aco: Implement tessellation control shader input/output.
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool then_branch_divergent;
89 Block BB_invert;
90 Block BB_endif;
91 };
92
93 static void visit_cf_list(struct isel_context *ctx,
94 struct exec_list *list);
95
96 static void add_logical_edge(unsigned pred_idx, Block *succ)
97 {
98 succ->logical_preds.emplace_back(pred_idx);
99 }
100
101
102 static void add_linear_edge(unsigned pred_idx, Block *succ)
103 {
104 succ->linear_preds.emplace_back(pred_idx);
105 }
106
107 static void add_edge(unsigned pred_idx, Block *succ)
108 {
109 add_logical_edge(pred_idx, succ);
110 add_linear_edge(pred_idx, succ);
111 }
112
113 static void append_logical_start(Block *b)
114 {
115 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
116 }
117
118 static void append_logical_end(Block *b)
119 {
120 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
121 }
122
123 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
124 {
125 assert(ctx->allocated[def->index].id());
126 return ctx->allocated[def->index];
127 }
128
129 Temp emit_mbcnt(isel_context *ctx, Definition dst,
130 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
131 {
132 Builder bld(ctx->program, ctx->block);
133 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
134 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
135
136 if (ctx->program->wave_size == 32) {
137 return thread_id_lo;
138 } else {
139 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
140 return thread_id_hi;
141 }
142 }
143
144 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
145 {
146 Builder bld(ctx->program, ctx->block);
147
148 if (!dst.id())
149 dst = bld.tmp(src.regClass());
150
151 assert(src.size() == dst.size());
152
153 if (ctx->stage != fragment_fs) {
154 if (!dst.id())
155 return src;
156
157 bld.copy(Definition(dst), src);
158 return dst;
159 }
160
161 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
162 ctx->program->needs_wqm |= program_needs_wqm;
163 return dst;
164 }
165
166 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
167 {
168 if (index.regClass() == s1)
169 return bld.readlane(bld.def(s1), data, index);
170
171 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
172
173 /* Currently not implemented on GFX6-7 */
174 assert(ctx->options->chip_class >= GFX8);
175
176 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
177 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
178 }
179
180 /* GFX10, wave64 mode:
181 * The bpermute instruction is limited to half-wave operation, which means that it can't
182 * properly support subgroup shuffle like older generations (or wave32 mode), so we
183 * emulate it here.
184 */
185 if (!ctx->has_gfx10_wave64_bpermute) {
186 ctx->has_gfx10_wave64_bpermute = true;
187 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
188 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
189 }
190
191 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
192 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
193 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
194 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
195
196 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
197 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
198 }
199
200 Temp as_vgpr(isel_context *ctx, Temp val)
201 {
202 if (val.type() == RegType::sgpr) {
203 Builder bld(ctx->program, ctx->block);
204 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
205 }
206 assert(val.type() == RegType::vgpr);
207 return val;
208 }
209
210 //assumes a != 0xffffffff
211 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
212 {
213 assert(b != 0);
214 Builder bld(ctx->program, ctx->block);
215
216 if (util_is_power_of_two_or_zero(b)) {
217 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
218 return;
219 }
220
221 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
222
223 assert(info.multiplier <= 0xffffffff);
224
225 bool pre_shift = info.pre_shift != 0;
226 bool increment = info.increment != 0;
227 bool multiply = true;
228 bool post_shift = info.post_shift != 0;
229
230 if (!pre_shift && !increment && !multiply && !post_shift) {
231 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
232 return;
233 }
234
235 Temp pre_shift_dst = a;
236 if (pre_shift) {
237 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
238 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
239 }
240
241 Temp increment_dst = pre_shift_dst;
242 if (increment) {
243 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
244 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
245 }
246
247 Temp multiply_dst = increment_dst;
248 if (multiply) {
249 multiply_dst = post_shift ? bld.tmp(v1) : dst;
250 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
251 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
252 }
253
254 if (post_shift) {
255 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
256 }
257 }
258
259 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
260 {
261 Builder bld(ctx->program, ctx->block);
262 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
263 }
264
265
266 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
267 {
268 /* no need to extract the whole vector */
269 if (src.regClass() == dst_rc) {
270 assert(idx == 0);
271 return src;
272 }
273 assert(src.size() > idx);
274 Builder bld(ctx->program, ctx->block);
275 auto it = ctx->allocated_vec.find(src.id());
276 /* the size check needs to be early because elements other than 0 may be garbage */
277 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
278 if (it->second[idx].regClass() == dst_rc) {
279 return it->second[idx];
280 } else {
281 assert(dst_rc.size() == it->second[idx].regClass().size());
282 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
283 return bld.copy(bld.def(dst_rc), it->second[idx]);
284 }
285 }
286
287 if (src.size() == dst_rc.size()) {
288 assert(idx == 0);
289 return bld.copy(bld.def(dst_rc), src);
290 } else {
291 Temp dst = bld.tmp(dst_rc);
292 emit_extract_vector(ctx, src, idx, dst);
293 return dst;
294 }
295 }
296
297 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
298 {
299 if (num_components == 1)
300 return;
301 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
302 return;
303 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
304 split->operands[0] = Operand(vec_src);
305 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
306 for (unsigned i = 0; i < num_components; i++) {
307 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
308 split->definitions[i] = Definition(elems[i]);
309 }
310 ctx->block->instructions.emplace_back(std::move(split));
311 ctx->allocated_vec.emplace(vec_src.id(), elems);
312 }
313
314 /* This vector expansion uses a mask to determine which elements in the new vector
315 * come from the original vector. The other elements are undefined. */
316 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
317 {
318 emit_split_vector(ctx, vec_src, util_bitcount(mask));
319
320 if (vec_src == dst)
321 return;
322
323 Builder bld(ctx->program, ctx->block);
324 if (num_components == 1) {
325 if (dst.type() == RegType::sgpr)
326 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
327 else
328 bld.copy(Definition(dst), vec_src);
329 return;
330 }
331
332 unsigned component_size = dst.size() / num_components;
333 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
334
335 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
336 vec->definitions[0] = Definition(dst);
337 unsigned k = 0;
338 for (unsigned i = 0; i < num_components; i++) {
339 if (mask & (1 << i)) {
340 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
341 if (dst.type() == RegType::sgpr)
342 src = bld.as_uniform(src);
343 vec->operands[i] = Operand(src);
344 } else {
345 vec->operands[i] = Operand(0u);
346 }
347 elems[i] = vec->operands[i].getTemp();
348 }
349 ctx->block->instructions.emplace_back(std::move(vec));
350 ctx->allocated_vec.emplace(dst.id(), elems);
351 }
352
353 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
354 {
355 Builder bld(ctx->program, ctx->block);
356 if (!dst.id())
357 dst = bld.tmp(bld.lm);
358
359 assert(val.regClass() == s1);
360 assert(dst.regClass() == bld.lm);
361
362 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
363 }
364
365 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
366 {
367 Builder bld(ctx->program, ctx->block);
368 if (!dst.id())
369 dst = bld.tmp(s1);
370
371 assert(val.regClass() == bld.lm);
372 assert(dst.regClass() == s1);
373
374 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
375 Temp tmp = bld.tmp(s1);
376 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
377 return emit_wqm(ctx, tmp, dst);
378 }
379
380 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
381 {
382 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
383 return get_ssa_temp(ctx, src.src.ssa);
384
385 if (src.src.ssa->num_components == size) {
386 bool identity_swizzle = true;
387 for (unsigned i = 0; identity_swizzle && i < size; i++) {
388 if (src.swizzle[i] != i)
389 identity_swizzle = false;
390 }
391 if (identity_swizzle)
392 return get_ssa_temp(ctx, src.src.ssa);
393 }
394
395 Temp vec = get_ssa_temp(ctx, src.src.ssa);
396 unsigned elem_size = vec.size() / src.src.ssa->num_components;
397 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
398 assert(vec.size() % elem_size == 0);
399
400 RegClass elem_rc = RegClass(vec.type(), elem_size);
401 if (size == 1) {
402 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
403 } else {
404 assert(size <= 4);
405 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
406 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
407 for (unsigned i = 0; i < size; ++i) {
408 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
409 vec_instr->operands[i] = Operand{elems[i]};
410 }
411 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
412 vec_instr->definitions[0] = Definition(dst);
413 ctx->block->instructions.emplace_back(std::move(vec_instr));
414 ctx->allocated_vec.emplace(dst.id(), elems);
415 return dst;
416 }
417 }
418
419 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
420 {
421 if (ptr.size() == 2)
422 return ptr;
423 Builder bld(ctx->program, ctx->block);
424 if (ptr.type() == RegType::vgpr)
425 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
426 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
427 ptr, Operand((unsigned)ctx->options->address32_hi));
428 }
429
430 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
431 {
432 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
433 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
434 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
435 sop2->definitions[0] = Definition(dst);
436 if (writes_scc)
437 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
438 ctx->block->instructions.emplace_back(std::move(sop2));
439 }
440
441 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
442 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
443 {
444 Builder bld(ctx->program, ctx->block);
445 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
446 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
447 if (src1.type() == RegType::sgpr) {
448 if (commutative && src0.type() == RegType::vgpr) {
449 Temp t = src0;
450 src0 = src1;
451 src1 = t;
452 } else if (src0.type() == RegType::vgpr &&
453 op != aco_opcode::v_madmk_f32 &&
454 op != aco_opcode::v_madak_f32 &&
455 op != aco_opcode::v_madmk_f16 &&
456 op != aco_opcode::v_madak_f16) {
457 /* If the instruction is not commutative, we emit a VOP3A instruction */
458 bld.vop2_e64(op, Definition(dst), src0, src1);
459 return;
460 } else {
461 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
462 }
463 }
464
465 if (flush_denorms && ctx->program->chip_class < GFX9) {
466 assert(dst.size() == 1);
467 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
468 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
469 } else {
470 bld.vop2(op, Definition(dst), src0, src1);
471 }
472 }
473
474 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
475 bool flush_denorms = false)
476 {
477 Temp src0 = get_alu_src(ctx, instr->src[0]);
478 Temp src1 = get_alu_src(ctx, instr->src[1]);
479 Temp src2 = get_alu_src(ctx, instr->src[2]);
480
481 /* ensure that the instruction has at most 1 sgpr operand
482 * The optimizer will inline constants for us */
483 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
484 src0 = as_vgpr(ctx, src0);
485 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
486 src1 = as_vgpr(ctx, src1);
487 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
488 src2 = as_vgpr(ctx, src2);
489
490 Builder bld(ctx->program, ctx->block);
491 if (flush_denorms && ctx->program->chip_class < GFX9) {
492 assert(dst.size() == 1);
493 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
494 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
495 } else {
496 bld.vop3(op, Definition(dst), src0, src1, src2);
497 }
498 }
499
500 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
501 {
502 Builder bld(ctx->program, ctx->block);
503 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
504 }
505
506 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
507 {
508 Temp src0 = get_alu_src(ctx, instr->src[0]);
509 Temp src1 = get_alu_src(ctx, instr->src[1]);
510 assert(src0.size() == src1.size());
511
512 aco_ptr<Instruction> vopc;
513 if (src1.type() == RegType::sgpr) {
514 if (src0.type() == RegType::vgpr) {
515 /* to swap the operands, we might also have to change the opcode */
516 switch (op) {
517 case aco_opcode::v_cmp_lt_f32:
518 op = aco_opcode::v_cmp_gt_f32;
519 break;
520 case aco_opcode::v_cmp_ge_f32:
521 op = aco_opcode::v_cmp_le_f32;
522 break;
523 case aco_opcode::v_cmp_lt_i32:
524 op = aco_opcode::v_cmp_gt_i32;
525 break;
526 case aco_opcode::v_cmp_ge_i32:
527 op = aco_opcode::v_cmp_le_i32;
528 break;
529 case aco_opcode::v_cmp_lt_u32:
530 op = aco_opcode::v_cmp_gt_u32;
531 break;
532 case aco_opcode::v_cmp_ge_u32:
533 op = aco_opcode::v_cmp_le_u32;
534 break;
535 case aco_opcode::v_cmp_lt_f64:
536 op = aco_opcode::v_cmp_gt_f64;
537 break;
538 case aco_opcode::v_cmp_ge_f64:
539 op = aco_opcode::v_cmp_le_f64;
540 break;
541 case aco_opcode::v_cmp_lt_i64:
542 op = aco_opcode::v_cmp_gt_i64;
543 break;
544 case aco_opcode::v_cmp_ge_i64:
545 op = aco_opcode::v_cmp_le_i64;
546 break;
547 case aco_opcode::v_cmp_lt_u64:
548 op = aco_opcode::v_cmp_gt_u64;
549 break;
550 case aco_opcode::v_cmp_ge_u64:
551 op = aco_opcode::v_cmp_le_u64;
552 break;
553 default: /* eq and ne are commutative */
554 break;
555 }
556 Temp t = src0;
557 src0 = src1;
558 src1 = t;
559 } else {
560 src1 = as_vgpr(ctx, src1);
561 }
562 }
563
564 Builder bld(ctx->program, ctx->block);
565 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
566 }
567
568 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
569 {
570 Temp src0 = get_alu_src(ctx, instr->src[0]);
571 Temp src1 = get_alu_src(ctx, instr->src[1]);
572 Builder bld(ctx->program, ctx->block);
573
574 assert(dst.regClass() == bld.lm);
575 assert(src0.type() == RegType::sgpr);
576 assert(src1.type() == RegType::sgpr);
577 assert(src0.regClass() == src1.regClass());
578
579 /* Emit the SALU comparison instruction */
580 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
581 /* Turn the result into a per-lane bool */
582 bool_to_vector_condition(ctx, cmp, dst);
583 }
584
585 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
586 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
587 {
588 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
589 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
590 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
591 bool use_valu = s_op == aco_opcode::num_opcodes ||
592 divergent_vals ||
593 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
594 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
595 aco_opcode op = use_valu ? v_op : s_op;
596 assert(op != aco_opcode::num_opcodes);
597 assert(dst.regClass() == ctx->program->lane_mask);
598
599 if (use_valu)
600 emit_vopc_instruction(ctx, instr, op, dst);
601 else
602 emit_sopc_instruction(ctx, instr, op, dst);
603 }
604
605 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
606 {
607 Builder bld(ctx->program, ctx->block);
608 Temp src0 = get_alu_src(ctx, instr->src[0]);
609 Temp src1 = get_alu_src(ctx, instr->src[1]);
610
611 assert(dst.regClass() == bld.lm);
612 assert(src0.regClass() == bld.lm);
613 assert(src1.regClass() == bld.lm);
614
615 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
616 }
617
618 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
619 {
620 Builder bld(ctx->program, ctx->block);
621 Temp cond = get_alu_src(ctx, instr->src[0]);
622 Temp then = get_alu_src(ctx, instr->src[1]);
623 Temp els = get_alu_src(ctx, instr->src[2]);
624
625 assert(cond.regClass() == bld.lm);
626
627 if (dst.type() == RegType::vgpr) {
628 aco_ptr<Instruction> bcsel;
629 if (dst.size() == 1) {
630 then = as_vgpr(ctx, then);
631 els = as_vgpr(ctx, els);
632
633 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
634 } else if (dst.size() == 2) {
635 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
636 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
637 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
638 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
639
640 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
641 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
642
643 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
644 } else {
645 fprintf(stderr, "Unimplemented NIR instr bit size: ");
646 nir_print_instr(&instr->instr, stderr);
647 fprintf(stderr, "\n");
648 }
649 return;
650 }
651
652 if (instr->dest.dest.ssa.bit_size == 1) {
653 assert(dst.regClass() == bld.lm);
654 assert(then.regClass() == bld.lm);
655 assert(els.regClass() == bld.lm);
656 }
657
658 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
659 if (dst.regClass() == s1 || dst.regClass() == s2) {
660 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
661 assert(dst.size() == then.size());
662 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
663 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
664 } else {
665 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
666 nir_print_instr(&instr->instr, stderr);
667 fprintf(stderr, "\n");
668 }
669 return;
670 }
671
672 /* divergent boolean bcsel
673 * this implements bcsel on bools: dst = s0 ? s1 : s2
674 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
675 assert(instr->dest.dest.ssa.bit_size == 1);
676
677 if (cond.id() != then.id())
678 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
679
680 if (cond.id() == els.id())
681 bld.sop1(Builder::s_mov, Definition(dst), then);
682 else
683 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
684 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
685 }
686
687 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
688 aco_opcode op, uint32_t undo)
689 {
690 /* multiply by 16777216 to handle denormals */
691 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
692 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
693 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
694 scaled = bld.vop1(op, bld.def(v1), scaled);
695 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
696
697 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
698
699 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
700 }
701
702 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
703 {
704 if (ctx->block->fp_mode.denorm32 == 0) {
705 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
706 return;
707 }
708
709 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
710 }
711
712 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
713 {
714 if (ctx->block->fp_mode.denorm32 == 0) {
715 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
716 return;
717 }
718
719 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
720 }
721
722 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
723 {
724 if (ctx->block->fp_mode.denorm32 == 0) {
725 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
726 return;
727 }
728
729 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
730 }
731
732 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
733 {
734 if (ctx->block->fp_mode.denorm32 == 0) {
735 bld.vop1(aco_opcode::v_log_f32, dst, val);
736 return;
737 }
738
739 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
740 }
741
742 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
743 {
744 if (ctx->options->chip_class >= GFX7)
745 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
746
747 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
748 /* TODO: create more efficient code! */
749 if (val.type() == RegType::sgpr)
750 val = as_vgpr(ctx, val);
751
752 /* Split the input value. */
753 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
754 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
755
756 /* Extract the exponent and compute the unbiased value. */
757 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
758
759 /* Extract the fractional part. */
760 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
761 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
762
763 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
765
766 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
767 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
768 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
769 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
770 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
771
772 /* Get the sign bit. */
773 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
774
775 /* Decide the operation to apply depending on the unbiased exponent. */
776 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
777 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
778 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
779 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
780 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
781 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
782
783 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
784 }
785
786 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
787 {
788 if (ctx->options->chip_class >= GFX7)
789 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
790
791 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
792 Temp src0 = as_vgpr(ctx, val);
793
794 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
795 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
796
797 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
798 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
799 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
800
801 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
802 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
803 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
804 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
805
806 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
807 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
808
809 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
810
811 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
812 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
813
814 return add->definitions[0].getTemp();
815 }
816
817 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
818 {
819 if (!instr->dest.dest.is_ssa) {
820 fprintf(stderr, "nir alu dst not in ssa: ");
821 nir_print_instr(&instr->instr, stderr);
822 fprintf(stderr, "\n");
823 abort();
824 }
825 Builder bld(ctx->program, ctx->block);
826 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
827 switch(instr->op) {
828 case nir_op_vec2:
829 case nir_op_vec3:
830 case nir_op_vec4: {
831 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
832 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
833 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
834 elems[i] = get_alu_src(ctx, instr->src[i]);
835 vec->operands[i] = Operand{elems[i]};
836 }
837 vec->definitions[0] = Definition(dst);
838 ctx->block->instructions.emplace_back(std::move(vec));
839 ctx->allocated_vec.emplace(dst.id(), elems);
840 break;
841 }
842 case nir_op_mov: {
843 Temp src = get_alu_src(ctx, instr->src[0]);
844 aco_ptr<Instruction> mov;
845 if (dst.type() == RegType::sgpr) {
846 if (src.type() == RegType::vgpr)
847 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
848 else if (src.regClass() == s1)
849 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
850 else if (src.regClass() == s2)
851 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
852 else
853 unreachable("wrong src register class for nir_op_imov");
854 } else if (dst.regClass() == v1) {
855 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
856 } else if (dst.regClass() == v2) {
857 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
858 } else {
859 nir_print_instr(&instr->instr, stderr);
860 unreachable("Should have been lowered to scalar.");
861 }
862 break;
863 }
864 case nir_op_inot: {
865 Temp src = get_alu_src(ctx, instr->src[0]);
866 if (instr->dest.dest.ssa.bit_size == 1) {
867 assert(src.regClass() == bld.lm);
868 assert(dst.regClass() == bld.lm);
869 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
870 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
871 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
872 } else if (dst.regClass() == v1) {
873 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
874 } else if (dst.type() == RegType::sgpr) {
875 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
876 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
877 } else {
878 fprintf(stderr, "Unimplemented NIR instr bit size: ");
879 nir_print_instr(&instr->instr, stderr);
880 fprintf(stderr, "\n");
881 }
882 break;
883 }
884 case nir_op_ineg: {
885 Temp src = get_alu_src(ctx, instr->src[0]);
886 if (dst.regClass() == v1) {
887 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
888 } else if (dst.regClass() == s1) {
889 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
890 } else if (dst.size() == 2) {
891 Temp src0 = bld.tmp(dst.type(), 1);
892 Temp src1 = bld.tmp(dst.type(), 1);
893 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
894
895 if (dst.regClass() == s2) {
896 Temp carry = bld.tmp(s1);
897 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
898 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
899 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
900 } else {
901 Temp lower = bld.tmp(v1);
902 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
903 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
904 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
905 }
906 } else {
907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
908 nir_print_instr(&instr->instr, stderr);
909 fprintf(stderr, "\n");
910 }
911 break;
912 }
913 case nir_op_iabs: {
914 if (dst.regClass() == s1) {
915 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
916 } else if (dst.regClass() == v1) {
917 Temp src = get_alu_src(ctx, instr->src[0]);
918 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
919 } else {
920 fprintf(stderr, "Unimplemented NIR instr bit size: ");
921 nir_print_instr(&instr->instr, stderr);
922 fprintf(stderr, "\n");
923 }
924 break;
925 }
926 case nir_op_isign: {
927 Temp src = get_alu_src(ctx, instr->src[0]);
928 if (dst.regClass() == s1) {
929 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
930 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
931 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
932 } else if (dst.regClass() == s2) {
933 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
934 Temp neqz;
935 if (ctx->program->chip_class >= GFX8)
936 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
937 else
938 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
939 /* SCC gets zero-extended to 64 bit */
940 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
941 } else if (dst.regClass() == v1) {
942 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
943 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
944 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
945 } else if (dst.regClass() == v2) {
946 Temp upper = emit_extract_vector(ctx, src, 1, v1);
947 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
948 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
949 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
950 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
951 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
952 } else {
953 fprintf(stderr, "Unimplemented NIR instr bit size: ");
954 nir_print_instr(&instr->instr, stderr);
955 fprintf(stderr, "\n");
956 }
957 break;
958 }
959 case nir_op_imax: {
960 if (dst.regClass() == v1) {
961 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
962 } else if (dst.regClass() == s1) {
963 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
964 } else {
965 fprintf(stderr, "Unimplemented NIR instr bit size: ");
966 nir_print_instr(&instr->instr, stderr);
967 fprintf(stderr, "\n");
968 }
969 break;
970 }
971 case nir_op_umax: {
972 if (dst.regClass() == v1) {
973 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
974 } else if (dst.regClass() == s1) {
975 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
976 } else {
977 fprintf(stderr, "Unimplemented NIR instr bit size: ");
978 nir_print_instr(&instr->instr, stderr);
979 fprintf(stderr, "\n");
980 }
981 break;
982 }
983 case nir_op_imin: {
984 if (dst.regClass() == v1) {
985 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
986 } else if (dst.regClass() == s1) {
987 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
988 } else {
989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
990 nir_print_instr(&instr->instr, stderr);
991 fprintf(stderr, "\n");
992 }
993 break;
994 }
995 case nir_op_umin: {
996 if (dst.regClass() == v1) {
997 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
998 } else if (dst.regClass() == s1) {
999 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1000 } else {
1001 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1002 nir_print_instr(&instr->instr, stderr);
1003 fprintf(stderr, "\n");
1004 }
1005 break;
1006 }
1007 case nir_op_ior: {
1008 if (instr->dest.dest.ssa.bit_size == 1) {
1009 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1010 } else if (dst.regClass() == v1) {
1011 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1012 } else if (dst.regClass() == s1) {
1013 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1014 } else if (dst.regClass() == s2) {
1015 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1016 } else {
1017 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1018 nir_print_instr(&instr->instr, stderr);
1019 fprintf(stderr, "\n");
1020 }
1021 break;
1022 }
1023 case nir_op_iand: {
1024 if (instr->dest.dest.ssa.bit_size == 1) {
1025 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1026 } else if (dst.regClass() == v1) {
1027 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1028 } else if (dst.regClass() == s1) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1030 } else if (dst.regClass() == s2) {
1031 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1032 } else {
1033 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1034 nir_print_instr(&instr->instr, stderr);
1035 fprintf(stderr, "\n");
1036 }
1037 break;
1038 }
1039 case nir_op_ixor: {
1040 if (instr->dest.dest.ssa.bit_size == 1) {
1041 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1042 } else if (dst.regClass() == v1) {
1043 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1044 } else if (dst.regClass() == s1) {
1045 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1046 } else if (dst.regClass() == s2) {
1047 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1048 } else {
1049 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1050 nir_print_instr(&instr->instr, stderr);
1051 fprintf(stderr, "\n");
1052 }
1053 break;
1054 }
1055 case nir_op_ushr: {
1056 if (dst.regClass() == v1) {
1057 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1058 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1059 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1060 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1061 } else if (dst.regClass() == v2) {
1062 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1063 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1064 } else if (dst.regClass() == s2) {
1065 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1066 } else if (dst.regClass() == s1) {
1067 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1068 } else {
1069 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1070 nir_print_instr(&instr->instr, stderr);
1071 fprintf(stderr, "\n");
1072 }
1073 break;
1074 }
1075 case nir_op_ishl: {
1076 if (dst.regClass() == v1) {
1077 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1078 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1079 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1080 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1081 } else if (dst.regClass() == v2) {
1082 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1083 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1084 } else if (dst.regClass() == s1) {
1085 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1086 } else if (dst.regClass() == s2) {
1087 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_ishr: {
1096 if (dst.regClass() == v1) {
1097 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1098 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1099 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1100 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1101 } else if (dst.regClass() == v2) {
1102 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1103 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1104 } else if (dst.regClass() == s1) {
1105 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1106 } else if (dst.regClass() == s2) {
1107 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1108 } else {
1109 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1110 nir_print_instr(&instr->instr, stderr);
1111 fprintf(stderr, "\n");
1112 }
1113 break;
1114 }
1115 case nir_op_find_lsb: {
1116 Temp src = get_alu_src(ctx, instr->src[0]);
1117 if (src.regClass() == s1) {
1118 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1119 } else if (src.regClass() == v1) {
1120 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1121 } else if (src.regClass() == s2) {
1122 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1123 } else {
1124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1125 nir_print_instr(&instr->instr, stderr);
1126 fprintf(stderr, "\n");
1127 }
1128 break;
1129 }
1130 case nir_op_ufind_msb:
1131 case nir_op_ifind_msb: {
1132 Temp src = get_alu_src(ctx, instr->src[0]);
1133 if (src.regClass() == s1 || src.regClass() == s2) {
1134 aco_opcode op = src.regClass() == s2 ?
1135 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1136 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1137 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1138
1139 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1140 Operand(src.size() * 32u - 1u), msb_rev);
1141 Temp msb = sub.def(0).getTemp();
1142 Temp carry = sub.def(1).getTemp();
1143
1144 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1145 } else if (src.regClass() == v1) {
1146 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1147 Temp msb_rev = bld.tmp(v1);
1148 emit_vop1_instruction(ctx, instr, op, msb_rev);
1149 Temp msb = bld.tmp(v1);
1150 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1151 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1152 } else {
1153 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1154 nir_print_instr(&instr->instr, stderr);
1155 fprintf(stderr, "\n");
1156 }
1157 break;
1158 }
1159 case nir_op_bitfield_reverse: {
1160 if (dst.regClass() == s1) {
1161 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1162 } else if (dst.regClass() == v1) {
1163 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1164 } else {
1165 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1166 nir_print_instr(&instr->instr, stderr);
1167 fprintf(stderr, "\n");
1168 }
1169 break;
1170 }
1171 case nir_op_iadd: {
1172 if (dst.regClass() == s1) {
1173 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1174 break;
1175 }
1176
1177 Temp src0 = get_alu_src(ctx, instr->src[0]);
1178 Temp src1 = get_alu_src(ctx, instr->src[1]);
1179 if (dst.regClass() == v1) {
1180 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1181 break;
1182 }
1183
1184 assert(src0.size() == 2 && src1.size() == 2);
1185 Temp src00 = bld.tmp(src0.type(), 1);
1186 Temp src01 = bld.tmp(dst.type(), 1);
1187 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1188 Temp src10 = bld.tmp(src1.type(), 1);
1189 Temp src11 = bld.tmp(dst.type(), 1);
1190 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1191
1192 if (dst.regClass() == s2) {
1193 Temp carry = bld.tmp(s1);
1194 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1195 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1196 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1197 } else if (dst.regClass() == v2) {
1198 Temp dst0 = bld.tmp(v1);
1199 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1200 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1201 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1202 } else {
1203 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1204 nir_print_instr(&instr->instr, stderr);
1205 fprintf(stderr, "\n");
1206 }
1207 break;
1208 }
1209 case nir_op_uadd_sat: {
1210 Temp src0 = get_alu_src(ctx, instr->src[0]);
1211 Temp src1 = get_alu_src(ctx, instr->src[1]);
1212 if (dst.regClass() == s1) {
1213 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1214 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1215 src0, src1);
1216 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1217 } else if (dst.regClass() == v1) {
1218 if (ctx->options->chip_class >= GFX9) {
1219 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1220 add->operands[0] = Operand(src0);
1221 add->operands[1] = Operand(src1);
1222 add->definitions[0] = Definition(dst);
1223 add->clamp = 1;
1224 ctx->block->instructions.emplace_back(std::move(add));
1225 } else {
1226 if (src1.regClass() != v1)
1227 std::swap(src0, src1);
1228 assert(src1.regClass() == v1);
1229 Temp tmp = bld.tmp(v1);
1230 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1231 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1232 }
1233 } else {
1234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1235 nir_print_instr(&instr->instr, stderr);
1236 fprintf(stderr, "\n");
1237 }
1238 break;
1239 }
1240 case nir_op_uadd_carry: {
1241 Temp src0 = get_alu_src(ctx, instr->src[0]);
1242 Temp src1 = get_alu_src(ctx, instr->src[1]);
1243 if (dst.regClass() == s1) {
1244 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1245 break;
1246 }
1247 if (dst.regClass() == v1) {
1248 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1249 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1250 break;
1251 }
1252
1253 Temp src00 = bld.tmp(src0.type(), 1);
1254 Temp src01 = bld.tmp(dst.type(), 1);
1255 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1256 Temp src10 = bld.tmp(src1.type(), 1);
1257 Temp src11 = bld.tmp(dst.type(), 1);
1258 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1259 if (dst.regClass() == s2) {
1260 Temp carry = bld.tmp(s1);
1261 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1262 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1263 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1264 } else if (dst.regClass() == v2) {
1265 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1266 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1267 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1268 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1269 } else {
1270 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1271 nir_print_instr(&instr->instr, stderr);
1272 fprintf(stderr, "\n");
1273 }
1274 break;
1275 }
1276 case nir_op_isub: {
1277 if (dst.regClass() == s1) {
1278 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1279 break;
1280 }
1281
1282 Temp src0 = get_alu_src(ctx, instr->src[0]);
1283 Temp src1 = get_alu_src(ctx, instr->src[1]);
1284 if (dst.regClass() == v1) {
1285 bld.vsub32(Definition(dst), src0, src1);
1286 break;
1287 }
1288
1289 Temp src00 = bld.tmp(src0.type(), 1);
1290 Temp src01 = bld.tmp(dst.type(), 1);
1291 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1292 Temp src10 = bld.tmp(src1.type(), 1);
1293 Temp src11 = bld.tmp(dst.type(), 1);
1294 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1295 if (dst.regClass() == s2) {
1296 Temp carry = bld.tmp(s1);
1297 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1298 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1299 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1300 } else if (dst.regClass() == v2) {
1301 Temp lower = bld.tmp(v1);
1302 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1303 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1304 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1305 } else {
1306 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1307 nir_print_instr(&instr->instr, stderr);
1308 fprintf(stderr, "\n");
1309 }
1310 break;
1311 }
1312 case nir_op_usub_borrow: {
1313 Temp src0 = get_alu_src(ctx, instr->src[0]);
1314 Temp src1 = get_alu_src(ctx, instr->src[1]);
1315 if (dst.regClass() == s1) {
1316 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1317 break;
1318 } else if (dst.regClass() == v1) {
1319 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1320 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1321 break;
1322 }
1323
1324 Temp src00 = bld.tmp(src0.type(), 1);
1325 Temp src01 = bld.tmp(dst.type(), 1);
1326 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1327 Temp src10 = bld.tmp(src1.type(), 1);
1328 Temp src11 = bld.tmp(dst.type(), 1);
1329 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1330 if (dst.regClass() == s2) {
1331 Temp borrow = bld.tmp(s1);
1332 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1333 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1334 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1335 } else if (dst.regClass() == v2) {
1336 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1337 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1338 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1339 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1340 } else {
1341 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1342 nir_print_instr(&instr->instr, stderr);
1343 fprintf(stderr, "\n");
1344 }
1345 break;
1346 }
1347 case nir_op_imul: {
1348 if (dst.regClass() == v1) {
1349 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1350 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1351 } else if (dst.regClass() == s1) {
1352 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1353 } else {
1354 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1355 nir_print_instr(&instr->instr, stderr);
1356 fprintf(stderr, "\n");
1357 }
1358 break;
1359 }
1360 case nir_op_umul_high: {
1361 if (dst.regClass() == v1) {
1362 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1363 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1364 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1365 } else if (dst.regClass() == s1) {
1366 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1367 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1368 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1369 } else {
1370 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1371 nir_print_instr(&instr->instr, stderr);
1372 fprintf(stderr, "\n");
1373 }
1374 break;
1375 }
1376 case nir_op_imul_high: {
1377 if (dst.regClass() == v1) {
1378 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1379 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1380 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1381 } else if (dst.regClass() == s1) {
1382 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1383 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1384 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1385 } else {
1386 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1387 nir_print_instr(&instr->instr, stderr);
1388 fprintf(stderr, "\n");
1389 }
1390 break;
1391 }
1392 case nir_op_fmul: {
1393 if (dst.size() == 1) {
1394 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1395 } else if (dst.size() == 2) {
1396 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1397 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1398 } else {
1399 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1400 nir_print_instr(&instr->instr, stderr);
1401 fprintf(stderr, "\n");
1402 }
1403 break;
1404 }
1405 case nir_op_fadd: {
1406 if (dst.size() == 1) {
1407 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1408 } else if (dst.size() == 2) {
1409 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1410 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1411 } else {
1412 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1413 nir_print_instr(&instr->instr, stderr);
1414 fprintf(stderr, "\n");
1415 }
1416 break;
1417 }
1418 case nir_op_fsub: {
1419 Temp src0 = get_alu_src(ctx, instr->src[0]);
1420 Temp src1 = get_alu_src(ctx, instr->src[1]);
1421 if (dst.size() == 1) {
1422 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1423 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1424 else
1425 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1426 } else if (dst.size() == 2) {
1427 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1428 get_alu_src(ctx, instr->src[0]),
1429 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1430 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1431 sub->neg[1] = true;
1432 } else {
1433 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1434 nir_print_instr(&instr->instr, stderr);
1435 fprintf(stderr, "\n");
1436 }
1437 break;
1438 }
1439 case nir_op_fmax: {
1440 if (dst.size() == 1) {
1441 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1442 } else if (dst.size() == 2) {
1443 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1444 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1445 get_alu_src(ctx, instr->src[0]),
1446 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1447 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1448 } else {
1449 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1450 get_alu_src(ctx, instr->src[0]),
1451 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1452 }
1453 } else {
1454 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1455 nir_print_instr(&instr->instr, stderr);
1456 fprintf(stderr, "\n");
1457 }
1458 break;
1459 }
1460 case nir_op_fmin: {
1461 if (dst.size() == 1) {
1462 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1463 } else if (dst.size() == 2) {
1464 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1465 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1466 get_alu_src(ctx, instr->src[0]),
1467 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1468 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1469 } else {
1470 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1471 get_alu_src(ctx, instr->src[0]),
1472 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1473 }
1474 } else {
1475 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1476 nir_print_instr(&instr->instr, stderr);
1477 fprintf(stderr, "\n");
1478 }
1479 break;
1480 }
1481 case nir_op_fmax3: {
1482 if (dst.size() == 1) {
1483 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1484 } else {
1485 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1486 nir_print_instr(&instr->instr, stderr);
1487 fprintf(stderr, "\n");
1488 }
1489 break;
1490 }
1491 case nir_op_fmin3: {
1492 if (dst.size() == 1) {
1493 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1494 } else {
1495 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1496 nir_print_instr(&instr->instr, stderr);
1497 fprintf(stderr, "\n");
1498 }
1499 break;
1500 }
1501 case nir_op_fmed3: {
1502 if (dst.size() == 1) {
1503 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1504 } else {
1505 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1506 nir_print_instr(&instr->instr, stderr);
1507 fprintf(stderr, "\n");
1508 }
1509 break;
1510 }
1511 case nir_op_umax3: {
1512 if (dst.size() == 1) {
1513 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1514 } else {
1515 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1516 nir_print_instr(&instr->instr, stderr);
1517 fprintf(stderr, "\n");
1518 }
1519 break;
1520 }
1521 case nir_op_umin3: {
1522 if (dst.size() == 1) {
1523 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1524 } else {
1525 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1526 nir_print_instr(&instr->instr, stderr);
1527 fprintf(stderr, "\n");
1528 }
1529 break;
1530 }
1531 case nir_op_umed3: {
1532 if (dst.size() == 1) {
1533 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1534 } else {
1535 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1536 nir_print_instr(&instr->instr, stderr);
1537 fprintf(stderr, "\n");
1538 }
1539 break;
1540 }
1541 case nir_op_imax3: {
1542 if (dst.size() == 1) {
1543 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1544 } else {
1545 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1546 nir_print_instr(&instr->instr, stderr);
1547 fprintf(stderr, "\n");
1548 }
1549 break;
1550 }
1551 case nir_op_imin3: {
1552 if (dst.size() == 1) {
1553 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_imed3: {
1562 if (dst.size() == 1) {
1563 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1564 } else {
1565 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1566 nir_print_instr(&instr->instr, stderr);
1567 fprintf(stderr, "\n");
1568 }
1569 break;
1570 }
1571 case nir_op_cube_face_coord: {
1572 Temp in = get_alu_src(ctx, instr->src[0], 3);
1573 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1574 emit_extract_vector(ctx, in, 1, v1),
1575 emit_extract_vector(ctx, in, 2, v1) };
1576 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1577 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1578 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1579 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1580 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1581 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1582 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1583 break;
1584 }
1585 case nir_op_cube_face_index: {
1586 Temp in = get_alu_src(ctx, instr->src[0], 3);
1587 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1588 emit_extract_vector(ctx, in, 1, v1),
1589 emit_extract_vector(ctx, in, 2, v1) };
1590 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1591 break;
1592 }
1593 case nir_op_bcsel: {
1594 emit_bcsel(ctx, instr, dst);
1595 break;
1596 }
1597 case nir_op_frsq: {
1598 if (dst.size() == 1) {
1599 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1600 } else if (dst.size() == 2) {
1601 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1602 } else {
1603 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1604 nir_print_instr(&instr->instr, stderr);
1605 fprintf(stderr, "\n");
1606 }
1607 break;
1608 }
1609 case nir_op_fneg: {
1610 Temp src = get_alu_src(ctx, instr->src[0]);
1611 if (dst.size() == 1) {
1612 if (ctx->block->fp_mode.must_flush_denorms32)
1613 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1614 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1615 } else if (dst.size() == 2) {
1616 if (ctx->block->fp_mode.must_flush_denorms16_64)
1617 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1618 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1619 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1620 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1621 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_fabs: {
1630 Temp src = get_alu_src(ctx, instr->src[0]);
1631 if (dst.size() == 1) {
1632 if (ctx->block->fp_mode.must_flush_denorms32)
1633 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1634 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1635 } else if (dst.size() == 2) {
1636 if (ctx->block->fp_mode.must_flush_denorms16_64)
1637 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1638 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1639 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1640 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1642 } else {
1643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1644 nir_print_instr(&instr->instr, stderr);
1645 fprintf(stderr, "\n");
1646 }
1647 break;
1648 }
1649 case nir_op_fsat: {
1650 Temp src = get_alu_src(ctx, instr->src[0]);
1651 if (dst.size() == 1) {
1652 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1653 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1654 // TODO: confirm that this holds under any circumstances
1655 } else if (dst.size() == 2) {
1656 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1657 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1658 vop3->clamp = true;
1659 } else {
1660 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1661 nir_print_instr(&instr->instr, stderr);
1662 fprintf(stderr, "\n");
1663 }
1664 break;
1665 }
1666 case nir_op_flog2: {
1667 if (dst.size() == 1) {
1668 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1669 } else {
1670 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1671 nir_print_instr(&instr->instr, stderr);
1672 fprintf(stderr, "\n");
1673 }
1674 break;
1675 }
1676 case nir_op_frcp: {
1677 if (dst.size() == 1) {
1678 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1679 } else if (dst.size() == 2) {
1680 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1681 } else {
1682 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1683 nir_print_instr(&instr->instr, stderr);
1684 fprintf(stderr, "\n");
1685 }
1686 break;
1687 }
1688 case nir_op_fexp2: {
1689 if (dst.size() == 1) {
1690 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1691 } else {
1692 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1693 nir_print_instr(&instr->instr, stderr);
1694 fprintf(stderr, "\n");
1695 }
1696 break;
1697 }
1698 case nir_op_fsqrt: {
1699 if (dst.size() == 1) {
1700 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1701 } else if (dst.size() == 2) {
1702 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1703 } else {
1704 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1705 nir_print_instr(&instr->instr, stderr);
1706 fprintf(stderr, "\n");
1707 }
1708 break;
1709 }
1710 case nir_op_ffract: {
1711 if (dst.size() == 1) {
1712 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1713 } else if (dst.size() == 2) {
1714 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1715 } else {
1716 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1717 nir_print_instr(&instr->instr, stderr);
1718 fprintf(stderr, "\n");
1719 }
1720 break;
1721 }
1722 case nir_op_ffloor: {
1723 if (dst.size() == 1) {
1724 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1725 } else if (dst.size() == 2) {
1726 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1727 } else {
1728 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1729 nir_print_instr(&instr->instr, stderr);
1730 fprintf(stderr, "\n");
1731 }
1732 break;
1733 }
1734 case nir_op_fceil: {
1735 if (dst.size() == 1) {
1736 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1737 } else if (dst.size() == 2) {
1738 if (ctx->options->chip_class >= GFX7) {
1739 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1740 } else {
1741 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1742 Temp src0 = get_alu_src(ctx, instr->src[0]);
1743
1744 /* trunc = trunc(src0)
1745 * if (src0 > 0.0 && src0 != trunc)
1746 * trunc += 1.0
1747 */
1748 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1749 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1750 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1751 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1752 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1753 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1754 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1755 }
1756 } else {
1757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1758 nir_print_instr(&instr->instr, stderr);
1759 fprintf(stderr, "\n");
1760 }
1761 break;
1762 }
1763 case nir_op_ftrunc: {
1764 if (dst.size() == 1) {
1765 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1766 } else if (dst.size() == 2) {
1767 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1768 } else {
1769 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1770 nir_print_instr(&instr->instr, stderr);
1771 fprintf(stderr, "\n");
1772 }
1773 break;
1774 }
1775 case nir_op_fround_even: {
1776 if (dst.size() == 1) {
1777 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1778 } else if (dst.size() == 2) {
1779 if (ctx->options->chip_class >= GFX7) {
1780 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1781 } else {
1782 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1783 Temp src0 = get_alu_src(ctx, instr->src[0]);
1784
1785 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1786 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1787
1788 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1789 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1790 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1791 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1792 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1793 tmp = sub->definitions[0].getTemp();
1794
1795 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1796 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1797 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1798 Temp cond = vop3->definitions[0].getTemp();
1799
1800 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1801 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1802 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1803 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1804
1805 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1806 }
1807 } else {
1808 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1809 nir_print_instr(&instr->instr, stderr);
1810 fprintf(stderr, "\n");
1811 }
1812 break;
1813 }
1814 case nir_op_fsin:
1815 case nir_op_fcos: {
1816 Temp src = get_alu_src(ctx, instr->src[0]);
1817 aco_ptr<Instruction> norm;
1818 if (dst.size() == 1) {
1819 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1820 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1821
1822 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1823 if (ctx->options->chip_class < GFX9)
1824 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1825
1826 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1827 bld.vop1(opcode, Definition(dst), tmp);
1828 } else {
1829 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1830 nir_print_instr(&instr->instr, stderr);
1831 fprintf(stderr, "\n");
1832 }
1833 break;
1834 }
1835 case nir_op_ldexp: {
1836 if (dst.size() == 1) {
1837 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1838 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1839 get_alu_src(ctx, instr->src[1]));
1840 } else if (dst.size() == 2) {
1841 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1842 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1843 get_alu_src(ctx, instr->src[1]));
1844 } else {
1845 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1846 nir_print_instr(&instr->instr, stderr);
1847 fprintf(stderr, "\n");
1848 }
1849 break;
1850 }
1851 case nir_op_frexp_sig: {
1852 if (dst.size() == 1) {
1853 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1854 get_alu_src(ctx, instr->src[0]));
1855 } else if (dst.size() == 2) {
1856 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1857 get_alu_src(ctx, instr->src[0]));
1858 } else {
1859 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1860 nir_print_instr(&instr->instr, stderr);
1861 fprintf(stderr, "\n");
1862 }
1863 break;
1864 }
1865 case nir_op_frexp_exp: {
1866 if (instr->src[0].src.ssa->bit_size == 32) {
1867 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1868 get_alu_src(ctx, instr->src[0]));
1869 } else if (instr->src[0].src.ssa->bit_size == 64) {
1870 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1871 get_alu_src(ctx, instr->src[0]));
1872 } else {
1873 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1874 nir_print_instr(&instr->instr, stderr);
1875 fprintf(stderr, "\n");
1876 }
1877 break;
1878 }
1879 case nir_op_fsign: {
1880 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1881 if (dst.size() == 1) {
1882 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1883 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1884 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1885 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1886 } else if (dst.size() == 2) {
1887 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1888 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1889 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1890
1891 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1892 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1893 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1894
1895 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1896 } else {
1897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1898 nir_print_instr(&instr->instr, stderr);
1899 fprintf(stderr, "\n");
1900 }
1901 break;
1902 }
1903 case nir_op_f2f32: {
1904 if (instr->src[0].src.ssa->bit_size == 64) {
1905 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1906 } else {
1907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1908 nir_print_instr(&instr->instr, stderr);
1909 fprintf(stderr, "\n");
1910 }
1911 break;
1912 }
1913 case nir_op_f2f64: {
1914 if (instr->src[0].src.ssa->bit_size == 32) {
1915 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1916 } else {
1917 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1918 nir_print_instr(&instr->instr, stderr);
1919 fprintf(stderr, "\n");
1920 }
1921 break;
1922 }
1923 case nir_op_i2f32: {
1924 assert(dst.size() == 1);
1925 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1926 break;
1927 }
1928 case nir_op_i2f64: {
1929 if (instr->src[0].src.ssa->bit_size == 32) {
1930 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1931 } else if (instr->src[0].src.ssa->bit_size == 64) {
1932 Temp src = get_alu_src(ctx, instr->src[0]);
1933 RegClass rc = RegClass(src.type(), 1);
1934 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1935 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1936 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1937 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1938 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1939 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1940
1941 } else {
1942 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1943 nir_print_instr(&instr->instr, stderr);
1944 fprintf(stderr, "\n");
1945 }
1946 break;
1947 }
1948 case nir_op_u2f32: {
1949 assert(dst.size() == 1);
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1951 break;
1952 }
1953 case nir_op_u2f64: {
1954 if (instr->src[0].src.ssa->bit_size == 32) {
1955 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1956 } else if (instr->src[0].src.ssa->bit_size == 64) {
1957 Temp src = get_alu_src(ctx, instr->src[0]);
1958 RegClass rc = RegClass(src.type(), 1);
1959 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1960 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1961 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1962 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1963 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1964 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1965 } else {
1966 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1967 nir_print_instr(&instr->instr, stderr);
1968 fprintf(stderr, "\n");
1969 }
1970 break;
1971 }
1972 case nir_op_f2i32: {
1973 Temp src = get_alu_src(ctx, instr->src[0]);
1974 if (instr->src[0].src.ssa->bit_size == 32) {
1975 if (dst.type() == RegType::vgpr)
1976 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1977 else
1978 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1979 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1980
1981 } else if (instr->src[0].src.ssa->bit_size == 64) {
1982 if (dst.type() == RegType::vgpr)
1983 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1984 else
1985 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1986 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1987
1988 } else {
1989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1990 nir_print_instr(&instr->instr, stderr);
1991 fprintf(stderr, "\n");
1992 }
1993 break;
1994 }
1995 case nir_op_f2u32: {
1996 Temp src = get_alu_src(ctx, instr->src[0]);
1997 if (instr->src[0].src.ssa->bit_size == 32) {
1998 if (dst.type() == RegType::vgpr)
1999 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2000 else
2001 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2002 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2003
2004 } else if (instr->src[0].src.ssa->bit_size == 64) {
2005 if (dst.type() == RegType::vgpr)
2006 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2007 else
2008 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2009 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2010
2011 } else {
2012 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2013 nir_print_instr(&instr->instr, stderr);
2014 fprintf(stderr, "\n");
2015 }
2016 break;
2017 }
2018 case nir_op_f2i64: {
2019 Temp src = get_alu_src(ctx, instr->src[0]);
2020 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2021 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2022 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2023 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2024 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2025 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2026 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2027 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2028 Temp new_exponent = bld.tmp(v1);
2029 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2030 if (ctx->program->chip_class >= GFX8)
2031 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2032 else
2033 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2034 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2035 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2036 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2037 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2038 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2039 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2040 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2041 Temp new_lower = bld.tmp(v1);
2042 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2043 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2045
2046 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2047 if (src.type() == RegType::vgpr)
2048 src = bld.as_uniform(src);
2049 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2050 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2051 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2052 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2053 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2054 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2055 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2056 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2057 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2058 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2059 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2060 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2061 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2062 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2063 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2064 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2065 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2066 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2067 Temp borrow = bld.tmp(s1);
2068 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2069 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2070 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2071
2072 } else if (instr->src[0].src.ssa->bit_size == 64) {
2073 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2074 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2075 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2076 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2077 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2078 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2079 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2080 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2081 if (dst.type() == RegType::sgpr) {
2082 lower = bld.as_uniform(lower);
2083 upper = bld.as_uniform(upper);
2084 }
2085 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2086
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_f2u64: {
2095 Temp src = get_alu_src(ctx, instr->src[0]);
2096 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2097 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2098 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2099 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2100 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2101 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2102 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2103 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2104 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2105 Temp new_exponent = bld.tmp(v1);
2106 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2107 if (ctx->program->chip_class >= GFX8)
2108 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2109 else
2110 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2111 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2112 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2113 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2114 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2115 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2116 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2117 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2118
2119 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2120 if (src.type() == RegType::vgpr)
2121 src = bld.as_uniform(src);
2122 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2123 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2124 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2125 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2126 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2127 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2128 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2129 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2130 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2131 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2132 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2133 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2134 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2135 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2136 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2137 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2138 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2139 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2140
2141 } else if (instr->src[0].src.ssa->bit_size == 64) {
2142 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2143 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2144 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2145 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2146 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2147 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2148 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2149 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2150 if (dst.type() == RegType::sgpr) {
2151 lower = bld.as_uniform(lower);
2152 upper = bld.as_uniform(upper);
2153 }
2154 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2155
2156 } else {
2157 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2158 nir_print_instr(&instr->instr, stderr);
2159 fprintf(stderr, "\n");
2160 }
2161 break;
2162 }
2163 case nir_op_b2f32: {
2164 Temp src = get_alu_src(ctx, instr->src[0]);
2165 assert(src.regClass() == bld.lm);
2166
2167 if (dst.regClass() == s1) {
2168 src = bool_to_scalar_condition(ctx, src);
2169 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2170 } else if (dst.regClass() == v1) {
2171 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2172 } else {
2173 unreachable("Wrong destination register class for nir_op_b2f32.");
2174 }
2175 break;
2176 }
2177 case nir_op_b2f64: {
2178 Temp src = get_alu_src(ctx, instr->src[0]);
2179 assert(src.regClass() == bld.lm);
2180
2181 if (dst.regClass() == s2) {
2182 src = bool_to_scalar_condition(ctx, src);
2183 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2184 } else if (dst.regClass() == v2) {
2185 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2186 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2187 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2188 } else {
2189 unreachable("Wrong destination register class for nir_op_b2f64.");
2190 }
2191 break;
2192 }
2193 case nir_op_i2i32: {
2194 Temp src = get_alu_src(ctx, instr->src[0]);
2195 if (instr->src[0].src.ssa->bit_size == 64) {
2196 /* we can actually just say dst = src, as it would map the lower register */
2197 emit_extract_vector(ctx, src, 0, dst);
2198 } else {
2199 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2200 nir_print_instr(&instr->instr, stderr);
2201 fprintf(stderr, "\n");
2202 }
2203 break;
2204 }
2205 case nir_op_u2u32: {
2206 Temp src = get_alu_src(ctx, instr->src[0]);
2207 if (instr->src[0].src.ssa->bit_size == 16) {
2208 if (dst.regClass() == s1) {
2209 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2210 } else {
2211 // TODO: do better with SDWA
2212 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2213 }
2214 } else if (instr->src[0].src.ssa->bit_size == 64) {
2215 /* we can actually just say dst = src, as it would map the lower register */
2216 emit_extract_vector(ctx, src, 0, dst);
2217 } else {
2218 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2219 nir_print_instr(&instr->instr, stderr);
2220 fprintf(stderr, "\n");
2221 }
2222 break;
2223 }
2224 case nir_op_i2i64: {
2225 Temp src = get_alu_src(ctx, instr->src[0]);
2226 if (src.regClass() == s1) {
2227 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2228 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2229 } else if (src.regClass() == v1) {
2230 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2231 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2232 } else {
2233 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2234 nir_print_instr(&instr->instr, stderr);
2235 fprintf(stderr, "\n");
2236 }
2237 break;
2238 }
2239 case nir_op_u2u64: {
2240 Temp src = get_alu_src(ctx, instr->src[0]);
2241 if (instr->src[0].src.ssa->bit_size == 32) {
2242 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2243 } else {
2244 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2245 nir_print_instr(&instr->instr, stderr);
2246 fprintf(stderr, "\n");
2247 }
2248 break;
2249 }
2250 case nir_op_b2i32: {
2251 Temp src = get_alu_src(ctx, instr->src[0]);
2252 assert(src.regClass() == bld.lm);
2253
2254 if (dst.regClass() == s1) {
2255 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2256 bool_to_scalar_condition(ctx, src, dst);
2257 } else if (dst.regClass() == v1) {
2258 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2259 } else {
2260 unreachable("Invalid register class for b2i32");
2261 }
2262 break;
2263 }
2264 case nir_op_i2b1: {
2265 Temp src = get_alu_src(ctx, instr->src[0]);
2266 assert(dst.regClass() == bld.lm);
2267
2268 if (src.type() == RegType::vgpr) {
2269 assert(src.regClass() == v1 || src.regClass() == v2);
2270 assert(dst.regClass() == bld.lm);
2271 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2272 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2273 } else {
2274 assert(src.regClass() == s1 || src.regClass() == s2);
2275 Temp tmp;
2276 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2277 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2278 } else {
2279 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2280 bld.scc(bld.def(s1)), Operand(0u), src);
2281 }
2282 bool_to_vector_condition(ctx, tmp, dst);
2283 }
2284 break;
2285 }
2286 case nir_op_pack_64_2x32_split: {
2287 Temp src0 = get_alu_src(ctx, instr->src[0]);
2288 Temp src1 = get_alu_src(ctx, instr->src[1]);
2289
2290 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2291 break;
2292 }
2293 case nir_op_unpack_64_2x32_split_x:
2294 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2295 break;
2296 case nir_op_unpack_64_2x32_split_y:
2297 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2298 break;
2299 case nir_op_pack_half_2x16: {
2300 Temp src = get_alu_src(ctx, instr->src[0], 2);
2301
2302 if (dst.regClass() == v1) {
2303 Temp src0 = bld.tmp(v1);
2304 Temp src1 = bld.tmp(v1);
2305 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2306 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2307 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2308 else
2309 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2310 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2311 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2312 } else {
2313 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2314 nir_print_instr(&instr->instr, stderr);
2315 fprintf(stderr, "\n");
2316 }
2317 break;
2318 }
2319 case nir_op_unpack_half_2x16_split_x: {
2320 if (dst.regClass() == v1) {
2321 Builder bld(ctx->program, ctx->block);
2322 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2323 } else {
2324 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2325 nir_print_instr(&instr->instr, stderr);
2326 fprintf(stderr, "\n");
2327 }
2328 break;
2329 }
2330 case nir_op_unpack_half_2x16_split_y: {
2331 if (dst.regClass() == v1) {
2332 Builder bld(ctx->program, ctx->block);
2333 /* TODO: use SDWA here */
2334 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2335 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2336 } else {
2337 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2338 nir_print_instr(&instr->instr, stderr);
2339 fprintf(stderr, "\n");
2340 }
2341 break;
2342 }
2343 case nir_op_fquantize2f16: {
2344 Temp src = get_alu_src(ctx, instr->src[0]);
2345 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2346 Temp f32, cmp_res;
2347
2348 if (ctx->program->chip_class >= GFX8) {
2349 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2350 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2351 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2352 } else {
2353 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2354 * so compare the result and flush to 0 if it's smaller.
2355 */
2356 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2357 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2358 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2359 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2360 cmp_res = vop3->definitions[0].getTemp();
2361 }
2362
2363 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2364 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2365 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2366 } else {
2367 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2368 }
2369 break;
2370 }
2371 case nir_op_bfm: {
2372 Temp bits = get_alu_src(ctx, instr->src[0]);
2373 Temp offset = get_alu_src(ctx, instr->src[1]);
2374
2375 if (dst.regClass() == s1) {
2376 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2377 } else if (dst.regClass() == v1) {
2378 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2379 } else {
2380 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2381 nir_print_instr(&instr->instr, stderr);
2382 fprintf(stderr, "\n");
2383 }
2384 break;
2385 }
2386 case nir_op_bitfield_select: {
2387 /* (mask & insert) | (~mask & base) */
2388 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2389 Temp insert = get_alu_src(ctx, instr->src[1]);
2390 Temp base = get_alu_src(ctx, instr->src[2]);
2391
2392 /* dst = (insert & bitmask) | (base & ~bitmask) */
2393 if (dst.regClass() == s1) {
2394 aco_ptr<Instruction> sop2;
2395 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2396 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2397 Operand lhs;
2398 if (const_insert && const_bitmask) {
2399 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2400 } else {
2401 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2402 lhs = Operand(insert);
2403 }
2404
2405 Operand rhs;
2406 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2407 if (const_base && const_bitmask) {
2408 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2409 } else {
2410 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2411 rhs = Operand(base);
2412 }
2413
2414 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2415
2416 } else if (dst.regClass() == v1) {
2417 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2418 base = as_vgpr(ctx, base);
2419 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2420 insert = as_vgpr(ctx, insert);
2421
2422 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2423
2424 } else {
2425 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2426 nir_print_instr(&instr->instr, stderr);
2427 fprintf(stderr, "\n");
2428 }
2429 break;
2430 }
2431 case nir_op_ubfe:
2432 case nir_op_ibfe: {
2433 Temp base = get_alu_src(ctx, instr->src[0]);
2434 Temp offset = get_alu_src(ctx, instr->src[1]);
2435 Temp bits = get_alu_src(ctx, instr->src[2]);
2436
2437 if (dst.type() == RegType::sgpr) {
2438 Operand extract;
2439 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2440 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2441 if (const_offset && const_bits) {
2442 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2443 extract = Operand(const_extract);
2444 } else {
2445 Operand width;
2446 if (const_bits) {
2447 width = Operand(const_bits->u32 << 16);
2448 } else {
2449 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2450 }
2451 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2452 }
2453
2454 aco_opcode opcode;
2455 if (dst.regClass() == s1) {
2456 if (instr->op == nir_op_ubfe)
2457 opcode = aco_opcode::s_bfe_u32;
2458 else
2459 opcode = aco_opcode::s_bfe_i32;
2460 } else if (dst.regClass() == s2) {
2461 if (instr->op == nir_op_ubfe)
2462 opcode = aco_opcode::s_bfe_u64;
2463 else
2464 opcode = aco_opcode::s_bfe_i64;
2465 } else {
2466 unreachable("Unsupported BFE bit size");
2467 }
2468
2469 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2470
2471 } else {
2472 aco_opcode opcode;
2473 if (dst.regClass() == v1) {
2474 if (instr->op == nir_op_ubfe)
2475 opcode = aco_opcode::v_bfe_u32;
2476 else
2477 opcode = aco_opcode::v_bfe_i32;
2478 } else {
2479 unreachable("Unsupported BFE bit size");
2480 }
2481
2482 emit_vop3a_instruction(ctx, instr, opcode, dst);
2483 }
2484 break;
2485 }
2486 case nir_op_bit_count: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 if (src.regClass() == s1) {
2489 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2490 } else if (src.regClass() == v1) {
2491 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2492 } else if (src.regClass() == v2) {
2493 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2494 emit_extract_vector(ctx, src, 1, v1),
2495 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2496 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2497 } else if (src.regClass() == s2) {
2498 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2499 } else {
2500 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2501 nir_print_instr(&instr->instr, stderr);
2502 fprintf(stderr, "\n");
2503 }
2504 break;
2505 }
2506 case nir_op_flt: {
2507 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2508 break;
2509 }
2510 case nir_op_fge: {
2511 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2512 break;
2513 }
2514 case nir_op_feq: {
2515 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2516 break;
2517 }
2518 case nir_op_fne: {
2519 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2520 break;
2521 }
2522 case nir_op_ilt: {
2523 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2524 break;
2525 }
2526 case nir_op_ige: {
2527 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2528 break;
2529 }
2530 case nir_op_ieq: {
2531 if (instr->src[0].src.ssa->bit_size == 1)
2532 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2533 else
2534 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2535 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2536 break;
2537 }
2538 case nir_op_ine: {
2539 if (instr->src[0].src.ssa->bit_size == 1)
2540 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2541 else
2542 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2543 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2544 break;
2545 }
2546 case nir_op_ult: {
2547 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2548 break;
2549 }
2550 case nir_op_uge: {
2551 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2552 break;
2553 }
2554 case nir_op_fddx:
2555 case nir_op_fddy:
2556 case nir_op_fddx_fine:
2557 case nir_op_fddy_fine:
2558 case nir_op_fddx_coarse:
2559 case nir_op_fddy_coarse: {
2560 Temp src = get_alu_src(ctx, instr->src[0]);
2561 uint16_t dpp_ctrl1, dpp_ctrl2;
2562 if (instr->op == nir_op_fddx_fine) {
2563 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2564 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2565 } else if (instr->op == nir_op_fddy_fine) {
2566 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2567 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2568 } else {
2569 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2570 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2571 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2572 else
2573 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2574 }
2575
2576 Temp tmp;
2577 if (ctx->program->chip_class >= GFX8) {
2578 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2579 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2580 } else {
2581 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2582 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2583 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2584 }
2585 emit_wqm(ctx, tmp, dst, true);
2586 break;
2587 }
2588 default:
2589 fprintf(stderr, "Unknown NIR ALU instr: ");
2590 nir_print_instr(&instr->instr, stderr);
2591 fprintf(stderr, "\n");
2592 }
2593 }
2594
2595 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2596 {
2597 Temp dst = get_ssa_temp(ctx, &instr->def);
2598
2599 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2600 // which get truncated the lsb if double and msb if int
2601 // for now, we only use s_mov_b64 with 64bit inline constants
2602 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2603 assert(dst.type() == RegType::sgpr);
2604
2605 Builder bld(ctx->program, ctx->block);
2606
2607 if (instr->def.bit_size == 1) {
2608 assert(dst.regClass() == bld.lm);
2609 int val = instr->value[0].b ? -1 : 0;
2610 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2611 bld.sop1(Builder::s_mov, Definition(dst), op);
2612 } else if (dst.size() == 1) {
2613 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2614 } else {
2615 assert(dst.size() != 1);
2616 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2617 if (instr->def.bit_size == 64)
2618 for (unsigned i = 0; i < dst.size(); i++)
2619 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2620 else {
2621 for (unsigned i = 0; i < dst.size(); i++)
2622 vec->operands[i] = Operand{instr->value[i].u32};
2623 }
2624 vec->definitions[0] = Definition(dst);
2625 ctx->block->instructions.emplace_back(std::move(vec));
2626 }
2627 }
2628
2629 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2630 {
2631 uint32_t new_mask = 0;
2632 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2633 if (mask & (1u << i))
2634 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2635 return new_mask;
2636 }
2637
2638 Operand load_lds_size_m0(isel_context *ctx)
2639 {
2640 /* TODO: m0 does not need to be initialized on GFX9+ */
2641 Builder bld(ctx->program, ctx->block);
2642 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2643 }
2644
2645 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2646 Temp address, unsigned base_offset, unsigned align)
2647 {
2648 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2649
2650 Builder bld(ctx->program, ctx->block);
2651
2652 Operand m = load_lds_size_m0(ctx);
2653
2654 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2655 unsigned bytes_read = 0;
2656 unsigned result_size = 0;
2657 unsigned total_bytes = num_components * elem_size_bytes;
2658 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2659 bool large_ds_read = ctx->options->chip_class >= GFX7;
2660 bool usable_read2 = ctx->options->chip_class >= GFX7;
2661
2662 while (bytes_read < total_bytes) {
2663 unsigned todo = total_bytes - bytes_read;
2664 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2665 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2666
2667 aco_opcode op = aco_opcode::last_opcode;
2668 bool read2 = false;
2669 if (todo >= 16 && aligned16 && large_ds_read) {
2670 op = aco_opcode::ds_read_b128;
2671 todo = 16;
2672 } else if (todo >= 16 && aligned8 && usable_read2) {
2673 op = aco_opcode::ds_read2_b64;
2674 read2 = true;
2675 todo = 16;
2676 } else if (todo >= 12 && aligned16 && large_ds_read) {
2677 op = aco_opcode::ds_read_b96;
2678 todo = 12;
2679 } else if (todo >= 8 && aligned8) {
2680 op = aco_opcode::ds_read_b64;
2681 todo = 8;
2682 } else if (todo >= 8 && usable_read2) {
2683 op = aco_opcode::ds_read2_b32;
2684 read2 = true;
2685 todo = 8;
2686 } else if (todo >= 4) {
2687 op = aco_opcode::ds_read_b32;
2688 todo = 4;
2689 } else {
2690 assert(false);
2691 }
2692 assert(todo % elem_size_bytes == 0);
2693 unsigned num_elements = todo / elem_size_bytes;
2694 unsigned offset = base_offset + bytes_read;
2695 unsigned max_offset = read2 ? 1019 : 65535;
2696
2697 Temp address_offset = address;
2698 if (offset > max_offset) {
2699 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2700 offset = bytes_read;
2701 }
2702 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2703
2704 Temp res;
2705 if (num_components == 1 && dst.type() == RegType::vgpr)
2706 res = dst;
2707 else
2708 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2709
2710 if (read2)
2711 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
2712 else
2713 res = bld.ds(op, Definition(res), address_offset, m, offset);
2714
2715 if (num_components == 1) {
2716 assert(todo == total_bytes);
2717 if (dst.type() == RegType::sgpr)
2718 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2719 return dst;
2720 }
2721
2722 if (dst.type() == RegType::sgpr) {
2723 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2724 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2725 res = new_res;
2726 }
2727
2728 if (num_elements == 1) {
2729 result[result_size++] = res;
2730 } else {
2731 assert(res != dst && res.size() % num_elements == 0);
2732 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2733 split->operands[0] = Operand(res);
2734 for (unsigned i = 0; i < num_elements; i++)
2735 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2736 ctx->block->instructions.emplace_back(std::move(split));
2737 }
2738
2739 bytes_read += todo;
2740 }
2741
2742 assert(result_size == num_components && result_size > 1);
2743 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2744 for (unsigned i = 0; i < result_size; i++)
2745 vec->operands[i] = Operand(result[i]);
2746 vec->definitions[0] = Definition(dst);
2747 ctx->block->instructions.emplace_back(std::move(vec));
2748 ctx->allocated_vec.emplace(dst.id(), result);
2749
2750 return dst;
2751 }
2752
2753 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2754 {
2755 if (start == 0 && size == data.size())
2756 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2757
2758 unsigned size_hint = 1;
2759 auto it = ctx->allocated_vec.find(data.id());
2760 if (it != ctx->allocated_vec.end())
2761 size_hint = it->second[0].size();
2762 if (size % size_hint || start % size_hint)
2763 size_hint = 1;
2764
2765 start /= size_hint;
2766 size /= size_hint;
2767
2768 Temp elems[size];
2769 for (unsigned i = 0; i < size; i++)
2770 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2771
2772 if (size == 1)
2773 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2774
2775 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2776 for (unsigned i = 0; i < size; i++)
2777 vec->operands[i] = Operand(elems[i]);
2778 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2779 vec->definitions[0] = Definition(res);
2780 ctx->block->instructions.emplace_back(std::move(vec));
2781 return res;
2782 }
2783
2784 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2785 {
2786 Builder bld(ctx->program, ctx->block);
2787 unsigned bytes_written = 0;
2788 bool large_ds_write = ctx->options->chip_class >= GFX7;
2789 bool usable_write2 = ctx->options->chip_class >= GFX7;
2790
2791 while (bytes_written < total_size * 4) {
2792 unsigned todo = total_size * 4 - bytes_written;
2793 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2794 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2795
2796 aco_opcode op = aco_opcode::last_opcode;
2797 bool write2 = false;
2798 unsigned size = 0;
2799 if (todo >= 16 && aligned16 && large_ds_write) {
2800 op = aco_opcode::ds_write_b128;
2801 size = 4;
2802 } else if (todo >= 16 && aligned8 && usable_write2) {
2803 op = aco_opcode::ds_write2_b64;
2804 write2 = true;
2805 size = 4;
2806 } else if (todo >= 12 && aligned16 && large_ds_write) {
2807 op = aco_opcode::ds_write_b96;
2808 size = 3;
2809 } else if (todo >= 8 && aligned8) {
2810 op = aco_opcode::ds_write_b64;
2811 size = 2;
2812 } else if (todo >= 8 && usable_write2) {
2813 op = aco_opcode::ds_write2_b32;
2814 write2 = true;
2815 size = 2;
2816 } else if (todo >= 4) {
2817 op = aco_opcode::ds_write_b32;
2818 size = 1;
2819 } else {
2820 assert(false);
2821 }
2822
2823 unsigned offset = offset0 + offset1 + bytes_written;
2824 unsigned max_offset = write2 ? 1020 : 65535;
2825 Temp address_offset = address;
2826 if (offset > max_offset) {
2827 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2828 offset = offset1 + bytes_written;
2829 }
2830 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2831
2832 if (write2) {
2833 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2834 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2835 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
2836 } else {
2837 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2838 bld.ds(op, address_offset, val, m, offset);
2839 }
2840
2841 bytes_written += size * 4;
2842 }
2843 }
2844
2845 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2846 Temp address, unsigned base_offset, unsigned align)
2847 {
2848 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2849 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2850
2851 Operand m = load_lds_size_m0(ctx);
2852
2853 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
2854 assert(wrmask <= 0x0f);
2855 int start[2], count[2];
2856 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2857 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2858 assert(wrmask == 0);
2859
2860 /* one combined store is sufficient */
2861 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
2862 Builder bld(ctx->program, ctx->block);
2863
2864 Temp address_offset = address;
2865 if ((base_offset / elem_size_bytes) + start[1] > 255) {
2866 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2867 base_offset = 0;
2868 }
2869
2870 assert(count[0] == 1);
2871 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
2872
2873 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
2874 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
2875 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2876 base_offset = base_offset / elem_size_bytes;
2877 bld.ds(op, address_offset, val0, val1, m,
2878 base_offset + start[0], base_offset + start[1]);
2879 return;
2880 }
2881
2882 for (unsigned i = 0; i < 2; i++) {
2883 if (count[i] == 0)
2884 continue;
2885
2886 unsigned elem_size_words = elem_size_bytes / 4;
2887 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2888 base_offset, start[i] * elem_size_bytes, align);
2889 }
2890 return;
2891 }
2892
2893 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
2894 {
2895 unsigned align = 16;
2896 if (const_offset)
2897 align = std::min(align, 1u << (ffs(const_offset) - 1));
2898
2899 return align;
2900 }
2901
2902
2903 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned split_cnt = 0u, Temp dst = Temp())
2904 {
2905 Builder bld(ctx->program, ctx->block);
2906
2907 if (!dst.id())
2908 dst = bld.tmp(RegClass(reg_type, cnt * arr[0].size()));
2909
2910 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
2911 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
2912 instr->definitions[0] = Definition(dst);
2913
2914 for (unsigned i = 0; i < cnt; ++i) {
2915 assert(arr[i].size() == arr[0].size());
2916 allocated_vec[i] = arr[i];
2917 instr->operands[i] = Operand(arr[i]);
2918 }
2919
2920 bld.insert(std::move(instr));
2921
2922 if (split_cnt)
2923 emit_split_vector(ctx, dst, split_cnt);
2924 else
2925 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
2926
2927 return dst;
2928 }
2929
2930 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
2931 {
2932 if (const_offset >= 4096) {
2933 unsigned excess_const_offset = const_offset / 4096u * 4096u;
2934 const_offset %= 4096u;
2935
2936 if (!voffset.id())
2937 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
2938 else if (unlikely(voffset.regClass() == s1))
2939 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
2940 else if (likely(voffset.regClass() == v1))
2941 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
2942 else
2943 unreachable("Unsupported register class of voffset");
2944 }
2945
2946 return const_offset;
2947 }
2948
2949 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
2950 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
2951 {
2952 assert(vdata.id());
2953 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
2954 assert(vdata.size() >= 1 && vdata.size() <= 4);
2955
2956 Builder bld(ctx->program, ctx->block);
2957 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
2958 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
2959
2960 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
2961 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
2962 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
2963 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
2964 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
2965
2966 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
2967 }
2968
2969 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
2970 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
2971 bool allow_combining = true, bool reorder = true, bool slc = false)
2972 {
2973 Builder bld(ctx->program, ctx->block);
2974 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2975 assert(write_mask);
2976
2977 if (elem_size_bytes == 8) {
2978 elem_size_bytes = 4;
2979 write_mask = widen_mask(write_mask, 2);
2980 }
2981
2982 while (write_mask) {
2983 int start = 0;
2984 int count = 0;
2985 u_bit_scan_consecutive_range(&write_mask, &start, &count);
2986 assert(count > 0);
2987 assert(start >= 0);
2988
2989 while (count > 0) {
2990 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
2991 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
2992
2993 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
2994 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
2995 sub_count = 2;
2996
2997 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
2998 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
2999
3000 count -= sub_count;
3001 start += sub_count;
3002 }
3003
3004 assert(count == 0);
3005 }
3006 }
3007
3008 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3009 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3010 {
3011 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3012 assert(size_dwords >= 1 && size_dwords <= 4);
3013
3014 Builder bld(ctx->program, ctx->block);
3015 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3016 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3017 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3018
3019 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3020 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3021 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3022 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3023 /* disable_wqm */ false, /* glc */ true,
3024 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3025
3026 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3027
3028 return vdata;
3029 }
3030
3031 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3032 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3033 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3034 {
3035 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3036 assert((num_components * elem_size_bytes / 4) == dst.size());
3037 assert(!!stride != allow_combining);
3038
3039 Builder bld(ctx->program, ctx->block);
3040 unsigned split_cnt = num_components;
3041
3042 if (elem_size_bytes == 8) {
3043 elem_size_bytes = 4;
3044 num_components *= 2;
3045 }
3046
3047 if (!stride)
3048 stride = elem_size_bytes;
3049
3050 unsigned load_size = 1;
3051 if (allow_combining) {
3052 if ((num_components % 4) == 0)
3053 load_size = 4;
3054 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3055 load_size = 3;
3056 else if ((num_components % 2) == 0)
3057 load_size = 2;
3058 }
3059
3060 unsigned num_loads = num_components / load_size;
3061 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3062
3063 for (unsigned i = 0; i < num_loads; ++i) {
3064 unsigned const_offset = i * stride * load_size + base_const_offset;
3065 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3066 }
3067
3068 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, split_cnt, dst);
3069 }
3070
3071 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3072 {
3073 Builder bld(ctx->program, ctx->block);
3074 Temp offset = base_offset.first;
3075 unsigned const_offset = base_offset.second;
3076
3077 if (!nir_src_is_const(*off_src)) {
3078 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3079 Temp with_stride;
3080
3081 /* Calculate indirect offset with stride */
3082 if (likely(indirect_offset_arg.regClass() == v1))
3083 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3084 else if (indirect_offset_arg.regClass() == s1)
3085 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3086 else
3087 unreachable("Unsupported register class of indirect offset");
3088
3089 /* Add to the supplied base offset */
3090 if (offset.id() == 0)
3091 offset = with_stride;
3092 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3093 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3094 else if (offset.size() == 1 && with_stride.size() == 1)
3095 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3096 else
3097 unreachable("Unsupported register class of indirect offset");
3098 } else {
3099 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3100 const_offset += const_offset_arg * stride;
3101 }
3102
3103 return std::make_pair(offset, const_offset);
3104 }
3105
3106 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3107 {
3108 Builder bld(ctx->program, ctx->block);
3109 Temp offset;
3110
3111 if (off1.first.id() && off2.first.id()) {
3112 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3113 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3114 else if (off1.first.size() == 1 && off2.first.size() == 1)
3115 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3116 else
3117 unreachable("Unsupported register class of indirect offset");
3118 } else {
3119 offset = off1.first.id() ? off1.first : off2.first;
3120 }
3121
3122 return std::make_pair(offset, off1.second + off2.second);
3123 }
3124
3125 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3126 {
3127 Builder bld(ctx->program, ctx->block);
3128 unsigned const_offset = offs.second * multiplier;
3129
3130 if (!offs.first.id())
3131 return std::make_pair(offs.first, const_offset);
3132
3133 Temp offset = unlikely(offs.first.regClass() == s1)
3134 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3135 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3136
3137 return std::make_pair(offset, const_offset);
3138 }
3139
3140 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3141 {
3142 Builder bld(ctx->program, ctx->block);
3143
3144 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3145 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3146 /* component is in bytes */
3147 const_offset += nir_intrinsic_component(instr) * component_stride;
3148
3149 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3150 nir_src *off_src = nir_get_io_offset_src(instr);
3151 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3152 }
3153
3154 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3155 {
3156 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3157 }
3158
3159 Temp get_tess_rel_patch_id(isel_context *ctx)
3160 {
3161 Builder bld(ctx->program, ctx->block);
3162
3163 switch (ctx->shader->info.stage) {
3164 case MESA_SHADER_TESS_CTRL:
3165 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3166 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3167 case MESA_SHADER_TESS_EVAL:
3168 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3169 default:
3170 unreachable("Unsupported stage in get_tess_rel_patch_id");
3171 }
3172 }
3173
3174 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3175 {
3176 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3177 Builder bld(ctx->program, ctx->block);
3178
3179 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3180 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3181
3182 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3183
3184 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3185 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3186
3187 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3188 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3189 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3190
3191 return offset_mul(ctx, offs, 4u);
3192 }
3193
3194 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3195 {
3196 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3197 Builder bld(ctx->program, ctx->block);
3198
3199 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3200 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3201 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3202 uint32_t output_vertex_size = num_tcs_outputs * 16;
3203 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3204 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3205
3206 std::pair<Temp, unsigned> offs = instr
3207 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3208 : std::make_pair(Temp(), 0u);
3209
3210 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3211 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3212
3213 if (per_vertex) {
3214 assert(instr);
3215
3216 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3217 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3218
3219 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3220 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3221 } else {
3222 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3223 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3224 }
3225
3226 return offs;
3227 }
3228
3229 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3230 {
3231 Builder bld(ctx->program, ctx->block);
3232
3233 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3234 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3235
3236 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3237
3238 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3239 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3240 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3241
3242 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3243 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3244
3245 return offs;
3246 }
3247
3248 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3249 {
3250 Builder bld(ctx->program, ctx->block);
3251
3252 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3253 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3254 : ctx->args->options->key.tes.tcs_num_outputs;
3255
3256 unsigned output_vertex_size = num_tcs_outputs * 16;
3257 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3258 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3259 unsigned attr_stride = ctx->tcs_num_patches;
3260
3261 std::pair<Temp, unsigned> offs = instr
3262 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3263 : std::make_pair(Temp(), 0u);
3264
3265 if (const_base_offset)
3266 offs.second += const_base_offset * attr_stride;
3267
3268 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3269 Temp patch_off = bld.v_mul_imm(bld.def(v1), rel_patch_id, 16u);
3270 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3271
3272 return offs;
3273 }
3274
3275 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
3276 {
3277 Builder bld(ctx->program, ctx->block);
3278
3279 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
3280 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3281 unsigned write_mask = nir_intrinsic_write_mask(instr);
3282 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3283
3284 if (ctx->stage == vertex_es) {
3285 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
3286 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3287 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
3288 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
3289 } else {
3290 Temp lds_base;
3291
3292 if (ctx->stage == vertex_geometry_gs) {
3293 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
3294 unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
3295 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
3296 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3297 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
3298 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3299 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3300 } else {
3301 unreachable("Invalid LS or ES stage");
3302 }
3303
3304 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
3305 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3306 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
3307
3308 }
3309 }
3310
3311 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3312 {
3313 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3314 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3315
3316 Builder bld(ctx->program, ctx->block);
3317
3318 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
3319 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3320 unsigned write_mask = nir_intrinsic_write_mask(instr);
3321
3322 /* TODO: Only write to VMEM if the output is per-vertex or it's per-patch non tess factor */
3323 bool write_to_vmem = true;
3324 /* TODO: Only write to LDS if the output is read by the shader, or it's per-patch tess factor */
3325 bool write_to_lds = true;
3326
3327 if (write_to_vmem) {
3328 std::pair<Temp, unsigned> vmem_offs = per_vertex
3329 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
3330 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
3331
3332 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3333 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3334 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, false, false);
3335 }
3336
3337 if (write_to_lds) {
3338 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3339 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3340 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
3341 }
3342 }
3343
3344 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3345 {
3346 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3347 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3348
3349 Builder bld(ctx->program, ctx->block);
3350
3351 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3352 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3353 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3354 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3355
3356 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
3357 }
3358
3359 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3360 {
3361 if (ctx->stage == vertex_vs ||
3362 ctx->stage == fragment_fs ||
3363 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3364 unsigned write_mask = nir_intrinsic_write_mask(instr);
3365 unsigned component = nir_intrinsic_component(instr);
3366 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3367 unsigned idx = nir_intrinsic_base(instr) + component;
3368
3369 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3370 if (off_instr->type != nir_instr_type_load_const) {
3371 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3372 nir_print_instr(off_instr, stderr);
3373 fprintf(stderr, "\n");
3374 }
3375 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
3376
3377 if (instr->src[0].ssa->bit_size == 64)
3378 write_mask = widen_mask(write_mask, 2);
3379
3380 for (unsigned i = 0; i < 8; ++i) {
3381 if (write_mask & (1 << i)) {
3382 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3383 ctx->outputs.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
3384 }
3385 idx++;
3386 }
3387 } else if (ctx->stage == vertex_es ||
3388 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX)) {
3389 visit_store_ls_or_es_output(ctx, instr);
3390 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
3391 visit_store_tcs_output(ctx, instr, false);
3392 } else {
3393 unreachable("Shader stage not implemented");
3394 }
3395 }
3396
3397 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
3398 {
3399 visit_load_tcs_output(ctx, instr, false);
3400 }
3401
3402 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3403 {
3404 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3405 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3406
3407 Builder bld(ctx->program, ctx->block);
3408 Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3409 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
3410 }
3411
3412 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3413 {
3414 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3415 for (unsigned i = 0; i < num_components; i++)
3416 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3417 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3418 assert(num_components == 4);
3419 Builder bld(ctx->program, ctx->block);
3420 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3421 }
3422
3423 for (Operand& op : vec->operands)
3424 op = op.isUndefined() ? Operand(0u) : op;
3425
3426 vec->definitions[0] = Definition(dst);
3427 ctx->block->instructions.emplace_back(std::move(vec));
3428 emit_split_vector(ctx, dst, num_components);
3429 return;
3430 }
3431
3432 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3433 {
3434 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3435 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3436 unsigned idx = nir_intrinsic_base(instr);
3437 unsigned component = nir_intrinsic_component(instr);
3438 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3439
3440 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3441 if (offset) {
3442 assert(offset->u32 == 0);
3443 } else {
3444 /* the lower 15bit of the prim_mask contain the offset into LDS
3445 * while the upper bits contain the number of prims */
3446 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3447 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3448 Builder bld(ctx->program, ctx->block);
3449 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3450 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3451 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3452 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3453 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3454 }
3455
3456 if (instr->dest.ssa.num_components == 1) {
3457 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3458 } else {
3459 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3460 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3461 {
3462 Temp tmp = {ctx->program->allocateId(), v1};
3463 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3464 vec->operands[i] = Operand(tmp);
3465 }
3466 vec->definitions[0] = Definition(dst);
3467 ctx->block->instructions.emplace_back(std::move(vec));
3468 }
3469 }
3470
3471 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3472 unsigned offset, unsigned stride, unsigned channels)
3473 {
3474 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3475 if (vtx_info->chan_byte_size != 4 && channels == 3)
3476 return false;
3477 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3478 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3479 }
3480
3481 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3482 unsigned offset, unsigned stride, unsigned *channels)
3483 {
3484 if (!vtx_info->chan_byte_size) {
3485 *channels = vtx_info->num_channels;
3486 return vtx_info->chan_format;
3487 }
3488
3489 unsigned num_channels = *channels;
3490 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3491 unsigned new_channels = num_channels + 1;
3492 /* first, assume more loads is worse and try using a larger data format */
3493 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3494 new_channels++;
3495 /* don't make the attribute potentially out-of-bounds */
3496 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3497 new_channels = 5;
3498 }
3499
3500 if (new_channels == 5) {
3501 /* then try decreasing load size (at the cost of more loads) */
3502 new_channels = *channels;
3503 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3504 new_channels--;
3505 }
3506
3507 if (new_channels < *channels)
3508 *channels = new_channels;
3509 num_channels = new_channels;
3510 }
3511
3512 switch (vtx_info->chan_format) {
3513 case V_008F0C_BUF_DATA_FORMAT_8:
3514 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3515 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3516 case V_008F0C_BUF_DATA_FORMAT_16:
3517 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3518 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3519 case V_008F0C_BUF_DATA_FORMAT_32:
3520 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3521 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3522 }
3523 unreachable("shouldn't reach here");
3524 return V_008F0C_BUF_DATA_FORMAT_INVALID;
3525 }
3526
3527 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3528 * so we may need to fix it up. */
3529 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3530 {
3531 Builder bld(ctx->program, ctx->block);
3532
3533 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3534 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3535
3536 /* For the integer-like cases, do a natural sign extension.
3537 *
3538 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3539 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3540 * exponent.
3541 */
3542 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3543 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3544
3545 /* Convert back to the right type. */
3546 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3547 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3548 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3549 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3550 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3551 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3552 }
3553
3554 return alpha;
3555 }
3556
3557 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3558 {
3559 Builder bld(ctx->program, ctx->block);
3560 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3561 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
3562
3563 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3564 if (off_instr->type != nir_instr_type_load_const) {
3565 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3566 nir_print_instr(off_instr, stderr);
3567 fprintf(stderr, "\n");
3568 }
3569 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3570
3571 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3572
3573 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3574 unsigned component = nir_intrinsic_component(instr);
3575 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3576 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3577 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3578 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3579
3580 unsigned dfmt = attrib_format & 0xf;
3581 unsigned nfmt = (attrib_format >> 4) & 0x7;
3582 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
3583
3584 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3585 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
3586 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3587 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3588 if (post_shuffle)
3589 num_channels = MAX2(num_channels, 3);
3590
3591 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
3592 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
3593
3594 Temp index;
3595 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3596 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3597 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3598 if (divisor) {
3599 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3600 if (divisor != 1) {
3601 Temp divided = bld.tmp(v1);
3602 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3603 index = bld.vadd32(bld.def(v1), start_instance, divided);
3604 } else {
3605 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3606 }
3607 } else {
3608 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3609 }
3610 } else {
3611 index = bld.vadd32(bld.def(v1),
3612 get_arg(ctx, ctx->args->ac.base_vertex),
3613 get_arg(ctx, ctx->args->ac.vertex_id));
3614 }
3615
3616 Temp channels[num_channels];
3617 unsigned channel_start = 0;
3618 bool direct_fetch = false;
3619
3620 /* skip unused channels at the start */
3621 if (vtx_info->chan_byte_size && !post_shuffle) {
3622 channel_start = ffs(mask) - 1;
3623 for (unsigned i = 0; i < channel_start; i++)
3624 channels[i] = Temp(0, s1);
3625 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
3626 num_channels = 3 - (ffs(mask) - 1);
3627 }
3628
3629 /* load channels */
3630 while (channel_start < num_channels) {
3631 unsigned fetch_size = num_channels - channel_start;
3632 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
3633 bool expanded = false;
3634
3635 /* use MUBUF when possible to avoid possible alignment issues */
3636 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
3637 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
3638 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
3639 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
3640 vtx_info->chan_byte_size == 4;
3641 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
3642 if (!use_mubuf) {
3643 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
3644 } else {
3645 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
3646 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
3647 fetch_size = 4;
3648 expanded = true;
3649 }
3650 }
3651
3652 Temp fetch_index = index;
3653 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
3654 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
3655 fetch_offset = fetch_offset % attrib_stride;
3656 }
3657
3658 Operand soffset(0u);
3659 if (fetch_offset >= 4096) {
3660 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
3661 fetch_offset %= 4096;
3662 }
3663
3664 aco_opcode opcode;
3665 switch (fetch_size) {
3666 case 1:
3667 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
3668 break;
3669 case 2:
3670 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
3671 break;
3672 case 3:
3673 assert(ctx->options->chip_class >= GFX7 ||
3674 (!use_mubuf && ctx->options->chip_class == GFX6));
3675 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
3676 break;
3677 case 4:
3678 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
3679 break;
3680 default:
3681 unreachable("Unimplemented load_input vector size");
3682 }
3683
3684 Temp fetch_dst;
3685 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
3686 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
3687 num_channels <= 3)) {
3688 direct_fetch = true;
3689 fetch_dst = dst;
3690 } else {
3691 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
3692 }
3693
3694 if (use_mubuf) {
3695 Instruction *mubuf = bld.mubuf(opcode,
3696 Definition(fetch_dst), list, fetch_index, soffset,
3697 fetch_offset, false, true).instr;
3698 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
3699 } else {
3700 Instruction *mtbuf = bld.mtbuf(opcode,
3701 Definition(fetch_dst), list, fetch_index, soffset,
3702 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
3703 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
3704 }
3705
3706 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
3707
3708 if (fetch_size == 1) {
3709 channels[channel_start] = fetch_dst;
3710 } else {
3711 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
3712 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
3713 }
3714
3715 channel_start += fetch_size;
3716 }
3717
3718 if (!direct_fetch) {
3719 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3720 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3721
3722 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3723 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3724 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3725
3726 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3727 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3728 unsigned num_temp = 0;
3729 for (unsigned i = 0; i < dst.size(); i++) {
3730 unsigned idx = i + component;
3731 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
3732 Temp channel = channels[swizzle[idx]];
3733 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
3734 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
3735 vec->operands[i] = Operand(channel);
3736
3737 num_temp++;
3738 elems[i] = channel;
3739 } else if (is_float && idx == 3) {
3740 vec->operands[i] = Operand(0x3f800000u);
3741 } else if (!is_float && idx == 3) {
3742 vec->operands[i] = Operand(1u);
3743 } else {
3744 vec->operands[i] = Operand(0u);
3745 }
3746 }
3747 vec->definitions[0] = Definition(dst);
3748 ctx->block->instructions.emplace_back(std::move(vec));
3749 emit_split_vector(ctx, dst, dst.size());
3750
3751 if (num_temp == dst.size())
3752 ctx->allocated_vec.emplace(dst.id(), elems);
3753 }
3754 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
3755 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
3756 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
3757 if (off_instr->type != nir_instr_type_load_const ||
3758 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3759 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3760 nir_print_instr(off_instr, stderr);
3761 fprintf(stderr, "\n");
3762 }
3763
3764 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3765 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
3766 if (offset) {
3767 assert(offset->u32 == 0);
3768 } else {
3769 /* the lower 15bit of the prim_mask contain the offset into LDS
3770 * while the upper bits contain the number of prims */
3771 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
3772 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3773 Builder bld(ctx->program, ctx->block);
3774 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3775 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3776 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3777 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3778 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3779 }
3780
3781 unsigned idx = nir_intrinsic_base(instr);
3782 unsigned component = nir_intrinsic_component(instr);
3783 unsigned vertex_id = 2; /* P0 */
3784
3785 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
3786 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
3787 switch (src0->u32) {
3788 case 0:
3789 vertex_id = 2; /* P0 */
3790 break;
3791 case 1:
3792 vertex_id = 0; /* P10 */
3793 break;
3794 case 2:
3795 vertex_id = 1; /* P20 */
3796 break;
3797 default:
3798 unreachable("invalid vertex index");
3799 }
3800 }
3801
3802 if (dst.size() == 1) {
3803 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
3804 } else {
3805 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3806 for (unsigned i = 0; i < dst.size(); i++)
3807 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
3808 vec->definitions[0] = Definition(dst);
3809 bld.insert(std::move(vec));
3810 }
3811
3812 } else {
3813 unreachable("Shader stage not implemented");
3814 }
3815 }
3816
3817 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
3818 {
3819 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3820
3821 Builder bld(ctx->program, ctx->block);
3822 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
3823 Temp vertex_offset;
3824
3825 if (!nir_src_is_const(*vertex_src)) {
3826 /* better code could be created, but this case probably doesn't happen
3827 * much in practice */
3828 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
3829 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
3830 Temp elem;
3831
3832 if (ctx->stage == vertex_geometry_gs) {
3833 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
3834 if (i % 2u)
3835 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
3836 } else {
3837 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
3838 }
3839
3840 if (vertex_offset.id()) {
3841 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
3842 Operand(i), indirect_vertex);
3843 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
3844 } else {
3845 vertex_offset = elem;
3846 }
3847 }
3848
3849 if (ctx->stage == vertex_geometry_gs)
3850 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
3851 } else {
3852 unsigned vertex = nir_src_as_uint(*vertex_src);
3853 if (ctx->stage == vertex_geometry_gs)
3854 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
3855 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
3856 Operand((vertex % 2u) * 16u), Operand(16u));
3857 else
3858 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
3859 }
3860
3861 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
3862 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
3863 return offset_mul(ctx, offs, 4u);
3864 }
3865
3866 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3867 {
3868 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3869
3870 Builder bld(ctx->program, ctx->block);
3871 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3872 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3873
3874 if (ctx->stage == geometry_gs) {
3875 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
3876 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
3877 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
3878 } else if (ctx->stage == vertex_geometry_gs) {
3879 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
3880 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3881 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
3882 } else {
3883 unreachable("Unsupported GS stage.");
3884 }
3885 }
3886
3887 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3888 {
3889 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3890
3891 Builder bld(ctx->program, ctx->block);
3892 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3893 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
3894 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3895 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3896
3897 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
3898 }
3899
3900 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3901 {
3902 switch (ctx->shader->info.stage) {
3903 case MESA_SHADER_GEOMETRY:
3904 visit_load_gs_per_vertex_input(ctx, instr);
3905 break;
3906 case MESA_SHADER_TESS_CTRL:
3907 visit_load_tcs_per_vertex_input(ctx, instr);
3908 break;
3909 default:
3910 unreachable("Unimplemented shader stage");
3911 }
3912 }
3913
3914 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
3915 {
3916 visit_load_tcs_output(ctx, instr, true);
3917 }
3918
3919 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
3920 {
3921 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3922 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3923
3924 visit_store_tcs_output(ctx, instr, true);
3925 }
3926
3927 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
3928 {
3929 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
3930
3931 Builder bld(ctx->program, ctx->block);
3932 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3933
3934 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
3935 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
3936 Operand tes_w(0u);
3937
3938 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
3939 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
3940 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
3941 tes_w = Operand(tmp);
3942 }
3943
3944 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
3945 emit_split_vector(ctx, tess_coord, 3);
3946 }
3947
3948 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
3949 {
3950 if (ctx->program->info->need_indirect_descriptor_sets) {
3951 Builder bld(ctx->program, ctx->block);
3952 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
3953 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
3954 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
3955 }
3956
3957 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
3958 }
3959
3960
3961 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
3962 {
3963 Builder bld(ctx->program, ctx->block);
3964 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
3965 if (!ctx->divergent_vals[instr->dest.ssa.index])
3966 index = bld.as_uniform(index);
3967 unsigned desc_set = nir_intrinsic_desc_set(instr);
3968 unsigned binding = nir_intrinsic_binding(instr);
3969
3970 Temp desc_ptr;
3971 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
3972 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
3973 unsigned offset = layout->binding[binding].offset;
3974 unsigned stride;
3975 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
3976 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
3977 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
3978 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
3979 offset = pipeline_layout->push_constant_size + 16 * idx;
3980 stride = 16;
3981 } else {
3982 desc_ptr = load_desc_ptr(ctx, desc_set);
3983 stride = layout->binding[binding].size;
3984 }
3985
3986 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
3987 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
3988 if (stride != 1) {
3989 if (nir_const_index) {
3990 const_index = const_index * stride;
3991 } else if (index.type() == RegType::vgpr) {
3992 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
3993 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
3994 } else {
3995 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
3996 }
3997 }
3998 if (offset) {
3999 if (nir_const_index) {
4000 const_index = const_index + offset;
4001 } else if (index.type() == RegType::vgpr) {
4002 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4003 } else {
4004 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4005 }
4006 }
4007
4008 if (nir_const_index && const_index == 0) {
4009 index = desc_ptr;
4010 } else if (index.type() == RegType::vgpr) {
4011 index = bld.vadd32(bld.def(v1),
4012 nir_const_index ? Operand(const_index) : Operand(index),
4013 Operand(desc_ptr));
4014 } else {
4015 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4016 nir_const_index ? Operand(const_index) : Operand(index),
4017 Operand(desc_ptr));
4018 }
4019
4020 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4021 }
4022
4023 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
4024 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
4025 {
4026 Builder bld(ctx->program, ctx->block);
4027
4028 unsigned num_bytes = dst.size() * 4;
4029 bool dlc = glc && ctx->options->chip_class >= GFX10;
4030
4031 aco_opcode op;
4032 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
4033 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4034 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4035 unsigned const_offset = 0;
4036
4037 Temp lower = Temp();
4038 if (num_bytes > 16) {
4039 assert(num_components == 3 || num_components == 4);
4040 op = aco_opcode::buffer_load_dwordx4;
4041 lower = bld.tmp(v4);
4042 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4043 mubuf->definitions[0] = Definition(lower);
4044 mubuf->operands[0] = Operand(rsrc);
4045 mubuf->operands[1] = vaddr;
4046 mubuf->operands[2] = soffset;
4047 mubuf->offen = (offset.type() == RegType::vgpr);
4048 mubuf->glc = glc;
4049 mubuf->dlc = dlc;
4050 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4051 mubuf->can_reorder = readonly;
4052 bld.insert(std::move(mubuf));
4053 emit_split_vector(ctx, lower, 2);
4054 num_bytes -= 16;
4055 const_offset = 16;
4056 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4057 /* GFX6 doesn't support loading vec3, expand to vec4. */
4058 num_bytes = 16;
4059 }
4060
4061 switch (num_bytes) {
4062 case 4:
4063 op = aco_opcode::buffer_load_dword;
4064 break;
4065 case 8:
4066 op = aco_opcode::buffer_load_dwordx2;
4067 break;
4068 case 12:
4069 assert(ctx->options->chip_class > GFX6);
4070 op = aco_opcode::buffer_load_dwordx3;
4071 break;
4072 case 16:
4073 op = aco_opcode::buffer_load_dwordx4;
4074 break;
4075 default:
4076 unreachable("Load SSBO not implemented for this size.");
4077 }
4078 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4079 mubuf->operands[0] = Operand(rsrc);
4080 mubuf->operands[1] = vaddr;
4081 mubuf->operands[2] = soffset;
4082 mubuf->offen = (offset.type() == RegType::vgpr);
4083 mubuf->glc = glc;
4084 mubuf->dlc = dlc;
4085 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4086 mubuf->can_reorder = readonly;
4087 mubuf->offset = const_offset;
4088 aco_ptr<Instruction> instr = std::move(mubuf);
4089
4090 if (dst.size() > 4) {
4091 assert(lower != Temp());
4092 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4093 instr->definitions[0] = Definition(upper);
4094 bld.insert(std::move(instr));
4095 if (dst.size() == 8)
4096 emit_split_vector(ctx, upper, 2);
4097 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4098 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4099 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4100 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4101 if (dst.size() == 8)
4102 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4103 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4104 Temp vec = bld.tmp(v4);
4105 instr->definitions[0] = Definition(vec);
4106 bld.insert(std::move(instr));
4107 emit_split_vector(ctx, vec, 4);
4108
4109 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4110 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4111 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4112 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4113 }
4114
4115 if (dst.type() == RegType::sgpr) {
4116 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4117 instr->definitions[0] = Definition(vec);
4118 bld.insert(std::move(instr));
4119 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4120 } else {
4121 instr->definitions[0] = Definition(dst);
4122 bld.insert(std::move(instr));
4123 emit_split_vector(ctx, dst, num_components);
4124 }
4125 } else {
4126 switch (num_bytes) {
4127 case 4:
4128 op = aco_opcode::s_buffer_load_dword;
4129 break;
4130 case 8:
4131 op = aco_opcode::s_buffer_load_dwordx2;
4132 break;
4133 case 12:
4134 case 16:
4135 op = aco_opcode::s_buffer_load_dwordx4;
4136 break;
4137 case 24:
4138 case 32:
4139 op = aco_opcode::s_buffer_load_dwordx8;
4140 break;
4141 default:
4142 unreachable("Load SSBO not implemented for this size.");
4143 }
4144 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4145 load->operands[0] = Operand(rsrc);
4146 load->operands[1] = Operand(bld.as_uniform(offset));
4147 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4148 load->definitions[0] = Definition(dst);
4149 load->glc = glc;
4150 load->dlc = dlc;
4151 load->barrier = readonly ? barrier_none : barrier_buffer;
4152 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4153 assert(ctx->options->chip_class >= GFX8 || !glc);
4154
4155 /* trim vector */
4156 if (dst.size() == 3) {
4157 Temp vec = bld.tmp(s4);
4158 load->definitions[0] = Definition(vec);
4159 bld.insert(std::move(load));
4160 emit_split_vector(ctx, vec, 4);
4161
4162 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4163 emit_extract_vector(ctx, vec, 0, s1),
4164 emit_extract_vector(ctx, vec, 1, s1),
4165 emit_extract_vector(ctx, vec, 2, s1));
4166 } else if (dst.size() == 6) {
4167 Temp vec = bld.tmp(s8);
4168 load->definitions[0] = Definition(vec);
4169 bld.insert(std::move(load));
4170 emit_split_vector(ctx, vec, 4);
4171
4172 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4173 emit_extract_vector(ctx, vec, 0, s2),
4174 emit_extract_vector(ctx, vec, 1, s2),
4175 emit_extract_vector(ctx, vec, 2, s2));
4176 } else {
4177 bld.insert(std::move(load));
4178 }
4179 emit_split_vector(ctx, dst, num_components);
4180 }
4181 }
4182
4183 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4184 {
4185 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4186 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4187
4188 Builder bld(ctx->program, ctx->block);
4189
4190 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4191 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4192 unsigned binding = nir_intrinsic_binding(idx_instr);
4193 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4194
4195 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4196 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4197 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4198 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4199 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4200 if (ctx->options->chip_class >= GFX10) {
4201 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4202 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4203 S_008F0C_RESOURCE_LEVEL(1);
4204 } else {
4205 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4206 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4207 }
4208 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4209 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4210 Operand(0xFFFFFFFFu),
4211 Operand(desc_type));
4212 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4213 rsrc, upper_dwords);
4214 } else {
4215 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4216 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4217 }
4218
4219 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
4220 }
4221
4222 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4223 {
4224 Builder bld(ctx->program, ctx->block);
4225 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4226
4227 unsigned offset = nir_intrinsic_base(instr);
4228 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4229 if (index_cv && instr->dest.ssa.bit_size == 32) {
4230
4231 unsigned count = instr->dest.ssa.num_components;
4232 unsigned start = (offset + index_cv->u32) / 4u;
4233 start -= ctx->args->ac.base_inline_push_consts;
4234 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4235 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4236 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4237 for (unsigned i = 0; i < count; ++i) {
4238 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4239 vec->operands[i] = Operand{elems[i]};
4240 }
4241 vec->definitions[0] = Definition(dst);
4242 ctx->block->instructions.emplace_back(std::move(vec));
4243 ctx->allocated_vec.emplace(dst.id(), elems);
4244 return;
4245 }
4246 }
4247
4248 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4249 if (offset != 0) // TODO check if index != 0 as well
4250 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4251 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4252 Temp vec = dst;
4253 bool trim = false;
4254 aco_opcode op;
4255
4256 switch (dst.size()) {
4257 case 1:
4258 op = aco_opcode::s_load_dword;
4259 break;
4260 case 2:
4261 op = aco_opcode::s_load_dwordx2;
4262 break;
4263 case 3:
4264 vec = bld.tmp(s4);
4265 trim = true;
4266 case 4:
4267 op = aco_opcode::s_load_dwordx4;
4268 break;
4269 case 6:
4270 vec = bld.tmp(s8);
4271 trim = true;
4272 case 8:
4273 op = aco_opcode::s_load_dwordx8;
4274 break;
4275 default:
4276 unreachable("unimplemented or forbidden load_push_constant.");
4277 }
4278
4279 bld.smem(op, Definition(vec), ptr, index);
4280
4281 if (trim) {
4282 emit_split_vector(ctx, vec, 4);
4283 RegClass rc = dst.size() == 3 ? s1 : s2;
4284 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4285 emit_extract_vector(ctx, vec, 0, rc),
4286 emit_extract_vector(ctx, vec, 1, rc),
4287 emit_extract_vector(ctx, vec, 2, rc));
4288
4289 }
4290 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4291 }
4292
4293 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4294 {
4295 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4296
4297 Builder bld(ctx->program, ctx->block);
4298
4299 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4300 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4301 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4302 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4303 if (ctx->options->chip_class >= GFX10) {
4304 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4305 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4306 S_008F0C_RESOURCE_LEVEL(1);
4307 } else {
4308 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4309 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4310 }
4311
4312 unsigned base = nir_intrinsic_base(instr);
4313 unsigned range = nir_intrinsic_range(instr);
4314
4315 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
4316 if (base && offset.type() == RegType::sgpr)
4317 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
4318 else if (base && offset.type() == RegType::vgpr)
4319 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
4320
4321 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4322 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
4323 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
4324 Operand(desc_type));
4325
4326 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
4327 }
4328
4329 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
4330 {
4331 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4332 ctx->cf_info.exec_potentially_empty_discard = true;
4333
4334 ctx->program->needs_exact = true;
4335
4336 // TODO: optimize uniform conditions
4337 Builder bld(ctx->program, ctx->block);
4338 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4339 assert(src.regClass() == bld.lm);
4340 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
4341 bld.pseudo(aco_opcode::p_discard_if, src);
4342 ctx->block->kind |= block_kind_uses_discard_if;
4343 return;
4344 }
4345
4346 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
4347 {
4348 Builder bld(ctx->program, ctx->block);
4349
4350 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4351 ctx->cf_info.exec_potentially_empty_discard = true;
4352
4353 bool divergent = ctx->cf_info.parent_if.is_divergent ||
4354 ctx->cf_info.parent_loop.has_divergent_continue;
4355
4356 if (ctx->block->loop_nest_depth &&
4357 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
4358 /* we handle discards the same way as jump instructions */
4359 append_logical_end(ctx->block);
4360
4361 /* in loops, discard behaves like break */
4362 Block *linear_target = ctx->cf_info.parent_loop.exit;
4363 ctx->block->kind |= block_kind_discard;
4364
4365 if (!divergent) {
4366 /* uniform discard - loop ends here */
4367 assert(nir_instr_is_last(&instr->instr));
4368 ctx->block->kind |= block_kind_uniform;
4369 ctx->cf_info.has_branch = true;
4370 bld.branch(aco_opcode::p_branch);
4371 add_linear_edge(ctx->block->index, linear_target);
4372 return;
4373 }
4374
4375 /* we add a break right behind the discard() instructions */
4376 ctx->block->kind |= block_kind_break;
4377 unsigned idx = ctx->block->index;
4378
4379 /* remove critical edges from linear CFG */
4380 bld.branch(aco_opcode::p_branch);
4381 Block* break_block = ctx->program->create_and_insert_block();
4382 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4383 break_block->kind |= block_kind_uniform;
4384 add_linear_edge(idx, break_block);
4385 add_linear_edge(break_block->index, linear_target);
4386 bld.reset(break_block);
4387 bld.branch(aco_opcode::p_branch);
4388
4389 Block* continue_block = ctx->program->create_and_insert_block();
4390 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4391 add_linear_edge(idx, continue_block);
4392 append_logical_start(continue_block);
4393 ctx->block = continue_block;
4394
4395 return;
4396 }
4397
4398 /* it can currently happen that NIR doesn't remove the unreachable code */
4399 if (!nir_instr_is_last(&instr->instr)) {
4400 ctx->program->needs_exact = true;
4401 /* save exec somewhere temporarily so that it doesn't get
4402 * overwritten before the discard from outer exec masks */
4403 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
4404 bld.pseudo(aco_opcode::p_discard_if, cond);
4405 ctx->block->kind |= block_kind_uses_discard_if;
4406 return;
4407 }
4408
4409 /* This condition is incorrect for uniformly branched discards in a loop
4410 * predicated by a divergent condition, but the above code catches that case
4411 * and the discard would end up turning into a discard_if.
4412 * For example:
4413 * if (divergent) {
4414 * while (...) {
4415 * if (uniform) {
4416 * discard;
4417 * }
4418 * }
4419 * }
4420 */
4421 if (!ctx->cf_info.parent_if.is_divergent) {
4422 /* program just ends here */
4423 ctx->block->kind |= block_kind_uniform;
4424 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
4425 0 /* enabled mask */, 9 /* dest */,
4426 false /* compressed */, true/* done */, true /* valid mask */);
4427 bld.sopp(aco_opcode::s_endpgm);
4428 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
4429 } else {
4430 ctx->block->kind |= block_kind_discard;
4431 /* branch and linear edge is added by visit_if() */
4432 }
4433 }
4434
4435 enum aco_descriptor_type {
4436 ACO_DESC_IMAGE,
4437 ACO_DESC_FMASK,
4438 ACO_DESC_SAMPLER,
4439 ACO_DESC_BUFFER,
4440 ACO_DESC_PLANE_0,
4441 ACO_DESC_PLANE_1,
4442 ACO_DESC_PLANE_2,
4443 };
4444
4445 static bool
4446 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
4447 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
4448 return false;
4449 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
4450 return dim == ac_image_cube ||
4451 dim == ac_image_1darray ||
4452 dim == ac_image_2darray ||
4453 dim == ac_image_2darraymsaa;
4454 }
4455
4456 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
4457 enum aco_descriptor_type desc_type,
4458 const nir_tex_instr *tex_instr, bool image, bool write)
4459 {
4460 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
4461 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
4462 if (it != ctx->tex_desc.end())
4463 return it->second;
4464 */
4465 Temp index = Temp();
4466 bool index_set = false;
4467 unsigned constant_index = 0;
4468 unsigned descriptor_set;
4469 unsigned base_index;
4470 Builder bld(ctx->program, ctx->block);
4471
4472 if (!deref_instr) {
4473 assert(tex_instr && !image);
4474 descriptor_set = 0;
4475 base_index = tex_instr->sampler_index;
4476 } else {
4477 while(deref_instr->deref_type != nir_deref_type_var) {
4478 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
4479 if (!array_size)
4480 array_size = 1;
4481
4482 assert(deref_instr->deref_type == nir_deref_type_array);
4483 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
4484 if (const_value) {
4485 constant_index += array_size * const_value->u32;
4486 } else {
4487 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
4488 if (indirect.type() == RegType::vgpr)
4489 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
4490
4491 if (array_size != 1)
4492 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
4493
4494 if (!index_set) {
4495 index = indirect;
4496 index_set = true;
4497 } else {
4498 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
4499 }
4500 }
4501
4502 deref_instr = nir_src_as_deref(deref_instr->parent);
4503 }
4504 descriptor_set = deref_instr->var->data.descriptor_set;
4505 base_index = deref_instr->var->data.binding;
4506 }
4507
4508 Temp list = load_desc_ptr(ctx, descriptor_set);
4509 list = convert_pointer_to_64_bit(ctx, list);
4510
4511 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
4512 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
4513 unsigned offset = binding->offset;
4514 unsigned stride = binding->size;
4515 aco_opcode opcode;
4516 RegClass type;
4517
4518 assert(base_index < layout->binding_count);
4519
4520 switch (desc_type) {
4521 case ACO_DESC_IMAGE:
4522 type = s8;
4523 opcode = aco_opcode::s_load_dwordx8;
4524 break;
4525 case ACO_DESC_FMASK:
4526 type = s8;
4527 opcode = aco_opcode::s_load_dwordx8;
4528 offset += 32;
4529 break;
4530 case ACO_DESC_SAMPLER:
4531 type = s4;
4532 opcode = aco_opcode::s_load_dwordx4;
4533 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4534 offset += radv_combined_image_descriptor_sampler_offset(binding);
4535 break;
4536 case ACO_DESC_BUFFER:
4537 type = s4;
4538 opcode = aco_opcode::s_load_dwordx4;
4539 break;
4540 case ACO_DESC_PLANE_0:
4541 case ACO_DESC_PLANE_1:
4542 type = s8;
4543 opcode = aco_opcode::s_load_dwordx8;
4544 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
4545 break;
4546 case ACO_DESC_PLANE_2:
4547 type = s4;
4548 opcode = aco_opcode::s_load_dwordx4;
4549 offset += 64;
4550 break;
4551 default:
4552 unreachable("invalid desc_type\n");
4553 }
4554
4555 offset += constant_index * stride;
4556
4557 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
4558 (!index_set || binding->immutable_samplers_equal)) {
4559 if (binding->immutable_samplers_equal)
4560 constant_index = 0;
4561
4562 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4563 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4564 Operand(samplers[constant_index * 4 + 0]),
4565 Operand(samplers[constant_index * 4 + 1]),
4566 Operand(samplers[constant_index * 4 + 2]),
4567 Operand(samplers[constant_index * 4 + 3]));
4568 }
4569
4570 Operand off;
4571 if (!index_set) {
4572 off = bld.copy(bld.def(s1), Operand(offset));
4573 } else {
4574 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
4575 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
4576 }
4577
4578 Temp res = bld.smem(opcode, bld.def(type), list, off);
4579
4580 if (desc_type == ACO_DESC_PLANE_2) {
4581 Temp components[8];
4582 for (unsigned i = 0; i < 8; i++)
4583 components[i] = bld.tmp(s1);
4584 bld.pseudo(aco_opcode::p_split_vector,
4585 Definition(components[0]),
4586 Definition(components[1]),
4587 Definition(components[2]),
4588 Definition(components[3]),
4589 res);
4590
4591 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
4592 bld.pseudo(aco_opcode::p_split_vector,
4593 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
4594 Definition(components[4]),
4595 Definition(components[5]),
4596 Definition(components[6]),
4597 Definition(components[7]),
4598 desc2);
4599
4600 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
4601 components[0], components[1], components[2], components[3],
4602 components[4], components[5], components[6], components[7]);
4603 }
4604
4605 return res;
4606 }
4607
4608 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
4609 {
4610 switch (dim) {
4611 case GLSL_SAMPLER_DIM_BUF:
4612 return 1;
4613 case GLSL_SAMPLER_DIM_1D:
4614 return array ? 2 : 1;
4615 case GLSL_SAMPLER_DIM_2D:
4616 return array ? 3 : 2;
4617 case GLSL_SAMPLER_DIM_MS:
4618 return array ? 4 : 3;
4619 case GLSL_SAMPLER_DIM_3D:
4620 case GLSL_SAMPLER_DIM_CUBE:
4621 return 3;
4622 case GLSL_SAMPLER_DIM_RECT:
4623 case GLSL_SAMPLER_DIM_SUBPASS:
4624 return 2;
4625 case GLSL_SAMPLER_DIM_SUBPASS_MS:
4626 return 3;
4627 default:
4628 break;
4629 }
4630 return 0;
4631 }
4632
4633
4634 /* Adjust the sample index according to FMASK.
4635 *
4636 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4637 * which is the identity mapping. Each nibble says which physical sample
4638 * should be fetched to get that sample.
4639 *
4640 * For example, 0x11111100 means there are only 2 samples stored and
4641 * the second sample covers 3/4 of the pixel. When reading samples 0
4642 * and 1, return physical sample 0 (determined by the first two 0s
4643 * in FMASK), otherwise return physical sample 1.
4644 *
4645 * The sample index should be adjusted as follows:
4646 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4647 */
4648 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
4649 {
4650 Builder bld(ctx->program, ctx->block);
4651 Temp fmask = bld.tmp(v1);
4652 unsigned dim = ctx->options->chip_class >= GFX10
4653 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
4654 : 0;
4655
4656 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
4657 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
4658 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
4659 load->operands[0] = Operand(fmask_desc_ptr);
4660 load->operands[1] = Operand(s4); /* no sampler */
4661 load->operands[2] = Operand(coord);
4662 load->definitions[0] = Definition(fmask);
4663 load->glc = false;
4664 load->dlc = false;
4665 load->dmask = 0x1;
4666 load->unrm = true;
4667 load->da = da;
4668 load->dim = dim;
4669 load->can_reorder = true; /* fmask images shouldn't be modified */
4670 ctx->block->instructions.emplace_back(std::move(load));
4671
4672 Operand sample_index4;
4673 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4674 sample_index4 = Operand(sample_index.constantValue() << 2);
4675 } else if (sample_index.regClass() == s1) {
4676 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4677 } else {
4678 assert(sample_index.regClass() == v1);
4679 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4680 }
4681
4682 Temp final_sample;
4683 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4684 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4685 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4686 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4687 else
4688 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4689
4690 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4691 * resource descriptor is 0 (invalid),
4692 */
4693 Temp compare = bld.tmp(bld.lm);
4694 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4695 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4696
4697 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4698
4699 /* Replace the MSAA sample index. */
4700 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4701 }
4702
4703 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4704 {
4705
4706 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4707 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4708 bool is_array = glsl_sampler_type_is_array(type);
4709 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4710 assert(!add_frag_pos && "Input attachments should be lowered.");
4711 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4712 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4713 int count = image_type_to_components_count(dim, is_array);
4714 std::vector<Temp> coords(count);
4715 Builder bld(ctx->program, ctx->block);
4716
4717 if (is_ms) {
4718 count--;
4719 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
4720 /* get sample index */
4721 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4722 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4723 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
4724 std::vector<Temp> fmask_load_address;
4725 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
4726 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
4727
4728 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4729 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
4730 } else {
4731 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
4732 }
4733 }
4734
4735 if (gfx9_1d) {
4736 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
4737 coords.resize(coords.size() + 1);
4738 coords[1] = bld.copy(bld.def(v1), Operand(0u));
4739 if (is_array)
4740 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
4741 } else {
4742 for (int i = 0; i < count; i++)
4743 coords[i] = emit_extract_vector(ctx, src0, i, v1);
4744 }
4745
4746 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4747 instr->intrinsic == nir_intrinsic_image_deref_store) {
4748 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4749 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4750
4751 if (!level_zero)
4752 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
4753 }
4754
4755 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4756 for (unsigned i = 0; i < coords.size(); i++)
4757 vec->operands[i] = Operand(coords[i]);
4758 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4759 vec->definitions[0] = Definition(res);
4760 ctx->block->instructions.emplace_back(std::move(vec));
4761 return res;
4762 }
4763
4764
4765 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4766 {
4767 Builder bld(ctx->program, ctx->block);
4768 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4769 const struct glsl_type *type = glsl_without_array(var->type);
4770 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4771 bool is_array = glsl_sampler_type_is_array(type);
4772 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4773
4774 if (dim == GLSL_SAMPLER_DIM_BUF) {
4775 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4776 unsigned num_channels = util_last_bit(mask);
4777 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4778 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4779
4780 aco_opcode opcode;
4781 switch (num_channels) {
4782 case 1:
4783 opcode = aco_opcode::buffer_load_format_x;
4784 break;
4785 case 2:
4786 opcode = aco_opcode::buffer_load_format_xy;
4787 break;
4788 case 3:
4789 opcode = aco_opcode::buffer_load_format_xyz;
4790 break;
4791 case 4:
4792 opcode = aco_opcode::buffer_load_format_xyzw;
4793 break;
4794 default:
4795 unreachable(">4 channel buffer image load");
4796 }
4797 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4798 load->operands[0] = Operand(rsrc);
4799 load->operands[1] = Operand(vindex);
4800 load->operands[2] = Operand((uint32_t) 0);
4801 Temp tmp;
4802 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4803 tmp = dst;
4804 else
4805 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4806 load->definitions[0] = Definition(tmp);
4807 load->idxen = true;
4808 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4809 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4810 load->barrier = barrier_image;
4811 ctx->block->instructions.emplace_back(std::move(load));
4812
4813 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4814 return;
4815 }
4816
4817 Temp coords = get_image_coords(ctx, instr, type);
4818 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4819
4820 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4821 unsigned num_components = util_bitcount(dmask);
4822 Temp tmp;
4823 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4824 tmp = dst;
4825 else
4826 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4827
4828 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4829 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4830
4831 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
4832 load->operands[0] = Operand(resource);
4833 load->operands[1] = Operand(s4); /* no sampler */
4834 load->operands[2] = Operand(coords);
4835 load->definitions[0] = Definition(tmp);
4836 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4837 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4838 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4839 load->dmask = dmask;
4840 load->unrm = true;
4841 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4842 load->barrier = barrier_image;
4843 ctx->block->instructions.emplace_back(std::move(load));
4844
4845 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4846 return;
4847 }
4848
4849 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4850 {
4851 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4852 const struct glsl_type *type = glsl_without_array(var->type);
4853 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4854 bool is_array = glsl_sampler_type_is_array(type);
4855 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4856
4857 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4858
4859 if (dim == GLSL_SAMPLER_DIM_BUF) {
4860 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4861 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4862 aco_opcode opcode;
4863 switch (data.size()) {
4864 case 1:
4865 opcode = aco_opcode::buffer_store_format_x;
4866 break;
4867 case 2:
4868 opcode = aco_opcode::buffer_store_format_xy;
4869 break;
4870 case 3:
4871 opcode = aco_opcode::buffer_store_format_xyz;
4872 break;
4873 case 4:
4874 opcode = aco_opcode::buffer_store_format_xyzw;
4875 break;
4876 default:
4877 unreachable(">4 channel buffer image store");
4878 }
4879 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4880 store->operands[0] = Operand(rsrc);
4881 store->operands[1] = Operand(vindex);
4882 store->operands[2] = Operand((uint32_t) 0);
4883 store->operands[3] = Operand(data);
4884 store->idxen = true;
4885 store->glc = glc;
4886 store->dlc = false;
4887 store->disable_wqm = true;
4888 store->barrier = barrier_image;
4889 ctx->program->needs_exact = true;
4890 ctx->block->instructions.emplace_back(std::move(store));
4891 return;
4892 }
4893
4894 assert(data.type() == RegType::vgpr);
4895 Temp coords = get_image_coords(ctx, instr, type);
4896 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4897
4898 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
4899 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
4900
4901 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
4902 store->operands[0] = Operand(resource);
4903 store->operands[1] = Operand(data);
4904 store->operands[2] = Operand(coords);
4905 store->glc = glc;
4906 store->dlc = false;
4907 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4908 store->dmask = (1 << data.size()) - 1;
4909 store->unrm = true;
4910 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4911 store->disable_wqm = true;
4912 store->barrier = barrier_image;
4913 ctx->program->needs_exact = true;
4914 ctx->block->instructions.emplace_back(std::move(store));
4915 return;
4916 }
4917
4918 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4919 {
4920 /* return the previous value if dest is ever used */
4921 bool return_previous = false;
4922 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4923 return_previous = true;
4924 break;
4925 }
4926 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4927 return_previous = true;
4928 break;
4929 }
4930
4931 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4932 const struct glsl_type *type = glsl_without_array(var->type);
4933 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4934 bool is_array = glsl_sampler_type_is_array(type);
4935 Builder bld(ctx->program, ctx->block);
4936
4937 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4938 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
4939
4940 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
4941 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
4942
4943 aco_opcode buf_op, image_op;
4944 switch (instr->intrinsic) {
4945 case nir_intrinsic_image_deref_atomic_add:
4946 buf_op = aco_opcode::buffer_atomic_add;
4947 image_op = aco_opcode::image_atomic_add;
4948 break;
4949 case nir_intrinsic_image_deref_atomic_umin:
4950 buf_op = aco_opcode::buffer_atomic_umin;
4951 image_op = aco_opcode::image_atomic_umin;
4952 break;
4953 case nir_intrinsic_image_deref_atomic_imin:
4954 buf_op = aco_opcode::buffer_atomic_smin;
4955 image_op = aco_opcode::image_atomic_smin;
4956 break;
4957 case nir_intrinsic_image_deref_atomic_umax:
4958 buf_op = aco_opcode::buffer_atomic_umax;
4959 image_op = aco_opcode::image_atomic_umax;
4960 break;
4961 case nir_intrinsic_image_deref_atomic_imax:
4962 buf_op = aco_opcode::buffer_atomic_smax;
4963 image_op = aco_opcode::image_atomic_smax;
4964 break;
4965 case nir_intrinsic_image_deref_atomic_and:
4966 buf_op = aco_opcode::buffer_atomic_and;
4967 image_op = aco_opcode::image_atomic_and;
4968 break;
4969 case nir_intrinsic_image_deref_atomic_or:
4970 buf_op = aco_opcode::buffer_atomic_or;
4971 image_op = aco_opcode::image_atomic_or;
4972 break;
4973 case nir_intrinsic_image_deref_atomic_xor:
4974 buf_op = aco_opcode::buffer_atomic_xor;
4975 image_op = aco_opcode::image_atomic_xor;
4976 break;
4977 case nir_intrinsic_image_deref_atomic_exchange:
4978 buf_op = aco_opcode::buffer_atomic_swap;
4979 image_op = aco_opcode::image_atomic_swap;
4980 break;
4981 case nir_intrinsic_image_deref_atomic_comp_swap:
4982 buf_op = aco_opcode::buffer_atomic_cmpswap;
4983 image_op = aco_opcode::image_atomic_cmpswap;
4984 break;
4985 default:
4986 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
4987 }
4988
4989 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4990
4991 if (dim == GLSL_SAMPLER_DIM_BUF) {
4992 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4993 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4994 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
4995 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4996 mubuf->operands[0] = Operand(resource);
4997 mubuf->operands[1] = Operand(vindex);
4998 mubuf->operands[2] = Operand((uint32_t)0);
4999 mubuf->operands[3] = Operand(data);
5000 if (return_previous)
5001 mubuf->definitions[0] = Definition(dst);
5002 mubuf->offset = 0;
5003 mubuf->idxen = true;
5004 mubuf->glc = return_previous;
5005 mubuf->dlc = false; /* Not needed for atomics */
5006 mubuf->disable_wqm = true;
5007 mubuf->barrier = barrier_image;
5008 ctx->program->needs_exact = true;
5009 ctx->block->instructions.emplace_back(std::move(mubuf));
5010 return;
5011 }
5012
5013 Temp coords = get_image_coords(ctx, instr, type);
5014 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5015 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5016 mimg->operands[0] = Operand(resource);
5017 mimg->operands[1] = Operand(data);
5018 mimg->operands[2] = Operand(coords);
5019 if (return_previous)
5020 mimg->definitions[0] = Definition(dst);
5021 mimg->glc = return_previous;
5022 mimg->dlc = false; /* Not needed for atomics */
5023 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5024 mimg->dmask = (1 << data.size()) - 1;
5025 mimg->unrm = true;
5026 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5027 mimg->disable_wqm = true;
5028 mimg->barrier = barrier_image;
5029 ctx->program->needs_exact = true;
5030 ctx->block->instructions.emplace_back(std::move(mimg));
5031 return;
5032 }
5033
5034 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5035 {
5036 if (in_elements && ctx->options->chip_class == GFX8) {
5037 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5038 Builder bld(ctx->program, ctx->block);
5039
5040 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5041
5042 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5043 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5044
5045 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5046 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5047
5048 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5049 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5050
5051 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5052 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5053 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5054 if (dst.type() == RegType::vgpr)
5055 bld.copy(Definition(dst), shr_dst);
5056
5057 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5058 } else {
5059 emit_extract_vector(ctx, desc, 2, dst);
5060 }
5061 }
5062
5063 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5064 {
5065 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5066 const struct glsl_type *type = glsl_without_array(var->type);
5067 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5068 bool is_array = glsl_sampler_type_is_array(type);
5069 Builder bld(ctx->program, ctx->block);
5070
5071 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5072 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5073 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5074 }
5075
5076 /* LOD */
5077 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5078
5079 /* Resource */
5080 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5081
5082 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5083
5084 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5085 mimg->operands[0] = Operand(resource);
5086 mimg->operands[1] = Operand(s4); /* no sampler */
5087 mimg->operands[2] = Operand(lod);
5088 uint8_t& dmask = mimg->dmask;
5089 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5090 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
5091 mimg->da = glsl_sampler_type_is_array(type);
5092 mimg->can_reorder = true;
5093 Definition& def = mimg->definitions[0];
5094 ctx->block->instructions.emplace_back(std::move(mimg));
5095
5096 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
5097 glsl_sampler_type_is_array(type)) {
5098
5099 assert(instr->dest.ssa.num_components == 3);
5100 Temp tmp = {ctx->program->allocateId(), v3};
5101 def = Definition(tmp);
5102 emit_split_vector(ctx, tmp, 3);
5103
5104 /* divide 3rd value by 6 by multiplying with magic number */
5105 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
5106 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
5107
5108 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5109 emit_extract_vector(ctx, tmp, 0, v1),
5110 emit_extract_vector(ctx, tmp, 1, v1),
5111 by_6);
5112
5113 } else if (ctx->options->chip_class == GFX9 &&
5114 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
5115 glsl_sampler_type_is_array(type)) {
5116 assert(instr->dest.ssa.num_components == 2);
5117 def = Definition(dst);
5118 dmask = 0x5;
5119 } else {
5120 def = Definition(dst);
5121 }
5122
5123 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5124 }
5125
5126 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5127 {
5128 Builder bld(ctx->program, ctx->block);
5129 unsigned num_components = instr->num_components;
5130
5131 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5132 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5133 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5134
5135 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5136 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
5137 }
5138
5139 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5140 {
5141 Builder bld(ctx->program, ctx->block);
5142 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5143 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5144 unsigned writemask = nir_intrinsic_write_mask(instr);
5145 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5146
5147 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5148 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5149
5150 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5151 ctx->options->chip_class >= GFX8;
5152 if (smem)
5153 offset = bld.as_uniform(offset);
5154 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5155
5156 while (writemask) {
5157 int start, count;
5158 u_bit_scan_consecutive_range(&writemask, &start, &count);
5159 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5160 /* GFX6 doesn't support storing vec3, split it. */
5161 writemask |= 1u << (start + 2);
5162 count = 2;
5163 }
5164 int num_bytes = count * elem_size_bytes;
5165
5166 if (num_bytes > 16) {
5167 assert(elem_size_bytes == 8);
5168 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5169 count = 2;
5170 num_bytes = 16;
5171 }
5172
5173 // TODO: check alignment of sub-dword stores
5174 // TODO: split 3 bytes. there is no store instruction for that
5175
5176 Temp write_data;
5177 if (count != instr->num_components) {
5178 emit_split_vector(ctx, data, instr->num_components);
5179 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5180 for (int i = 0; i < count; i++) {
5181 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5182 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5183 }
5184 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5185 vec->definitions[0] = Definition(write_data);
5186 ctx->block->instructions.emplace_back(std::move(vec));
5187 } else if (!smem && data.type() != RegType::vgpr) {
5188 assert(num_bytes % 4 == 0);
5189 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5190 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5191 assert(num_bytes % 4 == 0);
5192 write_data = bld.as_uniform(data);
5193 } else {
5194 write_data = data;
5195 }
5196
5197 aco_opcode vmem_op, smem_op;
5198 switch (num_bytes) {
5199 case 4:
5200 vmem_op = aco_opcode::buffer_store_dword;
5201 smem_op = aco_opcode::s_buffer_store_dword;
5202 break;
5203 case 8:
5204 vmem_op = aco_opcode::buffer_store_dwordx2;
5205 smem_op = aco_opcode::s_buffer_store_dwordx2;
5206 break;
5207 case 12:
5208 vmem_op = aco_opcode::buffer_store_dwordx3;
5209 smem_op = aco_opcode::last_opcode;
5210 assert(!smem && ctx->options->chip_class > GFX6);
5211 break;
5212 case 16:
5213 vmem_op = aco_opcode::buffer_store_dwordx4;
5214 smem_op = aco_opcode::s_buffer_store_dwordx4;
5215 break;
5216 default:
5217 unreachable("Store SSBO not implemented for this size.");
5218 }
5219 if (ctx->stage == fragment_fs)
5220 smem_op = aco_opcode::p_fs_buffer_store_smem;
5221
5222 if (smem) {
5223 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5224 store->operands[0] = Operand(rsrc);
5225 if (start) {
5226 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5227 offset, Operand(start * elem_size_bytes));
5228 store->operands[1] = Operand(off);
5229 } else {
5230 store->operands[1] = Operand(offset);
5231 }
5232 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5233 store->operands[1].setFixed(m0);
5234 store->operands[2] = Operand(write_data);
5235 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5236 store->dlc = false;
5237 store->disable_wqm = true;
5238 store->barrier = barrier_buffer;
5239 ctx->block->instructions.emplace_back(std::move(store));
5240 ctx->program->wb_smem_l1_on_end = true;
5241 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
5242 ctx->block->kind |= block_kind_needs_lowering;
5243 ctx->program->needs_exact = true;
5244 }
5245 } else {
5246 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
5247 store->operands[0] = Operand(rsrc);
5248 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5249 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5250 store->operands[3] = Operand(write_data);
5251 store->offset = start * elem_size_bytes;
5252 store->offen = (offset.type() == RegType::vgpr);
5253 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5254 store->dlc = false;
5255 store->disable_wqm = true;
5256 store->barrier = barrier_buffer;
5257 ctx->program->needs_exact = true;
5258 ctx->block->instructions.emplace_back(std::move(store));
5259 }
5260 }
5261 }
5262
5263 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5264 {
5265 /* return the previous value if dest is ever used */
5266 bool return_previous = false;
5267 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5268 return_previous = true;
5269 break;
5270 }
5271 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5272 return_previous = true;
5273 break;
5274 }
5275
5276 Builder bld(ctx->program, ctx->block);
5277 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
5278
5279 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
5280 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5281 get_ssa_temp(ctx, instr->src[3].ssa), data);
5282
5283 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
5284 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5285 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5286
5287 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5288
5289 aco_opcode op32, op64;
5290 switch (instr->intrinsic) {
5291 case nir_intrinsic_ssbo_atomic_add:
5292 op32 = aco_opcode::buffer_atomic_add;
5293 op64 = aco_opcode::buffer_atomic_add_x2;
5294 break;
5295 case nir_intrinsic_ssbo_atomic_imin:
5296 op32 = aco_opcode::buffer_atomic_smin;
5297 op64 = aco_opcode::buffer_atomic_smin_x2;
5298 break;
5299 case nir_intrinsic_ssbo_atomic_umin:
5300 op32 = aco_opcode::buffer_atomic_umin;
5301 op64 = aco_opcode::buffer_atomic_umin_x2;
5302 break;
5303 case nir_intrinsic_ssbo_atomic_imax:
5304 op32 = aco_opcode::buffer_atomic_smax;
5305 op64 = aco_opcode::buffer_atomic_smax_x2;
5306 break;
5307 case nir_intrinsic_ssbo_atomic_umax:
5308 op32 = aco_opcode::buffer_atomic_umax;
5309 op64 = aco_opcode::buffer_atomic_umax_x2;
5310 break;
5311 case nir_intrinsic_ssbo_atomic_and:
5312 op32 = aco_opcode::buffer_atomic_and;
5313 op64 = aco_opcode::buffer_atomic_and_x2;
5314 break;
5315 case nir_intrinsic_ssbo_atomic_or:
5316 op32 = aco_opcode::buffer_atomic_or;
5317 op64 = aco_opcode::buffer_atomic_or_x2;
5318 break;
5319 case nir_intrinsic_ssbo_atomic_xor:
5320 op32 = aco_opcode::buffer_atomic_xor;
5321 op64 = aco_opcode::buffer_atomic_xor_x2;
5322 break;
5323 case nir_intrinsic_ssbo_atomic_exchange:
5324 op32 = aco_opcode::buffer_atomic_swap;
5325 op64 = aco_opcode::buffer_atomic_swap_x2;
5326 break;
5327 case nir_intrinsic_ssbo_atomic_comp_swap:
5328 op32 = aco_opcode::buffer_atomic_cmpswap;
5329 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5330 break;
5331 default:
5332 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
5333 }
5334 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5335 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5336 mubuf->operands[0] = Operand(rsrc);
5337 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5338 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5339 mubuf->operands[3] = Operand(data);
5340 if (return_previous)
5341 mubuf->definitions[0] = Definition(dst);
5342 mubuf->offset = 0;
5343 mubuf->offen = (offset.type() == RegType::vgpr);
5344 mubuf->glc = return_previous;
5345 mubuf->dlc = false; /* Not needed for atomics */
5346 mubuf->disable_wqm = true;
5347 mubuf->barrier = barrier_buffer;
5348 ctx->program->needs_exact = true;
5349 ctx->block->instructions.emplace_back(std::move(mubuf));
5350 }
5351
5352 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
5353
5354 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5355 Builder bld(ctx->program, ctx->block);
5356 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
5357 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
5358 }
5359
5360 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
5361 {
5362 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5363 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5364
5365 if (addr.type() == RegType::vgpr)
5366 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
5367 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
5368 }
5369
5370 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
5371 {
5372 Builder bld(ctx->program, ctx->block);
5373 unsigned num_components = instr->num_components;
5374 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
5375
5376 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5377 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5378
5379 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5380 bool dlc = glc && ctx->options->chip_class >= GFX10;
5381 aco_opcode op;
5382 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
5383 bool global = ctx->options->chip_class >= GFX9;
5384
5385 if (ctx->options->chip_class >= GFX7) {
5386 aco_opcode op;
5387 switch (num_bytes) {
5388 case 4:
5389 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
5390 break;
5391 case 8:
5392 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
5393 break;
5394 case 12:
5395 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
5396 break;
5397 case 16:
5398 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
5399 break;
5400 default:
5401 unreachable("load_global not implemented for this size.");
5402 }
5403
5404 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
5405 flat->operands[0] = Operand(addr);
5406 flat->operands[1] = Operand(s1);
5407 flat->glc = glc;
5408 flat->dlc = dlc;
5409 flat->barrier = barrier_buffer;
5410
5411 if (dst.type() == RegType::sgpr) {
5412 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5413 flat->definitions[0] = Definition(vec);
5414 ctx->block->instructions.emplace_back(std::move(flat));
5415 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5416 } else {
5417 flat->definitions[0] = Definition(dst);
5418 ctx->block->instructions.emplace_back(std::move(flat));
5419 }
5420 emit_split_vector(ctx, dst, num_components);
5421 } else {
5422 assert(ctx->options->chip_class == GFX6);
5423
5424 /* GFX6 doesn't support loading vec3, expand to vec4. */
5425 num_bytes = num_bytes == 12 ? 16 : num_bytes;
5426
5427 aco_opcode op;
5428 switch (num_bytes) {
5429 case 4:
5430 op = aco_opcode::buffer_load_dword;
5431 break;
5432 case 8:
5433 op = aco_opcode::buffer_load_dwordx2;
5434 break;
5435 case 16:
5436 op = aco_opcode::buffer_load_dwordx4;
5437 break;
5438 default:
5439 unreachable("load_global not implemented for this size.");
5440 }
5441
5442 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5443
5444 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
5445 mubuf->operands[0] = Operand(rsrc);
5446 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5447 mubuf->operands[2] = Operand(0u);
5448 mubuf->glc = glc;
5449 mubuf->dlc = false;
5450 mubuf->offset = 0;
5451 mubuf->addr64 = addr.type() == RegType::vgpr;
5452 mubuf->disable_wqm = false;
5453 mubuf->barrier = barrier_buffer;
5454 aco_ptr<Instruction> instr = std::move(mubuf);
5455
5456 /* expand vector */
5457 if (dst.size() == 3) {
5458 Temp vec = bld.tmp(v4);
5459 instr->definitions[0] = Definition(vec);
5460 bld.insert(std::move(instr));
5461 emit_split_vector(ctx, vec, 4);
5462
5463 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
5464 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
5465 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
5466 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
5467 }
5468
5469 if (dst.type() == RegType::sgpr) {
5470 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5471 instr->definitions[0] = Definition(vec);
5472 bld.insert(std::move(instr));
5473 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
5474 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5475 } else {
5476 instr->definitions[0] = Definition(dst);
5477 bld.insert(std::move(instr));
5478 emit_split_vector(ctx, dst, num_components);
5479 }
5480 }
5481 } else {
5482 switch (num_bytes) {
5483 case 4:
5484 op = aco_opcode::s_load_dword;
5485 break;
5486 case 8:
5487 op = aco_opcode::s_load_dwordx2;
5488 break;
5489 case 12:
5490 case 16:
5491 op = aco_opcode::s_load_dwordx4;
5492 break;
5493 default:
5494 unreachable("load_global not implemented for this size.");
5495 }
5496 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
5497 load->operands[0] = Operand(addr);
5498 load->operands[1] = Operand(0u);
5499 load->definitions[0] = Definition(dst);
5500 load->glc = glc;
5501 load->dlc = dlc;
5502 load->barrier = barrier_buffer;
5503 assert(ctx->options->chip_class >= GFX8 || !glc);
5504
5505 if (dst.size() == 3) {
5506 /* trim vector */
5507 Temp vec = bld.tmp(s4);
5508 load->definitions[0] = Definition(vec);
5509 ctx->block->instructions.emplace_back(std::move(load));
5510 emit_split_vector(ctx, vec, 4);
5511
5512 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5513 emit_extract_vector(ctx, vec, 0, s1),
5514 emit_extract_vector(ctx, vec, 1, s1),
5515 emit_extract_vector(ctx, vec, 2, s1));
5516 } else {
5517 ctx->block->instructions.emplace_back(std::move(load));
5518 }
5519 }
5520 }
5521
5522 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
5523 {
5524 Builder bld(ctx->program, ctx->block);
5525 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5526
5527 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5528 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
5529
5530 if (ctx->options->chip_class >= GFX7)
5531 addr = as_vgpr(ctx, addr);
5532
5533 unsigned writemask = nir_intrinsic_write_mask(instr);
5534 while (writemask) {
5535 int start, count;
5536 u_bit_scan_consecutive_range(&writemask, &start, &count);
5537 if (count == 3 && ctx->options->chip_class == GFX6) {
5538 /* GFX6 doesn't support storing vec3, split it. */
5539 writemask |= 1u << (start + 2);
5540 count = 2;
5541 }
5542 unsigned num_bytes = count * elem_size_bytes;
5543
5544 Temp write_data = data;
5545 if (count != instr->num_components) {
5546 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5547 for (int i = 0; i < count; i++)
5548 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
5549 write_data = bld.tmp(RegType::vgpr, count);
5550 vec->definitions[0] = Definition(write_data);
5551 ctx->block->instructions.emplace_back(std::move(vec));
5552 }
5553
5554 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5555 unsigned offset = start * elem_size_bytes;
5556
5557 if (ctx->options->chip_class >= GFX7) {
5558 if (offset > 0 && ctx->options->chip_class < GFX9) {
5559 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
5560 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
5561 Temp carry = bld.tmp(bld.lm);
5562 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
5563
5564 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
5565 Operand(offset), addr0);
5566 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
5567 Operand(0u), addr1,
5568 carry).def(1).setHint(vcc);
5569
5570 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
5571
5572 offset = 0;
5573 }
5574
5575 bool global = ctx->options->chip_class >= GFX9;
5576 aco_opcode op;
5577 switch (num_bytes) {
5578 case 4:
5579 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
5580 break;
5581 case 8:
5582 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
5583 break;
5584 case 12:
5585 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
5586 break;
5587 case 16:
5588 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
5589 break;
5590 default:
5591 unreachable("store_global not implemented for this size.");
5592 }
5593
5594 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
5595 flat->operands[0] = Operand(addr);
5596 flat->operands[1] = Operand(s1);
5597 flat->operands[2] = Operand(data);
5598 flat->glc = glc;
5599 flat->dlc = false;
5600 flat->offset = offset;
5601 flat->disable_wqm = true;
5602 flat->barrier = barrier_buffer;
5603 ctx->program->needs_exact = true;
5604 ctx->block->instructions.emplace_back(std::move(flat));
5605 } else {
5606 assert(ctx->options->chip_class == GFX6);
5607
5608 aco_opcode op;
5609 switch (num_bytes) {
5610 case 4:
5611 op = aco_opcode::buffer_store_dword;
5612 break;
5613 case 8:
5614 op = aco_opcode::buffer_store_dwordx2;
5615 break;
5616 case 16:
5617 op = aco_opcode::buffer_store_dwordx4;
5618 break;
5619 default:
5620 unreachable("store_global not implemented for this size.");
5621 }
5622
5623 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5624
5625 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
5626 mubuf->operands[0] = Operand(rsrc);
5627 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5628 mubuf->operands[2] = Operand(0u);
5629 mubuf->operands[3] = Operand(write_data);
5630 mubuf->glc = glc;
5631 mubuf->dlc = false;
5632 mubuf->offset = offset;
5633 mubuf->addr64 = addr.type() == RegType::vgpr;
5634 mubuf->disable_wqm = true;
5635 mubuf->barrier = barrier_buffer;
5636 ctx->program->needs_exact = true;
5637 ctx->block->instructions.emplace_back(std::move(mubuf));
5638 }
5639 }
5640 }
5641
5642 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5643 {
5644 /* return the previous value if dest is ever used */
5645 bool return_previous = false;
5646 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5647 return_previous = true;
5648 break;
5649 }
5650 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5651 return_previous = true;
5652 break;
5653 }
5654
5655 Builder bld(ctx->program, ctx->block);
5656 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5657 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5658
5659 if (ctx->options->chip_class >= GFX7)
5660 addr = as_vgpr(ctx, addr);
5661
5662 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
5663 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5664 get_ssa_temp(ctx, instr->src[2].ssa), data);
5665
5666 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5667
5668 aco_opcode op32, op64;
5669
5670 if (ctx->options->chip_class >= GFX7) {
5671 bool global = ctx->options->chip_class >= GFX9;
5672 switch (instr->intrinsic) {
5673 case nir_intrinsic_global_atomic_add:
5674 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
5675 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
5676 break;
5677 case nir_intrinsic_global_atomic_imin:
5678 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
5679 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
5680 break;
5681 case nir_intrinsic_global_atomic_umin:
5682 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
5683 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
5684 break;
5685 case nir_intrinsic_global_atomic_imax:
5686 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
5687 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
5688 break;
5689 case nir_intrinsic_global_atomic_umax:
5690 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
5691 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
5692 break;
5693 case nir_intrinsic_global_atomic_and:
5694 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
5695 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
5696 break;
5697 case nir_intrinsic_global_atomic_or:
5698 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
5699 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
5700 break;
5701 case nir_intrinsic_global_atomic_xor:
5702 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
5703 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
5704 break;
5705 case nir_intrinsic_global_atomic_exchange:
5706 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
5707 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
5708 break;
5709 case nir_intrinsic_global_atomic_comp_swap:
5710 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
5711 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
5712 break;
5713 default:
5714 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5715 }
5716
5717 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5718 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
5719 flat->operands[0] = Operand(addr);
5720 flat->operands[1] = Operand(s1);
5721 flat->operands[2] = Operand(data);
5722 if (return_previous)
5723 flat->definitions[0] = Definition(dst);
5724 flat->glc = return_previous;
5725 flat->dlc = false; /* Not needed for atomics */
5726 flat->offset = 0;
5727 flat->disable_wqm = true;
5728 flat->barrier = barrier_buffer;
5729 ctx->program->needs_exact = true;
5730 ctx->block->instructions.emplace_back(std::move(flat));
5731 } else {
5732 assert(ctx->options->chip_class == GFX6);
5733
5734 switch (instr->intrinsic) {
5735 case nir_intrinsic_global_atomic_add:
5736 op32 = aco_opcode::buffer_atomic_add;
5737 op64 = aco_opcode::buffer_atomic_add_x2;
5738 break;
5739 case nir_intrinsic_global_atomic_imin:
5740 op32 = aco_opcode::buffer_atomic_smin;
5741 op64 = aco_opcode::buffer_atomic_smin_x2;
5742 break;
5743 case nir_intrinsic_global_atomic_umin:
5744 op32 = aco_opcode::buffer_atomic_umin;
5745 op64 = aco_opcode::buffer_atomic_umin_x2;
5746 break;
5747 case nir_intrinsic_global_atomic_imax:
5748 op32 = aco_opcode::buffer_atomic_smax;
5749 op64 = aco_opcode::buffer_atomic_smax_x2;
5750 break;
5751 case nir_intrinsic_global_atomic_umax:
5752 op32 = aco_opcode::buffer_atomic_umax;
5753 op64 = aco_opcode::buffer_atomic_umax_x2;
5754 break;
5755 case nir_intrinsic_global_atomic_and:
5756 op32 = aco_opcode::buffer_atomic_and;
5757 op64 = aco_opcode::buffer_atomic_and_x2;
5758 break;
5759 case nir_intrinsic_global_atomic_or:
5760 op32 = aco_opcode::buffer_atomic_or;
5761 op64 = aco_opcode::buffer_atomic_or_x2;
5762 break;
5763 case nir_intrinsic_global_atomic_xor:
5764 op32 = aco_opcode::buffer_atomic_xor;
5765 op64 = aco_opcode::buffer_atomic_xor_x2;
5766 break;
5767 case nir_intrinsic_global_atomic_exchange:
5768 op32 = aco_opcode::buffer_atomic_swap;
5769 op64 = aco_opcode::buffer_atomic_swap_x2;
5770 break;
5771 case nir_intrinsic_global_atomic_comp_swap:
5772 op32 = aco_opcode::buffer_atomic_cmpswap;
5773 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5774 break;
5775 default:
5776 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5777 }
5778
5779 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5780
5781 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5782
5783 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5784 mubuf->operands[0] = Operand(rsrc);
5785 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5786 mubuf->operands[2] = Operand(0u);
5787 mubuf->operands[3] = Operand(data);
5788 if (return_previous)
5789 mubuf->definitions[0] = Definition(dst);
5790 mubuf->glc = return_previous;
5791 mubuf->dlc = false;
5792 mubuf->offset = 0;
5793 mubuf->addr64 = addr.type() == RegType::vgpr;
5794 mubuf->disable_wqm = true;
5795 mubuf->barrier = barrier_buffer;
5796 ctx->program->needs_exact = true;
5797 ctx->block->instructions.emplace_back(std::move(mubuf));
5798 }
5799 }
5800
5801 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
5802 Builder bld(ctx->program, ctx->block);
5803 switch(instr->intrinsic) {
5804 case nir_intrinsic_group_memory_barrier:
5805 case nir_intrinsic_memory_barrier:
5806 bld.barrier(aco_opcode::p_memory_barrier_common);
5807 break;
5808 case nir_intrinsic_memory_barrier_buffer:
5809 bld.barrier(aco_opcode::p_memory_barrier_buffer);
5810 break;
5811 case nir_intrinsic_memory_barrier_image:
5812 bld.barrier(aco_opcode::p_memory_barrier_image);
5813 break;
5814 case nir_intrinsic_memory_barrier_tcs_patch:
5815 case nir_intrinsic_memory_barrier_shared:
5816 bld.barrier(aco_opcode::p_memory_barrier_shared);
5817 break;
5818 default:
5819 unreachable("Unimplemented memory barrier intrinsic");
5820 break;
5821 }
5822 }
5823
5824 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5825 {
5826 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
5827 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5828 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
5829 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5830 Builder bld(ctx->program, ctx->block);
5831
5832 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5833 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5834 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
5835 }
5836
5837 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5838 {
5839 unsigned writemask = nir_intrinsic_write_mask(instr);
5840 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5841 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5842 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5843 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
5844
5845 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5846 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
5847 }
5848
5849 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5850 {
5851 unsigned offset = nir_intrinsic_base(instr);
5852 Operand m = load_lds_size_m0(ctx);
5853 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5854 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5855
5856 unsigned num_operands = 3;
5857 aco_opcode op32, op64, op32_rtn, op64_rtn;
5858 switch(instr->intrinsic) {
5859 case nir_intrinsic_shared_atomic_add:
5860 op32 = aco_opcode::ds_add_u32;
5861 op64 = aco_opcode::ds_add_u64;
5862 op32_rtn = aco_opcode::ds_add_rtn_u32;
5863 op64_rtn = aco_opcode::ds_add_rtn_u64;
5864 break;
5865 case nir_intrinsic_shared_atomic_imin:
5866 op32 = aco_opcode::ds_min_i32;
5867 op64 = aco_opcode::ds_min_i64;
5868 op32_rtn = aco_opcode::ds_min_rtn_i32;
5869 op64_rtn = aco_opcode::ds_min_rtn_i64;
5870 break;
5871 case nir_intrinsic_shared_atomic_umin:
5872 op32 = aco_opcode::ds_min_u32;
5873 op64 = aco_opcode::ds_min_u64;
5874 op32_rtn = aco_opcode::ds_min_rtn_u32;
5875 op64_rtn = aco_opcode::ds_min_rtn_u64;
5876 break;
5877 case nir_intrinsic_shared_atomic_imax:
5878 op32 = aco_opcode::ds_max_i32;
5879 op64 = aco_opcode::ds_max_i64;
5880 op32_rtn = aco_opcode::ds_max_rtn_i32;
5881 op64_rtn = aco_opcode::ds_max_rtn_i64;
5882 break;
5883 case nir_intrinsic_shared_atomic_umax:
5884 op32 = aco_opcode::ds_max_u32;
5885 op64 = aco_opcode::ds_max_u64;
5886 op32_rtn = aco_opcode::ds_max_rtn_u32;
5887 op64_rtn = aco_opcode::ds_max_rtn_u64;
5888 break;
5889 case nir_intrinsic_shared_atomic_and:
5890 op32 = aco_opcode::ds_and_b32;
5891 op64 = aco_opcode::ds_and_b64;
5892 op32_rtn = aco_opcode::ds_and_rtn_b32;
5893 op64_rtn = aco_opcode::ds_and_rtn_b64;
5894 break;
5895 case nir_intrinsic_shared_atomic_or:
5896 op32 = aco_opcode::ds_or_b32;
5897 op64 = aco_opcode::ds_or_b64;
5898 op32_rtn = aco_opcode::ds_or_rtn_b32;
5899 op64_rtn = aco_opcode::ds_or_rtn_b64;
5900 break;
5901 case nir_intrinsic_shared_atomic_xor:
5902 op32 = aco_opcode::ds_xor_b32;
5903 op64 = aco_opcode::ds_xor_b64;
5904 op32_rtn = aco_opcode::ds_xor_rtn_b32;
5905 op64_rtn = aco_opcode::ds_xor_rtn_b64;
5906 break;
5907 case nir_intrinsic_shared_atomic_exchange:
5908 op32 = aco_opcode::ds_write_b32;
5909 op64 = aco_opcode::ds_write_b64;
5910 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
5911 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
5912 break;
5913 case nir_intrinsic_shared_atomic_comp_swap:
5914 op32 = aco_opcode::ds_cmpst_b32;
5915 op64 = aco_opcode::ds_cmpst_b64;
5916 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
5917 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
5918 num_operands = 4;
5919 break;
5920 default:
5921 unreachable("Unhandled shared atomic intrinsic");
5922 }
5923
5924 /* return the previous value if dest is ever used */
5925 bool return_previous = false;
5926 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5927 return_previous = true;
5928 break;
5929 }
5930 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5931 return_previous = true;
5932 break;
5933 }
5934
5935 aco_opcode op;
5936 if (data.size() == 1) {
5937 assert(instr->dest.ssa.bit_size == 32);
5938 op = return_previous ? op32_rtn : op32;
5939 } else {
5940 assert(instr->dest.ssa.bit_size == 64);
5941 op = return_previous ? op64_rtn : op64;
5942 }
5943
5944 if (offset > 65535) {
5945 Builder bld(ctx->program, ctx->block);
5946 address = bld.vadd32(bld.def(v1), Operand(offset), address);
5947 offset = 0;
5948 }
5949
5950 aco_ptr<DS_instruction> ds;
5951 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
5952 ds->operands[0] = Operand(address);
5953 ds->operands[1] = Operand(data);
5954 if (num_operands == 4)
5955 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
5956 ds->operands[num_operands - 1] = m;
5957 ds->offset0 = offset;
5958 if (return_previous)
5959 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
5960 ctx->block->instructions.emplace_back(std::move(ds));
5961 }
5962
5963 Temp get_scratch_resource(isel_context *ctx)
5964 {
5965 Builder bld(ctx->program, ctx->block);
5966 Temp scratch_addr = ctx->program->private_segment_buffer;
5967 if (ctx->stage != compute_cs)
5968 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
5969
5970 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
5971 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
5972
5973 if (ctx->program->chip_class >= GFX10) {
5974 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5975 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5976 S_008F0C_RESOURCE_LEVEL(1);
5977 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
5978 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5979 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5980 }
5981
5982 /* older generations need element size = 16 bytes. element size removed in GFX9 */
5983 if (ctx->program->chip_class <= GFX8)
5984 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
5985
5986 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
5987 }
5988
5989 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5990 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
5991 Builder bld(ctx->program, ctx->block);
5992 Temp rsrc = get_scratch_resource(ctx);
5993 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5994 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5995
5996 aco_opcode op;
5997 switch (dst.size()) {
5998 case 1:
5999 op = aco_opcode::buffer_load_dword;
6000 break;
6001 case 2:
6002 op = aco_opcode::buffer_load_dwordx2;
6003 break;
6004 case 3:
6005 op = aco_opcode::buffer_load_dwordx3;
6006 break;
6007 case 4:
6008 op = aco_opcode::buffer_load_dwordx4;
6009 break;
6010 case 6:
6011 case 8: {
6012 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6013 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6014 bld.def(v4), rsrc, offset,
6015 ctx->program->scratch_offset, 0, true);
6016 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6017 aco_opcode::buffer_load_dwordx4,
6018 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6019 rsrc, offset, ctx->program->scratch_offset, 16, true);
6020 emit_split_vector(ctx, lower, 2);
6021 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6022 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6023 if (dst.size() == 8) {
6024 emit_split_vector(ctx, upper, 2);
6025 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6026 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6027 } else {
6028 elems[2] = upper;
6029 }
6030
6031 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6032 Format::PSEUDO, dst.size() / 2, 1)};
6033 for (unsigned i = 0; i < dst.size() / 2; i++)
6034 vec->operands[i] = Operand(elems[i]);
6035 vec->definitions[0] = Definition(dst);
6036 bld.insert(std::move(vec));
6037 ctx->allocated_vec.emplace(dst.id(), elems);
6038 return;
6039 }
6040 default:
6041 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
6042 }
6043
6044 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
6045 emit_split_vector(ctx, dst, instr->num_components);
6046 }
6047
6048 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6049 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6050 Builder bld(ctx->program, ctx->block);
6051 Temp rsrc = get_scratch_resource(ctx);
6052 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6053 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6054
6055 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6056 unsigned writemask = nir_intrinsic_write_mask(instr);
6057
6058 while (writemask) {
6059 int start, count;
6060 u_bit_scan_consecutive_range(&writemask, &start, &count);
6061 int num_bytes = count * elem_size_bytes;
6062
6063 if (num_bytes > 16) {
6064 assert(elem_size_bytes == 8);
6065 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6066 count = 2;
6067 num_bytes = 16;
6068 }
6069
6070 // TODO: check alignment of sub-dword stores
6071 // TODO: split 3 bytes. there is no store instruction for that
6072
6073 Temp write_data;
6074 if (count != instr->num_components) {
6075 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6076 for (int i = 0; i < count; i++) {
6077 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6078 vec->operands[i] = Operand(elem);
6079 }
6080 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6081 vec->definitions[0] = Definition(write_data);
6082 ctx->block->instructions.emplace_back(std::move(vec));
6083 } else {
6084 write_data = data;
6085 }
6086
6087 aco_opcode op;
6088 switch (num_bytes) {
6089 case 4:
6090 op = aco_opcode::buffer_store_dword;
6091 break;
6092 case 8:
6093 op = aco_opcode::buffer_store_dwordx2;
6094 break;
6095 case 12:
6096 op = aco_opcode::buffer_store_dwordx3;
6097 break;
6098 case 16:
6099 op = aco_opcode::buffer_store_dwordx4;
6100 break;
6101 default:
6102 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6103 }
6104
6105 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6106 }
6107 }
6108
6109 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6110 uint8_t log2_ps_iter_samples;
6111 if (ctx->program->info->ps.force_persample) {
6112 log2_ps_iter_samples =
6113 util_logbase2(ctx->options->key.fs.num_samples);
6114 } else {
6115 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6116 }
6117
6118 /* The bit pattern matches that used by fixed function fragment
6119 * processing. */
6120 static const unsigned ps_iter_masks[] = {
6121 0xffff, /* not used */
6122 0x5555,
6123 0x1111,
6124 0x0101,
6125 0x0001,
6126 };
6127 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6128
6129 Builder bld(ctx->program, ctx->block);
6130
6131 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6132 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6133 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6134 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6135 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6136 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6137 }
6138
6139 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6140 Builder bld(ctx->program, ctx->block);
6141
6142 unsigned stream = nir_intrinsic_stream_id(instr);
6143 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6144 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6145 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6146
6147 /* get GSVS ring */
6148 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6149
6150 unsigned num_components =
6151 ctx->program->info->gs.num_stream_output_components[stream];
6152 assert(num_components);
6153
6154 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6155 unsigned stream_offset = 0;
6156 for (unsigned i = 0; i < stream; i++) {
6157 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6158 stream_offset += prev_stride * ctx->program->wave_size;
6159 }
6160
6161 /* Limit on the stride field for <= GFX7. */
6162 assert(stride < (1 << 14));
6163
6164 Temp gsvs_dwords[4];
6165 for (unsigned i = 0; i < 4; i++)
6166 gsvs_dwords[i] = bld.tmp(s1);
6167 bld.pseudo(aco_opcode::p_split_vector,
6168 Definition(gsvs_dwords[0]),
6169 Definition(gsvs_dwords[1]),
6170 Definition(gsvs_dwords[2]),
6171 Definition(gsvs_dwords[3]),
6172 gsvs_ring);
6173
6174 if (stream_offset) {
6175 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6176
6177 Temp carry = bld.tmp(s1);
6178 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6179 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6180 }
6181
6182 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6183 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6184
6185 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6186 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6187
6188 unsigned offset = 0;
6189 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6190 if (ctx->program->info->gs.output_streams[i] != stream)
6191 continue;
6192
6193 for (unsigned j = 0; j < 4; j++) {
6194 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6195 continue;
6196
6197 if (ctx->outputs.mask[i] & (1 << j)) {
6198 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6199 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6200 if (const_offset >= 4096u) {
6201 if (vaddr_offset.isUndefined())
6202 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6203 else
6204 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6205 const_offset %= 4096u;
6206 }
6207
6208 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6209 mtbuf->operands[0] = Operand(gsvs_ring);
6210 mtbuf->operands[1] = vaddr_offset;
6211 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6212 mtbuf->operands[3] = Operand(ctx->outputs.outputs[i][j]);
6213 mtbuf->offen = !vaddr_offset.isUndefined();
6214 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6215 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6216 mtbuf->offset = const_offset;
6217 mtbuf->glc = true;
6218 mtbuf->slc = true;
6219 mtbuf->barrier = barrier_gs_data;
6220 mtbuf->can_reorder = true;
6221 bld.insert(std::move(mtbuf));
6222 }
6223
6224 offset += ctx->shader->info.gs.vertices_out;
6225 }
6226
6227 /* outputs for the next vertex are undefined and keeping them around can
6228 * create invalid IR with control flow */
6229 ctx->outputs.mask[i] = 0;
6230 }
6231
6232 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6233 }
6234
6235 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6236 {
6237 Builder bld(ctx->program, ctx->block);
6238
6239 if (cluster_size == 1) {
6240 return src;
6241 } if (op == nir_op_iand && cluster_size == 4) {
6242 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6243 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6244 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6245 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6246 } else if (op == nir_op_ior && cluster_size == 4) {
6247 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6248 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6249 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6250 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6251 //subgroupAnd(val) -> (exec & ~val) == 0
6252 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6253 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6254 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6255 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6256 //subgroupOr(val) -> (val & exec) != 0
6257 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6258 return bool_to_vector_condition(ctx, tmp);
6259 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6260 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6261 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6262 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6263 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6264 return bool_to_vector_condition(ctx, tmp);
6265 } else {
6266 //subgroupClustered{And,Or,Xor}(val, n) ->
6267 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6268 //cluster_offset = ~(n - 1) & lane_id
6269 //cluster_mask = ((1 << n) - 1)
6270 //subgroupClusteredAnd():
6271 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6272 //subgroupClusteredOr():
6273 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6274 //subgroupClusteredXor():
6275 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6276 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6277 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6278
6279 Temp tmp;
6280 if (op == nir_op_iand)
6281 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6282 else
6283 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6284
6285 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6286
6287 if (ctx->program->chip_class <= GFX7)
6288 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6289 else if (ctx->program->wave_size == 64)
6290 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6291 else
6292 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6293 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6294 if (cluster_mask != 0xffffffff)
6295 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6296
6297 Definition cmp_def = Definition();
6298 if (op == nir_op_iand) {
6299 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6300 } else if (op == nir_op_ior) {
6301 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6302 } else if (op == nir_op_ixor) {
6303 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6304 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6305 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6306 }
6307 cmp_def.setHint(vcc);
6308 return cmp_def.getTemp();
6309 }
6310 }
6311
6312 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
6313 {
6314 Builder bld(ctx->program, ctx->block);
6315
6316 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
6317 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
6318 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
6319 Temp tmp;
6320 if (op == nir_op_iand)
6321 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6322 else
6323 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
6324
6325 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
6326 Temp lo = lohi.def(0).getTemp();
6327 Temp hi = lohi.def(1).getTemp();
6328 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
6329
6330 Definition cmp_def = Definition();
6331 if (op == nir_op_iand)
6332 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6333 else if (op == nir_op_ior)
6334 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6335 else if (op == nir_op_ixor)
6336 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
6337 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
6338 cmp_def.setHint(vcc);
6339 return cmp_def.getTemp();
6340 }
6341
6342 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
6343 {
6344 Builder bld(ctx->program, ctx->block);
6345
6346 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
6347 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
6348 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
6349 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
6350 if (op == nir_op_iand)
6351 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6352 else if (op == nir_op_ior)
6353 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6354 else if (op == nir_op_ixor)
6355 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6356
6357 assert(false);
6358 return Temp();
6359 }
6360
6361 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
6362 {
6363 Builder bld(ctx->program, ctx->block);
6364 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
6365 if (src.regClass().type() == RegType::vgpr) {
6366 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
6367 } else if (src.regClass() == s1) {
6368 bld.sop1(aco_opcode::s_mov_b32, dst, src);
6369 } else if (src.regClass() == s2) {
6370 bld.sop1(aco_opcode::s_mov_b64, dst, src);
6371 } else {
6372 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6373 nir_print_instr(&instr->instr, stderr);
6374 fprintf(stderr, "\n");
6375 }
6376 }
6377
6378 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
6379 {
6380 Builder bld(ctx->program, ctx->block);
6381 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
6382 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
6383 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
6384
6385 Temp ddx_1, ddx_2, ddy_1, ddy_2;
6386 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
6387 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
6388 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
6389
6390 /* Build DD X/Y */
6391 if (ctx->program->chip_class >= GFX8) {
6392 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
6393 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
6394 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
6395 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
6396 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
6397 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
6398 } else {
6399 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
6400 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
6401 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
6402 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
6403 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
6404 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
6405 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
6406 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
6407 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
6408 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
6409 }
6410
6411 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
6412 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
6413 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
6414 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
6415 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
6416 Temp wqm1 = bld.tmp(v1);
6417 emit_wqm(ctx, tmp1, wqm1, true);
6418 Temp wqm2 = bld.tmp(v1);
6419 emit_wqm(ctx, tmp2, wqm2, true);
6420 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
6421 return;
6422 }
6423
6424 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
6425 {
6426 Builder bld(ctx->program, ctx->block);
6427 switch(instr->intrinsic) {
6428 case nir_intrinsic_load_barycentric_sample:
6429 case nir_intrinsic_load_barycentric_pixel:
6430 case nir_intrinsic_load_barycentric_centroid: {
6431 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
6432 Temp bary = Temp(0, s2);
6433 switch (mode) {
6434 case INTERP_MODE_SMOOTH:
6435 case INTERP_MODE_NONE:
6436 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6437 bary = get_arg(ctx, ctx->args->ac.persp_center);
6438 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6439 bary = ctx->persp_centroid;
6440 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6441 bary = get_arg(ctx, ctx->args->ac.persp_sample);
6442 break;
6443 case INTERP_MODE_NOPERSPECTIVE:
6444 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6445 bary = get_arg(ctx, ctx->args->ac.linear_center);
6446 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6447 bary = ctx->linear_centroid;
6448 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6449 bary = get_arg(ctx, ctx->args->ac.linear_sample);
6450 break;
6451 default:
6452 break;
6453 }
6454 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6455 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
6456 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
6457 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6458 Operand(p1), Operand(p2));
6459 emit_split_vector(ctx, dst, 2);
6460 break;
6461 }
6462 case nir_intrinsic_load_barycentric_model: {
6463 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
6464
6465 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6466 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
6467 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
6468 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
6469 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6470 Operand(p1), Operand(p2), Operand(p3));
6471 emit_split_vector(ctx, dst, 3);
6472 break;
6473 }
6474 case nir_intrinsic_load_barycentric_at_sample: {
6475 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
6476 switch (ctx->options->key.fs.num_samples) {
6477 case 2: sample_pos_offset += 1 << 3; break;
6478 case 4: sample_pos_offset += 3 << 3; break;
6479 case 8: sample_pos_offset += 7 << 3; break;
6480 default: break;
6481 }
6482 Temp sample_pos;
6483 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6484 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
6485 Temp private_segment_buffer = ctx->program->private_segment_buffer;
6486 if (addr.type() == RegType::sgpr) {
6487 Operand offset;
6488 if (const_addr) {
6489 sample_pos_offset += const_addr->u32 << 3;
6490 offset = Operand(sample_pos_offset);
6491 } else if (ctx->options->chip_class >= GFX9) {
6492 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6493 } else {
6494 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
6495 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6496 }
6497
6498 Operand off = bld.copy(bld.def(s1), Operand(offset));
6499 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
6500
6501 } else if (ctx->options->chip_class >= GFX9) {
6502 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6503 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
6504 } else if (ctx->options->chip_class >= GFX7) {
6505 /* addr += private_segment_buffer + sample_pos_offset */
6506 Temp tmp0 = bld.tmp(s1);
6507 Temp tmp1 = bld.tmp(s1);
6508 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
6509 Definition scc_tmp = bld.def(s1, scc);
6510 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
6511 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
6512 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6513 Temp pck0 = bld.tmp(v1);
6514 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
6515 tmp1 = as_vgpr(ctx, tmp1);
6516 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
6517 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
6518
6519 /* sample_pos = flat_load_dwordx2 addr */
6520 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
6521 } else {
6522 assert(ctx->options->chip_class == GFX6);
6523
6524 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6525 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6526 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
6527
6528 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6529 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
6530
6531 sample_pos = bld.tmp(v2);
6532
6533 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
6534 load->definitions[0] = Definition(sample_pos);
6535 load->operands[0] = Operand(rsrc);
6536 load->operands[1] = Operand(addr);
6537 load->operands[2] = Operand(0u);
6538 load->offset = sample_pos_offset;
6539 load->offen = 0;
6540 load->addr64 = true;
6541 load->glc = false;
6542 load->dlc = false;
6543 load->disable_wqm = false;
6544 load->barrier = barrier_none;
6545 load->can_reorder = true;
6546 ctx->block->instructions.emplace_back(std::move(load));
6547 }
6548
6549 /* sample_pos -= 0.5 */
6550 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
6551 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
6552 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
6553 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
6554 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
6555
6556 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6557 break;
6558 }
6559 case nir_intrinsic_load_barycentric_at_offset: {
6560 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
6561 RegClass rc = RegClass(offset.type(), 1);
6562 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
6563 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
6564 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6565 break;
6566 }
6567 case nir_intrinsic_load_front_face: {
6568 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6569 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
6570 break;
6571 }
6572 case nir_intrinsic_load_view_index: {
6573 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
6574 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6575 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
6576 break;
6577 }
6578
6579 /* fallthrough */
6580 }
6581 case nir_intrinsic_load_layer_id: {
6582 unsigned idx = nir_intrinsic_base(instr);
6583 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6584 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
6585 break;
6586 }
6587 case nir_intrinsic_load_frag_coord: {
6588 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
6589 break;
6590 }
6591 case nir_intrinsic_load_sample_pos: {
6592 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
6593 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
6594 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6595 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
6596 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
6597 break;
6598 }
6599 case nir_intrinsic_load_tess_coord:
6600 visit_load_tess_coord(ctx, instr);
6601 break;
6602 case nir_intrinsic_load_interpolated_input:
6603 visit_load_interpolated_input(ctx, instr);
6604 break;
6605 case nir_intrinsic_store_output:
6606 visit_store_output(ctx, instr);
6607 break;
6608 case nir_intrinsic_load_input:
6609 case nir_intrinsic_load_input_vertex:
6610 visit_load_input(ctx, instr);
6611 break;
6612 case nir_intrinsic_load_output:
6613 visit_load_output(ctx, instr);
6614 break;
6615 case nir_intrinsic_load_per_vertex_input:
6616 visit_load_per_vertex_input(ctx, instr);
6617 break;
6618 case nir_intrinsic_load_per_vertex_output:
6619 visit_load_per_vertex_output(ctx, instr);
6620 break;
6621 case nir_intrinsic_store_per_vertex_output:
6622 visit_store_per_vertex_output(ctx, instr);
6623 break;
6624 case nir_intrinsic_load_ubo:
6625 visit_load_ubo(ctx, instr);
6626 break;
6627 case nir_intrinsic_load_push_constant:
6628 visit_load_push_constant(ctx, instr);
6629 break;
6630 case nir_intrinsic_load_constant:
6631 visit_load_constant(ctx, instr);
6632 break;
6633 case nir_intrinsic_vulkan_resource_index:
6634 visit_load_resource(ctx, instr);
6635 break;
6636 case nir_intrinsic_discard:
6637 visit_discard(ctx, instr);
6638 break;
6639 case nir_intrinsic_discard_if:
6640 visit_discard_if(ctx, instr);
6641 break;
6642 case nir_intrinsic_load_shared:
6643 visit_load_shared(ctx, instr);
6644 break;
6645 case nir_intrinsic_store_shared:
6646 visit_store_shared(ctx, instr);
6647 break;
6648 case nir_intrinsic_shared_atomic_add:
6649 case nir_intrinsic_shared_atomic_imin:
6650 case nir_intrinsic_shared_atomic_umin:
6651 case nir_intrinsic_shared_atomic_imax:
6652 case nir_intrinsic_shared_atomic_umax:
6653 case nir_intrinsic_shared_atomic_and:
6654 case nir_intrinsic_shared_atomic_or:
6655 case nir_intrinsic_shared_atomic_xor:
6656 case nir_intrinsic_shared_atomic_exchange:
6657 case nir_intrinsic_shared_atomic_comp_swap:
6658 visit_shared_atomic(ctx, instr);
6659 break;
6660 case nir_intrinsic_image_deref_load:
6661 visit_image_load(ctx, instr);
6662 break;
6663 case nir_intrinsic_image_deref_store:
6664 visit_image_store(ctx, instr);
6665 break;
6666 case nir_intrinsic_image_deref_atomic_add:
6667 case nir_intrinsic_image_deref_atomic_umin:
6668 case nir_intrinsic_image_deref_atomic_imin:
6669 case nir_intrinsic_image_deref_atomic_umax:
6670 case nir_intrinsic_image_deref_atomic_imax:
6671 case nir_intrinsic_image_deref_atomic_and:
6672 case nir_intrinsic_image_deref_atomic_or:
6673 case nir_intrinsic_image_deref_atomic_xor:
6674 case nir_intrinsic_image_deref_atomic_exchange:
6675 case nir_intrinsic_image_deref_atomic_comp_swap:
6676 visit_image_atomic(ctx, instr);
6677 break;
6678 case nir_intrinsic_image_deref_size:
6679 visit_image_size(ctx, instr);
6680 break;
6681 case nir_intrinsic_load_ssbo:
6682 visit_load_ssbo(ctx, instr);
6683 break;
6684 case nir_intrinsic_store_ssbo:
6685 visit_store_ssbo(ctx, instr);
6686 break;
6687 case nir_intrinsic_load_global:
6688 visit_load_global(ctx, instr);
6689 break;
6690 case nir_intrinsic_store_global:
6691 visit_store_global(ctx, instr);
6692 break;
6693 case nir_intrinsic_global_atomic_add:
6694 case nir_intrinsic_global_atomic_imin:
6695 case nir_intrinsic_global_atomic_umin:
6696 case nir_intrinsic_global_atomic_imax:
6697 case nir_intrinsic_global_atomic_umax:
6698 case nir_intrinsic_global_atomic_and:
6699 case nir_intrinsic_global_atomic_or:
6700 case nir_intrinsic_global_atomic_xor:
6701 case nir_intrinsic_global_atomic_exchange:
6702 case nir_intrinsic_global_atomic_comp_swap:
6703 visit_global_atomic(ctx, instr);
6704 break;
6705 case nir_intrinsic_ssbo_atomic_add:
6706 case nir_intrinsic_ssbo_atomic_imin:
6707 case nir_intrinsic_ssbo_atomic_umin:
6708 case nir_intrinsic_ssbo_atomic_imax:
6709 case nir_intrinsic_ssbo_atomic_umax:
6710 case nir_intrinsic_ssbo_atomic_and:
6711 case nir_intrinsic_ssbo_atomic_or:
6712 case nir_intrinsic_ssbo_atomic_xor:
6713 case nir_intrinsic_ssbo_atomic_exchange:
6714 case nir_intrinsic_ssbo_atomic_comp_swap:
6715 visit_atomic_ssbo(ctx, instr);
6716 break;
6717 case nir_intrinsic_load_scratch:
6718 visit_load_scratch(ctx, instr);
6719 break;
6720 case nir_intrinsic_store_scratch:
6721 visit_store_scratch(ctx, instr);
6722 break;
6723 case nir_intrinsic_get_buffer_size:
6724 visit_get_buffer_size(ctx, instr);
6725 break;
6726 case nir_intrinsic_control_barrier: {
6727 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6728 /* GFX6 only (thanks to a hw bug workaround):
6729 * The real barrier instruction isn’t needed, because an entire patch
6730 * always fits into a single wave.
6731 */
6732 break;
6733 }
6734
6735 if (ctx->shader->info.stage == MESA_SHADER_COMPUTE) {
6736 unsigned* bsize = ctx->program->info->cs.block_size;
6737 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
6738 if (workgroup_size > ctx->program->wave_size)
6739 bld.sopp(aco_opcode::s_barrier);
6740 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6741 /* For each patch provided during rendering, n​ TCS shader invocations will be processed,
6742 * where n​ is the number of vertices in the output patch.
6743 */
6744 unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
6745 if (workgroup_size > ctx->program->wave_size)
6746 bld.sopp(aco_opcode::s_barrier);
6747 } else {
6748 /* We don't know the workgroup size, so always emit the s_barrier. */
6749 bld.sopp(aco_opcode::s_barrier);
6750 }
6751
6752 break;
6753 }
6754 case nir_intrinsic_memory_barrier_tcs_patch:
6755 case nir_intrinsic_group_memory_barrier:
6756 case nir_intrinsic_memory_barrier:
6757 case nir_intrinsic_memory_barrier_buffer:
6758 case nir_intrinsic_memory_barrier_image:
6759 case nir_intrinsic_memory_barrier_shared:
6760 emit_memory_barrier(ctx, instr);
6761 break;
6762 case nir_intrinsic_load_num_work_groups: {
6763 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6764 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
6765 emit_split_vector(ctx, dst, 3);
6766 break;
6767 }
6768 case nir_intrinsic_load_local_invocation_id: {
6769 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6770 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
6771 emit_split_vector(ctx, dst, 3);
6772 break;
6773 }
6774 case nir_intrinsic_load_work_group_id: {
6775 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6776 struct ac_arg *args = ctx->args->ac.workgroup_ids;
6777 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6778 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
6779 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
6780 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
6781 emit_split_vector(ctx, dst, 3);
6782 break;
6783 }
6784 case nir_intrinsic_load_local_invocation_index: {
6785 Temp id = emit_mbcnt(ctx, bld.def(v1));
6786
6787 /* The tg_size bits [6:11] contain the subgroup id,
6788 * we need this multiplied by the wave size, and then OR the thread id to it.
6789 */
6790 if (ctx->program->wave_size == 64) {
6791 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
6792 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
6793 get_arg(ctx, ctx->args->ac.tg_size));
6794 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
6795 } else {
6796 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
6797 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
6798 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6799 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
6800 }
6801 break;
6802 }
6803 case nir_intrinsic_load_subgroup_id: {
6804 if (ctx->stage == compute_cs) {
6805 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
6806 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6807 } else {
6808 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
6809 }
6810 break;
6811 }
6812 case nir_intrinsic_load_subgroup_invocation: {
6813 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
6814 break;
6815 }
6816 case nir_intrinsic_load_num_subgroups: {
6817 if (ctx->stage == compute_cs)
6818 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
6819 get_arg(ctx, ctx->args->ac.tg_size));
6820 else
6821 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
6822 break;
6823 }
6824 case nir_intrinsic_ballot: {
6825 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6826 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6827 Definition tmp = bld.def(dst.regClass());
6828 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
6829 if (instr->src[0].ssa->bit_size == 1) {
6830 assert(src.regClass() == bld.lm);
6831 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
6832 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
6833 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
6834 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
6835 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
6836 } else {
6837 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6838 nir_print_instr(&instr->instr, stderr);
6839 fprintf(stderr, "\n");
6840 }
6841 if (dst.size() != bld.lm.size()) {
6842 /* Wave32 with ballot size set to 64 */
6843 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
6844 }
6845 emit_wqm(ctx, tmp.getTemp(), dst);
6846 break;
6847 }
6848 case nir_intrinsic_shuffle:
6849 case nir_intrinsic_read_invocation: {
6850 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6851 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
6852 emit_uniform_subgroup(ctx, instr, src);
6853 } else {
6854 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
6855 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
6856 tid = bld.as_uniform(tid);
6857 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6858 if (src.regClass() == v1) {
6859 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
6860 } else if (src.regClass() == v2) {
6861 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6862 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6863 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
6864 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
6865 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6866 emit_split_vector(ctx, dst, 2);
6867 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
6868 assert(src.regClass() == bld.lm);
6869 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
6870 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6871 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
6872 assert(src.regClass() == bld.lm);
6873 Temp tmp;
6874 if (ctx->program->chip_class <= GFX7)
6875 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
6876 else if (ctx->program->wave_size == 64)
6877 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
6878 else
6879 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
6880 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6881 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
6882 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
6883 } else {
6884 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6885 nir_print_instr(&instr->instr, stderr);
6886 fprintf(stderr, "\n");
6887 }
6888 }
6889 break;
6890 }
6891 case nir_intrinsic_load_sample_id: {
6892 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6893 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6894 break;
6895 }
6896 case nir_intrinsic_load_sample_mask_in: {
6897 visit_load_sample_mask_in(ctx, instr);
6898 break;
6899 }
6900 case nir_intrinsic_read_first_invocation: {
6901 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6902 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6903 if (src.regClass() == v1) {
6904 emit_wqm(ctx,
6905 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
6906 dst);
6907 } else if (src.regClass() == v2) {
6908 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6909 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6910 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
6911 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
6912 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6913 emit_split_vector(ctx, dst, 2);
6914 } else if (instr->dest.ssa.bit_size == 1) {
6915 assert(src.regClass() == bld.lm);
6916 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
6917 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
6918 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6919 } else if (src.regClass() == s1) {
6920 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
6921 } else if (src.regClass() == s2) {
6922 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
6923 } else {
6924 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6925 nir_print_instr(&instr->instr, stderr);
6926 fprintf(stderr, "\n");
6927 }
6928 break;
6929 }
6930 case nir_intrinsic_vote_all: {
6931 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6932 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6933 assert(src.regClass() == bld.lm);
6934 assert(dst.regClass() == bld.lm);
6935
6936 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6937 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6938 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
6939 break;
6940 }
6941 case nir_intrinsic_vote_any: {
6942 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6943 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6944 assert(src.regClass() == bld.lm);
6945 assert(dst.regClass() == bld.lm);
6946
6947 Temp tmp = bool_to_scalar_condition(ctx, src);
6948 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6949 break;
6950 }
6951 case nir_intrinsic_reduce:
6952 case nir_intrinsic_inclusive_scan:
6953 case nir_intrinsic_exclusive_scan: {
6954 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6955 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6956 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
6957 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
6958 nir_intrinsic_cluster_size(instr) : 0;
6959 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
6960
6961 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
6962 emit_uniform_subgroup(ctx, instr, src);
6963 } else if (instr->dest.ssa.bit_size == 1) {
6964 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
6965 op = nir_op_iand;
6966 else if (op == nir_op_iadd)
6967 op = nir_op_ixor;
6968 else if (op == nir_op_umax || op == nir_op_imax)
6969 op = nir_op_ior;
6970 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
6971
6972 switch (instr->intrinsic) {
6973 case nir_intrinsic_reduce:
6974 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
6975 break;
6976 case nir_intrinsic_exclusive_scan:
6977 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
6978 break;
6979 case nir_intrinsic_inclusive_scan:
6980 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
6981 break;
6982 default:
6983 assert(false);
6984 }
6985 } else if (cluster_size == 1) {
6986 bld.copy(Definition(dst), src);
6987 } else {
6988 src = as_vgpr(ctx, src);
6989
6990 ReduceOp reduce_op;
6991 switch (op) {
6992 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
6993 CASE(iadd)
6994 CASE(imul)
6995 CASE(fadd)
6996 CASE(fmul)
6997 CASE(imin)
6998 CASE(umin)
6999 CASE(fmin)
7000 CASE(imax)
7001 CASE(umax)
7002 CASE(fmax)
7003 CASE(iand)
7004 CASE(ior)
7005 CASE(ixor)
7006 default:
7007 unreachable("unknown reduction op");
7008 #undef CASE
7009 }
7010
7011 aco_opcode aco_op;
7012 switch (instr->intrinsic) {
7013 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7014 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7015 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7016 default:
7017 unreachable("unknown reduce intrinsic");
7018 }
7019
7020 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7021 reduce->operands[0] = Operand(src);
7022 // filled in by aco_reduce_assign.cpp, used internally as part of the
7023 // reduce sequence
7024 assert(dst.size() == 1 || dst.size() == 2);
7025 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7026 reduce->operands[2] = Operand(v1.as_linear());
7027
7028 Temp tmp_dst = bld.tmp(dst.regClass());
7029 reduce->definitions[0] = Definition(tmp_dst);
7030 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7031 reduce->definitions[2] = Definition();
7032 reduce->definitions[3] = Definition(scc, s1);
7033 reduce->definitions[4] = Definition();
7034 reduce->reduce_op = reduce_op;
7035 reduce->cluster_size = cluster_size;
7036 ctx->block->instructions.emplace_back(std::move(reduce));
7037
7038 emit_wqm(ctx, tmp_dst, dst);
7039 }
7040 break;
7041 }
7042 case nir_intrinsic_quad_broadcast: {
7043 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7044 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7045 emit_uniform_subgroup(ctx, instr, src);
7046 } else {
7047 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7048 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7049 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7050
7051 if (instr->dest.ssa.bit_size == 1) {
7052 assert(src.regClass() == bld.lm);
7053 assert(dst.regClass() == bld.lm);
7054 uint32_t half_mask = 0x11111111u << lane;
7055 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7056 Temp tmp = bld.tmp(bld.lm);
7057 bld.sop1(Builder::s_wqm, Definition(tmp),
7058 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7059 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7060 emit_wqm(ctx, tmp, dst);
7061 } else if (instr->dest.ssa.bit_size == 32) {
7062 if (ctx->program->chip_class >= GFX8)
7063 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7064 else
7065 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7066 } else if (instr->dest.ssa.bit_size == 64) {
7067 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7068 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7069 if (ctx->program->chip_class >= GFX8) {
7070 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7071 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7072 } else {
7073 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7074 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7075 }
7076 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7077 emit_split_vector(ctx, dst, 2);
7078 } else {
7079 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7080 nir_print_instr(&instr->instr, stderr);
7081 fprintf(stderr, "\n");
7082 }
7083 }
7084 break;
7085 }
7086 case nir_intrinsic_quad_swap_horizontal:
7087 case nir_intrinsic_quad_swap_vertical:
7088 case nir_intrinsic_quad_swap_diagonal:
7089 case nir_intrinsic_quad_swizzle_amd: {
7090 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7091 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7092 emit_uniform_subgroup(ctx, instr, src);
7093 break;
7094 }
7095 uint16_t dpp_ctrl = 0;
7096 switch (instr->intrinsic) {
7097 case nir_intrinsic_quad_swap_horizontal:
7098 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7099 break;
7100 case nir_intrinsic_quad_swap_vertical:
7101 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7102 break;
7103 case nir_intrinsic_quad_swap_diagonal:
7104 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7105 break;
7106 case nir_intrinsic_quad_swizzle_amd:
7107 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7108 break;
7109 default:
7110 break;
7111 }
7112 if (ctx->program->chip_class < GFX8)
7113 dpp_ctrl |= (1 << 15);
7114
7115 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7116 if (instr->dest.ssa.bit_size == 1) {
7117 assert(src.regClass() == bld.lm);
7118 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7119 if (ctx->program->chip_class >= GFX8)
7120 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7121 else
7122 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7123 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7124 emit_wqm(ctx, tmp, dst);
7125 } else if (instr->dest.ssa.bit_size == 32) {
7126 Temp tmp;
7127 if (ctx->program->chip_class >= GFX8)
7128 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7129 else
7130 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7131 emit_wqm(ctx, tmp, dst);
7132 } else if (instr->dest.ssa.bit_size == 64) {
7133 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7134 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7135 if (ctx->program->chip_class >= GFX8) {
7136 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7137 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7138 } else {
7139 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7140 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7141 }
7142 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7143 emit_split_vector(ctx, dst, 2);
7144 } else {
7145 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7146 nir_print_instr(&instr->instr, stderr);
7147 fprintf(stderr, "\n");
7148 }
7149 break;
7150 }
7151 case nir_intrinsic_masked_swizzle_amd: {
7152 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7153 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7154 emit_uniform_subgroup(ctx, instr, src);
7155 break;
7156 }
7157 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7158 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7159 if (dst.regClass() == v1) {
7160 emit_wqm(ctx,
7161 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7162 dst);
7163 } else if (dst.regClass() == v2) {
7164 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7165 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7166 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7167 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7168 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7169 emit_split_vector(ctx, dst, 2);
7170 } else {
7171 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7172 nir_print_instr(&instr->instr, stderr);
7173 fprintf(stderr, "\n");
7174 }
7175 break;
7176 }
7177 case nir_intrinsic_write_invocation_amd: {
7178 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7179 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7180 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7181 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7182 if (dst.regClass() == v1) {
7183 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7184 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7185 } else if (dst.regClass() == v2) {
7186 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7187 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7188 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7189 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7190 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7191 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7192 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7193 emit_split_vector(ctx, dst, 2);
7194 } else {
7195 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7196 nir_print_instr(&instr->instr, stderr);
7197 fprintf(stderr, "\n");
7198 }
7199 break;
7200 }
7201 case nir_intrinsic_mbcnt_amd: {
7202 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7203 RegClass rc = RegClass(src.type(), 1);
7204 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7205 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7206 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7207 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7208 emit_wqm(ctx, wqm_tmp, dst);
7209 break;
7210 }
7211 case nir_intrinsic_load_helper_invocation: {
7212 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7213 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7214 ctx->block->kind |= block_kind_needs_lowering;
7215 ctx->program->needs_exact = true;
7216 break;
7217 }
7218 case nir_intrinsic_is_helper_invocation: {
7219 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7220 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7221 ctx->block->kind |= block_kind_needs_lowering;
7222 ctx->program->needs_exact = true;
7223 break;
7224 }
7225 case nir_intrinsic_demote:
7226 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7227
7228 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7229 ctx->cf_info.exec_potentially_empty_discard = true;
7230 ctx->block->kind |= block_kind_uses_demote;
7231 ctx->program->needs_exact = true;
7232 break;
7233 case nir_intrinsic_demote_if: {
7234 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7235 assert(src.regClass() == bld.lm);
7236 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7237 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7238
7239 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7240 ctx->cf_info.exec_potentially_empty_discard = true;
7241 ctx->block->kind |= block_kind_uses_demote;
7242 ctx->program->needs_exact = true;
7243 break;
7244 }
7245 case nir_intrinsic_first_invocation: {
7246 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7247 get_ssa_temp(ctx, &instr->dest.ssa));
7248 break;
7249 }
7250 case nir_intrinsic_shader_clock:
7251 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7252 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7253 break;
7254 case nir_intrinsic_load_vertex_id_zero_base: {
7255 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7256 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7257 break;
7258 }
7259 case nir_intrinsic_load_first_vertex: {
7260 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7261 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7262 break;
7263 }
7264 case nir_intrinsic_load_base_instance: {
7265 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7266 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7267 break;
7268 }
7269 case nir_intrinsic_load_instance_id: {
7270 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7271 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7272 break;
7273 }
7274 case nir_intrinsic_load_draw_id: {
7275 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7276 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7277 break;
7278 }
7279 case nir_intrinsic_load_invocation_id: {
7280 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7281
7282 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7283 if (ctx->options->chip_class >= GFX10)
7284 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7285 else
7286 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7287 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7288 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7289 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7290 } else {
7291 unreachable("Unsupported stage for load_invocation_id");
7292 }
7293
7294 break;
7295 }
7296 case nir_intrinsic_load_primitive_id: {
7297 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7298
7299 switch (ctx->shader->info.stage) {
7300 case MESA_SHADER_GEOMETRY:
7301 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7302 break;
7303 case MESA_SHADER_TESS_CTRL:
7304 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7305 break;
7306 case MESA_SHADER_TESS_EVAL:
7307 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7308 break;
7309 default:
7310 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7311 }
7312
7313 break;
7314 }
7315 case nir_intrinsic_load_patch_vertices_in: {
7316 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7317 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
7318
7319 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7320 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
7321 break;
7322 }
7323 case nir_intrinsic_emit_vertex_with_counter: {
7324 visit_emit_vertex_with_counter(ctx, instr);
7325 break;
7326 }
7327 case nir_intrinsic_end_primitive_with_counter: {
7328 unsigned stream = nir_intrinsic_stream_id(instr);
7329 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
7330 break;
7331 }
7332 case nir_intrinsic_set_vertex_count: {
7333 /* unused, the HW keeps track of this for us */
7334 break;
7335 }
7336 default:
7337 fprintf(stderr, "Unimplemented intrinsic instr: ");
7338 nir_print_instr(&instr->instr, stderr);
7339 fprintf(stderr, "\n");
7340 abort();
7341
7342 break;
7343 }
7344 }
7345
7346
7347 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
7348 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
7349 enum glsl_base_type *stype)
7350 {
7351 nir_deref_instr *texture_deref_instr = NULL;
7352 nir_deref_instr *sampler_deref_instr = NULL;
7353 int plane = -1;
7354
7355 for (unsigned i = 0; i < instr->num_srcs; i++) {
7356 switch (instr->src[i].src_type) {
7357 case nir_tex_src_texture_deref:
7358 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
7359 break;
7360 case nir_tex_src_sampler_deref:
7361 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
7362 break;
7363 case nir_tex_src_plane:
7364 plane = nir_src_as_int(instr->src[i].src);
7365 break;
7366 default:
7367 break;
7368 }
7369 }
7370
7371 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
7372
7373 if (!sampler_deref_instr)
7374 sampler_deref_instr = texture_deref_instr;
7375
7376 if (plane >= 0) {
7377 assert(instr->op != nir_texop_txf_ms &&
7378 instr->op != nir_texop_samples_identical);
7379 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
7380 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
7381 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7382 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
7383 } else if (instr->op == nir_texop_fragment_mask_fetch) {
7384 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7385 } else {
7386 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
7387 }
7388 if (samp_ptr) {
7389 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
7390
7391 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
7392 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
7393 Builder bld(ctx->program, ctx->block);
7394
7395 /* to avoid unnecessary moves, we split and recombine sampler and image */
7396 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
7397 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7398 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7399 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
7400 Definition(img[2]), Definition(img[3]), Definition(img[4]),
7401 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
7402 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
7403 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
7404
7405 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
7406 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
7407 img[0], img[1], img[2], img[3],
7408 img[4], img[5], img[6], img[7]);
7409 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7410 samp[0], samp[1], samp[2], samp[3]);
7411 }
7412 }
7413 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
7414 instr->op == nir_texop_samples_identical))
7415 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7416 }
7417
7418 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
7419 Temp *out_ma, Temp *out_sc, Temp *out_tc)
7420 {
7421 Builder bld(ctx->program, ctx->block);
7422
7423 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
7424 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
7425 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
7426
7427 Operand neg_one(0xbf800000u);
7428 Operand one(0x3f800000u);
7429 Operand two(0x40000000u);
7430 Operand four(0x40800000u);
7431
7432 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
7433 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
7434 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
7435
7436 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
7437 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
7438 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
7439 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
7440
7441 // select sc
7442 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
7443 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
7444 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
7445 one, is_ma_y);
7446 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7447
7448 // select tc
7449 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
7450 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
7451 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7452
7453 // select ma
7454 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7455 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
7456 deriv_z, is_ma_z);
7457 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
7458 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
7459 }
7460
7461 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
7462 {
7463 Builder bld(ctx->program, ctx->block);
7464 Temp ma, tc, sc, id;
7465
7466 if (is_array) {
7467 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
7468
7469 // see comment in ac_prepare_cube_coords()
7470 if (ctx->options->chip_class <= GFX8)
7471 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
7472 }
7473
7474 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7475
7476 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
7477 vop3a->operands[0] = Operand(ma);
7478 vop3a->abs[0] = true;
7479 Temp invma = bld.tmp(v1);
7480 vop3a->definitions[0] = Definition(invma);
7481 ctx->block->instructions.emplace_back(std::move(vop3a));
7482
7483 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7484 if (!is_deriv)
7485 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
7486
7487 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7488 if (!is_deriv)
7489 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
7490
7491 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7492
7493 if (is_deriv) {
7494 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
7495 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
7496
7497 for (unsigned i = 0; i < 2; i++) {
7498 // see comment in ac_prepare_cube_coords()
7499 Temp deriv_ma;
7500 Temp deriv_sc, deriv_tc;
7501 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
7502 &deriv_ma, &deriv_sc, &deriv_tc);
7503
7504 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
7505
7506 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7507 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
7508 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
7509 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7510 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
7511 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
7512 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
7513 }
7514
7515 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
7516 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
7517 }
7518
7519 if (is_array)
7520 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
7521 coords.resize(3);
7522 coords[0] = sc;
7523 coords[1] = tc;
7524 coords[2] = id;
7525 }
7526
7527 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
7528 {
7529 if (vec->parent_instr->type != nir_instr_type_alu)
7530 return;
7531 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
7532 if (vec_instr->op != nir_op_vec(vec->num_components))
7533 return;
7534
7535 for (unsigned i = 0; i < vec->num_components; i++) {
7536 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
7537 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
7538 }
7539 }
7540
7541 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
7542 {
7543 Builder bld(ctx->program, ctx->block);
7544 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
7545 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
7546 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
7547 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
7548 std::vector<Temp> coords;
7549 std::vector<Temp> derivs;
7550 nir_const_value *sample_index_cv = NULL;
7551 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
7552 enum glsl_base_type stype;
7553 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
7554
7555 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
7556 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
7557 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
7558 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
7559
7560 for (unsigned i = 0; i < instr->num_srcs; i++) {
7561 switch (instr->src[i].src_type) {
7562 case nir_tex_src_coord: {
7563 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
7564 for (unsigned i = 0; i < coord.size(); i++)
7565 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
7566 break;
7567 }
7568 case nir_tex_src_bias:
7569 if (instr->op == nir_texop_txb) {
7570 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
7571 has_bias = true;
7572 }
7573 break;
7574 case nir_tex_src_lod: {
7575 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
7576
7577 if (val && val->f32 <= 0.0) {
7578 level_zero = true;
7579 } else {
7580 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
7581 has_lod = true;
7582 }
7583 break;
7584 }
7585 case nir_tex_src_comparator:
7586 if (instr->is_shadow) {
7587 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
7588 has_compare = true;
7589 }
7590 break;
7591 case nir_tex_src_offset:
7592 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
7593 get_const_vec(instr->src[i].src.ssa, const_offset);
7594 has_offset = true;
7595 break;
7596 case nir_tex_src_ddx:
7597 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
7598 has_ddx = true;
7599 break;
7600 case nir_tex_src_ddy:
7601 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
7602 has_ddy = true;
7603 break;
7604 case nir_tex_src_ms_index:
7605 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
7606 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
7607 has_sample_index = true;
7608 break;
7609 case nir_tex_src_texture_offset:
7610 case nir_tex_src_sampler_offset:
7611 default:
7612 break;
7613 }
7614 }
7615
7616 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
7617 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
7618
7619 if (instr->op == nir_texop_texture_samples) {
7620 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
7621
7622 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
7623 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
7624 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
7625 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
7626
7627 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7628 samples, Operand(1u), bld.scc(is_msaa));
7629 return;
7630 }
7631
7632 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
7633 aco_ptr<Instruction> tmp_instr;
7634 Temp acc, pack = Temp();
7635
7636 uint32_t pack_const = 0;
7637 for (unsigned i = 0; i < offset.size(); i++) {
7638 if (!const_offset[i])
7639 continue;
7640 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
7641 }
7642
7643 if (offset.type() == RegType::sgpr) {
7644 for (unsigned i = 0; i < offset.size(); i++) {
7645 if (const_offset[i])
7646 continue;
7647
7648 acc = emit_extract_vector(ctx, offset, i, s1);
7649 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
7650
7651 if (i) {
7652 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
7653 }
7654
7655 if (pack == Temp()) {
7656 pack = acc;
7657 } else {
7658 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
7659 }
7660 }
7661
7662 if (pack_const && pack != Temp())
7663 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
7664 } else {
7665 for (unsigned i = 0; i < offset.size(); i++) {
7666 if (const_offset[i])
7667 continue;
7668
7669 acc = emit_extract_vector(ctx, offset, i, v1);
7670 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
7671
7672 if (i) {
7673 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
7674 }
7675
7676 if (pack == Temp()) {
7677 pack = acc;
7678 } else {
7679 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
7680 }
7681 }
7682
7683 if (pack_const && pack != Temp())
7684 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
7685 }
7686 if (pack_const && pack == Temp())
7687 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
7688 else if (pack == Temp())
7689 has_offset = false;
7690 else
7691 offset = pack;
7692 }
7693
7694 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
7695 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
7696
7697 /* pack derivatives */
7698 if (has_ddx || has_ddy) {
7699 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
7700 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
7701 Temp zero = bld.copy(bld.def(v1), Operand(0u));
7702 derivs = {ddy, zero, ddy, zero};
7703 } else {
7704 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
7705 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
7706 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
7707 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
7708 }
7709 has_derivs = true;
7710 }
7711
7712 if (instr->coord_components > 1 &&
7713 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7714 instr->is_array &&
7715 instr->op != nir_texop_txf)
7716 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
7717
7718 if (instr->coord_components > 2 &&
7719 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
7720 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7721 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
7722 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7723 instr->is_array &&
7724 instr->op != nir_texop_txf &&
7725 instr->op != nir_texop_txf_ms &&
7726 instr->op != nir_texop_fragment_fetch &&
7727 instr->op != nir_texop_fragment_mask_fetch)
7728 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
7729
7730 if (ctx->options->chip_class == GFX9 &&
7731 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7732 instr->op != nir_texop_lod && instr->coord_components) {
7733 assert(coords.size() > 0 && coords.size() < 3);
7734
7735 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
7736 Operand((uint32_t) 0) :
7737 Operand((uint32_t) 0x3f000000)));
7738 }
7739
7740 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
7741
7742 if (instr->op == nir_texop_samples_identical)
7743 resource = fmask_ptr;
7744
7745 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7746 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7747 instr->op != nir_texop_txs &&
7748 instr->op != nir_texop_fragment_fetch &&
7749 instr->op != nir_texop_fragment_mask_fetch) {
7750 assert(has_sample_index);
7751 Operand op(sample_index);
7752 if (sample_index_cv)
7753 op = Operand(sample_index_cv->u32);
7754 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
7755 }
7756
7757 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
7758 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
7759 Temp off = emit_extract_vector(ctx, offset, i, v1);
7760 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
7761 }
7762 has_offset = false;
7763 }
7764
7765 /* Build tex instruction */
7766 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
7767 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
7768 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
7769 : 0;
7770 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7771 Temp tmp_dst = dst;
7772
7773 /* gather4 selects the component by dmask and always returns vec4 */
7774 if (instr->op == nir_texop_tg4) {
7775 assert(instr->dest.ssa.num_components == 4);
7776 if (instr->is_shadow)
7777 dmask = 1;
7778 else
7779 dmask = 1 << instr->component;
7780 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
7781 tmp_dst = bld.tmp(v4);
7782 } else if (instr->op == nir_texop_samples_identical) {
7783 tmp_dst = bld.tmp(v1);
7784 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
7785 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
7786 }
7787
7788 aco_ptr<MIMG_instruction> tex;
7789 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
7790 if (!has_lod)
7791 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7792
7793 bool div_by_6 = instr->op == nir_texop_txs &&
7794 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
7795 instr->is_array &&
7796 (dmask & (1 << 2));
7797 if (tmp_dst.id() == dst.id() && div_by_6)
7798 tmp_dst = bld.tmp(tmp_dst.regClass());
7799
7800 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7801 tex->operands[0] = Operand(resource);
7802 tex->operands[1] = Operand(s4); /* no sampler */
7803 tex->operands[2] = Operand(as_vgpr(ctx,lod));
7804 if (ctx->options->chip_class == GFX9 &&
7805 instr->op == nir_texop_txs &&
7806 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7807 instr->is_array) {
7808 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
7809 } else if (instr->op == nir_texop_query_levels) {
7810 tex->dmask = 1 << 3;
7811 } else {
7812 tex->dmask = dmask;
7813 }
7814 tex->da = da;
7815 tex->definitions[0] = Definition(tmp_dst);
7816 tex->dim = dim;
7817 tex->can_reorder = true;
7818 ctx->block->instructions.emplace_back(std::move(tex));
7819
7820 if (div_by_6) {
7821 /* divide 3rd value by 6 by multiplying with magic number */
7822 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7823 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
7824 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
7825 assert(instr->dest.ssa.num_components == 3);
7826 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
7827 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7828 emit_extract_vector(ctx, tmp_dst, 0, v1),
7829 emit_extract_vector(ctx, tmp_dst, 1, v1),
7830 by_6);
7831
7832 }
7833
7834 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7835 return;
7836 }
7837
7838 Temp tg4_compare_cube_wa64 = Temp();
7839
7840 if (tg4_integer_workarounds) {
7841 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7842 tex->operands[0] = Operand(resource);
7843 tex->operands[1] = Operand(s4); /* no sampler */
7844 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7845 tex->dim = dim;
7846 tex->dmask = 0x3;
7847 tex->da = da;
7848 Temp size = bld.tmp(v2);
7849 tex->definitions[0] = Definition(size);
7850 tex->can_reorder = true;
7851 ctx->block->instructions.emplace_back(std::move(tex));
7852 emit_split_vector(ctx, size, size.size());
7853
7854 Temp half_texel[2];
7855 for (unsigned i = 0; i < 2; i++) {
7856 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
7857 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
7858 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
7859 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
7860 }
7861
7862 Temp new_coords[2] = {
7863 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
7864 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
7865 };
7866
7867 if (tg4_integer_cube_workaround) {
7868 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
7869 Temp desc[resource.size()];
7870 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
7871 Format::PSEUDO, 1, resource.size())};
7872 split->operands[0] = Operand(resource);
7873 for (unsigned i = 0; i < resource.size(); i++) {
7874 desc[i] = bld.tmp(s1);
7875 split->definitions[i] = Definition(desc[i]);
7876 }
7877 ctx->block->instructions.emplace_back(std::move(split));
7878
7879 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
7880 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
7881 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
7882
7883 Temp nfmt;
7884 if (stype == GLSL_TYPE_UINT) {
7885 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7886 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
7887 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
7888 bld.scc(compare_cube_wa));
7889 } else {
7890 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7891 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
7892 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
7893 bld.scc(compare_cube_wa));
7894 }
7895 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
7896 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
7897
7898 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
7899
7900 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
7901 Operand((uint32_t)C_008F14_NUM_FORMAT));
7902 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
7903
7904 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
7905 Format::PSEUDO, resource.size(), 1)};
7906 for (unsigned i = 0; i < resource.size(); i++)
7907 vec->operands[i] = Operand(desc[i]);
7908 resource = bld.tmp(resource.regClass());
7909 vec->definitions[0] = Definition(resource);
7910 ctx->block->instructions.emplace_back(std::move(vec));
7911
7912 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7913 new_coords[0], coords[0], tg4_compare_cube_wa64);
7914 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7915 new_coords[1], coords[1], tg4_compare_cube_wa64);
7916 }
7917 coords[0] = new_coords[0];
7918 coords[1] = new_coords[1];
7919 }
7920
7921 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7922 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
7923
7924 assert(coords.size() == 1);
7925 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
7926 aco_opcode op;
7927 switch (last_bit) {
7928 case 1:
7929 op = aco_opcode::buffer_load_format_x; break;
7930 case 2:
7931 op = aco_opcode::buffer_load_format_xy; break;
7932 case 3:
7933 op = aco_opcode::buffer_load_format_xyz; break;
7934 case 4:
7935 op = aco_opcode::buffer_load_format_xyzw; break;
7936 default:
7937 unreachable("Tex instruction loads more than 4 components.");
7938 }
7939
7940 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
7941 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
7942 tmp_dst = dst;
7943 else
7944 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
7945
7946 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
7947 mubuf->operands[0] = Operand(resource);
7948 mubuf->operands[1] = Operand(coords[0]);
7949 mubuf->operands[2] = Operand((uint32_t) 0);
7950 mubuf->definitions[0] = Definition(tmp_dst);
7951 mubuf->idxen = true;
7952 mubuf->can_reorder = true;
7953 ctx->block->instructions.emplace_back(std::move(mubuf));
7954
7955 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
7956 return;
7957 }
7958
7959 /* gather MIMG address components */
7960 std::vector<Temp> args;
7961 if (has_offset)
7962 args.emplace_back(offset);
7963 if (has_bias)
7964 args.emplace_back(bias);
7965 if (has_compare)
7966 args.emplace_back(compare);
7967 if (has_derivs)
7968 args.insert(args.end(), derivs.begin(), derivs.end());
7969
7970 args.insert(args.end(), coords.begin(), coords.end());
7971 if (has_sample_index)
7972 args.emplace_back(sample_index);
7973 if (has_lod)
7974 args.emplace_back(lod);
7975
7976 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
7977 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
7978 vec->definitions[0] = Definition(arg);
7979 for (unsigned i = 0; i < args.size(); i++)
7980 vec->operands[i] = Operand(args[i]);
7981 ctx->block->instructions.emplace_back(std::move(vec));
7982
7983
7984 if (instr->op == nir_texop_txf ||
7985 instr->op == nir_texop_txf_ms ||
7986 instr->op == nir_texop_samples_identical ||
7987 instr->op == nir_texop_fragment_fetch ||
7988 instr->op == nir_texop_fragment_mask_fetch) {
7989 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
7990 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
7991 tex->operands[0] = Operand(resource);
7992 tex->operands[1] = Operand(s4); /* no sampler */
7993 tex->operands[2] = Operand(arg);
7994 tex->dim = dim;
7995 tex->dmask = dmask;
7996 tex->unrm = true;
7997 tex->da = da;
7998 tex->definitions[0] = Definition(tmp_dst);
7999 tex->can_reorder = true;
8000 ctx->block->instructions.emplace_back(std::move(tex));
8001
8002 if (instr->op == nir_texop_samples_identical) {
8003 assert(dmask == 1 && dst.regClass() == v1);
8004 assert(dst.id() != tmp_dst.id());
8005
8006 Temp tmp = bld.tmp(bld.lm);
8007 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8008 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8009
8010 } else {
8011 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8012 }
8013 return;
8014 }
8015
8016 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8017 aco_opcode opcode = aco_opcode::image_sample;
8018 if (has_offset) { /* image_sample_*_o */
8019 if (has_compare) {
8020 opcode = aco_opcode::image_sample_c_o;
8021 if (has_derivs)
8022 opcode = aco_opcode::image_sample_c_d_o;
8023 if (has_bias)
8024 opcode = aco_opcode::image_sample_c_b_o;
8025 if (level_zero)
8026 opcode = aco_opcode::image_sample_c_lz_o;
8027 if (has_lod)
8028 opcode = aco_opcode::image_sample_c_l_o;
8029 } else {
8030 opcode = aco_opcode::image_sample_o;
8031 if (has_derivs)
8032 opcode = aco_opcode::image_sample_d_o;
8033 if (has_bias)
8034 opcode = aco_opcode::image_sample_b_o;
8035 if (level_zero)
8036 opcode = aco_opcode::image_sample_lz_o;
8037 if (has_lod)
8038 opcode = aco_opcode::image_sample_l_o;
8039 }
8040 } else { /* no offset */
8041 if (has_compare) {
8042 opcode = aco_opcode::image_sample_c;
8043 if (has_derivs)
8044 opcode = aco_opcode::image_sample_c_d;
8045 if (has_bias)
8046 opcode = aco_opcode::image_sample_c_b;
8047 if (level_zero)
8048 opcode = aco_opcode::image_sample_c_lz;
8049 if (has_lod)
8050 opcode = aco_opcode::image_sample_c_l;
8051 } else {
8052 opcode = aco_opcode::image_sample;
8053 if (has_derivs)
8054 opcode = aco_opcode::image_sample_d;
8055 if (has_bias)
8056 opcode = aco_opcode::image_sample_b;
8057 if (level_zero)
8058 opcode = aco_opcode::image_sample_lz;
8059 if (has_lod)
8060 opcode = aco_opcode::image_sample_l;
8061 }
8062 }
8063
8064 if (instr->op == nir_texop_tg4) {
8065 if (has_offset) {
8066 opcode = aco_opcode::image_gather4_lz_o;
8067 if (has_compare)
8068 opcode = aco_opcode::image_gather4_c_lz_o;
8069 } else {
8070 opcode = aco_opcode::image_gather4_lz;
8071 if (has_compare)
8072 opcode = aco_opcode::image_gather4_c_lz;
8073 }
8074 } else if (instr->op == nir_texop_lod) {
8075 opcode = aco_opcode::image_get_lod;
8076 }
8077
8078 /* we don't need the bias, sample index, compare value or offset to be
8079 * computed in WQM but if the p_create_vector copies the coordinates, then it
8080 * needs to be in WQM */
8081 if (ctx->stage == fragment_fs &&
8082 !has_derivs && !has_lod && !level_zero &&
8083 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8084 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8085 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8086
8087 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8088 tex->operands[0] = Operand(resource);
8089 tex->operands[1] = Operand(sampler);
8090 tex->operands[2] = Operand(arg);
8091 tex->dim = dim;
8092 tex->dmask = dmask;
8093 tex->da = da;
8094 tex->definitions[0] = Definition(tmp_dst);
8095 tex->can_reorder = true;
8096 ctx->block->instructions.emplace_back(std::move(tex));
8097
8098 if (tg4_integer_cube_workaround) {
8099 assert(tmp_dst.id() != dst.id());
8100 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8101
8102 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8103 Temp val[4];
8104 for (unsigned i = 0; i < dst.size(); i++) {
8105 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8106 Temp cvt_val;
8107 if (stype == GLSL_TYPE_UINT)
8108 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8109 else
8110 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8111 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8112 }
8113 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8114 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8115 val[0], val[1], val[2], val[3]);
8116 }
8117 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8118 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8119
8120 }
8121
8122
8123 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8124 {
8125 Temp tmp = get_ssa_temp(ctx, ssa);
8126 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8127 return Operand(tmp.regClass());
8128 else
8129 return Operand(tmp);
8130 }
8131
8132 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8133 {
8134 aco_ptr<Pseudo_instruction> phi;
8135 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8136 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8137
8138 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8139 logical |= ctx->block->kind & block_kind_merge;
8140 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8141
8142 /* we want a sorted list of sources, since the predecessor list is also sorted */
8143 std::map<unsigned, nir_ssa_def*> phi_src;
8144 nir_foreach_phi_src(src, instr)
8145 phi_src[src->pred->index] = src->src.ssa;
8146
8147 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8148 unsigned num_operands = 0;
8149 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size())];
8150 unsigned num_defined = 0;
8151 unsigned cur_pred_idx = 0;
8152 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8153 if (cur_pred_idx < preds.size()) {
8154 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8155 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8156 unsigned skipped = 0;
8157 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8158 skipped++;
8159 if (cur_pred_idx + skipped < preds.size()) {
8160 for (unsigned i = 0; i < skipped; i++)
8161 operands[num_operands++] = Operand(dst.regClass());
8162 cur_pred_idx += skipped;
8163 } else {
8164 continue;
8165 }
8166 }
8167 cur_pred_idx++;
8168 Operand op = get_phi_operand(ctx, src.second);
8169 operands[num_operands++] = op;
8170 num_defined += !op.isUndefined();
8171 }
8172 /* handle block_kind_continue_or_break at loop exit blocks */
8173 while (cur_pred_idx++ < preds.size())
8174 operands[num_operands++] = Operand(dst.regClass());
8175
8176 if (num_defined == 0) {
8177 Builder bld(ctx->program, ctx->block);
8178 if (dst.regClass() == s1) {
8179 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8180 } else if (dst.regClass() == v1) {
8181 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8182 } else {
8183 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8184 for (unsigned i = 0; i < dst.size(); i++)
8185 vec->operands[i] = Operand(0u);
8186 vec->definitions[0] = Definition(dst);
8187 ctx->block->instructions.emplace_back(std::move(vec));
8188 }
8189 return;
8190 }
8191
8192 /* we can use a linear phi in some cases if one src is undef */
8193 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8194 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8195
8196 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8197 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8198 assert(invert->kind & block_kind_invert);
8199
8200 unsigned then_block = invert->linear_preds[0];
8201
8202 Block* insert_block = NULL;
8203 for (unsigned i = 0; i < num_operands; i++) {
8204 Operand op = operands[i];
8205 if (op.isUndefined())
8206 continue;
8207 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8208 phi->operands[0] = op;
8209 break;
8210 }
8211 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8212 phi->operands[1] = Operand(dst.regClass());
8213 phi->definitions[0] = Definition(dst);
8214 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8215 return;
8216 }
8217
8218 /* try to scalarize vector phis */
8219 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8220 // TODO: scalarize linear phis on divergent ifs
8221 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8222 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8223 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8224 Operand src = operands[i];
8225 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8226 can_scalarize = false;
8227 }
8228 if (can_scalarize) {
8229 unsigned num_components = instr->dest.ssa.num_components;
8230 assert(dst.size() % num_components == 0);
8231 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8232
8233 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8234 for (unsigned k = 0; k < num_components; k++) {
8235 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8236 for (unsigned i = 0; i < num_operands; i++) {
8237 Operand src = operands[i];
8238 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8239 }
8240 Temp phi_dst = {ctx->program->allocateId(), rc};
8241 phi->definitions[0] = Definition(phi_dst);
8242 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8243 new_vec[k] = phi_dst;
8244 vec->operands[k] = Operand(phi_dst);
8245 }
8246 vec->definitions[0] = Definition(dst);
8247 ctx->block->instructions.emplace_back(std::move(vec));
8248 ctx->allocated_vec.emplace(dst.id(), new_vec);
8249 return;
8250 }
8251 }
8252
8253 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8254 for (unsigned i = 0; i < num_operands; i++)
8255 phi->operands[i] = operands[i];
8256 phi->definitions[0] = Definition(dst);
8257 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8258 }
8259
8260
8261 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
8262 {
8263 Temp dst = get_ssa_temp(ctx, &instr->def);
8264
8265 assert(dst.type() == RegType::sgpr);
8266
8267 if (dst.size() == 1) {
8268 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
8269 } else {
8270 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8271 for (unsigned i = 0; i < dst.size(); i++)
8272 vec->operands[i] = Operand(0u);
8273 vec->definitions[0] = Definition(dst);
8274 ctx->block->instructions.emplace_back(std::move(vec));
8275 }
8276 }
8277
8278 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
8279 {
8280 Builder bld(ctx->program, ctx->block);
8281 Block *logical_target;
8282 append_logical_end(ctx->block);
8283 unsigned idx = ctx->block->index;
8284
8285 switch (instr->type) {
8286 case nir_jump_break:
8287 logical_target = ctx->cf_info.parent_loop.exit;
8288 add_logical_edge(idx, logical_target);
8289 ctx->block->kind |= block_kind_break;
8290
8291 if (!ctx->cf_info.parent_if.is_divergent &&
8292 !ctx->cf_info.parent_loop.has_divergent_continue) {
8293 /* uniform break - directly jump out of the loop */
8294 ctx->block->kind |= block_kind_uniform;
8295 ctx->cf_info.has_branch = true;
8296 bld.branch(aco_opcode::p_branch);
8297 add_linear_edge(idx, logical_target);
8298 return;
8299 }
8300 ctx->cf_info.parent_loop.has_divergent_branch = true;
8301 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8302 break;
8303 case nir_jump_continue:
8304 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8305 add_logical_edge(idx, logical_target);
8306 ctx->block->kind |= block_kind_continue;
8307
8308 if (ctx->cf_info.parent_if.is_divergent) {
8309 /* for potential uniform breaks after this continue,
8310 we must ensure that they are handled correctly */
8311 ctx->cf_info.parent_loop.has_divergent_continue = true;
8312 ctx->cf_info.parent_loop.has_divergent_branch = true;
8313 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8314 } else {
8315 /* uniform continue - directly jump to the loop header */
8316 ctx->block->kind |= block_kind_uniform;
8317 ctx->cf_info.has_branch = true;
8318 bld.branch(aco_opcode::p_branch);
8319 add_linear_edge(idx, logical_target);
8320 return;
8321 }
8322 break;
8323 default:
8324 fprintf(stderr, "Unknown NIR jump instr: ");
8325 nir_print_instr(&instr->instr, stderr);
8326 fprintf(stderr, "\n");
8327 abort();
8328 }
8329
8330 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
8331 ctx->cf_info.exec_potentially_empty_break = true;
8332 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
8333 }
8334
8335 /* remove critical edges from linear CFG */
8336 bld.branch(aco_opcode::p_branch);
8337 Block* break_block = ctx->program->create_and_insert_block();
8338 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8339 break_block->kind |= block_kind_uniform;
8340 add_linear_edge(idx, break_block);
8341 /* the loop_header pointer might be invalidated by this point */
8342 if (instr->type == nir_jump_continue)
8343 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8344 add_linear_edge(break_block->index, logical_target);
8345 bld.reset(break_block);
8346 bld.branch(aco_opcode::p_branch);
8347
8348 Block* continue_block = ctx->program->create_and_insert_block();
8349 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8350 add_linear_edge(idx, continue_block);
8351 append_logical_start(continue_block);
8352 ctx->block = continue_block;
8353 return;
8354 }
8355
8356 void visit_block(isel_context *ctx, nir_block *block)
8357 {
8358 nir_foreach_instr(instr, block) {
8359 switch (instr->type) {
8360 case nir_instr_type_alu:
8361 visit_alu_instr(ctx, nir_instr_as_alu(instr));
8362 break;
8363 case nir_instr_type_load_const:
8364 visit_load_const(ctx, nir_instr_as_load_const(instr));
8365 break;
8366 case nir_instr_type_intrinsic:
8367 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
8368 break;
8369 case nir_instr_type_tex:
8370 visit_tex(ctx, nir_instr_as_tex(instr));
8371 break;
8372 case nir_instr_type_phi:
8373 visit_phi(ctx, nir_instr_as_phi(instr));
8374 break;
8375 case nir_instr_type_ssa_undef:
8376 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
8377 break;
8378 case nir_instr_type_deref:
8379 break;
8380 case nir_instr_type_jump:
8381 visit_jump(ctx, nir_instr_as_jump(instr));
8382 break;
8383 default:
8384 fprintf(stderr, "Unknown NIR instr type: ");
8385 nir_print_instr(instr, stderr);
8386 fprintf(stderr, "\n");
8387 //abort();
8388 }
8389 }
8390
8391 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8392 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
8393 }
8394
8395
8396
8397 static void visit_loop(isel_context *ctx, nir_loop *loop)
8398 {
8399 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
8400 append_logical_end(ctx->block);
8401 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
8402 Builder bld(ctx->program, ctx->block);
8403 bld.branch(aco_opcode::p_branch);
8404 unsigned loop_preheader_idx = ctx->block->index;
8405
8406 Block loop_exit = Block();
8407 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8408 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
8409
8410 Block* loop_header = ctx->program->create_and_insert_block();
8411 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
8412 loop_header->kind |= block_kind_loop_header;
8413 add_edge(loop_preheader_idx, loop_header);
8414 ctx->block = loop_header;
8415
8416 /* emit loop body */
8417 unsigned loop_header_idx = loop_header->index;
8418 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
8419 append_logical_start(ctx->block);
8420 visit_cf_list(ctx, &loop->body);
8421
8422 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
8423 if (!ctx->cf_info.has_branch) {
8424 append_logical_end(ctx->block);
8425 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
8426 /* Discards can result in code running with an empty exec mask.
8427 * This would result in divergent breaks not ever being taken. As a
8428 * workaround, break the loop when the loop mask is empty instead of
8429 * always continuing. */
8430 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
8431 unsigned block_idx = ctx->block->index;
8432
8433 /* create helper blocks to avoid critical edges */
8434 Block *break_block = ctx->program->create_and_insert_block();
8435 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8436 break_block->kind = block_kind_uniform;
8437 bld.reset(break_block);
8438 bld.branch(aco_opcode::p_branch);
8439 add_linear_edge(block_idx, break_block);
8440 add_linear_edge(break_block->index, &loop_exit);
8441
8442 Block *continue_block = ctx->program->create_and_insert_block();
8443 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8444 continue_block->kind = block_kind_uniform;
8445 bld.reset(continue_block);
8446 bld.branch(aco_opcode::p_branch);
8447 add_linear_edge(block_idx, continue_block);
8448 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
8449
8450 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8451 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
8452 ctx->block = &ctx->program->blocks[block_idx];
8453 } else {
8454 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
8455 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8456 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8457 else
8458 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8459 }
8460
8461 bld.reset(ctx->block);
8462 bld.branch(aco_opcode::p_branch);
8463 }
8464
8465 /* fixup phis in loop header from unreachable blocks */
8466 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
8467 bool linear = ctx->cf_info.has_branch;
8468 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
8469 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
8470 if ((logical && instr->opcode == aco_opcode::p_phi) ||
8471 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
8472 /* the last operand should be the one that needs to be removed */
8473 instr->operands.pop_back();
8474 } else if (!is_phi(instr)) {
8475 break;
8476 }
8477 }
8478 }
8479
8480 ctx->cf_info.has_branch = false;
8481
8482 // TODO: if the loop has not a single exit, we must add one °°
8483 /* emit loop successor block */
8484 ctx->block = ctx->program->insert_block(std::move(loop_exit));
8485 append_logical_start(ctx->block);
8486
8487 #if 0
8488 // TODO: check if it is beneficial to not branch on continues
8489 /* trim linear phis in loop header */
8490 for (auto&& instr : loop_entry->instructions) {
8491 if (instr->opcode == aco_opcode::p_linear_phi) {
8492 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
8493 new_phi->definitions[0] = instr->definitions[0];
8494 for (unsigned i = 0; i < new_phi->operands.size(); i++)
8495 new_phi->operands[i] = instr->operands[i];
8496 /* check that the remaining operands are all the same */
8497 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
8498 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
8499 instr.swap(new_phi);
8500 } else if (instr->opcode == aco_opcode::p_phi) {
8501 continue;
8502 } else {
8503 break;
8504 }
8505 }
8506 #endif
8507 }
8508
8509 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
8510 {
8511 ic->cond = cond;
8512
8513 append_logical_end(ctx->block);
8514 ctx->block->kind |= block_kind_branch;
8515
8516 /* branch to linear then block */
8517 assert(cond.regClass() == ctx->program->lane_mask);
8518 aco_ptr<Pseudo_branch_instruction> branch;
8519 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8520 branch->operands[0] = Operand(cond);
8521 ctx->block->instructions.push_back(std::move(branch));
8522
8523 ic->BB_if_idx = ctx->block->index;
8524 ic->BB_invert = Block();
8525 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8526 /* Invert blocks are intentionally not marked as top level because they
8527 * are not part of the logical cfg. */
8528 ic->BB_invert.kind |= block_kind_invert;
8529 ic->BB_endif = Block();
8530 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8531 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
8532
8533 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
8534 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
8535 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
8536 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
8537 ctx->cf_info.parent_if.is_divergent = true;
8538
8539 /* divergent branches use cbranch_execz */
8540 ctx->cf_info.exec_potentially_empty_discard = false;
8541 ctx->cf_info.exec_potentially_empty_break = false;
8542 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8543
8544 /** emit logical then block */
8545 Block* BB_then_logical = ctx->program->create_and_insert_block();
8546 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8547 add_edge(ic->BB_if_idx, BB_then_logical);
8548 ctx->block = BB_then_logical;
8549 append_logical_start(BB_then_logical);
8550 }
8551
8552 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
8553 {
8554 Block *BB_then_logical = ctx->block;
8555 append_logical_end(BB_then_logical);
8556 /* branch from logical then block to invert block */
8557 aco_ptr<Pseudo_branch_instruction> branch;
8558 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8559 BB_then_logical->instructions.emplace_back(std::move(branch));
8560 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
8561 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8562 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
8563 BB_then_logical->kind |= block_kind_uniform;
8564 assert(!ctx->cf_info.has_branch);
8565 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8566 ctx->cf_info.parent_loop.has_divergent_branch = false;
8567
8568 /** emit linear then block */
8569 Block* BB_then_linear = ctx->program->create_and_insert_block();
8570 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8571 BB_then_linear->kind |= block_kind_uniform;
8572 add_linear_edge(ic->BB_if_idx, BB_then_linear);
8573 /* branch from linear then block to invert block */
8574 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8575 BB_then_linear->instructions.emplace_back(std::move(branch));
8576 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
8577
8578 /** emit invert merge block */
8579 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
8580 ic->invert_idx = ctx->block->index;
8581
8582 /* branch to linear else block (skip else) */
8583 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
8584 branch->operands[0] = Operand(ic->cond);
8585 ctx->block->instructions.push_back(std::move(branch));
8586
8587 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
8588 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
8589 ic->exec_potentially_empty_break_depth_old =
8590 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8591 /* divergent branches use cbranch_execz */
8592 ctx->cf_info.exec_potentially_empty_discard = false;
8593 ctx->cf_info.exec_potentially_empty_break = false;
8594 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8595
8596 /** emit logical else block */
8597 Block* BB_else_logical = ctx->program->create_and_insert_block();
8598 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8599 add_logical_edge(ic->BB_if_idx, BB_else_logical);
8600 add_linear_edge(ic->invert_idx, BB_else_logical);
8601 ctx->block = BB_else_logical;
8602 append_logical_start(BB_else_logical);
8603 }
8604
8605 static void end_divergent_if(isel_context *ctx, if_context *ic)
8606 {
8607 Block *BB_else_logical = ctx->block;
8608 append_logical_end(BB_else_logical);
8609
8610 /* branch from logical else block to endif block */
8611 aco_ptr<Pseudo_branch_instruction> branch;
8612 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8613 BB_else_logical->instructions.emplace_back(std::move(branch));
8614 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
8615 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8616 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
8617 BB_else_logical->kind |= block_kind_uniform;
8618
8619 assert(!ctx->cf_info.has_branch);
8620 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
8621
8622
8623 /** emit linear else block */
8624 Block* BB_else_linear = ctx->program->create_and_insert_block();
8625 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8626 BB_else_linear->kind |= block_kind_uniform;
8627 add_linear_edge(ic->invert_idx, BB_else_linear);
8628
8629 /* branch from linear else block to endif block */
8630 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8631 BB_else_linear->instructions.emplace_back(std::move(branch));
8632 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
8633
8634
8635 /** emit endif merge block */
8636 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
8637 append_logical_start(ctx->block);
8638
8639
8640 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
8641 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
8642 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
8643 ctx->cf_info.exec_potentially_empty_break_depth =
8644 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8645 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
8646 !ctx->cf_info.parent_if.is_divergent) {
8647 ctx->cf_info.exec_potentially_empty_break = false;
8648 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8649 }
8650 /* uniform control flow never has an empty exec-mask */
8651 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
8652 ctx->cf_info.exec_potentially_empty_discard = false;
8653 ctx->cf_info.exec_potentially_empty_break = false;
8654 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8655 }
8656 }
8657
8658 static void visit_if(isel_context *ctx, nir_if *if_stmt)
8659 {
8660 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
8661 Builder bld(ctx->program, ctx->block);
8662 aco_ptr<Pseudo_branch_instruction> branch;
8663
8664 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
8665 /**
8666 * Uniform conditionals are represented in the following way*) :
8667 *
8668 * The linear and logical CFG:
8669 * BB_IF
8670 * / \
8671 * BB_THEN (logical) BB_ELSE (logical)
8672 * \ /
8673 * BB_ENDIF
8674 *
8675 * *) Exceptions may be due to break and continue statements within loops
8676 * If a break/continue happens within uniform control flow, it branches
8677 * to the loop exit/entry block. Otherwise, it branches to the next
8678 * merge block.
8679 **/
8680 append_logical_end(ctx->block);
8681 ctx->block->kind |= block_kind_uniform;
8682
8683 /* emit branch */
8684 assert(cond.regClass() == bld.lm);
8685 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
8686 cond = bool_to_scalar_condition(ctx, cond);
8687
8688 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8689 branch->operands[0] = Operand(cond);
8690 branch->operands[0].setFixed(scc);
8691 ctx->block->instructions.emplace_back(std::move(branch));
8692
8693 unsigned BB_if_idx = ctx->block->index;
8694 Block BB_endif = Block();
8695 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8696 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
8697
8698 /** emit then block */
8699 Block* BB_then = ctx->program->create_and_insert_block();
8700 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8701 add_edge(BB_if_idx, BB_then);
8702 append_logical_start(BB_then);
8703 ctx->block = BB_then;
8704 visit_cf_list(ctx, &if_stmt->then_list);
8705 BB_then = ctx->block;
8706 bool then_branch = ctx->cf_info.has_branch;
8707 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8708
8709 if (!then_branch) {
8710 append_logical_end(BB_then);
8711 /* branch from then block to endif block */
8712 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8713 BB_then->instructions.emplace_back(std::move(branch));
8714 add_linear_edge(BB_then->index, &BB_endif);
8715 if (!then_branch_divergent)
8716 add_logical_edge(BB_then->index, &BB_endif);
8717 BB_then->kind |= block_kind_uniform;
8718 }
8719
8720 ctx->cf_info.has_branch = false;
8721 ctx->cf_info.parent_loop.has_divergent_branch = false;
8722
8723 /** emit else block */
8724 Block* BB_else = ctx->program->create_and_insert_block();
8725 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8726 add_edge(BB_if_idx, BB_else);
8727 append_logical_start(BB_else);
8728 ctx->block = BB_else;
8729 visit_cf_list(ctx, &if_stmt->else_list);
8730 BB_else = ctx->block;
8731
8732 if (!ctx->cf_info.has_branch) {
8733 append_logical_end(BB_else);
8734 /* branch from then block to endif block */
8735 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8736 BB_else->instructions.emplace_back(std::move(branch));
8737 add_linear_edge(BB_else->index, &BB_endif);
8738 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8739 add_logical_edge(BB_else->index, &BB_endif);
8740 BB_else->kind |= block_kind_uniform;
8741 }
8742
8743 ctx->cf_info.has_branch &= then_branch;
8744 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
8745
8746 /** emit endif merge block */
8747 if (!ctx->cf_info.has_branch) {
8748 ctx->block = ctx->program->insert_block(std::move(BB_endif));
8749 append_logical_start(ctx->block);
8750 }
8751 } else { /* non-uniform condition */
8752 /**
8753 * To maintain a logical and linear CFG without critical edges,
8754 * non-uniform conditionals are represented in the following way*) :
8755 *
8756 * The linear CFG:
8757 * BB_IF
8758 * / \
8759 * BB_THEN (logical) BB_THEN (linear)
8760 * \ /
8761 * BB_INVERT (linear)
8762 * / \
8763 * BB_ELSE (logical) BB_ELSE (linear)
8764 * \ /
8765 * BB_ENDIF
8766 *
8767 * The logical CFG:
8768 * BB_IF
8769 * / \
8770 * BB_THEN (logical) BB_ELSE (logical)
8771 * \ /
8772 * BB_ENDIF
8773 *
8774 * *) Exceptions may be due to break and continue statements within loops
8775 **/
8776
8777 if_context ic;
8778
8779 begin_divergent_if_then(ctx, &ic, cond);
8780 visit_cf_list(ctx, &if_stmt->then_list);
8781
8782 begin_divergent_if_else(ctx, &ic);
8783 visit_cf_list(ctx, &if_stmt->else_list);
8784
8785 end_divergent_if(ctx, &ic);
8786 }
8787 }
8788
8789 static void visit_cf_list(isel_context *ctx,
8790 struct exec_list *list)
8791 {
8792 foreach_list_typed(nir_cf_node, node, node, list) {
8793 switch (node->type) {
8794 case nir_cf_node_block:
8795 visit_block(ctx, nir_cf_node_as_block(node));
8796 break;
8797 case nir_cf_node_if:
8798 visit_if(ctx, nir_cf_node_as_if(node));
8799 break;
8800 case nir_cf_node_loop:
8801 visit_loop(ctx, nir_cf_node_as_loop(node));
8802 break;
8803 default:
8804 unreachable("unimplemented cf list type");
8805 }
8806 }
8807 }
8808
8809 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
8810 {
8811 int offset = ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
8812 uint64_t mask = ctx->outputs.mask[slot];
8813 if (!is_pos && !mask)
8814 return;
8815 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
8816 return;
8817 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8818 exp->enabled_mask = mask;
8819 for (unsigned i = 0; i < 4; ++i) {
8820 if (mask & (1 << i))
8821 exp->operands[i] = Operand(ctx->outputs.outputs[slot][i]);
8822 else
8823 exp->operands[i] = Operand(v1);
8824 }
8825 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
8826 * Setting valid_mask=1 prevents it and has no other effect.
8827 */
8828 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
8829 exp->done = false;
8830 exp->compressed = false;
8831 if (is_pos)
8832 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8833 else
8834 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
8835 ctx->block->instructions.emplace_back(std::move(exp));
8836 }
8837
8838 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
8839 {
8840 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8841 exp->enabled_mask = 0;
8842 for (unsigned i = 0; i < 4; ++i)
8843 exp->operands[i] = Operand(v1);
8844 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
8845 exp->operands[0] = Operand(ctx->outputs.outputs[VARYING_SLOT_PSIZ][0]);
8846 exp->enabled_mask |= 0x1;
8847 }
8848 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
8849 exp->operands[2] = Operand(ctx->outputs.outputs[VARYING_SLOT_LAYER][0]);
8850 exp->enabled_mask |= 0x4;
8851 }
8852 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
8853 if (ctx->options->chip_class < GFX9) {
8854 exp->operands[3] = Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]);
8855 exp->enabled_mask |= 0x8;
8856 } else {
8857 Builder bld(ctx->program, ctx->block);
8858
8859 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
8860 Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]));
8861 if (exp->operands[2].isTemp())
8862 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
8863
8864 exp->operands[2] = Operand(out);
8865 exp->enabled_mask |= 0x4;
8866 }
8867 }
8868 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
8869 exp->done = false;
8870 exp->compressed = false;
8871 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8872 ctx->block->instructions.emplace_back(std::move(exp));
8873 }
8874
8875 static void create_vs_exports(isel_context *ctx)
8876 {
8877 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
8878
8879 if (outinfo->export_prim_id) {
8880 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
8881 ctx->outputs.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
8882 }
8883
8884 if (ctx->options->key.has_multiview_view_index) {
8885 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
8886 ctx->outputs.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
8887 }
8888
8889 /* the order these position exports are created is important */
8890 int next_pos = 0;
8891 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
8892 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
8893 export_vs_psiz_layer_viewport(ctx, &next_pos);
8894 }
8895 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8896 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
8897 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8898 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
8899
8900 if (ctx->export_clip_dists) {
8901 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8902 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
8903 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8904 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
8905 }
8906
8907 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
8908 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
8909 i != VARYING_SLOT_PRIMITIVE_ID)
8910 continue;
8911
8912 export_vs_varying(ctx, i, false, NULL);
8913 }
8914 }
8915
8916 static void export_fs_mrt_z(isel_context *ctx)
8917 {
8918 Builder bld(ctx->program, ctx->block);
8919 unsigned enabled_channels = 0;
8920 bool compr = false;
8921 Operand values[4];
8922
8923 for (unsigned i = 0; i < 4; ++i) {
8924 values[i] = Operand(v1);
8925 }
8926
8927 /* Both stencil and sample mask only need 16-bits. */
8928 if (!ctx->program->info->ps.writes_z &&
8929 (ctx->program->info->ps.writes_stencil ||
8930 ctx->program->info->ps.writes_sample_mask)) {
8931 compr = true; /* COMPR flag */
8932
8933 if (ctx->program->info->ps.writes_stencil) {
8934 /* Stencil should be in X[23:16]. */
8935 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8936 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
8937 enabled_channels |= 0x3;
8938 }
8939
8940 if (ctx->program->info->ps.writes_sample_mask) {
8941 /* SampleMask should be in Y[15:0]. */
8942 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8943 enabled_channels |= 0xc;
8944 }
8945 } else {
8946 if (ctx->program->info->ps.writes_z) {
8947 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_DEPTH][0]);
8948 enabled_channels |= 0x1;
8949 }
8950
8951 if (ctx->program->info->ps.writes_stencil) {
8952 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8953 enabled_channels |= 0x2;
8954 }
8955
8956 if (ctx->program->info->ps.writes_sample_mask) {
8957 values[2] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8958 enabled_channels |= 0x4;
8959 }
8960 }
8961
8962 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
8963 * writemask component.
8964 */
8965 if (ctx->options->chip_class == GFX6 &&
8966 ctx->options->family != CHIP_OLAND &&
8967 ctx->options->family != CHIP_HAINAN) {
8968 enabled_channels |= 0x1;
8969 }
8970
8971 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8972 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
8973 }
8974
8975 static void export_fs_mrt_color(isel_context *ctx, int slot)
8976 {
8977 Builder bld(ctx->program, ctx->block);
8978 unsigned write_mask = ctx->outputs.mask[slot];
8979 Operand values[4];
8980
8981 for (unsigned i = 0; i < 4; ++i) {
8982 if (write_mask & (1 << i)) {
8983 values[i] = Operand(ctx->outputs.outputs[slot][i]);
8984 } else {
8985 values[i] = Operand(v1);
8986 }
8987 }
8988
8989 unsigned target, col_format;
8990 unsigned enabled_channels = 0;
8991 aco_opcode compr_op = (aco_opcode)0;
8992
8993 slot -= FRAG_RESULT_DATA0;
8994 target = V_008DFC_SQ_EXP_MRT + slot;
8995 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
8996
8997 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
8998 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
8999
9000 switch (col_format)
9001 {
9002 case V_028714_SPI_SHADER_ZERO:
9003 enabled_channels = 0; /* writemask */
9004 target = V_008DFC_SQ_EXP_NULL;
9005 break;
9006
9007 case V_028714_SPI_SHADER_32_R:
9008 enabled_channels = 1;
9009 break;
9010
9011 case V_028714_SPI_SHADER_32_GR:
9012 enabled_channels = 0x3;
9013 break;
9014
9015 case V_028714_SPI_SHADER_32_AR:
9016 if (ctx->options->chip_class >= GFX10) {
9017 /* Special case: on GFX10, the outputs are different for 32_AR */
9018 enabled_channels = 0x3;
9019 values[1] = values[3];
9020 values[3] = Operand(v1);
9021 } else {
9022 enabled_channels = 0x9;
9023 }
9024 break;
9025
9026 case V_028714_SPI_SHADER_FP16_ABGR:
9027 enabled_channels = 0x5;
9028 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9029 break;
9030
9031 case V_028714_SPI_SHADER_UNORM16_ABGR:
9032 enabled_channels = 0x5;
9033 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9034 break;
9035
9036 case V_028714_SPI_SHADER_SNORM16_ABGR:
9037 enabled_channels = 0x5;
9038 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9039 break;
9040
9041 case V_028714_SPI_SHADER_UINT16_ABGR: {
9042 enabled_channels = 0x5;
9043 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9044 if (is_int8 || is_int10) {
9045 /* clamp */
9046 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9047 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9048
9049 for (unsigned i = 0; i < 4; i++) {
9050 if ((write_mask >> i) & 1) {
9051 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9052 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9053 values[i]);
9054 }
9055 }
9056 }
9057 break;
9058 }
9059
9060 case V_028714_SPI_SHADER_SINT16_ABGR:
9061 enabled_channels = 0x5;
9062 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9063 if (is_int8 || is_int10) {
9064 /* clamp */
9065 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9066 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9067 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9068 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9069
9070 for (unsigned i = 0; i < 4; i++) {
9071 if ((write_mask >> i) & 1) {
9072 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9073 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9074 values[i]);
9075 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
9076 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
9077 values[i]);
9078 }
9079 }
9080 }
9081 break;
9082
9083 case V_028714_SPI_SHADER_32_ABGR:
9084 enabled_channels = 0xF;
9085 break;
9086
9087 default:
9088 break;
9089 }
9090
9091 if (target == V_008DFC_SQ_EXP_NULL)
9092 return;
9093
9094 if ((bool) compr_op) {
9095 for (int i = 0; i < 2; i++) {
9096 /* check if at least one of the values to be compressed is enabled */
9097 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
9098 if (enabled) {
9099 enabled_channels |= enabled << (i*2);
9100 values[i] = bld.vop3(compr_op, bld.def(v1),
9101 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
9102 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
9103 } else {
9104 values[i] = Operand(v1);
9105 }
9106 }
9107 values[2] = Operand(v1);
9108 values[3] = Operand(v1);
9109 } else {
9110 for (int i = 0; i < 4; i++)
9111 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
9112 }
9113
9114 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9115 enabled_channels, target, (bool) compr_op);
9116 }
9117
9118 static void create_fs_exports(isel_context *ctx)
9119 {
9120 /* Export depth, stencil and sample mask. */
9121 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
9122 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
9123 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) {
9124 export_fs_mrt_z(ctx);
9125 }
9126
9127 /* Export all color render targets. */
9128 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i) {
9129 if (ctx->outputs.mask[i])
9130 export_fs_mrt_color(ctx, i);
9131 }
9132 }
9133
9134 static void write_tcs_tess_factors(isel_context *ctx)
9135 {
9136 unsigned outer_comps;
9137 unsigned inner_comps;
9138
9139 switch (ctx->args->options->key.tcs.primitive_mode) {
9140 case GL_ISOLINES:
9141 outer_comps = 2;
9142 inner_comps = 0;
9143 break;
9144 case GL_TRIANGLES:
9145 outer_comps = 3;
9146 inner_comps = 1;
9147 break;
9148 case GL_QUADS:
9149 outer_comps = 4;
9150 inner_comps = 2;
9151 break;
9152 default:
9153 return;
9154 }
9155
9156 const unsigned tess_index_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
9157 const unsigned tess_index_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
9158
9159 Builder bld(ctx->program, ctx->block);
9160
9161 bld.barrier(aco_opcode::p_memory_barrier_shared);
9162 unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
9163 if (unlikely(ctx->program->chip_class != GFX6 && workgroup_size > ctx->program->wave_size))
9164 bld.sopp(aco_opcode::s_barrier);
9165
9166 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
9167 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
9168
9169 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
9170 if_context ic_invocation_id_is_zero;
9171 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
9172 bld.reset(ctx->block);
9173
9174 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
9175
9176 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
9177 unsigned stride = inner_comps + outer_comps;
9178 Temp inner[4];
9179 Temp outer[4];
9180 Temp out[6];
9181 assert(inner_comps <= (sizeof(inner) / sizeof(Temp)));
9182 assert(outer_comps <= (sizeof(outer) / sizeof(Temp)));
9183 assert(stride <= (sizeof(out) / sizeof(Temp)));
9184
9185 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
9186 // LINES reversal
9187 outer[0] = out[1] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + 0 * 4, 4);
9188 outer[1] = out[0] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + 1 * 4, 4);
9189 } else {
9190 for (unsigned i = 0; i < outer_comps; ++i)
9191 outer[i] = out[i] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + i * 4, 4);
9192
9193 for (unsigned i = 0; i < inner_comps; ++i)
9194 inner[i] = out[outer_comps + i] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_inner * 16 + i * 4, 4);
9195 }
9196
9197 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
9198 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
9199 Temp byte_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, stride * 4u);
9200 unsigned tf_const_offset = 0;
9201
9202 if (ctx->program->chip_class <= GFX8) {
9203 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
9204 if_context ic_rel_patch_id_is_zero;
9205 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
9206 bld.reset(ctx->block);
9207
9208 /* Store the dynamic HS control word. */
9209 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
9210 bld.mubuf(aco_opcode::buffer_store_dword,
9211 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
9212 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
9213 /* disable_wqm */ false, /* glc */ true);
9214 tf_const_offset += 4;
9215
9216 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
9217 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
9218 bld.reset(ctx->block);
9219 }
9220
9221 assert(stride == 2 || stride == 4 || stride == 6);
9222 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr);
9223 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
9224
9225 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
9226 end_divergent_if(ctx, &ic_invocation_id_is_zero);
9227 }
9228
9229 static void emit_stream_output(isel_context *ctx,
9230 Temp const *so_buffers,
9231 Temp const *so_write_offset,
9232 const struct radv_stream_output *output)
9233 {
9234 unsigned num_comps = util_bitcount(output->component_mask);
9235 unsigned writemask = (1 << num_comps) - 1;
9236 unsigned loc = output->location;
9237 unsigned buf = output->buffer;
9238
9239 assert(num_comps && num_comps <= 4);
9240 if (!num_comps || num_comps > 4)
9241 return;
9242
9243 unsigned start = ffs(output->component_mask) - 1;
9244
9245 Temp out[4];
9246 bool all_undef = true;
9247 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
9248 for (unsigned i = 0; i < num_comps; i++) {
9249 out[i] = ctx->outputs.outputs[loc][start + i];
9250 all_undef = all_undef && !out[i].id();
9251 }
9252 if (all_undef)
9253 return;
9254
9255 while (writemask) {
9256 int start, count;
9257 u_bit_scan_consecutive_range(&writemask, &start, &count);
9258 if (count == 3 && ctx->options->chip_class == GFX6) {
9259 /* GFX6 doesn't support storing vec3, split it. */
9260 writemask |= 1u << (start + 2);
9261 count = 2;
9262 }
9263
9264 unsigned offset = output->offset + start * 4;
9265
9266 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
9267 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
9268 for (int i = 0; i < count; ++i)
9269 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
9270 vec->definitions[0] = Definition(write_data);
9271 ctx->block->instructions.emplace_back(std::move(vec));
9272
9273 aco_opcode opcode;
9274 switch (count) {
9275 case 1:
9276 opcode = aco_opcode::buffer_store_dword;
9277 break;
9278 case 2:
9279 opcode = aco_opcode::buffer_store_dwordx2;
9280 break;
9281 case 3:
9282 opcode = aco_opcode::buffer_store_dwordx3;
9283 break;
9284 case 4:
9285 opcode = aco_opcode::buffer_store_dwordx4;
9286 break;
9287 default:
9288 unreachable("Unsupported dword count.");
9289 }
9290
9291 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
9292 store->operands[0] = Operand(so_buffers[buf]);
9293 store->operands[1] = Operand(so_write_offset[buf]);
9294 store->operands[2] = Operand((uint32_t) 0);
9295 store->operands[3] = Operand(write_data);
9296 if (offset > 4095) {
9297 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
9298 Builder bld(ctx->program, ctx->block);
9299 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
9300 } else {
9301 store->offset = offset;
9302 }
9303 store->offen = true;
9304 store->glc = true;
9305 store->dlc = false;
9306 store->slc = true;
9307 store->can_reorder = true;
9308 ctx->block->instructions.emplace_back(std::move(store));
9309 }
9310 }
9311
9312 static void emit_streamout(isel_context *ctx, unsigned stream)
9313 {
9314 Builder bld(ctx->program, ctx->block);
9315
9316 Temp so_buffers[4];
9317 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
9318 for (unsigned i = 0; i < 4; i++) {
9319 unsigned stride = ctx->program->info->so.strides[i];
9320 if (!stride)
9321 continue;
9322
9323 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
9324 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
9325 }
9326
9327 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9328 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
9329
9330 Temp tid = emit_mbcnt(ctx, bld.def(v1));
9331
9332 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
9333
9334 if_context ic;
9335 begin_divergent_if_then(ctx, &ic, can_emit);
9336
9337 bld.reset(ctx->block);
9338
9339 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
9340
9341 Temp so_write_offset[4];
9342
9343 for (unsigned i = 0; i < 4; i++) {
9344 unsigned stride = ctx->program->info->so.strides[i];
9345 if (!stride)
9346 continue;
9347
9348 if (stride == 1) {
9349 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
9350 get_arg(ctx, ctx->args->streamout_write_idx),
9351 get_arg(ctx, ctx->args->streamout_offset[i]));
9352 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
9353
9354 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
9355 } else {
9356 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
9357 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
9358 get_arg(ctx, ctx->args->streamout_offset[i]));
9359 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
9360 }
9361 }
9362
9363 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
9364 struct radv_stream_output *output =
9365 &ctx->program->info->so.outputs[i];
9366 if (stream != output->stream)
9367 continue;
9368
9369 emit_stream_output(ctx, so_buffers, so_write_offset, output);
9370 }
9371
9372 begin_divergent_if_else(ctx, &ic);
9373 end_divergent_if(ctx, &ic);
9374 }
9375
9376 } /* end namespace */
9377
9378 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
9379 {
9380 /* Split all arguments except for the first (ring_offsets) and the last
9381 * (exec) so that the dead channels don't stay live throughout the program.
9382 */
9383 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
9384 if (startpgm->definitions[i].regClass().size() > 1) {
9385 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
9386 startpgm->definitions[i].regClass().size());
9387 }
9388 }
9389 }
9390
9391 void handle_bc_optimize(isel_context *ctx)
9392 {
9393 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
9394 Builder bld(ctx->program, ctx->block);
9395 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
9396 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
9397 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
9398 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
9399 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
9400 if (uses_center && uses_centroid) {
9401 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
9402 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
9403
9404 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
9405 Temp new_coord[2];
9406 for (unsigned i = 0; i < 2; i++) {
9407 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
9408 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
9409 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9410 persp_centroid, persp_center, sel);
9411 }
9412 ctx->persp_centroid = bld.tmp(v2);
9413 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
9414 Operand(new_coord[0]), Operand(new_coord[1]));
9415 emit_split_vector(ctx, ctx->persp_centroid, 2);
9416 }
9417
9418 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
9419 Temp new_coord[2];
9420 for (unsigned i = 0; i < 2; i++) {
9421 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
9422 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
9423 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9424 linear_centroid, linear_center, sel);
9425 }
9426 ctx->linear_centroid = bld.tmp(v2);
9427 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
9428 Operand(new_coord[0]), Operand(new_coord[1]));
9429 emit_split_vector(ctx, ctx->linear_centroid, 2);
9430 }
9431 }
9432 }
9433
9434 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
9435 {
9436 Program *program = ctx->program;
9437
9438 unsigned float_controls = shader->info.float_controls_execution_mode;
9439
9440 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
9441 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
9442 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
9443 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
9444 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
9445
9446 program->next_fp_mode.must_flush_denorms32 =
9447 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
9448 program->next_fp_mode.must_flush_denorms16_64 =
9449 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
9450 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
9451
9452 program->next_fp_mode.care_about_round32 =
9453 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
9454
9455 program->next_fp_mode.care_about_round16_64 =
9456 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
9457 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
9458
9459 /* default to preserving fp16 and fp64 denorms, since it's free */
9460 if (program->next_fp_mode.must_flush_denorms16_64)
9461 program->next_fp_mode.denorm16_64 = 0;
9462 else
9463 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9464
9465 /* preserving fp32 denorms is expensive, so only do it if asked */
9466 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
9467 program->next_fp_mode.denorm32 = fp_denorm_keep;
9468 else
9469 program->next_fp_mode.denorm32 = 0;
9470
9471 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
9472 program->next_fp_mode.round32 = fp_round_tz;
9473 else
9474 program->next_fp_mode.round32 = fp_round_ne;
9475
9476 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
9477 program->next_fp_mode.round16_64 = fp_round_tz;
9478 else
9479 program->next_fp_mode.round16_64 = fp_round_ne;
9480
9481 ctx->block->fp_mode = program->next_fp_mode;
9482 }
9483
9484 void cleanup_cfg(Program *program)
9485 {
9486 /* create linear_succs/logical_succs */
9487 for (Block& BB : program->blocks) {
9488 for (unsigned idx : BB.linear_preds)
9489 program->blocks[idx].linear_succs.emplace_back(BB.index);
9490 for (unsigned idx : BB.logical_preds)
9491 program->blocks[idx].logical_succs.emplace_back(BB.index);
9492 }
9493 }
9494
9495 void select_program(Program *program,
9496 unsigned shader_count,
9497 struct nir_shader *const *shaders,
9498 ac_shader_config* config,
9499 struct radv_shader_args *args)
9500 {
9501 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
9502
9503 for (unsigned i = 0; i < shader_count; i++) {
9504 nir_shader *nir = shaders[i];
9505 init_context(&ctx, nir);
9506
9507 setup_fp_mode(&ctx, nir);
9508
9509 if (!i) {
9510 /* needs to be after init_context() for FS */
9511 Pseudo_instruction *startpgm = add_startpgm(&ctx);
9512 append_logical_start(ctx.block);
9513 split_arguments(&ctx, startpgm);
9514 }
9515
9516 if_context ic;
9517 if (shader_count >= 2) {
9518 Builder bld(ctx.program, ctx.block);
9519 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | (i * 8u)));
9520 Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
9521 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
9522
9523 begin_divergent_if_then(&ctx, &ic, cond);
9524 }
9525
9526 if (i) {
9527 Builder bld(ctx.program, ctx.block);
9528
9529 bld.barrier(aco_opcode::p_memory_barrier_shared);
9530 bld.sopp(aco_opcode::s_barrier);
9531
9532 if (ctx.stage == vertex_geometry_gs) {
9533 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
9534 }
9535 } else if (ctx.stage == geometry_gs)
9536 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
9537
9538 if (ctx.stage == fragment_fs)
9539 handle_bc_optimize(&ctx);
9540
9541 nir_function_impl *func = nir_shader_get_entrypoint(nir);
9542 visit_cf_list(&ctx, &func->body);
9543
9544 if (ctx.program->info->so.num_outputs && ctx.stage == vertex_vs)
9545 emit_streamout(&ctx, 0);
9546
9547 if (ctx.stage == vertex_vs) {
9548 create_vs_exports(&ctx);
9549 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
9550 Builder bld(ctx.program, ctx.block);
9551 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
9552 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
9553 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
9554 write_tcs_tess_factors(&ctx);
9555 }
9556
9557 if (ctx.stage == fragment_fs)
9558 create_fs_exports(&ctx);
9559
9560 if (shader_count >= 2) {
9561 begin_divergent_if_else(&ctx, &ic);
9562 end_divergent_if(&ctx, &ic);
9563 }
9564
9565 ralloc_free(ctx.divergent_vals);
9566 }
9567
9568 program->config->float_mode = program->blocks[0].fp_mode.val;
9569
9570 append_logical_end(ctx.block);
9571 ctx.block->kind |= block_kind_uniform | block_kind_export_end;
9572 Builder bld(ctx.program, ctx.block);
9573 if (ctx.program->wb_smem_l1_on_end)
9574 bld.smem(aco_opcode::s_dcache_wb, false);
9575 bld.sopp(aco_opcode::s_endpgm);
9576
9577 cleanup_cfg(program);
9578 }
9579
9580 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
9581 ac_shader_config* config,
9582 struct radv_shader_args *args)
9583 {
9584 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
9585
9586 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
9587 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
9588 program->next_fp_mode.must_flush_denorms32 = false;
9589 program->next_fp_mode.must_flush_denorms16_64 = false;
9590 program->next_fp_mode.care_about_round32 = false;
9591 program->next_fp_mode.care_about_round16_64 = false;
9592 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9593 program->next_fp_mode.denorm32 = 0;
9594 program->next_fp_mode.round32 = fp_round_ne;
9595 program->next_fp_mode.round16_64 = fp_round_ne;
9596 ctx.block->fp_mode = program->next_fp_mode;
9597
9598 add_startpgm(&ctx);
9599 append_logical_start(ctx.block);
9600
9601 Builder bld(ctx.program, ctx.block);
9602
9603 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
9604
9605 Operand stream_id(0u);
9606 if (args->shader_info->so.num_outputs)
9607 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9608 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
9609
9610 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
9611
9612 std::stack<Block> endif_blocks;
9613
9614 for (unsigned stream = 0; stream < 4; stream++) {
9615 if (stream_id.isConstant() && stream != stream_id.constantValue())
9616 continue;
9617
9618 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
9619 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
9620 continue;
9621
9622 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
9623
9624 unsigned BB_if_idx = ctx.block->index;
9625 Block BB_endif = Block();
9626 if (!stream_id.isConstant()) {
9627 /* begin IF */
9628 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
9629 append_logical_end(ctx.block);
9630 ctx.block->kind |= block_kind_uniform;
9631 bld.branch(aco_opcode::p_cbranch_z, cond);
9632
9633 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
9634
9635 ctx.block = ctx.program->create_and_insert_block();
9636 add_edge(BB_if_idx, ctx.block);
9637 bld.reset(ctx.block);
9638 append_logical_start(ctx.block);
9639 }
9640
9641 unsigned offset = 0;
9642 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9643 if (args->shader_info->gs.output_streams[i] != stream)
9644 continue;
9645
9646 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
9647 unsigned length = util_last_bit(output_usage_mask);
9648 for (unsigned j = 0; j < length; ++j) {
9649 if (!(output_usage_mask & (1 << j)))
9650 continue;
9651
9652 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
9653 Temp voffset = vtx_offset;
9654 if (const_offset >= 4096u) {
9655 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
9656 const_offset %= 4096u;
9657 }
9658
9659 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
9660 mubuf->definitions[0] = bld.def(v1);
9661 mubuf->operands[0] = Operand(gsvs_ring);
9662 mubuf->operands[1] = Operand(voffset);
9663 mubuf->operands[2] = Operand(0u);
9664 mubuf->offen = true;
9665 mubuf->offset = const_offset;
9666 mubuf->glc = true;
9667 mubuf->slc = true;
9668 mubuf->dlc = args->options->chip_class >= GFX10;
9669 mubuf->barrier = barrier_none;
9670 mubuf->can_reorder = true;
9671
9672 ctx.outputs.mask[i] |= 1 << j;
9673 ctx.outputs.outputs[i][j] = mubuf->definitions[0].getTemp();
9674
9675 bld.insert(std::move(mubuf));
9676
9677 offset++;
9678 }
9679 }
9680
9681 if (args->shader_info->so.num_outputs) {
9682 emit_streamout(&ctx, stream);
9683 bld.reset(ctx.block);
9684 }
9685
9686 if (stream == 0) {
9687 create_vs_exports(&ctx);
9688 ctx.block->kind |= block_kind_export_end;
9689 }
9690
9691 if (!stream_id.isConstant()) {
9692 append_logical_end(ctx.block);
9693
9694 /* branch from then block to endif block */
9695 bld.branch(aco_opcode::p_branch);
9696 add_edge(ctx.block->index, &BB_endif);
9697 ctx.block->kind |= block_kind_uniform;
9698
9699 /* emit else block */
9700 ctx.block = ctx.program->create_and_insert_block();
9701 add_edge(BB_if_idx, ctx.block);
9702 bld.reset(ctx.block);
9703 append_logical_start(ctx.block);
9704
9705 endif_blocks.push(std::move(BB_endif));
9706 }
9707 }
9708
9709 while (!endif_blocks.empty()) {
9710 Block BB_endif = std::move(endif_blocks.top());
9711 endif_blocks.pop();
9712
9713 Block *BB_else = ctx.block;
9714
9715 append_logical_end(BB_else);
9716 /* branch from else block to endif block */
9717 bld.branch(aco_opcode::p_branch);
9718 add_edge(BB_else->index, &BB_endif);
9719 BB_else->kind |= block_kind_uniform;
9720
9721 /** emit endif merge block */
9722 ctx.block = program->insert_block(std::move(BB_endif));
9723 bld.reset(ctx.block);
9724 append_logical_start(ctx.block);
9725 }
9726
9727 program->config->float_mode = program->blocks[0].fp_mode.val;
9728
9729 append_logical_end(ctx.block);
9730 ctx.block->kind |= block_kind_uniform;
9731 bld.sopp(aco_opcode::s_endpgm);
9732
9733 cleanup_cfg(program);
9734 }
9735 }