aco: copy the literal offset of SMEM instructions to a temporary
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_old;
83
84 unsigned BB_if_idx;
85 unsigned invert_idx;
86 bool then_branch_divergent;
87 Block BB_invert;
88 Block BB_endif;
89 };
90
91 static void visit_cf_list(struct isel_context *ctx,
92 struct exec_list *list);
93
94 static void add_logical_edge(unsigned pred_idx, Block *succ)
95 {
96 succ->logical_preds.emplace_back(pred_idx);
97 }
98
99
100 static void add_linear_edge(unsigned pred_idx, Block *succ)
101 {
102 succ->linear_preds.emplace_back(pred_idx);
103 }
104
105 static void add_edge(unsigned pred_idx, Block *succ)
106 {
107 add_logical_edge(pred_idx, succ);
108 add_linear_edge(pred_idx, succ);
109 }
110
111 static void append_logical_start(Block *b)
112 {
113 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
114 }
115
116 static void append_logical_end(Block *b)
117 {
118 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
119 }
120
121 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
122 {
123 assert(ctx->allocated[def->index].id());
124 return ctx->allocated[def->index];
125 }
126
127 Temp emit_mbcnt(isel_context *ctx, Definition dst,
128 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
129 {
130 Builder bld(ctx->program, ctx->block);
131 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
132 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
133
134 if (ctx->program->wave_size == 32) {
135 return thread_id_lo;
136 } else {
137 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
138 return thread_id_hi;
139 }
140 }
141
142 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
143 {
144 Builder bld(ctx->program, ctx->block);
145
146 if (!dst.id())
147 dst = bld.tmp(src.regClass());
148
149 assert(src.size() == dst.size());
150
151 if (ctx->stage != fragment_fs) {
152 if (!dst.id())
153 return src;
154
155 bld.copy(Definition(dst), src);
156 return dst;
157 }
158
159 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
160 ctx->program->needs_wqm |= program_needs_wqm;
161 return dst;
162 }
163
164 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
165 {
166 if (index.regClass() == s1)
167 return bld.readlane(bld.def(s1), data, index);
168
169 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
170
171 /* Currently not implemented on GFX6-7 */
172 assert(ctx->options->chip_class >= GFX8);
173
174 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
175 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
176 }
177
178 /* GFX10, wave64 mode:
179 * The bpermute instruction is limited to half-wave operation, which means that it can't
180 * properly support subgroup shuffle like older generations (or wave32 mode), so we
181 * emulate it here.
182 */
183 if (!ctx->has_gfx10_wave64_bpermute) {
184 ctx->has_gfx10_wave64_bpermute = true;
185 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
186 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
187 }
188
189 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
190 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
191 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
192 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
193
194 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
195 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
196 }
197
198 Temp as_vgpr(isel_context *ctx, Temp val)
199 {
200 if (val.type() == RegType::sgpr) {
201 Builder bld(ctx->program, ctx->block);
202 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
203 }
204 assert(val.type() == RegType::vgpr);
205 return val;
206 }
207
208 //assumes a != 0xffffffff
209 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
210 {
211 assert(b != 0);
212 Builder bld(ctx->program, ctx->block);
213
214 if (util_is_power_of_two_or_zero(b)) {
215 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
216 return;
217 }
218
219 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
220
221 assert(info.multiplier <= 0xffffffff);
222
223 bool pre_shift = info.pre_shift != 0;
224 bool increment = info.increment != 0;
225 bool multiply = true;
226 bool post_shift = info.post_shift != 0;
227
228 if (!pre_shift && !increment && !multiply && !post_shift) {
229 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
230 return;
231 }
232
233 Temp pre_shift_dst = a;
234 if (pre_shift) {
235 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
236 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
237 }
238
239 Temp increment_dst = pre_shift_dst;
240 if (increment) {
241 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
242 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
243 }
244
245 Temp multiply_dst = increment_dst;
246 if (multiply) {
247 multiply_dst = post_shift ? bld.tmp(v1) : dst;
248 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
249 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
250 }
251
252 if (post_shift) {
253 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
254 }
255 }
256
257 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
258 {
259 Builder bld(ctx->program, ctx->block);
260 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
261 }
262
263
264 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
265 {
266 /* no need to extract the whole vector */
267 if (src.regClass() == dst_rc) {
268 assert(idx == 0);
269 return src;
270 }
271 assert(src.size() > idx);
272 Builder bld(ctx->program, ctx->block);
273 auto it = ctx->allocated_vec.find(src.id());
274 /* the size check needs to be early because elements other than 0 may be garbage */
275 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
276 if (it->second[idx].regClass() == dst_rc) {
277 return it->second[idx];
278 } else {
279 assert(dst_rc.size() == it->second[idx].regClass().size());
280 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
281 return bld.copy(bld.def(dst_rc), it->second[idx]);
282 }
283 }
284
285 if (src.size() == dst_rc.size()) {
286 assert(idx == 0);
287 return bld.copy(bld.def(dst_rc), src);
288 } else {
289 Temp dst = bld.tmp(dst_rc);
290 emit_extract_vector(ctx, src, idx, dst);
291 return dst;
292 }
293 }
294
295 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
296 {
297 if (num_components == 1)
298 return;
299 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
300 return;
301 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
302 split->operands[0] = Operand(vec_src);
303 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
304 for (unsigned i = 0; i < num_components; i++) {
305 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
306 split->definitions[i] = Definition(elems[i]);
307 }
308 ctx->block->instructions.emplace_back(std::move(split));
309 ctx->allocated_vec.emplace(vec_src.id(), elems);
310 }
311
312 /* This vector expansion uses a mask to determine which elements in the new vector
313 * come from the original vector. The other elements are undefined. */
314 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
315 {
316 emit_split_vector(ctx, vec_src, util_bitcount(mask));
317
318 if (vec_src == dst)
319 return;
320
321 Builder bld(ctx->program, ctx->block);
322 if (num_components == 1) {
323 if (dst.type() == RegType::sgpr)
324 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
325 else
326 bld.copy(Definition(dst), vec_src);
327 return;
328 }
329
330 unsigned component_size = dst.size() / num_components;
331 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
332
333 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
334 vec->definitions[0] = Definition(dst);
335 unsigned k = 0;
336 for (unsigned i = 0; i < num_components; i++) {
337 if (mask & (1 << i)) {
338 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
339 if (dst.type() == RegType::sgpr)
340 src = bld.as_uniform(src);
341 vec->operands[i] = Operand(src);
342 } else {
343 vec->operands[i] = Operand(0u);
344 }
345 elems[i] = vec->operands[i].getTemp();
346 }
347 ctx->block->instructions.emplace_back(std::move(vec));
348 ctx->allocated_vec.emplace(dst.id(), elems);
349 }
350
351 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
352 {
353 Builder bld(ctx->program, ctx->block);
354 if (!dst.id())
355 dst = bld.tmp(bld.lm);
356
357 assert(val.regClass() == s1);
358 assert(dst.regClass() == bld.lm);
359
360 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
361 }
362
363 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
364 {
365 Builder bld(ctx->program, ctx->block);
366 if (!dst.id())
367 dst = bld.tmp(s1);
368
369 assert(val.regClass() == bld.lm);
370 assert(dst.regClass() == s1);
371
372 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
373 Temp tmp = bld.tmp(s1);
374 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
375 return emit_wqm(ctx, tmp, dst);
376 }
377
378 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
379 {
380 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
381 return get_ssa_temp(ctx, src.src.ssa);
382
383 if (src.src.ssa->num_components == size) {
384 bool identity_swizzle = true;
385 for (unsigned i = 0; identity_swizzle && i < size; i++) {
386 if (src.swizzle[i] != i)
387 identity_swizzle = false;
388 }
389 if (identity_swizzle)
390 return get_ssa_temp(ctx, src.src.ssa);
391 }
392
393 Temp vec = get_ssa_temp(ctx, src.src.ssa);
394 unsigned elem_size = vec.size() / src.src.ssa->num_components;
395 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
396 assert(vec.size() % elem_size == 0);
397
398 RegClass elem_rc = RegClass(vec.type(), elem_size);
399 if (size == 1) {
400 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
401 } else {
402 assert(size <= 4);
403 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
404 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
405 for (unsigned i = 0; i < size; ++i) {
406 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
407 vec_instr->operands[i] = Operand{elems[i]};
408 }
409 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
410 vec_instr->definitions[0] = Definition(dst);
411 ctx->block->instructions.emplace_back(std::move(vec_instr));
412 ctx->allocated_vec.emplace(dst.id(), elems);
413 return dst;
414 }
415 }
416
417 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
418 {
419 if (ptr.size() == 2)
420 return ptr;
421 Builder bld(ctx->program, ctx->block);
422 if (ptr.type() == RegType::vgpr)
423 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
424 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
425 ptr, Operand((unsigned)ctx->options->address32_hi));
426 }
427
428 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
429 {
430 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
431 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
432 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
433 sop2->definitions[0] = Definition(dst);
434 if (writes_scc)
435 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
436 ctx->block->instructions.emplace_back(std::move(sop2));
437 }
438
439 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
440 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
441 {
442 Builder bld(ctx->program, ctx->block);
443 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
444 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
445 if (src1.type() == RegType::sgpr) {
446 if (commutative && src0.type() == RegType::vgpr) {
447 Temp t = src0;
448 src0 = src1;
449 src1 = t;
450 } else if (src0.type() == RegType::vgpr &&
451 op != aco_opcode::v_madmk_f32 &&
452 op != aco_opcode::v_madak_f32 &&
453 op != aco_opcode::v_madmk_f16 &&
454 op != aco_opcode::v_madak_f16) {
455 /* If the instruction is not commutative, we emit a VOP3A instruction */
456 bld.vop2_e64(op, Definition(dst), src0, src1);
457 return;
458 } else {
459 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
460 }
461 }
462
463 if (flush_denorms && ctx->program->chip_class < GFX9) {
464 assert(dst.size() == 1);
465 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
466 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
467 } else {
468 bld.vop2(op, Definition(dst), src0, src1);
469 }
470 }
471
472 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
473 bool flush_denorms = false)
474 {
475 Temp src0 = get_alu_src(ctx, instr->src[0]);
476 Temp src1 = get_alu_src(ctx, instr->src[1]);
477 Temp src2 = get_alu_src(ctx, instr->src[2]);
478
479 /* ensure that the instruction has at most 1 sgpr operand
480 * The optimizer will inline constants for us */
481 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
482 src0 = as_vgpr(ctx, src0);
483 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
484 src1 = as_vgpr(ctx, src1);
485 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
486 src2 = as_vgpr(ctx, src2);
487
488 Builder bld(ctx->program, ctx->block);
489 if (flush_denorms && ctx->program->chip_class < GFX9) {
490 assert(dst.size() == 1);
491 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
492 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
493 } else {
494 bld.vop3(op, Definition(dst), src0, src1, src2);
495 }
496 }
497
498 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
499 {
500 Builder bld(ctx->program, ctx->block);
501 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
502 }
503
504 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
505 {
506 Temp src0 = get_alu_src(ctx, instr->src[0]);
507 Temp src1 = get_alu_src(ctx, instr->src[1]);
508 assert(src0.size() == src1.size());
509
510 aco_ptr<Instruction> vopc;
511 if (src1.type() == RegType::sgpr) {
512 if (src0.type() == RegType::vgpr) {
513 /* to swap the operands, we might also have to change the opcode */
514 switch (op) {
515 case aco_opcode::v_cmp_lt_f32:
516 op = aco_opcode::v_cmp_gt_f32;
517 break;
518 case aco_opcode::v_cmp_ge_f32:
519 op = aco_opcode::v_cmp_le_f32;
520 break;
521 case aco_opcode::v_cmp_lt_i32:
522 op = aco_opcode::v_cmp_gt_i32;
523 break;
524 case aco_opcode::v_cmp_ge_i32:
525 op = aco_opcode::v_cmp_le_i32;
526 break;
527 case aco_opcode::v_cmp_lt_u32:
528 op = aco_opcode::v_cmp_gt_u32;
529 break;
530 case aco_opcode::v_cmp_ge_u32:
531 op = aco_opcode::v_cmp_le_u32;
532 break;
533 case aco_opcode::v_cmp_lt_f64:
534 op = aco_opcode::v_cmp_gt_f64;
535 break;
536 case aco_opcode::v_cmp_ge_f64:
537 op = aco_opcode::v_cmp_le_f64;
538 break;
539 case aco_opcode::v_cmp_lt_i64:
540 op = aco_opcode::v_cmp_gt_i64;
541 break;
542 case aco_opcode::v_cmp_ge_i64:
543 op = aco_opcode::v_cmp_le_i64;
544 break;
545 case aco_opcode::v_cmp_lt_u64:
546 op = aco_opcode::v_cmp_gt_u64;
547 break;
548 case aco_opcode::v_cmp_ge_u64:
549 op = aco_opcode::v_cmp_le_u64;
550 break;
551 default: /* eq and ne are commutative */
552 break;
553 }
554 Temp t = src0;
555 src0 = src1;
556 src1 = t;
557 } else {
558 src1 = as_vgpr(ctx, src1);
559 }
560 }
561
562 Builder bld(ctx->program, ctx->block);
563 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
564 }
565
566 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
567 {
568 Temp src0 = get_alu_src(ctx, instr->src[0]);
569 Temp src1 = get_alu_src(ctx, instr->src[1]);
570 Builder bld(ctx->program, ctx->block);
571
572 assert(dst.regClass() == bld.lm);
573 assert(src0.type() == RegType::sgpr);
574 assert(src1.type() == RegType::sgpr);
575 assert(src0.regClass() == src1.regClass());
576
577 /* Emit the SALU comparison instruction */
578 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
579 /* Turn the result into a per-lane bool */
580 bool_to_vector_condition(ctx, cmp, dst);
581 }
582
583 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
584 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
585 {
586 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
587 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
588 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
589 bool use_valu = s_op == aco_opcode::num_opcodes ||
590 divergent_vals ||
591 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
592 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
593 aco_opcode op = use_valu ? v_op : s_op;
594 assert(op != aco_opcode::num_opcodes);
595 assert(dst.regClass() == ctx->program->lane_mask);
596
597 if (use_valu)
598 emit_vopc_instruction(ctx, instr, op, dst);
599 else
600 emit_sopc_instruction(ctx, instr, op, dst);
601 }
602
603 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
604 {
605 Builder bld(ctx->program, ctx->block);
606 Temp src0 = get_alu_src(ctx, instr->src[0]);
607 Temp src1 = get_alu_src(ctx, instr->src[1]);
608
609 assert(dst.regClass() == bld.lm);
610 assert(src0.regClass() == bld.lm);
611 assert(src1.regClass() == bld.lm);
612
613 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
614 }
615
616 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
617 {
618 Builder bld(ctx->program, ctx->block);
619 Temp cond = get_alu_src(ctx, instr->src[0]);
620 Temp then = get_alu_src(ctx, instr->src[1]);
621 Temp els = get_alu_src(ctx, instr->src[2]);
622
623 assert(cond.regClass() == bld.lm);
624
625 if (dst.type() == RegType::vgpr) {
626 aco_ptr<Instruction> bcsel;
627 if (dst.size() == 1) {
628 then = as_vgpr(ctx, then);
629 els = as_vgpr(ctx, els);
630
631 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
632 } else if (dst.size() == 2) {
633 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
634 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
635 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
636 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
637
638 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
639 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
640
641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
642 } else {
643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
644 nir_print_instr(&instr->instr, stderr);
645 fprintf(stderr, "\n");
646 }
647 return;
648 }
649
650 if (instr->dest.dest.ssa.bit_size == 1) {
651 assert(dst.regClass() == bld.lm);
652 assert(then.regClass() == bld.lm);
653 assert(els.regClass() == bld.lm);
654 }
655
656 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
657 if (dst.regClass() == s1 || dst.regClass() == s2) {
658 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
659 assert(dst.size() == then.size());
660 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
661 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
662 } else {
663 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
664 nir_print_instr(&instr->instr, stderr);
665 fprintf(stderr, "\n");
666 }
667 return;
668 }
669
670 /* divergent boolean bcsel
671 * this implements bcsel on bools: dst = s0 ? s1 : s2
672 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
673 assert(instr->dest.dest.ssa.bit_size == 1);
674
675 if (cond.id() != then.id())
676 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
677
678 if (cond.id() == els.id())
679 bld.sop1(Builder::s_mov, Definition(dst), then);
680 else
681 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
682 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
683 }
684
685 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
686 aco_opcode op, uint32_t undo)
687 {
688 /* multiply by 16777216 to handle denormals */
689 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
690 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
691 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
692 scaled = bld.vop1(op, bld.def(v1), scaled);
693 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
694
695 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
696
697 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
698 }
699
700 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
701 {
702 if (ctx->block->fp_mode.denorm32 == 0) {
703 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
704 return;
705 }
706
707 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
708 }
709
710 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
711 {
712 if (ctx->block->fp_mode.denorm32 == 0) {
713 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
714 return;
715 }
716
717 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
718 }
719
720 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
721 {
722 if (ctx->block->fp_mode.denorm32 == 0) {
723 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
724 return;
725 }
726
727 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
728 }
729
730 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
731 {
732 if (ctx->block->fp_mode.denorm32 == 0) {
733 bld.vop1(aco_opcode::v_log_f32, dst, val);
734 return;
735 }
736
737 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
738 }
739
740 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
741 {
742 if (ctx->options->chip_class >= GFX7)
743 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
744
745 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
746 /* TODO: create more efficient code! */
747 if (val.type() == RegType::sgpr)
748 val = as_vgpr(ctx, val);
749
750 /* Split the input value. */
751 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
752 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
753
754 /* Extract the exponent and compute the unbiased value. */
755 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
756
757 /* Extract the fractional part. */
758 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
759 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
760
761 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
762 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
763
764 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
765 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
766 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
767 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
768 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
769
770 /* Get the sign bit. */
771 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
772
773 /* Decide the operation to apply depending on the unbiased exponent. */
774 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
775 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
776 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
777 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
778 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
779 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
780
781 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
782 }
783
784 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
785 {
786 if (ctx->options->chip_class >= GFX7)
787 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
788
789 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
790 Temp src0 = as_vgpr(ctx, val);
791
792 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
793 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
794
795 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
796 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
797 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
798
799 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
800 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
801 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
802 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
803
804 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
805 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
806
807 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
808
809 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
810 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
811
812 return add->definitions[0].getTemp();
813 }
814
815 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
816 {
817 if (!instr->dest.dest.is_ssa) {
818 fprintf(stderr, "nir alu dst not in ssa: ");
819 nir_print_instr(&instr->instr, stderr);
820 fprintf(stderr, "\n");
821 abort();
822 }
823 Builder bld(ctx->program, ctx->block);
824 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
825 switch(instr->op) {
826 case nir_op_vec2:
827 case nir_op_vec3:
828 case nir_op_vec4: {
829 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
830 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
831 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
832 elems[i] = get_alu_src(ctx, instr->src[i]);
833 vec->operands[i] = Operand{elems[i]};
834 }
835 vec->definitions[0] = Definition(dst);
836 ctx->block->instructions.emplace_back(std::move(vec));
837 ctx->allocated_vec.emplace(dst.id(), elems);
838 break;
839 }
840 case nir_op_mov: {
841 Temp src = get_alu_src(ctx, instr->src[0]);
842 aco_ptr<Instruction> mov;
843 if (dst.type() == RegType::sgpr) {
844 if (src.type() == RegType::vgpr)
845 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
846 else if (src.regClass() == s1)
847 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
848 else if (src.regClass() == s2)
849 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
850 else
851 unreachable("wrong src register class for nir_op_imov");
852 } else if (dst.regClass() == v1) {
853 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
854 } else if (dst.regClass() == v2) {
855 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
856 } else {
857 nir_print_instr(&instr->instr, stderr);
858 unreachable("Should have been lowered to scalar.");
859 }
860 break;
861 }
862 case nir_op_inot: {
863 Temp src = get_alu_src(ctx, instr->src[0]);
864 if (instr->dest.dest.ssa.bit_size == 1) {
865 assert(src.regClass() == bld.lm);
866 assert(dst.regClass() == bld.lm);
867 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
868 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
869 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
870 } else if (dst.regClass() == v1) {
871 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
872 } else if (dst.type() == RegType::sgpr) {
873 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
874 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
875 } else {
876 fprintf(stderr, "Unimplemented NIR instr bit size: ");
877 nir_print_instr(&instr->instr, stderr);
878 fprintf(stderr, "\n");
879 }
880 break;
881 }
882 case nir_op_ineg: {
883 Temp src = get_alu_src(ctx, instr->src[0]);
884 if (dst.regClass() == v1) {
885 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
886 } else if (dst.regClass() == s1) {
887 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
888 } else if (dst.size() == 2) {
889 Temp src0 = bld.tmp(dst.type(), 1);
890 Temp src1 = bld.tmp(dst.type(), 1);
891 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
892
893 if (dst.regClass() == s2) {
894 Temp carry = bld.tmp(s1);
895 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
896 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
897 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
898 } else {
899 Temp lower = bld.tmp(v1);
900 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
901 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
902 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
903 }
904 } else {
905 fprintf(stderr, "Unimplemented NIR instr bit size: ");
906 nir_print_instr(&instr->instr, stderr);
907 fprintf(stderr, "\n");
908 }
909 break;
910 }
911 case nir_op_iabs: {
912 if (dst.regClass() == s1) {
913 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
914 } else if (dst.regClass() == v1) {
915 Temp src = get_alu_src(ctx, instr->src[0]);
916 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
917 } else {
918 fprintf(stderr, "Unimplemented NIR instr bit size: ");
919 nir_print_instr(&instr->instr, stderr);
920 fprintf(stderr, "\n");
921 }
922 break;
923 }
924 case nir_op_isign: {
925 Temp src = get_alu_src(ctx, instr->src[0]);
926 if (dst.regClass() == s1) {
927 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
928 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
929 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
930 } else if (dst.regClass() == s2) {
931 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
932 Temp neqz;
933 if (ctx->program->chip_class >= GFX8)
934 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
935 else
936 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
937 /* SCC gets zero-extended to 64 bit */
938 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
939 } else if (dst.regClass() == v1) {
940 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
941 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
942 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
943 } else if (dst.regClass() == v2) {
944 Temp upper = emit_extract_vector(ctx, src, 1, v1);
945 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
946 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
947 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
948 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
949 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
950 } else {
951 fprintf(stderr, "Unimplemented NIR instr bit size: ");
952 nir_print_instr(&instr->instr, stderr);
953 fprintf(stderr, "\n");
954 }
955 break;
956 }
957 case nir_op_imax: {
958 if (dst.regClass() == v1) {
959 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
960 } else if (dst.regClass() == s1) {
961 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
962 } else {
963 fprintf(stderr, "Unimplemented NIR instr bit size: ");
964 nir_print_instr(&instr->instr, stderr);
965 fprintf(stderr, "\n");
966 }
967 break;
968 }
969 case nir_op_umax: {
970 if (dst.regClass() == v1) {
971 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
972 } else if (dst.regClass() == s1) {
973 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
974 } else {
975 fprintf(stderr, "Unimplemented NIR instr bit size: ");
976 nir_print_instr(&instr->instr, stderr);
977 fprintf(stderr, "\n");
978 }
979 break;
980 }
981 case nir_op_imin: {
982 if (dst.regClass() == v1) {
983 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
984 } else if (dst.regClass() == s1) {
985 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
986 } else {
987 fprintf(stderr, "Unimplemented NIR instr bit size: ");
988 nir_print_instr(&instr->instr, stderr);
989 fprintf(stderr, "\n");
990 }
991 break;
992 }
993 case nir_op_umin: {
994 if (dst.regClass() == v1) {
995 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
996 } else if (dst.regClass() == s1) {
997 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
998 } else {
999 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1000 nir_print_instr(&instr->instr, stderr);
1001 fprintf(stderr, "\n");
1002 }
1003 break;
1004 }
1005 case nir_op_ior: {
1006 if (instr->dest.dest.ssa.bit_size == 1) {
1007 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1008 } else if (dst.regClass() == v1) {
1009 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1010 } else if (dst.regClass() == s1) {
1011 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1012 } else if (dst.regClass() == s2) {
1013 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1014 } else {
1015 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1016 nir_print_instr(&instr->instr, stderr);
1017 fprintf(stderr, "\n");
1018 }
1019 break;
1020 }
1021 case nir_op_iand: {
1022 if (instr->dest.dest.ssa.bit_size == 1) {
1023 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1024 } else if (dst.regClass() == v1) {
1025 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1026 } else if (dst.regClass() == s1) {
1027 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1028 } else if (dst.regClass() == s2) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1030 } else {
1031 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1032 nir_print_instr(&instr->instr, stderr);
1033 fprintf(stderr, "\n");
1034 }
1035 break;
1036 }
1037 case nir_op_ixor: {
1038 if (instr->dest.dest.ssa.bit_size == 1) {
1039 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1040 } else if (dst.regClass() == v1) {
1041 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1042 } else if (dst.regClass() == s1) {
1043 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1044 } else if (dst.regClass() == s2) {
1045 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1046 } else {
1047 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1048 nir_print_instr(&instr->instr, stderr);
1049 fprintf(stderr, "\n");
1050 }
1051 break;
1052 }
1053 case nir_op_ushr: {
1054 if (dst.regClass() == v1) {
1055 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1056 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1057 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1058 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1059 } else if (dst.regClass() == v2) {
1060 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1061 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1062 } else if (dst.regClass() == s2) {
1063 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1064 } else if (dst.regClass() == s1) {
1065 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1066 } else {
1067 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1068 nir_print_instr(&instr->instr, stderr);
1069 fprintf(stderr, "\n");
1070 }
1071 break;
1072 }
1073 case nir_op_ishl: {
1074 if (dst.regClass() == v1) {
1075 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1076 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1077 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1078 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1079 } else if (dst.regClass() == v2) {
1080 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1081 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1082 } else if (dst.regClass() == s1) {
1083 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1084 } else if (dst.regClass() == s2) {
1085 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1086 } else {
1087 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1088 nir_print_instr(&instr->instr, stderr);
1089 fprintf(stderr, "\n");
1090 }
1091 break;
1092 }
1093 case nir_op_ishr: {
1094 if (dst.regClass() == v1) {
1095 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1096 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1097 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1098 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1099 } else if (dst.regClass() == v2) {
1100 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1101 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1102 } else if (dst.regClass() == s1) {
1103 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1104 } else if (dst.regClass() == s2) {
1105 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1106 } else {
1107 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1108 nir_print_instr(&instr->instr, stderr);
1109 fprintf(stderr, "\n");
1110 }
1111 break;
1112 }
1113 case nir_op_find_lsb: {
1114 Temp src = get_alu_src(ctx, instr->src[0]);
1115 if (src.regClass() == s1) {
1116 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1117 } else if (src.regClass() == v1) {
1118 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1119 } else if (src.regClass() == s2) {
1120 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1121 } else {
1122 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1123 nir_print_instr(&instr->instr, stderr);
1124 fprintf(stderr, "\n");
1125 }
1126 break;
1127 }
1128 case nir_op_ufind_msb:
1129 case nir_op_ifind_msb: {
1130 Temp src = get_alu_src(ctx, instr->src[0]);
1131 if (src.regClass() == s1 || src.regClass() == s2) {
1132 aco_opcode op = src.regClass() == s2 ?
1133 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1134 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1135 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1136
1137 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1138 Operand(src.size() * 32u - 1u), msb_rev);
1139 Temp msb = sub.def(0).getTemp();
1140 Temp carry = sub.def(1).getTemp();
1141
1142 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, carry);
1143 } else if (src.regClass() == v1) {
1144 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1145 Temp msb_rev = bld.tmp(v1);
1146 emit_vop1_instruction(ctx, instr, op, msb_rev);
1147 Temp msb = bld.tmp(v1);
1148 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1149 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1150 } else {
1151 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1152 nir_print_instr(&instr->instr, stderr);
1153 fprintf(stderr, "\n");
1154 }
1155 break;
1156 }
1157 case nir_op_bitfield_reverse: {
1158 if (dst.regClass() == s1) {
1159 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1160 } else if (dst.regClass() == v1) {
1161 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1162 } else {
1163 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1164 nir_print_instr(&instr->instr, stderr);
1165 fprintf(stderr, "\n");
1166 }
1167 break;
1168 }
1169 case nir_op_iadd: {
1170 if (dst.regClass() == s1) {
1171 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1172 break;
1173 }
1174
1175 Temp src0 = get_alu_src(ctx, instr->src[0]);
1176 Temp src1 = get_alu_src(ctx, instr->src[1]);
1177 if (dst.regClass() == v1) {
1178 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1179 break;
1180 }
1181
1182 assert(src0.size() == 2 && src1.size() == 2);
1183 Temp src00 = bld.tmp(src0.type(), 1);
1184 Temp src01 = bld.tmp(dst.type(), 1);
1185 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1186 Temp src10 = bld.tmp(src1.type(), 1);
1187 Temp src11 = bld.tmp(dst.type(), 1);
1188 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1189
1190 if (dst.regClass() == s2) {
1191 Temp carry = bld.tmp(s1);
1192 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1193 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1194 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1195 } else if (dst.regClass() == v2) {
1196 Temp dst0 = bld.tmp(v1);
1197 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1198 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1199 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1200 } else {
1201 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1202 nir_print_instr(&instr->instr, stderr);
1203 fprintf(stderr, "\n");
1204 }
1205 break;
1206 }
1207 case nir_op_uadd_sat: {
1208 Temp src0 = get_alu_src(ctx, instr->src[0]);
1209 Temp src1 = get_alu_src(ctx, instr->src[1]);
1210 if (dst.regClass() == s1) {
1211 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1212 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1213 src0, src1);
1214 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1215 } else if (dst.regClass() == v1) {
1216 if (ctx->options->chip_class >= GFX9) {
1217 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1218 add->operands[0] = Operand(src0);
1219 add->operands[1] = Operand(src1);
1220 add->definitions[0] = Definition(dst);
1221 add->clamp = 1;
1222 ctx->block->instructions.emplace_back(std::move(add));
1223 } else {
1224 if (src1.regClass() != v1)
1225 std::swap(src0, src1);
1226 assert(src1.regClass() == v1);
1227 Temp tmp = bld.tmp(v1);
1228 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1229 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1230 }
1231 } else {
1232 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1233 nir_print_instr(&instr->instr, stderr);
1234 fprintf(stderr, "\n");
1235 }
1236 break;
1237 }
1238 case nir_op_uadd_carry: {
1239 Temp src0 = get_alu_src(ctx, instr->src[0]);
1240 Temp src1 = get_alu_src(ctx, instr->src[1]);
1241 if (dst.regClass() == s1) {
1242 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1243 break;
1244 }
1245 if (dst.regClass() == v1) {
1246 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1247 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1248 break;
1249 }
1250
1251 Temp src00 = bld.tmp(src0.type(), 1);
1252 Temp src01 = bld.tmp(dst.type(), 1);
1253 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1254 Temp src10 = bld.tmp(src1.type(), 1);
1255 Temp src11 = bld.tmp(dst.type(), 1);
1256 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1257 if (dst.regClass() == s2) {
1258 Temp carry = bld.tmp(s1);
1259 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1260 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1261 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1262 } else if (dst.regClass() == v2) {
1263 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1264 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1265 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1266 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1267 } else {
1268 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1269 nir_print_instr(&instr->instr, stderr);
1270 fprintf(stderr, "\n");
1271 }
1272 break;
1273 }
1274 case nir_op_isub: {
1275 if (dst.regClass() == s1) {
1276 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1277 break;
1278 }
1279
1280 Temp src0 = get_alu_src(ctx, instr->src[0]);
1281 Temp src1 = get_alu_src(ctx, instr->src[1]);
1282 if (dst.regClass() == v1) {
1283 bld.vsub32(Definition(dst), src0, src1);
1284 break;
1285 }
1286
1287 Temp src00 = bld.tmp(src0.type(), 1);
1288 Temp src01 = bld.tmp(dst.type(), 1);
1289 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1290 Temp src10 = bld.tmp(src1.type(), 1);
1291 Temp src11 = bld.tmp(dst.type(), 1);
1292 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1293 if (dst.regClass() == s2) {
1294 Temp carry = bld.tmp(s1);
1295 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1296 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1297 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1298 } else if (dst.regClass() == v2) {
1299 Temp lower = bld.tmp(v1);
1300 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1301 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1302 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1303 } else {
1304 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1305 nir_print_instr(&instr->instr, stderr);
1306 fprintf(stderr, "\n");
1307 }
1308 break;
1309 }
1310 case nir_op_usub_borrow: {
1311 Temp src0 = get_alu_src(ctx, instr->src[0]);
1312 Temp src1 = get_alu_src(ctx, instr->src[1]);
1313 if (dst.regClass() == s1) {
1314 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1315 break;
1316 } else if (dst.regClass() == v1) {
1317 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1318 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1319 break;
1320 }
1321
1322 Temp src00 = bld.tmp(src0.type(), 1);
1323 Temp src01 = bld.tmp(dst.type(), 1);
1324 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1325 Temp src10 = bld.tmp(src1.type(), 1);
1326 Temp src11 = bld.tmp(dst.type(), 1);
1327 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1328 if (dst.regClass() == s2) {
1329 Temp borrow = bld.tmp(s1);
1330 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1331 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1332 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1333 } else if (dst.regClass() == v2) {
1334 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1335 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1336 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1337 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1338 } else {
1339 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1340 nir_print_instr(&instr->instr, stderr);
1341 fprintf(stderr, "\n");
1342 }
1343 break;
1344 }
1345 case nir_op_imul: {
1346 if (dst.regClass() == v1) {
1347 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1348 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1349 } else if (dst.regClass() == s1) {
1350 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1351 } else {
1352 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1353 nir_print_instr(&instr->instr, stderr);
1354 fprintf(stderr, "\n");
1355 }
1356 break;
1357 }
1358 case nir_op_umul_high: {
1359 if (dst.regClass() == v1) {
1360 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1361 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1362 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1363 } else if (dst.regClass() == s1) {
1364 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1365 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1366 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1367 } else {
1368 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1369 nir_print_instr(&instr->instr, stderr);
1370 fprintf(stderr, "\n");
1371 }
1372 break;
1373 }
1374 case nir_op_imul_high: {
1375 if (dst.regClass() == v1) {
1376 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1377 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1378 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1379 } else if (dst.regClass() == s1) {
1380 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1381 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1382 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1383 } else {
1384 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1385 nir_print_instr(&instr->instr, stderr);
1386 fprintf(stderr, "\n");
1387 }
1388 break;
1389 }
1390 case nir_op_fmul: {
1391 if (dst.size() == 1) {
1392 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1393 } else if (dst.size() == 2) {
1394 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1395 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1396 } else {
1397 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1398 nir_print_instr(&instr->instr, stderr);
1399 fprintf(stderr, "\n");
1400 }
1401 break;
1402 }
1403 case nir_op_fadd: {
1404 if (dst.size() == 1) {
1405 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1406 } else if (dst.size() == 2) {
1407 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1408 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1409 } else {
1410 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1411 nir_print_instr(&instr->instr, stderr);
1412 fprintf(stderr, "\n");
1413 }
1414 break;
1415 }
1416 case nir_op_fsub: {
1417 Temp src0 = get_alu_src(ctx, instr->src[0]);
1418 Temp src1 = get_alu_src(ctx, instr->src[1]);
1419 if (dst.size() == 1) {
1420 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1421 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1422 else
1423 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1424 } else if (dst.size() == 2) {
1425 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1426 get_alu_src(ctx, instr->src[0]),
1427 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1428 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1429 sub->neg[1] = true;
1430 } else {
1431 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1432 nir_print_instr(&instr->instr, stderr);
1433 fprintf(stderr, "\n");
1434 }
1435 break;
1436 }
1437 case nir_op_fmax: {
1438 if (dst.size() == 1) {
1439 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1440 } else if (dst.size() == 2) {
1441 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1442 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1443 get_alu_src(ctx, instr->src[0]),
1444 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1445 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1446 } else {
1447 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1448 get_alu_src(ctx, instr->src[0]),
1449 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1450 }
1451 } else {
1452 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1453 nir_print_instr(&instr->instr, stderr);
1454 fprintf(stderr, "\n");
1455 }
1456 break;
1457 }
1458 case nir_op_fmin: {
1459 if (dst.size() == 1) {
1460 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1461 } else if (dst.size() == 2) {
1462 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1463 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1464 get_alu_src(ctx, instr->src[0]),
1465 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1466 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1467 } else {
1468 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1469 get_alu_src(ctx, instr->src[0]),
1470 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1471 }
1472 } else {
1473 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1474 nir_print_instr(&instr->instr, stderr);
1475 fprintf(stderr, "\n");
1476 }
1477 break;
1478 }
1479 case nir_op_fmax3: {
1480 if (dst.size() == 1) {
1481 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1482 } else {
1483 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1484 nir_print_instr(&instr->instr, stderr);
1485 fprintf(stderr, "\n");
1486 }
1487 break;
1488 }
1489 case nir_op_fmin3: {
1490 if (dst.size() == 1) {
1491 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1492 } else {
1493 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1494 nir_print_instr(&instr->instr, stderr);
1495 fprintf(stderr, "\n");
1496 }
1497 break;
1498 }
1499 case nir_op_fmed3: {
1500 if (dst.size() == 1) {
1501 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1502 } else {
1503 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1504 nir_print_instr(&instr->instr, stderr);
1505 fprintf(stderr, "\n");
1506 }
1507 break;
1508 }
1509 case nir_op_umax3: {
1510 if (dst.size() == 1) {
1511 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1512 } else {
1513 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1514 nir_print_instr(&instr->instr, stderr);
1515 fprintf(stderr, "\n");
1516 }
1517 break;
1518 }
1519 case nir_op_umin3: {
1520 if (dst.size() == 1) {
1521 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1522 } else {
1523 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1524 nir_print_instr(&instr->instr, stderr);
1525 fprintf(stderr, "\n");
1526 }
1527 break;
1528 }
1529 case nir_op_umed3: {
1530 if (dst.size() == 1) {
1531 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1532 } else {
1533 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1534 nir_print_instr(&instr->instr, stderr);
1535 fprintf(stderr, "\n");
1536 }
1537 break;
1538 }
1539 case nir_op_imax3: {
1540 if (dst.size() == 1) {
1541 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1542 } else {
1543 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1544 nir_print_instr(&instr->instr, stderr);
1545 fprintf(stderr, "\n");
1546 }
1547 break;
1548 }
1549 case nir_op_imin3: {
1550 if (dst.size() == 1) {
1551 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1552 } else {
1553 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1554 nir_print_instr(&instr->instr, stderr);
1555 fprintf(stderr, "\n");
1556 }
1557 break;
1558 }
1559 case nir_op_imed3: {
1560 if (dst.size() == 1) {
1561 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1562 } else {
1563 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1564 nir_print_instr(&instr->instr, stderr);
1565 fprintf(stderr, "\n");
1566 }
1567 break;
1568 }
1569 case nir_op_cube_face_coord: {
1570 Temp in = get_alu_src(ctx, instr->src[0], 3);
1571 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1572 emit_extract_vector(ctx, in, 1, v1),
1573 emit_extract_vector(ctx, in, 2, v1) };
1574 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1575 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1576 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1577 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1578 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1579 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1580 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1581 break;
1582 }
1583 case nir_op_cube_face_index: {
1584 Temp in = get_alu_src(ctx, instr->src[0], 3);
1585 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1586 emit_extract_vector(ctx, in, 1, v1),
1587 emit_extract_vector(ctx, in, 2, v1) };
1588 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1589 break;
1590 }
1591 case nir_op_bcsel: {
1592 emit_bcsel(ctx, instr, dst);
1593 break;
1594 }
1595 case nir_op_frsq: {
1596 if (dst.size() == 1) {
1597 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1598 } else if (dst.size() == 2) {
1599 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1600 } else {
1601 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1602 nir_print_instr(&instr->instr, stderr);
1603 fprintf(stderr, "\n");
1604 }
1605 break;
1606 }
1607 case nir_op_fneg: {
1608 Temp src = get_alu_src(ctx, instr->src[0]);
1609 if (dst.size() == 1) {
1610 if (ctx->block->fp_mode.must_flush_denorms32)
1611 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1612 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1613 } else if (dst.size() == 2) {
1614 if (ctx->block->fp_mode.must_flush_denorms16_64)
1615 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1616 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1617 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1618 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1619 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1620 } else {
1621 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1622 nir_print_instr(&instr->instr, stderr);
1623 fprintf(stderr, "\n");
1624 }
1625 break;
1626 }
1627 case nir_op_fabs: {
1628 Temp src = get_alu_src(ctx, instr->src[0]);
1629 if (dst.size() == 1) {
1630 if (ctx->block->fp_mode.must_flush_denorms32)
1631 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1632 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1633 } else if (dst.size() == 2) {
1634 if (ctx->block->fp_mode.must_flush_denorms16_64)
1635 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1636 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1637 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1638 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1639 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1640 } else {
1641 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1642 nir_print_instr(&instr->instr, stderr);
1643 fprintf(stderr, "\n");
1644 }
1645 break;
1646 }
1647 case nir_op_fsat: {
1648 Temp src = get_alu_src(ctx, instr->src[0]);
1649 if (dst.size() == 1) {
1650 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1651 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1652 // TODO: confirm that this holds under any circumstances
1653 } else if (dst.size() == 2) {
1654 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1655 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1656 vop3->clamp = true;
1657 } else {
1658 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1659 nir_print_instr(&instr->instr, stderr);
1660 fprintf(stderr, "\n");
1661 }
1662 break;
1663 }
1664 case nir_op_flog2: {
1665 if (dst.size() == 1) {
1666 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1667 } else {
1668 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1669 nir_print_instr(&instr->instr, stderr);
1670 fprintf(stderr, "\n");
1671 }
1672 break;
1673 }
1674 case nir_op_frcp: {
1675 if (dst.size() == 1) {
1676 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1677 } else if (dst.size() == 2) {
1678 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1679 } else {
1680 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1681 nir_print_instr(&instr->instr, stderr);
1682 fprintf(stderr, "\n");
1683 }
1684 break;
1685 }
1686 case nir_op_fexp2: {
1687 if (dst.size() == 1) {
1688 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1689 } else {
1690 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1691 nir_print_instr(&instr->instr, stderr);
1692 fprintf(stderr, "\n");
1693 }
1694 break;
1695 }
1696 case nir_op_fsqrt: {
1697 if (dst.size() == 1) {
1698 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1699 } else if (dst.size() == 2) {
1700 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1701 } else {
1702 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1703 nir_print_instr(&instr->instr, stderr);
1704 fprintf(stderr, "\n");
1705 }
1706 break;
1707 }
1708 case nir_op_ffract: {
1709 if (dst.size() == 1) {
1710 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1711 } else if (dst.size() == 2) {
1712 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1713 } else {
1714 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1715 nir_print_instr(&instr->instr, stderr);
1716 fprintf(stderr, "\n");
1717 }
1718 break;
1719 }
1720 case nir_op_ffloor: {
1721 if (dst.size() == 1) {
1722 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1723 } else if (dst.size() == 2) {
1724 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1725 } else {
1726 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1727 nir_print_instr(&instr->instr, stderr);
1728 fprintf(stderr, "\n");
1729 }
1730 break;
1731 }
1732 case nir_op_fceil: {
1733 if (dst.size() == 1) {
1734 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1735 } else if (dst.size() == 2) {
1736 if (ctx->options->chip_class >= GFX7) {
1737 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1738 } else {
1739 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1740 Temp src0 = get_alu_src(ctx, instr->src[0]);
1741
1742 /* trunc = trunc(src0)
1743 * if (src0 > 0.0 && src0 != trunc)
1744 * trunc += 1.0
1745 */
1746 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1747 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1748 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1749 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1750 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1751 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1752 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1753 }
1754 } else {
1755 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1756 nir_print_instr(&instr->instr, stderr);
1757 fprintf(stderr, "\n");
1758 }
1759 break;
1760 }
1761 case nir_op_ftrunc: {
1762 if (dst.size() == 1) {
1763 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1764 } else if (dst.size() == 2) {
1765 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1766 } else {
1767 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1768 nir_print_instr(&instr->instr, stderr);
1769 fprintf(stderr, "\n");
1770 }
1771 break;
1772 }
1773 case nir_op_fround_even: {
1774 if (dst.size() == 1) {
1775 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1776 } else if (dst.size() == 2) {
1777 if (ctx->options->chip_class >= GFX7) {
1778 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1779 } else {
1780 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1781 Temp src0 = get_alu_src(ctx, instr->src[0]);
1782
1783 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1784 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1785
1786 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1787 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1788 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1789 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1790 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1791 tmp = sub->definitions[0].getTemp();
1792
1793 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1794 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1795 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1796 Temp cond = vop3->definitions[0].getTemp();
1797
1798 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1799 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1800 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1801 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1802
1803 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1804 }
1805 } else {
1806 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1807 nir_print_instr(&instr->instr, stderr);
1808 fprintf(stderr, "\n");
1809 }
1810 break;
1811 }
1812 case nir_op_fsin:
1813 case nir_op_fcos: {
1814 Temp src = get_alu_src(ctx, instr->src[0]);
1815 aco_ptr<Instruction> norm;
1816 if (dst.size() == 1) {
1817 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1818 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1819
1820 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1821 if (ctx->options->chip_class < GFX9)
1822 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1823
1824 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1825 bld.vop1(opcode, Definition(dst), tmp);
1826 } else {
1827 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1828 nir_print_instr(&instr->instr, stderr);
1829 fprintf(stderr, "\n");
1830 }
1831 break;
1832 }
1833 case nir_op_ldexp: {
1834 if (dst.size() == 1) {
1835 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1836 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1837 get_alu_src(ctx, instr->src[1]));
1838 } else if (dst.size() == 2) {
1839 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1840 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1841 get_alu_src(ctx, instr->src[1]));
1842 } else {
1843 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1844 nir_print_instr(&instr->instr, stderr);
1845 fprintf(stderr, "\n");
1846 }
1847 break;
1848 }
1849 case nir_op_frexp_sig: {
1850 if (dst.size() == 1) {
1851 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1852 get_alu_src(ctx, instr->src[0]));
1853 } else if (dst.size() == 2) {
1854 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1855 get_alu_src(ctx, instr->src[0]));
1856 } else {
1857 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1858 nir_print_instr(&instr->instr, stderr);
1859 fprintf(stderr, "\n");
1860 }
1861 break;
1862 }
1863 case nir_op_frexp_exp: {
1864 if (instr->src[0].src.ssa->bit_size == 32) {
1865 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1866 get_alu_src(ctx, instr->src[0]));
1867 } else if (instr->src[0].src.ssa->bit_size == 64) {
1868 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1869 get_alu_src(ctx, instr->src[0]));
1870 } else {
1871 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1872 nir_print_instr(&instr->instr, stderr);
1873 fprintf(stderr, "\n");
1874 }
1875 break;
1876 }
1877 case nir_op_fsign: {
1878 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1879 if (dst.size() == 1) {
1880 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1881 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1882 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1883 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1884 } else if (dst.size() == 2) {
1885 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1886 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1887 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1888
1889 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1890 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1891 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1892
1893 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1894 } else {
1895 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1896 nir_print_instr(&instr->instr, stderr);
1897 fprintf(stderr, "\n");
1898 }
1899 break;
1900 }
1901 case nir_op_f2f32: {
1902 if (instr->src[0].src.ssa->bit_size == 64) {
1903 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1904 } else {
1905 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1906 nir_print_instr(&instr->instr, stderr);
1907 fprintf(stderr, "\n");
1908 }
1909 break;
1910 }
1911 case nir_op_f2f64: {
1912 if (instr->src[0].src.ssa->bit_size == 32) {
1913 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1914 } else {
1915 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1916 nir_print_instr(&instr->instr, stderr);
1917 fprintf(stderr, "\n");
1918 }
1919 break;
1920 }
1921 case nir_op_i2f32: {
1922 assert(dst.size() == 1);
1923 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1924 break;
1925 }
1926 case nir_op_i2f64: {
1927 if (instr->src[0].src.ssa->bit_size == 32) {
1928 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1929 } else if (instr->src[0].src.ssa->bit_size == 64) {
1930 Temp src = get_alu_src(ctx, instr->src[0]);
1931 RegClass rc = RegClass(src.type(), 1);
1932 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1933 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1934 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1935 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1936 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1937 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1938
1939 } else {
1940 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1941 nir_print_instr(&instr->instr, stderr);
1942 fprintf(stderr, "\n");
1943 }
1944 break;
1945 }
1946 case nir_op_u2f32: {
1947 assert(dst.size() == 1);
1948 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1949 break;
1950 }
1951 case nir_op_u2f64: {
1952 if (instr->src[0].src.ssa->bit_size == 32) {
1953 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1954 } else if (instr->src[0].src.ssa->bit_size == 64) {
1955 Temp src = get_alu_src(ctx, instr->src[0]);
1956 RegClass rc = RegClass(src.type(), 1);
1957 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1958 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1959 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1960 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1961 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1962 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1963 } else {
1964 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1965 nir_print_instr(&instr->instr, stderr);
1966 fprintf(stderr, "\n");
1967 }
1968 break;
1969 }
1970 case nir_op_f2i32: {
1971 Temp src = get_alu_src(ctx, instr->src[0]);
1972 if (instr->src[0].src.ssa->bit_size == 32) {
1973 if (dst.type() == RegType::vgpr)
1974 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1975 else
1976 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1977 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1978
1979 } else if (instr->src[0].src.ssa->bit_size == 64) {
1980 if (dst.type() == RegType::vgpr)
1981 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1982 else
1983 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1984 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1985
1986 } else {
1987 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1988 nir_print_instr(&instr->instr, stderr);
1989 fprintf(stderr, "\n");
1990 }
1991 break;
1992 }
1993 case nir_op_f2u32: {
1994 Temp src = get_alu_src(ctx, instr->src[0]);
1995 if (instr->src[0].src.ssa->bit_size == 32) {
1996 if (dst.type() == RegType::vgpr)
1997 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
1998 else
1999 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2000 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2001
2002 } else if (instr->src[0].src.ssa->bit_size == 64) {
2003 if (dst.type() == RegType::vgpr)
2004 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2005 else
2006 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2007 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2008
2009 } else {
2010 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2011 nir_print_instr(&instr->instr, stderr);
2012 fprintf(stderr, "\n");
2013 }
2014 break;
2015 }
2016 case nir_op_f2i64: {
2017 Temp src = get_alu_src(ctx, instr->src[0]);
2018 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2019 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2020 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2021 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2022 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2023 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2024 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2025 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2026 Temp new_exponent = bld.tmp(v1);
2027 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2028 if (ctx->program->chip_class >= GFX8)
2029 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2030 else
2031 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2032 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2033 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2034 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2035 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2036 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2037 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2038 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2039 Temp new_lower = bld.tmp(v1);
2040 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2041 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2042 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2043
2044 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2045 if (src.type() == RegType::vgpr)
2046 src = bld.as_uniform(src);
2047 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2048 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2049 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2050 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2051 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2052 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2053 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2054 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2055 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2056 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2057 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2058 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2059 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2060 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2061 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2062 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2063 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2064 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2065 Temp borrow = bld.tmp(s1);
2066 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2067 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2068 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2069
2070 } else if (instr->src[0].src.ssa->bit_size == 64) {
2071 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2072 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2073 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2074 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2075 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2076 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2077 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2078 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2079 if (dst.type() == RegType::sgpr) {
2080 lower = bld.as_uniform(lower);
2081 upper = bld.as_uniform(upper);
2082 }
2083 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2084
2085 } else {
2086 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2087 nir_print_instr(&instr->instr, stderr);
2088 fprintf(stderr, "\n");
2089 }
2090 break;
2091 }
2092 case nir_op_f2u64: {
2093 Temp src = get_alu_src(ctx, instr->src[0]);
2094 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2095 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2096 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2097 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2098 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2099 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2100 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2101 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2102 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2103 Temp new_exponent = bld.tmp(v1);
2104 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2105 if (ctx->program->chip_class >= GFX8)
2106 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2107 else
2108 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2109 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2110 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2111 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2112 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2113 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2114 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2115 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2116
2117 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2118 if (src.type() == RegType::vgpr)
2119 src = bld.as_uniform(src);
2120 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2121 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2122 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2123 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2124 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2125 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2126 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2127 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2128 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2129 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2130 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2131 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2132 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2133 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2134 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2135 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2136 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2137 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2138
2139 } else if (instr->src[0].src.ssa->bit_size == 64) {
2140 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2141 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2142 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2143 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2144 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2145 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2146 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2147 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2148 if (dst.type() == RegType::sgpr) {
2149 lower = bld.as_uniform(lower);
2150 upper = bld.as_uniform(upper);
2151 }
2152 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2153
2154 } else {
2155 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2156 nir_print_instr(&instr->instr, stderr);
2157 fprintf(stderr, "\n");
2158 }
2159 break;
2160 }
2161 case nir_op_b2f32: {
2162 Temp src = get_alu_src(ctx, instr->src[0]);
2163 assert(src.regClass() == bld.lm);
2164
2165 if (dst.regClass() == s1) {
2166 src = bool_to_scalar_condition(ctx, src);
2167 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2168 } else if (dst.regClass() == v1) {
2169 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2170 } else {
2171 unreachable("Wrong destination register class for nir_op_b2f32.");
2172 }
2173 break;
2174 }
2175 case nir_op_b2f64: {
2176 Temp src = get_alu_src(ctx, instr->src[0]);
2177 assert(src.regClass() == bld.lm);
2178
2179 if (dst.regClass() == s2) {
2180 src = bool_to_scalar_condition(ctx, src);
2181 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2182 } else if (dst.regClass() == v2) {
2183 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2184 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2185 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2186 } else {
2187 unreachable("Wrong destination register class for nir_op_b2f64.");
2188 }
2189 break;
2190 }
2191 case nir_op_i2i32: {
2192 Temp src = get_alu_src(ctx, instr->src[0]);
2193 if (instr->src[0].src.ssa->bit_size == 64) {
2194 /* we can actually just say dst = src, as it would map the lower register */
2195 emit_extract_vector(ctx, src, 0, dst);
2196 } else {
2197 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2198 nir_print_instr(&instr->instr, stderr);
2199 fprintf(stderr, "\n");
2200 }
2201 break;
2202 }
2203 case nir_op_u2u32: {
2204 Temp src = get_alu_src(ctx, instr->src[0]);
2205 if (instr->src[0].src.ssa->bit_size == 16) {
2206 if (dst.regClass() == s1) {
2207 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2208 } else {
2209 // TODO: do better with SDWA
2210 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2211 }
2212 } else if (instr->src[0].src.ssa->bit_size == 64) {
2213 /* we can actually just say dst = src, as it would map the lower register */
2214 emit_extract_vector(ctx, src, 0, dst);
2215 } else {
2216 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2217 nir_print_instr(&instr->instr, stderr);
2218 fprintf(stderr, "\n");
2219 }
2220 break;
2221 }
2222 case nir_op_i2i64: {
2223 Temp src = get_alu_src(ctx, instr->src[0]);
2224 if (src.regClass() == s1) {
2225 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2226 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2227 } else if (src.regClass() == v1) {
2228 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2229 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2230 } else {
2231 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2232 nir_print_instr(&instr->instr, stderr);
2233 fprintf(stderr, "\n");
2234 }
2235 break;
2236 }
2237 case nir_op_u2u64: {
2238 Temp src = get_alu_src(ctx, instr->src[0]);
2239 if (instr->src[0].src.ssa->bit_size == 32) {
2240 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2241 } else {
2242 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2243 nir_print_instr(&instr->instr, stderr);
2244 fprintf(stderr, "\n");
2245 }
2246 break;
2247 }
2248 case nir_op_b2i32: {
2249 Temp src = get_alu_src(ctx, instr->src[0]);
2250 assert(src.regClass() == bld.lm);
2251
2252 if (dst.regClass() == s1) {
2253 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2254 bool_to_scalar_condition(ctx, src, dst);
2255 } else if (dst.regClass() == v1) {
2256 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2257 } else {
2258 unreachable("Invalid register class for b2i32");
2259 }
2260 break;
2261 }
2262 case nir_op_i2b1: {
2263 Temp src = get_alu_src(ctx, instr->src[0]);
2264 assert(dst.regClass() == bld.lm);
2265
2266 if (src.type() == RegType::vgpr) {
2267 assert(src.regClass() == v1 || src.regClass() == v2);
2268 assert(dst.regClass() == bld.lm);
2269 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2270 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2271 } else {
2272 assert(src.regClass() == s1 || src.regClass() == s2);
2273 Temp tmp;
2274 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2275 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2276 } else {
2277 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2278 bld.scc(bld.def(s1)), Operand(0u), src);
2279 }
2280 bool_to_vector_condition(ctx, tmp, dst);
2281 }
2282 break;
2283 }
2284 case nir_op_pack_64_2x32_split: {
2285 Temp src0 = get_alu_src(ctx, instr->src[0]);
2286 Temp src1 = get_alu_src(ctx, instr->src[1]);
2287
2288 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2289 break;
2290 }
2291 case nir_op_unpack_64_2x32_split_x:
2292 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2293 break;
2294 case nir_op_unpack_64_2x32_split_y:
2295 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2296 break;
2297 case nir_op_pack_half_2x16: {
2298 Temp src = get_alu_src(ctx, instr->src[0], 2);
2299
2300 if (dst.regClass() == v1) {
2301 Temp src0 = bld.tmp(v1);
2302 Temp src1 = bld.tmp(v1);
2303 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2304 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2305 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2306 else
2307 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2308 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2309 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2310 } else {
2311 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2312 nir_print_instr(&instr->instr, stderr);
2313 fprintf(stderr, "\n");
2314 }
2315 break;
2316 }
2317 case nir_op_unpack_half_2x16_split_x: {
2318 if (dst.regClass() == v1) {
2319 Builder bld(ctx->program, ctx->block);
2320 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2321 } else {
2322 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2323 nir_print_instr(&instr->instr, stderr);
2324 fprintf(stderr, "\n");
2325 }
2326 break;
2327 }
2328 case nir_op_unpack_half_2x16_split_y: {
2329 if (dst.regClass() == v1) {
2330 Builder bld(ctx->program, ctx->block);
2331 /* TODO: use SDWA here */
2332 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2333 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2334 } else {
2335 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2336 nir_print_instr(&instr->instr, stderr);
2337 fprintf(stderr, "\n");
2338 }
2339 break;
2340 }
2341 case nir_op_fquantize2f16: {
2342 Temp src = get_alu_src(ctx, instr->src[0]);
2343 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2344 Temp f32, cmp_res;
2345
2346 if (ctx->program->chip_class >= GFX8) {
2347 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2348 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2349 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2350 } else {
2351 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2352 * so compare the result and flush to 0 if it's smaller.
2353 */
2354 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2355 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2356 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2357 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2358 cmp_res = vop3->definitions[0].getTemp();
2359 }
2360
2361 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2362 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2363 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2364 } else {
2365 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2366 }
2367 break;
2368 }
2369 case nir_op_bfm: {
2370 Temp bits = get_alu_src(ctx, instr->src[0]);
2371 Temp offset = get_alu_src(ctx, instr->src[1]);
2372
2373 if (dst.regClass() == s1) {
2374 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2375 } else if (dst.regClass() == v1) {
2376 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2377 } else {
2378 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2379 nir_print_instr(&instr->instr, stderr);
2380 fprintf(stderr, "\n");
2381 }
2382 break;
2383 }
2384 case nir_op_bitfield_select: {
2385 /* (mask & insert) | (~mask & base) */
2386 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2387 Temp insert = get_alu_src(ctx, instr->src[1]);
2388 Temp base = get_alu_src(ctx, instr->src[2]);
2389
2390 /* dst = (insert & bitmask) | (base & ~bitmask) */
2391 if (dst.regClass() == s1) {
2392 aco_ptr<Instruction> sop2;
2393 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2394 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2395 Operand lhs;
2396 if (const_insert && const_bitmask) {
2397 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2398 } else {
2399 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2400 lhs = Operand(insert);
2401 }
2402
2403 Operand rhs;
2404 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2405 if (const_base && const_bitmask) {
2406 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2407 } else {
2408 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2409 rhs = Operand(base);
2410 }
2411
2412 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2413
2414 } else if (dst.regClass() == v1) {
2415 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2416 base = as_vgpr(ctx, base);
2417 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2418 insert = as_vgpr(ctx, insert);
2419
2420 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2421
2422 } else {
2423 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2424 nir_print_instr(&instr->instr, stderr);
2425 fprintf(stderr, "\n");
2426 }
2427 break;
2428 }
2429 case nir_op_ubfe:
2430 case nir_op_ibfe: {
2431 Temp base = get_alu_src(ctx, instr->src[0]);
2432 Temp offset = get_alu_src(ctx, instr->src[1]);
2433 Temp bits = get_alu_src(ctx, instr->src[2]);
2434
2435 if (dst.type() == RegType::sgpr) {
2436 Operand extract;
2437 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2438 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2439 if (const_offset && const_bits) {
2440 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2441 extract = Operand(const_extract);
2442 } else {
2443 Operand width;
2444 if (const_bits) {
2445 width = Operand(const_bits->u32 << 16);
2446 } else {
2447 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2448 }
2449 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2450 }
2451
2452 aco_opcode opcode;
2453 if (dst.regClass() == s1) {
2454 if (instr->op == nir_op_ubfe)
2455 opcode = aco_opcode::s_bfe_u32;
2456 else
2457 opcode = aco_opcode::s_bfe_i32;
2458 } else if (dst.regClass() == s2) {
2459 if (instr->op == nir_op_ubfe)
2460 opcode = aco_opcode::s_bfe_u64;
2461 else
2462 opcode = aco_opcode::s_bfe_i64;
2463 } else {
2464 unreachable("Unsupported BFE bit size");
2465 }
2466
2467 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2468
2469 } else {
2470 aco_opcode opcode;
2471 if (dst.regClass() == v1) {
2472 if (instr->op == nir_op_ubfe)
2473 opcode = aco_opcode::v_bfe_u32;
2474 else
2475 opcode = aco_opcode::v_bfe_i32;
2476 } else {
2477 unreachable("Unsupported BFE bit size");
2478 }
2479
2480 emit_vop3a_instruction(ctx, instr, opcode, dst);
2481 }
2482 break;
2483 }
2484 case nir_op_bit_count: {
2485 Temp src = get_alu_src(ctx, instr->src[0]);
2486 if (src.regClass() == s1) {
2487 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2488 } else if (src.regClass() == v1) {
2489 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2490 } else if (src.regClass() == v2) {
2491 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2492 emit_extract_vector(ctx, src, 1, v1),
2493 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2494 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2495 } else if (src.regClass() == s2) {
2496 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2497 } else {
2498 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2499 nir_print_instr(&instr->instr, stderr);
2500 fprintf(stderr, "\n");
2501 }
2502 break;
2503 }
2504 case nir_op_flt: {
2505 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2506 break;
2507 }
2508 case nir_op_fge: {
2509 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2510 break;
2511 }
2512 case nir_op_feq: {
2513 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2514 break;
2515 }
2516 case nir_op_fne: {
2517 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2518 break;
2519 }
2520 case nir_op_ilt: {
2521 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2522 break;
2523 }
2524 case nir_op_ige: {
2525 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2526 break;
2527 }
2528 case nir_op_ieq: {
2529 if (instr->src[0].src.ssa->bit_size == 1)
2530 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2531 else
2532 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2533 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2534 break;
2535 }
2536 case nir_op_ine: {
2537 if (instr->src[0].src.ssa->bit_size == 1)
2538 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2539 else
2540 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2541 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2542 break;
2543 }
2544 case nir_op_ult: {
2545 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2546 break;
2547 }
2548 case nir_op_uge: {
2549 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2550 break;
2551 }
2552 case nir_op_fddx:
2553 case nir_op_fddy:
2554 case nir_op_fddx_fine:
2555 case nir_op_fddy_fine:
2556 case nir_op_fddx_coarse:
2557 case nir_op_fddy_coarse: {
2558 Temp src = get_alu_src(ctx, instr->src[0]);
2559 uint16_t dpp_ctrl1, dpp_ctrl2;
2560 if (instr->op == nir_op_fddx_fine) {
2561 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2562 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2563 } else if (instr->op == nir_op_fddy_fine) {
2564 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2565 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2566 } else {
2567 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2568 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2569 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2570 else
2571 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2572 }
2573
2574 Temp tmp;
2575 if (ctx->program->chip_class >= GFX8) {
2576 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2577 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2578 } else {
2579 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2580 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2581 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2582 }
2583 emit_wqm(ctx, tmp, dst, true);
2584 break;
2585 }
2586 default:
2587 fprintf(stderr, "Unknown NIR ALU instr: ");
2588 nir_print_instr(&instr->instr, stderr);
2589 fprintf(stderr, "\n");
2590 }
2591 }
2592
2593 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2594 {
2595 Temp dst = get_ssa_temp(ctx, &instr->def);
2596
2597 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2598 // which get truncated the lsb if double and msb if int
2599 // for now, we only use s_mov_b64 with 64bit inline constants
2600 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2601 assert(dst.type() == RegType::sgpr);
2602
2603 Builder bld(ctx->program, ctx->block);
2604
2605 if (instr->def.bit_size == 1) {
2606 assert(dst.regClass() == bld.lm);
2607 int val = instr->value[0].b ? -1 : 0;
2608 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2609 bld.sop1(Builder::s_mov, Definition(dst), op);
2610 } else if (dst.size() == 1) {
2611 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2612 } else {
2613 assert(dst.size() != 1);
2614 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2615 if (instr->def.bit_size == 64)
2616 for (unsigned i = 0; i < dst.size(); i++)
2617 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2618 else {
2619 for (unsigned i = 0; i < dst.size(); i++)
2620 vec->operands[i] = Operand{instr->value[i].u32};
2621 }
2622 vec->definitions[0] = Definition(dst);
2623 ctx->block->instructions.emplace_back(std::move(vec));
2624 }
2625 }
2626
2627 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2628 {
2629 uint32_t new_mask = 0;
2630 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2631 if (mask & (1u << i))
2632 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2633 return new_mask;
2634 }
2635
2636 Operand load_lds_size_m0(isel_context *ctx)
2637 {
2638 /* TODO: m0 does not need to be initialized on GFX9+ */
2639 Builder bld(ctx->program, ctx->block);
2640 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2641 }
2642
2643 void load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2644 Temp address, unsigned base_offset, unsigned align)
2645 {
2646 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2647
2648 Builder bld(ctx->program, ctx->block);
2649
2650 Operand m = load_lds_size_m0(ctx);
2651
2652 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2653 unsigned bytes_read = 0;
2654 unsigned result_size = 0;
2655 unsigned total_bytes = num_components * elem_size_bytes;
2656 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2657 bool large_ds_read = ctx->options->chip_class >= GFX7;
2658
2659 while (bytes_read < total_bytes) {
2660 unsigned todo = total_bytes - bytes_read;
2661 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2662 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2663
2664 aco_opcode op = aco_opcode::last_opcode;
2665 bool read2 = false;
2666 if (todo >= 16 && aligned16 && large_ds_read) {
2667 op = aco_opcode::ds_read_b128;
2668 todo = 16;
2669 } else if (todo >= 16 && aligned8) {
2670 op = aco_opcode::ds_read2_b64;
2671 read2 = true;
2672 todo = 16;
2673 } else if (todo >= 12 && aligned16 && large_ds_read) {
2674 op = aco_opcode::ds_read_b96;
2675 todo = 12;
2676 } else if (todo >= 8 && aligned8) {
2677 op = aco_opcode::ds_read_b64;
2678 todo = 8;
2679 } else if (todo >= 8) {
2680 op = aco_opcode::ds_read2_b32;
2681 read2 = true;
2682 todo = 8;
2683 } else if (todo >= 4) {
2684 op = aco_opcode::ds_read_b32;
2685 todo = 4;
2686 } else {
2687 assert(false);
2688 }
2689 assert(todo % elem_size_bytes == 0);
2690 unsigned num_elements = todo / elem_size_bytes;
2691 unsigned offset = base_offset + bytes_read;
2692 unsigned max_offset = read2 ? 1019 : 65535;
2693
2694 Temp address_offset = address;
2695 if (offset > max_offset) {
2696 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2697 offset = bytes_read;
2698 }
2699 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2700
2701 Temp res;
2702 if (num_components == 1 && dst.type() == RegType::vgpr)
2703 res = dst;
2704 else
2705 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2706
2707 if (read2)
2708 res = bld.ds(op, Definition(res), address_offset, m, offset >> 2, (offset >> 2) + 1);
2709 else
2710 res = bld.ds(op, Definition(res), address_offset, m, offset);
2711
2712 if (num_components == 1) {
2713 assert(todo == total_bytes);
2714 if (dst.type() == RegType::sgpr)
2715 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2716 return;
2717 }
2718
2719 if (dst.type() == RegType::sgpr) {
2720 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2721 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2722 res = new_res;
2723 }
2724
2725 if (num_elements == 1) {
2726 result[result_size++] = res;
2727 } else {
2728 assert(res != dst && res.size() % num_elements == 0);
2729 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2730 split->operands[0] = Operand(res);
2731 for (unsigned i = 0; i < num_elements; i++)
2732 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2733 ctx->block->instructions.emplace_back(std::move(split));
2734 }
2735
2736 bytes_read += todo;
2737 }
2738
2739 assert(result_size == num_components && result_size > 1);
2740 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2741 for (unsigned i = 0; i < result_size; i++)
2742 vec->operands[i] = Operand(result[i]);
2743 vec->definitions[0] = Definition(dst);
2744 ctx->block->instructions.emplace_back(std::move(vec));
2745 ctx->allocated_vec.emplace(dst.id(), result);
2746 }
2747
2748 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2749 {
2750 if (start == 0 && size == data.size())
2751 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2752
2753 unsigned size_hint = 1;
2754 auto it = ctx->allocated_vec.find(data.id());
2755 if (it != ctx->allocated_vec.end())
2756 size_hint = it->second[0].size();
2757 if (size % size_hint || start % size_hint)
2758 size_hint = 1;
2759
2760 start /= size_hint;
2761 size /= size_hint;
2762
2763 Temp elems[size];
2764 for (unsigned i = 0; i < size; i++)
2765 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2766
2767 if (size == 1)
2768 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2769
2770 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2771 for (unsigned i = 0; i < size; i++)
2772 vec->operands[i] = Operand(elems[i]);
2773 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2774 vec->definitions[0] = Definition(res);
2775 ctx->block->instructions.emplace_back(std::move(vec));
2776 return res;
2777 }
2778
2779 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2780 {
2781 Builder bld(ctx->program, ctx->block);
2782 unsigned bytes_written = 0;
2783 bool large_ds_write = ctx->options->chip_class >= GFX7;
2784
2785 while (bytes_written < total_size * 4) {
2786 unsigned todo = total_size * 4 - bytes_written;
2787 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2788 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2789
2790 aco_opcode op = aco_opcode::last_opcode;
2791 bool write2 = false;
2792 unsigned size = 0;
2793 if (todo >= 16 && aligned16 && large_ds_write) {
2794 op = aco_opcode::ds_write_b128;
2795 size = 4;
2796 } else if (todo >= 16 && aligned8) {
2797 op = aco_opcode::ds_write2_b64;
2798 write2 = true;
2799 size = 4;
2800 } else if (todo >= 12 && aligned16 && large_ds_write) {
2801 op = aco_opcode::ds_write_b96;
2802 size = 3;
2803 } else if (todo >= 8 && aligned8) {
2804 op = aco_opcode::ds_write_b64;
2805 size = 2;
2806 } else if (todo >= 8) {
2807 op = aco_opcode::ds_write2_b32;
2808 write2 = true;
2809 size = 2;
2810 } else if (todo >= 4) {
2811 op = aco_opcode::ds_write_b32;
2812 size = 1;
2813 } else {
2814 assert(false);
2815 }
2816
2817 unsigned offset = offset0 + offset1 + bytes_written;
2818 unsigned max_offset = write2 ? 1020 : 65535;
2819 Temp address_offset = address;
2820 if (offset > max_offset) {
2821 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2822 offset = offset1 + bytes_written;
2823 }
2824 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2825
2826 if (write2) {
2827 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2828 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2829 bld.ds(op, address_offset, val0, val1, m, offset >> 2, (offset >> 2) + 1);
2830 } else {
2831 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2832 bld.ds(op, address_offset, val, m, offset);
2833 }
2834
2835 bytes_written += size * 4;
2836 }
2837 }
2838
2839 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2840 Temp address, unsigned base_offset, unsigned align)
2841 {
2842 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2843
2844 Operand m = load_lds_size_m0(ctx);
2845
2846 /* we need at most two stores for 32bit variables */
2847 int start[2], count[2];
2848 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2849 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2850 assert(wrmask == 0);
2851
2852 /* one combined store is sufficient */
2853 if (count[0] == count[1]) {
2854 Builder bld(ctx->program, ctx->block);
2855
2856 Temp address_offset = address;
2857 if ((base_offset >> 2) + start[1] > 255) {
2858 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2859 base_offset = 0;
2860 }
2861
2862 assert(count[0] == 1);
2863 Temp val0 = emit_extract_vector(ctx, data, start[0], v1);
2864 Temp val1 = emit_extract_vector(ctx, data, start[1], v1);
2865 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2866 base_offset = base_offset / elem_size_bytes;
2867 bld.ds(op, address_offset, val0, val1, m,
2868 base_offset + start[0], base_offset + start[1]);
2869 return;
2870 }
2871
2872 for (unsigned i = 0; i < 2; i++) {
2873 if (count[i] == 0)
2874 continue;
2875
2876 unsigned elem_size_words = elem_size_bytes / 4;
2877 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2878 base_offset, start[i] * elem_size_bytes, align);
2879 }
2880 return;
2881 }
2882
2883 void visit_store_vsgs_output(isel_context *ctx, nir_intrinsic_instr *instr)
2884 {
2885 unsigned write_mask = nir_intrinsic_write_mask(instr);
2886 unsigned component = nir_intrinsic_component(instr);
2887 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2888 unsigned idx = (nir_intrinsic_base(instr) + component) * 4u;
2889 Operand offset(s1);
2890 Builder bld(ctx->program, ctx->block);
2891
2892 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2893 if (off_instr->type != nir_instr_type_load_const)
2894 offset = bld.v_mul24_imm(bld.def(v1), get_ssa_temp(ctx, instr->src[1].ssa), 16u);
2895 else
2896 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 16u;
2897
2898 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
2899 if (ctx->stage == vertex_es) {
2900 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
2901
2902 Temp elems[NIR_MAX_VEC_COMPONENTS * 2];
2903 if (elem_size_bytes == 8) {
2904 for (unsigned i = 0; i < src.size() / 2; i++) {
2905 Temp elem = emit_extract_vector(ctx, src, i, v2);
2906 elems[i*2] = bld.tmp(v1);
2907 elems[i*2+1] = bld.tmp(v1);
2908 bld.pseudo(aco_opcode::p_split_vector, Definition(elems[i*2]), Definition(elems[i*2+1]), elem);
2909 }
2910 write_mask = widen_mask(write_mask, 2);
2911 elem_size_bytes /= 2u;
2912 } else {
2913 for (unsigned i = 0; i < src.size(); i++)
2914 elems[i] = emit_extract_vector(ctx, src, i, v1);
2915 }
2916
2917 while (write_mask) {
2918 unsigned index = u_bit_scan(&write_mask);
2919 unsigned offset = index * elem_size_bytes;
2920 Temp elem = emit_extract_vector(ctx, src, index, RegClass(RegType::vgpr, elem_size_bytes / 4));
2921
2922 Operand vaddr_offset(v1);
2923 unsigned const_offset = idx + offset;
2924 if (const_offset >= 4096u) {
2925 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
2926 const_offset %= 4096u;
2927 }
2928
2929 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
2930 mtbuf->operands[0] = vaddr_offset;
2931 mtbuf->operands[1] = Operand(esgs_ring);
2932 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->es2gs_offset));
2933 mtbuf->operands[3] = Operand(elem);
2934 mtbuf->offen = !vaddr_offset.isUndefined();
2935 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
2936 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
2937 mtbuf->offset = const_offset;
2938 mtbuf->glc = true;
2939 mtbuf->slc = true;
2940 mtbuf->barrier = barrier_none;
2941 mtbuf->can_reorder = true;
2942 bld.insert(std::move(mtbuf));
2943 }
2944 } else {
2945 unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
2946
2947 Temp vertex_idx = emit_mbcnt(ctx, bld.def(v1));
2948 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
2949 vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), vertex_idx,
2950 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
2951
2952 Temp lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
2953 if (!offset.isUndefined())
2954 lds_base = bld.vadd32(bld.def(v1), offset, lds_base);
2955
2956 unsigned align = 1 << (ffs(itemsize) - 1);
2957 if (idx)
2958 align = std::min(align, 1u << (ffs(idx) - 1));
2959
2960 store_lds(ctx, elem_size_bytes, src, write_mask, lds_base, idx, align);
2961 }
2962 }
2963
2964 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
2965 {
2966 if (ctx->stage == vertex_vs ||
2967 ctx->stage == fragment_fs ||
2968 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
2969 unsigned write_mask = nir_intrinsic_write_mask(instr);
2970 unsigned component = nir_intrinsic_component(instr);
2971 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2972 unsigned idx = nir_intrinsic_base(instr) + component;
2973
2974 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2975 if (off_instr->type != nir_instr_type_load_const) {
2976 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2977 nir_print_instr(off_instr, stderr);
2978 fprintf(stderr, "\n");
2979 }
2980 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
2981
2982 if (instr->src[0].ssa->bit_size == 64)
2983 write_mask = widen_mask(write_mask, 2);
2984
2985 for (unsigned i = 0; i < 8; ++i) {
2986 if (write_mask & (1 << i)) {
2987 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
2988 ctx->outputs.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
2989 }
2990 idx++;
2991 }
2992 } else if (ctx->stage == vertex_es ||
2993 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX)) {
2994 visit_store_vsgs_output(ctx, instr);
2995 } else {
2996 unreachable("Shader stage not implemented");
2997 }
2998 }
2999
3000 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3001 {
3002 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3003 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3004
3005 Builder bld(ctx->program, ctx->block);
3006 Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3007 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
3008 }
3009
3010 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3011 {
3012 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3013 for (unsigned i = 0; i < num_components; i++)
3014 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3015 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3016 assert(num_components == 4);
3017 Builder bld(ctx->program, ctx->block);
3018 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3019 }
3020
3021 for (Operand& op : vec->operands)
3022 op = op.isUndefined() ? Operand(0u) : op;
3023
3024 vec->definitions[0] = Definition(dst);
3025 ctx->block->instructions.emplace_back(std::move(vec));
3026 emit_split_vector(ctx, dst, num_components);
3027 return;
3028 }
3029
3030 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3031 {
3032 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3033 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3034 unsigned idx = nir_intrinsic_base(instr);
3035 unsigned component = nir_intrinsic_component(instr);
3036 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3037
3038 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3039 if (offset) {
3040 assert(offset->u32 == 0);
3041 } else {
3042 /* the lower 15bit of the prim_mask contain the offset into LDS
3043 * while the upper bits contain the number of prims */
3044 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3045 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3046 Builder bld(ctx->program, ctx->block);
3047 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3048 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3049 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3050 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3051 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3052 }
3053
3054 if (instr->dest.ssa.num_components == 1) {
3055 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3056 } else {
3057 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3058 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3059 {
3060 Temp tmp = {ctx->program->allocateId(), v1};
3061 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3062 vec->operands[i] = Operand(tmp);
3063 }
3064 vec->definitions[0] = Definition(dst);
3065 ctx->block->instructions.emplace_back(std::move(vec));
3066 }
3067 }
3068
3069 unsigned get_num_channels_from_data_format(unsigned data_format)
3070 {
3071 switch (data_format) {
3072 case V_008F0C_BUF_DATA_FORMAT_8:
3073 case V_008F0C_BUF_DATA_FORMAT_16:
3074 case V_008F0C_BUF_DATA_FORMAT_32:
3075 return 1;
3076 case V_008F0C_BUF_DATA_FORMAT_8_8:
3077 case V_008F0C_BUF_DATA_FORMAT_16_16:
3078 case V_008F0C_BUF_DATA_FORMAT_32_32:
3079 return 2;
3080 case V_008F0C_BUF_DATA_FORMAT_10_11_11:
3081 case V_008F0C_BUF_DATA_FORMAT_11_11_10:
3082 case V_008F0C_BUF_DATA_FORMAT_32_32_32:
3083 return 3;
3084 case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
3085 case V_008F0C_BUF_DATA_FORMAT_10_10_10_2:
3086 case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
3087 case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
3088 case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
3089 return 4;
3090 default:
3091 break;
3092 }
3093
3094 return 4;
3095 }
3096
3097 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3098 * so we may need to fix it up. */
3099 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3100 {
3101 Builder bld(ctx->program, ctx->block);
3102
3103 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3104 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3105
3106 /* For the integer-like cases, do a natural sign extension.
3107 *
3108 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3109 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3110 * exponent.
3111 */
3112 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3113 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3114
3115 /* Convert back to the right type. */
3116 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3117 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3118 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3119 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3120 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3121 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3122 }
3123
3124 return alpha;
3125 }
3126
3127 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3128 {
3129 Builder bld(ctx->program, ctx->block);
3130 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3131 if (ctx->stage & sw_vs) {
3132
3133 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3134 if (off_instr->type != nir_instr_type_load_const) {
3135 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3136 nir_print_instr(off_instr, stderr);
3137 fprintf(stderr, "\n");
3138 }
3139 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3140
3141 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3142
3143 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3144 unsigned component = nir_intrinsic_component(instr);
3145 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3146 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3147 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3148 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3149
3150 unsigned dfmt = attrib_format & 0xf;
3151
3152 unsigned nfmt = (attrib_format >> 4) & 0x7;
3153 unsigned num_dfmt_channels = get_num_channels_from_data_format(dfmt);
3154 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3155 unsigned num_channels = MIN2(util_last_bit(mask), num_dfmt_channels);
3156 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3157 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3158 if (post_shuffle)
3159 num_channels = MAX2(num_channels, 3);
3160
3161 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
3162 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
3163
3164 Temp index;
3165 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3166 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3167 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3168 if (divisor) {
3169 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3170 if (divisor != 1) {
3171 Temp divided = bld.tmp(v1);
3172 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3173 index = bld.vadd32(bld.def(v1), start_instance, divided);
3174 } else {
3175 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3176 }
3177 } else {
3178 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3179 }
3180 } else {
3181 index = bld.vadd32(bld.def(v1),
3182 get_arg(ctx, ctx->args->ac.base_vertex),
3183 get_arg(ctx, ctx->args->ac.vertex_id));
3184 }
3185
3186 if (attrib_stride != 0 && attrib_offset > attrib_stride) {
3187 index = bld.vadd32(bld.def(v1), Operand(attrib_offset / attrib_stride), index);
3188 attrib_offset = attrib_offset % attrib_stride;
3189 }
3190
3191 Operand soffset(0u);
3192 if (attrib_offset >= 4096) {
3193 soffset = bld.copy(bld.def(s1), Operand(attrib_offset));
3194 attrib_offset = 0;
3195 }
3196
3197 aco_opcode opcode;
3198 switch (num_channels) {
3199 case 1:
3200 opcode = aco_opcode::tbuffer_load_format_x;
3201 break;
3202 case 2:
3203 opcode = aco_opcode::tbuffer_load_format_xy;
3204 break;
3205 case 3:
3206 opcode = aco_opcode::tbuffer_load_format_xyz;
3207 break;
3208 case 4:
3209 opcode = aco_opcode::tbuffer_load_format_xyzw;
3210 break;
3211 default:
3212 unreachable("Unimplemented load_input vector size");
3213 }
3214
3215 Temp tmp = post_shuffle || num_channels != dst.size() || alpha_adjust != RADV_ALPHA_ADJUST_NONE || component ? bld.tmp(RegType::vgpr, num_channels) : dst;
3216
3217 aco_ptr<MTBUF_instruction> mubuf{create_instruction<MTBUF_instruction>(opcode, Format::MTBUF, 3, 1)};
3218 mubuf->operands[0] = Operand(index);
3219 mubuf->operands[1] = Operand(list);
3220 mubuf->operands[2] = soffset;
3221 mubuf->definitions[0] = Definition(tmp);
3222 mubuf->idxen = true;
3223 mubuf->can_reorder = true;
3224 mubuf->dfmt = dfmt;
3225 mubuf->nfmt = nfmt;
3226 assert(attrib_offset < 4096);
3227 mubuf->offset = attrib_offset;
3228 ctx->block->instructions.emplace_back(std::move(mubuf));
3229
3230 emit_split_vector(ctx, tmp, tmp.size());
3231
3232 if (tmp.id() != dst.id()) {
3233 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3234 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3235
3236 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3237 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3238 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3239
3240 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3241 for (unsigned i = 0; i < dst.size(); i++) {
3242 unsigned idx = i + component;
3243 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE && num_channels >= 4) {
3244 Temp alpha = emit_extract_vector(ctx, tmp, swizzle[3], v1);
3245 vec->operands[3] = Operand(adjust_vertex_fetch_alpha(ctx, alpha_adjust, alpha));
3246 } else if (idx < num_channels) {
3247 vec->operands[i] = Operand(emit_extract_vector(ctx, tmp, swizzle[idx], v1));
3248 } else if (is_float && idx == 3) {
3249 vec->operands[i] = Operand(0x3f800000u);
3250 } else if (!is_float && idx == 3) {
3251 vec->operands[i] = Operand(1u);
3252 } else {
3253 vec->operands[i] = Operand(0u);
3254 }
3255 }
3256 vec->definitions[0] = Definition(dst);
3257 ctx->block->instructions.emplace_back(std::move(vec));
3258 emit_split_vector(ctx, dst, dst.size());
3259 }
3260
3261 } else if (ctx->stage == fragment_fs) {
3262 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3263 if (off_instr->type != nir_instr_type_load_const ||
3264 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3265 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3266 nir_print_instr(off_instr, stderr);
3267 fprintf(stderr, "\n");
3268 }
3269
3270 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3271 nir_const_value* offset = nir_src_as_const_value(instr->src[0]);
3272 if (offset) {
3273 assert(offset->u32 == 0);
3274 } else {
3275 /* the lower 15bit of the prim_mask contain the offset into LDS
3276 * while the upper bits contain the number of prims */
3277 Temp offset_src = get_ssa_temp(ctx, instr->src[0].ssa);
3278 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3279 Builder bld(ctx->program, ctx->block);
3280 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3281 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3282 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3283 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3284 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3285 }
3286
3287 unsigned idx = nir_intrinsic_base(instr);
3288 unsigned component = nir_intrinsic_component(instr);
3289
3290 if (dst.size() == 1) {
3291 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(2u), bld.m0(prim_mask), idx, component);
3292 } else {
3293 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3294 for (unsigned i = 0; i < dst.size(); i++)
3295 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(2u), bld.m0(prim_mask), idx, component + i);
3296 vec->definitions[0] = Definition(dst);
3297 bld.insert(std::move(vec));
3298 }
3299
3300 } else {
3301 unreachable("Shader stage not implemented");
3302 }
3303 }
3304
3305 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3306 {
3307 assert(ctx->stage == vertex_geometry_gs || ctx->stage == geometry_gs);
3308 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3309
3310 Builder bld(ctx->program, ctx->block);
3311 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3312
3313 Temp offset = Temp();
3314 if (instr->src[0].ssa->parent_instr->type != nir_instr_type_load_const) {
3315 /* better code could be created, but this case probably doesn't happen
3316 * much in practice */
3317 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
3318 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
3319 Temp elem;
3320 if (ctx->stage == vertex_geometry_gs) {
3321 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
3322 if (i % 2u)
3323 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
3324 } else {
3325 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
3326 }
3327 if (offset.id()) {
3328 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(s2)),
3329 Operand(i), indirect_vertex);
3330 offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), offset, elem, cond);
3331 } else {
3332 offset = elem;
3333 }
3334 }
3335 if (ctx->stage == vertex_geometry_gs)
3336 offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), offset);
3337 } else {
3338 unsigned vertex = nir_src_as_uint(instr->src[0]);
3339 if (ctx->stage == vertex_geometry_gs)
3340 offset = bld.vop3(
3341 aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
3342 Operand((vertex % 2u) * 16u), Operand(16u));
3343 else
3344 offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
3345 }
3346
3347 unsigned const_offset = nir_intrinsic_base(instr);
3348 const_offset += nir_intrinsic_component(instr);
3349
3350 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3351 if (off_instr->type != nir_instr_type_load_const) {
3352 Temp indirect_offset = get_ssa_temp(ctx, instr->src[1].ssa);
3353 offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u),
3354 bld.vadd32(bld.def(v1), indirect_offset, offset));
3355 } else {
3356 const_offset += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
3357 }
3358 const_offset *= 4u;
3359
3360 offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), offset);
3361
3362 unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
3363
3364 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3365 if (ctx->stage == geometry_gs) {
3366 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
3367
3368 const_offset *= ctx->program->wave_size;
3369
3370 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3371 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3372 aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1)};
3373 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++) {
3374 Temp subelems[2];
3375 for (unsigned j = 0; j < elem_size_bytes / 4; j++) {
3376 Operand soffset(0u);
3377 if (const_offset >= 4096u)
3378 soffset = bld.copy(bld.def(s1), Operand(const_offset / 4096u * 4096u));
3379
3380 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
3381 mubuf->definitions[0] = bld.def(v1);
3382 subelems[j] = mubuf->definitions[0].getTemp();
3383 mubuf->operands[0] = Operand(offset);
3384 mubuf->operands[1] = Operand(esgs_ring);
3385 mubuf->operands[2] = Operand(soffset);
3386 mubuf->offen = true;
3387 mubuf->offset = const_offset % 4096u;
3388 mubuf->glc = true;
3389 mubuf->dlc = ctx->options->chip_class >= GFX10;
3390 mubuf->barrier = barrier_none;
3391 mubuf->can_reorder = true;
3392 bld.insert(std::move(mubuf));
3393
3394 const_offset += ctx->program->wave_size * 4u;
3395 }
3396
3397 if (elem_size_bytes == 4)
3398 elems[i] = subelems[0];
3399 else
3400 elems[i] = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), subelems[0], subelems[1]);
3401 vec->operands[i] = Operand(elems[i]);
3402 }
3403 vec->definitions[0] = Definition(dst);
3404 ctx->block->instructions.emplace_back(std::move(vec));
3405 ctx->allocated_vec.emplace(dst.id(), elems);
3406 } else {
3407 unsigned align = 16; /* alignment of indirect offset */
3408 align = std::min(align, 1u << (ffs(itemsize) - 1));
3409 if (const_offset)
3410 align = std::min(align, 1u << (ffs(const_offset) - 1));
3411
3412 load_lds(ctx, elem_size_bytes, dst, offset, const_offset, align);
3413 }
3414 }
3415
3416 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
3417 {
3418 if (ctx->program->info->need_indirect_descriptor_sets) {
3419 Builder bld(ctx->program, ctx->block);
3420 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
3421 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
3422 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
3423 }
3424
3425 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
3426 }
3427
3428
3429 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
3430 {
3431 Builder bld(ctx->program, ctx->block);
3432 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
3433 if (!ctx->divergent_vals[instr->dest.ssa.index])
3434 index = bld.as_uniform(index);
3435 unsigned desc_set = nir_intrinsic_desc_set(instr);
3436 unsigned binding = nir_intrinsic_binding(instr);
3437
3438 Temp desc_ptr;
3439 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
3440 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
3441 unsigned offset = layout->binding[binding].offset;
3442 unsigned stride;
3443 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
3444 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
3445 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
3446 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
3447 offset = pipeline_layout->push_constant_size + 16 * idx;
3448 stride = 16;
3449 } else {
3450 desc_ptr = load_desc_ptr(ctx, desc_set);
3451 stride = layout->binding[binding].size;
3452 }
3453
3454 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
3455 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
3456 if (stride != 1) {
3457 if (nir_const_index) {
3458 const_index = const_index * stride;
3459 } else if (index.type() == RegType::vgpr) {
3460 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
3461 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
3462 } else {
3463 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
3464 }
3465 }
3466 if (offset) {
3467 if (nir_const_index) {
3468 const_index = const_index + offset;
3469 } else if (index.type() == RegType::vgpr) {
3470 index = bld.vadd32(bld.def(v1), Operand(offset), index);
3471 } else {
3472 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
3473 }
3474 }
3475
3476 if (nir_const_index && const_index == 0) {
3477 index = desc_ptr;
3478 } else if (index.type() == RegType::vgpr) {
3479 index = bld.vadd32(bld.def(v1),
3480 nir_const_index ? Operand(const_index) : Operand(index),
3481 Operand(desc_ptr));
3482 } else {
3483 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3484 nir_const_index ? Operand(const_index) : Operand(index),
3485 Operand(desc_ptr));
3486 }
3487
3488 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
3489 }
3490
3491 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
3492 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
3493 {
3494 Builder bld(ctx->program, ctx->block);
3495
3496 unsigned num_bytes = dst.size() * 4;
3497 bool dlc = glc && ctx->options->chip_class >= GFX10;
3498
3499 aco_opcode op;
3500 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
3501 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3502 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3503 unsigned const_offset = 0;
3504
3505 Temp lower = Temp();
3506 if (num_bytes > 16) {
3507 assert(num_components == 3 || num_components == 4);
3508 op = aco_opcode::buffer_load_dwordx4;
3509 lower = bld.tmp(v4);
3510 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3511 mubuf->definitions[0] = Definition(lower);
3512 mubuf->operands[0] = vaddr;
3513 mubuf->operands[1] = Operand(rsrc);
3514 mubuf->operands[2] = soffset;
3515 mubuf->offen = (offset.type() == RegType::vgpr);
3516 mubuf->glc = glc;
3517 mubuf->dlc = dlc;
3518 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3519 mubuf->can_reorder = readonly;
3520 bld.insert(std::move(mubuf));
3521 emit_split_vector(ctx, lower, 2);
3522 num_bytes -= 16;
3523 const_offset = 16;
3524 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
3525 /* GFX6 doesn't support loading vec3, expand to vec4. */
3526 num_bytes = 16;
3527 }
3528
3529 switch (num_bytes) {
3530 case 4:
3531 op = aco_opcode::buffer_load_dword;
3532 break;
3533 case 8:
3534 op = aco_opcode::buffer_load_dwordx2;
3535 break;
3536 case 12:
3537 assert(ctx->options->chip_class > GFX6);
3538 op = aco_opcode::buffer_load_dwordx3;
3539 break;
3540 case 16:
3541 op = aco_opcode::buffer_load_dwordx4;
3542 break;
3543 default:
3544 unreachable("Load SSBO not implemented for this size.");
3545 }
3546 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3547 mubuf->operands[0] = vaddr;
3548 mubuf->operands[1] = Operand(rsrc);
3549 mubuf->operands[2] = soffset;
3550 mubuf->offen = (offset.type() == RegType::vgpr);
3551 mubuf->glc = glc;
3552 mubuf->dlc = dlc;
3553 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3554 mubuf->can_reorder = readonly;
3555 mubuf->offset = const_offset;
3556 aco_ptr<Instruction> instr = std::move(mubuf);
3557
3558 if (dst.size() > 4) {
3559 assert(lower != Temp());
3560 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
3561 instr->definitions[0] = Definition(upper);
3562 bld.insert(std::move(instr));
3563 if (dst.size() == 8)
3564 emit_split_vector(ctx, upper, 2);
3565 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
3566 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
3567 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
3568 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
3569 if (dst.size() == 8)
3570 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
3571 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
3572 Temp vec = bld.tmp(v4);
3573 instr->definitions[0] = Definition(vec);
3574 bld.insert(std::move(instr));
3575 emit_split_vector(ctx, vec, 4);
3576
3577 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
3578 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
3579 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
3580 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
3581 }
3582
3583 if (dst.type() == RegType::sgpr) {
3584 Temp vec = bld.tmp(RegType::vgpr, dst.size());
3585 instr->definitions[0] = Definition(vec);
3586 bld.insert(std::move(instr));
3587 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
3588 } else {
3589 instr->definitions[0] = Definition(dst);
3590 bld.insert(std::move(instr));
3591 emit_split_vector(ctx, dst, num_components);
3592 }
3593 } else {
3594 switch (num_bytes) {
3595 case 4:
3596 op = aco_opcode::s_buffer_load_dword;
3597 break;
3598 case 8:
3599 op = aco_opcode::s_buffer_load_dwordx2;
3600 break;
3601 case 12:
3602 case 16:
3603 op = aco_opcode::s_buffer_load_dwordx4;
3604 break;
3605 case 24:
3606 case 32:
3607 op = aco_opcode::s_buffer_load_dwordx8;
3608 break;
3609 default:
3610 unreachable("Load SSBO not implemented for this size.");
3611 }
3612 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3613 load->operands[0] = Operand(rsrc);
3614 load->operands[1] = Operand(bld.as_uniform(offset));
3615 assert(load->operands[1].getTemp().type() == RegType::sgpr);
3616 load->definitions[0] = Definition(dst);
3617 load->glc = glc;
3618 load->dlc = dlc;
3619 load->barrier = readonly ? barrier_none : barrier_buffer;
3620 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
3621 assert(ctx->options->chip_class >= GFX8 || !glc);
3622
3623 /* trim vector */
3624 if (dst.size() == 3) {
3625 Temp vec = bld.tmp(s4);
3626 load->definitions[0] = Definition(vec);
3627 bld.insert(std::move(load));
3628 emit_split_vector(ctx, vec, 4);
3629
3630 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3631 emit_extract_vector(ctx, vec, 0, s1),
3632 emit_extract_vector(ctx, vec, 1, s1),
3633 emit_extract_vector(ctx, vec, 2, s1));
3634 } else if (dst.size() == 6) {
3635 Temp vec = bld.tmp(s8);
3636 load->definitions[0] = Definition(vec);
3637 bld.insert(std::move(load));
3638 emit_split_vector(ctx, vec, 4);
3639
3640 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3641 emit_extract_vector(ctx, vec, 0, s2),
3642 emit_extract_vector(ctx, vec, 1, s2),
3643 emit_extract_vector(ctx, vec, 2, s2));
3644 } else {
3645 bld.insert(std::move(load));
3646 }
3647 emit_split_vector(ctx, dst, num_components);
3648 }
3649 }
3650
3651 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
3652 {
3653 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3654 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
3655
3656 Builder bld(ctx->program, ctx->block);
3657
3658 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3659 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
3660 unsigned binding = nir_intrinsic_binding(idx_instr);
3661 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
3662
3663 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
3664 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3665 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3666 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3667 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3668 if (ctx->options->chip_class >= GFX10) {
3669 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3670 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3671 S_008F0C_RESOURCE_LEVEL(1);
3672 } else {
3673 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3674 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3675 }
3676 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
3677 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
3678 Operand(0xFFFFFFFFu),
3679 Operand(desc_type));
3680 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3681 rsrc, upper_dwords);
3682 } else {
3683 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
3684 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
3685 }
3686
3687 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
3688 }
3689
3690 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3691 {
3692 Builder bld(ctx->program, ctx->block);
3693 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3694
3695 unsigned offset = nir_intrinsic_base(instr);
3696 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
3697 if (index_cv && instr->dest.ssa.bit_size == 32) {
3698
3699 unsigned count = instr->dest.ssa.num_components;
3700 unsigned start = (offset + index_cv->u32) / 4u;
3701 start -= ctx->args->ac.base_inline_push_consts;
3702 if (start + count <= ctx->args->ac.num_inline_push_consts) {
3703 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3704 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
3705 for (unsigned i = 0; i < count; ++i) {
3706 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
3707 vec->operands[i] = Operand{elems[i]};
3708 }
3709 vec->definitions[0] = Definition(dst);
3710 ctx->block->instructions.emplace_back(std::move(vec));
3711 ctx->allocated_vec.emplace(dst.id(), elems);
3712 return;
3713 }
3714 }
3715
3716 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
3717 if (offset != 0) // TODO check if index != 0 as well
3718 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
3719 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
3720 Temp vec = dst;
3721 bool trim = false;
3722 aco_opcode op;
3723
3724 switch (dst.size()) {
3725 case 1:
3726 op = aco_opcode::s_load_dword;
3727 break;
3728 case 2:
3729 op = aco_opcode::s_load_dwordx2;
3730 break;
3731 case 3:
3732 vec = bld.tmp(s4);
3733 trim = true;
3734 case 4:
3735 op = aco_opcode::s_load_dwordx4;
3736 break;
3737 case 6:
3738 vec = bld.tmp(s8);
3739 trim = true;
3740 case 8:
3741 op = aco_opcode::s_load_dwordx8;
3742 break;
3743 default:
3744 unreachable("unimplemented or forbidden load_push_constant.");
3745 }
3746
3747 bld.smem(op, Definition(vec), ptr, index);
3748
3749 if (trim) {
3750 emit_split_vector(ctx, vec, 4);
3751 RegClass rc = dst.size() == 3 ? s1 : s2;
3752 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3753 emit_extract_vector(ctx, vec, 0, rc),
3754 emit_extract_vector(ctx, vec, 1, rc),
3755 emit_extract_vector(ctx, vec, 2, rc));
3756
3757 }
3758 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
3759 }
3760
3761 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3762 {
3763 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3764
3765 Builder bld(ctx->program, ctx->block);
3766
3767 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3768 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3769 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3770 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3771 if (ctx->options->chip_class >= GFX10) {
3772 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3773 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3774 S_008F0C_RESOURCE_LEVEL(1);
3775 } else {
3776 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3777 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3778 }
3779
3780 unsigned base = nir_intrinsic_base(instr);
3781 unsigned range = nir_intrinsic_range(instr);
3782
3783 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
3784 if (base && offset.type() == RegType::sgpr)
3785 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
3786 else if (base && offset.type() == RegType::vgpr)
3787 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
3788
3789 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3790 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
3791 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
3792 Operand(desc_type));
3793
3794 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
3795 }
3796
3797 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
3798 {
3799 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3800 ctx->cf_info.exec_potentially_empty = true;
3801
3802 ctx->program->needs_exact = true;
3803
3804 // TODO: optimize uniform conditions
3805 Builder bld(ctx->program, ctx->block);
3806 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3807 assert(src.regClass() == bld.lm);
3808 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
3809 bld.pseudo(aco_opcode::p_discard_if, src);
3810 ctx->block->kind |= block_kind_uses_discard_if;
3811 return;
3812 }
3813
3814 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
3815 {
3816 Builder bld(ctx->program, ctx->block);
3817
3818 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3819 ctx->cf_info.exec_potentially_empty = true;
3820
3821 bool divergent = ctx->cf_info.parent_if.is_divergent ||
3822 ctx->cf_info.parent_loop.has_divergent_continue;
3823
3824 if (ctx->block->loop_nest_depth &&
3825 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
3826 /* we handle discards the same way as jump instructions */
3827 append_logical_end(ctx->block);
3828
3829 /* in loops, discard behaves like break */
3830 Block *linear_target = ctx->cf_info.parent_loop.exit;
3831 ctx->block->kind |= block_kind_discard;
3832
3833 if (!divergent) {
3834 /* uniform discard - loop ends here */
3835 assert(nir_instr_is_last(&instr->instr));
3836 ctx->block->kind |= block_kind_uniform;
3837 ctx->cf_info.has_branch = true;
3838 bld.branch(aco_opcode::p_branch);
3839 add_linear_edge(ctx->block->index, linear_target);
3840 return;
3841 }
3842
3843 /* we add a break right behind the discard() instructions */
3844 ctx->block->kind |= block_kind_break;
3845 unsigned idx = ctx->block->index;
3846
3847 /* remove critical edges from linear CFG */
3848 bld.branch(aco_opcode::p_branch);
3849 Block* break_block = ctx->program->create_and_insert_block();
3850 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3851 break_block->kind |= block_kind_uniform;
3852 add_linear_edge(idx, break_block);
3853 add_linear_edge(break_block->index, linear_target);
3854 bld.reset(break_block);
3855 bld.branch(aco_opcode::p_branch);
3856
3857 Block* continue_block = ctx->program->create_and_insert_block();
3858 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3859 add_linear_edge(idx, continue_block);
3860 append_logical_start(continue_block);
3861 ctx->block = continue_block;
3862
3863 return;
3864 }
3865
3866 /* it can currently happen that NIR doesn't remove the unreachable code */
3867 if (!nir_instr_is_last(&instr->instr)) {
3868 ctx->program->needs_exact = true;
3869 /* save exec somewhere temporarily so that it doesn't get
3870 * overwritten before the discard from outer exec masks */
3871 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
3872 bld.pseudo(aco_opcode::p_discard_if, cond);
3873 ctx->block->kind |= block_kind_uses_discard_if;
3874 return;
3875 }
3876
3877 /* This condition is incorrect for uniformly branched discards in a loop
3878 * predicated by a divergent condition, but the above code catches that case
3879 * and the discard would end up turning into a discard_if.
3880 * For example:
3881 * if (divergent) {
3882 * while (...) {
3883 * if (uniform) {
3884 * discard;
3885 * }
3886 * }
3887 * }
3888 */
3889 if (!ctx->cf_info.parent_if.is_divergent) {
3890 /* program just ends here */
3891 ctx->block->kind |= block_kind_uniform;
3892 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
3893 0 /* enabled mask */, 9 /* dest */,
3894 false /* compressed */, true/* done */, true /* valid mask */);
3895 bld.sopp(aco_opcode::s_endpgm);
3896 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
3897 } else {
3898 ctx->block->kind |= block_kind_discard;
3899 /* branch and linear edge is added by visit_if() */
3900 }
3901 }
3902
3903 enum aco_descriptor_type {
3904 ACO_DESC_IMAGE,
3905 ACO_DESC_FMASK,
3906 ACO_DESC_SAMPLER,
3907 ACO_DESC_BUFFER,
3908 ACO_DESC_PLANE_0,
3909 ACO_DESC_PLANE_1,
3910 ACO_DESC_PLANE_2,
3911 };
3912
3913 static bool
3914 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
3915 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
3916 return false;
3917 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
3918 return dim == ac_image_cube ||
3919 dim == ac_image_1darray ||
3920 dim == ac_image_2darray ||
3921 dim == ac_image_2darraymsaa;
3922 }
3923
3924 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
3925 enum aco_descriptor_type desc_type,
3926 const nir_tex_instr *tex_instr, bool image, bool write)
3927 {
3928 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
3929 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
3930 if (it != ctx->tex_desc.end())
3931 return it->second;
3932 */
3933 Temp index = Temp();
3934 bool index_set = false;
3935 unsigned constant_index = 0;
3936 unsigned descriptor_set;
3937 unsigned base_index;
3938 Builder bld(ctx->program, ctx->block);
3939
3940 if (!deref_instr) {
3941 assert(tex_instr && !image);
3942 descriptor_set = 0;
3943 base_index = tex_instr->sampler_index;
3944 } else {
3945 while(deref_instr->deref_type != nir_deref_type_var) {
3946 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
3947 if (!array_size)
3948 array_size = 1;
3949
3950 assert(deref_instr->deref_type == nir_deref_type_array);
3951 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
3952 if (const_value) {
3953 constant_index += array_size * const_value->u32;
3954 } else {
3955 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
3956 if (indirect.type() == RegType::vgpr)
3957 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
3958
3959 if (array_size != 1)
3960 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
3961
3962 if (!index_set) {
3963 index = indirect;
3964 index_set = true;
3965 } else {
3966 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
3967 }
3968 }
3969
3970 deref_instr = nir_src_as_deref(deref_instr->parent);
3971 }
3972 descriptor_set = deref_instr->var->data.descriptor_set;
3973 base_index = deref_instr->var->data.binding;
3974 }
3975
3976 Temp list = load_desc_ptr(ctx, descriptor_set);
3977 list = convert_pointer_to_64_bit(ctx, list);
3978
3979 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
3980 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
3981 unsigned offset = binding->offset;
3982 unsigned stride = binding->size;
3983 aco_opcode opcode;
3984 RegClass type;
3985
3986 assert(base_index < layout->binding_count);
3987
3988 switch (desc_type) {
3989 case ACO_DESC_IMAGE:
3990 type = s8;
3991 opcode = aco_opcode::s_load_dwordx8;
3992 break;
3993 case ACO_DESC_FMASK:
3994 type = s8;
3995 opcode = aco_opcode::s_load_dwordx8;
3996 offset += 32;
3997 break;
3998 case ACO_DESC_SAMPLER:
3999 type = s4;
4000 opcode = aco_opcode::s_load_dwordx4;
4001 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4002 offset += radv_combined_image_descriptor_sampler_offset(binding);
4003 break;
4004 case ACO_DESC_BUFFER:
4005 type = s4;
4006 opcode = aco_opcode::s_load_dwordx4;
4007 break;
4008 case ACO_DESC_PLANE_0:
4009 case ACO_DESC_PLANE_1:
4010 type = s8;
4011 opcode = aco_opcode::s_load_dwordx8;
4012 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
4013 break;
4014 case ACO_DESC_PLANE_2:
4015 type = s4;
4016 opcode = aco_opcode::s_load_dwordx4;
4017 offset += 64;
4018 break;
4019 default:
4020 unreachable("invalid desc_type\n");
4021 }
4022
4023 offset += constant_index * stride;
4024
4025 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
4026 (!index_set || binding->immutable_samplers_equal)) {
4027 if (binding->immutable_samplers_equal)
4028 constant_index = 0;
4029
4030 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4031 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4032 Operand(samplers[constant_index * 4 + 0]),
4033 Operand(samplers[constant_index * 4 + 1]),
4034 Operand(samplers[constant_index * 4 + 2]),
4035 Operand(samplers[constant_index * 4 + 3]));
4036 }
4037
4038 Operand off;
4039 if (!index_set) {
4040 off = bld.copy(bld.def(s1), Operand(offset));
4041 } else {
4042 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
4043 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
4044 }
4045
4046 Temp res = bld.smem(opcode, bld.def(type), list, off);
4047
4048 if (desc_type == ACO_DESC_PLANE_2) {
4049 Temp components[8];
4050 for (unsigned i = 0; i < 8; i++)
4051 components[i] = bld.tmp(s1);
4052 bld.pseudo(aco_opcode::p_split_vector,
4053 Definition(components[0]),
4054 Definition(components[1]),
4055 Definition(components[2]),
4056 Definition(components[3]),
4057 res);
4058
4059 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
4060 bld.pseudo(aco_opcode::p_split_vector,
4061 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
4062 Definition(components[4]),
4063 Definition(components[5]),
4064 Definition(components[6]),
4065 Definition(components[7]),
4066 desc2);
4067
4068 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
4069 components[0], components[1], components[2], components[3],
4070 components[4], components[5], components[6], components[7]);
4071 }
4072
4073 return res;
4074 }
4075
4076 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
4077 {
4078 switch (dim) {
4079 case GLSL_SAMPLER_DIM_BUF:
4080 return 1;
4081 case GLSL_SAMPLER_DIM_1D:
4082 return array ? 2 : 1;
4083 case GLSL_SAMPLER_DIM_2D:
4084 return array ? 3 : 2;
4085 case GLSL_SAMPLER_DIM_MS:
4086 return array ? 4 : 3;
4087 case GLSL_SAMPLER_DIM_3D:
4088 case GLSL_SAMPLER_DIM_CUBE:
4089 return 3;
4090 case GLSL_SAMPLER_DIM_RECT:
4091 case GLSL_SAMPLER_DIM_SUBPASS:
4092 return 2;
4093 case GLSL_SAMPLER_DIM_SUBPASS_MS:
4094 return 3;
4095 default:
4096 break;
4097 }
4098 return 0;
4099 }
4100
4101
4102 /* Adjust the sample index according to FMASK.
4103 *
4104 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4105 * which is the identity mapping. Each nibble says which physical sample
4106 * should be fetched to get that sample.
4107 *
4108 * For example, 0x11111100 means there are only 2 samples stored and
4109 * the second sample covers 3/4 of the pixel. When reading samples 0
4110 * and 1, return physical sample 0 (determined by the first two 0s
4111 * in FMASK), otherwise return physical sample 1.
4112 *
4113 * The sample index should be adjusted as follows:
4114 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4115 */
4116 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, Temp coords, Operand sample_index, Temp fmask_desc_ptr)
4117 {
4118 Builder bld(ctx->program, ctx->block);
4119 Temp fmask = bld.tmp(v1);
4120 unsigned dim = ctx->options->chip_class >= GFX10
4121 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
4122 : 0;
4123
4124 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 2, 1)};
4125 load->operands[0] = Operand(coords);
4126 load->operands[1] = Operand(fmask_desc_ptr);
4127 load->definitions[0] = Definition(fmask);
4128 load->glc = false;
4129 load->dlc = false;
4130 load->dmask = 0x1;
4131 load->unrm = true;
4132 load->da = da;
4133 load->dim = dim;
4134 load->can_reorder = true; /* fmask images shouldn't be modified */
4135 ctx->block->instructions.emplace_back(std::move(load));
4136
4137 Operand sample_index4;
4138 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4139 sample_index4 = Operand(sample_index.constantValue() << 2);
4140 } else if (sample_index.regClass() == s1) {
4141 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4142 } else {
4143 assert(sample_index.regClass() == v1);
4144 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4145 }
4146
4147 Temp final_sample;
4148 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4149 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4150 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4151 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4152 else
4153 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4154
4155 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4156 * resource descriptor is 0 (invalid),
4157 */
4158 Temp compare = bld.tmp(bld.lm);
4159 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4160 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4161
4162 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4163
4164 /* Replace the MSAA sample index. */
4165 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4166 }
4167
4168 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4169 {
4170
4171 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4172 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4173 bool is_array = glsl_sampler_type_is_array(type);
4174 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4175 assert(!add_frag_pos && "Input attachments should be lowered.");
4176 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4177 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4178 int count = image_type_to_components_count(dim, is_array);
4179 std::vector<Operand> coords(count);
4180
4181 if (is_ms) {
4182 Operand sample_index;
4183 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4184 if (sample_cv)
4185 sample_index = Operand(sample_cv->u32);
4186 else
4187 sample_index = Operand(emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[2].ssa), 0, v1));
4188
4189 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4190 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, is_array ? 3 : 2, 1)};
4191 for (unsigned i = 0; i < vec->operands.size(); i++)
4192 vec->operands[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
4193 Temp fmask_load_address = {ctx->program->allocateId(), is_array ? v3 : v2};
4194 vec->definitions[0] = Definition(fmask_load_address);
4195 ctx->block->instructions.emplace_back(std::move(vec));
4196
4197 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4198 sample_index = Operand(adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr));
4199 }
4200 count--;
4201 coords[count] = sample_index;
4202 }
4203
4204 if (count == 1 && !gfx9_1d)
4205 return emit_extract_vector(ctx, src0, 0, v1);
4206
4207 if (gfx9_1d) {
4208 coords[0] = Operand(emit_extract_vector(ctx, src0, 0, v1));
4209 coords.resize(coords.size() + 1);
4210 coords[1] = Operand((uint32_t) 0);
4211 if (is_array)
4212 coords[2] = Operand(emit_extract_vector(ctx, src0, 1, v1));
4213 } else {
4214 for (int i = 0; i < count; i++)
4215 coords[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
4216 }
4217
4218 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4219 instr->intrinsic == nir_intrinsic_image_deref_store) {
4220 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4221 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4222
4223 if (!level_zero)
4224 coords.emplace_back(Operand(get_ssa_temp(ctx, instr->src[lod_index].ssa)));
4225 }
4226
4227 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4228 for (unsigned i = 0; i < coords.size(); i++)
4229 vec->operands[i] = coords[i];
4230 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4231 vec->definitions[0] = Definition(res);
4232 ctx->block->instructions.emplace_back(std::move(vec));
4233 return res;
4234 }
4235
4236
4237 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4238 {
4239 Builder bld(ctx->program, ctx->block);
4240 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4241 const struct glsl_type *type = glsl_without_array(var->type);
4242 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4243 bool is_array = glsl_sampler_type_is_array(type);
4244 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4245
4246 if (dim == GLSL_SAMPLER_DIM_BUF) {
4247 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4248 unsigned num_channels = util_last_bit(mask);
4249 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4250 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4251
4252 aco_opcode opcode;
4253 switch (num_channels) {
4254 case 1:
4255 opcode = aco_opcode::buffer_load_format_x;
4256 break;
4257 case 2:
4258 opcode = aco_opcode::buffer_load_format_xy;
4259 break;
4260 case 3:
4261 opcode = aco_opcode::buffer_load_format_xyz;
4262 break;
4263 case 4:
4264 opcode = aco_opcode::buffer_load_format_xyzw;
4265 break;
4266 default:
4267 unreachable(">4 channel buffer image load");
4268 }
4269 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4270 load->operands[0] = Operand(vindex);
4271 load->operands[1] = Operand(rsrc);
4272 load->operands[2] = Operand((uint32_t) 0);
4273 Temp tmp;
4274 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4275 tmp = dst;
4276 else
4277 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4278 load->definitions[0] = Definition(tmp);
4279 load->idxen = true;
4280 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4281 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4282 load->barrier = barrier_image;
4283 ctx->block->instructions.emplace_back(std::move(load));
4284
4285 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4286 return;
4287 }
4288
4289 Temp coords = get_image_coords(ctx, instr, type);
4290 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4291
4292 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4293 unsigned num_components = util_bitcount(dmask);
4294 Temp tmp;
4295 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4296 tmp = dst;
4297 else
4298 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4299
4300 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4301 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4302
4303 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 2, 1)};
4304 load->operands[0] = Operand(coords);
4305 load->operands[1] = Operand(resource);
4306 load->definitions[0] = Definition(tmp);
4307 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4308 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4309 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4310 load->dmask = dmask;
4311 load->unrm = true;
4312 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4313 load->barrier = barrier_image;
4314 ctx->block->instructions.emplace_back(std::move(load));
4315
4316 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4317 return;
4318 }
4319
4320 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4321 {
4322 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4323 const struct glsl_type *type = glsl_without_array(var->type);
4324 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4325 bool is_array = glsl_sampler_type_is_array(type);
4326 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4327
4328 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4329
4330 if (dim == GLSL_SAMPLER_DIM_BUF) {
4331 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4332 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4333 aco_opcode opcode;
4334 switch (data.size()) {
4335 case 1:
4336 opcode = aco_opcode::buffer_store_format_x;
4337 break;
4338 case 2:
4339 opcode = aco_opcode::buffer_store_format_xy;
4340 break;
4341 case 3:
4342 opcode = aco_opcode::buffer_store_format_xyz;
4343 break;
4344 case 4:
4345 opcode = aco_opcode::buffer_store_format_xyzw;
4346 break;
4347 default:
4348 unreachable(">4 channel buffer image store");
4349 }
4350 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4351 store->operands[0] = Operand(vindex);
4352 store->operands[1] = Operand(rsrc);
4353 store->operands[2] = Operand((uint32_t) 0);
4354 store->operands[3] = Operand(data);
4355 store->idxen = true;
4356 store->glc = glc;
4357 store->dlc = false;
4358 store->disable_wqm = true;
4359 store->barrier = barrier_image;
4360 ctx->program->needs_exact = true;
4361 ctx->block->instructions.emplace_back(std::move(store));
4362 return;
4363 }
4364
4365 assert(data.type() == RegType::vgpr);
4366 Temp coords = get_image_coords(ctx, instr, type);
4367 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4368
4369 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
4370 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
4371
4372 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 4, 0)};
4373 store->operands[0] = Operand(coords);
4374 store->operands[1] = Operand(resource);
4375 store->operands[2] = Operand(s4);
4376 store->operands[3] = Operand(data);
4377 store->glc = glc;
4378 store->dlc = false;
4379 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4380 store->dmask = (1 << data.size()) - 1;
4381 store->unrm = true;
4382 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4383 store->disable_wqm = true;
4384 store->barrier = barrier_image;
4385 ctx->program->needs_exact = true;
4386 ctx->block->instructions.emplace_back(std::move(store));
4387 return;
4388 }
4389
4390 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4391 {
4392 /* return the previous value if dest is ever used */
4393 bool return_previous = false;
4394 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4395 return_previous = true;
4396 break;
4397 }
4398 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4399 return_previous = true;
4400 break;
4401 }
4402
4403 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4404 const struct glsl_type *type = glsl_without_array(var->type);
4405 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4406 bool is_array = glsl_sampler_type_is_array(type);
4407 Builder bld(ctx->program, ctx->block);
4408
4409 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4410 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
4411
4412 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
4413 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
4414
4415 aco_opcode buf_op, image_op;
4416 switch (instr->intrinsic) {
4417 case nir_intrinsic_image_deref_atomic_add:
4418 buf_op = aco_opcode::buffer_atomic_add;
4419 image_op = aco_opcode::image_atomic_add;
4420 break;
4421 case nir_intrinsic_image_deref_atomic_umin:
4422 buf_op = aco_opcode::buffer_atomic_umin;
4423 image_op = aco_opcode::image_atomic_umin;
4424 break;
4425 case nir_intrinsic_image_deref_atomic_imin:
4426 buf_op = aco_opcode::buffer_atomic_smin;
4427 image_op = aco_opcode::image_atomic_smin;
4428 break;
4429 case nir_intrinsic_image_deref_atomic_umax:
4430 buf_op = aco_opcode::buffer_atomic_umax;
4431 image_op = aco_opcode::image_atomic_umax;
4432 break;
4433 case nir_intrinsic_image_deref_atomic_imax:
4434 buf_op = aco_opcode::buffer_atomic_smax;
4435 image_op = aco_opcode::image_atomic_smax;
4436 break;
4437 case nir_intrinsic_image_deref_atomic_and:
4438 buf_op = aco_opcode::buffer_atomic_and;
4439 image_op = aco_opcode::image_atomic_and;
4440 break;
4441 case nir_intrinsic_image_deref_atomic_or:
4442 buf_op = aco_opcode::buffer_atomic_or;
4443 image_op = aco_opcode::image_atomic_or;
4444 break;
4445 case nir_intrinsic_image_deref_atomic_xor:
4446 buf_op = aco_opcode::buffer_atomic_xor;
4447 image_op = aco_opcode::image_atomic_xor;
4448 break;
4449 case nir_intrinsic_image_deref_atomic_exchange:
4450 buf_op = aco_opcode::buffer_atomic_swap;
4451 image_op = aco_opcode::image_atomic_swap;
4452 break;
4453 case nir_intrinsic_image_deref_atomic_comp_swap:
4454 buf_op = aco_opcode::buffer_atomic_cmpswap;
4455 image_op = aco_opcode::image_atomic_cmpswap;
4456 break;
4457 default:
4458 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
4459 }
4460
4461 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4462
4463 if (dim == GLSL_SAMPLER_DIM_BUF) {
4464 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4465 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4466 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
4467 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4468 mubuf->operands[0] = Operand(vindex);
4469 mubuf->operands[1] = Operand(resource);
4470 mubuf->operands[2] = Operand((uint32_t)0);
4471 mubuf->operands[3] = Operand(data);
4472 if (return_previous)
4473 mubuf->definitions[0] = Definition(dst);
4474 mubuf->offset = 0;
4475 mubuf->idxen = true;
4476 mubuf->glc = return_previous;
4477 mubuf->dlc = false; /* Not needed for atomics */
4478 mubuf->disable_wqm = true;
4479 mubuf->barrier = barrier_image;
4480 ctx->program->needs_exact = true;
4481 ctx->block->instructions.emplace_back(std::move(mubuf));
4482 return;
4483 }
4484
4485 Temp coords = get_image_coords(ctx, instr, type);
4486 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4487 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 4, return_previous ? 1 : 0)};
4488 mimg->operands[0] = Operand(coords);
4489 mimg->operands[1] = Operand(resource);
4490 mimg->operands[2] = Operand(s4); /* no sampler */
4491 mimg->operands[3] = Operand(data);
4492 if (return_previous)
4493 mimg->definitions[0] = Definition(dst);
4494 mimg->glc = return_previous;
4495 mimg->dlc = false; /* Not needed for atomics */
4496 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4497 mimg->dmask = (1 << data.size()) - 1;
4498 mimg->unrm = true;
4499 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4500 mimg->disable_wqm = true;
4501 mimg->barrier = barrier_image;
4502 ctx->program->needs_exact = true;
4503 ctx->block->instructions.emplace_back(std::move(mimg));
4504 return;
4505 }
4506
4507 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
4508 {
4509 if (in_elements && ctx->options->chip_class == GFX8) {
4510 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
4511 Builder bld(ctx->program, ctx->block);
4512
4513 Temp size = emit_extract_vector(ctx, desc, 2, s1);
4514
4515 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
4516 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
4517
4518 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
4519 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
4520
4521 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
4522 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
4523
4524 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
4525 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
4526 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
4527 if (dst.type() == RegType::vgpr)
4528 bld.copy(Definition(dst), shr_dst);
4529
4530 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
4531 } else {
4532 emit_extract_vector(ctx, desc, 2, dst);
4533 }
4534 }
4535
4536 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
4537 {
4538 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4539 const struct glsl_type *type = glsl_without_array(var->type);
4540 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4541 bool is_array = glsl_sampler_type_is_array(type);
4542 Builder bld(ctx->program, ctx->block);
4543
4544 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
4545 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
4546 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
4547 }
4548
4549 /* LOD */
4550 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
4551
4552 /* Resource */
4553 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
4554
4555 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4556
4557 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1)};
4558 mimg->operands[0] = Operand(lod);
4559 mimg->operands[1] = Operand(resource);
4560 uint8_t& dmask = mimg->dmask;
4561 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4562 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
4563 mimg->da = glsl_sampler_type_is_array(type);
4564 mimg->can_reorder = true;
4565 Definition& def = mimg->definitions[0];
4566 ctx->block->instructions.emplace_back(std::move(mimg));
4567
4568 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
4569 glsl_sampler_type_is_array(type)) {
4570
4571 assert(instr->dest.ssa.num_components == 3);
4572 Temp tmp = {ctx->program->allocateId(), v3};
4573 def = Definition(tmp);
4574 emit_split_vector(ctx, tmp, 3);
4575
4576 /* divide 3rd value by 6 by multiplying with magic number */
4577 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
4578 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
4579
4580 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4581 emit_extract_vector(ctx, tmp, 0, v1),
4582 emit_extract_vector(ctx, tmp, 1, v1),
4583 by_6);
4584
4585 } else if (ctx->options->chip_class == GFX9 &&
4586 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
4587 glsl_sampler_type_is_array(type)) {
4588 assert(instr->dest.ssa.num_components == 2);
4589 def = Definition(dst);
4590 dmask = 0x5;
4591 } else {
4592 def = Definition(dst);
4593 }
4594
4595 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4596 }
4597
4598 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4599 {
4600 Builder bld(ctx->program, ctx->block);
4601 unsigned num_components = instr->num_components;
4602
4603 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4604 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4605 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4606
4607 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4608 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
4609 }
4610
4611 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4612 {
4613 Builder bld(ctx->program, ctx->block);
4614 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
4615 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4616 unsigned writemask = nir_intrinsic_write_mask(instr);
4617 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
4618
4619 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4620 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4621
4622 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
4623 ctx->options->chip_class >= GFX8;
4624 if (smem)
4625 offset = bld.as_uniform(offset);
4626 bool smem_nonfs = smem && ctx->stage != fragment_fs;
4627
4628 while (writemask) {
4629 int start, count;
4630 u_bit_scan_consecutive_range(&writemask, &start, &count);
4631 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
4632 /* GFX6 doesn't support storing vec3, split it. */
4633 writemask |= 1u << (start + 2);
4634 count = 2;
4635 }
4636 int num_bytes = count * elem_size_bytes;
4637
4638 if (num_bytes > 16) {
4639 assert(elem_size_bytes == 8);
4640 writemask |= (((count - 2) << 1) - 1) << (start + 2);
4641 count = 2;
4642 num_bytes = 16;
4643 }
4644
4645 // TODO: check alignment of sub-dword stores
4646 // TODO: split 3 bytes. there is no store instruction for that
4647
4648 Temp write_data;
4649 if (count != instr->num_components) {
4650 emit_split_vector(ctx, data, instr->num_components);
4651 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4652 for (int i = 0; i < count; i++) {
4653 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
4654 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
4655 }
4656 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
4657 vec->definitions[0] = Definition(write_data);
4658 ctx->block->instructions.emplace_back(std::move(vec));
4659 } else if (!smem && data.type() != RegType::vgpr) {
4660 assert(num_bytes % 4 == 0);
4661 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
4662 } else if (smem_nonfs && data.type() == RegType::vgpr) {
4663 assert(num_bytes % 4 == 0);
4664 write_data = bld.as_uniform(data);
4665 } else {
4666 write_data = data;
4667 }
4668
4669 aco_opcode vmem_op, smem_op;
4670 switch (num_bytes) {
4671 case 4:
4672 vmem_op = aco_opcode::buffer_store_dword;
4673 smem_op = aco_opcode::s_buffer_store_dword;
4674 break;
4675 case 8:
4676 vmem_op = aco_opcode::buffer_store_dwordx2;
4677 smem_op = aco_opcode::s_buffer_store_dwordx2;
4678 break;
4679 case 12:
4680 vmem_op = aco_opcode::buffer_store_dwordx3;
4681 smem_op = aco_opcode::last_opcode;
4682 assert(!smem && ctx->options->chip_class > GFX6);
4683 break;
4684 case 16:
4685 vmem_op = aco_opcode::buffer_store_dwordx4;
4686 smem_op = aco_opcode::s_buffer_store_dwordx4;
4687 break;
4688 default:
4689 unreachable("Store SSBO not implemented for this size.");
4690 }
4691 if (ctx->stage == fragment_fs)
4692 smem_op = aco_opcode::p_fs_buffer_store_smem;
4693
4694 if (smem) {
4695 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
4696 store->operands[0] = Operand(rsrc);
4697 if (start) {
4698 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4699 offset, Operand(start * elem_size_bytes));
4700 store->operands[1] = Operand(off);
4701 } else {
4702 store->operands[1] = Operand(offset);
4703 }
4704 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
4705 store->operands[1].setFixed(m0);
4706 store->operands[2] = Operand(write_data);
4707 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4708 store->dlc = false;
4709 store->disable_wqm = true;
4710 store->barrier = barrier_buffer;
4711 ctx->block->instructions.emplace_back(std::move(store));
4712 ctx->program->wb_smem_l1_on_end = true;
4713 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
4714 ctx->block->kind |= block_kind_needs_lowering;
4715 ctx->program->needs_exact = true;
4716 }
4717 } else {
4718 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
4719 store->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4720 store->operands[1] = Operand(rsrc);
4721 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4722 store->operands[3] = Operand(write_data);
4723 store->offset = start * elem_size_bytes;
4724 store->offen = (offset.type() == RegType::vgpr);
4725 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4726 store->dlc = false;
4727 store->disable_wqm = true;
4728 store->barrier = barrier_buffer;
4729 ctx->program->needs_exact = true;
4730 ctx->block->instructions.emplace_back(std::move(store));
4731 }
4732 }
4733 }
4734
4735 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4736 {
4737 /* return the previous value if dest is ever used */
4738 bool return_previous = false;
4739 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4740 return_previous = true;
4741 break;
4742 }
4743 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4744 return_previous = true;
4745 break;
4746 }
4747
4748 Builder bld(ctx->program, ctx->block);
4749 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
4750
4751 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
4752 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
4753 get_ssa_temp(ctx, instr->src[3].ssa), data);
4754
4755 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
4756 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4757 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4758
4759 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4760
4761 aco_opcode op32, op64;
4762 switch (instr->intrinsic) {
4763 case nir_intrinsic_ssbo_atomic_add:
4764 op32 = aco_opcode::buffer_atomic_add;
4765 op64 = aco_opcode::buffer_atomic_add_x2;
4766 break;
4767 case nir_intrinsic_ssbo_atomic_imin:
4768 op32 = aco_opcode::buffer_atomic_smin;
4769 op64 = aco_opcode::buffer_atomic_smin_x2;
4770 break;
4771 case nir_intrinsic_ssbo_atomic_umin:
4772 op32 = aco_opcode::buffer_atomic_umin;
4773 op64 = aco_opcode::buffer_atomic_umin_x2;
4774 break;
4775 case nir_intrinsic_ssbo_atomic_imax:
4776 op32 = aco_opcode::buffer_atomic_smax;
4777 op64 = aco_opcode::buffer_atomic_smax_x2;
4778 break;
4779 case nir_intrinsic_ssbo_atomic_umax:
4780 op32 = aco_opcode::buffer_atomic_umax;
4781 op64 = aco_opcode::buffer_atomic_umax_x2;
4782 break;
4783 case nir_intrinsic_ssbo_atomic_and:
4784 op32 = aco_opcode::buffer_atomic_and;
4785 op64 = aco_opcode::buffer_atomic_and_x2;
4786 break;
4787 case nir_intrinsic_ssbo_atomic_or:
4788 op32 = aco_opcode::buffer_atomic_or;
4789 op64 = aco_opcode::buffer_atomic_or_x2;
4790 break;
4791 case nir_intrinsic_ssbo_atomic_xor:
4792 op32 = aco_opcode::buffer_atomic_xor;
4793 op64 = aco_opcode::buffer_atomic_xor_x2;
4794 break;
4795 case nir_intrinsic_ssbo_atomic_exchange:
4796 op32 = aco_opcode::buffer_atomic_swap;
4797 op64 = aco_opcode::buffer_atomic_swap_x2;
4798 break;
4799 case nir_intrinsic_ssbo_atomic_comp_swap:
4800 op32 = aco_opcode::buffer_atomic_cmpswap;
4801 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
4802 break;
4803 default:
4804 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
4805 }
4806 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
4807 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4808 mubuf->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4809 mubuf->operands[1] = Operand(rsrc);
4810 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4811 mubuf->operands[3] = Operand(data);
4812 if (return_previous)
4813 mubuf->definitions[0] = Definition(dst);
4814 mubuf->offset = 0;
4815 mubuf->offen = (offset.type() == RegType::vgpr);
4816 mubuf->glc = return_previous;
4817 mubuf->dlc = false; /* Not needed for atomics */
4818 mubuf->disable_wqm = true;
4819 mubuf->barrier = barrier_buffer;
4820 ctx->program->needs_exact = true;
4821 ctx->block->instructions.emplace_back(std::move(mubuf));
4822 }
4823
4824 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
4825
4826 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4827 Builder bld(ctx->program, ctx->block);
4828 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
4829 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
4830 }
4831
4832 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
4833 {
4834 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4835 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4836
4837 if (addr.type() == RegType::vgpr)
4838 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
4839 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
4840 }
4841
4842 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
4843 {
4844 Builder bld(ctx->program, ctx->block);
4845 unsigned num_components = instr->num_components;
4846 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
4847
4848 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4849 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
4850
4851 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4852 bool dlc = glc && ctx->options->chip_class >= GFX10;
4853 aco_opcode op;
4854 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
4855 bool global = ctx->options->chip_class >= GFX9;
4856
4857 if (ctx->options->chip_class >= GFX7) {
4858 aco_opcode op;
4859 switch (num_bytes) {
4860 case 4:
4861 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
4862 break;
4863 case 8:
4864 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
4865 break;
4866 case 12:
4867 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
4868 break;
4869 case 16:
4870 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
4871 break;
4872 default:
4873 unreachable("load_global not implemented for this size.");
4874 }
4875
4876 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
4877 flat->operands[0] = Operand(addr);
4878 flat->operands[1] = Operand(s1);
4879 flat->glc = glc;
4880 flat->dlc = dlc;
4881 flat->barrier = barrier_buffer;
4882
4883 if (dst.type() == RegType::sgpr) {
4884 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4885 flat->definitions[0] = Definition(vec);
4886 ctx->block->instructions.emplace_back(std::move(flat));
4887 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
4888 } else {
4889 flat->definitions[0] = Definition(dst);
4890 ctx->block->instructions.emplace_back(std::move(flat));
4891 }
4892 emit_split_vector(ctx, dst, num_components);
4893 } else {
4894 assert(ctx->options->chip_class == GFX6);
4895
4896 /* GFX6 doesn't support loading vec3, expand to vec4. */
4897 num_bytes = num_bytes == 12 ? 16 : num_bytes;
4898
4899 aco_opcode op;
4900 switch (num_bytes) {
4901 case 4:
4902 op = aco_opcode::buffer_load_dword;
4903 break;
4904 case 8:
4905 op = aco_opcode::buffer_load_dwordx2;
4906 break;
4907 case 16:
4908 op = aco_opcode::buffer_load_dwordx4;
4909 break;
4910 default:
4911 unreachable("load_global not implemented for this size.");
4912 }
4913
4914 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
4915
4916 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4917 mubuf->operands[0] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
4918 mubuf->operands[1] = Operand(rsrc);
4919 mubuf->operands[2] = Operand(0u);
4920 mubuf->glc = glc;
4921 mubuf->dlc = false;
4922 mubuf->offset = 0;
4923 mubuf->addr64 = addr.type() == RegType::vgpr;
4924 mubuf->disable_wqm = false;
4925 mubuf->barrier = barrier_buffer;
4926 aco_ptr<Instruction> instr = std::move(mubuf);
4927
4928 /* expand vector */
4929 if (dst.size() == 3) {
4930 Temp vec = bld.tmp(v4);
4931 instr->definitions[0] = Definition(vec);
4932 bld.insert(std::move(instr));
4933 emit_split_vector(ctx, vec, 4);
4934
4935 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4936 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4937 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4938 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4939 }
4940
4941 if (dst.type() == RegType::sgpr) {
4942 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4943 instr->definitions[0] = Definition(vec);
4944 bld.insert(std::move(instr));
4945 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4946 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
4947 } else {
4948 instr->definitions[0] = Definition(dst);
4949 bld.insert(std::move(instr));
4950 emit_split_vector(ctx, dst, num_components);
4951 }
4952 }
4953 } else {
4954 switch (num_bytes) {
4955 case 4:
4956 op = aco_opcode::s_load_dword;
4957 break;
4958 case 8:
4959 op = aco_opcode::s_load_dwordx2;
4960 break;
4961 case 12:
4962 case 16:
4963 op = aco_opcode::s_load_dwordx4;
4964 break;
4965 default:
4966 unreachable("load_global not implemented for this size.");
4967 }
4968 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4969 load->operands[0] = Operand(addr);
4970 load->operands[1] = Operand(0u);
4971 load->definitions[0] = Definition(dst);
4972 load->glc = glc;
4973 load->dlc = dlc;
4974 load->barrier = barrier_buffer;
4975 assert(ctx->options->chip_class >= GFX8 || !glc);
4976
4977 if (dst.size() == 3) {
4978 /* trim vector */
4979 Temp vec = bld.tmp(s4);
4980 load->definitions[0] = Definition(vec);
4981 ctx->block->instructions.emplace_back(std::move(load));
4982 emit_split_vector(ctx, vec, 4);
4983
4984 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4985 emit_extract_vector(ctx, vec, 0, s1),
4986 emit_extract_vector(ctx, vec, 1, s1),
4987 emit_extract_vector(ctx, vec, 2, s1));
4988 } else {
4989 ctx->block->instructions.emplace_back(std::move(load));
4990 }
4991 }
4992 }
4993
4994 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
4995 {
4996 Builder bld(ctx->program, ctx->block);
4997 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4998
4999 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5000 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
5001
5002 if (ctx->options->chip_class >= GFX7)
5003 addr = as_vgpr(ctx, addr);
5004
5005 unsigned writemask = nir_intrinsic_write_mask(instr);
5006 while (writemask) {
5007 int start, count;
5008 u_bit_scan_consecutive_range(&writemask, &start, &count);
5009 if (count == 3 && ctx->options->chip_class == GFX6) {
5010 /* GFX6 doesn't support storing vec3, split it. */
5011 writemask |= 1u << (start + 2);
5012 count = 2;
5013 }
5014 unsigned num_bytes = count * elem_size_bytes;
5015
5016 Temp write_data = data;
5017 if (count != instr->num_components) {
5018 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5019 for (int i = 0; i < count; i++)
5020 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
5021 write_data = bld.tmp(RegType::vgpr, count);
5022 vec->definitions[0] = Definition(write_data);
5023 ctx->block->instructions.emplace_back(std::move(vec));
5024 }
5025
5026 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5027 unsigned offset = start * elem_size_bytes;
5028
5029 if (ctx->options->chip_class >= GFX7) {
5030 if (offset > 0 && ctx->options->chip_class < GFX9) {
5031 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
5032 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
5033 Temp carry = bld.tmp(bld.lm);
5034 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
5035
5036 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
5037 Operand(offset), addr0);
5038 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
5039 Operand(0u), addr1,
5040 carry).def(1).setHint(vcc);
5041
5042 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
5043
5044 offset = 0;
5045 }
5046
5047 bool global = ctx->options->chip_class >= GFX9;
5048 aco_opcode op;
5049 switch (num_bytes) {
5050 case 4:
5051 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
5052 break;
5053 case 8:
5054 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
5055 break;
5056 case 12:
5057 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
5058 break;
5059 case 16:
5060 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
5061 break;
5062 default:
5063 unreachable("store_global not implemented for this size.");
5064 }
5065
5066 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
5067 flat->operands[0] = Operand(addr);
5068 flat->operands[1] = Operand(s1);
5069 flat->operands[2] = Operand(data);
5070 flat->glc = glc;
5071 flat->dlc = false;
5072 flat->offset = offset;
5073 flat->disable_wqm = true;
5074 flat->barrier = barrier_buffer;
5075 ctx->program->needs_exact = true;
5076 ctx->block->instructions.emplace_back(std::move(flat));
5077 } else {
5078 assert(ctx->options->chip_class == GFX6);
5079
5080 aco_opcode op;
5081 switch (num_bytes) {
5082 case 4:
5083 op = aco_opcode::buffer_store_dword;
5084 break;
5085 case 8:
5086 op = aco_opcode::buffer_store_dwordx2;
5087 break;
5088 case 16:
5089 op = aco_opcode::buffer_store_dwordx4;
5090 break;
5091 default:
5092 unreachable("store_global not implemented for this size.");
5093 }
5094
5095 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5096
5097 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
5098 mubuf->operands[0] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5099 mubuf->operands[1] = Operand(rsrc);
5100 mubuf->operands[2] = Operand(0u);
5101 mubuf->operands[3] = Operand(write_data);
5102 mubuf->glc = glc;
5103 mubuf->dlc = false;
5104 mubuf->offset = offset;
5105 mubuf->addr64 = addr.type() == RegType::vgpr;
5106 mubuf->disable_wqm = true;
5107 mubuf->barrier = barrier_buffer;
5108 ctx->program->needs_exact = true;
5109 ctx->block->instructions.emplace_back(std::move(mubuf));
5110 }
5111 }
5112 }
5113
5114 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5115 {
5116 /* return the previous value if dest is ever used */
5117 bool return_previous = false;
5118 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5119 return_previous = true;
5120 break;
5121 }
5122 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5123 return_previous = true;
5124 break;
5125 }
5126
5127 Builder bld(ctx->program, ctx->block);
5128 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5129 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5130
5131 if (ctx->options->chip_class >= GFX7)
5132 addr = as_vgpr(ctx, addr);
5133
5134 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
5135 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5136 get_ssa_temp(ctx, instr->src[2].ssa), data);
5137
5138 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5139
5140 aco_opcode op32, op64;
5141
5142 if (ctx->options->chip_class >= GFX7) {
5143 bool global = ctx->options->chip_class >= GFX9;
5144 switch (instr->intrinsic) {
5145 case nir_intrinsic_global_atomic_add:
5146 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
5147 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
5148 break;
5149 case nir_intrinsic_global_atomic_imin:
5150 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
5151 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
5152 break;
5153 case nir_intrinsic_global_atomic_umin:
5154 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
5155 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
5156 break;
5157 case nir_intrinsic_global_atomic_imax:
5158 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
5159 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
5160 break;
5161 case nir_intrinsic_global_atomic_umax:
5162 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
5163 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
5164 break;
5165 case nir_intrinsic_global_atomic_and:
5166 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
5167 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
5168 break;
5169 case nir_intrinsic_global_atomic_or:
5170 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
5171 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
5172 break;
5173 case nir_intrinsic_global_atomic_xor:
5174 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
5175 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
5176 break;
5177 case nir_intrinsic_global_atomic_exchange:
5178 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
5179 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
5180 break;
5181 case nir_intrinsic_global_atomic_comp_swap:
5182 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
5183 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
5184 break;
5185 default:
5186 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5187 }
5188
5189 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5190 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
5191 flat->operands[0] = Operand(addr);
5192 flat->operands[1] = Operand(s1);
5193 flat->operands[2] = Operand(data);
5194 if (return_previous)
5195 flat->definitions[0] = Definition(dst);
5196 flat->glc = return_previous;
5197 flat->dlc = false; /* Not needed for atomics */
5198 flat->offset = 0;
5199 flat->disable_wqm = true;
5200 flat->barrier = barrier_buffer;
5201 ctx->program->needs_exact = true;
5202 ctx->block->instructions.emplace_back(std::move(flat));
5203 } else {
5204 assert(ctx->options->chip_class == GFX6);
5205
5206 switch (instr->intrinsic) {
5207 case nir_intrinsic_global_atomic_add:
5208 op32 = aco_opcode::buffer_atomic_add;
5209 op64 = aco_opcode::buffer_atomic_add_x2;
5210 break;
5211 case nir_intrinsic_global_atomic_imin:
5212 op32 = aco_opcode::buffer_atomic_smin;
5213 op64 = aco_opcode::buffer_atomic_smin_x2;
5214 break;
5215 case nir_intrinsic_global_atomic_umin:
5216 op32 = aco_opcode::buffer_atomic_umin;
5217 op64 = aco_opcode::buffer_atomic_umin_x2;
5218 break;
5219 case nir_intrinsic_global_atomic_imax:
5220 op32 = aco_opcode::buffer_atomic_smax;
5221 op64 = aco_opcode::buffer_atomic_smax_x2;
5222 break;
5223 case nir_intrinsic_global_atomic_umax:
5224 op32 = aco_opcode::buffer_atomic_umax;
5225 op64 = aco_opcode::buffer_atomic_umax_x2;
5226 break;
5227 case nir_intrinsic_global_atomic_and:
5228 op32 = aco_opcode::buffer_atomic_and;
5229 op64 = aco_opcode::buffer_atomic_and_x2;
5230 break;
5231 case nir_intrinsic_global_atomic_or:
5232 op32 = aco_opcode::buffer_atomic_or;
5233 op64 = aco_opcode::buffer_atomic_or_x2;
5234 break;
5235 case nir_intrinsic_global_atomic_xor:
5236 op32 = aco_opcode::buffer_atomic_xor;
5237 op64 = aco_opcode::buffer_atomic_xor_x2;
5238 break;
5239 case nir_intrinsic_global_atomic_exchange:
5240 op32 = aco_opcode::buffer_atomic_swap;
5241 op64 = aco_opcode::buffer_atomic_swap_x2;
5242 break;
5243 case nir_intrinsic_global_atomic_comp_swap:
5244 op32 = aco_opcode::buffer_atomic_cmpswap;
5245 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5246 break;
5247 default:
5248 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5249 }
5250
5251 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5252
5253 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5254
5255 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5256 mubuf->operands[0] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5257 mubuf->operands[1] = Operand(rsrc);
5258 mubuf->operands[2] = Operand(0u);
5259 mubuf->operands[3] = Operand(data);
5260 if (return_previous)
5261 mubuf->definitions[0] = Definition(dst);
5262 mubuf->glc = return_previous;
5263 mubuf->dlc = false;
5264 mubuf->offset = 0;
5265 mubuf->addr64 = addr.type() == RegType::vgpr;
5266 mubuf->disable_wqm = true;
5267 mubuf->barrier = barrier_buffer;
5268 ctx->program->needs_exact = true;
5269 ctx->block->instructions.emplace_back(std::move(mubuf));
5270 }
5271 }
5272
5273 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
5274 Builder bld(ctx->program, ctx->block);
5275 switch(instr->intrinsic) {
5276 case nir_intrinsic_group_memory_barrier:
5277 case nir_intrinsic_memory_barrier:
5278 bld.barrier(aco_opcode::p_memory_barrier_common);
5279 break;
5280 case nir_intrinsic_memory_barrier_buffer:
5281 bld.barrier(aco_opcode::p_memory_barrier_buffer);
5282 break;
5283 case nir_intrinsic_memory_barrier_image:
5284 bld.barrier(aco_opcode::p_memory_barrier_image);
5285 break;
5286 case nir_intrinsic_memory_barrier_shared:
5287 bld.barrier(aco_opcode::p_memory_barrier_shared);
5288 break;
5289 default:
5290 unreachable("Unimplemented memory barrier intrinsic");
5291 break;
5292 }
5293 }
5294
5295 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5296 {
5297 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
5298 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5299 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
5300 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5301 Builder bld(ctx->program, ctx->block);
5302
5303 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5304 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5305 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
5306 }
5307
5308 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5309 {
5310 unsigned writemask = nir_intrinsic_write_mask(instr);
5311 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5312 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5313 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5314 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
5315
5316 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5317 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
5318 }
5319
5320 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5321 {
5322 unsigned offset = nir_intrinsic_base(instr);
5323 Operand m = load_lds_size_m0(ctx);
5324 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5325 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5326
5327 unsigned num_operands = 3;
5328 aco_opcode op32, op64, op32_rtn, op64_rtn;
5329 switch(instr->intrinsic) {
5330 case nir_intrinsic_shared_atomic_add:
5331 op32 = aco_opcode::ds_add_u32;
5332 op64 = aco_opcode::ds_add_u64;
5333 op32_rtn = aco_opcode::ds_add_rtn_u32;
5334 op64_rtn = aco_opcode::ds_add_rtn_u64;
5335 break;
5336 case nir_intrinsic_shared_atomic_imin:
5337 op32 = aco_opcode::ds_min_i32;
5338 op64 = aco_opcode::ds_min_i64;
5339 op32_rtn = aco_opcode::ds_min_rtn_i32;
5340 op64_rtn = aco_opcode::ds_min_rtn_i64;
5341 break;
5342 case nir_intrinsic_shared_atomic_umin:
5343 op32 = aco_opcode::ds_min_u32;
5344 op64 = aco_opcode::ds_min_u64;
5345 op32_rtn = aco_opcode::ds_min_rtn_u32;
5346 op64_rtn = aco_opcode::ds_min_rtn_u64;
5347 break;
5348 case nir_intrinsic_shared_atomic_imax:
5349 op32 = aco_opcode::ds_max_i32;
5350 op64 = aco_opcode::ds_max_i64;
5351 op32_rtn = aco_opcode::ds_max_rtn_i32;
5352 op64_rtn = aco_opcode::ds_max_rtn_i64;
5353 break;
5354 case nir_intrinsic_shared_atomic_umax:
5355 op32 = aco_opcode::ds_max_u32;
5356 op64 = aco_opcode::ds_max_u64;
5357 op32_rtn = aco_opcode::ds_max_rtn_u32;
5358 op64_rtn = aco_opcode::ds_max_rtn_u64;
5359 break;
5360 case nir_intrinsic_shared_atomic_and:
5361 op32 = aco_opcode::ds_and_b32;
5362 op64 = aco_opcode::ds_and_b64;
5363 op32_rtn = aco_opcode::ds_and_rtn_b32;
5364 op64_rtn = aco_opcode::ds_and_rtn_b64;
5365 break;
5366 case nir_intrinsic_shared_atomic_or:
5367 op32 = aco_opcode::ds_or_b32;
5368 op64 = aco_opcode::ds_or_b64;
5369 op32_rtn = aco_opcode::ds_or_rtn_b32;
5370 op64_rtn = aco_opcode::ds_or_rtn_b64;
5371 break;
5372 case nir_intrinsic_shared_atomic_xor:
5373 op32 = aco_opcode::ds_xor_b32;
5374 op64 = aco_opcode::ds_xor_b64;
5375 op32_rtn = aco_opcode::ds_xor_rtn_b32;
5376 op64_rtn = aco_opcode::ds_xor_rtn_b64;
5377 break;
5378 case nir_intrinsic_shared_atomic_exchange:
5379 op32 = aco_opcode::ds_write_b32;
5380 op64 = aco_opcode::ds_write_b64;
5381 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
5382 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
5383 break;
5384 case nir_intrinsic_shared_atomic_comp_swap:
5385 op32 = aco_opcode::ds_cmpst_b32;
5386 op64 = aco_opcode::ds_cmpst_b64;
5387 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
5388 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
5389 num_operands = 4;
5390 break;
5391 default:
5392 unreachable("Unhandled shared atomic intrinsic");
5393 }
5394
5395 /* return the previous value if dest is ever used */
5396 bool return_previous = false;
5397 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5398 return_previous = true;
5399 break;
5400 }
5401 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5402 return_previous = true;
5403 break;
5404 }
5405
5406 aco_opcode op;
5407 if (data.size() == 1) {
5408 assert(instr->dest.ssa.bit_size == 32);
5409 op = return_previous ? op32_rtn : op32;
5410 } else {
5411 assert(instr->dest.ssa.bit_size == 64);
5412 op = return_previous ? op64_rtn : op64;
5413 }
5414
5415 if (offset > 65535) {
5416 Builder bld(ctx->program, ctx->block);
5417 address = bld.vadd32(bld.def(v1), Operand(offset), address);
5418 offset = 0;
5419 }
5420
5421 aco_ptr<DS_instruction> ds;
5422 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
5423 ds->operands[0] = Operand(address);
5424 ds->operands[1] = Operand(data);
5425 if (num_operands == 4)
5426 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
5427 ds->operands[num_operands - 1] = m;
5428 ds->offset0 = offset;
5429 if (return_previous)
5430 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
5431 ctx->block->instructions.emplace_back(std::move(ds));
5432 }
5433
5434 Temp get_scratch_resource(isel_context *ctx)
5435 {
5436 Builder bld(ctx->program, ctx->block);
5437 Temp scratch_addr = ctx->program->private_segment_buffer;
5438 if (ctx->stage != compute_cs)
5439 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
5440
5441 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
5442 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
5443
5444 if (ctx->program->chip_class >= GFX10) {
5445 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5446 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5447 S_008F0C_RESOURCE_LEVEL(1);
5448 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
5449 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5450 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5451 }
5452
5453 /* older generations need element size = 16 bytes. element size removed in GFX9 */
5454 if (ctx->program->chip_class <= GFX8)
5455 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
5456
5457 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
5458 }
5459
5460 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5461 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
5462 Builder bld(ctx->program, ctx->block);
5463 Temp rsrc = get_scratch_resource(ctx);
5464 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5465 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5466
5467 aco_opcode op;
5468 switch (dst.size()) {
5469 case 1:
5470 op = aco_opcode::buffer_load_dword;
5471 break;
5472 case 2:
5473 op = aco_opcode::buffer_load_dwordx2;
5474 break;
5475 case 3:
5476 op = aco_opcode::buffer_load_dwordx3;
5477 break;
5478 case 4:
5479 op = aco_opcode::buffer_load_dwordx4;
5480 break;
5481 case 6:
5482 case 8: {
5483 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5484 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
5485 bld.def(v4), offset, rsrc,
5486 ctx->program->scratch_offset, 0, true);
5487 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
5488 aco_opcode::buffer_load_dwordx4,
5489 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
5490 offset, rsrc, ctx->program->scratch_offset, 16, true);
5491 emit_split_vector(ctx, lower, 2);
5492 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
5493 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
5494 if (dst.size() == 8) {
5495 emit_split_vector(ctx, upper, 2);
5496 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
5497 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
5498 } else {
5499 elems[2] = upper;
5500 }
5501
5502 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
5503 Format::PSEUDO, dst.size() / 2, 1)};
5504 for (unsigned i = 0; i < dst.size() / 2; i++)
5505 vec->operands[i] = Operand(elems[i]);
5506 vec->definitions[0] = Definition(dst);
5507 bld.insert(std::move(vec));
5508 ctx->allocated_vec.emplace(dst.id(), elems);
5509 return;
5510 }
5511 default:
5512 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
5513 }
5514
5515 bld.mubuf(op, Definition(dst), offset, rsrc, ctx->program->scratch_offset, 0, true);
5516 emit_split_vector(ctx, dst, instr->num_components);
5517 }
5518
5519 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5520 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
5521 Builder bld(ctx->program, ctx->block);
5522 Temp rsrc = get_scratch_resource(ctx);
5523 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5524 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5525
5526 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5527 unsigned writemask = nir_intrinsic_write_mask(instr);
5528
5529 while (writemask) {
5530 int start, count;
5531 u_bit_scan_consecutive_range(&writemask, &start, &count);
5532 int num_bytes = count * elem_size_bytes;
5533
5534 if (num_bytes > 16) {
5535 assert(elem_size_bytes == 8);
5536 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5537 count = 2;
5538 num_bytes = 16;
5539 }
5540
5541 // TODO: check alignment of sub-dword stores
5542 // TODO: split 3 bytes. there is no store instruction for that
5543
5544 Temp write_data;
5545 if (count != instr->num_components) {
5546 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5547 for (int i = 0; i < count; i++) {
5548 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
5549 vec->operands[i] = Operand(elem);
5550 }
5551 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
5552 vec->definitions[0] = Definition(write_data);
5553 ctx->block->instructions.emplace_back(std::move(vec));
5554 } else {
5555 write_data = data;
5556 }
5557
5558 aco_opcode op;
5559 switch (num_bytes) {
5560 case 4:
5561 op = aco_opcode::buffer_store_dword;
5562 break;
5563 case 8:
5564 op = aco_opcode::buffer_store_dwordx2;
5565 break;
5566 case 12:
5567 op = aco_opcode::buffer_store_dwordx3;
5568 break;
5569 case 16:
5570 op = aco_opcode::buffer_store_dwordx4;
5571 break;
5572 default:
5573 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
5574 }
5575
5576 bld.mubuf(op, offset, rsrc, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
5577 }
5578 }
5579
5580 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
5581 uint8_t log2_ps_iter_samples;
5582 if (ctx->program->info->ps.force_persample) {
5583 log2_ps_iter_samples =
5584 util_logbase2(ctx->options->key.fs.num_samples);
5585 } else {
5586 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
5587 }
5588
5589 /* The bit pattern matches that used by fixed function fragment
5590 * processing. */
5591 static const unsigned ps_iter_masks[] = {
5592 0xffff, /* not used */
5593 0x5555,
5594 0x1111,
5595 0x0101,
5596 0x0001,
5597 };
5598 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
5599
5600 Builder bld(ctx->program, ctx->block);
5601
5602 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
5603 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
5604 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
5605 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
5606 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5607 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
5608 }
5609
5610 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
5611 Builder bld(ctx->program, ctx->block);
5612
5613 unsigned stream = nir_intrinsic_stream_id(instr);
5614 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5615 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
5616 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
5617
5618 /* get GSVS ring */
5619 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
5620
5621 unsigned num_components =
5622 ctx->program->info->gs.num_stream_output_components[stream];
5623 assert(num_components);
5624
5625 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
5626 unsigned stream_offset = 0;
5627 for (unsigned i = 0; i < stream; i++) {
5628 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
5629 stream_offset += prev_stride * ctx->program->wave_size;
5630 }
5631
5632 /* Limit on the stride field for <= GFX7. */
5633 assert(stride < (1 << 14));
5634
5635 Temp gsvs_dwords[4];
5636 for (unsigned i = 0; i < 4; i++)
5637 gsvs_dwords[i] = bld.tmp(s1);
5638 bld.pseudo(aco_opcode::p_split_vector,
5639 Definition(gsvs_dwords[0]),
5640 Definition(gsvs_dwords[1]),
5641 Definition(gsvs_dwords[2]),
5642 Definition(gsvs_dwords[3]),
5643 gsvs_ring);
5644
5645 if (stream_offset) {
5646 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
5647
5648 Temp carry = bld.tmp(s1);
5649 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
5650 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
5651 }
5652
5653 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
5654 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
5655
5656 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5657 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
5658
5659 unsigned offset = 0;
5660 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
5661 if (ctx->program->info->gs.output_streams[i] != stream)
5662 continue;
5663
5664 for (unsigned j = 0; j < 4; j++) {
5665 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
5666 continue;
5667
5668 if (ctx->outputs.mask[i] & (1 << j)) {
5669 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
5670 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
5671 if (const_offset >= 4096u) {
5672 if (vaddr_offset.isUndefined())
5673 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
5674 else
5675 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
5676 const_offset %= 4096u;
5677 }
5678
5679 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
5680 mtbuf->operands[0] = vaddr_offset;
5681 mtbuf->operands[1] = Operand(gsvs_ring);
5682 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
5683 mtbuf->operands[3] = Operand(ctx->outputs.outputs[i][j]);
5684 mtbuf->offen = !vaddr_offset.isUndefined();
5685 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
5686 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
5687 mtbuf->offset = const_offset;
5688 mtbuf->glc = true;
5689 mtbuf->slc = true;
5690 mtbuf->barrier = barrier_gs_data;
5691 mtbuf->can_reorder = true;
5692 bld.insert(std::move(mtbuf));
5693 }
5694
5695 offset += ctx->shader->info.gs.vertices_out;
5696 }
5697
5698 /* outputs for the next vertex are undefined and keeping them around can
5699 * create invalid IR with control flow */
5700 ctx->outputs.mask[i] = 0;
5701 }
5702
5703 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
5704 }
5705
5706 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
5707 {
5708 Builder bld(ctx->program, ctx->block);
5709
5710 if (cluster_size == 1) {
5711 return src;
5712 } if (op == nir_op_iand && cluster_size == 4) {
5713 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
5714 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5715 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
5716 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
5717 } else if (op == nir_op_ior && cluster_size == 4) {
5718 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
5719 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
5720 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
5721 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
5722 //subgroupAnd(val) -> (exec & ~val) == 0
5723 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
5724 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
5725 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
5726 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
5727 //subgroupOr(val) -> (val & exec) != 0
5728 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
5729 return bool_to_vector_condition(ctx, tmp);
5730 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
5731 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
5732 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5733 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
5734 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
5735 return bool_to_vector_condition(ctx, tmp);
5736 } else {
5737 //subgroupClustered{And,Or,Xor}(val, n) ->
5738 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
5739 //cluster_offset = ~(n - 1) & lane_id
5740 //cluster_mask = ((1 << n) - 1)
5741 //subgroupClusteredAnd():
5742 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
5743 //subgroupClusteredOr():
5744 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
5745 //subgroupClusteredXor():
5746 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
5747 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
5748 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
5749
5750 Temp tmp;
5751 if (op == nir_op_iand)
5752 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5753 else
5754 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5755
5756 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
5757
5758 if (ctx->program->chip_class <= GFX7)
5759 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
5760 else if (ctx->program->wave_size == 64)
5761 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
5762 else
5763 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
5764 tmp = emit_extract_vector(ctx, tmp, 0, v1);
5765 if (cluster_mask != 0xffffffff)
5766 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
5767
5768 Definition cmp_def = Definition();
5769 if (op == nir_op_iand) {
5770 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
5771 } else if (op == nir_op_ior) {
5772 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5773 } else if (op == nir_op_ixor) {
5774 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
5775 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
5776 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5777 }
5778 cmp_def.setHint(vcc);
5779 return cmp_def.getTemp();
5780 }
5781 }
5782
5783 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
5784 {
5785 Builder bld(ctx->program, ctx->block);
5786
5787 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
5788 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
5789 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
5790 Temp tmp;
5791 if (op == nir_op_iand)
5792 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5793 else
5794 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
5795
5796 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
5797 Temp lo = lohi.def(0).getTemp();
5798 Temp hi = lohi.def(1).getTemp();
5799 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
5800
5801 Definition cmp_def = Definition();
5802 if (op == nir_op_iand)
5803 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5804 else if (op == nir_op_ior)
5805 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5806 else if (op == nir_op_ixor)
5807 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
5808 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
5809 cmp_def.setHint(vcc);
5810 return cmp_def.getTemp();
5811 }
5812
5813 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
5814 {
5815 Builder bld(ctx->program, ctx->block);
5816
5817 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
5818 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
5819 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
5820 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
5821 if (op == nir_op_iand)
5822 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5823 else if (op == nir_op_ior)
5824 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5825 else if (op == nir_op_ixor)
5826 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5827
5828 assert(false);
5829 return Temp();
5830 }
5831
5832 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
5833 {
5834 Builder bld(ctx->program, ctx->block);
5835 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
5836 if (src.regClass().type() == RegType::vgpr) {
5837 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
5838 } else if (src.regClass() == s1) {
5839 bld.sop1(aco_opcode::s_mov_b32, dst, src);
5840 } else if (src.regClass() == s2) {
5841 bld.sop1(aco_opcode::s_mov_b64, dst, src);
5842 } else {
5843 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5844 nir_print_instr(&instr->instr, stderr);
5845 fprintf(stderr, "\n");
5846 }
5847 }
5848
5849 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
5850 {
5851 Builder bld(ctx->program, ctx->block);
5852 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
5853 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
5854 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
5855
5856 Temp ddx_1, ddx_2, ddy_1, ddy_2;
5857 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
5858 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
5859 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
5860
5861 /* Build DD X/Y */
5862 if (ctx->program->chip_class >= GFX8) {
5863 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
5864 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
5865 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
5866 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
5867 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
5868 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
5869 } else {
5870 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
5871 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
5872 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
5873 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
5874 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
5875 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
5876 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
5877 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
5878 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
5879 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
5880 }
5881
5882 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
5883 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
5884 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
5885 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
5886 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
5887 Temp wqm1 = bld.tmp(v1);
5888 emit_wqm(ctx, tmp1, wqm1, true);
5889 Temp wqm2 = bld.tmp(v1);
5890 emit_wqm(ctx, tmp2, wqm2, true);
5891 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
5892 return;
5893 }
5894
5895 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
5896 {
5897 Builder bld(ctx->program, ctx->block);
5898 switch(instr->intrinsic) {
5899 case nir_intrinsic_load_barycentric_sample:
5900 case nir_intrinsic_load_barycentric_pixel:
5901 case nir_intrinsic_load_barycentric_centroid: {
5902 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
5903 Temp bary = Temp(0, s2);
5904 switch (mode) {
5905 case INTERP_MODE_SMOOTH:
5906 case INTERP_MODE_NONE:
5907 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
5908 bary = get_arg(ctx, ctx->args->ac.persp_center);
5909 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
5910 bary = ctx->persp_centroid;
5911 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
5912 bary = get_arg(ctx, ctx->args->ac.persp_sample);
5913 break;
5914 case INTERP_MODE_NOPERSPECTIVE:
5915 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
5916 bary = get_arg(ctx, ctx->args->ac.linear_center);
5917 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
5918 bary = ctx->linear_centroid;
5919 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
5920 bary = get_arg(ctx, ctx->args->ac.linear_sample);
5921 break;
5922 default:
5923 break;
5924 }
5925 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5926 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
5927 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
5928 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5929 Operand(p1), Operand(p2));
5930 emit_split_vector(ctx, dst, 2);
5931 break;
5932 }
5933 case nir_intrinsic_load_barycentric_at_sample: {
5934 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
5935 switch (ctx->options->key.fs.num_samples) {
5936 case 2: sample_pos_offset += 1 << 3; break;
5937 case 4: sample_pos_offset += 3 << 3; break;
5938 case 8: sample_pos_offset += 7 << 3; break;
5939 default: break;
5940 }
5941 Temp sample_pos;
5942 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5943 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
5944 Temp private_segment_buffer = ctx->program->private_segment_buffer;
5945 if (addr.type() == RegType::sgpr) {
5946 Operand offset;
5947 if (const_addr) {
5948 sample_pos_offset += const_addr->u32 << 3;
5949 offset = Operand(sample_pos_offset);
5950 } else if (ctx->options->chip_class >= GFX9) {
5951 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
5952 } else {
5953 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
5954 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
5955 }
5956
5957 Operand off = bld.copy(bld.def(s1), Operand(offset));
5958 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
5959
5960 } else if (ctx->options->chip_class >= GFX9) {
5961 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
5962 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
5963 } else if (ctx->options->chip_class >= GFX7) {
5964 /* addr += private_segment_buffer + sample_pos_offset */
5965 Temp tmp0 = bld.tmp(s1);
5966 Temp tmp1 = bld.tmp(s1);
5967 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
5968 Definition scc_tmp = bld.def(s1, scc);
5969 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
5970 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
5971 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
5972 Temp pck0 = bld.tmp(v1);
5973 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
5974 tmp1 = as_vgpr(ctx, tmp1);
5975 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
5976 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
5977
5978 /* sample_pos = flat_load_dwordx2 addr */
5979 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
5980 } else {
5981 assert(ctx->options->chip_class == GFX6);
5982
5983 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5984 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5985 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
5986
5987 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
5988 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
5989
5990 sample_pos = bld.tmp(v2);
5991
5992 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
5993 load->definitions[0] = Definition(sample_pos);
5994 load->operands[0] = Operand(addr);
5995 load->operands[1] = Operand(rsrc);
5996 load->operands[2] = Operand(0u);
5997 load->offset = sample_pos_offset;
5998 load->offen = 0;
5999 load->addr64 = true;
6000 load->glc = false;
6001 load->dlc = false;
6002 load->disable_wqm = false;
6003 load->barrier = barrier_none;
6004 load->can_reorder = true;
6005 ctx->block->instructions.emplace_back(std::move(load));
6006 }
6007
6008 /* sample_pos -= 0.5 */
6009 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
6010 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
6011 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
6012 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
6013 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
6014
6015 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6016 break;
6017 }
6018 case nir_intrinsic_load_barycentric_at_offset: {
6019 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
6020 RegClass rc = RegClass(offset.type(), 1);
6021 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
6022 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
6023 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6024 break;
6025 }
6026 case nir_intrinsic_load_front_face: {
6027 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6028 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
6029 break;
6030 }
6031 case nir_intrinsic_load_view_index:
6032 case nir_intrinsic_load_layer_id: {
6033 if (instr->intrinsic == nir_intrinsic_load_view_index && (ctx->stage & (sw_vs | sw_gs))) {
6034 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6035 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
6036 break;
6037 }
6038
6039 unsigned idx = nir_intrinsic_base(instr);
6040 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6041 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
6042 break;
6043 }
6044 case nir_intrinsic_load_frag_coord: {
6045 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
6046 break;
6047 }
6048 case nir_intrinsic_load_sample_pos: {
6049 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
6050 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
6051 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6052 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
6053 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
6054 break;
6055 }
6056 case nir_intrinsic_load_interpolated_input:
6057 visit_load_interpolated_input(ctx, instr);
6058 break;
6059 case nir_intrinsic_store_output:
6060 visit_store_output(ctx, instr);
6061 break;
6062 case nir_intrinsic_load_input:
6063 visit_load_input(ctx, instr);
6064 break;
6065 case nir_intrinsic_load_per_vertex_input:
6066 visit_load_per_vertex_input(ctx, instr);
6067 break;
6068 case nir_intrinsic_load_ubo:
6069 visit_load_ubo(ctx, instr);
6070 break;
6071 case nir_intrinsic_load_push_constant:
6072 visit_load_push_constant(ctx, instr);
6073 break;
6074 case nir_intrinsic_load_constant:
6075 visit_load_constant(ctx, instr);
6076 break;
6077 case nir_intrinsic_vulkan_resource_index:
6078 visit_load_resource(ctx, instr);
6079 break;
6080 case nir_intrinsic_discard:
6081 visit_discard(ctx, instr);
6082 break;
6083 case nir_intrinsic_discard_if:
6084 visit_discard_if(ctx, instr);
6085 break;
6086 case nir_intrinsic_load_shared:
6087 visit_load_shared(ctx, instr);
6088 break;
6089 case nir_intrinsic_store_shared:
6090 visit_store_shared(ctx, instr);
6091 break;
6092 case nir_intrinsic_shared_atomic_add:
6093 case nir_intrinsic_shared_atomic_imin:
6094 case nir_intrinsic_shared_atomic_umin:
6095 case nir_intrinsic_shared_atomic_imax:
6096 case nir_intrinsic_shared_atomic_umax:
6097 case nir_intrinsic_shared_atomic_and:
6098 case nir_intrinsic_shared_atomic_or:
6099 case nir_intrinsic_shared_atomic_xor:
6100 case nir_intrinsic_shared_atomic_exchange:
6101 case nir_intrinsic_shared_atomic_comp_swap:
6102 visit_shared_atomic(ctx, instr);
6103 break;
6104 case nir_intrinsic_image_deref_load:
6105 visit_image_load(ctx, instr);
6106 break;
6107 case nir_intrinsic_image_deref_store:
6108 visit_image_store(ctx, instr);
6109 break;
6110 case nir_intrinsic_image_deref_atomic_add:
6111 case nir_intrinsic_image_deref_atomic_umin:
6112 case nir_intrinsic_image_deref_atomic_imin:
6113 case nir_intrinsic_image_deref_atomic_umax:
6114 case nir_intrinsic_image_deref_atomic_imax:
6115 case nir_intrinsic_image_deref_atomic_and:
6116 case nir_intrinsic_image_deref_atomic_or:
6117 case nir_intrinsic_image_deref_atomic_xor:
6118 case nir_intrinsic_image_deref_atomic_exchange:
6119 case nir_intrinsic_image_deref_atomic_comp_swap:
6120 visit_image_atomic(ctx, instr);
6121 break;
6122 case nir_intrinsic_image_deref_size:
6123 visit_image_size(ctx, instr);
6124 break;
6125 case nir_intrinsic_load_ssbo:
6126 visit_load_ssbo(ctx, instr);
6127 break;
6128 case nir_intrinsic_store_ssbo:
6129 visit_store_ssbo(ctx, instr);
6130 break;
6131 case nir_intrinsic_load_global:
6132 visit_load_global(ctx, instr);
6133 break;
6134 case nir_intrinsic_store_global:
6135 visit_store_global(ctx, instr);
6136 break;
6137 case nir_intrinsic_global_atomic_add:
6138 case nir_intrinsic_global_atomic_imin:
6139 case nir_intrinsic_global_atomic_umin:
6140 case nir_intrinsic_global_atomic_imax:
6141 case nir_intrinsic_global_atomic_umax:
6142 case nir_intrinsic_global_atomic_and:
6143 case nir_intrinsic_global_atomic_or:
6144 case nir_intrinsic_global_atomic_xor:
6145 case nir_intrinsic_global_atomic_exchange:
6146 case nir_intrinsic_global_atomic_comp_swap:
6147 visit_global_atomic(ctx, instr);
6148 break;
6149 case nir_intrinsic_ssbo_atomic_add:
6150 case nir_intrinsic_ssbo_atomic_imin:
6151 case nir_intrinsic_ssbo_atomic_umin:
6152 case nir_intrinsic_ssbo_atomic_imax:
6153 case nir_intrinsic_ssbo_atomic_umax:
6154 case nir_intrinsic_ssbo_atomic_and:
6155 case nir_intrinsic_ssbo_atomic_or:
6156 case nir_intrinsic_ssbo_atomic_xor:
6157 case nir_intrinsic_ssbo_atomic_exchange:
6158 case nir_intrinsic_ssbo_atomic_comp_swap:
6159 visit_atomic_ssbo(ctx, instr);
6160 break;
6161 case nir_intrinsic_load_scratch:
6162 visit_load_scratch(ctx, instr);
6163 break;
6164 case nir_intrinsic_store_scratch:
6165 visit_store_scratch(ctx, instr);
6166 break;
6167 case nir_intrinsic_get_buffer_size:
6168 visit_get_buffer_size(ctx, instr);
6169 break;
6170 case nir_intrinsic_control_barrier: {
6171 unsigned* bsize = ctx->program->info->cs.block_size;
6172 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
6173 if (workgroup_size > ctx->program->wave_size)
6174 bld.sopp(aco_opcode::s_barrier);
6175 break;
6176 }
6177 case nir_intrinsic_group_memory_barrier:
6178 case nir_intrinsic_memory_barrier:
6179 case nir_intrinsic_memory_barrier_buffer:
6180 case nir_intrinsic_memory_barrier_image:
6181 case nir_intrinsic_memory_barrier_shared:
6182 emit_memory_barrier(ctx, instr);
6183 break;
6184 case nir_intrinsic_memory_barrier_tcs_patch:
6185 break;
6186 case nir_intrinsic_load_num_work_groups: {
6187 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6188 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
6189 emit_split_vector(ctx, dst, 3);
6190 break;
6191 }
6192 case nir_intrinsic_load_local_invocation_id: {
6193 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6194 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
6195 emit_split_vector(ctx, dst, 3);
6196 break;
6197 }
6198 case nir_intrinsic_load_work_group_id: {
6199 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6200 struct ac_arg *args = ctx->args->ac.workgroup_ids;
6201 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6202 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
6203 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
6204 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
6205 emit_split_vector(ctx, dst, 3);
6206 break;
6207 }
6208 case nir_intrinsic_load_local_invocation_index: {
6209 Temp id = emit_mbcnt(ctx, bld.def(v1));
6210
6211 /* The tg_size bits [6:11] contain the subgroup id,
6212 * we need this multiplied by the wave size, and then OR the thread id to it.
6213 */
6214 if (ctx->program->wave_size == 64) {
6215 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
6216 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
6217 get_arg(ctx, ctx->args->ac.tg_size));
6218 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
6219 } else {
6220 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
6221 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
6222 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6223 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
6224 }
6225 break;
6226 }
6227 case nir_intrinsic_load_subgroup_id: {
6228 if (ctx->stage == compute_cs) {
6229 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
6230 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6231 } else {
6232 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
6233 }
6234 break;
6235 }
6236 case nir_intrinsic_load_subgroup_invocation: {
6237 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
6238 break;
6239 }
6240 case nir_intrinsic_load_num_subgroups: {
6241 if (ctx->stage == compute_cs)
6242 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
6243 get_arg(ctx, ctx->args->ac.tg_size));
6244 else
6245 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
6246 break;
6247 }
6248 case nir_intrinsic_ballot: {
6249 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6250 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6251 Definition tmp = bld.def(dst.regClass());
6252 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
6253 if (instr->src[0].ssa->bit_size == 1) {
6254 assert(src.regClass() == bld.lm);
6255 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
6256 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
6257 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
6258 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
6259 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
6260 } else {
6261 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6262 nir_print_instr(&instr->instr, stderr);
6263 fprintf(stderr, "\n");
6264 }
6265 if (dst.size() != bld.lm.size()) {
6266 /* Wave32 with ballot size set to 64 */
6267 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
6268 }
6269 emit_wqm(ctx, tmp.getTemp(), dst);
6270 break;
6271 }
6272 case nir_intrinsic_shuffle:
6273 case nir_intrinsic_read_invocation: {
6274 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6275 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
6276 emit_uniform_subgroup(ctx, instr, src);
6277 } else {
6278 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
6279 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
6280 tid = bld.as_uniform(tid);
6281 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6282 if (src.regClass() == v1) {
6283 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
6284 } else if (src.regClass() == v2) {
6285 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6286 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6287 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
6288 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
6289 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6290 emit_split_vector(ctx, dst, 2);
6291 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
6292 assert(src.regClass() == bld.lm);
6293 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
6294 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6295 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
6296 assert(src.regClass() == bld.lm);
6297 Temp tmp;
6298 if (ctx->program->chip_class <= GFX7)
6299 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
6300 else if (ctx->program->wave_size == 64)
6301 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
6302 else
6303 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
6304 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6305 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
6306 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
6307 } else {
6308 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6309 nir_print_instr(&instr->instr, stderr);
6310 fprintf(stderr, "\n");
6311 }
6312 }
6313 break;
6314 }
6315 case nir_intrinsic_load_sample_id: {
6316 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6317 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6318 break;
6319 }
6320 case nir_intrinsic_load_sample_mask_in: {
6321 visit_load_sample_mask_in(ctx, instr);
6322 break;
6323 }
6324 case nir_intrinsic_read_first_invocation: {
6325 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6326 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6327 if (src.regClass() == v1) {
6328 emit_wqm(ctx,
6329 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
6330 dst);
6331 } else if (src.regClass() == v2) {
6332 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6333 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6334 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
6335 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
6336 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6337 emit_split_vector(ctx, dst, 2);
6338 } else if (instr->dest.ssa.bit_size == 1) {
6339 assert(src.regClass() == bld.lm);
6340 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
6341 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
6342 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6343 } else if (src.regClass() == s1) {
6344 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
6345 } else if (src.regClass() == s2) {
6346 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
6347 } else {
6348 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6349 nir_print_instr(&instr->instr, stderr);
6350 fprintf(stderr, "\n");
6351 }
6352 break;
6353 }
6354 case nir_intrinsic_vote_all: {
6355 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6356 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6357 assert(src.regClass() == bld.lm);
6358 assert(dst.regClass() == bld.lm);
6359
6360 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6361 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6362 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
6363 break;
6364 }
6365 case nir_intrinsic_vote_any: {
6366 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6367 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6368 assert(src.regClass() == bld.lm);
6369 assert(dst.regClass() == bld.lm);
6370
6371 Temp tmp = bool_to_scalar_condition(ctx, src);
6372 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6373 break;
6374 }
6375 case nir_intrinsic_reduce:
6376 case nir_intrinsic_inclusive_scan:
6377 case nir_intrinsic_exclusive_scan: {
6378 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6379 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6380 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
6381 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
6382 nir_intrinsic_cluster_size(instr) : 0;
6383 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
6384
6385 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
6386 emit_uniform_subgroup(ctx, instr, src);
6387 } else if (instr->dest.ssa.bit_size == 1) {
6388 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
6389 op = nir_op_iand;
6390 else if (op == nir_op_iadd)
6391 op = nir_op_ixor;
6392 else if (op == nir_op_umax || op == nir_op_imax)
6393 op = nir_op_ior;
6394 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
6395
6396 switch (instr->intrinsic) {
6397 case nir_intrinsic_reduce:
6398 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
6399 break;
6400 case nir_intrinsic_exclusive_scan:
6401 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
6402 break;
6403 case nir_intrinsic_inclusive_scan:
6404 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
6405 break;
6406 default:
6407 assert(false);
6408 }
6409 } else if (cluster_size == 1) {
6410 bld.copy(Definition(dst), src);
6411 } else {
6412 src = as_vgpr(ctx, src);
6413
6414 ReduceOp reduce_op;
6415 switch (op) {
6416 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
6417 CASE(iadd)
6418 CASE(imul)
6419 CASE(fadd)
6420 CASE(fmul)
6421 CASE(imin)
6422 CASE(umin)
6423 CASE(fmin)
6424 CASE(imax)
6425 CASE(umax)
6426 CASE(fmax)
6427 CASE(iand)
6428 CASE(ior)
6429 CASE(ixor)
6430 default:
6431 unreachable("unknown reduction op");
6432 #undef CASE
6433 }
6434
6435 aco_opcode aco_op;
6436 switch (instr->intrinsic) {
6437 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
6438 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
6439 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
6440 default:
6441 unreachable("unknown reduce intrinsic");
6442 }
6443
6444 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
6445 reduce->operands[0] = Operand(src);
6446 // filled in by aco_reduce_assign.cpp, used internally as part of the
6447 // reduce sequence
6448 assert(dst.size() == 1 || dst.size() == 2);
6449 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
6450 reduce->operands[2] = Operand(v1.as_linear());
6451
6452 Temp tmp_dst = bld.tmp(dst.regClass());
6453 reduce->definitions[0] = Definition(tmp_dst);
6454 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
6455 reduce->definitions[2] = Definition();
6456 reduce->definitions[3] = Definition(scc, s1);
6457 reduce->definitions[4] = Definition();
6458 reduce->reduce_op = reduce_op;
6459 reduce->cluster_size = cluster_size;
6460 ctx->block->instructions.emplace_back(std::move(reduce));
6461
6462 emit_wqm(ctx, tmp_dst, dst);
6463 }
6464 break;
6465 }
6466 case nir_intrinsic_quad_broadcast: {
6467 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6468 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6469 emit_uniform_subgroup(ctx, instr, src);
6470 } else {
6471 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6472 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
6473 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
6474
6475 if (instr->dest.ssa.bit_size == 1) {
6476 assert(src.regClass() == bld.lm);
6477 assert(dst.regClass() == bld.lm);
6478 uint32_t half_mask = 0x11111111u << lane;
6479 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
6480 Temp tmp = bld.tmp(bld.lm);
6481 bld.sop1(Builder::s_wqm, Definition(tmp),
6482 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
6483 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
6484 emit_wqm(ctx, tmp, dst);
6485 } else if (instr->dest.ssa.bit_size == 32) {
6486 if (ctx->program->chip_class >= GFX8)
6487 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
6488 else
6489 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
6490 } else if (instr->dest.ssa.bit_size == 64) {
6491 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6492 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6493 if (ctx->program->chip_class >= GFX8) {
6494 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6495 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6496 } else {
6497 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
6498 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
6499 }
6500 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6501 emit_split_vector(ctx, dst, 2);
6502 } else {
6503 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6504 nir_print_instr(&instr->instr, stderr);
6505 fprintf(stderr, "\n");
6506 }
6507 }
6508 break;
6509 }
6510 case nir_intrinsic_quad_swap_horizontal:
6511 case nir_intrinsic_quad_swap_vertical:
6512 case nir_intrinsic_quad_swap_diagonal:
6513 case nir_intrinsic_quad_swizzle_amd: {
6514 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6515 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6516 emit_uniform_subgroup(ctx, instr, src);
6517 break;
6518 }
6519 uint16_t dpp_ctrl = 0;
6520 switch (instr->intrinsic) {
6521 case nir_intrinsic_quad_swap_horizontal:
6522 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
6523 break;
6524 case nir_intrinsic_quad_swap_vertical:
6525 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
6526 break;
6527 case nir_intrinsic_quad_swap_diagonal:
6528 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
6529 break;
6530 case nir_intrinsic_quad_swizzle_amd:
6531 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
6532 break;
6533 default:
6534 break;
6535 }
6536 if (ctx->program->chip_class < GFX8)
6537 dpp_ctrl |= (1 << 15);
6538
6539 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6540 if (instr->dest.ssa.bit_size == 1) {
6541 assert(src.regClass() == bld.lm);
6542 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
6543 if (ctx->program->chip_class >= GFX8)
6544 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6545 else
6546 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6547 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
6548 emit_wqm(ctx, tmp, dst);
6549 } else if (instr->dest.ssa.bit_size == 32) {
6550 Temp tmp;
6551 if (ctx->program->chip_class >= GFX8)
6552 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6553 else
6554 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6555 emit_wqm(ctx, tmp, dst);
6556 } else if (instr->dest.ssa.bit_size == 64) {
6557 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6558 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6559 if (ctx->program->chip_class >= GFX8) {
6560 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6561 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6562 } else {
6563 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
6564 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
6565 }
6566 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6567 emit_split_vector(ctx, dst, 2);
6568 } else {
6569 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6570 nir_print_instr(&instr->instr, stderr);
6571 fprintf(stderr, "\n");
6572 }
6573 break;
6574 }
6575 case nir_intrinsic_masked_swizzle_amd: {
6576 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6577 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6578 emit_uniform_subgroup(ctx, instr, src);
6579 break;
6580 }
6581 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6582 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
6583 if (dst.regClass() == v1) {
6584 emit_wqm(ctx,
6585 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
6586 dst);
6587 } else if (dst.regClass() == v2) {
6588 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6589 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6590 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
6591 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
6592 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6593 emit_split_vector(ctx, dst, 2);
6594 } else {
6595 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6596 nir_print_instr(&instr->instr, stderr);
6597 fprintf(stderr, "\n");
6598 }
6599 break;
6600 }
6601 case nir_intrinsic_write_invocation_amd: {
6602 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6603 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
6604 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
6605 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6606 if (dst.regClass() == v1) {
6607 /* src2 is ignored for writelane. RA assigns the same reg for dst */
6608 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
6609 } else if (dst.regClass() == v2) {
6610 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
6611 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
6612 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
6613 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
6614 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
6615 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
6616 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6617 emit_split_vector(ctx, dst, 2);
6618 } else {
6619 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6620 nir_print_instr(&instr->instr, stderr);
6621 fprintf(stderr, "\n");
6622 }
6623 break;
6624 }
6625 case nir_intrinsic_mbcnt_amd: {
6626 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6627 RegClass rc = RegClass(src.type(), 1);
6628 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
6629 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
6630 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6631 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
6632 emit_wqm(ctx, wqm_tmp, dst);
6633 break;
6634 }
6635 case nir_intrinsic_load_helper_invocation: {
6636 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6637 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
6638 ctx->block->kind |= block_kind_needs_lowering;
6639 ctx->program->needs_exact = true;
6640 break;
6641 }
6642 case nir_intrinsic_is_helper_invocation: {
6643 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6644 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
6645 ctx->block->kind |= block_kind_needs_lowering;
6646 ctx->program->needs_exact = true;
6647 break;
6648 }
6649 case nir_intrinsic_demote:
6650 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
6651
6652 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
6653 ctx->cf_info.exec_potentially_empty = true;
6654 ctx->block->kind |= block_kind_uses_demote;
6655 ctx->program->needs_exact = true;
6656 break;
6657 case nir_intrinsic_demote_if: {
6658 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6659 assert(src.regClass() == bld.lm);
6660 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6661 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
6662
6663 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
6664 ctx->cf_info.exec_potentially_empty = true;
6665 ctx->block->kind |= block_kind_uses_demote;
6666 ctx->program->needs_exact = true;
6667 break;
6668 }
6669 case nir_intrinsic_first_invocation: {
6670 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
6671 get_ssa_temp(ctx, &instr->dest.ssa));
6672 break;
6673 }
6674 case nir_intrinsic_shader_clock:
6675 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
6676 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
6677 break;
6678 case nir_intrinsic_load_vertex_id_zero_base: {
6679 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6680 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
6681 break;
6682 }
6683 case nir_intrinsic_load_first_vertex: {
6684 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6685 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
6686 break;
6687 }
6688 case nir_intrinsic_load_base_instance: {
6689 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6690 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
6691 break;
6692 }
6693 case nir_intrinsic_load_instance_id: {
6694 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6695 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
6696 break;
6697 }
6698 case nir_intrinsic_load_draw_id: {
6699 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6700 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
6701 break;
6702 }
6703 case nir_intrinsic_load_invocation_id: {
6704 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
6705 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6706 if (ctx->options->chip_class >= GFX10)
6707 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
6708 else
6709 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
6710 break;
6711 }
6712 case nir_intrinsic_load_primitive_id: {
6713 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
6714 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6715 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
6716 break;
6717 }
6718 case nir_intrinsic_emit_vertex_with_counter: {
6719 visit_emit_vertex_with_counter(ctx, instr);
6720 break;
6721 }
6722 case nir_intrinsic_end_primitive_with_counter: {
6723 unsigned stream = nir_intrinsic_stream_id(instr);
6724 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
6725 break;
6726 }
6727 case nir_intrinsic_set_vertex_count: {
6728 /* unused, the HW keeps track of this for us */
6729 break;
6730 }
6731 default:
6732 fprintf(stderr, "Unimplemented intrinsic instr: ");
6733 nir_print_instr(&instr->instr, stderr);
6734 fprintf(stderr, "\n");
6735 abort();
6736
6737 break;
6738 }
6739 }
6740
6741
6742 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
6743 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
6744 enum glsl_base_type *stype)
6745 {
6746 nir_deref_instr *texture_deref_instr = NULL;
6747 nir_deref_instr *sampler_deref_instr = NULL;
6748 int plane = -1;
6749
6750 for (unsigned i = 0; i < instr->num_srcs; i++) {
6751 switch (instr->src[i].src_type) {
6752 case nir_tex_src_texture_deref:
6753 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
6754 break;
6755 case nir_tex_src_sampler_deref:
6756 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
6757 break;
6758 case nir_tex_src_plane:
6759 plane = nir_src_as_int(instr->src[i].src);
6760 break;
6761 default:
6762 break;
6763 }
6764 }
6765
6766 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
6767
6768 if (!sampler_deref_instr)
6769 sampler_deref_instr = texture_deref_instr;
6770
6771 if (plane >= 0) {
6772 assert(instr->op != nir_texop_txf_ms &&
6773 instr->op != nir_texop_samples_identical);
6774 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
6775 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
6776 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
6777 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
6778 } else if (instr->op == nir_texop_fragment_mask_fetch) {
6779 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
6780 } else {
6781 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
6782 }
6783 if (samp_ptr) {
6784 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
6785
6786 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
6787 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
6788 Builder bld(ctx->program, ctx->block);
6789
6790 /* to avoid unnecessary moves, we split and recombine sampler and image */
6791 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
6792 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6793 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6794 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
6795 Definition(img[2]), Definition(img[3]), Definition(img[4]),
6796 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
6797 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
6798 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
6799
6800 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
6801 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
6802 img[0], img[1], img[2], img[3],
6803 img[4], img[5], img[6], img[7]);
6804 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6805 samp[0], samp[1], samp[2], samp[3]);
6806 }
6807 }
6808 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
6809 instr->op == nir_texop_samples_identical))
6810 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
6811 }
6812
6813 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
6814 Temp *out_ma, Temp *out_sc, Temp *out_tc)
6815 {
6816 Builder bld(ctx->program, ctx->block);
6817
6818 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
6819 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
6820 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
6821
6822 Operand neg_one(0xbf800000u);
6823 Operand one(0x3f800000u);
6824 Operand two(0x40000000u);
6825 Operand four(0x40800000u);
6826
6827 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
6828 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
6829 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
6830
6831 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
6832 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
6833 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
6834 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
6835
6836 // select sc
6837 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
6838 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
6839 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
6840 one, is_ma_y);
6841 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
6842
6843 // select tc
6844 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
6845 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
6846 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
6847
6848 // select ma
6849 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
6850 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
6851 deriv_z, is_ma_z);
6852 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
6853 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
6854 }
6855
6856 void prepare_cube_coords(isel_context *ctx, Temp* coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
6857 {
6858 Builder bld(ctx->program, ctx->block);
6859 Temp coord_args[4], ma, tc, sc, id;
6860 for (unsigned i = 0; i < (is_array ? 4 : 3); i++)
6861 coord_args[i] = emit_extract_vector(ctx, *coords, i, v1);
6862
6863 if (is_array) {
6864 coord_args[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_args[3]);
6865
6866 // see comment in ac_prepare_cube_coords()
6867 if (ctx->options->chip_class <= GFX8)
6868 coord_args[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coord_args[3]);
6869 }
6870
6871 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6872
6873 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
6874 vop3a->operands[0] = Operand(ma);
6875 vop3a->abs[0] = true;
6876 Temp invma = bld.tmp(v1);
6877 vop3a->definitions[0] = Definition(invma);
6878 ctx->block->instructions.emplace_back(std::move(vop3a));
6879
6880 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6881 if (!is_deriv)
6882 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
6883
6884 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6885 if (!is_deriv)
6886 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
6887
6888 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6889
6890 if (is_deriv) {
6891 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
6892 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
6893
6894 for (unsigned i = 0; i < 2; i++) {
6895 // see comment in ac_prepare_cube_coords()
6896 Temp deriv_ma;
6897 Temp deriv_sc, deriv_tc;
6898 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
6899 &deriv_ma, &deriv_sc, &deriv_tc);
6900
6901 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
6902
6903 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
6904 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
6905 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
6906 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
6907 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
6908 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
6909 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
6910 }
6911
6912 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
6913 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
6914 }
6915
6916 if (is_array)
6917 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coord_args[3], id, Operand(0x41000000u/*8.0*/));
6918 *coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), sc, tc, id);
6919
6920 }
6921
6922 Temp apply_round_slice(isel_context *ctx, Temp coords, unsigned idx)
6923 {
6924 Temp coord_vec[3];
6925 for (unsigned i = 0; i < coords.size(); i++)
6926 coord_vec[i] = emit_extract_vector(ctx, coords, i, v1);
6927
6928 Builder bld(ctx->program, ctx->block);
6929 coord_vec[idx] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_vec[idx]);
6930
6931 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
6932 for (unsigned i = 0; i < coords.size(); i++)
6933 vec->operands[i] = Operand(coord_vec[i]);
6934 Temp res = bld.tmp(RegType::vgpr, coords.size());
6935 vec->definitions[0] = Definition(res);
6936 ctx->block->instructions.emplace_back(std::move(vec));
6937 return res;
6938 }
6939
6940 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
6941 {
6942 if (vec->parent_instr->type != nir_instr_type_alu)
6943 return;
6944 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
6945 if (vec_instr->op != nir_op_vec(vec->num_components))
6946 return;
6947
6948 for (unsigned i = 0; i < vec->num_components; i++) {
6949 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
6950 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
6951 }
6952 }
6953
6954 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
6955 {
6956 Builder bld(ctx->program, ctx->block);
6957 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
6958 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
6959 Temp resource, sampler, fmask_ptr, bias = Temp(), coords, compare = Temp(), sample_index = Temp(),
6960 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(), derivs = Temp();
6961 nir_const_value *sample_index_cv = NULL;
6962 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
6963 enum glsl_base_type stype;
6964 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
6965
6966 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
6967 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
6968 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
6969 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
6970
6971 for (unsigned i = 0; i < instr->num_srcs; i++) {
6972 switch (instr->src[i].src_type) {
6973 case nir_tex_src_coord:
6974 coords = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[i].src.ssa));
6975 break;
6976 case nir_tex_src_bias:
6977 if (instr->op == nir_texop_txb) {
6978 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
6979 has_bias = true;
6980 }
6981 break;
6982 case nir_tex_src_lod: {
6983 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
6984
6985 if (val && val->f32 <= 0.0) {
6986 level_zero = true;
6987 } else {
6988 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
6989 has_lod = true;
6990 }
6991 break;
6992 }
6993 case nir_tex_src_comparator:
6994 if (instr->is_shadow) {
6995 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
6996 has_compare = true;
6997 }
6998 break;
6999 case nir_tex_src_offset:
7000 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
7001 get_const_vec(instr->src[i].src.ssa, const_offset);
7002 has_offset = true;
7003 break;
7004 case nir_tex_src_ddx:
7005 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
7006 has_ddx = true;
7007 break;
7008 case nir_tex_src_ddy:
7009 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
7010 has_ddy = true;
7011 break;
7012 case nir_tex_src_ms_index:
7013 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
7014 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
7015 has_sample_index = true;
7016 break;
7017 case nir_tex_src_texture_offset:
7018 case nir_tex_src_sampler_offset:
7019 default:
7020 break;
7021 }
7022 }
7023 // TODO: all other cases: structure taken from ac_nir_to_llvm.c
7024 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
7025 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
7026
7027 if (instr->op == nir_texop_texture_samples) {
7028 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
7029
7030 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
7031 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
7032 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
7033 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
7034
7035 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7036 samples, Operand(1u), bld.scc(is_msaa));
7037 return;
7038 }
7039
7040 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
7041 aco_ptr<Instruction> tmp_instr;
7042 Temp acc, pack = Temp();
7043
7044 uint32_t pack_const = 0;
7045 for (unsigned i = 0; i < offset.size(); i++) {
7046 if (!const_offset[i])
7047 continue;
7048 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
7049 }
7050
7051 if (offset.type() == RegType::sgpr) {
7052 for (unsigned i = 0; i < offset.size(); i++) {
7053 if (const_offset[i])
7054 continue;
7055
7056 acc = emit_extract_vector(ctx, offset, i, s1);
7057 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
7058
7059 if (i) {
7060 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
7061 }
7062
7063 if (pack == Temp()) {
7064 pack = acc;
7065 } else {
7066 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
7067 }
7068 }
7069
7070 if (pack_const && pack != Temp())
7071 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
7072 } else {
7073 for (unsigned i = 0; i < offset.size(); i++) {
7074 if (const_offset[i])
7075 continue;
7076
7077 acc = emit_extract_vector(ctx, offset, i, v1);
7078 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
7079
7080 if (i) {
7081 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
7082 }
7083
7084 if (pack == Temp()) {
7085 pack = acc;
7086 } else {
7087 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
7088 }
7089 }
7090
7091 if (pack_const && pack != Temp())
7092 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
7093 }
7094 if (pack_const && pack == Temp())
7095 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
7096 else if (pack == Temp())
7097 has_offset = false;
7098 else
7099 offset = pack;
7100 }
7101
7102 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
7103 prepare_cube_coords(ctx, &coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
7104
7105 /* pack derivatives */
7106 if (has_ddx || has_ddy) {
7107 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
7108 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(v4),
7109 ddx, Operand(0u), ddy, Operand(0u));
7110 } else {
7111 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, ddx.size() + ddy.size()), ddx, ddy);
7112 }
7113 has_derivs = true;
7114 }
7115
7116 if (instr->coord_components > 1 &&
7117 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7118 instr->is_array &&
7119 instr->op != nir_texop_txf)
7120 coords = apply_round_slice(ctx, coords, 1);
7121
7122 if (instr->coord_components > 2 &&
7123 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
7124 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7125 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
7126 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7127 instr->is_array &&
7128 instr->op != nir_texop_txf &&
7129 instr->op != nir_texop_txf_ms &&
7130 instr->op != nir_texop_fragment_fetch &&
7131 instr->op != nir_texop_fragment_mask_fetch)
7132 coords = apply_round_slice(ctx, coords, 2);
7133
7134 if (ctx->options->chip_class == GFX9 &&
7135 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7136 instr->op != nir_texop_lod && instr->coord_components) {
7137 assert(coords.size() > 0 && coords.size() < 3);
7138
7139 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size() + 1, 1)};
7140 vec->operands[0] = Operand(emit_extract_vector(ctx, coords, 0, v1));
7141 vec->operands[1] = instr->op == nir_texop_txf ? Operand((uint32_t) 0) : Operand((uint32_t) 0x3f000000);
7142 if (coords.size() > 1)
7143 vec->operands[2] = Operand(emit_extract_vector(ctx, coords, 1, v1));
7144 coords = bld.tmp(RegType::vgpr, coords.size() + 1);
7145 vec->definitions[0] = Definition(coords);
7146 ctx->block->instructions.emplace_back(std::move(vec));
7147 }
7148
7149 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
7150
7151 if (instr->op == nir_texop_samples_identical)
7152 resource = fmask_ptr;
7153
7154 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7155 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7156 instr->op != nir_texop_txs &&
7157 instr->op != nir_texop_fragment_fetch &&
7158 instr->op != nir_texop_fragment_mask_fetch) {
7159 assert(has_sample_index);
7160 Operand op(sample_index);
7161 if (sample_index_cv)
7162 op = Operand(sample_index_cv->u32);
7163 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
7164 }
7165
7166 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
7167 Temp split_coords[coords.size()];
7168 emit_split_vector(ctx, coords, coords.size());
7169 for (unsigned i = 0; i < coords.size(); i++)
7170 split_coords[i] = emit_extract_vector(ctx, coords, i, v1);
7171
7172 unsigned i = 0;
7173 for (; i < std::min(offset.size(), instr->coord_components); i++) {
7174 Temp off = emit_extract_vector(ctx, offset, i, v1);
7175 split_coords[i] = bld.vadd32(bld.def(v1), split_coords[i], off);
7176 }
7177
7178 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
7179 for (unsigned i = 0; i < coords.size(); i++)
7180 vec->operands[i] = Operand(split_coords[i]);
7181 coords = bld.tmp(coords.regClass());
7182 vec->definitions[0] = Definition(coords);
7183 ctx->block->instructions.emplace_back(std::move(vec));
7184
7185 has_offset = false;
7186 }
7187
7188 /* Build tex instruction */
7189 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
7190 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
7191 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
7192 : 0;
7193 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7194 Temp tmp_dst = dst;
7195
7196 /* gather4 selects the component by dmask and always returns vec4 */
7197 if (instr->op == nir_texop_tg4) {
7198 assert(instr->dest.ssa.num_components == 4);
7199 if (instr->is_shadow)
7200 dmask = 1;
7201 else
7202 dmask = 1 << instr->component;
7203 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
7204 tmp_dst = bld.tmp(v4);
7205 } else if (instr->op == nir_texop_samples_identical) {
7206 tmp_dst = bld.tmp(v1);
7207 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
7208 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
7209 }
7210
7211 aco_ptr<MIMG_instruction> tex;
7212 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
7213 if (!has_lod)
7214 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7215
7216 bool div_by_6 = instr->op == nir_texop_txs &&
7217 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
7218 instr->is_array &&
7219 (dmask & (1 << 2));
7220 if (tmp_dst.id() == dst.id() && div_by_6)
7221 tmp_dst = bld.tmp(tmp_dst.regClass());
7222
7223 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
7224 tex->operands[0] = Operand(as_vgpr(ctx,lod));
7225 tex->operands[1] = Operand(resource);
7226 if (ctx->options->chip_class == GFX9 &&
7227 instr->op == nir_texop_txs &&
7228 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7229 instr->is_array) {
7230 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
7231 } else if (instr->op == nir_texop_query_levels) {
7232 tex->dmask = 1 << 3;
7233 } else {
7234 tex->dmask = dmask;
7235 }
7236 tex->da = da;
7237 tex->definitions[0] = Definition(tmp_dst);
7238 tex->dim = dim;
7239 tex->can_reorder = true;
7240 ctx->block->instructions.emplace_back(std::move(tex));
7241
7242 if (div_by_6) {
7243 /* divide 3rd value by 6 by multiplying with magic number */
7244 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7245 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
7246 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
7247 assert(instr->dest.ssa.num_components == 3);
7248 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
7249 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7250 emit_extract_vector(ctx, tmp_dst, 0, v1),
7251 emit_extract_vector(ctx, tmp_dst, 1, v1),
7252 by_6);
7253
7254 }
7255
7256 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7257 return;
7258 }
7259
7260 Temp tg4_compare_cube_wa64 = Temp();
7261
7262 if (tg4_integer_workarounds) {
7263 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
7264 tex->operands[0] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7265 tex->operands[1] = Operand(resource);
7266 tex->dim = dim;
7267 tex->dmask = 0x3;
7268 tex->da = da;
7269 Temp size = bld.tmp(v2);
7270 tex->definitions[0] = Definition(size);
7271 tex->can_reorder = true;
7272 ctx->block->instructions.emplace_back(std::move(tex));
7273 emit_split_vector(ctx, size, size.size());
7274
7275 Temp half_texel[2];
7276 for (unsigned i = 0; i < 2; i++) {
7277 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
7278 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
7279 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
7280 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
7281 }
7282
7283 Temp orig_coords[2] = {
7284 emit_extract_vector(ctx, coords, 0, v1),
7285 emit_extract_vector(ctx, coords, 1, v1)};
7286 Temp new_coords[2] = {
7287 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[0], half_texel[0]),
7288 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[1], half_texel[1])
7289 };
7290
7291 if (tg4_integer_cube_workaround) {
7292 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
7293 Temp desc[resource.size()];
7294 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
7295 Format::PSEUDO, 1, resource.size())};
7296 split->operands[0] = Operand(resource);
7297 for (unsigned i = 0; i < resource.size(); i++) {
7298 desc[i] = bld.tmp(s1);
7299 split->definitions[i] = Definition(desc[i]);
7300 }
7301 ctx->block->instructions.emplace_back(std::move(split));
7302
7303 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
7304 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
7305 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
7306
7307 Temp nfmt;
7308 if (stype == GLSL_TYPE_UINT) {
7309 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7310 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
7311 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
7312 bld.scc(compare_cube_wa));
7313 } else {
7314 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7315 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
7316 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
7317 bld.scc(compare_cube_wa));
7318 }
7319 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
7320 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
7321
7322 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
7323
7324 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
7325 Operand((uint32_t)C_008F14_NUM_FORMAT));
7326 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
7327
7328 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
7329 Format::PSEUDO, resource.size(), 1)};
7330 for (unsigned i = 0; i < resource.size(); i++)
7331 vec->operands[i] = Operand(desc[i]);
7332 resource = bld.tmp(resource.regClass());
7333 vec->definitions[0] = Definition(resource);
7334 ctx->block->instructions.emplace_back(std::move(vec));
7335
7336 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7337 new_coords[0], orig_coords[0], tg4_compare_cube_wa64);
7338 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7339 new_coords[1], orig_coords[1], tg4_compare_cube_wa64);
7340 }
7341
7342 if (coords.size() == 3) {
7343 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3),
7344 new_coords[0], new_coords[1],
7345 emit_extract_vector(ctx, coords, 2, v1));
7346 } else {
7347 assert(coords.size() == 2);
7348 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2),
7349 new_coords[0], new_coords[1]);
7350 }
7351 }
7352
7353 std::vector<Operand> args;
7354 if (has_offset)
7355 args.emplace_back(Operand(offset));
7356 if (has_bias)
7357 args.emplace_back(Operand(bias));
7358 if (has_compare)
7359 args.emplace_back(Operand(compare));
7360 if (has_derivs)
7361 args.emplace_back(Operand(derivs));
7362 args.emplace_back(Operand(coords));
7363 if (has_sample_index)
7364 args.emplace_back(Operand(sample_index));
7365 if (has_lod)
7366 args.emplace_back(lod);
7367
7368 Temp arg;
7369 if (args.size() > 1) {
7370 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
7371 unsigned size = 0;
7372 for (unsigned i = 0; i < args.size(); i++) {
7373 size += args[i].size();
7374 vec->operands[i] = args[i];
7375 }
7376 RegClass rc = RegClass(RegType::vgpr, size);
7377 Temp tmp = bld.tmp(rc);
7378 vec->definitions[0] = Definition(tmp);
7379 ctx->block->instructions.emplace_back(std::move(vec));
7380 arg = tmp;
7381 } else {
7382 assert(args[0].isTemp());
7383 arg = as_vgpr(ctx, args[0].getTemp());
7384 }
7385
7386 /* we don't need the bias, sample index, compare value or offset to be
7387 * computed in WQM but if the p_create_vector copies the coordinates, then it
7388 * needs to be in WQM */
7389 if (!(has_ddx && has_ddy) && !has_lod && !level_zero &&
7390 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
7391 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
7392 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
7393
7394 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7395 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
7396
7397 assert(coords.size() == 1);
7398 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
7399 aco_opcode op;
7400 switch (last_bit) {
7401 case 1:
7402 op = aco_opcode::buffer_load_format_x; break;
7403 case 2:
7404 op = aco_opcode::buffer_load_format_xy; break;
7405 case 3:
7406 op = aco_opcode::buffer_load_format_xyz; break;
7407 case 4:
7408 op = aco_opcode::buffer_load_format_xyzw; break;
7409 default:
7410 unreachable("Tex instruction loads more than 4 components.");
7411 }
7412
7413 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
7414 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
7415 tmp_dst = dst;
7416 else
7417 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
7418
7419 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
7420 mubuf->operands[0] = Operand(coords);
7421 mubuf->operands[1] = Operand(resource);
7422 mubuf->operands[2] = Operand((uint32_t) 0);
7423 mubuf->definitions[0] = Definition(tmp_dst);
7424 mubuf->idxen = true;
7425 mubuf->can_reorder = true;
7426 ctx->block->instructions.emplace_back(std::move(mubuf));
7427
7428 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
7429 return;
7430 }
7431
7432
7433 if (instr->op == nir_texop_txf ||
7434 instr->op == nir_texop_txf_ms ||
7435 instr->op == nir_texop_samples_identical ||
7436 instr->op == nir_texop_fragment_fetch ||
7437 instr->op == nir_texop_fragment_mask_fetch) {
7438 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
7439 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 2, 1));
7440 tex->operands[0] = Operand(arg);
7441 tex->operands[1] = Operand(resource);
7442 tex->dim = dim;
7443 tex->dmask = dmask;
7444 tex->unrm = true;
7445 tex->da = da;
7446 tex->definitions[0] = Definition(tmp_dst);
7447 tex->can_reorder = true;
7448 ctx->block->instructions.emplace_back(std::move(tex));
7449
7450 if (instr->op == nir_texop_samples_identical) {
7451 assert(dmask == 1 && dst.regClass() == v1);
7452 assert(dst.id() != tmp_dst.id());
7453
7454 Temp tmp = bld.tmp(bld.lm);
7455 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
7456 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
7457
7458 } else {
7459 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7460 }
7461 return;
7462 }
7463
7464 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
7465 aco_opcode opcode = aco_opcode::image_sample;
7466 if (has_offset) { /* image_sample_*_o */
7467 if (has_compare) {
7468 opcode = aco_opcode::image_sample_c_o;
7469 if (has_derivs)
7470 opcode = aco_opcode::image_sample_c_d_o;
7471 if (has_bias)
7472 opcode = aco_opcode::image_sample_c_b_o;
7473 if (level_zero)
7474 opcode = aco_opcode::image_sample_c_lz_o;
7475 if (has_lod)
7476 opcode = aco_opcode::image_sample_c_l_o;
7477 } else {
7478 opcode = aco_opcode::image_sample_o;
7479 if (has_derivs)
7480 opcode = aco_opcode::image_sample_d_o;
7481 if (has_bias)
7482 opcode = aco_opcode::image_sample_b_o;
7483 if (level_zero)
7484 opcode = aco_opcode::image_sample_lz_o;
7485 if (has_lod)
7486 opcode = aco_opcode::image_sample_l_o;
7487 }
7488 } else { /* no offset */
7489 if (has_compare) {
7490 opcode = aco_opcode::image_sample_c;
7491 if (has_derivs)
7492 opcode = aco_opcode::image_sample_c_d;
7493 if (has_bias)
7494 opcode = aco_opcode::image_sample_c_b;
7495 if (level_zero)
7496 opcode = aco_opcode::image_sample_c_lz;
7497 if (has_lod)
7498 opcode = aco_opcode::image_sample_c_l;
7499 } else {
7500 opcode = aco_opcode::image_sample;
7501 if (has_derivs)
7502 opcode = aco_opcode::image_sample_d;
7503 if (has_bias)
7504 opcode = aco_opcode::image_sample_b;
7505 if (level_zero)
7506 opcode = aco_opcode::image_sample_lz;
7507 if (has_lod)
7508 opcode = aco_opcode::image_sample_l;
7509 }
7510 }
7511
7512 if (instr->op == nir_texop_tg4) {
7513 if (has_offset) {
7514 opcode = aco_opcode::image_gather4_lz_o;
7515 if (has_compare)
7516 opcode = aco_opcode::image_gather4_c_lz_o;
7517 } else {
7518 opcode = aco_opcode::image_gather4_lz;
7519 if (has_compare)
7520 opcode = aco_opcode::image_gather4_c_lz;
7521 }
7522 } else if (instr->op == nir_texop_lod) {
7523 opcode = aco_opcode::image_get_lod;
7524 }
7525
7526 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
7527 tex->operands[0] = Operand(arg);
7528 tex->operands[1] = Operand(resource);
7529 tex->operands[2] = Operand(sampler);
7530 tex->dim = dim;
7531 tex->dmask = dmask;
7532 tex->da = da;
7533 tex->definitions[0] = Definition(tmp_dst);
7534 tex->can_reorder = true;
7535 ctx->block->instructions.emplace_back(std::move(tex));
7536
7537 if (tg4_integer_cube_workaround) {
7538 assert(tmp_dst.id() != dst.id());
7539 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
7540
7541 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7542 Temp val[4];
7543 for (unsigned i = 0; i < dst.size(); i++) {
7544 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
7545 Temp cvt_val;
7546 if (stype == GLSL_TYPE_UINT)
7547 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
7548 else
7549 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
7550 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
7551 }
7552 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
7553 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7554 val[0], val[1], val[2], val[3]);
7555 }
7556 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
7557 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
7558
7559 }
7560
7561
7562 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
7563 {
7564 Temp tmp = get_ssa_temp(ctx, ssa);
7565 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
7566 return Operand(tmp.regClass());
7567 else
7568 return Operand(tmp);
7569 }
7570
7571 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
7572 {
7573 aco_ptr<Pseudo_instruction> phi;
7574 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7575 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
7576
7577 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
7578 logical |= ctx->block->kind & block_kind_merge;
7579 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
7580
7581 /* we want a sorted list of sources, since the predecessor list is also sorted */
7582 std::map<unsigned, nir_ssa_def*> phi_src;
7583 nir_foreach_phi_src(src, instr)
7584 phi_src[src->pred->index] = src->src.ssa;
7585
7586 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
7587 unsigned num_operands = 0;
7588 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size())];
7589 unsigned num_defined = 0;
7590 unsigned cur_pred_idx = 0;
7591 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
7592 if (cur_pred_idx < preds.size()) {
7593 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
7594 unsigned block = ctx->cf_info.nir_to_aco[src.first];
7595 unsigned skipped = 0;
7596 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
7597 skipped++;
7598 if (cur_pred_idx + skipped < preds.size()) {
7599 for (unsigned i = 0; i < skipped; i++)
7600 operands[num_operands++] = Operand(dst.regClass());
7601 cur_pred_idx += skipped;
7602 } else {
7603 continue;
7604 }
7605 }
7606 cur_pred_idx++;
7607 Operand op = get_phi_operand(ctx, src.second);
7608 operands[num_operands++] = op;
7609 num_defined += !op.isUndefined();
7610 }
7611 /* handle block_kind_continue_or_break at loop exit blocks */
7612 while (cur_pred_idx++ < preds.size())
7613 operands[num_operands++] = Operand(dst.regClass());
7614
7615 if (num_defined == 0) {
7616 Builder bld(ctx->program, ctx->block);
7617 if (dst.regClass() == s1) {
7618 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
7619 } else if (dst.regClass() == v1) {
7620 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
7621 } else {
7622 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7623 for (unsigned i = 0; i < dst.size(); i++)
7624 vec->operands[i] = Operand(0u);
7625 vec->definitions[0] = Definition(dst);
7626 ctx->block->instructions.emplace_back(std::move(vec));
7627 }
7628 return;
7629 }
7630
7631 /* we can use a linear phi in some cases if one src is undef */
7632 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
7633 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
7634
7635 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
7636 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
7637 assert(invert->kind & block_kind_invert);
7638
7639 unsigned then_block = invert->linear_preds[0];
7640
7641 Block* insert_block = NULL;
7642 for (unsigned i = 0; i < num_operands; i++) {
7643 Operand op = operands[i];
7644 if (op.isUndefined())
7645 continue;
7646 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
7647 phi->operands[0] = op;
7648 break;
7649 }
7650 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
7651 phi->operands[1] = Operand(dst.regClass());
7652 phi->definitions[0] = Definition(dst);
7653 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
7654 return;
7655 }
7656
7657 /* try to scalarize vector phis */
7658 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
7659 // TODO: scalarize linear phis on divergent ifs
7660 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
7661 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
7662 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
7663 Operand src = operands[i];
7664 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
7665 can_scalarize = false;
7666 }
7667 if (can_scalarize) {
7668 unsigned num_components = instr->dest.ssa.num_components;
7669 assert(dst.size() % num_components == 0);
7670 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
7671
7672 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
7673 for (unsigned k = 0; k < num_components; k++) {
7674 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7675 for (unsigned i = 0; i < num_operands; i++) {
7676 Operand src = operands[i];
7677 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
7678 }
7679 Temp phi_dst = {ctx->program->allocateId(), rc};
7680 phi->definitions[0] = Definition(phi_dst);
7681 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7682 new_vec[k] = phi_dst;
7683 vec->operands[k] = Operand(phi_dst);
7684 }
7685 vec->definitions[0] = Definition(dst);
7686 ctx->block->instructions.emplace_back(std::move(vec));
7687 ctx->allocated_vec.emplace(dst.id(), new_vec);
7688 return;
7689 }
7690 }
7691
7692 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7693 for (unsigned i = 0; i < num_operands; i++)
7694 phi->operands[i] = operands[i];
7695 phi->definitions[0] = Definition(dst);
7696 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7697 }
7698
7699
7700 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
7701 {
7702 Temp dst = get_ssa_temp(ctx, &instr->def);
7703
7704 assert(dst.type() == RegType::sgpr);
7705
7706 if (dst.size() == 1) {
7707 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
7708 } else {
7709 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7710 for (unsigned i = 0; i < dst.size(); i++)
7711 vec->operands[i] = Operand(0u);
7712 vec->definitions[0] = Definition(dst);
7713 ctx->block->instructions.emplace_back(std::move(vec));
7714 }
7715 }
7716
7717 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
7718 {
7719 Builder bld(ctx->program, ctx->block);
7720 Block *logical_target;
7721 append_logical_end(ctx->block);
7722 unsigned idx = ctx->block->index;
7723
7724 switch (instr->type) {
7725 case nir_jump_break:
7726 logical_target = ctx->cf_info.parent_loop.exit;
7727 add_logical_edge(idx, logical_target);
7728 ctx->block->kind |= block_kind_break;
7729
7730 if (!ctx->cf_info.parent_if.is_divergent &&
7731 !ctx->cf_info.parent_loop.has_divergent_continue) {
7732 /* uniform break - directly jump out of the loop */
7733 ctx->block->kind |= block_kind_uniform;
7734 ctx->cf_info.has_branch = true;
7735 bld.branch(aco_opcode::p_branch);
7736 add_linear_edge(idx, logical_target);
7737 return;
7738 }
7739 ctx->cf_info.parent_loop.has_divergent_branch = true;
7740 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7741 break;
7742 case nir_jump_continue:
7743 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7744 add_logical_edge(idx, logical_target);
7745 ctx->block->kind |= block_kind_continue;
7746
7747 if (ctx->cf_info.parent_if.is_divergent) {
7748 /* for potential uniform breaks after this continue,
7749 we must ensure that they are handled correctly */
7750 ctx->cf_info.parent_loop.has_divergent_continue = true;
7751 ctx->cf_info.parent_loop.has_divergent_branch = true;
7752 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7753 } else {
7754 /* uniform continue - directly jump to the loop header */
7755 ctx->block->kind |= block_kind_uniform;
7756 ctx->cf_info.has_branch = true;
7757 bld.branch(aco_opcode::p_branch);
7758 add_linear_edge(idx, logical_target);
7759 return;
7760 }
7761 break;
7762 default:
7763 fprintf(stderr, "Unknown NIR jump instr: ");
7764 nir_print_instr(&instr->instr, stderr);
7765 fprintf(stderr, "\n");
7766 abort();
7767 }
7768
7769 /* remove critical edges from linear CFG */
7770 bld.branch(aco_opcode::p_branch);
7771 Block* break_block = ctx->program->create_and_insert_block();
7772 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7773 break_block->kind |= block_kind_uniform;
7774 add_linear_edge(idx, break_block);
7775 /* the loop_header pointer might be invalidated by this point */
7776 if (instr->type == nir_jump_continue)
7777 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7778 add_linear_edge(break_block->index, logical_target);
7779 bld.reset(break_block);
7780 bld.branch(aco_opcode::p_branch);
7781
7782 Block* continue_block = ctx->program->create_and_insert_block();
7783 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7784 add_linear_edge(idx, continue_block);
7785 append_logical_start(continue_block);
7786 ctx->block = continue_block;
7787 return;
7788 }
7789
7790 void visit_block(isel_context *ctx, nir_block *block)
7791 {
7792 nir_foreach_instr(instr, block) {
7793 switch (instr->type) {
7794 case nir_instr_type_alu:
7795 visit_alu_instr(ctx, nir_instr_as_alu(instr));
7796 break;
7797 case nir_instr_type_load_const:
7798 visit_load_const(ctx, nir_instr_as_load_const(instr));
7799 break;
7800 case nir_instr_type_intrinsic:
7801 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
7802 break;
7803 case nir_instr_type_tex:
7804 visit_tex(ctx, nir_instr_as_tex(instr));
7805 break;
7806 case nir_instr_type_phi:
7807 visit_phi(ctx, nir_instr_as_phi(instr));
7808 break;
7809 case nir_instr_type_ssa_undef:
7810 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
7811 break;
7812 case nir_instr_type_deref:
7813 break;
7814 case nir_instr_type_jump:
7815 visit_jump(ctx, nir_instr_as_jump(instr));
7816 break;
7817 default:
7818 fprintf(stderr, "Unknown NIR instr type: ");
7819 nir_print_instr(instr, stderr);
7820 fprintf(stderr, "\n");
7821 //abort();
7822 }
7823 }
7824
7825 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7826 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
7827 }
7828
7829
7830
7831 static void visit_loop(isel_context *ctx, nir_loop *loop)
7832 {
7833 append_logical_end(ctx->block);
7834 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
7835 Builder bld(ctx->program, ctx->block);
7836 bld.branch(aco_opcode::p_branch);
7837 unsigned loop_preheader_idx = ctx->block->index;
7838
7839 Block loop_exit = Block();
7840 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7841 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
7842
7843 Block* loop_header = ctx->program->create_and_insert_block();
7844 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
7845 loop_header->kind |= block_kind_loop_header;
7846 add_edge(loop_preheader_idx, loop_header);
7847 ctx->block = loop_header;
7848
7849 /* emit loop body */
7850 unsigned loop_header_idx = loop_header->index;
7851 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
7852 append_logical_start(ctx->block);
7853 visit_cf_list(ctx, &loop->body);
7854
7855 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
7856 if (!ctx->cf_info.has_branch) {
7857 append_logical_end(ctx->block);
7858 if (ctx->cf_info.exec_potentially_empty) {
7859 /* Discards can result in code running with an empty exec mask.
7860 * This would result in divergent breaks not ever being taken. As a
7861 * workaround, break the loop when the loop mask is empty instead of
7862 * always continuing. */
7863 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
7864 unsigned block_idx = ctx->block->index;
7865
7866 /* create helper blocks to avoid critical edges */
7867 Block *break_block = ctx->program->create_and_insert_block();
7868 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7869 break_block->kind = block_kind_uniform;
7870 bld.reset(break_block);
7871 bld.branch(aco_opcode::p_branch);
7872 add_linear_edge(block_idx, break_block);
7873 add_linear_edge(break_block->index, &loop_exit);
7874
7875 Block *continue_block = ctx->program->create_and_insert_block();
7876 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7877 continue_block->kind = block_kind_uniform;
7878 bld.reset(continue_block);
7879 bld.branch(aco_opcode::p_branch);
7880 add_linear_edge(block_idx, continue_block);
7881 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
7882
7883 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
7884 ctx->block = &ctx->program->blocks[block_idx];
7885 } else {
7886 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
7887 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7888 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
7889 else
7890 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
7891 }
7892
7893 bld.reset(ctx->block);
7894 bld.branch(aco_opcode::p_branch);
7895 }
7896
7897 /* fixup phis in loop header from unreachable blocks */
7898 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
7899 bool linear = ctx->cf_info.has_branch;
7900 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
7901 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
7902 if ((logical && instr->opcode == aco_opcode::p_phi) ||
7903 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
7904 /* the last operand should be the one that needs to be removed */
7905 instr->operands.pop_back();
7906 } else if (!is_phi(instr)) {
7907 break;
7908 }
7909 }
7910 }
7911
7912 ctx->cf_info.has_branch = false;
7913
7914 // TODO: if the loop has not a single exit, we must add one °°
7915 /* emit loop successor block */
7916 ctx->block = ctx->program->insert_block(std::move(loop_exit));
7917 append_logical_start(ctx->block);
7918
7919 #if 0
7920 // TODO: check if it is beneficial to not branch on continues
7921 /* trim linear phis in loop header */
7922 for (auto&& instr : loop_entry->instructions) {
7923 if (instr->opcode == aco_opcode::p_linear_phi) {
7924 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
7925 new_phi->definitions[0] = instr->definitions[0];
7926 for (unsigned i = 0; i < new_phi->operands.size(); i++)
7927 new_phi->operands[i] = instr->operands[i];
7928 /* check that the remaining operands are all the same */
7929 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
7930 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
7931 instr.swap(new_phi);
7932 } else if (instr->opcode == aco_opcode::p_phi) {
7933 continue;
7934 } else {
7935 break;
7936 }
7937 }
7938 #endif
7939 }
7940
7941 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
7942 {
7943 ic->cond = cond;
7944
7945 append_logical_end(ctx->block);
7946 ctx->block->kind |= block_kind_branch;
7947
7948 /* branch to linear then block */
7949 assert(cond.regClass() == ctx->program->lane_mask);
7950 aco_ptr<Pseudo_branch_instruction> branch;
7951 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
7952 branch->operands[0] = Operand(cond);
7953 ctx->block->instructions.push_back(std::move(branch));
7954
7955 ic->BB_if_idx = ctx->block->index;
7956 ic->BB_invert = Block();
7957 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7958 /* Invert blocks are intentionally not marked as top level because they
7959 * are not part of the logical cfg. */
7960 ic->BB_invert.kind |= block_kind_invert;
7961 ic->BB_endif = Block();
7962 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7963 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
7964
7965 ic->exec_potentially_empty_old = ctx->cf_info.exec_potentially_empty;
7966 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
7967 ctx->cf_info.parent_if.is_divergent = true;
7968 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
7969
7970 /** emit logical then block */
7971 Block* BB_then_logical = ctx->program->create_and_insert_block();
7972 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7973 add_edge(ic->BB_if_idx, BB_then_logical);
7974 ctx->block = BB_then_logical;
7975 append_logical_start(BB_then_logical);
7976 }
7977
7978 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
7979 {
7980 Block *BB_then_logical = ctx->block;
7981 append_logical_end(BB_then_logical);
7982 /* branch from logical then block to invert block */
7983 aco_ptr<Pseudo_branch_instruction> branch;
7984 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7985 BB_then_logical->instructions.emplace_back(std::move(branch));
7986 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
7987 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7988 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
7989 BB_then_logical->kind |= block_kind_uniform;
7990 assert(!ctx->cf_info.has_branch);
7991 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
7992 ctx->cf_info.parent_loop.has_divergent_branch = false;
7993
7994 /** emit linear then block */
7995 Block* BB_then_linear = ctx->program->create_and_insert_block();
7996 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7997 BB_then_linear->kind |= block_kind_uniform;
7998 add_linear_edge(ic->BB_if_idx, BB_then_linear);
7999 /* branch from linear then block to invert block */
8000 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8001 BB_then_linear->instructions.emplace_back(std::move(branch));
8002 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
8003
8004 /** emit invert merge block */
8005 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
8006 ic->invert_idx = ctx->block->index;
8007
8008 /* branch to linear else block (skip else) */
8009 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
8010 branch->operands[0] = Operand(ic->cond);
8011 ctx->block->instructions.push_back(std::move(branch));
8012
8013 ic->exec_potentially_empty_old |= ctx->cf_info.exec_potentially_empty;
8014 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
8015
8016 /** emit logical else block */
8017 Block* BB_else_logical = ctx->program->create_and_insert_block();
8018 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8019 add_logical_edge(ic->BB_if_idx, BB_else_logical);
8020 add_linear_edge(ic->invert_idx, BB_else_logical);
8021 ctx->block = BB_else_logical;
8022 append_logical_start(BB_else_logical);
8023 }
8024
8025 static void end_divergent_if(isel_context *ctx, if_context *ic)
8026 {
8027 Block *BB_else_logical = ctx->block;
8028 append_logical_end(BB_else_logical);
8029
8030 /* branch from logical else block to endif block */
8031 aco_ptr<Pseudo_branch_instruction> branch;
8032 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8033 BB_else_logical->instructions.emplace_back(std::move(branch));
8034 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
8035 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8036 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
8037 BB_else_logical->kind |= block_kind_uniform;
8038
8039 assert(!ctx->cf_info.has_branch);
8040 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
8041
8042
8043 /** emit linear else block */
8044 Block* BB_else_linear = ctx->program->create_and_insert_block();
8045 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8046 BB_else_linear->kind |= block_kind_uniform;
8047 add_linear_edge(ic->invert_idx, BB_else_linear);
8048
8049 /* branch from linear else block to endif block */
8050 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8051 BB_else_linear->instructions.emplace_back(std::move(branch));
8052 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
8053
8054
8055 /** emit endif merge block */
8056 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
8057 append_logical_start(ctx->block);
8058
8059
8060 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
8061 ctx->cf_info.exec_potentially_empty |= ic->exec_potentially_empty_old;
8062 /* uniform control flow never has an empty exec-mask */
8063 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
8064 ctx->cf_info.exec_potentially_empty = false;
8065 }
8066
8067 static void visit_if(isel_context *ctx, nir_if *if_stmt)
8068 {
8069 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
8070 Builder bld(ctx->program, ctx->block);
8071 aco_ptr<Pseudo_branch_instruction> branch;
8072
8073 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
8074 /**
8075 * Uniform conditionals are represented in the following way*) :
8076 *
8077 * The linear and logical CFG:
8078 * BB_IF
8079 * / \
8080 * BB_THEN (logical) BB_ELSE (logical)
8081 * \ /
8082 * BB_ENDIF
8083 *
8084 * *) Exceptions may be due to break and continue statements within loops
8085 * If a break/continue happens within uniform control flow, it branches
8086 * to the loop exit/entry block. Otherwise, it branches to the next
8087 * merge block.
8088 **/
8089 append_logical_end(ctx->block);
8090 ctx->block->kind |= block_kind_uniform;
8091
8092 /* emit branch */
8093 assert(cond.regClass() == bld.lm);
8094 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
8095 cond = bool_to_scalar_condition(ctx, cond);
8096
8097 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8098 branch->operands[0] = Operand(cond);
8099 branch->operands[0].setFixed(scc);
8100 ctx->block->instructions.emplace_back(std::move(branch));
8101
8102 unsigned BB_if_idx = ctx->block->index;
8103 Block BB_endif = Block();
8104 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8105 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
8106
8107 /** emit then block */
8108 Block* BB_then = ctx->program->create_and_insert_block();
8109 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8110 add_edge(BB_if_idx, BB_then);
8111 append_logical_start(BB_then);
8112 ctx->block = BB_then;
8113 visit_cf_list(ctx, &if_stmt->then_list);
8114 BB_then = ctx->block;
8115 bool then_branch = ctx->cf_info.has_branch;
8116 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8117
8118 if (!then_branch) {
8119 append_logical_end(BB_then);
8120 /* branch from then block to endif block */
8121 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8122 BB_then->instructions.emplace_back(std::move(branch));
8123 add_linear_edge(BB_then->index, &BB_endif);
8124 if (!then_branch_divergent)
8125 add_logical_edge(BB_then->index, &BB_endif);
8126 BB_then->kind |= block_kind_uniform;
8127 }
8128
8129 ctx->cf_info.has_branch = false;
8130 ctx->cf_info.parent_loop.has_divergent_branch = false;
8131
8132 /** emit else block */
8133 Block* BB_else = ctx->program->create_and_insert_block();
8134 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8135 add_edge(BB_if_idx, BB_else);
8136 append_logical_start(BB_else);
8137 ctx->block = BB_else;
8138 visit_cf_list(ctx, &if_stmt->else_list);
8139 BB_else = ctx->block;
8140
8141 if (!ctx->cf_info.has_branch) {
8142 append_logical_end(BB_else);
8143 /* branch from then block to endif block */
8144 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8145 BB_else->instructions.emplace_back(std::move(branch));
8146 add_linear_edge(BB_else->index, &BB_endif);
8147 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8148 add_logical_edge(BB_else->index, &BB_endif);
8149 BB_else->kind |= block_kind_uniform;
8150 }
8151
8152 ctx->cf_info.has_branch &= then_branch;
8153 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
8154
8155 /** emit endif merge block */
8156 if (!ctx->cf_info.has_branch) {
8157 ctx->block = ctx->program->insert_block(std::move(BB_endif));
8158 append_logical_start(ctx->block);
8159 }
8160 } else { /* non-uniform condition */
8161 /**
8162 * To maintain a logical and linear CFG without critical edges,
8163 * non-uniform conditionals are represented in the following way*) :
8164 *
8165 * The linear CFG:
8166 * BB_IF
8167 * / \
8168 * BB_THEN (logical) BB_THEN (linear)
8169 * \ /
8170 * BB_INVERT (linear)
8171 * / \
8172 * BB_ELSE (logical) BB_ELSE (linear)
8173 * \ /
8174 * BB_ENDIF
8175 *
8176 * The logical CFG:
8177 * BB_IF
8178 * / \
8179 * BB_THEN (logical) BB_ELSE (logical)
8180 * \ /
8181 * BB_ENDIF
8182 *
8183 * *) Exceptions may be due to break and continue statements within loops
8184 **/
8185
8186 if_context ic;
8187
8188 begin_divergent_if_then(ctx, &ic, cond);
8189 visit_cf_list(ctx, &if_stmt->then_list);
8190
8191 begin_divergent_if_else(ctx, &ic);
8192 visit_cf_list(ctx, &if_stmt->else_list);
8193
8194 end_divergent_if(ctx, &ic);
8195 }
8196 }
8197
8198 static void visit_cf_list(isel_context *ctx,
8199 struct exec_list *list)
8200 {
8201 foreach_list_typed(nir_cf_node, node, node, list) {
8202 switch (node->type) {
8203 case nir_cf_node_block:
8204 visit_block(ctx, nir_cf_node_as_block(node));
8205 break;
8206 case nir_cf_node_if:
8207 visit_if(ctx, nir_cf_node_as_if(node));
8208 break;
8209 case nir_cf_node_loop:
8210 visit_loop(ctx, nir_cf_node_as_loop(node));
8211 break;
8212 default:
8213 unreachable("unimplemented cf list type");
8214 }
8215 }
8216 }
8217
8218 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
8219 {
8220 int offset = ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
8221 uint64_t mask = ctx->outputs.mask[slot];
8222 if (!is_pos && !mask)
8223 return;
8224 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
8225 return;
8226 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8227 exp->enabled_mask = mask;
8228 for (unsigned i = 0; i < 4; ++i) {
8229 if (mask & (1 << i))
8230 exp->operands[i] = Operand(ctx->outputs.outputs[slot][i]);
8231 else
8232 exp->operands[i] = Operand(v1);
8233 }
8234 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
8235 * Setting valid_mask=1 prevents it and has no other effect.
8236 */
8237 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
8238 exp->done = false;
8239 exp->compressed = false;
8240 if (is_pos)
8241 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8242 else
8243 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
8244 ctx->block->instructions.emplace_back(std::move(exp));
8245 }
8246
8247 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
8248 {
8249 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8250 exp->enabled_mask = 0;
8251 for (unsigned i = 0; i < 4; ++i)
8252 exp->operands[i] = Operand(v1);
8253 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
8254 exp->operands[0] = Operand(ctx->outputs.outputs[VARYING_SLOT_PSIZ][0]);
8255 exp->enabled_mask |= 0x1;
8256 }
8257 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
8258 exp->operands[2] = Operand(ctx->outputs.outputs[VARYING_SLOT_LAYER][0]);
8259 exp->enabled_mask |= 0x4;
8260 }
8261 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
8262 if (ctx->options->chip_class < GFX9) {
8263 exp->operands[3] = Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]);
8264 exp->enabled_mask |= 0x8;
8265 } else {
8266 Builder bld(ctx->program, ctx->block);
8267
8268 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
8269 Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]));
8270 if (exp->operands[2].isTemp())
8271 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
8272
8273 exp->operands[2] = Operand(out);
8274 exp->enabled_mask |= 0x4;
8275 }
8276 }
8277 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
8278 exp->done = false;
8279 exp->compressed = false;
8280 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8281 ctx->block->instructions.emplace_back(std::move(exp));
8282 }
8283
8284 static void create_vs_exports(isel_context *ctx)
8285 {
8286 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
8287
8288 if (outinfo->export_prim_id) {
8289 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
8290 ctx->outputs.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
8291 }
8292
8293 if (ctx->options->key.has_multiview_view_index) {
8294 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
8295 ctx->outputs.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
8296 }
8297
8298 /* the order these position exports are created is important */
8299 int next_pos = 0;
8300 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
8301 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
8302 export_vs_psiz_layer_viewport(ctx, &next_pos);
8303 }
8304 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8305 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
8306 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8307 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
8308
8309 if (ctx->export_clip_dists) {
8310 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8311 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
8312 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8313 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
8314 }
8315
8316 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
8317 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
8318 i != VARYING_SLOT_PRIMITIVE_ID)
8319 continue;
8320
8321 export_vs_varying(ctx, i, false, NULL);
8322 }
8323 }
8324
8325 static void export_fs_mrt_z(isel_context *ctx)
8326 {
8327 Builder bld(ctx->program, ctx->block);
8328 unsigned enabled_channels = 0;
8329 bool compr = false;
8330 Operand values[4];
8331
8332 for (unsigned i = 0; i < 4; ++i) {
8333 values[i] = Operand(v1);
8334 }
8335
8336 /* Both stencil and sample mask only need 16-bits. */
8337 if (!ctx->program->info->ps.writes_z &&
8338 (ctx->program->info->ps.writes_stencil ||
8339 ctx->program->info->ps.writes_sample_mask)) {
8340 compr = true; /* COMPR flag */
8341
8342 if (ctx->program->info->ps.writes_stencil) {
8343 /* Stencil should be in X[23:16]. */
8344 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8345 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
8346 enabled_channels |= 0x3;
8347 }
8348
8349 if (ctx->program->info->ps.writes_sample_mask) {
8350 /* SampleMask should be in Y[15:0]. */
8351 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8352 enabled_channels |= 0xc;
8353 }
8354 } else {
8355 if (ctx->program->info->ps.writes_z) {
8356 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_DEPTH][0]);
8357 enabled_channels |= 0x1;
8358 }
8359
8360 if (ctx->program->info->ps.writes_stencil) {
8361 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8362 enabled_channels |= 0x2;
8363 }
8364
8365 if (ctx->program->info->ps.writes_sample_mask) {
8366 values[2] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8367 enabled_channels |= 0x4;
8368 }
8369 }
8370
8371 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
8372 * writemask component.
8373 */
8374 if (ctx->options->chip_class == GFX6 &&
8375 ctx->options->family != CHIP_OLAND &&
8376 ctx->options->family != CHIP_HAINAN) {
8377 enabled_channels |= 0x1;
8378 }
8379
8380 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8381 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
8382 }
8383
8384 static void export_fs_mrt_color(isel_context *ctx, int slot)
8385 {
8386 Builder bld(ctx->program, ctx->block);
8387 unsigned write_mask = ctx->outputs.mask[slot];
8388 Operand values[4];
8389
8390 for (unsigned i = 0; i < 4; ++i) {
8391 if (write_mask & (1 << i)) {
8392 values[i] = Operand(ctx->outputs.outputs[slot][i]);
8393 } else {
8394 values[i] = Operand(v1);
8395 }
8396 }
8397
8398 unsigned target, col_format;
8399 unsigned enabled_channels = 0;
8400 aco_opcode compr_op = (aco_opcode)0;
8401
8402 slot -= FRAG_RESULT_DATA0;
8403 target = V_008DFC_SQ_EXP_MRT + slot;
8404 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
8405
8406 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
8407 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
8408
8409 switch (col_format)
8410 {
8411 case V_028714_SPI_SHADER_ZERO:
8412 enabled_channels = 0; /* writemask */
8413 target = V_008DFC_SQ_EXP_NULL;
8414 break;
8415
8416 case V_028714_SPI_SHADER_32_R:
8417 enabled_channels = 1;
8418 break;
8419
8420 case V_028714_SPI_SHADER_32_GR:
8421 enabled_channels = 0x3;
8422 break;
8423
8424 case V_028714_SPI_SHADER_32_AR:
8425 if (ctx->options->chip_class >= GFX10) {
8426 /* Special case: on GFX10, the outputs are different for 32_AR */
8427 enabled_channels = 0x3;
8428 values[1] = values[3];
8429 values[3] = Operand(v1);
8430 } else {
8431 enabled_channels = 0x9;
8432 }
8433 break;
8434
8435 case V_028714_SPI_SHADER_FP16_ABGR:
8436 enabled_channels = 0x5;
8437 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
8438 break;
8439
8440 case V_028714_SPI_SHADER_UNORM16_ABGR:
8441 enabled_channels = 0x5;
8442 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
8443 break;
8444
8445 case V_028714_SPI_SHADER_SNORM16_ABGR:
8446 enabled_channels = 0x5;
8447 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
8448 break;
8449
8450 case V_028714_SPI_SHADER_UINT16_ABGR: {
8451 enabled_channels = 0x5;
8452 compr_op = aco_opcode::v_cvt_pk_u16_u32;
8453 if (is_int8 || is_int10) {
8454 /* clamp */
8455 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
8456 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
8457
8458 for (unsigned i = 0; i < 4; i++) {
8459 if ((write_mask >> i) & 1) {
8460 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
8461 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
8462 values[i]);
8463 }
8464 }
8465 }
8466 break;
8467 }
8468
8469 case V_028714_SPI_SHADER_SINT16_ABGR:
8470 enabled_channels = 0x5;
8471 compr_op = aco_opcode::v_cvt_pk_i16_i32;
8472 if (is_int8 || is_int10) {
8473 /* clamp */
8474 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
8475 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
8476 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
8477 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
8478
8479 for (unsigned i = 0; i < 4; i++) {
8480 if ((write_mask >> i) & 1) {
8481 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
8482 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
8483 values[i]);
8484 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
8485 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
8486 values[i]);
8487 }
8488 }
8489 }
8490 break;
8491
8492 case V_028714_SPI_SHADER_32_ABGR:
8493 enabled_channels = 0xF;
8494 break;
8495
8496 default:
8497 break;
8498 }
8499
8500 if (target == V_008DFC_SQ_EXP_NULL)
8501 return;
8502
8503 if ((bool) compr_op) {
8504 for (int i = 0; i < 2; i++) {
8505 /* check if at least one of the values to be compressed is enabled */
8506 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
8507 if (enabled) {
8508 enabled_channels |= enabled << (i*2);
8509 values[i] = bld.vop3(compr_op, bld.def(v1),
8510 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
8511 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
8512 } else {
8513 values[i] = Operand(v1);
8514 }
8515 }
8516 values[2] = Operand(v1);
8517 values[3] = Operand(v1);
8518 } else {
8519 for (int i = 0; i < 4; i++)
8520 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
8521 }
8522
8523 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8524 enabled_channels, target, (bool) compr_op);
8525 }
8526
8527 static void create_fs_exports(isel_context *ctx)
8528 {
8529 /* Export depth, stencil and sample mask. */
8530 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
8531 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
8532 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) {
8533 export_fs_mrt_z(ctx);
8534 }
8535
8536 /* Export all color render targets. */
8537 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i) {
8538 if (ctx->outputs.mask[i])
8539 export_fs_mrt_color(ctx, i);
8540 }
8541 }
8542
8543 static void emit_stream_output(isel_context *ctx,
8544 Temp const *so_buffers,
8545 Temp const *so_write_offset,
8546 const struct radv_stream_output *output)
8547 {
8548 unsigned num_comps = util_bitcount(output->component_mask);
8549 unsigned writemask = (1 << num_comps) - 1;
8550 unsigned loc = output->location;
8551 unsigned buf = output->buffer;
8552
8553 assert(num_comps && num_comps <= 4);
8554 if (!num_comps || num_comps > 4)
8555 return;
8556
8557 unsigned start = ffs(output->component_mask) - 1;
8558
8559 Temp out[4];
8560 bool all_undef = true;
8561 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
8562 for (unsigned i = 0; i < num_comps; i++) {
8563 out[i] = ctx->outputs.outputs[loc][start + i];
8564 all_undef = all_undef && !out[i].id();
8565 }
8566 if (all_undef)
8567 return;
8568
8569 while (writemask) {
8570 int start, count;
8571 u_bit_scan_consecutive_range(&writemask, &start, &count);
8572 if (count == 3 && ctx->options->chip_class == GFX6) {
8573 /* GFX6 doesn't support storing vec3, split it. */
8574 writemask |= 1u << (start + 2);
8575 count = 2;
8576 }
8577
8578 unsigned offset = output->offset + start * 4;
8579
8580 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
8581 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
8582 for (int i = 0; i < count; ++i)
8583 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
8584 vec->definitions[0] = Definition(write_data);
8585 ctx->block->instructions.emplace_back(std::move(vec));
8586
8587 aco_opcode opcode;
8588 switch (count) {
8589 case 1:
8590 opcode = aco_opcode::buffer_store_dword;
8591 break;
8592 case 2:
8593 opcode = aco_opcode::buffer_store_dwordx2;
8594 break;
8595 case 3:
8596 opcode = aco_opcode::buffer_store_dwordx3;
8597 break;
8598 case 4:
8599 opcode = aco_opcode::buffer_store_dwordx4;
8600 break;
8601 default:
8602 unreachable("Unsupported dword count.");
8603 }
8604
8605 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
8606 store->operands[0] = Operand(so_write_offset[buf]);
8607 store->operands[1] = Operand(so_buffers[buf]);
8608 store->operands[2] = Operand((uint32_t) 0);
8609 store->operands[3] = Operand(write_data);
8610 if (offset > 4095) {
8611 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
8612 Builder bld(ctx->program, ctx->block);
8613 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
8614 } else {
8615 store->offset = offset;
8616 }
8617 store->offen = true;
8618 store->glc = true;
8619 store->dlc = false;
8620 store->slc = true;
8621 store->can_reorder = true;
8622 ctx->block->instructions.emplace_back(std::move(store));
8623 }
8624 }
8625
8626 static void emit_streamout(isel_context *ctx, unsigned stream)
8627 {
8628 Builder bld(ctx->program, ctx->block);
8629
8630 Temp so_buffers[4];
8631 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
8632 for (unsigned i = 0; i < 4; i++) {
8633 unsigned stride = ctx->program->info->so.strides[i];
8634 if (!stride)
8635 continue;
8636
8637 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
8638 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
8639 }
8640
8641 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
8642 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
8643
8644 Temp tid = emit_mbcnt(ctx, bld.def(v1));
8645
8646 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
8647
8648 if_context ic;
8649 begin_divergent_if_then(ctx, &ic, can_emit);
8650
8651 bld.reset(ctx->block);
8652
8653 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
8654
8655 Temp so_write_offset[4];
8656
8657 for (unsigned i = 0; i < 4; i++) {
8658 unsigned stride = ctx->program->info->so.strides[i];
8659 if (!stride)
8660 continue;
8661
8662 if (stride == 1) {
8663 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
8664 get_arg(ctx, ctx->args->streamout_write_idx),
8665 get_arg(ctx, ctx->args->streamout_offset[i]));
8666 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
8667
8668 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
8669 } else {
8670 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
8671 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
8672 get_arg(ctx, ctx->args->streamout_offset[i]));
8673 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
8674 }
8675 }
8676
8677 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
8678 struct radv_stream_output *output =
8679 &ctx->program->info->so.outputs[i];
8680 if (stream != output->stream)
8681 continue;
8682
8683 emit_stream_output(ctx, so_buffers, so_write_offset, output);
8684 }
8685
8686 begin_divergent_if_else(ctx, &ic);
8687 end_divergent_if(ctx, &ic);
8688 }
8689
8690 } /* end namespace */
8691
8692 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
8693 {
8694 /* Split all arguments except for the first (ring_offsets) and the last
8695 * (exec) so that the dead channels don't stay live throughout the program.
8696 */
8697 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
8698 if (startpgm->definitions[i].regClass().size() > 1) {
8699 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
8700 startpgm->definitions[i].regClass().size());
8701 }
8702 }
8703 }
8704
8705 void handle_bc_optimize(isel_context *ctx)
8706 {
8707 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
8708 Builder bld(ctx->program, ctx->block);
8709 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
8710 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
8711 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
8712 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
8713 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
8714 if (uses_center && uses_centroid) {
8715 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
8716 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
8717
8718 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
8719 Temp new_coord[2];
8720 for (unsigned i = 0; i < 2; i++) {
8721 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
8722 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
8723 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8724 persp_centroid, persp_center, sel);
8725 }
8726 ctx->persp_centroid = bld.tmp(v2);
8727 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
8728 Operand(new_coord[0]), Operand(new_coord[1]));
8729 emit_split_vector(ctx, ctx->persp_centroid, 2);
8730 }
8731
8732 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
8733 Temp new_coord[2];
8734 for (unsigned i = 0; i < 2; i++) {
8735 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
8736 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
8737 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8738 linear_centroid, linear_center, sel);
8739 }
8740 ctx->linear_centroid = bld.tmp(v2);
8741 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
8742 Operand(new_coord[0]), Operand(new_coord[1]));
8743 emit_split_vector(ctx, ctx->linear_centroid, 2);
8744 }
8745 }
8746 }
8747
8748 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
8749 {
8750 Program *program = ctx->program;
8751
8752 unsigned float_controls = shader->info.float_controls_execution_mode;
8753
8754 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
8755 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
8756 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
8757 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
8758 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
8759
8760 program->next_fp_mode.must_flush_denorms32 =
8761 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
8762 program->next_fp_mode.must_flush_denorms16_64 =
8763 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
8764 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
8765
8766 program->next_fp_mode.care_about_round32 =
8767 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
8768
8769 program->next_fp_mode.care_about_round16_64 =
8770 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
8771 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
8772
8773 /* default to preserving fp16 and fp64 denorms, since it's free */
8774 if (program->next_fp_mode.must_flush_denorms16_64)
8775 program->next_fp_mode.denorm16_64 = 0;
8776 else
8777 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
8778
8779 /* preserving fp32 denorms is expensive, so only do it if asked */
8780 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
8781 program->next_fp_mode.denorm32 = fp_denorm_keep;
8782 else
8783 program->next_fp_mode.denorm32 = 0;
8784
8785 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
8786 program->next_fp_mode.round32 = fp_round_tz;
8787 else
8788 program->next_fp_mode.round32 = fp_round_ne;
8789
8790 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
8791 program->next_fp_mode.round16_64 = fp_round_tz;
8792 else
8793 program->next_fp_mode.round16_64 = fp_round_ne;
8794
8795 ctx->block->fp_mode = program->next_fp_mode;
8796 }
8797
8798 void cleanup_cfg(Program *program)
8799 {
8800 /* create linear_succs/logical_succs */
8801 for (Block& BB : program->blocks) {
8802 for (unsigned idx : BB.linear_preds)
8803 program->blocks[idx].linear_succs.emplace_back(BB.index);
8804 for (unsigned idx : BB.logical_preds)
8805 program->blocks[idx].logical_succs.emplace_back(BB.index);
8806 }
8807 }
8808
8809 void select_program(Program *program,
8810 unsigned shader_count,
8811 struct nir_shader *const *shaders,
8812 ac_shader_config* config,
8813 struct radv_shader_args *args)
8814 {
8815 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
8816
8817 for (unsigned i = 0; i < shader_count; i++) {
8818 nir_shader *nir = shaders[i];
8819 init_context(&ctx, nir);
8820
8821 setup_fp_mode(&ctx, nir);
8822
8823 if (!i) {
8824 /* needs to be after init_context() for FS */
8825 Pseudo_instruction *startpgm = add_startpgm(&ctx);
8826 append_logical_start(ctx.block);
8827 split_arguments(&ctx, startpgm);
8828 }
8829
8830 if_context ic;
8831 if (shader_count >= 2) {
8832 Builder bld(ctx.program, ctx.block);
8833 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | (i * 8u)));
8834 Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
8835 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
8836
8837 begin_divergent_if_then(&ctx, &ic, cond);
8838 }
8839
8840 if (i) {
8841 Builder bld(ctx.program, ctx.block);
8842 assert(ctx.stage == vertex_geometry_gs);
8843 bld.barrier(aco_opcode::p_memory_barrier_shared);
8844 bld.sopp(aco_opcode::s_barrier);
8845
8846 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
8847 } else if (ctx.stage == geometry_gs)
8848 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
8849
8850 if (ctx.stage == fragment_fs)
8851 handle_bc_optimize(&ctx);
8852
8853 nir_function_impl *func = nir_shader_get_entrypoint(nir);
8854 visit_cf_list(&ctx, &func->body);
8855
8856 if (ctx.program->info->so.num_outputs && ctx.stage == vertex_vs)
8857 emit_streamout(&ctx, 0);
8858
8859 if (ctx.stage == vertex_vs) {
8860 create_vs_exports(&ctx);
8861 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
8862 Builder bld(ctx.program, ctx.block);
8863 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
8864 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
8865 }
8866
8867 if (ctx.stage == fragment_fs)
8868 create_fs_exports(&ctx);
8869
8870 if (shader_count >= 2) {
8871 begin_divergent_if_else(&ctx, &ic);
8872 end_divergent_if(&ctx, &ic);
8873 }
8874
8875 ralloc_free(ctx.divergent_vals);
8876 }
8877
8878 program->config->float_mode = program->blocks[0].fp_mode.val;
8879
8880 append_logical_end(ctx.block);
8881 ctx.block->kind |= block_kind_uniform | block_kind_export_end;
8882 Builder bld(ctx.program, ctx.block);
8883 if (ctx.program->wb_smem_l1_on_end)
8884 bld.smem(aco_opcode::s_dcache_wb, false);
8885 bld.sopp(aco_opcode::s_endpgm);
8886
8887 cleanup_cfg(program);
8888 }
8889
8890 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
8891 ac_shader_config* config,
8892 struct radv_shader_args *args)
8893 {
8894 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
8895
8896 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
8897 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
8898 program->next_fp_mode.must_flush_denorms32 = false;
8899 program->next_fp_mode.must_flush_denorms16_64 = false;
8900 program->next_fp_mode.care_about_round32 = false;
8901 program->next_fp_mode.care_about_round16_64 = false;
8902 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
8903 program->next_fp_mode.denorm32 = 0;
8904 program->next_fp_mode.round32 = fp_round_ne;
8905 program->next_fp_mode.round16_64 = fp_round_ne;
8906 ctx.block->fp_mode = program->next_fp_mode;
8907
8908 add_startpgm(&ctx);
8909 append_logical_start(ctx.block);
8910
8911 Builder bld(ctx.program, ctx.block);
8912
8913 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
8914
8915 Operand stream_id(0u);
8916 if (args->shader_info->so.num_outputs)
8917 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
8918 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
8919
8920 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
8921
8922 std::stack<Block> endif_blocks;
8923
8924 for (unsigned stream = 0; stream < 4; stream++) {
8925 if (stream_id.isConstant() && stream != stream_id.constantValue())
8926 continue;
8927
8928 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
8929 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
8930 continue;
8931
8932 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
8933
8934 unsigned BB_if_idx = ctx.block->index;
8935 Block BB_endif = Block();
8936 if (!stream_id.isConstant()) {
8937 /* begin IF */
8938 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
8939 append_logical_end(ctx.block);
8940 ctx.block->kind |= block_kind_uniform;
8941 bld.branch(aco_opcode::p_cbranch_z, cond);
8942
8943 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
8944
8945 ctx.block = ctx.program->create_and_insert_block();
8946 add_edge(BB_if_idx, ctx.block);
8947 bld.reset(ctx.block);
8948 append_logical_start(ctx.block);
8949 }
8950
8951 unsigned offset = 0;
8952 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
8953 if (args->shader_info->gs.output_streams[i] != stream)
8954 continue;
8955
8956 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
8957 unsigned length = util_last_bit(output_usage_mask);
8958 for (unsigned j = 0; j < length; ++j) {
8959 if (!(output_usage_mask & (1 << j)))
8960 continue;
8961
8962 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
8963 Temp voffset = vtx_offset;
8964 if (const_offset >= 4096u) {
8965 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
8966 const_offset %= 4096u;
8967 }
8968
8969 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
8970 mubuf->definitions[0] = bld.def(v1);
8971 mubuf->operands[0] = Operand(voffset);
8972 mubuf->operands[1] = Operand(gsvs_ring);
8973 mubuf->operands[2] = Operand(0u);
8974 mubuf->offen = true;
8975 mubuf->offset = const_offset;
8976 mubuf->glc = true;
8977 mubuf->slc = true;
8978 mubuf->dlc = args->options->chip_class >= GFX10;
8979 mubuf->barrier = barrier_none;
8980 mubuf->can_reorder = true;
8981
8982 ctx.outputs.mask[i] |= 1 << j;
8983 ctx.outputs.outputs[i][j] = mubuf->definitions[0].getTemp();
8984
8985 bld.insert(std::move(mubuf));
8986
8987 offset++;
8988 }
8989 }
8990
8991 if (args->shader_info->so.num_outputs) {
8992 emit_streamout(&ctx, stream);
8993 bld.reset(ctx.block);
8994 }
8995
8996 if (stream == 0) {
8997 create_vs_exports(&ctx);
8998 ctx.block->kind |= block_kind_export_end;
8999 }
9000
9001 if (!stream_id.isConstant()) {
9002 append_logical_end(ctx.block);
9003
9004 /* branch from then block to endif block */
9005 bld.branch(aco_opcode::p_branch);
9006 add_edge(ctx.block->index, &BB_endif);
9007 ctx.block->kind |= block_kind_uniform;
9008
9009 /* emit else block */
9010 ctx.block = ctx.program->create_and_insert_block();
9011 add_edge(BB_if_idx, ctx.block);
9012 bld.reset(ctx.block);
9013 append_logical_start(ctx.block);
9014
9015 endif_blocks.push(std::move(BB_endif));
9016 }
9017 }
9018
9019 while (!endif_blocks.empty()) {
9020 Block BB_endif = std::move(endif_blocks.top());
9021 endif_blocks.pop();
9022
9023 Block *BB_else = ctx.block;
9024
9025 append_logical_end(BB_else);
9026 /* branch from else block to endif block */
9027 bld.branch(aco_opcode::p_branch);
9028 add_edge(BB_else->index, &BB_endif);
9029 BB_else->kind |= block_kind_uniform;
9030
9031 /** emit endif merge block */
9032 ctx.block = program->insert_block(std::move(BB_endif));
9033 bld.reset(ctx.block);
9034 append_logical_start(ctx.block);
9035 }
9036
9037 program->config->float_mode = program->blocks[0].fp_mode.val;
9038
9039 append_logical_end(ctx.block);
9040 ctx.block->kind |= block_kind_uniform;
9041 bld.sopp(aco_opcode::s_endpgm);
9042
9043 cleanup_cfg(program);
9044 }
9045 }