0; i < dst.size(); i++)
4235 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4236 vec->definitions[0] = Definition(dst);
4237 bld.insert(std::move(vec));
4238 }
4239
4240 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4241 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4242 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4243 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4244 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4245
4246 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4247 } else {
4248 unreachable("Shader stage not implemented");
4249 }
4250 }
4251
4252 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4253 {
4254 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4255
4256 Builder bld(ctx->program, ctx->block);
4257 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4258 Temp vertex_offset;
4259
4260 if (!nir_src_is_const(*vertex_src)) {
4261 /* better code could be created, but this case probably doesn't happen
4262 * much in practice */
4263 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4264 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4265 Temp elem;
4266
4267 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4268 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4269 if (i % 2u)
4270 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4271 } else {
4272 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4273 }
4274
4275 if (vertex_offset.id()) {
4276 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4277 Operand(i), indirect_vertex);
4278 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4279 } else {
4280 vertex_offset = elem;
4281 }
4282 }
4283
4284 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4285 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4286 } else {
4287 unsigned vertex = nir_src_as_uint(*vertex_src);
4288 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4289 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4290 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4291 Operand((vertex % 2u) * 16u), Operand(16u));
4292 else
4293 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4294 }
4295
4296 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4297 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4298 return offset_mul(ctx, offs, 4u);
4299 }
4300
4301 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4302 {
4303 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4304
4305 Builder bld(ctx->program, ctx->block);
4306 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4307 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4308
4309 if (ctx->stage == geometry_gs) {
4310 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4311 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4312 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4313 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4314 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4315 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4316 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4317 } else {
4318 unreachable("Unsupported GS stage.");
4319 }
4320 }
4321
4322 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4323 {
4324 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4325
4326 Builder bld(ctx->program, ctx->block);
4327 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4328
4329 if (load_input_from_temps(ctx, instr, dst))
4330 return;
4331
4332 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4333 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4334 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4335
4336 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4337 }
4338
4339 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4340 {
4341 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4342
4343 Builder bld(ctx->program, ctx->block);
4344
4345 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4346 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4347 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4348
4349 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4350 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
4351
4352 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
4353 }
4354
4355 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4356 {
4357 switch (ctx->shader->info.stage) {
4358 case MESA_SHADER_GEOMETRY:
4359 visit_load_gs_per_vertex_input(ctx, instr);
4360 break;
4361 case MESA_SHADER_TESS_CTRL:
4362 visit_load_tcs_per_vertex_input(ctx, instr);
4363 break;
4364 case MESA_SHADER_TESS_EVAL:
4365 visit_load_tes_per_vertex_input(ctx, instr);
4366 break;
4367 default:
4368 unreachable("Unimplemented shader stage");
4369 }
4370 }
4371
4372 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4373 {
4374 visit_load_tcs_output(ctx, instr, true);
4375 }
4376
4377 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4378 {
4379 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4380 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4381
4382 visit_store_tcs_output(ctx, instr, true);
4383 }
4384
4385 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4386 {
4387 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4388
4389 Builder bld(ctx->program, ctx->block);
4390 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4391
4392 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4393 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4394 Operand tes_w(0u);
4395
4396 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4397 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4398 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4399 tes_w = Operand(tmp);
4400 }
4401
4402 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4403 emit_split_vector(ctx, tess_coord, 3);
4404 }
4405
4406 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4407 {
4408 if (ctx->program->info->need_indirect_descriptor_sets) {
4409 Builder bld(ctx->program, ctx->block);
4410 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4411 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4412 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4413 }
4414
4415 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4416 }
4417
4418
4419 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4420 {
4421 Builder bld(ctx->program, ctx->block);
4422 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4423 if (!ctx->divergent_vals[instr->dest.ssa.index])
4424 index = bld.as_uniform(index);
4425 unsigned desc_set = nir_intrinsic_desc_set(instr);
4426 unsigned binding = nir_intrinsic_binding(instr);
4427
4428 Temp desc_ptr;
4429 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4430 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4431 unsigned offset = layout->binding[binding].offset;
4432 unsigned stride;
4433 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4434 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4435 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4436 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4437 offset = pipeline_layout->push_constant_size + 16 * idx;
4438 stride = 16;
4439 } else {
4440 desc_ptr = load_desc_ptr(ctx, desc_set);
4441 stride = layout->binding[binding].size;
4442 }
4443
4444 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4445 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4446 if (stride != 1) {
4447 if (nir_const_index) {
4448 const_index = const_index * stride;
4449 } else if (index.type() == RegType::vgpr) {
4450 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4451 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4452 } else {
4453 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4454 }
4455 }
4456 if (offset) {
4457 if (nir_const_index) {
4458 const_index = const_index + offset;
4459 } else if (index.type() == RegType::vgpr) {
4460 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4461 } else {
4462 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4463 }
4464 }
4465
4466 if (nir_const_index && const_index == 0) {
4467 index = desc_ptr;
4468 } else if (index.type() == RegType::vgpr) {
4469 index = bld.vadd32(bld.def(v1),
4470 nir_const_index ? Operand(const_index) : Operand(index),
4471 Operand(desc_ptr));
4472 } else {
4473 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4474 nir_const_index ? Operand(const_index) : Operand(index),
4475 Operand(desc_ptr));
4476 }
4477
4478 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4479 }
4480
4481 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
4482 Temp dst, Temp rsrc, Temp offset, int byte_align,
4483 bool glc=false, bool readonly=true)
4484 {
4485 Builder bld(ctx->program, ctx->block);
4486 bool dlc = glc && ctx->options->chip_class >= GFX10;
4487 unsigned num_bytes = num_components * component_size;
4488
4489 aco_opcode op;
4490 if (dst.type() == RegType::vgpr || ((ctx->options->chip_class < GFX8 || component_size < 4) && !readonly)) {
4491 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4492 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4493 unsigned const_offset = 0;
4494
4495 /* for small bit sizes add buffer for unaligned loads */
4496 if (byte_align) {
4497 if (num_bytes > 2)
4498 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4499 else
4500 byte_align = 0;
4501 }
4502
4503 Temp lower = Temp();
4504 if (num_bytes > 16) {
4505 assert(num_components == 3 || num_components == 4);
4506 op = aco_opcode::buffer_load_dwordx4;
4507 lower = bld.tmp(v4);
4508 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4509 mubuf->definitions[0] = Definition(lower);
4510 mubuf->operands[0] = Operand(rsrc);
4511 mubuf->operands[1] = vaddr;
4512 mubuf->operands[2] = soffset;
4513 mubuf->offen = (offset.type() == RegType::vgpr);
4514 mubuf->glc = glc;
4515 mubuf->dlc = dlc;
4516 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4517 mubuf->can_reorder = readonly;
4518 bld.insert(std::move(mubuf));
4519 emit_split_vector(ctx, lower, 2);
4520 num_bytes -= 16;
4521 const_offset = 16;
4522 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4523 /* GFX6 doesn't support loading vec3, expand to vec4. */
4524 num_bytes = 16;
4525 }
4526
4527 switch (num_bytes) {
4528 case 1:
4529 op = aco_opcode::buffer_load_ubyte;
4530 break;
4531 case 2:
4532 op = aco_opcode::buffer_load_ushort;
4533 break;
4534 case 3:
4535 case 4:
4536 op = aco_opcode::buffer_load_dword;
4537 break;
4538 case 5:
4539 case 6:
4540 case 7:
4541 case 8:
4542 op = aco_opcode::buffer_load_dwordx2;
4543 break;
4544 case 10:
4545 case 12:
4546 assert(ctx->options->chip_class > GFX6);
4547 op = aco_opcode::buffer_load_dwordx3;
4548 break;
4549 case 16:
4550 op = aco_opcode::buffer_load_dwordx4;
4551 break;
4552 default:
4553 unreachable("Load SSBO not implemented for this size.");
4554 }
4555 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4556 mubuf->operands[0] = Operand(rsrc);
4557 mubuf->operands[1] = vaddr;
4558 mubuf->operands[2] = soffset;
4559 mubuf->offen = (offset.type() == RegType::vgpr);
4560 mubuf->glc = glc;
4561 mubuf->dlc = dlc;
4562 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4563 mubuf->can_reorder = readonly;
4564 mubuf->offset = const_offset;
4565 aco_ptr<Instruction> instr = std::move(mubuf);
4566
4567 if (component_size < 4) {
4568 Temp vec = num_bytes <= 4 ? bld.tmp(v1) : num_bytes <= 8 ? bld.tmp(v2) : bld.tmp(v3);
4569 instr->definitions[0] = Definition(vec);
4570 bld.insert(std::move(instr));
4571
4572 if (byte_align == -1 || (byte_align && dst.type() == RegType::sgpr)) {
4573 Operand align = byte_align == -1 ? Operand(offset) : Operand((uint32_t)byte_align);
4574 Temp tmp[3] = {vec, vec, vec};
4575
4576 if (vec.size() == 3) {
4577 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
4578 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
4579 } else if (vec.size() == 2) {
4580 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
4581 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
4582 }
4583 for (unsigned i = 0; i < dst.size(); i++)
4584 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], align);
4585
4586 vec = tmp[0];
4587 if (dst.size() == 2)
4588 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
4589
4590 byte_align = 0;
4591 }
4592
4593 if (dst.type() == RegType::vgpr && num_components == 1) {
4594 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), vec, Operand(byte_align / component_size));
4595 } else {
4596 trim_subdword_vector(ctx, vec, dst, 4 * vec.size() / component_size, ((1 << num_components) - 1) << byte_align / component_size);
4597 }
4598
4599 return;
4600
4601 } else if (dst.size() > 4) {
4602 assert(lower != Temp());
4603 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4604 instr->definitions[0] = Definition(upper);
4605 bld.insert(std::move(instr));
4606 if (dst.size() == 8)
4607 emit_split_vector(ctx, upper, 2);
4608 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4609 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4610 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4611 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4612 if (dst.size() == 8)
4613 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4614 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4615 Temp vec = bld.tmp(v4);
4616 instr->definitions[0] = Definition(vec);
4617 bld.insert(std::move(instr));
4618 emit_split_vector(ctx, vec, 4);
4619
4620 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4621 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4622 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4623 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4624 }
4625
4626 if (dst.type() == RegType::sgpr) {
4627 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4628 instr->definitions[0] = Definition(vec);
4629 bld.insert(std::move(instr));
4630 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4631 } else {
4632 instr->definitions[0] = Definition(dst);
4633 bld.insert(std::move(instr));
4634 emit_split_vector(ctx, dst, num_components);
4635 }
4636 } else {
4637 /* for small bit sizes add buffer for unaligned loads */
4638 if (byte_align)
4639 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4640
4641 switch (num_bytes) {
4642 case 1:
4643 case 2:
4644 case 3:
4645 case 4:
4646 op = aco_opcode::s_buffer_load_dword;
4647 break;
4648 case 5:
4649 case 6:
4650 case 7:
4651 case 8:
4652 op = aco_opcode::s_buffer_load_dwordx2;
4653 break;
4654 case 10:
4655 case 12:
4656 case 16:
4657 op = aco_opcode::s_buffer_load_dwordx4;
4658 break;
4659 case 24:
4660 case 32:
4661 op = aco_opcode::s_buffer_load_dwordx8;
4662 break;
4663 default:
4664 unreachable("Load SSBO not implemented for this size.");
4665 }
4666 offset = bld.as_uniform(offset);
4667 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4668 load->operands[0] = Operand(rsrc);
4669 load->operands[1] = Operand(offset);
4670 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4671 load->definitions[0] = Definition(dst);
4672 load->glc = glc;
4673 load->dlc = dlc;
4674 load->barrier = readonly ? barrier_none : barrier_buffer;
4675 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4676 assert(ctx->options->chip_class >= GFX8 || !glc);
4677
4678 /* adjust misaligned small bit size loads */
4679 if (byte_align) {
4680 Temp vec = num_bytes <= 4 ? bld.tmp(s1) : num_bytes <= 8 ? bld.tmp(s2) : bld.tmp(s4);
4681 load->definitions[0] = Definition(vec);
4682 bld.insert(std::move(load));
4683 Operand byte_offset = byte_align > 0 ? Operand(uint32_t(byte_align)) : Operand(offset);
4684 byte_align_scalar(ctx, vec, byte_offset, dst);
4685
4686 /* trim vector */
4687 } else if (dst.size() == 3) {
4688 Temp vec = bld.tmp(s4);
4689 load->definitions[0] = Definition(vec);
4690 bld.insert(std::move(load));
4691 emit_split_vector(ctx, vec, 4);
4692
4693 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4694 emit_extract_vector(ctx, vec, 0, s1),
4695 emit_extract_vector(ctx, vec, 1, s1),
4696 emit_extract_vector(ctx, vec, 2, s1));
4697 } else if (dst.size() == 6) {
4698 Temp vec = bld.tmp(s8);
4699 load->definitions[0] = Definition(vec);
4700 bld.insert(std::move(load));
4701 emit_split_vector(ctx, vec, 4);
4702
4703 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4704 emit_extract_vector(ctx, vec, 0, s2),
4705 emit_extract_vector(ctx, vec, 1, s2),
4706 emit_extract_vector(ctx, vec, 2, s2));
4707 } else {
4708 bld.insert(std::move(load));
4709 }
4710 emit_split_vector(ctx, dst, num_components);
4711 }
4712 }
4713
4714 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4715 {
4716 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4717 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4718
4719 Builder bld(ctx->program, ctx->block);
4720
4721 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4722 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4723 unsigned binding = nir_intrinsic_binding(idx_instr);
4724 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4725
4726 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4727 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4728 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4729 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4730 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4731 if (ctx->options->chip_class >= GFX10) {
4732 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4733 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4734 S_008F0C_RESOURCE_LEVEL(1);
4735 } else {
4736 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4737 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4738 }
4739 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4740 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4741 Operand(0xFFFFFFFFu),
4742 Operand(desc_type));
4743 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4744 rsrc, upper_dwords);
4745 } else {
4746 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4747 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4748 }
4749 unsigned size = instr->dest.ssa.bit_size / 8;
4750 int byte_align = 0;
4751 if (size < 4) {
4752 unsigned align_mul = nir_intrinsic_align_mul(instr);
4753 unsigned align_offset = nir_intrinsic_align_offset(instr);
4754 byte_align = align_mul % 4 == 0 ? align_offset : -1;
4755 }
4756 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align);
4757 }
4758
4759 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4760 {
4761 Builder bld(ctx->program, ctx->block);
4762 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4763 unsigned offset = nir_intrinsic_base(instr);
4764 unsigned count = instr->dest.ssa.num_components;
4765 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4766
4767 if (index_cv && instr->dest.ssa.bit_size == 32) {
4768 unsigned start = (offset + index_cv->u32) / 4u;
4769 start -= ctx->args->ac.base_inline_push_consts;
4770 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4771 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4772 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4773 for (unsigned i = 0; i < count; ++i) {
4774 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4775 vec->operands[i] = Operand{elems[i]};
4776 }
4777 vec->definitions[0] = Definition(dst);
4778 ctx->block->instructions.emplace_back(std::move(vec));
4779 ctx->allocated_vec.emplace(dst.id(), elems);
4780 return;
4781 }
4782 }
4783
4784 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4785 if (offset != 0) // TODO check if index != 0 as well
4786 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4787 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4788 Temp vec = dst;
4789 bool trim = false;
4790 bool aligned = true;
4791
4792 if (instr->dest.ssa.bit_size == 8) {
4793 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
4794 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
4795 if (!aligned)
4796 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
4797 } else if (instr->dest.ssa.bit_size == 16) {
4798 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
4799 if (!aligned)
4800 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
4801 }
4802
4803 aco_opcode op;
4804
4805 switch (vec.size()) {
4806 case 1:
4807 op = aco_opcode::s_load_dword;
4808 break;
4809 case 2:
4810 op = aco_opcode::s_load_dwordx2;
4811 break;
4812 case 3:
4813 vec = bld.tmp(s4);
4814 trim = true;
4815 case 4:
4816 op = aco_opcode::s_load_dwordx4;
4817 break;
4818 case 6:
4819 vec = bld.tmp(s8);
4820 trim = true;
4821 case 8:
4822 op = aco_opcode::s_load_dwordx8;
4823 break;
4824 default:
4825 unreachable("unimplemented or forbidden load_push_constant.");
4826 }
4827
4828 bld.smem(op, Definition(vec), ptr, index);
4829
4830 if (!aligned) {
4831 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
4832 byte_align_scalar(ctx, vec, byte_offset, dst);
4833 return;
4834 }
4835
4836 if (trim) {
4837 emit_split_vector(ctx, vec, 4);
4838 RegClass rc = dst.size() == 3 ? s1 : s2;
4839 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4840 emit_extract_vector(ctx, vec, 0, rc),
4841 emit_extract_vector(ctx, vec, 1, rc),
4842 emit_extract_vector(ctx, vec, 2, rc));
4843
4844 }
4845 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4846 }
4847
4848 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4849 {
4850 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4851
4852 Builder bld(ctx->program, ctx->block);
4853
4854 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4855 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4856 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4857 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4858 if (ctx->options->chip_class >= GFX10) {
4859 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4860 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4861 S_008F0C_RESOURCE_LEVEL(1);
4862 } else {
4863 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4864 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4865 }
4866
4867 unsigned base = nir_intrinsic_base(instr);
4868 unsigned range = nir_intrinsic_range(instr);
4869
4870 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
4871 if (base && offset.type() == RegType::sgpr)
4872 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
4873 else if (base && offset.type() == RegType::vgpr)
4874 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
4875
4876 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4877 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
4878 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
4879 Operand(desc_type));
4880 unsigned size = instr->dest.ssa.bit_size / 8;
4881 // TODO: get alignment information for subdword constants
4882 unsigned byte_align = size < 4 ? -1 : 0;
4883 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, byte_align);
4884 }
4885
4886 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
4887 {
4888 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4889 ctx->cf_info.exec_potentially_empty_discard = true;
4890
4891 ctx->program->needs_exact = true;
4892
4893 // TODO: optimize uniform conditions
4894 Builder bld(ctx->program, ctx->block);
4895 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4896 assert(src.regClass() == bld.lm);
4897 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
4898 bld.pseudo(aco_opcode::p_discard_if, src);
4899 ctx->block->kind |= block_kind_uses_discard_if;
4900 return;
4901 }
4902
4903 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
4904 {
4905 Builder bld(ctx->program, ctx->block);
4906
4907 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4908 ctx->cf_info.exec_potentially_empty_discard = true;
4909
4910 bool divergent = ctx->cf_info.parent_if.is_divergent ||
4911 ctx->cf_info.parent_loop.has_divergent_continue;
4912
4913 if (ctx->block->loop_nest_depth &&
4914 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
4915 /* we handle discards the same way as jump instructions */
4916 append_logical_end(ctx->block);
4917
4918 /* in loops, discard behaves like break */
4919 Block *linear_target = ctx->cf_info.parent_loop.exit;
4920 ctx->block->kind |= block_kind_discard;
4921
4922 if (!divergent) {
4923 /* uniform discard - loop ends here */
4924 assert(nir_instr_is_last(&instr->instr));
4925 ctx->block->kind |= block_kind_uniform;
4926 ctx->cf_info.has_branch = true;
4927 bld.branch(aco_opcode::p_branch);
4928 add_linear_edge(ctx->block->index, linear_target);
4929 return;
4930 }
4931
4932 /* we add a break right behind the discard() instructions */
4933 ctx->block->kind |= block_kind_break;
4934 unsigned idx = ctx->block->index;
4935
4936 ctx->cf_info.parent_loop.has_divergent_branch = true;
4937 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
4938
4939 /* remove critical edges from linear CFG */
4940 bld.branch(aco_opcode::p_branch);
4941 Block* break_block = ctx->program->create_and_insert_block();
4942 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4943 break_block->kind |= block_kind_uniform;
4944 add_linear_edge(idx, break_block);
4945 add_linear_edge(break_block->index, linear_target);
4946 bld.reset(break_block);
4947 bld.branch(aco_opcode::p_branch);
4948
4949 Block* continue_block = ctx->program->create_and_insert_block();
4950 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4951 add_linear_edge(idx, continue_block);
4952 append_logical_start(continue_block);
4953 ctx->block = continue_block;
4954
4955 return;
4956 }
4957
4958 /* it can currently happen that NIR doesn't remove the unreachable code */
4959 if (!nir_instr_is_last(&instr->instr)) {
4960 ctx->program->needs_exact = true;
4961 /* save exec somewhere temporarily so that it doesn't get
4962 * overwritten before the discard from outer exec masks */
4963 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
4964 bld.pseudo(aco_opcode::p_discard_if, cond);
4965 ctx->block->kind |= block_kind_uses_discard_if;
4966 return;
4967 }
4968
4969 /* This condition is incorrect for uniformly branched discards in a loop
4970 * predicated by a divergent condition, but the above code catches that case
4971 * and the discard would end up turning into a discard_if.
4972 * For example:
4973 * if (divergent) {
4974 * while (...) {
4975 * if (uniform) {
4976 * discard;
4977 * }
4978 * }
4979 * }
4980 */
4981 if (!ctx->cf_info.parent_if.is_divergent) {
4982 /* program just ends here */
4983 ctx->block->kind |= block_kind_uniform;
4984 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
4985 0 /* enabled mask */, 9 /* dest */,
4986 false /* compressed */, true/* done */, true /* valid mask */);
4987 bld.sopp(aco_opcode::s_endpgm);
4988 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
4989 } else {
4990 ctx->block->kind |= block_kind_discard;
4991 /* branch and linear edge is added by visit_if() */
4992 }
4993 }
4994
4995 enum aco_descriptor_type {
4996 ACO_DESC_IMAGE,
4997 ACO_DESC_FMASK,
4998 ACO_DESC_SAMPLER,
4999 ACO_DESC_BUFFER,
5000 ACO_DESC_PLANE_0,
5001 ACO_DESC_PLANE_1,
5002 ACO_DESC_PLANE_2,
5003 };
5004
5005 static bool
5006 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5007 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5008 return false;
5009 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5010 return dim == ac_image_cube ||
5011 dim == ac_image_1darray ||
5012 dim == ac_image_2darray ||
5013 dim == ac_image_2darraymsaa;
5014 }
5015
5016 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5017 enum aco_descriptor_type desc_type,
5018 const nir_tex_instr *tex_instr, bool image, bool write)
5019 {
5020 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5021 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5022 if (it != ctx->tex_desc.end())
5023 return it->second;
5024 */
5025 Temp index = Temp();
5026 bool index_set = false;
5027 unsigned constant_index = 0;
5028 unsigned descriptor_set;
5029 unsigned base_index;
5030 Builder bld(ctx->program, ctx->block);
5031
5032 if (!deref_instr) {
5033 assert(tex_instr && !image);
5034 descriptor_set = 0;
5035 base_index = tex_instr->sampler_index;
5036 } else {
5037 while(deref_instr->deref_type != nir_deref_type_var) {
5038 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5039 if (!array_size)
5040 array_size = 1;
5041
5042 assert(deref_instr->deref_type == nir_deref_type_array);
5043 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5044 if (const_value) {
5045 constant_index += array_size * const_value->u32;
5046 } else {
5047 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5048 if (indirect.type() == RegType::vgpr)
5049 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5050
5051 if (array_size != 1)
5052 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5053
5054 if (!index_set) {
5055 index = indirect;
5056 index_set = true;
5057 } else {
5058 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5059 }
5060 }
5061
5062 deref_instr = nir_src_as_deref(deref_instr->parent);
5063 }
5064 descriptor_set = deref_instr->var->data.descriptor_set;
5065 base_index = deref_instr->var->data.binding;
5066 }
5067
5068 Temp list = load_desc_ptr(ctx, descriptor_set);
5069 list = convert_pointer_to_64_bit(ctx, list);
5070
5071 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5072 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5073 unsigned offset = binding->offset;
5074 unsigned stride = binding->size;
5075 aco_opcode opcode;
5076 RegClass type;
5077
5078 assert(base_index < layout->binding_count);
5079
5080 switch (desc_type) {
5081 case ACO_DESC_IMAGE:
5082 type = s8;
5083 opcode = aco_opcode::s_load_dwordx8;
5084 break;
5085 case ACO_DESC_FMASK:
5086 type = s8;
5087 opcode = aco_opcode::s_load_dwordx8;
5088 offset += 32;
5089 break;
5090 case ACO_DESC_SAMPLER:
5091 type = s4;
5092 opcode = aco_opcode::s_load_dwordx4;
5093 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5094 offset += radv_combined_image_descriptor_sampler_offset(binding);
5095 break;
5096 case ACO_DESC_BUFFER:
5097 type = s4;
5098 opcode = aco_opcode::s_load_dwordx4;
5099 break;
5100 case ACO_DESC_PLANE_0:
5101 case ACO_DESC_PLANE_1:
5102 type = s8;
5103 opcode = aco_opcode::s_load_dwordx8;
5104 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5105 break;
5106 case ACO_DESC_PLANE_2:
5107 type = s4;
5108 opcode = aco_opcode::s_load_dwordx4;
5109 offset += 64;
5110 break;
5111 default:
5112 unreachable("invalid desc_type\n");
5113 }
5114
5115 offset += constant_index * stride;
5116
5117 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5118 (!index_set || binding->immutable_samplers_equal)) {
5119 if (binding->immutable_samplers_equal)
5120 constant_index = 0;
5121
5122 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5123 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5124 Operand(samplers[constant_index * 4 + 0]),
5125 Operand(samplers[constant_index * 4 + 1]),
5126 Operand(samplers[constant_index * 4 + 2]),
5127 Operand(samplers[constant_index * 4 + 3]));
5128 }
5129
5130 Operand off;
5131 if (!index_set) {
5132 off = bld.copy(bld.def(s1), Operand(offset));
5133 } else {
5134 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5135 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5136 }
5137
5138 Temp res = bld.smem(opcode, bld.def(type), list, off);
5139
5140 if (desc_type == ACO_DESC_PLANE_2) {
5141 Temp components[8];
5142 for (unsigned i = 0; i < 8; i++)
5143 components[i] = bld.tmp(s1);
5144 bld.pseudo(aco_opcode::p_split_vector,
5145 Definition(components[0]),
5146 Definition(components[1]),
5147 Definition(components[2]),
5148 Definition(components[3]),
5149 res);
5150
5151 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5152 bld.pseudo(aco_opcode::p_split_vector,
5153 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5154 Definition(components[4]),
5155 Definition(components[5]),
5156 Definition(components[6]),
5157 Definition(components[7]),
5158 desc2);
5159
5160 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5161 components[0], components[1], components[2], components[3],
5162 components[4], components[5], components[6], components[7]);
5163 }
5164
5165 return res;
5166 }
5167
5168 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5169 {
5170 switch (dim) {
5171 case GLSL_SAMPLER_DIM_BUF:
5172 return 1;
5173 case GLSL_SAMPLER_DIM_1D:
5174 return array ? 2 : 1;
5175 case GLSL_SAMPLER_DIM_2D:
5176 return array ? 3 : 2;
5177 case GLSL_SAMPLER_DIM_MS:
5178 return array ? 4 : 3;
5179 case GLSL_SAMPLER_DIM_3D:
5180 case GLSL_SAMPLER_DIM_CUBE:
5181 return 3;
5182 case GLSL_SAMPLER_DIM_RECT:
5183 case GLSL_SAMPLER_DIM_SUBPASS:
5184 return 2;
5185 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5186 return 3;
5187 default:
5188 break;
5189 }
5190 return 0;
5191 }
5192
5193
5194 /* Adjust the sample index according to FMASK.
5195 *
5196 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5197 * which is the identity mapping. Each nibble says which physical sample
5198 * should be fetched to get that sample.
5199 *
5200 * For example, 0x11111100 means there are only 2 samples stored and
5201 * the second sample covers 3/4 of the pixel. When reading samples 0
5202 * and 1, return physical sample 0 (determined by the first two 0s
5203 * in FMASK), otherwise return physical sample 1.
5204 *
5205 * The sample index should be adjusted as follows:
5206 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5207 */
5208 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5209 {
5210 Builder bld(ctx->program, ctx->block);
5211 Temp fmask = bld.tmp(v1);
5212 unsigned dim = ctx->options->chip_class >= GFX10
5213 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5214 : 0;
5215
5216 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5217 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5218 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5219 load->operands[0] = Operand(fmask_desc_ptr);
5220 load->operands[1] = Operand(s4); /* no sampler */
5221 load->operands[2] = Operand(coord);
5222 load->definitions[0] = Definition(fmask);
5223 load->glc = false;
5224 load->dlc = false;
5225 load->dmask = 0x1;
5226 load->unrm = true;
5227 load->da = da;
5228 load->dim = dim;
5229 load->can_reorder = true; /* fmask images shouldn't be modified */
5230 ctx->block->instructions.emplace_back(std::move(load));
5231
5232 Operand sample_index4;
5233 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
5234 sample_index4 = Operand(sample_index.constantValue() << 2);
5235 } else if (sample_index.regClass() == s1) {
5236 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5237 } else {
5238 assert(sample_index.regClass() == v1);
5239 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5240 }
5241
5242 Temp final_sample;
5243 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5244 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5245 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5246 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5247 else
5248 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5249
5250 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5251 * resource descriptor is 0 (invalid),
5252 */
5253 Temp compare = bld.tmp(bld.lm);
5254 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5255 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5256
5257 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5258
5259 /* Replace the MSAA sample index. */
5260 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5261 }
5262
5263 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5264 {
5265
5266 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5267 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5268 bool is_array = glsl_sampler_type_is_array(type);
5269 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5270 assert(!add_frag_pos && "Input attachments should be lowered.");
5271 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5272 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5273 int count = image_type_to_components_count(dim, is_array);
5274 std::vector<Temp> coords(count);
5275 Builder bld(ctx->program, ctx->block);
5276
5277 if (is_ms) {
5278 count--;
5279 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5280 /* get sample index */
5281 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5282 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5283 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5284 std::vector<Temp> fmask_load_address;
5285 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5286 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5287
5288 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5289 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5290 } else {
5291 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5292 }
5293 }
5294
5295 if (gfx9_1d) {
5296 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5297 coords.resize(coords.size() + 1);
5298 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5299 if (is_array)
5300 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5301 } else {
5302 for (int i = 0; i < count; i++)
5303 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5304 }
5305
5306 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5307 instr->intrinsic == nir_intrinsic_image_deref_store) {
5308 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5309 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5310
5311 if (!level_zero)
5312 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5313 }
5314
5315 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5316 for (unsigned i = 0; i < coords.size(); i++)
5317 vec->operands[i] = Operand(coords[i]);
5318 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5319 vec->definitions[0] = Definition(res);
5320 ctx->block->instructions.emplace_back(std::move(vec));
5321 return res;
5322 }
5323
5324
5325 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5326 {
5327 Builder bld(ctx->program, ctx->block);
5328 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5329 const struct glsl_type *type = glsl_without_array(var->type);
5330 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5331 bool is_array = glsl_sampler_type_is_array(type);
5332 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5333
5334 if (dim == GLSL_SAMPLER_DIM_BUF) {
5335 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5336 unsigned num_channels = util_last_bit(mask);
5337 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5338 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5339
5340 aco_opcode opcode;
5341 switch (num_channels) {
5342 case 1:
5343 opcode = aco_opcode::buffer_load_format_x;
5344 break;
5345 case 2:
5346 opcode = aco_opcode::buffer_load_format_xy;
5347 break;
5348 case 3:
5349 opcode = aco_opcode::buffer_load_format_xyz;
5350 break;
5351 case 4:
5352 opcode = aco_opcode::buffer_load_format_xyzw;
5353 break;
5354 default:
5355 unreachable(">4 channel buffer image load");
5356 }
5357 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5358 load->operands[0] = Operand(rsrc);
5359 load->operands[1] = Operand(vindex);
5360 load->operands[2] = Operand((uint32_t) 0);
5361 Temp tmp;
5362 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5363 tmp = dst;
5364 else
5365 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5366 load->definitions[0] = Definition(tmp);
5367 load->idxen = true;
5368 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5369 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5370 load->barrier = barrier_image;
5371 ctx->block->instructions.emplace_back(std::move(load));
5372
5373 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5374 return;
5375 }
5376
5377 Temp coords = get_image_coords(ctx, instr, type);
5378 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5379
5380 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5381 unsigned num_components = util_bitcount(dmask);
5382 Temp tmp;
5383 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5384 tmp = dst;
5385 else
5386 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5387
5388 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5389 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5390
5391 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5392 load->operands[0] = Operand(resource);
5393 load->operands[1] = Operand(s4); /* no sampler */
5394 load->operands[2] = Operand(coords);
5395 load->definitions[0] = Definition(tmp);
5396 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5397 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5398 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5399 load->dmask = dmask;
5400 load->unrm = true;
5401 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5402 load->barrier = barrier_image;
5403 ctx->block->instructions.emplace_back(std::move(load));
5404
5405 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5406 return;
5407 }
5408
5409 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5410 {
5411 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5412 const struct glsl_type *type = glsl_without_array(var->type);
5413 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5414 bool is_array = glsl_sampler_type_is_array(type);
5415 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5416
5417 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5418
5419 if (dim == GLSL_SAMPLER_DIM_BUF) {
5420 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5421 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5422 aco_opcode opcode;
5423 switch (data.size()) {
5424 case 1:
5425 opcode = aco_opcode::buffer_store_format_x;
5426 break;
5427 case 2:
5428 opcode = aco_opcode::buffer_store_format_xy;
5429 break;
5430 case 3:
5431 opcode = aco_opcode::buffer_store_format_xyz;
5432 break;
5433 case 4:
5434 opcode = aco_opcode::buffer_store_format_xyzw;
5435 break;
5436 default:
5437 unreachable(">4 channel buffer image store");
5438 }
5439 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5440 store->operands[0] = Operand(rsrc);
5441 store->operands[1] = Operand(vindex);
5442 store->operands[2] = Operand((uint32_t) 0);
5443 store->operands[3] = Operand(data);
5444 store->idxen = true;
5445 store->glc = glc;
5446 store->dlc = false;
5447 store->disable_wqm = true;
5448 store->barrier = barrier_image;
5449 ctx->program->needs_exact = true;
5450 ctx->block->instructions.emplace_back(std::move(store));
5451 return;
5452 }
5453
5454 assert(data.type() == RegType::vgpr);
5455 Temp coords = get_image_coords(ctx, instr, type);
5456 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5457
5458 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5459 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5460
5461 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5462 store->operands[0] = Operand(resource);
5463 store->operands[1] = Operand(data);
5464 store->operands[2] = Operand(coords);
5465 store->glc = glc;
5466 store->dlc = false;
5467 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5468 store->dmask = (1 << data.size()) - 1;
5469 store->unrm = true;
5470 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5471 store->disable_wqm = true;
5472 store->barrier = barrier_image;
5473 ctx->program->needs_exact = true;
5474 ctx->block->instructions.emplace_back(std::move(store));
5475 return;
5476 }
5477
5478 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5479 {
5480 /* return the previous value if dest is ever used */
5481 bool return_previous = false;
5482 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5483 return_previous = true;
5484 break;
5485 }
5486 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5487 return_previous = true;
5488 break;
5489 }
5490
5491 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5492 const struct glsl_type *type = glsl_without_array(var->type);
5493 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5494 bool is_array = glsl_sampler_type_is_array(type);
5495 Builder bld(ctx->program, ctx->block);
5496
5497 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5498 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5499
5500 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5501 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5502
5503 aco_opcode buf_op, image_op;
5504 switch (instr->intrinsic) {
5505 case nir_intrinsic_image_deref_atomic_add:
5506 buf_op = aco_opcode::buffer_atomic_add;
5507 image_op = aco_opcode::image_atomic_add;
5508 break;
5509 case nir_intrinsic_image_deref_atomic_umin:
5510 buf_op = aco_opcode::buffer_atomic_umin;
5511 image_op = aco_opcode::image_atomic_umin;
5512 break;
5513 case nir_intrinsic_image_deref_atomic_imin:
5514 buf_op = aco_opcode::buffer_atomic_smin;
5515 image_op = aco_opcode::image_atomic_smin;
5516 break;
5517 case nir_intrinsic_image_deref_atomic_umax:
5518 buf_op = aco_opcode::buffer_atomic_umax;
5519 image_op = aco_opcode::image_atomic_umax;
5520 break;
5521 case nir_intrinsic_image_deref_atomic_imax:
5522 buf_op = aco_opcode::buffer_atomic_smax;
5523 image_op = aco_opcode::image_atomic_smax;
5524 break;
5525 case nir_intrinsic_image_deref_atomic_and:
5526 buf_op = aco_opcode::buffer_atomic_and;
5527 image_op = aco_opcode::image_atomic_and;
5528 break;
5529 case nir_intrinsic_image_deref_atomic_or:
5530 buf_op = aco_opcode::buffer_atomic_or;
5531 image_op = aco_opcode::image_atomic_or;
5532 break;
5533 case nir_intrinsic_image_deref_atomic_xor:
5534 buf_op = aco_opcode::buffer_atomic_xor;
5535 image_op = aco_opcode::image_atomic_xor;
5536 break;
5537 case nir_intrinsic_image_deref_atomic_exchange:
5538 buf_op = aco_opcode::buffer_atomic_swap;
5539 image_op = aco_opcode::image_atomic_swap;
5540 break;
5541 case nir_intrinsic_image_deref_atomic_comp_swap:
5542 buf_op = aco_opcode::buffer_atomic_cmpswap;
5543 image_op = aco_opcode::image_atomic_cmpswap;
5544 break;
5545 default:
5546 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5547 }
5548
5549 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5550
5551 if (dim == GLSL_SAMPLER_DIM_BUF) {
5552 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5553 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5554 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5555 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5556 mubuf->operands[0] = Operand(resource);
5557 mubuf->operands[1] = Operand(vindex);
5558 mubuf->operands[2] = Operand((uint32_t)0);
5559 mubuf->operands[3] = Operand(data);
5560 if (return_previous)
5561 mubuf->definitions[0] = Definition(dst);
5562 mubuf->offset = 0;
5563 mubuf->idxen = true;
5564 mubuf->glc = return_previous;
5565 mubuf->dlc = false; /* Not needed for atomics */
5566 mubuf->disable_wqm = true;
5567 mubuf->barrier = barrier_image;
5568 ctx->program->needs_exact = true;
5569 ctx->block->instructions.emplace_back(std::move(mubuf));
5570 return;
5571 }
5572
5573 Temp coords = get_image_coords(ctx, instr, type);
5574 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5575 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5576 mimg->operands[0] = Operand(resource);
5577 mimg->operands[1] = Operand(data);
5578 mimg->operands[2] = Operand(coords);
5579 if (return_previous)
5580 mimg->definitions[0] = Definition(dst);
5581 mimg->glc = return_previous;
5582 mimg->dlc = false; /* Not needed for atomics */
5583 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5584 mimg->dmask = (1 << data.size()) - 1;
5585 mimg->unrm = true;
5586 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5587 mimg->disable_wqm = true;
5588 mimg->barrier = barrier_image;
5589 ctx->program->needs_exact = true;
5590 ctx->block->instructions.emplace_back(std::move(mimg));
5591 return;
5592 }
5593
5594 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5595 {
5596 if (in_elements && ctx->options->chip_class == GFX8) {
5597 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5598 Builder bld(ctx->program, ctx->block);
5599
5600 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5601
5602 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5603 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5604
5605 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5606 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5607
5608 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5609 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5610
5611 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5612 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5613 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5614 if (dst.type() == RegType::vgpr)
5615 bld.copy(Definition(dst), shr_dst);
5616
5617 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5618 } else {
5619 emit_extract_vector(ctx, desc, 2, dst);
5620 }
5621 }
5622
5623 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5624 {
5625 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5626 const struct glsl_type *type = glsl_without_array(var->type);
5627 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5628 bool is_array = glsl_sampler_type_is_array(type);
5629 Builder bld(ctx->program, ctx->block);
5630
5631 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5632 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5633 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5634 }
5635
5636 /* LOD */
5637 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5638
5639 /* Resource */
5640 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5641
5642 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5643
5644 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5645 mimg->operands[0] = Operand(resource);
5646 mimg->operands[1] = Operand(s4); /* no sampler */
5647 mimg->operands[2] = Operand(lod);
5648 uint8_t& dmask = mimg->dmask;
5649 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5650 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
5651 mimg->da = glsl_sampler_type_is_array(type);
5652 mimg->can_reorder = true;
5653 Definition& def = mimg->definitions[0];
5654 ctx->block->instructions.emplace_back(std::move(mimg));
5655
5656 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
5657 glsl_sampler_type_is_array(type)) {
5658
5659 assert(instr->dest.ssa.num_components == 3);
5660 Temp tmp = {ctx->program->allocateId(), v3};
5661 def = Definition(tmp);
5662 emit_split_vector(ctx, tmp, 3);
5663
5664 /* divide 3rd value by 6 by multiplying with magic number */
5665 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
5666 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
5667
5668 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5669 emit_extract_vector(ctx, tmp, 0, v1),
5670 emit_extract_vector(ctx, tmp, 1, v1),
5671 by_6);
5672
5673 } else if (ctx->options->chip_class == GFX9 &&
5674 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
5675 glsl_sampler_type_is_array(type)) {
5676 assert(instr->dest.ssa.num_components == 2);
5677 def = Definition(dst);
5678 dmask = 0x5;
5679 } else {
5680 def = Definition(dst);
5681 }
5682
5683 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5684 }
5685
5686 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5687 {
5688 Builder bld(ctx->program, ctx->block);
5689 unsigned num_components = instr->num_components;
5690
5691 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5692 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5693 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5694
5695 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5696 unsigned size = instr->dest.ssa.bit_size / 8;
5697 int byte_align = 0;
5698 if (size < 4) {
5699 unsigned align_mul = nir_intrinsic_align_mul(instr);
5700 unsigned align_offset = nir_intrinsic_align_offset(instr);
5701 byte_align = align_mul % 4 == 0 ? align_offset : -1;
5702 }
5703 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align, glc, false);
5704 }
5705
5706 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5707 {
5708 Builder bld(ctx->program, ctx->block);
5709 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5710 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5711 unsigned writemask = nir_intrinsic_write_mask(instr);
5712 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5713
5714 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5715 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5716
5717 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5718 ctx->options->chip_class >= GFX8 &&
5719 elem_size_bytes >= 4;
5720 if (smem)
5721 offset = bld.as_uniform(offset);
5722 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5723
5724 while (writemask) {
5725 int start, count;
5726 u_bit_scan_consecutive_range(&writemask, &start, &count);
5727 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5728 /* GFX6 doesn't support storing vec3, split it. */
5729 writemask |= 1u << (start + 2);
5730 count = 2;
5731 }
5732 int num_bytes = count * elem_size_bytes;
5733
5734 /* dword or larger stores have to be dword-aligned */
5735 if (elem_size_bytes < 4 && num_bytes > 2) {
5736 // TODO: improve alignment check of sub-dword stores
5737 unsigned count_new = 2 / elem_size_bytes;
5738 writemask |= ((1 << (count - count_new)) - 1) << (start + count_new);
5739 count = count_new;
5740 num_bytes = 2;
5741 }
5742
5743 if (num_bytes > 16) {
5744 assert(elem_size_bytes == 8);
5745 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5746 count = 2;
5747 num_bytes = 16;
5748 }
5749
5750 Temp write_data;
5751 if (elem_size_bytes < 4) {
5752 if (data.type() == RegType::sgpr) {
5753 data = as_vgpr(ctx, data);
5754 emit_split_vector(ctx, data, 4 * data.size() / elem_size_bytes);
5755 }
5756 RegClass rc = RegClass(RegType::vgpr, elem_size_bytes).as_subdword();
5757 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5758 for (int i = 0; i < count; i++)
5759 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, rc));
5760 write_data = bld.tmp(RegClass(RegType::vgpr, num_bytes).as_subdword());
5761 vec->definitions[0] = Definition(write_data);
5762 bld.insert(std::move(vec));
5763 } else if (count != instr->num_components) {
5764 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5765 for (int i = 0; i < count; i++) {
5766 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5767 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5768 }
5769 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5770 vec->definitions[0] = Definition(write_data);
5771 ctx->block->instructions.emplace_back(std::move(vec));
5772 } else if (!smem && data.type() != RegType::vgpr) {
5773 assert(num_bytes % 4 == 0);
5774 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5775 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5776 assert(num_bytes % 4 == 0);
5777 write_data = bld.as_uniform(data);
5778 } else {
5779 write_data = data;
5780 }
5781
5782 aco_opcode vmem_op, smem_op = aco_opcode::last_opcode;
5783 switch (num_bytes) {
5784 case 1:
5785 vmem_op = aco_opcode::buffer_store_byte;
5786 break;
5787 case 2:
5788 vmem_op = aco_opcode::buffer_store_short;
5789 break;
5790 case 4:
5791 vmem_op = aco_opcode::buffer_store_dword;
5792 smem_op = aco_opcode::s_buffer_store_dword;
5793 break;
5794 case 8:
5795 vmem_op = aco_opcode::buffer_store_dwordx2;
5796 smem_op = aco_opcode::s_buffer_store_dwordx2;
5797 break;
5798 case 12:
5799 vmem_op = aco_opcode::buffer_store_dwordx3;
5800 assert(!smem && ctx->options->chip_class > GFX6);
5801 break;
5802 case 16:
5803 vmem_op = aco_opcode::buffer_store_dwordx4;
5804 smem_op = aco_opcode::s_buffer_store_dwordx4;
5805 break;
5806 default:
5807 unreachable("Store SSBO not implemented for this size.");
5808 }
5809 if (ctx->stage == fragment_fs)
5810 smem_op = aco_opcode::p_fs_buffer_store_smem;
5811
5812 if (smem) {
5813 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5814 store->operands[0] = Operand(rsrc);
5815 if (start) {
5816 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5817 offset, Operand(start * elem_size_bytes));
5818 store->operands[1] = Operand(off);
5819 } else {
5820 store->operands[1] = Operand(offset);
5821 }
5822 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5823 store->operands[1].setFixed(m0);
5824 store->operands[2] = Operand(write_data);
5825 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5826 store->dlc = false;
5827 store->disable_wqm = true;
5828 store->barrier = barrier_buffer;
5829 ctx->block->instructions.emplace_back(std::move(store));
5830 ctx->program->wb_smem_l1_on_end = true;
5831 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
5832 ctx->block->kind |= block_kind_needs_lowering;
5833 ctx->program->needs_exact = true;
5834 }
5835 } else {
5836 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
5837 store->operands[0] = Operand(rsrc);
5838 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5839 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5840 store->operands[3] = Operand(write_data);
5841 store->offset = start * elem_size_bytes;
5842 store->offen = (offset.type() == RegType::vgpr);
5843 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5844 store->dlc = false;
5845 store->disable_wqm = true;
5846 store->barrier = barrier_buffer;
5847 ctx->program->needs_exact = true;
5848 ctx->block->instructions.emplace_back(std::move(store));
5849 }
5850 }
5851 }
5852
5853 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5854 {
5855 /* return the previous value if dest is ever used */
5856 bool return_previous = false;
5857 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5858 return_previous = true;
5859 break;
5860 }
5861 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5862 return_previous = true;
5863 break;
5864 }
5865
5866 Builder bld(ctx->program, ctx->block);
5867 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
5868
5869 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
5870 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5871 get_ssa_temp(ctx, instr->src[3].ssa), data);
5872
5873 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
5874 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5875 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5876
5877 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5878
5879 aco_opcode op32, op64;
5880 switch (instr->intrinsic) {
5881 case nir_intrinsic_ssbo_atomic_add:
5882 op32 = aco_opcode::buffer_atomic_add;
5883 op64 = aco_opcode::buffer_atomic_add_x2;
5884 break;
5885 case nir_intrinsic_ssbo_atomic_imin:
5886 op32 = aco_opcode::buffer_atomic_smin;
5887 op64 = aco_opcode::buffer_atomic_smin_x2;
5888 break;
5889 case nir_intrinsic_ssbo_atomic_umin:
5890 op32 = aco_opcode::buffer_atomic_umin;
5891 op64 = aco_opcode::buffer_atomic_umin_x2;
5892 break;
5893 case nir_intrinsic_ssbo_atomic_imax:
5894 op32 = aco_opcode::buffer_atomic_smax;
5895 op64 = aco_opcode::buffer_atomic_smax_x2;
5896 break;
5897 case nir_intrinsic_ssbo_atomic_umax:
5898 op32 = aco_opcode::buffer_atomic_umax;
5899 op64 = aco_opcode::buffer_atomic_umax_x2;
5900 break;
5901 case nir_intrinsic_ssbo_atomic_and:
5902 op32 = aco_opcode::buffer_atomic_and;
5903 op64 = aco_opcode::buffer_atomic_and_x2;
5904 break;
5905 case nir_intrinsic_ssbo_atomic_or:
5906 op32 = aco_opcode::buffer_atomic_or;
5907 op64 = aco_opcode::buffer_atomic_or_x2;
5908 break;
5909 case nir_intrinsic_ssbo_atomic_xor:
5910 op32 = aco_opcode::buffer_atomic_xor;
5911 op64 = aco_opcode::buffer_atomic_xor_x2;
5912 break;
5913 case nir_intrinsic_ssbo_atomic_exchange:
5914 op32 = aco_opcode::buffer_atomic_swap;
5915 op64 = aco_opcode::buffer_atomic_swap_x2;
5916 break;
5917 case nir_intrinsic_ssbo_atomic_comp_swap:
5918 op32 = aco_opcode::buffer_atomic_cmpswap;
5919 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5920 break;
5921 default:
5922 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
5923 }
5924 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5925 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5926 mubuf->operands[0] = Operand(rsrc);
5927 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5928 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5929 mubuf->operands[3] = Operand(data);
5930 if (return_previous)
5931 mubuf->definitions[0] = Definition(dst);
5932 mubuf->offset = 0;
5933 mubuf->offen = (offset.type() == RegType::vgpr);
5934 mubuf->glc = return_previous;
5935 mubuf->dlc = false; /* Not needed for atomics */
5936 mubuf->disable_wqm = true;
5937 mubuf->barrier = barrier_buffer;
5938 ctx->program->needs_exact = true;
5939 ctx->block->instructions.emplace_back(std::move(mubuf));
5940 }
5941
5942 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
5943
5944 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5945 Builder bld(ctx->program, ctx->block);
5946 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
5947 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
5948 }
5949
5950 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
5951 {
5952 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5953 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5954
5955 if (addr.type() == RegType::vgpr)
5956 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
5957 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
5958 }
5959
5960 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
5961 {
5962 Builder bld(ctx->program, ctx->block);
5963 unsigned num_components = instr->num_components;
5964 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
5965
5966 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5967 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5968
5969 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5970 bool dlc = glc && ctx->options->chip_class >= GFX10;
5971 aco_opcode op;
5972 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
5973 bool global = ctx->options->chip_class >= GFX9;
5974
5975 if (ctx->options->chip_class >= GFX7) {
5976 aco_opcode op;
5977 switch (num_bytes) {
5978 case 4:
5979 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
5980 break;
5981 case 8:
5982 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
5983 break;
5984 case 12:
5985 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
5986 break;
5987 case 16:
5988 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
5989 break;
5990 default:
5991 unreachable("load_global not implemented for this size.");
5992 }
5993
5994 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
5995 flat->operands[0] = Operand(addr);
5996 flat->operands[1] = Operand(s1);
5997 flat->glc = glc;
5998 flat->dlc = dlc;
5999 flat->barrier = barrier_buffer;
6000
6001 if (dst.type() == RegType::sgpr) {
6002 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6003 flat->definitions[0] = Definition(vec);
6004 ctx->block->instructions.emplace_back(std::move(flat));
6005 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6006 } else {
6007 flat->definitions[0] = Definition(dst);
6008 ctx->block->instructions.emplace_back(std::move(flat));
6009 }
6010 emit_split_vector(ctx, dst, num_components);
6011 } else {
6012 assert(ctx->options->chip_class == GFX6);
6013
6014 /* GFX6 doesn't support loading vec3, expand to vec4. */
6015 num_bytes = num_bytes == 12 ? 16 : num_bytes;
6016
6017 aco_opcode op;
6018 switch (num_bytes) {
6019 case 4:
6020 op = aco_opcode::buffer_load_dword;
6021 break;
6022 case 8:
6023 op = aco_opcode::buffer_load_dwordx2;
6024 break;
6025 case 16:
6026 op = aco_opcode::buffer_load_dwordx4;
6027 break;
6028 default:
6029 unreachable("load_global not implemented for this size.");
6030 }
6031
6032 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6033
6034 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
6035 mubuf->operands[0] = Operand(rsrc);
6036 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6037 mubuf->operands[2] = Operand(0u);
6038 mubuf->glc = glc;
6039 mubuf->dlc = false;
6040 mubuf->offset = 0;
6041 mubuf->addr64 = addr.type() == RegType::vgpr;
6042 mubuf->disable_wqm = false;
6043 mubuf->barrier = barrier_buffer;
6044 aco_ptr<Instruction> instr = std::move(mubuf);
6045
6046 /* expand vector */
6047 if (dst.size() == 3) {
6048 Temp vec = bld.tmp(v4);
6049 instr->definitions[0] = Definition(vec);
6050 bld.insert(std::move(instr));
6051 emit_split_vector(ctx, vec, 4);
6052
6053 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
6054 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
6055 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
6056 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
6057 }
6058
6059 if (dst.type() == RegType::sgpr) {
6060 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6061 instr->definitions[0] = Definition(vec);
6062 bld.insert(std::move(instr));
6063 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
6064 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6065 } else {
6066 instr->definitions[0] = Definition(dst);
6067 bld.insert(std::move(instr));
6068 emit_split_vector(ctx, dst, num_components);
6069 }
6070 }
6071 } else {
6072 switch (num_bytes) {
6073 case 4:
6074 op = aco_opcode::s_load_dword;
6075 break;
6076 case 8:
6077 op = aco_opcode::s_load_dwordx2;
6078 break;
6079 case 12:
6080 case 16:
6081 op = aco_opcode::s_load_dwordx4;
6082 break;
6083 default:
6084 unreachable("load_global not implemented for this size.");
6085 }
6086 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
6087 load->operands[0] = Operand(addr);
6088 load->operands[1] = Operand(0u);
6089 load->definitions[0] = Definition(dst);
6090 load->glc = glc;
6091 load->dlc = dlc;
6092 load->barrier = barrier_buffer;
6093 assert(ctx->options->chip_class >= GFX8 || !glc);
6094
6095 if (dst.size() == 3) {
6096 /* trim vector */
6097 Temp vec = bld.tmp(s4);
6098 load->definitions[0] = Definition(vec);
6099 ctx->block->instructions.emplace_back(std::move(load));
6100 emit_split_vector(ctx, vec, 4);
6101
6102 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6103 emit_extract_vector(ctx, vec, 0, s1),
6104 emit_extract_vector(ctx, vec, 1, s1),
6105 emit_extract_vector(ctx, vec, 2, s1));
6106 } else {
6107 ctx->block->instructions.emplace_back(std::move(load));
6108 }
6109 }
6110 }
6111
6112 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6113 {
6114 Builder bld(ctx->program, ctx->block);
6115 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6116
6117 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6118 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6119
6120 if (ctx->options->chip_class >= GFX7)
6121 addr = as_vgpr(ctx, addr);
6122
6123 unsigned writemask = nir_intrinsic_write_mask(instr);
6124 while (writemask) {
6125 int start, count;
6126 u_bit_scan_consecutive_range(&writemask, &start, &count);
6127 if (count == 3 && ctx->options->chip_class == GFX6) {
6128 /* GFX6 doesn't support storing vec3, split it. */
6129 writemask |= 1u << (start + 2);
6130 count = 2;
6131 }
6132 unsigned num_bytes = count * elem_size_bytes;
6133
6134 Temp write_data = data;
6135 if (count != instr->num_components) {
6136 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6137 for (int i = 0; i < count; i++)
6138 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
6139 write_data = bld.tmp(RegType::vgpr, count);
6140 vec->definitions[0] = Definition(write_data);
6141 ctx->block->instructions.emplace_back(std::move(vec));
6142 }
6143
6144 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6145 unsigned offset = start * elem_size_bytes;
6146
6147 if (ctx->options->chip_class >= GFX7) {
6148 if (offset > 0 && ctx->options->chip_class < GFX9) {
6149 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6150 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6151 Temp carry = bld.tmp(bld.lm);
6152 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6153
6154 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6155 Operand(offset), addr0);
6156 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6157 Operand(0u), addr1,
6158 carry).def(1).setHint(vcc);
6159
6160 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6161
6162 offset = 0;
6163 }
6164
6165 bool global = ctx->options->chip_class >= GFX9;
6166 aco_opcode op;
6167 switch (num_bytes) {
6168 case 4:
6169 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6170 break;
6171 case 8:
6172 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6173 break;
6174 case 12:
6175 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6176 break;
6177 case 16:
6178 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6179 break;
6180 default:
6181 unreachable("store_global not implemented for this size.");
6182 }
6183
6184 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6185 flat->operands[0] = Operand(addr);
6186 flat->operands[1] = Operand(s1);
6187 flat->operands[2] = Operand(data);
6188 flat->glc = glc;
6189 flat->dlc = false;
6190 flat->offset = offset;
6191 flat->disable_wqm = true;
6192 flat->barrier = barrier_buffer;
6193 ctx->program->needs_exact = true;
6194 ctx->block->instructions.emplace_back(std::move(flat));
6195 } else {
6196 assert(ctx->options->chip_class == GFX6);
6197
6198 aco_opcode op;
6199 switch (num_bytes) {
6200 case 4:
6201 op = aco_opcode::buffer_store_dword;
6202 break;
6203 case 8:
6204 op = aco_opcode::buffer_store_dwordx2;
6205 break;
6206 case 16:
6207 op = aco_opcode::buffer_store_dwordx4;
6208 break;
6209 default:
6210 unreachable("store_global not implemented for this size.");
6211 }
6212
6213 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6214
6215 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6216 mubuf->operands[0] = Operand(rsrc);
6217 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6218 mubuf->operands[2] = Operand(0u);
6219 mubuf->operands[3] = Operand(write_data);
6220 mubuf->glc = glc;
6221 mubuf->dlc = false;
6222 mubuf->offset = offset;
6223 mubuf->addr64 = addr.type() == RegType::vgpr;
6224 mubuf->disable_wqm = true;
6225 mubuf->barrier = barrier_buffer;
6226 ctx->program->needs_exact = true;
6227 ctx->block->instructions.emplace_back(std::move(mubuf));
6228 }
6229 }
6230 }
6231
6232 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6233 {
6234 /* return the previous value if dest is ever used */
6235 bool return_previous = false;
6236 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6237 return_previous = true;
6238 break;
6239 }
6240 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6241 return_previous = true;
6242 break;
6243 }
6244
6245 Builder bld(ctx->program, ctx->block);
6246 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6247 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6248
6249 if (ctx->options->chip_class >= GFX7)
6250 addr = as_vgpr(ctx, addr);
6251
6252 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6253 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6254 get_ssa_temp(ctx, instr->src[2].ssa), data);
6255
6256 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6257
6258 aco_opcode op32, op64;
6259
6260 if (ctx->options->chip_class >= GFX7) {
6261 bool global = ctx->options->chip_class >= GFX9;
6262 switch (instr->intrinsic) {
6263 case nir_intrinsic_global_atomic_add:
6264 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6265 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6266 break;
6267 case nir_intrinsic_global_atomic_imin:
6268 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6269 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6270 break;
6271 case nir_intrinsic_global_atomic_umin:
6272 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6273 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6274 break;
6275 case nir_intrinsic_global_atomic_imax:
6276 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6277 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6278 break;
6279 case nir_intrinsic_global_atomic_umax:
6280 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6281 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6282 break;
6283 case nir_intrinsic_global_atomic_and:
6284 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6285 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6286 break;
6287 case nir_intrinsic_global_atomic_or:
6288 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6289 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6290 break;
6291 case nir_intrinsic_global_atomic_xor:
6292 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6293 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6294 break;
6295 case nir_intrinsic_global_atomic_exchange:
6296 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6297 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6298 break;
6299 case nir_intrinsic_global_atomic_comp_swap:
6300 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6301 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6302 break;
6303 default:
6304 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6305 }
6306
6307 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6308 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6309 flat->operands[0] = Operand(addr);
6310 flat->operands[1] = Operand(s1);
6311 flat->operands[2] = Operand(data);
6312 if (return_previous)
6313 flat->definitions[0] = Definition(dst);
6314 flat->glc = return_previous;
6315 flat->dlc = false; /* Not needed for atomics */
6316 flat->offset = 0;
6317 flat->disable_wqm = true;
6318 flat->barrier = barrier_buffer;
6319 ctx->program->needs_exact = true;
6320 ctx->block->instructions.emplace_back(std::move(flat));
6321 } else {
6322 assert(ctx->options->chip_class == GFX6);
6323
6324 switch (instr->intrinsic) {
6325 case nir_intrinsic_global_atomic_add:
6326 op32 = aco_opcode::buffer_atomic_add;
6327 op64 = aco_opcode::buffer_atomic_add_x2;
6328 break;
6329 case nir_intrinsic_global_atomic_imin:
6330 op32 = aco_opcode::buffer_atomic_smin;
6331 op64 = aco_opcode::buffer_atomic_smin_x2;
6332 break;
6333 case nir_intrinsic_global_atomic_umin:
6334 op32 = aco_opcode::buffer_atomic_umin;
6335 op64 = aco_opcode::buffer_atomic_umin_x2;
6336 break;
6337 case nir_intrinsic_global_atomic_imax:
6338 op32 = aco_opcode::buffer_atomic_smax;
6339 op64 = aco_opcode::buffer_atomic_smax_x2;
6340 break;
6341 case nir_intrinsic_global_atomic_umax:
6342 op32 = aco_opcode::buffer_atomic_umax;
6343 op64 = aco_opcode::buffer_atomic_umax_x2;
6344 break;
6345 case nir_intrinsic_global_atomic_and:
6346 op32 = aco_opcode::buffer_atomic_and;
6347 op64 = aco_opcode::buffer_atomic_and_x2;
6348 break;
6349 case nir_intrinsic_global_atomic_or:
6350 op32 = aco_opcode::buffer_atomic_or;
6351 op64 = aco_opcode::buffer_atomic_or_x2;
6352 break;
6353 case nir_intrinsic_global_atomic_xor:
6354 op32 = aco_opcode::buffer_atomic_xor;
6355 op64 = aco_opcode::buffer_atomic_xor_x2;
6356 break;
6357 case nir_intrinsic_global_atomic_exchange:
6358 op32 = aco_opcode::buffer_atomic_swap;
6359 op64 = aco_opcode::buffer_atomic_swap_x2;
6360 break;
6361 case nir_intrinsic_global_atomic_comp_swap:
6362 op32 = aco_opcode::buffer_atomic_cmpswap;
6363 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6364 break;
6365 default:
6366 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6367 }
6368
6369 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6370
6371 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6372
6373 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6374 mubuf->operands[0] = Operand(rsrc);
6375 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6376 mubuf->operands[2] = Operand(0u);
6377 mubuf->operands[3] = Operand(data);
6378 if (return_previous)
6379 mubuf->definitions[0] = Definition(dst);
6380 mubuf->glc = return_previous;
6381 mubuf->dlc = false;
6382 mubuf->offset = 0;
6383 mubuf->addr64 = addr.type() == RegType::vgpr;
6384 mubuf->disable_wqm = true;
6385 mubuf->barrier = barrier_buffer;
6386 ctx->program->needs_exact = true;
6387 ctx->block->instructions.emplace_back(std::move(mubuf));
6388 }
6389 }
6390
6391 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6392 Builder bld(ctx->program, ctx->block);
6393 switch(instr->intrinsic) {
6394 case nir_intrinsic_group_memory_barrier:
6395 case nir_intrinsic_memory_barrier:
6396 bld.barrier(aco_opcode::p_memory_barrier_common);
6397 break;
6398 case nir_intrinsic_memory_barrier_buffer:
6399 bld.barrier(aco_opcode::p_memory_barrier_buffer);
6400 break;
6401 case nir_intrinsic_memory_barrier_image:
6402 bld.barrier(aco_opcode::p_memory_barrier_image);
6403 break;
6404 case nir_intrinsic_memory_barrier_tcs_patch:
6405 case nir_intrinsic_memory_barrier_shared:
6406 bld.barrier(aco_opcode::p_memory_barrier_shared);
6407 break;
6408 default:
6409 unreachable("Unimplemented memory barrier intrinsic");
6410 break;
6411 }
6412 }
6413
6414 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6415 {
6416 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6417 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6418 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
6419 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6420 Builder bld(ctx->program, ctx->block);
6421
6422 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6423 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6424 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6425 }
6426
6427 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6428 {
6429 unsigned writemask = nir_intrinsic_write_mask(instr);
6430 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6431 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6432 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6433 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
6434
6435 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6436 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6437 }
6438
6439 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6440 {
6441 unsigned offset = nir_intrinsic_base(instr);
6442 Operand m = load_lds_size_m0(ctx);
6443 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6444 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6445
6446 unsigned num_operands = 3;
6447 aco_opcode op32, op64, op32_rtn, op64_rtn;
6448 switch(instr->intrinsic) {
6449 case nir_intrinsic_shared_atomic_add:
6450 op32 = aco_opcode::ds_add_u32;
6451 op64 = aco_opcode::ds_add_u64;
6452 op32_rtn = aco_opcode::ds_add_rtn_u32;
6453 op64_rtn = aco_opcode::ds_add_rtn_u64;
6454 break;
6455 case nir_intrinsic_shared_atomic_imin:
6456 op32 = aco_opcode::ds_min_i32;
6457 op64 = aco_opcode::ds_min_i64;
6458 op32_rtn = aco_opcode::ds_min_rtn_i32;
6459 op64_rtn = aco_opcode::ds_min_rtn_i64;
6460 break;
6461 case nir_intrinsic_shared_atomic_umin:
6462 op32 = aco_opcode::ds_min_u32;
6463 op64 = aco_opcode::ds_min_u64;
6464 op32_rtn = aco_opcode::ds_min_rtn_u32;
6465 op64_rtn = aco_opcode::ds_min_rtn_u64;
6466 break;
6467 case nir_intrinsic_shared_atomic_imax:
6468 op32 = aco_opcode::ds_max_i32;
6469 op64 = aco_opcode::ds_max_i64;
6470 op32_rtn = aco_opcode::ds_max_rtn_i32;
6471 op64_rtn = aco_opcode::ds_max_rtn_i64;
6472 break;
6473 case nir_intrinsic_shared_atomic_umax:
6474 op32 = aco_opcode::ds_max_u32;
6475 op64 = aco_opcode::ds_max_u64;
6476 op32_rtn = aco_opcode::ds_max_rtn_u32;
6477 op64_rtn = aco_opcode::ds_max_rtn_u64;
6478 break;
6479 case nir_intrinsic_shared_atomic_and:
6480 op32 = aco_opcode::ds_and_b32;
6481 op64 = aco_opcode::ds_and_b64;
6482 op32_rtn = aco_opcode::ds_and_rtn_b32;
6483 op64_rtn = aco_opcode::ds_and_rtn_b64;
6484 break;
6485 case nir_intrinsic_shared_atomic_or:
6486 op32 = aco_opcode::ds_or_b32;
6487 op64 = aco_opcode::ds_or_b64;
6488 op32_rtn = aco_opcode::ds_or_rtn_b32;
6489 op64_rtn = aco_opcode::ds_or_rtn_b64;
6490 break;
6491 case nir_intrinsic_shared_atomic_xor:
6492 op32 = aco_opcode::ds_xor_b32;
6493 op64 = aco_opcode::ds_xor_b64;
6494 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6495 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6496 break;
6497 case nir_intrinsic_shared_atomic_exchange:
6498 op32 = aco_opcode::ds_write_b32;
6499 op64 = aco_opcode::ds_write_b64;
6500 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6501 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
6502 break;
6503 case nir_intrinsic_shared_atomic_comp_swap:
6504 op32 = aco_opcode::ds_cmpst_b32;
6505 op64 = aco_opcode::ds_cmpst_b64;
6506 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6507 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6508 num_operands = 4;
6509 break;
6510 default:
6511 unreachable("Unhandled shared atomic intrinsic");
6512 }
6513
6514 /* return the previous value if dest is ever used */
6515 bool return_previous = false;
6516 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6517 return_previous = true;
6518 break;
6519 }
6520 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6521 return_previous = true;
6522 break;
6523 }
6524
6525 aco_opcode op;
6526 if (data.size() == 1) {
6527 assert(instr->dest.ssa.bit_size == 32);
6528 op = return_previous ? op32_rtn : op32;
6529 } else {
6530 assert(instr->dest.ssa.bit_size == 64);
6531 op = return_previous ? op64_rtn : op64;
6532 }
6533
6534 if (offset > 65535) {
6535 Builder bld(ctx->program, ctx->block);
6536 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6537 offset = 0;
6538 }
6539
6540 aco_ptr<DS_instruction> ds;
6541 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6542 ds->operands[0] = Operand(address);
6543 ds->operands[1] = Operand(data);
6544 if (num_operands == 4)
6545 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6546 ds->operands[num_operands - 1] = m;
6547 ds->offset0 = offset;
6548 if (return_previous)
6549 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6550 ctx->block->instructions.emplace_back(std::move(ds));
6551 }
6552
6553 Temp get_scratch_resource(isel_context *ctx)
6554 {
6555 Builder bld(ctx->program, ctx->block);
6556 Temp scratch_addr = ctx->program->private_segment_buffer;
6557 if (ctx->stage != compute_cs)
6558 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6559
6560 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6561 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6562
6563 if (ctx->program->chip_class >= GFX10) {
6564 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6565 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6566 S_008F0C_RESOURCE_LEVEL(1);
6567 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6568 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6569 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6570 }
6571
6572 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6573 if (ctx->program->chip_class <= GFX8)
6574 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6575
6576 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6577 }
6578
6579 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6580 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6581 Builder bld(ctx->program, ctx->block);
6582 Temp rsrc = get_scratch_resource(ctx);
6583 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6584 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6585
6586 aco_opcode op;
6587 switch (dst.size()) {
6588 case 1:
6589 op = aco_opcode::buffer_load_dword;
6590 break;
6591 case 2:
6592 op = aco_opcode::buffer_load_dwordx2;
6593 break;
6594 case 3:
6595 op = aco_opcode::buffer_load_dwordx3;
6596 break;
6597 case 4:
6598 op = aco_opcode::buffer_load_dwordx4;
6599 break;
6600 case 6:
6601 case 8: {
6602 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6603 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6604 bld.def(v4), rsrc, offset,
6605 ctx->program->scratch_offset, 0, true);
6606 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6607 aco_opcode::buffer_load_dwordx4,
6608 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6609 rsrc, offset, ctx->program->scratch_offset, 16, true);
6610 emit_split_vector(ctx, lower, 2);
6611 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6612 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6613 if (dst.size() == 8) {
6614 emit_split_vector(ctx, upper, 2);
6615 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6616 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6617 } else {
6618 elems[2] = upper;
6619 }
6620
6621 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6622 Format::PSEUDO, dst.size() / 2, 1)};
6623 for (unsigned i = 0; i < dst.size() / 2; i++)
6624 vec->operands[i] = Operand(elems[i]);
6625 vec->definitions[0] = Definition(dst);
6626 bld.insert(std::move(vec));
6627 ctx->allocated_vec.emplace(dst.id(), elems);
6628 return;
6629 }
6630 default:
6631 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
6632 }
6633
6634 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
6635 emit_split_vector(ctx, dst, instr->num_components);
6636 }
6637
6638 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6639 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6640 Builder bld(ctx->program, ctx->block);
6641 Temp rsrc = get_scratch_resource(ctx);
6642 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6643 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6644
6645 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6646 unsigned writemask = nir_intrinsic_write_mask(instr);
6647
6648 while (writemask) {
6649 int start, count;
6650 u_bit_scan_consecutive_range(&writemask, &start, &count);
6651 int num_bytes = count * elem_size_bytes;
6652
6653 if (num_bytes > 16) {
6654 assert(elem_size_bytes == 8);
6655 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6656 count = 2;
6657 num_bytes = 16;
6658 }
6659
6660 // TODO: check alignment of sub-dword stores
6661 // TODO: split 3 bytes. there is no store instruction for that
6662
6663 Temp write_data;
6664 if (count != instr->num_components) {
6665 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6666 for (int i = 0; i < count; i++) {
6667 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6668 vec->operands[i] = Operand(elem);
6669 }
6670 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6671 vec->definitions[0] = Definition(write_data);
6672 ctx->block->instructions.emplace_back(std::move(vec));
6673 } else {
6674 write_data = data;
6675 }
6676
6677 aco_opcode op;
6678 switch (num_bytes) {
6679 case 4:
6680 op = aco_opcode::buffer_store_dword;
6681 break;
6682 case 8:
6683 op = aco_opcode::buffer_store_dwordx2;
6684 break;
6685 case 12:
6686 op = aco_opcode::buffer_store_dwordx3;
6687 break;
6688 case 16:
6689 op = aco_opcode::buffer_store_dwordx4;
6690 break;
6691 default:
6692 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6693 }
6694
6695 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6696 }
6697 }
6698
6699 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6700 uint8_t log2_ps_iter_samples;
6701 if (ctx->program->info->ps.force_persample) {
6702 log2_ps_iter_samples =
6703 util_logbase2(ctx->options->key.fs.num_samples);
6704 } else {
6705 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6706 }
6707
6708 /* The bit pattern matches that used by fixed function fragment
6709 * processing. */
6710 static const unsigned ps_iter_masks[] = {
6711 0xffff, /* not used */
6712 0x5555,
6713 0x1111,
6714 0x0101,
6715 0x0001,
6716 };
6717 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6718
6719 Builder bld(ctx->program, ctx->block);
6720
6721 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6722 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6723 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6724 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6725 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6726 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6727 }
6728
6729 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6730 Builder bld(ctx->program, ctx->block);
6731
6732 unsigned stream = nir_intrinsic_stream_id(instr);
6733 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6734 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6735 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6736
6737 /* get GSVS ring */
6738 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6739
6740 unsigned num_components =
6741 ctx->program->info->gs.num_stream_output_components[stream];
6742 assert(num_components);
6743
6744 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6745 unsigned stream_offset = 0;
6746 for (unsigned i = 0; i < stream; i++) {
6747 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6748 stream_offset += prev_stride * ctx->program->wave_size;
6749 }
6750
6751 /* Limit on the stride field for <= GFX7. */
6752 assert(stride < (1 << 14));
6753
6754 Temp gsvs_dwords[4];
6755 for (unsigned i = 0; i < 4; i++)
6756 gsvs_dwords[i] = bld.tmp(s1);
6757 bld.pseudo(aco_opcode::p_split_vector,
6758 Definition(gsvs_dwords[0]),
6759 Definition(gsvs_dwords[1]),
6760 Definition(gsvs_dwords[2]),
6761 Definition(gsvs_dwords[3]),
6762 gsvs_ring);
6763
6764 if (stream_offset) {
6765 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6766
6767 Temp carry = bld.tmp(s1);
6768 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6769 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6770 }
6771
6772 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6773 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6774
6775 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6776 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6777
6778 unsigned offset = 0;
6779 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6780 if (ctx->program->info->gs.output_streams[i] != stream)
6781 continue;
6782
6783 for (unsigned j = 0; j < 4; j++) {
6784 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6785 continue;
6786
6787 if (ctx->outputs.mask[i] & (1 << j)) {
6788 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6789 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6790 if (const_offset >= 4096u) {
6791 if (vaddr_offset.isUndefined())
6792 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6793 else
6794 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6795 const_offset %= 4096u;
6796 }
6797
6798 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6799 mtbuf->operands[0] = Operand(gsvs_ring);
6800 mtbuf->operands[1] = vaddr_offset;
6801 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6802 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6803 mtbuf->offen = !vaddr_offset.isUndefined();
6804 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6805 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6806 mtbuf->offset = const_offset;
6807 mtbuf->glc = true;
6808 mtbuf->slc = true;
6809 mtbuf->barrier = barrier_gs_data;
6810 mtbuf->can_reorder = true;
6811 bld.insert(std::move(mtbuf));
6812 }
6813
6814 offset += ctx->shader->info.gs.vertices_out;
6815 }
6816
6817 /* outputs for the next vertex are undefined and keeping them around can
6818 * create invalid IR with control flow */
6819 ctx->outputs.mask[i] = 0;
6820 }
6821
6822 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6823 }
6824
6825 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6826 {
6827 Builder bld(ctx->program, ctx->block);
6828
6829 if (cluster_size == 1) {
6830 return src;
6831 } if (op == nir_op_iand && cluster_size == 4) {
6832 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6833 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6834 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6835 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6836 } else if (op == nir_op_ior && cluster_size == 4) {
6837 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6838 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6839 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6840 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6841 //subgroupAnd(val) -> (exec & ~val) == 0
6842 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6843 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6844 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6845 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6846 //subgroupOr(val) -> (val & exec) != 0
6847 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6848 return bool_to_vector_condition(ctx, tmp);
6849 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6850 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6851 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6852 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6853 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6854 return bool_to_vector_condition(ctx, tmp);
6855 } else {
6856 //subgroupClustered{And,Or,Xor}(val, n) ->
6857 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6858 //cluster_offset = ~(n - 1) & lane_id
6859 //cluster_mask = ((1 << n) - 1)
6860 //subgroupClusteredAnd():
6861 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6862 //subgroupClusteredOr():
6863 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6864 //subgroupClusteredXor():
6865 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6866 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6867 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6868
6869 Temp tmp;
6870 if (op == nir_op_iand)
6871 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6872 else
6873 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6874
6875 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6876
6877 if (ctx->program->chip_class <= GFX7)
6878 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6879 else if (ctx->program->wave_size == 64)
6880 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6881 else
6882 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6883 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6884 if (cluster_mask != 0xffffffff)
6885 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6886
6887 Definition cmp_def = Definition();
6888 if (op == nir_op_iand) {
6889 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6890 } else if (op == nir_op_ior) {
6891 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6892 } else if (op == nir_op_ixor) {
6893 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6894 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6895 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6896 }
6897 cmp_def.setHint(vcc);
6898 return cmp_def.getTemp();
6899 }
6900 }
6901
6902 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
6903 {
6904 Builder bld(ctx->program, ctx->block);
6905
6906 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
6907 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
6908 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
6909 Temp tmp;
6910 if (op == nir_op_iand)
6911 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6912 else
6913 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
6914
6915 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
6916 Temp lo = lohi.def(0).getTemp();
6917 Temp hi = lohi.def(1).getTemp();
6918 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
6919
6920 Definition cmp_def = Definition();
6921 if (op == nir_op_iand)
6922 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6923 else if (op == nir_op_ior)
6924 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6925 else if (op == nir_op_ixor)
6926 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
6927 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
6928 cmp_def.setHint(vcc);
6929 return cmp_def.getTemp();
6930 }
6931
6932 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
6933 {
6934 Builder bld(ctx->program, ctx->block);
6935
6936 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
6937 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
6938 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
6939 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
6940 if (op == nir_op_iand)
6941 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6942 else if (op == nir_op_ior)
6943 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6944 else if (op == nir_op_ixor)
6945 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6946
6947 assert(false);
6948 return Temp();
6949 }
6950
6951 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
6952 {
6953 Builder bld(ctx->program, ctx->block);
6954 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
6955 if (src.regClass().type() == RegType::vgpr) {
6956 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
6957 } else if (src.regClass() == s1) {
6958 bld.sop1(aco_opcode::s_mov_b32, dst, src);
6959 } else if (src.regClass() == s2) {
6960 bld.sop1(aco_opcode::s_mov_b64, dst, src);
6961 } else {
6962 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6963 nir_print_instr(&instr->instr, stderr);
6964 fprintf(stderr, "\n");
6965 }
6966 }
6967
6968 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
6969 {
6970 Builder bld(ctx->program, ctx->block);
6971 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
6972 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
6973 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
6974
6975 Temp ddx_1, ddx_2, ddy_1, ddy_2;
6976 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
6977 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
6978 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
6979
6980 /* Build DD X/Y */
6981 if (ctx->program->chip_class >= GFX8) {
6982 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
6983 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
6984 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
6985 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
6986 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
6987 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
6988 } else {
6989 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
6990 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
6991 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
6992 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
6993 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
6994 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
6995 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
6996 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
6997 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
6998 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
6999 }
7000
7001 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7002 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
7003 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
7004 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
7005 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
7006 Temp wqm1 = bld.tmp(v1);
7007 emit_wqm(ctx, tmp1, wqm1, true);
7008 Temp wqm2 = bld.tmp(v1);
7009 emit_wqm(ctx, tmp2, wqm2, true);
7010 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7011 return;
7012 }
7013
7014 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7015 {
7016 Builder bld(ctx->program, ctx->block);
7017 switch(instr->intrinsic) {
7018 case nir_intrinsic_load_barycentric_sample:
7019 case nir_intrinsic_load_barycentric_pixel:
7020 case nir_intrinsic_load_barycentric_centroid: {
7021 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7022 Temp bary = Temp(0, s2);
7023 switch (mode) {
7024 case INTERP_MODE_SMOOTH:
7025 case INTERP_MODE_NONE:
7026 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7027 bary = get_arg(ctx, ctx->args->ac.persp_center);
7028 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7029 bary = ctx->persp_centroid;
7030 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7031 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7032 break;
7033 case INTERP_MODE_NOPERSPECTIVE:
7034 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7035 bary = get_arg(ctx, ctx->args->ac.linear_center);
7036 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7037 bary = ctx->linear_centroid;
7038 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7039 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7040 break;
7041 default:
7042 break;
7043 }
7044 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7045 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7046 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7047 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7048 Operand(p1), Operand(p2));
7049 emit_split_vector(ctx, dst, 2);
7050 break;
7051 }
7052 case nir_intrinsic_load_barycentric_model: {
7053 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7054
7055 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7056 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7057 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7058 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7059 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7060 Operand(p1), Operand(p2), Operand(p3));
7061 emit_split_vector(ctx, dst, 3);
7062 break;
7063 }
7064 case nir_intrinsic_load_barycentric_at_sample: {
7065 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7066 switch (ctx->options->key.fs.num_samples) {
7067 case 2: sample_pos_offset += 1 << 3; break;
7068 case 4: sample_pos_offset += 3 << 3; break;
7069 case 8: sample_pos_offset += 7 << 3; break;
7070 default: break;
7071 }
7072 Temp sample_pos;
7073 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7074 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7075 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7076 if (addr.type() == RegType::sgpr) {
7077 Operand offset;
7078 if (const_addr) {
7079 sample_pos_offset += const_addr->u32 << 3;
7080 offset = Operand(sample_pos_offset);
7081 } else if (ctx->options->chip_class >= GFX9) {
7082 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7083 } else {
7084 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7085 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7086 }
7087
7088 Operand off = bld.copy(bld.def(s1), Operand(offset));
7089 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7090
7091 } else if (ctx->options->chip_class >= GFX9) {
7092 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7093 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7094 } else if (ctx->options->chip_class >= GFX7) {
7095 /* addr += private_segment_buffer + sample_pos_offset */
7096 Temp tmp0 = bld.tmp(s1);
7097 Temp tmp1 = bld.tmp(s1);
7098 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7099 Definition scc_tmp = bld.def(s1, scc);
7100 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7101 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7102 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7103 Temp pck0 = bld.tmp(v1);
7104 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7105 tmp1 = as_vgpr(ctx, tmp1);
7106 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7107 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7108
7109 /* sample_pos = flat_load_dwordx2 addr */
7110 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7111 } else {
7112 assert(ctx->options->chip_class == GFX6);
7113
7114 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7115 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7116 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7117
7118 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7119 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7120
7121 sample_pos = bld.tmp(v2);
7122
7123 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7124 load->definitions[0] = Definition(sample_pos);
7125 load->operands[0] = Operand(rsrc);
7126 load->operands[1] = Operand(addr);
7127 load->operands[2] = Operand(0u);
7128 load->offset = sample_pos_offset;
7129 load->offen = 0;
7130 load->addr64 = true;
7131 load->glc = false;
7132 load->dlc = false;
7133 load->disable_wqm = false;
7134 load->barrier = barrier_none;
7135 load->can_reorder = true;
7136 ctx->block->instructions.emplace_back(std::move(load));
7137 }
7138
7139 /* sample_pos -= 0.5 */
7140 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7141 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7142 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7143 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7144 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7145
7146 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7147 break;
7148 }
7149 case nir_intrinsic_load_barycentric_at_offset: {
7150 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7151 RegClass rc = RegClass(offset.type(), 1);
7152 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7153 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7154 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7155 break;
7156 }
7157 case nir_intrinsic_load_front_face: {
7158 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7159 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7160 break;
7161 }
7162 case nir_intrinsic_load_view_index: {
7163 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7164 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7165 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7166 break;
7167 }
7168
7169 /* fallthrough */
7170 }
7171 case nir_intrinsic_load_layer_id: {
7172 unsigned idx = nir_intrinsic_base(instr);
7173 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7174 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7175 break;
7176 }
7177 case nir_intrinsic_load_frag_coord: {
7178 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7179 break;
7180 }
7181 case nir_intrinsic_load_sample_pos: {
7182 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7183 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7184 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7185 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7186 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7187 break;
7188 }
7189 case nir_intrinsic_load_tess_coord:
7190 visit_load_tess_coord(ctx, instr);
7191 break;
7192 case nir_intrinsic_load_interpolated_input:
7193 visit_load_interpolated_input(ctx, instr);
7194 break;
7195 case nir_intrinsic_store_output:
7196 visit_store_output(ctx, instr);
7197 break;
7198 case nir_intrinsic_load_input:
7199 case nir_intrinsic_load_input_vertex:
7200 visit_load_input(ctx, instr);
7201 break;
7202 case nir_intrinsic_load_output:
7203 visit_load_output(ctx, instr);
7204 break;
7205 case nir_intrinsic_load_per_vertex_input:
7206 visit_load_per_vertex_input(ctx, instr);
7207 break;
7208 case nir_intrinsic_load_per_vertex_output:
7209 visit_load_per_vertex_output(ctx, instr);
7210 break;
7211 case nir_intrinsic_store_per_vertex_output:
7212 visit_store_per_vertex_output(ctx, instr);
7213 break;
7214 case nir_intrinsic_load_ubo:
7215 visit_load_ubo(ctx, instr);
7216 break;
7217 case nir_intrinsic_load_push_constant:
7218 visit_load_push_constant(ctx, instr);
7219 break;
7220 case nir_intrinsic_load_constant:
7221 visit_load_constant(ctx, instr);
7222 break;
7223 case nir_intrinsic_vulkan_resource_index:
7224 visit_load_resource(ctx, instr);
7225 break;
7226 case nir_intrinsic_discard:
7227 visit_discard(ctx, instr);
7228 break;
7229 case nir_intrinsic_discard_if:
7230 visit_discard_if(ctx, instr);
7231 break;
7232 case nir_intrinsic_load_shared:
7233 visit_load_shared(ctx, instr);
7234 break;
7235 case nir_intrinsic_store_shared:
7236 visit_store_shared(ctx, instr);
7237 break;
7238 case nir_intrinsic_shared_atomic_add:
7239 case nir_intrinsic_shared_atomic_imin:
7240 case nir_intrinsic_shared_atomic_umin:
7241 case nir_intrinsic_shared_atomic_imax:
7242 case nir_intrinsic_shared_atomic_umax:
7243 case nir_intrinsic_shared_atomic_and:
7244 case nir_intrinsic_shared_atomic_or:
7245 case nir_intrinsic_shared_atomic_xor:
7246 case nir_intrinsic_shared_atomic_exchange:
7247 case nir_intrinsic_shared_atomic_comp_swap:
7248 visit_shared_atomic(ctx, instr);
7249 break;
7250 case nir_intrinsic_image_deref_load:
7251 visit_image_load(ctx, instr);
7252 break;
7253 case nir_intrinsic_image_deref_store:
7254 visit_image_store(ctx, instr);
7255 break;
7256 case nir_intrinsic_image_deref_atomic_add:
7257 case nir_intrinsic_image_deref_atomic_umin:
7258 case nir_intrinsic_image_deref_atomic_imin:
7259 case nir_intrinsic_image_deref_atomic_umax:
7260 case nir_intrinsic_image_deref_atomic_imax:
7261 case nir_intrinsic_image_deref_atomic_and:
7262 case nir_intrinsic_image_deref_atomic_or:
7263 case nir_intrinsic_image_deref_atomic_xor:
7264 case nir_intrinsic_image_deref_atomic_exchange:
7265 case nir_intrinsic_image_deref_atomic_comp_swap:
7266 visit_image_atomic(ctx, instr);
7267 break;
7268 case nir_intrinsic_image_deref_size:
7269 visit_image_size(ctx, instr);
7270 break;
7271 case nir_intrinsic_load_ssbo:
7272 visit_load_ssbo(ctx, instr);
7273 break;
7274 case nir_intrinsic_store_ssbo:
7275 visit_store_ssbo(ctx, instr);
7276 break;
7277 case nir_intrinsic_load_global:
7278 visit_load_global(ctx, instr);
7279 break;
7280 case nir_intrinsic_store_global:
7281 visit_store_global(ctx, instr);
7282 break;
7283 case nir_intrinsic_global_atomic_add:
7284 case nir_intrinsic_global_atomic_imin:
7285 case nir_intrinsic_global_atomic_umin:
7286 case nir_intrinsic_global_atomic_imax:
7287 case nir_intrinsic_global_atomic_umax:
7288 case nir_intrinsic_global_atomic_and:
7289 case nir_intrinsic_global_atomic_or:
7290 case nir_intrinsic_global_atomic_xor:
7291 case nir_intrinsic_global_atomic_exchange:
7292 case nir_intrinsic_global_atomic_comp_swap:
7293 visit_global_atomic(ctx, instr);
7294 break;
7295 case nir_intrinsic_ssbo_atomic_add:
7296 case nir_intrinsic_ssbo_atomic_imin:
7297 case nir_intrinsic_ssbo_atomic_umin:
7298 case nir_intrinsic_ssbo_atomic_imax:
7299 case nir_intrinsic_ssbo_atomic_umax:
7300 case nir_intrinsic_ssbo_atomic_and:
7301 case nir_intrinsic_ssbo_atomic_or:
7302 case nir_intrinsic_ssbo_atomic_xor:
7303 case nir_intrinsic_ssbo_atomic_exchange:
7304 case nir_intrinsic_ssbo_atomic_comp_swap:
7305 visit_atomic_ssbo(ctx, instr);
7306 break;
7307 case nir_intrinsic_load_scratch:
7308 visit_load_scratch(ctx, instr);
7309 break;
7310 case nir_intrinsic_store_scratch:
7311 visit_store_scratch(ctx, instr);
7312 break;
7313 case nir_intrinsic_get_buffer_size:
7314 visit_get_buffer_size(ctx, instr);
7315 break;
7316 case nir_intrinsic_control_barrier: {
7317 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7318 /* GFX6 only (thanks to a hw bug workaround):
7319 * The real barrier instruction isn’t needed, because an entire patch
7320 * always fits into a single wave.
7321 */
7322 break;
7323 }
7324
7325 if (ctx->program->workgroup_size > ctx->program->wave_size)
7326 bld.sopp(aco_opcode::s_barrier);
7327
7328 break;
7329 }
7330 case nir_intrinsic_memory_barrier_tcs_patch:
7331 case nir_intrinsic_group_memory_barrier:
7332 case nir_intrinsic_memory_barrier:
7333 case nir_intrinsic_memory_barrier_buffer:
7334 case nir_intrinsic_memory_barrier_image:
7335 case nir_intrinsic_memory_barrier_shared:
7336 emit_memory_barrier(ctx, instr);
7337 break;
7338 case nir_intrinsic_load_num_work_groups: {
7339 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7340 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7341 emit_split_vector(ctx, dst, 3);
7342 break;
7343 }
7344 case nir_intrinsic_load_local_invocation_id: {
7345 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7346 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7347 emit_split_vector(ctx, dst, 3);
7348 break;
7349 }
7350 case nir_intrinsic_load_work_group_id: {
7351 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7352 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7353 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7354 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7355 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7356 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7357 emit_split_vector(ctx, dst, 3);
7358 break;
7359 }
7360 case nir_intrinsic_load_local_invocation_index: {
7361 Temp id = emit_mbcnt(ctx, bld.def(v1));
7362
7363 /* The tg_size bits [6:11] contain the subgroup id,
7364 * we need this multiplied by the wave size, and then OR the thread id to it.
7365 */
7366 if (ctx->program->wave_size == 64) {
7367 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7368 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7369 get_arg(ctx, ctx->args->ac.tg_size));
7370 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7371 } else {
7372 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7373 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7374 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7375 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7376 }
7377 break;
7378 }
7379 case nir_intrinsic_load_subgroup_id: {
7380 if (ctx->stage == compute_cs) {
7381 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7382 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7383 } else {
7384 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7385 }
7386 break;
7387 }
7388 case nir_intrinsic_load_subgroup_invocation: {
7389 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7390 break;
7391 }
7392 case nir_intrinsic_load_num_subgroups: {
7393 if (ctx->stage == compute_cs)
7394 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7395 get_arg(ctx, ctx->args->ac.tg_size));
7396 else
7397 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7398 break;
7399 }
7400 case nir_intrinsic_ballot: {
7401 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7402 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7403 Definition tmp = bld.def(dst.regClass());
7404 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7405 if (instr->src[0].ssa->bit_size == 1) {
7406 assert(src.regClass() == bld.lm);
7407 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7408 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7409 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7410 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7411 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7412 } else {
7413 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7414 nir_print_instr(&instr->instr, stderr);
7415 fprintf(stderr, "\n");
7416 }
7417 if (dst.size() != bld.lm.size()) {
7418 /* Wave32 with ballot size set to 64 */
7419 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7420 }
7421 emit_wqm(ctx, tmp.getTemp(), dst);
7422 break;
7423 }
7424 case nir_intrinsic_shuffle:
7425 case nir_intrinsic_read_invocation: {
7426 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7427 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
7428 emit_uniform_subgroup(ctx, instr, src);
7429 } else {
7430 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7431 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
7432 tid = bld.as_uniform(tid);
7433 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7434 if (src.regClass() == v1) {
7435 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7436 } else if (src.regClass() == v2) {
7437 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7438 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7439 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7440 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7441 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7442 emit_split_vector(ctx, dst, 2);
7443 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7444 assert(src.regClass() == bld.lm);
7445 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7446 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7447 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7448 assert(src.regClass() == bld.lm);
7449 Temp tmp;
7450 if (ctx->program->chip_class <= GFX7)
7451 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7452 else if (ctx->program->wave_size == 64)
7453 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7454 else
7455 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7456 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7457 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7458 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7459 } else {
7460 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7461 nir_print_instr(&instr->instr, stderr);
7462 fprintf(stderr, "\n");
7463 }
7464 }
7465 break;
7466 }
7467 case nir_intrinsic_load_sample_id: {
7468 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7469 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7470 break;
7471 }
7472 case nir_intrinsic_load_sample_mask_in: {
7473 visit_load_sample_mask_in(ctx, instr);
7474 break;
7475 }
7476 case nir_intrinsic_read_first_invocation: {
7477 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7478 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7479 if (src.regClass() == v1) {
7480 emit_wqm(ctx,
7481 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7482 dst);
7483 } else if (src.regClass() == v2) {
7484 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7485 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7486 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7487 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7488 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7489 emit_split_vector(ctx, dst, 2);
7490 } else if (instr->dest.ssa.bit_size == 1) {
7491 assert(src.regClass() == bld.lm);
7492 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7493 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7494 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7495 } else if (src.regClass() == s1) {
7496 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7497 } else if (src.regClass() == s2) {
7498 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7499 } else {
7500 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7501 nir_print_instr(&instr->instr, stderr);
7502 fprintf(stderr, "\n");
7503 }
7504 break;
7505 }
7506 case nir_intrinsic_vote_all: {
7507 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7508 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7509 assert(src.regClass() == bld.lm);
7510 assert(dst.regClass() == bld.lm);
7511
7512 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7513 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7514 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7515 break;
7516 }
7517 case nir_intrinsic_vote_any: {
7518 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7519 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7520 assert(src.regClass() == bld.lm);
7521 assert(dst.regClass() == bld.lm);
7522
7523 Temp tmp = bool_to_scalar_condition(ctx, src);
7524 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7525 break;
7526 }
7527 case nir_intrinsic_reduce:
7528 case nir_intrinsic_inclusive_scan:
7529 case nir_intrinsic_exclusive_scan: {
7530 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7531 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7532 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7533 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7534 nir_intrinsic_cluster_size(instr) : 0;
7535 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7536
7537 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7538 emit_uniform_subgroup(ctx, instr, src);
7539 } else if (instr->dest.ssa.bit_size == 1) {
7540 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7541 op = nir_op_iand;
7542 else if (op == nir_op_iadd)
7543 op = nir_op_ixor;
7544 else if (op == nir_op_umax || op == nir_op_imax)
7545 op = nir_op_ior;
7546 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7547
7548 switch (instr->intrinsic) {
7549 case nir_intrinsic_reduce:
7550 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7551 break;
7552 case nir_intrinsic_exclusive_scan:
7553 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7554 break;
7555 case nir_intrinsic_inclusive_scan:
7556 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7557 break;
7558 default:
7559 assert(false);
7560 }
7561 } else if (cluster_size == 1) {
7562 bld.copy(Definition(dst), src);
7563 } else {
7564 src = as_vgpr(ctx, src);
7565
7566 ReduceOp reduce_op;
7567 switch (op) {
7568 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7569 CASE(iadd)
7570 CASE(imul)
7571 CASE(fadd)
7572 CASE(fmul)
7573 CASE(imin)
7574 CASE(umin)
7575 CASE(fmin)
7576 CASE(imax)
7577 CASE(umax)
7578 CASE(fmax)
7579 CASE(iand)
7580 CASE(ior)
7581 CASE(ixor)
7582 default:
7583 unreachable("unknown reduction op");
7584 #undef CASE
7585 }
7586
7587 aco_opcode aco_op;
7588 switch (instr->intrinsic) {
7589 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7590 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7591 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7592 default:
7593 unreachable("unknown reduce intrinsic");
7594 }
7595
7596 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7597 reduce->operands[0] = Operand(src);
7598 // filled in by aco_reduce_assign.cpp, used internally as part of the
7599 // reduce sequence
7600 assert(dst.size() == 1 || dst.size() == 2);
7601 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7602 reduce->operands[2] = Operand(v1.as_linear());
7603
7604 Temp tmp_dst = bld.tmp(dst.regClass());
7605 reduce->definitions[0] = Definition(tmp_dst);
7606 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7607 reduce->definitions[2] = Definition();
7608 reduce->definitions[3] = Definition(scc, s1);
7609 reduce->definitions[4] = Definition();
7610 reduce->reduce_op = reduce_op;
7611 reduce->cluster_size = cluster_size;
7612 ctx->block->instructions.emplace_back(std::move(reduce));
7613
7614 emit_wqm(ctx, tmp_dst, dst);
7615 }
7616 break;
7617 }
7618 case nir_intrinsic_quad_broadcast: {
7619 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7620 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7621 emit_uniform_subgroup(ctx, instr, src);
7622 } else {
7623 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7624 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7625 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7626
7627 if (instr->dest.ssa.bit_size == 1) {
7628 assert(src.regClass() == bld.lm);
7629 assert(dst.regClass() == bld.lm);
7630 uint32_t half_mask = 0x11111111u << lane;
7631 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7632 Temp tmp = bld.tmp(bld.lm);
7633 bld.sop1(Builder::s_wqm, Definition(tmp),
7634 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7635 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7636 emit_wqm(ctx, tmp, dst);
7637 } else if (instr->dest.ssa.bit_size == 32) {
7638 if (ctx->program->chip_class >= GFX8)
7639 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7640 else
7641 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7642 } else if (instr->dest.ssa.bit_size == 64) {
7643 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7644 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7645 if (ctx->program->chip_class >= GFX8) {
7646 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7647 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7648 } else {
7649 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7650 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7651 }
7652 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7653 emit_split_vector(ctx, dst, 2);
7654 } else {
7655 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7656 nir_print_instr(&instr->instr, stderr);
7657 fprintf(stderr, "\n");
7658 }
7659 }
7660 break;
7661 }
7662 case nir_intrinsic_quad_swap_horizontal:
7663 case nir_intrinsic_quad_swap_vertical:
7664 case nir_intrinsic_quad_swap_diagonal:
7665 case nir_intrinsic_quad_swizzle_amd: {
7666 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7667 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7668 emit_uniform_subgroup(ctx, instr, src);
7669 break;
7670 }
7671 uint16_t dpp_ctrl = 0;
7672 switch (instr->intrinsic) {
7673 case nir_intrinsic_quad_swap_horizontal:
7674 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7675 break;
7676 case nir_intrinsic_quad_swap_vertical:
7677 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7678 break;
7679 case nir_intrinsic_quad_swap_diagonal:
7680 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7681 break;
7682 case nir_intrinsic_quad_swizzle_amd:
7683 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7684 break;
7685 default:
7686 break;
7687 }
7688 if (ctx->program->chip_class < GFX8)
7689 dpp_ctrl |= (1 << 15);
7690
7691 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7692 if (instr->dest.ssa.bit_size == 1) {
7693 assert(src.regClass() == bld.lm);
7694 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7695 if (ctx->program->chip_class >= GFX8)
7696 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7697 else
7698 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7699 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7700 emit_wqm(ctx, tmp, dst);
7701 } else if (instr->dest.ssa.bit_size == 32) {
7702 Temp tmp;
7703 if (ctx->program->chip_class >= GFX8)
7704 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7705 else
7706 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7707 emit_wqm(ctx, tmp, dst);
7708 } else if (instr->dest.ssa.bit_size == 64) {
7709 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7710 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7711 if (ctx->program->chip_class >= GFX8) {
7712 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7713 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7714 } else {
7715 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7716 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7717 }
7718 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7719 emit_split_vector(ctx, dst, 2);
7720 } else {
7721 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7722 nir_print_instr(&instr->instr, stderr);
7723 fprintf(stderr, "\n");
7724 }
7725 break;
7726 }
7727 case nir_intrinsic_masked_swizzle_amd: {
7728 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7729 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7730 emit_uniform_subgroup(ctx, instr, src);
7731 break;
7732 }
7733 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7734 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7735 if (dst.regClass() == v1) {
7736 emit_wqm(ctx,
7737 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7738 dst);
7739 } else if (dst.regClass() == v2) {
7740 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7741 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7742 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7743 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7744 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7745 emit_split_vector(ctx, dst, 2);
7746 } else {
7747 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7748 nir_print_instr(&instr->instr, stderr);
7749 fprintf(stderr, "\n");
7750 }
7751 break;
7752 }
7753 case nir_intrinsic_write_invocation_amd: {
7754 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7755 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7756 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7757 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7758 if (dst.regClass() == v1) {
7759 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7760 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7761 } else if (dst.regClass() == v2) {
7762 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7763 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7764 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7765 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7766 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7767 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7768 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7769 emit_split_vector(ctx, dst, 2);
7770 } else {
7771 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7772 nir_print_instr(&instr->instr, stderr);
7773 fprintf(stderr, "\n");
7774 }
7775 break;
7776 }
7777 case nir_intrinsic_mbcnt_amd: {
7778 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7779 RegClass rc = RegClass(src.type(), 1);
7780 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7781 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7782 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7783 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7784 emit_wqm(ctx, wqm_tmp, dst);
7785 break;
7786 }
7787 case nir_intrinsic_load_helper_invocation: {
7788 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7789 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7790 ctx->block->kind |= block_kind_needs_lowering;
7791 ctx->program->needs_exact = true;
7792 break;
7793 }
7794 case nir_intrinsic_is_helper_invocation: {
7795 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7796 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7797 ctx->block->kind |= block_kind_needs_lowering;
7798 ctx->program->needs_exact = true;
7799 break;
7800 }
7801 case nir_intrinsic_demote:
7802 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7803
7804 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7805 ctx->cf_info.exec_potentially_empty_discard = true;
7806 ctx->block->kind |= block_kind_uses_demote;
7807 ctx->program->needs_exact = true;
7808 break;
7809 case nir_intrinsic_demote_if: {
7810 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7811 assert(src.regClass() == bld.lm);
7812 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7813 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7814
7815 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7816 ctx->cf_info.exec_potentially_empty_discard = true;
7817 ctx->block->kind |= block_kind_uses_demote;
7818 ctx->program->needs_exact = true;
7819 break;
7820 }
7821 case nir_intrinsic_first_invocation: {
7822 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7823 get_ssa_temp(ctx, &instr->dest.ssa));
7824 break;
7825 }
7826 case nir_intrinsic_shader_clock:
7827 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7828 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7829 break;
7830 case nir_intrinsic_load_vertex_id_zero_base: {
7831 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7832 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7833 break;
7834 }
7835 case nir_intrinsic_load_first_vertex: {
7836 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7837 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7838 break;
7839 }
7840 case nir_intrinsic_load_base_instance: {
7841 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7842 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7843 break;
7844 }
7845 case nir_intrinsic_load_instance_id: {
7846 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7847 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7848 break;
7849 }
7850 case nir_intrinsic_load_draw_id: {
7851 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7852 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7853 break;
7854 }
7855 case nir_intrinsic_load_invocation_id: {
7856 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7857
7858 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7859 if (ctx->options->chip_class >= GFX10)
7860 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7861 else
7862 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7863 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7864 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7865 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7866 } else {
7867 unreachable("Unsupported stage for load_invocation_id");
7868 }
7869
7870 break;
7871 }
7872 case nir_intrinsic_load_primitive_id: {
7873 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7874
7875 switch (ctx->shader->info.stage) {
7876 case MESA_SHADER_GEOMETRY:
7877 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7878 break;
7879 case MESA_SHADER_TESS_CTRL:
7880 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7881 break;
7882 case MESA_SHADER_TESS_EVAL:
7883 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7884 break;
7885 default:
7886 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7887 }
7888
7889 break;
7890 }
7891 case nir_intrinsic_load_patch_vertices_in: {
7892 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7893 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
7894
7895 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7896 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
7897 break;
7898 }
7899 case nir_intrinsic_emit_vertex_with_counter: {
7900 visit_emit_vertex_with_counter(ctx, instr);
7901 break;
7902 }
7903 case nir_intrinsic_end_primitive_with_counter: {
7904 unsigned stream = nir_intrinsic_stream_id(instr);
7905 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
7906 break;
7907 }
7908 case nir_intrinsic_set_vertex_count: {
7909 /* unused, the HW keeps track of this for us */
7910 break;
7911 }
7912 default:
7913 fprintf(stderr, "Unimplemented intrinsic instr: ");
7914 nir_print_instr(&instr->instr, stderr);
7915 fprintf(stderr, "\n");
7916 abort();
7917
7918 break;
7919 }
7920 }
7921
7922
7923 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
7924 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
7925 enum glsl_base_type *stype)
7926 {
7927 nir_deref_instr *texture_deref_instr = NULL;
7928 nir_deref_instr *sampler_deref_instr = NULL;
7929 int plane = -1;
7930
7931 for (unsigned i = 0; i < instr->num_srcs; i++) {
7932 switch (instr->src[i].src_type) {
7933 case nir_tex_src_texture_deref:
7934 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
7935 break;
7936 case nir_tex_src_sampler_deref:
7937 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
7938 break;
7939 case nir_tex_src_plane:
7940 plane = nir_src_as_int(instr->src[i].src);
7941 break;
7942 default:
7943 break;
7944 }
7945 }
7946
7947 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
7948
7949 if (!sampler_deref_instr)
7950 sampler_deref_instr = texture_deref_instr;
7951
7952 if (plane >= 0) {
7953 assert(instr->op != nir_texop_txf_ms &&
7954 instr->op != nir_texop_samples_identical);
7955 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
7956 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
7957 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7958 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
7959 } else if (instr->op == nir_texop_fragment_mask_fetch) {
7960 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7961 } else {
7962 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
7963 }
7964 if (samp_ptr) {
7965 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
7966
7967 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
7968 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
7969 Builder bld(ctx->program, ctx->block);
7970
7971 /* to avoid unnecessary moves, we split and recombine sampler and image */
7972 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
7973 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7974 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7975 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
7976 Definition(img[2]), Definition(img[3]), Definition(img[4]),
7977 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
7978 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
7979 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
7980
7981 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
7982 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
7983 img[0], img[1], img[2], img[3],
7984 img[4], img[5], img[6], img[7]);
7985 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7986 samp[0], samp[1], samp[2], samp[3]);
7987 }
7988 }
7989 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
7990 instr->op == nir_texop_samples_identical))
7991 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7992 }
7993
7994 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
7995 Temp *out_ma, Temp *out_sc, Temp *out_tc)
7996 {
7997 Builder bld(ctx->program, ctx->block);
7998
7999 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8000 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8001 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8002
8003 Operand neg_one(0xbf800000u);
8004 Operand one(0x3f800000u);
8005 Operand two(0x40000000u);
8006 Operand four(0x40800000u);
8007
8008 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8009 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8010 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8011
8012 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8013 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8014 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8015 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8016
8017 // select sc
8018 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8019 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8020 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8021 one, is_ma_y);
8022 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8023
8024 // select tc
8025 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8026 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8027 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8028
8029 // select ma
8030 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8031 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8032 deriv_z, is_ma_z);
8033 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8034 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8035 }
8036
8037 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8038 {
8039 Builder bld(ctx->program, ctx->block);
8040 Temp ma, tc, sc, id;
8041
8042 if (is_array) {
8043 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8044
8045 // see comment in ac_prepare_cube_coords()
8046 if (ctx->options->chip_class <= GFX8)
8047 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8048 }
8049
8050 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8051
8052 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8053 vop3a->operands[0] = Operand(ma);
8054 vop3a->abs[0] = true;
8055 Temp invma = bld.tmp(v1);
8056 vop3a->definitions[0] = Definition(invma);
8057 ctx->block->instructions.emplace_back(std::move(vop3a));
8058
8059 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8060 if (!is_deriv)
8061 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8062
8063 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8064 if (!is_deriv)
8065 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8066
8067 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8068
8069 if (is_deriv) {
8070 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8071 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8072
8073 for (unsigned i = 0; i < 2; i++) {
8074 // see comment in ac_prepare_cube_coords()
8075 Temp deriv_ma;
8076 Temp deriv_sc, deriv_tc;
8077 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8078 &deriv_ma, &deriv_sc, &deriv_tc);
8079
8080 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8081
8082 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8083 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8084 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8085 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8086 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8087 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8088 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8089 }
8090
8091 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8092 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8093 }
8094
8095 if (is_array)
8096 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8097 coords.resize(3);
8098 coords[0] = sc;
8099 coords[1] = tc;
8100 coords[2] = id;
8101 }
8102
8103 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8104 {
8105 if (vec->parent_instr->type != nir_instr_type_alu)
8106 return;
8107 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8108 if (vec_instr->op != nir_op_vec(vec->num_components))
8109 return;
8110
8111 for (unsigned i = 0; i < vec->num_components; i++) {
8112 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8113 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8114 }
8115 }
8116
8117 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8118 {
8119 Builder bld(ctx->program, ctx->block);
8120 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8121 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
8122 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8123 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
8124 std::vector<Temp> coords;
8125 std::vector<Temp> derivs;
8126 nir_const_value *sample_index_cv = NULL;
8127 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8128 enum glsl_base_type stype;
8129 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8130
8131 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8132 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8133 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8134 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8135
8136 for (unsigned i = 0; i < instr->num_srcs; i++) {
8137 switch (instr->src[i].src_type) {
8138 case nir_tex_src_coord: {
8139 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8140 for (unsigned i = 0; i < coord.size(); i++)
8141 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8142 break;
8143 }
8144 case nir_tex_src_bias:
8145 if (instr->op == nir_texop_txb) {
8146 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8147 has_bias = true;
8148 }
8149 break;
8150 case nir_tex_src_lod: {
8151 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8152
8153 if (val && val->f32 <= 0.0) {
8154 level_zero = true;
8155 } else {
8156 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8157 has_lod = true;
8158 }
8159 break;
8160 }
8161 case nir_tex_src_comparator:
8162 if (instr->is_shadow) {
8163 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8164 has_compare = true;
8165 }
8166 break;
8167 case nir_tex_src_offset:
8168 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8169 get_const_vec(instr->src[i].src.ssa, const_offset);
8170 has_offset = true;
8171 break;
8172 case nir_tex_src_ddx:
8173 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8174 has_ddx = true;
8175 break;
8176 case nir_tex_src_ddy:
8177 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8178 has_ddy = true;
8179 break;
8180 case nir_tex_src_ms_index:
8181 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8182 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8183 has_sample_index = true;
8184 break;
8185 case nir_tex_src_texture_offset:
8186 case nir_tex_src_sampler_offset:
8187 default:
8188 break;
8189 }
8190 }
8191
8192 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8193 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8194
8195 if (instr->op == nir_texop_texture_samples) {
8196 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8197
8198 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8199 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8200 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8201 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8202
8203 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8204 samples, Operand(1u), bld.scc(is_msaa));
8205 return;
8206 }
8207
8208 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8209 aco_ptr<Instruction> tmp_instr;
8210 Temp acc, pack = Temp();
8211
8212 uint32_t pack_const = 0;
8213 for (unsigned i = 0; i < offset.size(); i++) {
8214 if (!const_offset[i])
8215 continue;
8216 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8217 }
8218
8219 if (offset.type() == RegType::sgpr) {
8220 for (unsigned i = 0; i < offset.size(); i++) {
8221 if (const_offset[i])
8222 continue;
8223
8224 acc = emit_extract_vector(ctx, offset, i, s1);
8225 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8226
8227 if (i) {
8228 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8229 }
8230
8231 if (pack == Temp()) {
8232 pack = acc;
8233 } else {
8234 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8235 }
8236 }
8237
8238 if (pack_const && pack != Temp())
8239 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8240 } else {
8241 for (unsigned i = 0; i < offset.size(); i++) {
8242 if (const_offset[i])
8243 continue;
8244
8245 acc = emit_extract_vector(ctx, offset, i, v1);
8246 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8247
8248 if (i) {
8249 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8250 }
8251
8252 if (pack == Temp()) {
8253 pack = acc;
8254 } else {
8255 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8256 }
8257 }
8258
8259 if (pack_const && pack != Temp())
8260 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8261 }
8262 if (pack_const && pack == Temp())
8263 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8264 else if (pack == Temp())
8265 has_offset = false;
8266 else
8267 offset = pack;
8268 }
8269
8270 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8271 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8272
8273 /* pack derivatives */
8274 if (has_ddx || has_ddy) {
8275 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8276 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8277 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8278 derivs = {ddy, zero, ddy, zero};
8279 } else {
8280 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8281 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8282 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8283 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8284 }
8285 has_derivs = true;
8286 }
8287
8288 if (instr->coord_components > 1 &&
8289 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8290 instr->is_array &&
8291 instr->op != nir_texop_txf)
8292 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8293
8294 if (instr->coord_components > 2 &&
8295 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8296 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8297 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8298 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8299 instr->is_array &&
8300 instr->op != nir_texop_txf &&
8301 instr->op != nir_texop_txf_ms &&
8302 instr->op != nir_texop_fragment_fetch &&
8303 instr->op != nir_texop_fragment_mask_fetch)
8304 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8305
8306 if (ctx->options->chip_class == GFX9 &&
8307 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8308 instr->op != nir_texop_lod && instr->coord_components) {
8309 assert(coords.size() > 0 && coords.size() < 3);
8310
8311 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8312 Operand((uint32_t) 0) :
8313 Operand((uint32_t) 0x3f000000)));
8314 }
8315
8316 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8317
8318 if (instr->op == nir_texop_samples_identical)
8319 resource = fmask_ptr;
8320
8321 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8322 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8323 instr->op != nir_texop_txs &&
8324 instr->op != nir_texop_fragment_fetch &&
8325 instr->op != nir_texop_fragment_mask_fetch) {
8326 assert(has_sample_index);
8327 Operand op(sample_index);
8328 if (sample_index_cv)
8329 op = Operand(sample_index_cv->u32);
8330 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8331 }
8332
8333 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8334 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8335 Temp off = emit_extract_vector(ctx, offset, i, v1);
8336 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8337 }
8338 has_offset = false;
8339 }
8340
8341 /* Build tex instruction */
8342 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8343 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8344 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8345 : 0;
8346 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8347 Temp tmp_dst = dst;
8348
8349 /* gather4 selects the component by dmask and always returns vec4 */
8350 if (instr->op == nir_texop_tg4) {
8351 assert(instr->dest.ssa.num_components == 4);
8352 if (instr->is_shadow)
8353 dmask = 1;
8354 else
8355 dmask = 1 << instr->component;
8356 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8357 tmp_dst = bld.tmp(v4);
8358 } else if (instr->op == nir_texop_samples_identical) {
8359 tmp_dst = bld.tmp(v1);
8360 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8361 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8362 }
8363
8364 aco_ptr<MIMG_instruction> tex;
8365 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8366 if (!has_lod)
8367 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8368
8369 bool div_by_6 = instr->op == nir_texop_txs &&
8370 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8371 instr->is_array &&
8372 (dmask & (1 << 2));
8373 if (tmp_dst.id() == dst.id() && div_by_6)
8374 tmp_dst = bld.tmp(tmp_dst.regClass());
8375
8376 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8377 tex->operands[0] = Operand(resource);
8378 tex->operands[1] = Operand(s4); /* no sampler */
8379 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8380 if (ctx->options->chip_class == GFX9 &&
8381 instr->op == nir_texop_txs &&
8382 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8383 instr->is_array) {
8384 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8385 } else if (instr->op == nir_texop_query_levels) {
8386 tex->dmask = 1 << 3;
8387 } else {
8388 tex->dmask = dmask;
8389 }
8390 tex->da = da;
8391 tex->definitions[0] = Definition(tmp_dst);
8392 tex->dim = dim;
8393 tex->can_reorder = true;
8394 ctx->block->instructions.emplace_back(std::move(tex));
8395
8396 if (div_by_6) {
8397 /* divide 3rd value by 6 by multiplying with magic number */
8398 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8399 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8400 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8401 assert(instr->dest.ssa.num_components == 3);
8402 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8403 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8404 emit_extract_vector(ctx, tmp_dst, 0, v1),
8405 emit_extract_vector(ctx, tmp_dst, 1, v1),
8406 by_6);
8407
8408 }
8409
8410 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8411 return;
8412 }
8413
8414 Temp tg4_compare_cube_wa64 = Temp();
8415
8416 if (tg4_integer_workarounds) {
8417 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8418 tex->operands[0] = Operand(resource);
8419 tex->operands[1] = Operand(s4); /* no sampler */
8420 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8421 tex->dim = dim;
8422 tex->dmask = 0x3;
8423 tex->da = da;
8424 Temp size = bld.tmp(v2);
8425 tex->definitions[0] = Definition(size);
8426 tex->can_reorder = true;
8427 ctx->block->instructions.emplace_back(std::move(tex));
8428 emit_split_vector(ctx, size, size.size());
8429
8430 Temp half_texel[2];
8431 for (unsigned i = 0; i < 2; i++) {
8432 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8433 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8434 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8435 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8436 }
8437
8438 Temp new_coords[2] = {
8439 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8440 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8441 };
8442
8443 if (tg4_integer_cube_workaround) {
8444 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8445 Temp desc[resource.size()];
8446 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8447 Format::PSEUDO, 1, resource.size())};
8448 split->operands[0] = Operand(resource);
8449 for (unsigned i = 0; i < resource.size(); i++) {
8450 desc[i] = bld.tmp(s1);
8451 split->definitions[i] = Definition(desc[i]);
8452 }
8453 ctx->block->instructions.emplace_back(std::move(split));
8454
8455 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8456 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8457 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8458
8459 Temp nfmt;
8460 if (stype == GLSL_TYPE_UINT) {
8461 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8462 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8463 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8464 bld.scc(compare_cube_wa));
8465 } else {
8466 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8467 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8468 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8469 bld.scc(compare_cube_wa));
8470 }
8471 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8472 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8473
8474 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8475
8476 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8477 Operand((uint32_t)C_008F14_NUM_FORMAT));
8478 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8479
8480 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8481 Format::PSEUDO, resource.size(), 1)};
8482 for (unsigned i = 0; i < resource.size(); i++)
8483 vec->operands[i] = Operand(desc[i]);
8484 resource = bld.tmp(resource.regClass());
8485 vec->definitions[0] = Definition(resource);
8486 ctx->block->instructions.emplace_back(std::move(vec));
8487
8488 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8489 new_coords[0], coords[0], tg4_compare_cube_wa64);
8490 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8491 new_coords[1], coords[1], tg4_compare_cube_wa64);
8492 }
8493 coords[0] = new_coords[0];
8494 coords[1] = new_coords[1];
8495 }
8496
8497 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8498 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8499
8500 assert(coords.size() == 1);
8501 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8502 aco_opcode op;
8503 switch (last_bit) {
8504 case 1:
8505 op = aco_opcode::buffer_load_format_x; break;
8506 case 2:
8507 op = aco_opcode::buffer_load_format_xy; break;
8508 case 3:
8509 op = aco_opcode::buffer_load_format_xyz; break;
8510 case 4:
8511 op = aco_opcode::buffer_load_format_xyzw; break;
8512 default:
8513 unreachable("Tex instruction loads more than 4 components.");
8514 }
8515
8516 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8517 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8518 tmp_dst = dst;
8519 else
8520 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8521
8522 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8523 mubuf->operands[0] = Operand(resource);
8524 mubuf->operands[1] = Operand(coords[0]);
8525 mubuf->operands[2] = Operand((uint32_t) 0);
8526 mubuf->definitions[0] = Definition(tmp_dst);
8527 mubuf->idxen = true;
8528 mubuf->can_reorder = true;
8529 ctx->block->instructions.emplace_back(std::move(mubuf));
8530
8531 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8532 return;
8533 }
8534
8535 /* gather MIMG address components */
8536 std::vector<Temp> args;
8537 if (has_offset)
8538 args.emplace_back(offset);
8539 if (has_bias)
8540 args.emplace_back(bias);
8541 if (has_compare)
8542 args.emplace_back(compare);
8543 if (has_derivs)
8544 args.insert(args.end(), derivs.begin(), derivs.end());
8545
8546 args.insert(args.end(), coords.begin(), coords.end());
8547 if (has_sample_index)
8548 args.emplace_back(sample_index);
8549 if (has_lod)
8550 args.emplace_back(lod);
8551
8552 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8553 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8554 vec->definitions[0] = Definition(arg);
8555 for (unsigned i = 0; i < args.size(); i++)
8556 vec->operands[i] = Operand(args[i]);
8557 ctx->block->instructions.emplace_back(std::move(vec));
8558
8559
8560 if (instr->op == nir_texop_txf ||
8561 instr->op == nir_texop_txf_ms ||
8562 instr->op == nir_texop_samples_identical ||
8563 instr->op == nir_texop_fragment_fetch ||
8564 instr->op == nir_texop_fragment_mask_fetch) {
8565 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8566 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8567 tex->operands[0] = Operand(resource);
8568 tex->operands[1] = Operand(s4); /* no sampler */
8569 tex->operands[2] = Operand(arg);
8570 tex->dim = dim;
8571 tex->dmask = dmask;
8572 tex->unrm = true;
8573 tex->da = da;
8574 tex->definitions[0] = Definition(tmp_dst);
8575 tex->can_reorder = true;
8576 ctx->block->instructions.emplace_back(std::move(tex));
8577
8578 if (instr->op == nir_texop_samples_identical) {
8579 assert(dmask == 1 && dst.regClass() == v1);
8580 assert(dst.id() != tmp_dst.id());
8581
8582 Temp tmp = bld.tmp(bld.lm);
8583 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8584 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8585
8586 } else {
8587 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8588 }
8589 return;
8590 }
8591
8592 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8593 aco_opcode opcode = aco_opcode::image_sample;
8594 if (has_offset) { /* image_sample_*_o */
8595 if (has_compare) {
8596 opcode = aco_opcode::image_sample_c_o;
8597 if (has_derivs)
8598 opcode = aco_opcode::image_sample_c_d_o;
8599 if (has_bias)
8600 opcode = aco_opcode::image_sample_c_b_o;
8601 if (level_zero)
8602 opcode = aco_opcode::image_sample_c_lz_o;
8603 if (has_lod)
8604 opcode = aco_opcode::image_sample_c_l_o;
8605 } else {
8606 opcode = aco_opcode::image_sample_o;
8607 if (has_derivs)
8608 opcode = aco_opcode::image_sample_d_o;
8609 if (has_bias)
8610 opcode = aco_opcode::image_sample_b_o;
8611 if (level_zero)
8612 opcode = aco_opcode::image_sample_lz_o;
8613 if (has_lod)
8614 opcode = aco_opcode::image_sample_l_o;
8615 }
8616 } else { /* no offset */
8617 if (has_compare) {
8618 opcode = aco_opcode::image_sample_c;
8619 if (has_derivs)
8620 opcode = aco_opcode::image_sample_c_d;
8621 if (has_bias)
8622 opcode = aco_opcode::image_sample_c_b;
8623 if (level_zero)
8624 opcode = aco_opcode::image_sample_c_lz;
8625 if (has_lod)
8626 opcode = aco_opcode::image_sample_c_l;
8627 } else {
8628 opcode = aco_opcode::image_sample;
8629 if (has_derivs)
8630 opcode = aco_opcode::image_sample_d;
8631 if (has_bias)
8632 opcode = aco_opcode::image_sample_b;
8633 if (level_zero)
8634 opcode = aco_opcode::image_sample_lz;
8635 if (has_lod)
8636 opcode = aco_opcode::image_sample_l;
8637 }
8638 }
8639
8640 if (instr->op == nir_texop_tg4) {
8641 if (has_offset) {
8642 opcode = aco_opcode::image_gather4_lz_o;
8643 if (has_compare)
8644 opcode = aco_opcode::image_gather4_c_lz_o;
8645 } else {
8646 opcode = aco_opcode::image_gather4_lz;
8647 if (has_compare)
8648 opcode = aco_opcode::image_gather4_c_lz;
8649 }
8650 } else if (instr->op == nir_texop_lod) {
8651 opcode = aco_opcode::image_get_lod;
8652 }
8653
8654 /* we don't need the bias, sample index, compare value or offset to be
8655 * computed in WQM but if the p_create_vector copies the coordinates, then it
8656 * needs to be in WQM */
8657 if (ctx->stage == fragment_fs &&
8658 !has_derivs && !has_lod && !level_zero &&
8659 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8660 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8661 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8662
8663 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8664 tex->operands[0] = Operand(resource);
8665 tex->operands[1] = Operand(sampler);
8666 tex->operands[2] = Operand(arg);
8667 tex->dim = dim;
8668 tex->dmask = dmask;
8669 tex->da = da;
8670 tex->definitions[0] = Definition(tmp_dst);
8671 tex->can_reorder = true;
8672 ctx->block->instructions.emplace_back(std::move(tex));
8673
8674 if (tg4_integer_cube_workaround) {
8675 assert(tmp_dst.id() != dst.id());
8676 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8677
8678 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8679 Temp val[4];
8680 for (unsigned i = 0; i < dst.size(); i++) {
8681 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8682 Temp cvt_val;
8683 if (stype == GLSL_TYPE_UINT)
8684 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8685 else
8686 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8687 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8688 }
8689 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8690 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8691 val[0], val[1], val[2], val[3]);
8692 }
8693 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8694 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8695
8696 }
8697
8698
8699 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8700 {
8701 Temp tmp = get_ssa_temp(ctx, ssa);
8702 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8703 return Operand(tmp.regClass());
8704 else
8705 return Operand(tmp);
8706 }
8707
8708 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8709 {
8710 aco_ptr<Pseudo_instruction> phi;
8711 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8712 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8713
8714 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8715 logical |= ctx->block->kind & block_kind_merge;
8716 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8717
8718 /* we want a sorted list of sources, since the predecessor list is also sorted */
8719 std::map<unsigned, nir_ssa_def*> phi_src;
8720 nir_foreach_phi_src(src, instr)
8721 phi_src[src->pred->index] = src->src.ssa;
8722
8723 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8724 unsigned num_operands = 0;
8725 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8726 unsigned num_defined = 0;
8727 unsigned cur_pred_idx = 0;
8728 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8729 if (cur_pred_idx < preds.size()) {
8730 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8731 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8732 unsigned skipped = 0;
8733 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8734 skipped++;
8735 if (cur_pred_idx + skipped < preds.size()) {
8736 for (unsigned i = 0; i < skipped; i++)
8737 operands[num_operands++] = Operand(dst.regClass());
8738 cur_pred_idx += skipped;
8739 } else {
8740 continue;
8741 }
8742 }
8743 /* Handle missing predecessors at the end. This shouldn't happen with loop
8744 * headers and we can't ignore these sources for loop header phis. */
8745 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8746 continue;
8747 cur_pred_idx++;
8748 Operand op = get_phi_operand(ctx, src.second);
8749 operands[num_operands++] = op;
8750 num_defined += !op.isUndefined();
8751 }
8752 /* handle block_kind_continue_or_break at loop exit blocks */
8753 while (cur_pred_idx++ < preds.size())
8754 operands[num_operands++] = Operand(dst.regClass());
8755
8756 /* If the loop ends with a break, still add a linear continue edge in case
8757 * that break is divergent or continue_or_break is used. We'll either remove
8758 * this operand later in visit_loop() if it's not necessary or replace the
8759 * undef with something correct. */
8760 if (!logical && ctx->block->kind & block_kind_loop_header) {
8761 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
8762 nir_block *last = nir_loop_last_block(loop);
8763 if (last->successors[0] != instr->instr.block)
8764 operands[num_operands++] = Operand(RegClass());
8765 }
8766
8767 if (num_defined == 0) {
8768 Builder bld(ctx->program, ctx->block);
8769 if (dst.regClass() == s1) {
8770 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8771 } else if (dst.regClass() == v1) {
8772 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8773 } else {
8774 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8775 for (unsigned i = 0; i < dst.size(); i++)
8776 vec->operands[i] = Operand(0u);
8777 vec->definitions[0] = Definition(dst);
8778 ctx->block->instructions.emplace_back(std::move(vec));
8779 }
8780 return;
8781 }
8782
8783 /* we can use a linear phi in some cases if one src is undef */
8784 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8785 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8786
8787 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8788 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8789 assert(invert->kind & block_kind_invert);
8790
8791 unsigned then_block = invert->linear_preds[0];
8792
8793 Block* insert_block = NULL;
8794 for (unsigned i = 0; i < num_operands; i++) {
8795 Operand op = operands[i];
8796 if (op.isUndefined())
8797 continue;
8798 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8799 phi->operands[0] = op;
8800 break;
8801 }
8802 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8803 phi->operands[1] = Operand(dst.regClass());
8804 phi->definitions[0] = Definition(dst);
8805 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8806 return;
8807 }
8808
8809 /* try to scalarize vector phis */
8810 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8811 // TODO: scalarize linear phis on divergent ifs
8812 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8813 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8814 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8815 Operand src = operands[i];
8816 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8817 can_scalarize = false;
8818 }
8819 if (can_scalarize) {
8820 unsigned num_components = instr->dest.ssa.num_components;
8821 assert(dst.size() % num_components == 0);
8822 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8823
8824 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8825 for (unsigned k = 0; k < num_components; k++) {
8826 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8827 for (unsigned i = 0; i < num_operands; i++) {
8828 Operand src = operands[i];
8829 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8830 }
8831 Temp phi_dst = {ctx->program->allocateId(), rc};
8832 phi->definitions[0] = Definition(phi_dst);
8833 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8834 new_vec[k] = phi_dst;
8835 vec->operands[k] = Operand(phi_dst);
8836 }
8837 vec->definitions[0] = Definition(dst);
8838 ctx->block->instructions.emplace_back(std::move(vec));
8839 ctx->allocated_vec.emplace(dst.id(), new_vec);
8840 return;
8841 }
8842 }
8843
8844 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8845 for (unsigned i = 0; i < num_operands; i++)
8846 phi->operands[i] = operands[i];
8847 phi->definitions[0] = Definition(dst);
8848 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8849 }
8850
8851
8852 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
8853 {
8854 Temp dst = get_ssa_temp(ctx, &instr->def);
8855
8856 assert(dst.type() == RegType::sgpr);
8857
8858 if (dst.size() == 1) {
8859 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
8860 } else {
8861 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8862 for (unsigned i = 0; i < dst.size(); i++)
8863 vec->operands[i] = Operand(0u);
8864 vec->definitions[0] = Definition(dst);
8865 ctx->block->instructions.emplace_back(std::move(vec));
8866 }
8867 }
8868
8869 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
8870 {
8871 Builder bld(ctx->program, ctx->block);
8872 Block *logical_target;
8873 append_logical_end(ctx->block);
8874 unsigned idx = ctx->block->index;
8875
8876 switch (instr->type) {
8877 case nir_jump_break:
8878 logical_target = ctx->cf_info.parent_loop.exit;
8879 add_logical_edge(idx, logical_target);
8880 ctx->block->kind |= block_kind_break;
8881
8882 if (!ctx->cf_info.parent_if.is_divergent &&
8883 !ctx->cf_info.parent_loop.has_divergent_continue) {
8884 /* uniform break - directly jump out of the loop */
8885 ctx->block->kind |= block_kind_uniform;
8886 ctx->cf_info.has_branch = true;
8887 bld.branch(aco_opcode::p_branch);
8888 add_linear_edge(idx, logical_target);
8889 return;
8890 }
8891 ctx->cf_info.parent_loop.has_divergent_branch = true;
8892 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8893 break;
8894 case nir_jump_continue:
8895 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8896 add_logical_edge(idx, logical_target);
8897 ctx->block->kind |= block_kind_continue;
8898
8899 if (ctx->cf_info.parent_if.is_divergent) {
8900 /* for potential uniform breaks after this continue,
8901 we must ensure that they are handled correctly */
8902 ctx->cf_info.parent_loop.has_divergent_continue = true;
8903 ctx->cf_info.parent_loop.has_divergent_branch = true;
8904 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8905 } else {
8906 /* uniform continue - directly jump to the loop header */
8907 ctx->block->kind |= block_kind_uniform;
8908 ctx->cf_info.has_branch = true;
8909 bld.branch(aco_opcode::p_branch);
8910 add_linear_edge(idx, logical_target);
8911 return;
8912 }
8913 break;
8914 default:
8915 fprintf(stderr, "Unknown NIR jump instr: ");
8916 nir_print_instr(&instr->instr, stderr);
8917 fprintf(stderr, "\n");
8918 abort();
8919 }
8920
8921 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
8922 ctx->cf_info.exec_potentially_empty_break = true;
8923 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
8924 }
8925
8926 /* remove critical edges from linear CFG */
8927 bld.branch(aco_opcode::p_branch);
8928 Block* break_block = ctx->program->create_and_insert_block();
8929 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8930 break_block->kind |= block_kind_uniform;
8931 add_linear_edge(idx, break_block);
8932 /* the loop_header pointer might be invalidated by this point */
8933 if (instr->type == nir_jump_continue)
8934 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8935 add_linear_edge(break_block->index, logical_target);
8936 bld.reset(break_block);
8937 bld.branch(aco_opcode::p_branch);
8938
8939 Block* continue_block = ctx->program->create_and_insert_block();
8940 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8941 add_linear_edge(idx, continue_block);
8942 append_logical_start(continue_block);
8943 ctx->block = continue_block;
8944 return;
8945 }
8946
8947 void visit_block(isel_context *ctx, nir_block *block)
8948 {
8949 nir_foreach_instr(instr, block) {
8950 switch (instr->type) {
8951 case nir_instr_type_alu:
8952 visit_alu_instr(ctx, nir_instr_as_alu(instr));
8953 break;
8954 case nir_instr_type_load_const:
8955 visit_load_const(ctx, nir_instr_as_load_const(instr));
8956 break;
8957 case nir_instr_type_intrinsic:
8958 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
8959 break;
8960 case nir_instr_type_tex:
8961 visit_tex(ctx, nir_instr_as_tex(instr));
8962 break;
8963 case nir_instr_type_phi:
8964 visit_phi(ctx, nir_instr_as_phi(instr));
8965 break;
8966 case nir_instr_type_ssa_undef:
8967 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
8968 break;
8969 case nir_instr_type_deref:
8970 break;
8971 case nir_instr_type_jump:
8972 visit_jump(ctx, nir_instr_as_jump(instr));
8973 break;
8974 default:
8975 fprintf(stderr, "Unknown NIR instr type: ");
8976 nir_print_instr(instr, stderr);
8977 fprintf(stderr, "\n");
8978 //abort();
8979 }
8980 }
8981
8982 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8983 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
8984 }
8985
8986
8987
8988 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
8989 aco_ptr<Instruction>& header_phi, Operand *vals)
8990 {
8991 vals[0] = Operand(header_phi->definitions[0].getTemp());
8992 RegClass rc = vals[0].regClass();
8993
8994 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
8995
8996 unsigned next_pred = 1;
8997
8998 for (unsigned idx = first + 1; idx <= last; idx++) {
8999 Block& block = ctx->program->blocks[idx];
9000 if (block.loop_nest_depth != loop_nest_depth) {
9001 vals[idx - first] = vals[idx - 1 - first];
9002 continue;
9003 }
9004
9005 if (block.kind & block_kind_continue) {
9006 vals[idx - first] = header_phi->operands[next_pred];
9007 next_pred++;
9008 continue;
9009 }
9010
9011 bool all_same = true;
9012 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9013 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9014
9015 Operand val;
9016 if (all_same) {
9017 val = vals[block.linear_preds[0] - first];
9018 } else {
9019 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9020 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9021 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9022 phi->operands[i] = vals[block.linear_preds[i] - first];
9023 val = Operand(Temp(ctx->program->allocateId(), rc));
9024 phi->definitions[0] = Definition(val.getTemp());
9025 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9026 }
9027 vals[idx - first] = val;
9028 }
9029
9030 return vals[last - first];
9031 }
9032
9033 static void visit_loop(isel_context *ctx, nir_loop *loop)
9034 {
9035 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9036 append_logical_end(ctx->block);
9037 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9038 Builder bld(ctx->program, ctx->block);
9039 bld.branch(aco_opcode::p_branch);
9040 unsigned loop_preheader_idx = ctx->block->index;
9041
9042 Block loop_exit = Block();
9043 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9044 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9045
9046 Block* loop_header = ctx->program->create_and_insert_block();
9047 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9048 loop_header->kind |= block_kind_loop_header;
9049 add_edge(loop_preheader_idx, loop_header);
9050 ctx->block = loop_header;
9051
9052 /* emit loop body */
9053 unsigned loop_header_idx = loop_header->index;
9054 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9055 append_logical_start(ctx->block);
9056 bool unreachable = visit_cf_list(ctx, &loop->body);
9057
9058 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9059 if (!ctx->cf_info.has_branch) {
9060 append_logical_end(ctx->block);
9061 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9062 /* Discards can result in code running with an empty exec mask.
9063 * This would result in divergent breaks not ever being taken. As a
9064 * workaround, break the loop when the loop mask is empty instead of
9065 * always continuing. */
9066 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9067 unsigned block_idx = ctx->block->index;
9068
9069 /* create helper blocks to avoid critical edges */
9070 Block *break_block = ctx->program->create_and_insert_block();
9071 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9072 break_block->kind = block_kind_uniform;
9073 bld.reset(break_block);
9074 bld.branch(aco_opcode::p_branch);
9075 add_linear_edge(block_idx, break_block);
9076 add_linear_edge(break_block->index, &loop_exit);
9077
9078 Block *continue_block = ctx->program->create_and_insert_block();
9079 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9080 continue_block->kind = block_kind_uniform;
9081 bld.reset(continue_block);
9082 bld.branch(aco_opcode::p_branch);
9083 add_linear_edge(block_idx, continue_block);
9084 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9085
9086 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9087 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9088 ctx->block = &ctx->program->blocks[block_idx];
9089 } else {
9090 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9091 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9092 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9093 else
9094 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9095 }
9096
9097 bld.reset(ctx->block);
9098 bld.branch(aco_opcode::p_branch);
9099 }
9100
9101 /* Fixup phis in loop header from unreachable blocks.
9102 * has_branch/has_divergent_branch also indicates if the loop ends with a
9103 * break/continue instruction, but we don't emit those if unreachable=true */
9104 if (unreachable) {
9105 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9106 bool linear = ctx->cf_info.has_branch;
9107 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9108 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9109 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9110 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9111 /* the last operand should be the one that needs to be removed */
9112 instr->operands.pop_back();
9113 } else if (!is_phi(instr)) {
9114 break;
9115 }
9116 }
9117 }
9118
9119 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9120 * and the previous one shouldn't both happen at once because a break in the
9121 * merge block would get CSE'd */
9122 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9123 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9124 Operand vals[num_vals];
9125 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9126 if (instr->opcode == aco_opcode::p_linear_phi) {
9127 if (ctx->cf_info.has_branch)
9128 instr->operands.pop_back();
9129 else
9130 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9131 } else if (!is_phi(instr)) {
9132 break;
9133 }
9134 }
9135 }
9136
9137 ctx->cf_info.has_branch = false;
9138
9139 // TODO: if the loop has not a single exit, we must add one °°
9140 /* emit loop successor block */
9141 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9142 append_logical_start(ctx->block);
9143
9144 #if 0
9145 // TODO: check if it is beneficial to not branch on continues
9146 /* trim linear phis in loop header */
9147 for (auto&& instr : loop_entry->instructions) {
9148 if (instr->opcode == aco_opcode::p_linear_phi) {
9149 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9150 new_phi->definitions[0] = instr->definitions[0];
9151 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9152 new_phi->operands[i] = instr->operands[i];
9153 /* check that the remaining operands are all the same */
9154 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9155 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9156 instr.swap(new_phi);
9157 } else if (instr->opcode == aco_opcode::p_phi) {
9158 continue;
9159 } else {
9160 break;
9161 }
9162 }
9163 #endif
9164 }
9165
9166 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9167 {
9168 ic->cond = cond;
9169
9170 append_logical_end(ctx->block);
9171 ctx->block->kind |= block_kind_branch;
9172
9173 /* branch to linear then block */
9174 assert(cond.regClass() == ctx->program->lane_mask);
9175 aco_ptr<Pseudo_branch_instruction> branch;
9176 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9177 branch->operands[0] = Operand(cond);
9178 ctx->block->instructions.push_back(std::move(branch));
9179
9180 ic->BB_if_idx = ctx->block->index;
9181 ic->BB_invert = Block();
9182 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9183 /* Invert blocks are intentionally not marked as top level because they
9184 * are not part of the logical cfg. */
9185 ic->BB_invert.kind |= block_kind_invert;
9186 ic->BB_endif = Block();
9187 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9188 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9189
9190 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9191 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9192 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9193 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9194 ctx->cf_info.parent_if.is_divergent = true;
9195
9196 /* divergent branches use cbranch_execz */
9197 ctx->cf_info.exec_potentially_empty_discard = false;
9198 ctx->cf_info.exec_potentially_empty_break = false;
9199 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9200
9201 /** emit logical then block */
9202 Block* BB_then_logical = ctx->program->create_and_insert_block();
9203 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9204 add_edge(ic->BB_if_idx, BB_then_logical);
9205 ctx->block = BB_then_logical;
9206 append_logical_start(BB_then_logical);
9207 }
9208
9209 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9210 {
9211 Block *BB_then_logical = ctx->block;
9212 append_logical_end(BB_then_logical);
9213 /* branch from logical then block to invert block */
9214 aco_ptr<Pseudo_branch_instruction> branch;
9215 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9216 BB_then_logical->instructions.emplace_back(std::move(branch));
9217 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9218 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9219 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9220 BB_then_logical->kind |= block_kind_uniform;
9221 assert(!ctx->cf_info.has_branch);
9222 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9223 ctx->cf_info.parent_loop.has_divergent_branch = false;
9224
9225 /** emit linear then block */
9226 Block* BB_then_linear = ctx->program->create_and_insert_block();
9227 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9228 BB_then_linear->kind |= block_kind_uniform;
9229 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9230 /* branch from linear then block to invert block */
9231 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9232 BB_then_linear->instructions.emplace_back(std::move(branch));
9233 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9234
9235 /** emit invert merge block */
9236 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9237 ic->invert_idx = ctx->block->index;
9238
9239 /* branch to linear else block (skip else) */
9240 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9241 branch->operands[0] = Operand(ic->cond);
9242 ctx->block->instructions.push_back(std::move(branch));
9243
9244 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9245 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9246 ic->exec_potentially_empty_break_depth_old =
9247 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9248 /* divergent branches use cbranch_execz */
9249 ctx->cf_info.exec_potentially_empty_discard = false;
9250 ctx->cf_info.exec_potentially_empty_break = false;
9251 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9252
9253 /** emit logical else block */
9254 Block* BB_else_logical = ctx->program->create_and_insert_block();
9255 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9256 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9257 add_linear_edge(ic->invert_idx, BB_else_logical);
9258 ctx->block = BB_else_logical;
9259 append_logical_start(BB_else_logical);
9260 }
9261
9262 static void end_divergent_if(isel_context *ctx, if_context *ic)
9263 {
9264 Block *BB_else_logical = ctx->block;
9265 append_logical_end(BB_else_logical);
9266
9267 /* branch from logical else block to endif block */
9268 aco_ptr<Pseudo_branch_instruction> branch;
9269 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9270 BB_else_logical->instructions.emplace_back(std::move(branch));
9271 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9272 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9273 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9274 BB_else_logical->kind |= block_kind_uniform;
9275
9276 assert(!ctx->cf_info.has_branch);
9277 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9278
9279
9280 /** emit linear else block */
9281 Block* BB_else_linear = ctx->program->create_and_insert_block();
9282 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9283 BB_else_linear->kind |= block_kind_uniform;
9284 add_linear_edge(ic->invert_idx, BB_else_linear);
9285
9286 /* branch from linear else block to endif block */
9287 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9288 BB_else_linear->instructions.emplace_back(std::move(branch));
9289 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9290
9291
9292 /** emit endif merge block */
9293 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9294 append_logical_start(ctx->block);
9295
9296
9297 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9298 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9299 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9300 ctx->cf_info.exec_potentially_empty_break_depth =
9301 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9302 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9303 !ctx->cf_info.parent_if.is_divergent) {
9304 ctx->cf_info.exec_potentially_empty_break = false;
9305 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9306 }
9307 /* uniform control flow never has an empty exec-mask */
9308 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9309 ctx->cf_info.exec_potentially_empty_discard = false;
9310 ctx->cf_info.exec_potentially_empty_break = false;
9311 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9312 }
9313 }
9314
9315 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9316 {
9317 assert(cond.regClass() == s1);
9318
9319 append_logical_end(ctx->block);
9320 ctx->block->kind |= block_kind_uniform;
9321
9322 aco_ptr<Pseudo_branch_instruction> branch;
9323 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9324 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9325 branch->operands[0] = Operand(cond);
9326 branch->operands[0].setFixed(scc);
9327 ctx->block->instructions.emplace_back(std::move(branch));
9328
9329 ic->BB_if_idx = ctx->block->index;
9330 ic->BB_endif = Block();
9331 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9332 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9333
9334 ctx->cf_info.has_branch = false;
9335 ctx->cf_info.parent_loop.has_divergent_branch = false;
9336
9337 /** emit then block */
9338 Block* BB_then = ctx->program->create_and_insert_block();
9339 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9340 add_edge(ic->BB_if_idx, BB_then);
9341 append_logical_start(BB_then);
9342 ctx->block = BB_then;
9343 }
9344
9345 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9346 {
9347 Block *BB_then = ctx->block;
9348
9349 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9350 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9351
9352 if (!ic->uniform_has_then_branch) {
9353 append_logical_end(BB_then);
9354 /* branch from then block to endif block */
9355 aco_ptr<Pseudo_branch_instruction> branch;
9356 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9357 BB_then->instructions.emplace_back(std::move(branch));
9358 add_linear_edge(BB_then->index, &ic->BB_endif);
9359 if (!ic->then_branch_divergent)
9360 add_logical_edge(BB_then->index, &ic->BB_endif);
9361 BB_then->kind |= block_kind_uniform;
9362 }
9363
9364 ctx->cf_info.has_branch = false;
9365 ctx->cf_info.parent_loop.has_divergent_branch = false;
9366
9367 /** emit else block */
9368 Block* BB_else = ctx->program->create_and_insert_block();
9369 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9370 add_edge(ic->BB_if_idx, BB_else);
9371 append_logical_start(BB_else);
9372 ctx->block = BB_else;
9373 }
9374
9375 static void end_uniform_if(isel_context *ctx, if_context *ic)
9376 {
9377 Block *BB_else = ctx->block;
9378
9379 if (!ctx->cf_info.has_branch) {
9380 append_logical_end(BB_else);
9381 /* branch from then block to endif block */
9382 aco_ptr<Pseudo_branch_instruction> branch;
9383 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9384 BB_else->instructions.emplace_back(std::move(branch));
9385 add_linear_edge(BB_else->index, &ic->BB_endif);
9386 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9387 add_logical_edge(BB_else->index, &ic->BB_endif);
9388 BB_else->kind |= block_kind_uniform;
9389 }
9390
9391 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9392 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9393
9394 /** emit endif merge block */
9395 if (!ctx->cf_info.has_branch) {
9396 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9397 append_logical_start(ctx->block);
9398 }
9399 }
9400
9401 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9402 {
9403 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9404 Builder bld(ctx->program, ctx->block);
9405 aco_ptr<Pseudo_branch_instruction> branch;
9406 if_context ic;
9407
9408 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
9409 /**
9410 * Uniform conditionals are represented in the following way*) :
9411 *
9412 * The linear and logical CFG:
9413 * BB_IF
9414 * / \
9415 * BB_THEN (logical) BB_ELSE (logical)
9416 * \ /
9417 * BB_ENDIF
9418 *
9419 * *) Exceptions may be due to break and continue statements within loops
9420 * If a break/continue happens within uniform control flow, it branches
9421 * to the loop exit/entry block. Otherwise, it branches to the next
9422 * merge block.
9423 **/
9424
9425 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9426 assert(cond.regClass() == ctx->program->lane_mask);
9427 cond = bool_to_scalar_condition(ctx, cond);
9428
9429 begin_uniform_if_then(ctx, &ic, cond);
9430 visit_cf_list(ctx, &if_stmt->then_list);
9431
9432 begin_uniform_if_else(ctx, &ic);
9433 visit_cf_list(ctx, &if_stmt->else_list);
9434
9435 end_uniform_if(ctx, &ic);
9436
9437 return !ctx->cf_info.has_branch;
9438 } else { /* non-uniform condition */
9439 /**
9440 * To maintain a logical and linear CFG without critical edges,
9441 * non-uniform conditionals are represented in the following way*) :
9442 *
9443 * The linear CFG:
9444 * BB_IF
9445 * / \
9446 * BB_THEN (logical) BB_THEN (linear)
9447 * \ /
9448 * BB_INVERT (linear)
9449 * / \
9450 * BB_ELSE (logical) BB_ELSE (linear)
9451 * \ /
9452 * BB_ENDIF
9453 *
9454 * The logical CFG:
9455 * BB_IF
9456 * / \
9457 * BB_THEN (logical) BB_ELSE (logical)
9458 * \ /
9459 * BB_ENDIF
9460 *
9461 * *) Exceptions may be due to break and continue statements within loops
9462 **/
9463
9464 begin_divergent_if_then(ctx, &ic, cond);
9465 visit_cf_list(ctx, &if_stmt->then_list);
9466
9467 begin_divergent_if_else(ctx, &ic);
9468 visit_cf_list(ctx, &if_stmt->else_list);
9469
9470 end_divergent_if(ctx, &ic);
9471
9472 return true;
9473 }
9474 }
9475
9476 static bool visit_cf_list(isel_context *ctx,
9477 struct exec_list *list)
9478 {
9479 foreach_list_typed(nir_cf_node, node, node, list) {
9480 switch (node->type) {
9481 case nir_cf_node_block:
9482 visit_block(ctx, nir_cf_node_as_block(node));
9483 break;
9484 case nir_cf_node_if:
9485 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9486 return true;
9487 break;
9488 case nir_cf_node_loop:
9489 visit_loop(ctx, nir_cf_node_as_loop(node));
9490 break;
9491 default:
9492 unreachable("unimplemented cf list type");
9493 }
9494 }
9495 return false;
9496 }
9497
9498 static void create_null_export(isel_context *ctx)
9499 {
9500 /* Some shader stages always need to have exports.
9501 * So when there is none, we need to add a null export.
9502 */
9503
9504 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9505 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9506 Builder bld(ctx->program, ctx->block);
9507 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9508 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9509 }
9510
9511 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9512 {
9513 assert(ctx->stage == vertex_vs ||
9514 ctx->stage == tess_eval_vs ||
9515 ctx->stage == gs_copy_vs ||
9516 ctx->stage == ngg_vertex_gs ||
9517 ctx->stage == ngg_tess_eval_gs);
9518
9519 int offset = (ctx->stage & sw_tes)
9520 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9521 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9522 uint64_t mask = ctx->outputs.mask[slot];
9523 if (!is_pos && !mask)
9524 return false;
9525 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9526 return false;
9527 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9528 exp->enabled_mask = mask;
9529 for (unsigned i = 0; i < 4; ++i) {
9530 if (mask & (1 << i))
9531 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9532 else
9533 exp->operands[i] = Operand(v1);
9534 }
9535 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9536 * Setting valid_mask=1 prevents it and has no other effect.
9537 */
9538 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9539 exp->done = false;
9540 exp->compressed = false;
9541 if (is_pos)
9542 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9543 else
9544 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9545 ctx->block->instructions.emplace_back(std::move(exp));
9546
9547 return true;
9548 }
9549
9550 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9551 {
9552 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9553 exp->enabled_mask = 0;
9554 for (unsigned i = 0; i < 4; ++i)
9555 exp->operands[i] = Operand(v1);
9556 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9557 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9558 exp->enabled_mask |= 0x1;
9559 }
9560 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9561 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9562 exp->enabled_mask |= 0x4;
9563 }
9564 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9565 if (ctx->options->chip_class < GFX9) {
9566 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9567 exp->enabled_mask |= 0x8;
9568 } else {
9569 Builder bld(ctx->program, ctx->block);
9570
9571 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9572 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9573 if (exp->operands[2].isTemp())
9574 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9575
9576 exp->operands[2] = Operand(out);
9577 exp->enabled_mask |= 0x4;
9578 }
9579 }
9580 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9581 exp->done = false;
9582 exp->compressed = false;
9583 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9584 ctx->block->instructions.emplace_back(std::move(exp));
9585 }
9586
9587 static void create_export_phis(isel_context *ctx)
9588 {
9589 /* Used when exports are needed, but the output temps are defined in a preceding block.
9590 * This function will set up phis in order to access the outputs in the next block.
9591 */
9592
9593 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9594 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9595 ctx->block->instructions.pop_back();
9596
9597 Builder bld(ctx->program, ctx->block);
9598
9599 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9600 uint64_t mask = ctx->outputs.mask[slot];
9601 for (unsigned i = 0; i < 4; ++i) {
9602 if (!(mask & (1 << i)))
9603 continue;
9604
9605 Temp old = ctx->outputs.temps[slot * 4 + i];
9606 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9607 ctx->outputs.temps[slot * 4 + i] = phi;
9608 }
9609 }
9610
9611 bld.insert(std::move(logical_start));
9612 }
9613
9614 static void create_vs_exports(isel_context *ctx)
9615 {
9616 assert(ctx->stage == vertex_vs ||
9617 ctx->stage == tess_eval_vs ||
9618 ctx->stage == gs_copy_vs ||
9619 ctx->stage == ngg_vertex_gs ||
9620 ctx->stage == ngg_tess_eval_gs);
9621
9622 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9623 ? &ctx->program->info->tes.outinfo
9624 : &ctx->program->info->vs.outinfo;
9625
9626 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9627 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9628 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9629 }
9630
9631 if (ctx->options->key.has_multiview_view_index) {
9632 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9633 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9634 }
9635
9636 /* the order these position exports are created is important */
9637 int next_pos = 0;
9638 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9639 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9640 export_vs_psiz_layer_viewport(ctx, &next_pos);
9641 exported_pos = true;
9642 }
9643 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9644 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9645 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9646 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9647
9648 if (ctx->export_clip_dists) {
9649 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9650 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9651 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9652 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9653 }
9654
9655 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9656 if (i < VARYING_SLOT_VAR0 &&
9657 i != VARYING_SLOT_LAYER &&
9658 i != VARYING_SLOT_PRIMITIVE_ID)
9659 continue;
9660
9661 export_vs_varying(ctx, i, false, NULL);
9662 }
9663
9664 if (!exported_pos)
9665 create_null_export(ctx);
9666 }
9667
9668 static bool export_fs_mrt_z(isel_context *ctx)
9669 {
9670 Builder bld(ctx->program, ctx->block);
9671 unsigned enabled_channels = 0;
9672 bool compr = false;
9673 Operand values[4];
9674
9675 for (unsigned i = 0; i < 4; ++i) {
9676 values[i] = Operand(v1);
9677 }
9678
9679 /* Both stencil and sample mask only need 16-bits. */
9680 if (!ctx->program->info->ps.writes_z &&
9681 (ctx->program->info->ps.writes_stencil ||
9682 ctx->program->info->ps.writes_sample_mask)) {
9683 compr = true; /* COMPR flag */
9684
9685 if (ctx->program->info->ps.writes_stencil) {
9686 /* Stencil should be in X[23:16]. */
9687 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9688 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9689 enabled_channels |= 0x3;
9690 }
9691
9692 if (ctx->program->info->ps.writes_sample_mask) {
9693 /* SampleMask should be in Y[15:0]. */
9694 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9695 enabled_channels |= 0xc;
9696 }
9697 } else {
9698 if (ctx->program->info->ps.writes_z) {
9699 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
9700 enabled_channels |= 0x1;
9701 }
9702
9703 if (ctx->program->info->ps.writes_stencil) {
9704 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9705 enabled_channels |= 0x2;
9706 }
9707
9708 if (ctx->program->info->ps.writes_sample_mask) {
9709 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9710 enabled_channels |= 0x4;
9711 }
9712 }
9713
9714 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9715 * writemask component.
9716 */
9717 if (ctx->options->chip_class == GFX6 &&
9718 ctx->options->family != CHIP_OLAND &&
9719 ctx->options->family != CHIP_HAINAN) {
9720 enabled_channels |= 0x1;
9721 }
9722
9723 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9724 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9725
9726 return true;
9727 }
9728
9729 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9730 {
9731 Builder bld(ctx->program, ctx->block);
9732 unsigned write_mask = ctx->outputs.mask[slot];
9733 Operand values[4];
9734
9735 for (unsigned i = 0; i < 4; ++i) {
9736 if (write_mask & (1 << i)) {
9737 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9738 } else {
9739 values[i] = Operand(v1);
9740 }
9741 }
9742
9743 unsigned target, col_format;
9744 unsigned enabled_channels = 0;
9745 aco_opcode compr_op = (aco_opcode)0;
9746
9747 slot -= FRAG_RESULT_DATA0;
9748 target = V_008DFC_SQ_EXP_MRT + slot;
9749 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9750
9751 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9752 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9753
9754 switch (col_format)
9755 {
9756 case V_028714_SPI_SHADER_ZERO:
9757 enabled_channels = 0; /* writemask */
9758 target = V_008DFC_SQ_EXP_NULL;
9759 break;
9760
9761 case V_028714_SPI_SHADER_32_R:
9762 enabled_channels = 1;
9763 break;
9764
9765 case V_028714_SPI_SHADER_32_GR:
9766 enabled_channels = 0x3;
9767 break;
9768
9769 case V_028714_SPI_SHADER_32_AR:
9770 if (ctx->options->chip_class >= GFX10) {
9771 /* Special case: on GFX10, the outputs are different for 32_AR */
9772 enabled_channels = 0x3;
9773 values[1] = values[3];
9774 values[3] = Operand(v1);
9775 } else {
9776 enabled_channels = 0x9;
9777 }
9778 break;
9779
9780 case V_028714_SPI_SHADER_FP16_ABGR:
9781 enabled_channels = 0x5;
9782 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9783 break;
9784
9785 case V_028714_SPI_SHADER_UNORM16_ABGR:
9786 enabled_channels = 0x5;
9787 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9788 break;
9789
9790 case V_028714_SPI_SHADER_SNORM16_ABGR:
9791 enabled_channels = 0x5;
9792 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9793 break;
9794
9795 case V_028714_SPI_SHADER_UINT16_ABGR: {
9796 enabled_channels = 0x5;
9797 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9798 if (is_int8 || is_int10) {
9799 /* clamp */
9800 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9801 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9802
9803 for (unsigned i = 0; i < 4; i++) {
9804 if ((write_mask >> i) & 1) {
9805 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9806 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9807 values[i]);
9808 }
9809 }
9810 }
9811 break;
9812 }
9813
9814 case V_028714_SPI_SHADER_SINT16_ABGR:
9815 enabled_channels = 0x5;
9816 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9817 if (is_int8 || is_int10) {
9818 /* clamp */
9819 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9820 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9821 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9822 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9823
9824 for (unsigned i = 0; i < 4; i++) {
9825 if ((write_mask >> i) & 1) {
9826 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9827 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9828 values[i]);
9829 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
9830 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
9831 values[i]);
9832 }
9833 }
9834 }
9835 break;
9836
9837 case V_028714_SPI_SHADER_32_ABGR:
9838 enabled_channels = 0xF;
9839 break;
9840
9841 default:
9842 break;
9843 }
9844
9845 if (target == V_008DFC_SQ_EXP_NULL)
9846 return false;
9847
9848 if ((bool) compr_op) {
9849 for (int i = 0; i < 2; i++) {
9850 /* check if at least one of the values to be compressed is enabled */
9851 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
9852 if (enabled) {
9853 enabled_channels |= enabled << (i*2);
9854 values[i] = bld.vop3(compr_op, bld.def(v1),
9855 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
9856 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
9857 } else {
9858 values[i] = Operand(v1);
9859 }
9860 }
9861 values[2] = Operand(v1);
9862 values[3] = Operand(v1);
9863 } else {
9864 for (int i = 0; i < 4; i++)
9865 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
9866 }
9867
9868 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9869 enabled_channels, target, (bool) compr_op);
9870 return true;
9871 }
9872
9873 static void create_fs_exports(isel_context *ctx)
9874 {
9875 bool exported = false;
9876
9877 /* Export depth, stencil and sample mask. */
9878 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
9879 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
9880 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
9881 exported |= export_fs_mrt_z(ctx);
9882
9883 /* Export all color render targets. */
9884 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
9885 if (ctx->outputs.mask[i])
9886 exported |= export_fs_mrt_color(ctx, i);
9887
9888 if (!exported)
9889 create_null_export(ctx);
9890 }
9891
9892 static void write_tcs_tess_factors(isel_context *ctx)
9893 {
9894 unsigned outer_comps;
9895 unsigned inner_comps;
9896
9897 switch (ctx->args->options->key.tcs.primitive_mode) {
9898 case GL_ISOLINES:
9899 outer_comps = 2;
9900 inner_comps = 0;
9901 break;
9902 case GL_TRIANGLES:
9903 outer_comps = 3;
9904 inner_comps = 1;
9905 break;
9906 case GL_QUADS:
9907 outer_comps = 4;
9908 inner_comps = 2;
9909 break;
9910 default:
9911 return;
9912 }
9913
9914 Builder bld(ctx->program, ctx->block);
9915
9916 bld.barrier(aco_opcode::p_memory_barrier_shared);
9917 if (unlikely(ctx->program->chip_class != GFX6 && ctx->program->workgroup_size > ctx->program->wave_size))
9918 bld.sopp(aco_opcode::s_barrier);
9919
9920 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
9921 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
9922
9923 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
9924 if_context ic_invocation_id_is_zero;
9925 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
9926 bld.reset(ctx->block);
9927
9928 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
9929
9930 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
9931 unsigned stride = inner_comps + outer_comps;
9932 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
9933 Temp tf_inner_vec;
9934 Temp tf_outer_vec;
9935 Temp out[6];
9936 assert(stride <= (sizeof(out) / sizeof(Temp)));
9937
9938 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
9939 // LINES reversal
9940 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
9941 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
9942 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
9943 } else {
9944 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
9945 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
9946
9947 for (unsigned i = 0; i < outer_comps; ++i)
9948 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
9949 for (unsigned i = 0; i < inner_comps; ++i)
9950 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
9951 }
9952
9953 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
9954 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
9955 Temp byte_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, stride * 4u);
9956 unsigned tf_const_offset = 0;
9957
9958 if (ctx->program->chip_class <= GFX8) {
9959 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
9960 if_context ic_rel_patch_id_is_zero;
9961 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
9962 bld.reset(ctx->block);
9963
9964 /* Store the dynamic HS control word. */
9965 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
9966 bld.mubuf(aco_opcode::buffer_store_dword,
9967 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
9968 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
9969 /* disable_wqm */ false, /* glc */ true);
9970 tf_const_offset += 4;
9971
9972 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
9973 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
9974 bld.reset(ctx->block);
9975 }
9976
9977 assert(stride == 2 || stride == 4 || stride == 6);
9978 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
9979 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
9980
9981 /* Store to offchip for TES to read - only if TES reads them */
9982 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
9983 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
9984 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
9985
9986 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
9987 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
9988
9989 if (likely(inner_comps)) {
9990 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
9991 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
9992 }
9993 }
9994
9995 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
9996 end_divergent_if(ctx, &ic_invocation_id_is_zero);
9997 }
9998
9999 static void emit_stream_output(isel_context *ctx,
10000 Temp const *so_buffers,
10001 Temp const *so_write_offset,
10002 const struct radv_stream_output *output)
10003 {
10004 unsigned num_comps = util_bitcount(output->component_mask);
10005 unsigned writemask = (1 << num_comps) - 1;
10006 unsigned loc = output->location;
10007 unsigned buf = output->buffer;
10008
10009 assert(num_comps && num_comps <= 4);
10010 if (!num_comps || num_comps > 4)
10011 return;
10012
10013 unsigned start = ffs(output->component_mask) - 1;
10014
10015 Temp out[4];
10016 bool all_undef = true;
10017 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
10018 for (unsigned i = 0; i < num_comps; i++) {
10019 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10020 all_undef = all_undef && !out[i].id();
10021 }
10022 if (all_undef)
10023 return;
10024
10025 while (writemask) {
10026 int start, count;
10027 u_bit_scan_consecutive_range(&writemask, &start, &count);
10028 if (count == 3 && ctx->options->chip_class == GFX6) {
10029 /* GFX6 doesn't support storing vec3, split it. */
10030 writemask |= 1u << (start + 2);
10031 count = 2;
10032 }
10033
10034 unsigned offset = output->offset + start * 4;
10035
10036 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10037 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10038 for (int i = 0; i < count; ++i)
10039 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10040 vec->definitions[0] = Definition(write_data);
10041 ctx->block->instructions.emplace_back(std::move(vec));
10042
10043 aco_opcode opcode;
10044 switch (count) {
10045 case 1:
10046 opcode = aco_opcode::buffer_store_dword;
10047 break;
10048 case 2:
10049 opcode = aco_opcode::buffer_store_dwordx2;
10050 break;
10051 case 3:
10052 opcode = aco_opcode::buffer_store_dwordx3;
10053 break;
10054 case 4:
10055 opcode = aco_opcode::buffer_store_dwordx4;
10056 break;
10057 default:
10058 unreachable("Unsupported dword count.");
10059 }
10060
10061 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10062 store->operands[0] = Operand(so_buffers[buf]);
10063 store->operands[1] = Operand(so_write_offset[buf]);
10064 store->operands[2] = Operand((uint32_t) 0);
10065 store->operands[3] = Operand(write_data);
10066 if (offset > 4095) {
10067 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10068 Builder bld(ctx->program, ctx->block);
10069 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10070 } else {
10071 store->offset = offset;
10072 }
10073 store->offen = true;
10074 store->glc = true;
10075 store->dlc = false;
10076 store->slc = true;
10077 store->can_reorder = true;
10078 ctx->block->instructions.emplace_back(std::move(store));
10079 }
10080 }
10081
10082 static void emit_streamout(isel_context *ctx, unsigned stream)
10083 {
10084 Builder bld(ctx->program, ctx->block);
10085
10086 Temp so_buffers[4];
10087 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10088 for (unsigned i = 0; i < 4; i++) {
10089 unsigned stride = ctx->program->info->so.strides[i];
10090 if (!stride)
10091 continue;
10092
10093 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10094 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10095 }
10096
10097 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10098 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10099
10100 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10101
10102 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10103
10104 if_context ic;
10105 begin_divergent_if_then(ctx, &ic, can_emit);
10106
10107 bld.reset(ctx->block);
10108
10109 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10110
10111 Temp so_write_offset[4];
10112
10113 for (unsigned i = 0; i < 4; i++) {
10114 unsigned stride = ctx->program->info->so.strides[i];
10115 if (!stride)
10116 continue;
10117
10118 if (stride == 1) {
10119 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10120 get_arg(ctx, ctx->args->streamout_write_idx),
10121 get_arg(ctx, ctx->args->streamout_offset[i]));
10122 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10123
10124 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10125 } else {
10126 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10127 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10128 get_arg(ctx, ctx->args->streamout_offset[i]));
10129 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10130 }
10131 }
10132
10133 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10134 struct radv_stream_output *output =
10135 &ctx->program->info->so.outputs[i];
10136 if (stream != output->stream)
10137 continue;
10138
10139 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10140 }
10141
10142 begin_divergent_if_else(ctx, &ic);
10143 end_divergent_if(ctx, &ic);
10144 }
10145
10146 } /* end namespace */
10147
10148 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10149 {
10150 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10151 Builder bld(ctx->program, ctx->block);
10152 constexpr unsigned hs_idx = 1u;
10153 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10154 get_arg(ctx, ctx->args->merged_wave_info),
10155 Operand((8u << 16) | (hs_idx * 8u)));
10156 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10157
10158 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10159
10160 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10161 get_arg(ctx, ctx->args->rel_auto_id),
10162 get_arg(ctx, ctx->args->ac.instance_id),
10163 ls_has_nonzero_hs_threads);
10164 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10165 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10166 get_arg(ctx, ctx->args->rel_auto_id),
10167 ls_has_nonzero_hs_threads);
10168 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10169 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10170 get_arg(ctx, ctx->args->ac.vertex_id),
10171 ls_has_nonzero_hs_threads);
10172
10173 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10174 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10175 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10176 }
10177
10178 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10179 {
10180 /* Split all arguments except for the first (ring_offsets) and the last
10181 * (exec) so that the dead channels don't stay live throughout the program.
10182 */
10183 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10184 if (startpgm->definitions[i].regClass().size() > 1) {
10185 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10186 startpgm->definitions[i].regClass().size());
10187 }
10188 }
10189 }
10190
10191 void handle_bc_optimize(isel_context *ctx)
10192 {
10193 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10194 Builder bld(ctx->program, ctx->block);
10195 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10196 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10197 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10198 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10199 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10200 if (uses_center && uses_centroid) {
10201 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10202 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10203
10204 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10205 Temp new_coord[2];
10206 for (unsigned i = 0; i < 2; i++) {
10207 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10208 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10209 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10210 persp_centroid, persp_center, sel);
10211 }
10212 ctx->persp_centroid = bld.tmp(v2);
10213 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10214 Operand(new_coord[0]), Operand(new_coord[1]));
10215 emit_split_vector(ctx, ctx->persp_centroid, 2);
10216 }
10217
10218 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10219 Temp new_coord[2];
10220 for (unsigned i = 0; i < 2; i++) {
10221 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10222 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10223 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10224 linear_centroid, linear_center, sel);
10225 }
10226 ctx->linear_centroid = bld.tmp(v2);
10227 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10228 Operand(new_coord[0]), Operand(new_coord[1]));
10229 emit_split_vector(ctx, ctx->linear_centroid, 2);
10230 }
10231 }
10232 }
10233
10234 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10235 {
10236 Program *program = ctx->program;
10237
10238 unsigned float_controls = shader->info.float_controls_execution_mode;
10239
10240 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10241 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10242 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10243 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10244 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10245
10246 program->next_fp_mode.must_flush_denorms32 =
10247 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10248 program->next_fp_mode.must_flush_denorms16_64 =
10249 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10250 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10251
10252 program->next_fp_mode.care_about_round32 =
10253 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10254
10255 program->next_fp_mode.care_about_round16_64 =
10256 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10257 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10258
10259 /* default to preserving fp16 and fp64 denorms, since it's free */
10260 if (program->next_fp_mode.must_flush_denorms16_64)
10261 program->next_fp_mode.denorm16_64 = 0;
10262 else
10263 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10264
10265 /* preserving fp32 denorms is expensive, so only do it if asked */
10266 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10267 program->next_fp_mode.denorm32 = fp_denorm_keep;
10268 else
10269 program->next_fp_mode.denorm32 = 0;
10270
10271 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10272 program->next_fp_mode.round32 = fp_round_tz;
10273 else
10274 program->next_fp_mode.round32 = fp_round_ne;
10275
10276 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10277 program->next_fp_mode.round16_64 = fp_round_tz;
10278 else
10279 program->next_fp_mode.round16_64 = fp_round_ne;
10280
10281 ctx->block->fp_mode = program->next_fp_mode;
10282 }
10283
10284 void cleanup_cfg(Program *program)
10285 {
10286 /* create linear_succs/logical_succs */
10287 for (Block& BB : program->blocks) {
10288 for (unsigned idx : BB.linear_preds)
10289 program->blocks[idx].linear_succs.emplace_back(BB.index);
10290 for (unsigned idx : BB.logical_preds)
10291 program->blocks[idx].logical_succs.emplace_back(BB.index);
10292 }
10293 }
10294
10295 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10296 {
10297 Builder bld(ctx->program, ctx->block);
10298
10299 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10300 Temp count = i == 0
10301 ? get_arg(ctx, ctx->args->merged_wave_info)
10302 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10303 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10304
10305 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10306 Temp cond;
10307
10308 if (ctx->program->wave_size == 64) {
10309 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10310 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10311 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10312 } else {
10313 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10314 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10315 }
10316
10317 return cond;
10318 }
10319
10320 bool ngg_early_prim_export(isel_context *ctx)
10321 {
10322 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10323 return true;
10324 }
10325
10326 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10327 {
10328 Builder bld(ctx->program, ctx->block);
10329
10330 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10331 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10332
10333 /* Get the id of the current wave within the threadgroup (workgroup) */
10334 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10335 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10336
10337 /* Execute the following code only on the first wave (wave id 0),
10338 * use the SCC def to tell if the wave id is zero or not.
10339 */
10340 Temp cond = wave_id_in_tg.def(1).getTemp();
10341 if_context ic;
10342 begin_uniform_if_then(ctx, &ic, cond);
10343 begin_uniform_if_else(ctx, &ic);
10344 bld.reset(ctx->block);
10345
10346 /* Number of vertices output by VS/TES */
10347 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10348 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10349 /* Number of primitives output by VS/TES */
10350 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10351 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10352
10353 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10354 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10355 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10356
10357 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10358 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10359
10360 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10361 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10362
10363 end_uniform_if(ctx, &ic);
10364 }
10365
10366 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10367 {
10368 Builder bld(ctx->program, ctx->block);
10369
10370 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10371 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10372 }
10373
10374 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10375 Temp tmp;
10376
10377 for (unsigned i = 0; i < num_vertices; ++i) {
10378 assert(vtxindex[i].id());
10379
10380 if (i)
10381 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10382 else
10383 tmp = vtxindex[i];
10384
10385 /* The initial edge flag is always false in tess eval shaders. */
10386 if (ctx->stage == ngg_vertex_gs) {
10387 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10388 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10389 }
10390 }
10391
10392 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10393
10394 return tmp;
10395 }
10396
10397 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10398 {
10399 Builder bld(ctx->program, ctx->block);
10400 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10401
10402 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10403 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10404 false /* compressed */, true/* done */, false /* valid mask */);
10405 }
10406
10407 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10408 {
10409 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10410 * These must always come before VS exports.
10411 *
10412 * It is recommended to do these as early as possible. They can be at the beginning when
10413 * there is no SW GS and the shader doesn't write edge flags.
10414 */
10415
10416 if_context ic;
10417 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10418 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10419
10420 Builder bld(ctx->program, ctx->block);
10421 constexpr unsigned max_vertices_per_primitive = 3;
10422 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10423
10424 if (ctx->stage == ngg_vertex_gs) {
10425 /* TODO: optimize for points & lines */
10426 } else if (ctx->stage == ngg_tess_eval_gs) {
10427 if (ctx->shader->info.tess.point_mode)
10428 num_vertices_per_primitive = 1;
10429 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10430 num_vertices_per_primitive = 2;
10431 } else {
10432 unreachable("Unsupported NGG shader stage");
10433 }
10434
10435 Temp vtxindex[max_vertices_per_primitive];
10436 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10437 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10438 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10439 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10440 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10441 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10442 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10443 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10444
10445 /* Export primitive data to the index buffer. */
10446 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10447
10448 /* Export primitive ID. */
10449 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10450 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10451 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10452 Temp provoking_vtx_index = vtxindex[0];
10453 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10454
10455 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10456 }
10457
10458 begin_divergent_if_else(ctx, &ic);
10459 end_divergent_if(ctx, &ic);
10460 }
10461
10462 void ngg_emit_nogs_output(isel_context *ctx)
10463 {
10464 /* Emits NGG GS output, for stages that don't have SW GS. */
10465
10466 if_context ic;
10467 Builder bld(ctx->program, ctx->block);
10468 bool late_prim_export = !ngg_early_prim_export(ctx);
10469
10470 /* NGG streamout is currently disabled by default. */
10471 assert(!ctx->args->shader_info->so.num_outputs);
10472
10473 if (late_prim_export) {
10474 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10475 create_export_phis(ctx);
10476 /* Do what we need to do in the GS threads. */
10477 ngg_emit_nogs_gsthreads(ctx);
10478
10479 /* What comes next should be executed on ES threads. */
10480 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10481 begin_divergent_if_then(ctx, &ic, is_es_thread);
10482 bld.reset(ctx->block);
10483 }
10484
10485 /* Export VS outputs */
10486 ctx->block->kind |= block_kind_export_end;
10487 create_vs_exports(ctx);
10488
10489 /* Export primitive ID */
10490 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10491 Temp prim_id;
10492
10493 if (ctx->stage == ngg_vertex_gs) {
10494 /* Wait for GS threads to store primitive ID in LDS. */
10495 bld.barrier(aco_opcode::p_memory_barrier_shared);
10496 bld.sopp(aco_opcode::s_barrier);
10497
10498 /* Calculate LDS address where the GS threads stored the primitive ID. */
10499 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10500 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10501 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10502 Temp wave_id_mul = bld.v_mul_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10503 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10504 Temp addr = bld.v_mul_imm(bld.def(v1), thread_id_in_tg, 4u);
10505
10506 /* Load primitive ID from LDS. */
10507 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10508 } else if (ctx->stage == ngg_tess_eval_gs) {
10509 /* TES: Just use the patch ID as the primitive ID. */
10510 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10511 } else {
10512 unreachable("unsupported NGG shader stage.");
10513 }
10514
10515 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10516 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10517
10518 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10519 }
10520
10521 if (late_prim_export) {
10522 begin_divergent_if_else(ctx, &ic);
10523 end_divergent_if(ctx, &ic);
10524 bld.reset(ctx->block);
10525 }
10526 }
10527
10528 void select_program(Program *program,
10529 unsigned shader_count,
10530 struct nir_shader *const *shaders,
10531 ac_shader_config* config,
10532 struct radv_shader_args *args)
10533 {
10534 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10535 if_context ic_merged_wave_info;
10536 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10537
10538 for (unsigned i = 0; i < shader_count; i++) {
10539 nir_shader *nir = shaders[i];
10540 init_context(&ctx, nir);
10541
10542 setup_fp_mode(&ctx, nir);
10543
10544 if (!i) {
10545 /* needs to be after init_context() for FS */
10546 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10547 append_logical_start(ctx.block);
10548
10549 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10550 fix_ls_vgpr_init_bug(&ctx, startpgm);
10551
10552 split_arguments(&ctx, startpgm);
10553 }
10554
10555 if (ngg_no_gs) {
10556 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10557
10558 if (ngg_early_prim_export(&ctx))
10559 ngg_emit_nogs_gsthreads(&ctx);
10560 }
10561
10562 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10563 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10564 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10565 ((nir->info.stage == MESA_SHADER_VERTEX &&
10566 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10567 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10568 ctx.stage == tess_eval_geometry_gs));
10569
10570 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10571 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10572 if (check_merged_wave_info) {
10573 Temp cond = merged_wave_info_to_mask(&ctx, i);
10574 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10575 }
10576
10577 if (i) {
10578 Builder bld(ctx.program, ctx.block);
10579
10580 bld.barrier(aco_opcode::p_memory_barrier_shared);
10581 bld.sopp(aco_opcode::s_barrier);
10582
10583 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10584 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10585 }
10586 } else if (ctx.stage == geometry_gs)
10587 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10588
10589 if (ctx.stage == fragment_fs)
10590 handle_bc_optimize(&ctx);
10591
10592 visit_cf_list(&ctx, &func->body);
10593
10594 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10595 emit_streamout(&ctx, 0);
10596
10597 if (ctx.stage & hw_vs) {
10598 create_vs_exports(&ctx);
10599 ctx.block->kind |= block_kind_export_end;
10600 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10601 ngg_emit_nogs_output(&ctx);
10602 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
10603 Builder bld(ctx.program, ctx.block);
10604 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
10605 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
10606 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
10607 write_tcs_tess_factors(&ctx);
10608 }
10609
10610 if (ctx.stage == fragment_fs) {
10611 create_fs_exports(&ctx);
10612 ctx.block->kind |= block_kind_export_end;
10613 }
10614
10615 if (endif_merged_wave_info) {
10616 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
10617 end_divergent_if(&ctx, &ic_merged_wave_info);
10618 }
10619
10620 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
10621 ngg_emit_nogs_output(&ctx);
10622
10623 ralloc_free(ctx.divergent_vals);
10624
10625 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
10626 /* Outputs of the previous stage are inputs to the next stage */
10627 ctx.inputs = ctx.outputs;
10628 ctx.outputs = shader_io_state();
10629 }
10630 }
10631
10632 program->config->float_mode = program->blocks[0].fp_mode.val;
10633
10634 append_logical_end(ctx.block);
10635 ctx.block->kind |= block_kind_uniform;
10636 Builder bld(ctx.program, ctx.block);
10637 if (ctx.program->wb_smem_l1_on_end)
10638 bld.smem(aco_opcode::s_dcache_wb, false);
10639 bld.sopp(aco_opcode::s_endpgm);
10640
10641 cleanup_cfg(program);
10642 }
10643
10644 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
10645 ac_shader_config* config,
10646 struct radv_shader_args *args)
10647 {
10648 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
10649
10650 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
10651 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
10652 program->next_fp_mode.must_flush_denorms32 = false;
10653 program->next_fp_mode.must_flush_denorms16_64 = false;
10654 program->next_fp_mode.care_about_round32 = false;
10655 program->next_fp_mode.care_about_round16_64 = false;
10656 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10657 program->next_fp_mode.denorm32 = 0;
10658 program->next_fp_mode.round32 = fp_round_ne;
10659 program->next_fp_mode.round16_64 = fp_round_ne;
10660 ctx.block->fp_mode = program->next_fp_mode;
10661
10662 add_startpgm(&ctx);
10663 append_logical_start(ctx.block);
10664
10665 Builder bld(ctx.program, ctx.block);
10666
10667 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
10668
10669 Operand stream_id(0u);
10670 if (args->shader_info->so.num_outputs)
10671 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10672 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
10673
10674 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
10675
10676 std::stack<Block> endif_blocks;
10677
10678 for (unsigned stream = 0; stream < 4; stream++) {
10679 if (stream_id.isConstant() && stream != stream_id.constantValue())
10680 continue;
10681
10682 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
10683 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
10684 continue;
10685
10686 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
10687
10688 unsigned BB_if_idx = ctx.block->index;
10689 Block BB_endif = Block();
10690 if (!stream_id.isConstant()) {
10691 /* begin IF */
10692 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
10693 append_logical_end(ctx.block);
10694 ctx.block->kind |= block_kind_uniform;
10695 bld.branch(aco_opcode::p_cbranch_z, cond);
10696
10697 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
10698
10699 ctx.block = ctx.program->create_and_insert_block();
10700 add_edge(BB_if_idx, ctx.block);
10701 bld.reset(ctx.block);
10702 append_logical_start(ctx.block);
10703 }
10704
10705 unsigned offset = 0;
10706 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10707 if (args->shader_info->gs.output_streams[i] != stream)
10708 continue;
10709
10710 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
10711 unsigned length = util_last_bit(output_usage_mask);
10712 for (unsigned j = 0; j < length; ++j) {
10713 if (!(output_usage_mask & (1 << j)))
10714 continue;
10715
10716 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
10717 Temp voffset = vtx_offset;
10718 if (const_offset >= 4096u) {
10719 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
10720 const_offset %= 4096u;
10721 }
10722
10723 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
10724 mubuf->definitions[0] = bld.def(v1);
10725 mubuf->operands[0] = Operand(gsvs_ring);
10726 mubuf->operands[1] = Operand(voffset);
10727 mubuf->operands[2] = Operand(0u);
10728 mubuf->offen = true;
10729 mubuf->offset = const_offset;
10730 mubuf->glc = true;
10731 mubuf->slc = true;
10732 mubuf->dlc = args->options->chip_class >= GFX10;
10733 mubuf->barrier = barrier_none;
10734 mubuf->can_reorder = true;
10735
10736 ctx.outputs.mask[i] |= 1 << j;
10737 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
10738
10739 bld.insert(std::move(mubuf));
10740
10741 offset++;
10742 }
10743 }
10744
10745 if (args->shader_info->so.num_outputs) {
10746 emit_streamout(&ctx, stream);
10747 bld.reset(ctx.block);
10748 }
10749
10750 if (stream == 0) {
10751 create_vs_exports(&ctx);
10752 ctx.block->kind |= block_kind_export_end;
10753 }
10754
10755 if (!stream_id.isConstant()) {
10756 append_logical_end(ctx.block);
10757
10758 /* branch from then block to endif block */
10759 bld.branch(aco_opcode::p_branch);
10760 add_edge(ctx.block->index, &BB_endif);
10761 ctx.block->kind |= block_kind_uniform;
10762
10763 /* emit else block */
10764 ctx.block = ctx.program->create_and_insert_block();
10765 add_edge(BB_if_idx, ctx.block);
10766 bld.reset(ctx.block);
10767 append_logical_start(ctx.block);
10768
10769 endif_blocks.push(std::move(BB_endif));
10770 }
10771 }
10772
10773 while (!endif_blocks.empty()) {
10774 Block BB_endif = std::move(endif_blocks.top());
10775 endif_blocks.pop();
10776
10777 Block *BB_else = ctx.block;
10778
10779 append_logical_end(BB_else);
10780 /* branch from else block to endif block */
10781 bld.branch(aco_opcode::p_branch);
10782 add_edge(BB_else->index, &BB_endif);
10783 BB_else->kind |= block_kind_uniform;
10784
10785 /** emit endif merge block */
10786 ctx.block = program->insert_block(std::move(BB_endif));
10787 bld.reset(ctx.block);
10788 append_logical_start(ctx.block);
10789 }
10790
10791 program->config->float_mode = program->blocks[0].fp_mode.val;
10792
10793 append_logical_end(ctx.block);
10794 ctx.block->kind |= block_kind_uniform;
10795 bld.sopp(aco_opcode::s_endpgm);
10796
10797 cleanup_cfg(program);
10798 }
10799 }