radv: Handle slightly different image dimensions.
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <map>
29
30 #include "ac_shader_util.h"
31 #include "aco_ir.h"
32 #include "aco_builder.h"
33 #include "aco_interface.h"
34 #include "aco_instruction_selection_setup.cpp"
35 #include "util/fast_idiv_by_const.h"
36
37 namespace aco {
38 namespace {
39
40 class loop_info_RAII {
41 isel_context* ctx;
42 unsigned header_idx_old;
43 Block* exit_old;
44 bool divergent_cont_old;
45 bool divergent_branch_old;
46 bool divergent_if_old;
47
48 public:
49 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
50 : ctx(ctx),
51 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
52 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
53 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
54 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
55 {
56 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
57 ctx->cf_info.parent_loop.exit = loop_exit;
58 ctx->cf_info.parent_loop.has_divergent_continue = false;
59 ctx->cf_info.parent_loop.has_divergent_branch = false;
60 ctx->cf_info.parent_if.is_divergent = false;
61 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
62 }
63
64 ~loop_info_RAII()
65 {
66 ctx->cf_info.parent_loop.header_idx = header_idx_old;
67 ctx->cf_info.parent_loop.exit = exit_old;
68 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
69 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
70 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
71 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
72 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
73 ctx->cf_info.exec_potentially_empty = false;
74 }
75 };
76
77 struct if_context {
78 Temp cond;
79
80 bool divergent_old;
81 bool exec_potentially_empty_old;
82
83 unsigned BB_if_idx;
84 unsigned invert_idx;
85 bool then_branch_divergent;
86 Block BB_invert;
87 Block BB_endif;
88 };
89
90 static void visit_cf_list(struct isel_context *ctx,
91 struct exec_list *list);
92
93 static void add_logical_edge(unsigned pred_idx, Block *succ)
94 {
95 succ->logical_preds.emplace_back(pred_idx);
96 }
97
98
99 static void add_linear_edge(unsigned pred_idx, Block *succ)
100 {
101 succ->linear_preds.emplace_back(pred_idx);
102 }
103
104 static void add_edge(unsigned pred_idx, Block *succ)
105 {
106 add_logical_edge(pred_idx, succ);
107 add_linear_edge(pred_idx, succ);
108 }
109
110 static void append_logical_start(Block *b)
111 {
112 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
113 }
114
115 static void append_logical_end(Block *b)
116 {
117 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
118 }
119
120 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
121 {
122 assert(ctx->allocated[def->index].id());
123 return ctx->allocated[def->index];
124 }
125
126 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
127 {
128 Builder bld(ctx->program, ctx->block);
129
130 if (!dst.id())
131 dst = bld.tmp(src.regClass());
132
133 if (ctx->stage != fragment_fs) {
134 if (!dst.id())
135 return src;
136
137 if (src.type() == RegType::vgpr || src.size() > 1)
138 bld.copy(Definition(dst), src);
139 else
140 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
141 return dst;
142 }
143
144 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
145 ctx->program->needs_wqm |= program_needs_wqm;
146 return dst;
147 }
148
149 Temp as_vgpr(isel_context *ctx, Temp val)
150 {
151 if (val.type() == RegType::sgpr) {
152 Builder bld(ctx->program, ctx->block);
153 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
154 }
155 assert(val.type() == RegType::vgpr);
156 return val;
157 }
158
159 //assumes a != 0xffffffff
160 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
161 {
162 assert(b != 0);
163 Builder bld(ctx->program, ctx->block);
164
165 if (util_is_power_of_two_or_zero(b)) {
166 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
167 return;
168 }
169
170 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
171
172 assert(info.multiplier <= 0xffffffff);
173
174 bool pre_shift = info.pre_shift != 0;
175 bool increment = info.increment != 0;
176 bool multiply = true;
177 bool post_shift = info.post_shift != 0;
178
179 if (!pre_shift && !increment && !multiply && !post_shift) {
180 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
181 return;
182 }
183
184 Temp pre_shift_dst = a;
185 if (pre_shift) {
186 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
187 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
188 }
189
190 Temp increment_dst = pre_shift_dst;
191 if (increment) {
192 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
193 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
194 }
195
196 Temp multiply_dst = increment_dst;
197 if (multiply) {
198 multiply_dst = post_shift ? bld.tmp(v1) : dst;
199 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
200 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
201 }
202
203 if (post_shift) {
204 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
205 }
206 }
207
208 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
209 {
210 Builder bld(ctx->program, ctx->block);
211 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
212 }
213
214
215 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
216 {
217 /* no need to extract the whole vector */
218 if (src.regClass() == dst_rc) {
219 assert(idx == 0);
220 return src;
221 }
222 assert(src.size() > idx);
223 Builder bld(ctx->program, ctx->block);
224 auto it = ctx->allocated_vec.find(src.id());
225 /* the size check needs to be early because elements other than 0 may be garbage */
226 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
227 if (it->second[idx].regClass() == dst_rc) {
228 return it->second[idx];
229 } else {
230 assert(dst_rc.size() == it->second[idx].regClass().size());
231 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
232 return bld.copy(bld.def(dst_rc), it->second[idx]);
233 }
234 }
235
236 if (src.size() == dst_rc.size()) {
237 assert(idx == 0);
238 return bld.copy(bld.def(dst_rc), src);
239 } else {
240 Temp dst = bld.tmp(dst_rc);
241 emit_extract_vector(ctx, src, idx, dst);
242 return dst;
243 }
244 }
245
246 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
247 {
248 if (num_components == 1)
249 return;
250 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
251 return;
252 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
253 split->operands[0] = Operand(vec_src);
254 std::array<Temp,4> elems;
255 for (unsigned i = 0; i < num_components; i++) {
256 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
257 split->definitions[i] = Definition(elems[i]);
258 }
259 ctx->block->instructions.emplace_back(std::move(split));
260 ctx->allocated_vec.emplace(vec_src.id(), elems);
261 }
262
263 /* This vector expansion uses a mask to determine which elements in the new vector
264 * come from the original vector. The other elements are undefined. */
265 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
266 {
267 emit_split_vector(ctx, vec_src, util_bitcount(mask));
268
269 if (vec_src == dst)
270 return;
271
272 Builder bld(ctx->program, ctx->block);
273 if (num_components == 1) {
274 if (dst.type() == RegType::sgpr)
275 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
276 else
277 bld.copy(Definition(dst), vec_src);
278 return;
279 }
280
281 unsigned component_size = dst.size() / num_components;
282 std::array<Temp,4> elems;
283
284 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
285 vec->definitions[0] = Definition(dst);
286 unsigned k = 0;
287 for (unsigned i = 0; i < num_components; i++) {
288 if (mask & (1 << i)) {
289 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
290 if (dst.type() == RegType::sgpr)
291 src = bld.as_uniform(src);
292 vec->operands[i] = Operand(src);
293 } else {
294 vec->operands[i] = Operand(0u);
295 }
296 elems[i] = vec->operands[i].getTemp();
297 }
298 ctx->block->instructions.emplace_back(std::move(vec));
299 ctx->allocated_vec.emplace(dst.id(), elems);
300 }
301
302 Temp as_divergent_bool(isel_context *ctx, Temp val, bool vcc_hint)
303 {
304 if (val.regClass() == s2) {
305 return val;
306 } else {
307 assert(val.regClass() == s1);
308 Builder bld(ctx->program, ctx->block);
309 Definition& def = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2),
310 Operand((uint32_t) -1), Operand(0u), bld.scc(val)).def(0);
311 if (vcc_hint)
312 def.setHint(vcc);
313 return def.getTemp();
314 }
315 }
316
317 Temp as_uniform_bool(isel_context *ctx, Temp val)
318 {
319 if (val.regClass() == s1) {
320 return val;
321 } else {
322 assert(val.regClass() == s2);
323 Builder bld(ctx->program, ctx->block);
324 return bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), Operand(0u), Operand(val));
325 }
326 }
327
328 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
329 {
330 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
331 return get_ssa_temp(ctx, src.src.ssa);
332
333 if (src.src.ssa->num_components == size) {
334 bool identity_swizzle = true;
335 for (unsigned i = 0; identity_swizzle && i < size; i++) {
336 if (src.swizzle[i] != i)
337 identity_swizzle = false;
338 }
339 if (identity_swizzle)
340 return get_ssa_temp(ctx, src.src.ssa);
341 }
342
343 Temp vec = get_ssa_temp(ctx, src.src.ssa);
344 unsigned elem_size = vec.size() / src.src.ssa->num_components;
345 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
346 assert(vec.size() % elem_size == 0);
347
348 RegClass elem_rc = RegClass(vec.type(), elem_size);
349 if (size == 1) {
350 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
351 } else {
352 assert(size <= 4);
353 std::array<Temp,4> elems;
354 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
355 for (unsigned i = 0; i < size; ++i) {
356 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
357 vec_instr->operands[i] = Operand{elems[i]};
358 }
359 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
360 vec_instr->definitions[0] = Definition(dst);
361 ctx->block->instructions.emplace_back(std::move(vec_instr));
362 ctx->allocated_vec.emplace(dst.id(), elems);
363 return dst;
364 }
365 }
366
367 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
368 {
369 if (ptr.size() == 2)
370 return ptr;
371 Builder bld(ctx->program, ctx->block);
372 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
373 ptr, Operand((unsigned)ctx->options->address32_hi));
374 }
375
376 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
377 {
378 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
379 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
380 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
381 sop2->definitions[0] = Definition(dst);
382 if (writes_scc)
383 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
384 ctx->block->instructions.emplace_back(std::move(sop2));
385 }
386
387 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool commutative, bool swap_srcs=false)
388 {
389 Builder bld(ctx->program, ctx->block);
390 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
391 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
392 if (src1.type() == RegType::sgpr) {
393 if (commutative && src0.type() == RegType::vgpr) {
394 Temp t = src0;
395 src0 = src1;
396 src1 = t;
397 } else if (src0.type() == RegType::vgpr &&
398 op != aco_opcode::v_madmk_f32 &&
399 op != aco_opcode::v_madak_f32 &&
400 op != aco_opcode::v_madmk_f16 &&
401 op != aco_opcode::v_madak_f16) {
402 /* If the instruction is not commutative, we emit a VOP3A instruction */
403 bld.vop2_e64(op, Definition(dst), src0, src1);
404 return;
405 } else {
406 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
407 }
408 }
409 bld.vop2(op, Definition(dst), src0, src1);
410 }
411
412 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
413 {
414 Temp src0 = get_alu_src(ctx, instr->src[0]);
415 Temp src1 = get_alu_src(ctx, instr->src[1]);
416 Temp src2 = get_alu_src(ctx, instr->src[2]);
417
418 /* ensure that the instruction has at most 1 sgpr operand
419 * The optimizer will inline constants for us */
420 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
421 src0 = as_vgpr(ctx, src0);
422 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
423 src1 = as_vgpr(ctx, src1);
424 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
425 src2 = as_vgpr(ctx, src2);
426
427 Builder bld(ctx->program, ctx->block);
428 bld.vop3(op, Definition(dst), src0, src1, src2);
429 }
430
431 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
432 {
433 Builder bld(ctx->program, ctx->block);
434 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
435 }
436
437 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
438 {
439 Temp src0 = get_alu_src(ctx, instr->src[0]);
440 Temp src1 = get_alu_src(ctx, instr->src[1]);
441 aco_ptr<Instruction> vopc;
442 if (src1.type() == RegType::sgpr) {
443 if (src0.type() == RegType::vgpr) {
444 /* to swap the operands, we might also have to change the opcode */
445 switch (op) {
446 case aco_opcode::v_cmp_lt_f32:
447 op = aco_opcode::v_cmp_gt_f32;
448 break;
449 case aco_opcode::v_cmp_ge_f32:
450 op = aco_opcode::v_cmp_le_f32;
451 break;
452 case aco_opcode::v_cmp_lt_i32:
453 op = aco_opcode::v_cmp_gt_i32;
454 break;
455 case aco_opcode::v_cmp_ge_i32:
456 op = aco_opcode::v_cmp_le_i32;
457 break;
458 case aco_opcode::v_cmp_lt_u32:
459 op = aco_opcode::v_cmp_gt_u32;
460 break;
461 case aco_opcode::v_cmp_ge_u32:
462 op = aco_opcode::v_cmp_le_u32;
463 break;
464 case aco_opcode::v_cmp_lt_f64:
465 op = aco_opcode::v_cmp_gt_f64;
466 break;
467 case aco_opcode::v_cmp_ge_f64:
468 op = aco_opcode::v_cmp_le_f64;
469 break;
470 case aco_opcode::v_cmp_lt_i64:
471 op = aco_opcode::v_cmp_gt_i64;
472 break;
473 case aco_opcode::v_cmp_ge_i64:
474 op = aco_opcode::v_cmp_le_i64;
475 break;
476 case aco_opcode::v_cmp_lt_u64:
477 op = aco_opcode::v_cmp_gt_u64;
478 break;
479 case aco_opcode::v_cmp_ge_u64:
480 op = aco_opcode::v_cmp_le_u64;
481 break;
482 default: /* eq and ne are commutative */
483 break;
484 }
485 Temp t = src0;
486 src0 = src1;
487 src1 = t;
488 } else {
489 src1 = as_vgpr(ctx, src1);
490 }
491 }
492 Builder bld(ctx->program, ctx->block);
493 bld.vopc(op, Definition(dst), src0, src1).def(0).setHint(vcc);
494 }
495
496 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
497 {
498 if (dst.regClass() == s2) {
499 emit_vopc_instruction(ctx, instr, op, dst);
500 if (!ctx->divergent_vals[instr->dest.dest.ssa.index])
501 emit_split_vector(ctx, dst, 2);
502 } else if (dst.regClass() == s1) {
503 Temp src0 = get_alu_src(ctx, instr->src[0]);
504 Temp src1 = get_alu_src(ctx, instr->src[1]);
505 assert(src0.type() == RegType::sgpr && src1.type() == RegType::sgpr);
506
507 Builder bld(ctx->program, ctx->block);
508 bld.sopc(op, bld.scc(Definition(dst)), src0, src1);
509
510 } else {
511 assert(false);
512 }
513 }
514
515 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, aco_opcode op32, aco_opcode op64, Temp dst)
516 {
517 Builder bld(ctx->program, ctx->block);
518 Temp src0 = get_alu_src(ctx, instr->src[0]);
519 Temp src1 = get_alu_src(ctx, instr->src[1]);
520 if (dst.regClass() == s2) {
521 bld.sop2(op64, Definition(dst), bld.def(s1, scc),
522 as_divergent_bool(ctx, src0, false), as_divergent_bool(ctx, src1, false));
523 } else {
524 assert(dst.regClass() == s1);
525 bld.sop2(op32, bld.def(s1), bld.scc(Definition(dst)),
526 as_uniform_bool(ctx, src0), as_uniform_bool(ctx, src1));
527 }
528 }
529
530
531 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
532 {
533 Builder bld(ctx->program, ctx->block);
534 Temp cond = get_alu_src(ctx, instr->src[0]);
535 Temp then = get_alu_src(ctx, instr->src[1]);
536 Temp els = get_alu_src(ctx, instr->src[2]);
537
538 if (dst.type() == RegType::vgpr) {
539 cond = as_divergent_bool(ctx, cond, true);
540
541 aco_ptr<Instruction> bcsel;
542 if (dst.size() == 1) {
543 then = as_vgpr(ctx, then);
544 els = as_vgpr(ctx, els);
545
546 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
547 } else if (dst.size() == 2) {
548 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
549 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
550 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
551 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
552
553 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
554 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
555
556 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
557 } else {
558 fprintf(stderr, "Unimplemented NIR instr bit size: ");
559 nir_print_instr(&instr->instr, stderr);
560 fprintf(stderr, "\n");
561 }
562 return;
563 }
564
565 if (instr->dest.dest.ssa.bit_size != 1) { /* uniform condition and values in sgpr */
566 if (dst.regClass() == s1 || dst.regClass() == s2) {
567 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
568 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
569 bld.sop2(op, Definition(dst), then, els, bld.scc(as_uniform_bool(ctx, cond)));
570 } else {
571 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
572 nir_print_instr(&instr->instr, stderr);
573 fprintf(stderr, "\n");
574 }
575 return;
576 }
577
578 /* boolean bcsel */
579 assert(instr->dest.dest.ssa.bit_size == 1);
580
581 if (dst.regClass() == s1)
582 cond = as_uniform_bool(ctx, cond);
583
584 if (cond.regClass() == s1) { /* uniform selection */
585 aco_opcode op;
586 if (dst.regClass() == s2) {
587 op = aco_opcode::s_cselect_b64;
588 then = as_divergent_bool(ctx, then, false);
589 els = as_divergent_bool(ctx, els, false);
590 } else {
591 assert(dst.regClass() == s1);
592 op = aco_opcode::s_cselect_b32;
593 then = as_uniform_bool(ctx, then);
594 els = as_uniform_bool(ctx, els);
595 }
596 bld.sop2(op, Definition(dst), then, els, bld.scc(cond));
597 return;
598 }
599
600 /* divergent boolean bcsel
601 * this implements bcsel on bools: dst = s0 ? s1 : s2
602 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
603 assert (dst.regClass() == s2);
604 then = as_divergent_bool(ctx, then, false);
605 els = as_divergent_bool(ctx, els, false);
606
607 if (cond.id() != then.id())
608 then = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), cond, then);
609
610 if (cond.id() == els.id())
611 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), then);
612 else
613 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), then,
614 bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc), els, cond));
615 }
616
617 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
618 {
619 if (!instr->dest.dest.is_ssa) {
620 fprintf(stderr, "nir alu dst not in ssa: ");
621 nir_print_instr(&instr->instr, stderr);
622 fprintf(stderr, "\n");
623 abort();
624 }
625 Builder bld(ctx->program, ctx->block);
626 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
627 switch(instr->op) {
628 case nir_op_vec2:
629 case nir_op_vec3:
630 case nir_op_vec4: {
631 std::array<Temp,4> elems;
632 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
633 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
634 elems[i] = get_alu_src(ctx, instr->src[i]);
635 vec->operands[i] = Operand{elems[i]};
636 }
637 vec->definitions[0] = Definition(dst);
638 ctx->block->instructions.emplace_back(std::move(vec));
639 ctx->allocated_vec.emplace(dst.id(), elems);
640 break;
641 }
642 case nir_op_mov: {
643 Temp src = get_alu_src(ctx, instr->src[0]);
644 aco_ptr<Instruction> mov;
645 if (dst.type() == RegType::sgpr) {
646 if (src.type() == RegType::vgpr)
647 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
648 else if (src.regClass() == s1)
649 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
650 else if (src.regClass() == s2)
651 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
652 else
653 unreachable("wrong src register class for nir_op_imov");
654 } else if (dst.regClass() == v1) {
655 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
656 } else if (dst.regClass() == v2) {
657 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
658 } else {
659 nir_print_instr(&instr->instr, stderr);
660 unreachable("Should have been lowered to scalar.");
661 }
662 break;
663 }
664 case nir_op_inot: {
665 Temp src = get_alu_src(ctx, instr->src[0]);
666 /* uniform booleans */
667 if (instr->dest.dest.ssa.bit_size == 1 && dst.regClass() == s1) {
668 if (src.regClass() == s1) {
669 /* in this case, src is either 1 or 0 */
670 bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.scc(Definition(dst)), Operand(1u), src);
671 } else {
672 /* src is either exec_mask or 0 */
673 assert(src.regClass() == s2);
674 bld.sopc(aco_opcode::s_cmp_eq_u64, bld.scc(Definition(dst)), Operand(0u), src);
675 }
676 } else if (dst.regClass() == v1) {
677 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
678 } else if (dst.type() == RegType::sgpr) {
679 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
680 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
681 } else {
682 fprintf(stderr, "Unimplemented NIR instr bit size: ");
683 nir_print_instr(&instr->instr, stderr);
684 fprintf(stderr, "\n");
685 }
686 break;
687 }
688 case nir_op_ineg: {
689 Temp src = get_alu_src(ctx, instr->src[0]);
690 if (dst.regClass() == v1) {
691 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
692 } else if (dst.regClass() == s1) {
693 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
694 } else if (dst.size() == 2) {
695 Temp src0 = bld.tmp(dst.type(), 1);
696 Temp src1 = bld.tmp(dst.type(), 1);
697 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
698
699 if (dst.regClass() == s2) {
700 Temp carry = bld.tmp(s1);
701 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
702 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
703 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
704 } else {
705 Temp lower = bld.tmp(v1);
706 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
707 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
708 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
709 }
710 } else {
711 fprintf(stderr, "Unimplemented NIR instr bit size: ");
712 nir_print_instr(&instr->instr, stderr);
713 fprintf(stderr, "\n");
714 }
715 break;
716 }
717 case nir_op_iabs: {
718 if (dst.regClass() == s1) {
719 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
720 } else if (dst.regClass() == v1) {
721 Temp src = get_alu_src(ctx, instr->src[0]);
722 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
723 } else {
724 fprintf(stderr, "Unimplemented NIR instr bit size: ");
725 nir_print_instr(&instr->instr, stderr);
726 fprintf(stderr, "\n");
727 }
728 break;
729 }
730 case nir_op_isign: {
731 Temp src = get_alu_src(ctx, instr->src[0]);
732 if (dst.regClass() == s1) {
733 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
734 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
735 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
736 } else if (dst.regClass() == s2) {
737 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
738 Temp neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
739 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, neqz);
740 } else if (dst.regClass() == v1) {
741 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
742 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
743 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
744 } else if (dst.regClass() == v2) {
745 Temp upper = emit_extract_vector(ctx, src, 1, v1);
746 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
747 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
748 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
749 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
750 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
751 } else {
752 fprintf(stderr, "Unimplemented NIR instr bit size: ");
753 nir_print_instr(&instr->instr, stderr);
754 fprintf(stderr, "\n");
755 }
756 break;
757 }
758 case nir_op_imax: {
759 if (dst.regClass() == v1) {
760 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
761 } else if (dst.regClass() == s1) {
762 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
763 } else {
764 fprintf(stderr, "Unimplemented NIR instr bit size: ");
765 nir_print_instr(&instr->instr, stderr);
766 fprintf(stderr, "\n");
767 }
768 break;
769 }
770 case nir_op_umax: {
771 if (dst.regClass() == v1) {
772 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
773 } else if (dst.regClass() == s1) {
774 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
775 } else {
776 fprintf(stderr, "Unimplemented NIR instr bit size: ");
777 nir_print_instr(&instr->instr, stderr);
778 fprintf(stderr, "\n");
779 }
780 break;
781 }
782 case nir_op_imin: {
783 if (dst.regClass() == v1) {
784 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
785 } else if (dst.regClass() == s1) {
786 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
787 } else {
788 fprintf(stderr, "Unimplemented NIR instr bit size: ");
789 nir_print_instr(&instr->instr, stderr);
790 fprintf(stderr, "\n");
791 }
792 break;
793 }
794 case nir_op_umin: {
795 if (dst.regClass() == v1) {
796 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
797 } else if (dst.regClass() == s1) {
798 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
799 } else {
800 fprintf(stderr, "Unimplemented NIR instr bit size: ");
801 nir_print_instr(&instr->instr, stderr);
802 fprintf(stderr, "\n");
803 }
804 break;
805 }
806 case nir_op_ior: {
807 if (instr->dest.dest.ssa.bit_size == 1) {
808 emit_boolean_logic(ctx, instr, aco_opcode::s_or_b32, aco_opcode::s_or_b64, dst);
809 } else if (dst.regClass() == v1) {
810 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
811 } else if (dst.regClass() == s1) {
812 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
813 } else if (dst.regClass() == s2) {
814 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
815 } else {
816 fprintf(stderr, "Unimplemented NIR instr bit size: ");
817 nir_print_instr(&instr->instr, stderr);
818 fprintf(stderr, "\n");
819 }
820 break;
821 }
822 case nir_op_iand: {
823 if (instr->dest.dest.ssa.bit_size == 1) {
824 emit_boolean_logic(ctx, instr, aco_opcode::s_and_b32, aco_opcode::s_and_b64, dst);
825 } else if (dst.regClass() == v1) {
826 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
827 } else if (dst.regClass() == s1) {
828 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
829 } else if (dst.regClass() == s2) {
830 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
831 } else {
832 fprintf(stderr, "Unimplemented NIR instr bit size: ");
833 nir_print_instr(&instr->instr, stderr);
834 fprintf(stderr, "\n");
835 }
836 break;
837 }
838 case nir_op_ixor: {
839 if (instr->dest.dest.ssa.bit_size == 1) {
840 emit_boolean_logic(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::s_xor_b64, dst);
841 } else if (dst.regClass() == v1) {
842 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
843 } else if (dst.regClass() == s1) {
844 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
845 } else if (dst.regClass() == s2) {
846 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
847 } else {
848 fprintf(stderr, "Unimplemented NIR instr bit size: ");
849 nir_print_instr(&instr->instr, stderr);
850 fprintf(stderr, "\n");
851 }
852 break;
853 }
854 case nir_op_ushr: {
855 if (dst.regClass() == v1) {
856 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
857 } else if (dst.regClass() == v2) {
858 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
859 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
860 } else if (dst.regClass() == s2) {
861 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
862 } else if (dst.regClass() == s1) {
863 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
864 } else {
865 fprintf(stderr, "Unimplemented NIR instr bit size: ");
866 nir_print_instr(&instr->instr, stderr);
867 fprintf(stderr, "\n");
868 }
869 break;
870 }
871 case nir_op_ishl: {
872 if (dst.regClass() == v1) {
873 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
874 } else if (dst.regClass() == v2) {
875 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
876 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
877 } else if (dst.regClass() == s1) {
878 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
879 } else if (dst.regClass() == s2) {
880 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
881 } else {
882 fprintf(stderr, "Unimplemented NIR instr bit size: ");
883 nir_print_instr(&instr->instr, stderr);
884 fprintf(stderr, "\n");
885 }
886 break;
887 }
888 case nir_op_ishr: {
889 if (dst.regClass() == v1) {
890 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
891 } else if (dst.regClass() == v2) {
892 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
893 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
894 } else if (dst.regClass() == s1) {
895 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
896 } else if (dst.regClass() == s2) {
897 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
898 } else {
899 fprintf(stderr, "Unimplemented NIR instr bit size: ");
900 nir_print_instr(&instr->instr, stderr);
901 fprintf(stderr, "\n");
902 }
903 break;
904 }
905 case nir_op_find_lsb: {
906 Temp src = get_alu_src(ctx, instr->src[0]);
907 if (src.regClass() == s1) {
908 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
909 } else if (src.regClass() == v1) {
910 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
911 } else if (src.regClass() == s2) {
912 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
913 } else {
914 fprintf(stderr, "Unimplemented NIR instr bit size: ");
915 nir_print_instr(&instr->instr, stderr);
916 fprintf(stderr, "\n");
917 }
918 break;
919 }
920 case nir_op_ufind_msb:
921 case nir_op_ifind_msb: {
922 Temp src = get_alu_src(ctx, instr->src[0]);
923 if (src.regClass() == s1 || src.regClass() == s2) {
924 aco_opcode op = src.regClass() == s2 ?
925 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
926 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
927 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
928
929 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
930 Operand(src.size() * 32u - 1u), msb_rev);
931 Temp msb = sub.def(0).getTemp();
932 Temp carry = sub.def(1).getTemp();
933
934 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, carry);
935 } else if (src.regClass() == v1) {
936 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
937 Temp msb_rev = bld.tmp(v1);
938 emit_vop1_instruction(ctx, instr, op, msb_rev);
939 Temp msb = bld.tmp(v1);
940 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
941 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
942 } else {
943 fprintf(stderr, "Unimplemented NIR instr bit size: ");
944 nir_print_instr(&instr->instr, stderr);
945 fprintf(stderr, "\n");
946 }
947 break;
948 }
949 case nir_op_bitfield_reverse: {
950 if (dst.regClass() == s1) {
951 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
952 } else if (dst.regClass() == v1) {
953 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
954 } else {
955 fprintf(stderr, "Unimplemented NIR instr bit size: ");
956 nir_print_instr(&instr->instr, stderr);
957 fprintf(stderr, "\n");
958 }
959 break;
960 }
961 case nir_op_iadd: {
962 if (dst.regClass() == s1) {
963 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
964 break;
965 }
966
967 Temp src0 = get_alu_src(ctx, instr->src[0]);
968 Temp src1 = get_alu_src(ctx, instr->src[1]);
969 if (dst.regClass() == v1) {
970 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
971 break;
972 }
973
974 assert(src0.size() == 2 && src1.size() == 2);
975 Temp src00 = bld.tmp(src0.type(), 1);
976 Temp src01 = bld.tmp(dst.type(), 1);
977 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
978 Temp src10 = bld.tmp(src1.type(), 1);
979 Temp src11 = bld.tmp(dst.type(), 1);
980 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
981
982 if (dst.regClass() == s2) {
983 Temp carry = bld.tmp(s1);
984 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
985 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
986 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
987 } else if (dst.regClass() == v2) {
988 Temp dst0 = bld.tmp(v1);
989 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
990 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
991 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
992 } else {
993 fprintf(stderr, "Unimplemented NIR instr bit size: ");
994 nir_print_instr(&instr->instr, stderr);
995 fprintf(stderr, "\n");
996 }
997 break;
998 }
999 case nir_op_uadd_sat: {
1000 Temp src0 = get_alu_src(ctx, instr->src[0]);
1001 Temp src1 = get_alu_src(ctx, instr->src[1]);
1002 if (dst.regClass() == s1) {
1003 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1004 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1005 src0, src1);
1006 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1007 } else if (dst.regClass() == v1) {
1008 if (ctx->options->chip_class >= GFX9) {
1009 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1010 add->operands[0] = Operand(src0);
1011 add->operands[1] = Operand(src1);
1012 add->definitions[0] = Definition(dst);
1013 add->clamp = 1;
1014 ctx->block->instructions.emplace_back(std::move(add));
1015 } else {
1016 if (src1.regClass() != v1)
1017 std::swap(src0, src1);
1018 assert(src1.regClass() == v1);
1019 Temp tmp = bld.tmp(v1);
1020 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1021 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1022 }
1023 } else {
1024 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1025 nir_print_instr(&instr->instr, stderr);
1026 fprintf(stderr, "\n");
1027 }
1028 break;
1029 }
1030 case nir_op_uadd_carry: {
1031 Temp src0 = get_alu_src(ctx, instr->src[0]);
1032 Temp src1 = get_alu_src(ctx, instr->src[1]);
1033 if (dst.regClass() == s1) {
1034 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1035 break;
1036 }
1037 if (dst.regClass() == v1) {
1038 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1039 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1040 break;
1041 }
1042
1043 Temp src00 = bld.tmp(src0.type(), 1);
1044 Temp src01 = bld.tmp(dst.type(), 1);
1045 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1046 Temp src10 = bld.tmp(src1.type(), 1);
1047 Temp src11 = bld.tmp(dst.type(), 1);
1048 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1049 if (dst.regClass() == s2) {
1050 Temp carry = bld.tmp(s1);
1051 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1052 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1053 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1054 } else if (dst.regClass() == v2) {
1055 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1056 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1057 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1058 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1059 } else {
1060 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1061 nir_print_instr(&instr->instr, stderr);
1062 fprintf(stderr, "\n");
1063 }
1064 break;
1065 }
1066 case nir_op_isub: {
1067 if (dst.regClass() == s1) {
1068 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1069 break;
1070 }
1071
1072 Temp src0 = get_alu_src(ctx, instr->src[0]);
1073 Temp src1 = get_alu_src(ctx, instr->src[1]);
1074 if (dst.regClass() == v1) {
1075 bld.vsub32(Definition(dst), src0, src1);
1076 break;
1077 }
1078
1079 Temp src00 = bld.tmp(src0.type(), 1);
1080 Temp src01 = bld.tmp(dst.type(), 1);
1081 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1082 Temp src10 = bld.tmp(src1.type(), 1);
1083 Temp src11 = bld.tmp(dst.type(), 1);
1084 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1085 if (dst.regClass() == s2) {
1086 Temp carry = bld.tmp(s1);
1087 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1088 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1089 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1090 } else if (dst.regClass() == v2) {
1091 Temp lower = bld.tmp(v1);
1092 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1093 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1094 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1095 } else {
1096 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1097 nir_print_instr(&instr->instr, stderr);
1098 fprintf(stderr, "\n");
1099 }
1100 break;
1101 }
1102 case nir_op_usub_borrow: {
1103 Temp src0 = get_alu_src(ctx, instr->src[0]);
1104 Temp src1 = get_alu_src(ctx, instr->src[1]);
1105 if (dst.regClass() == s1) {
1106 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1107 break;
1108 } else if (dst.regClass() == v1) {
1109 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1110 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1111 break;
1112 }
1113
1114 Temp src00 = bld.tmp(src0.type(), 1);
1115 Temp src01 = bld.tmp(dst.type(), 1);
1116 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1117 Temp src10 = bld.tmp(src1.type(), 1);
1118 Temp src11 = bld.tmp(dst.type(), 1);
1119 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1120 if (dst.regClass() == s2) {
1121 Temp borrow = bld.tmp(s1);
1122 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1123 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1124 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1125 } else if (dst.regClass() == v2) {
1126 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1127 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1128 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1129 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1130 } else {
1131 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1132 nir_print_instr(&instr->instr, stderr);
1133 fprintf(stderr, "\n");
1134 }
1135 break;
1136 }
1137 case nir_op_imul: {
1138 if (dst.regClass() == v1) {
1139 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1140 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1141 } else if (dst.regClass() == s1) {
1142 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1143 } else {
1144 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1145 nir_print_instr(&instr->instr, stderr);
1146 fprintf(stderr, "\n");
1147 }
1148 break;
1149 }
1150 case nir_op_umul_high: {
1151 if (dst.regClass() == v1) {
1152 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1153 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1154 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1155 } else if (dst.regClass() == s1) {
1156 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1157 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1158 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1159 } else {
1160 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1161 nir_print_instr(&instr->instr, stderr);
1162 fprintf(stderr, "\n");
1163 }
1164 break;
1165 }
1166 case nir_op_imul_high: {
1167 if (dst.regClass() == v1) {
1168 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1169 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1170 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1171 } else if (dst.regClass() == s1) {
1172 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1173 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1174 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1175 } else {
1176 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1177 nir_print_instr(&instr->instr, stderr);
1178 fprintf(stderr, "\n");
1179 }
1180 break;
1181 }
1182 case nir_op_fmul: {
1183 if (dst.size() == 1) {
1184 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1185 } else if (dst.size() == 2) {
1186 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1187 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1188 } else {
1189 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1190 nir_print_instr(&instr->instr, stderr);
1191 fprintf(stderr, "\n");
1192 }
1193 break;
1194 }
1195 case nir_op_fadd: {
1196 if (dst.size() == 1) {
1197 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1198 } else if (dst.size() == 2) {
1199 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1200 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1201 } else {
1202 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1203 nir_print_instr(&instr->instr, stderr);
1204 fprintf(stderr, "\n");
1205 }
1206 break;
1207 }
1208 case nir_op_fsub: {
1209 Temp src0 = get_alu_src(ctx, instr->src[0]);
1210 Temp src1 = get_alu_src(ctx, instr->src[1]);
1211 if (dst.size() == 1) {
1212 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1213 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1214 else
1215 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1216 } else if (dst.size() == 2) {
1217 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1218 get_alu_src(ctx, instr->src[0]),
1219 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1220 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1221 sub->neg[1] = true;
1222 } else {
1223 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1224 nir_print_instr(&instr->instr, stderr);
1225 fprintf(stderr, "\n");
1226 }
1227 break;
1228 }
1229 case nir_op_fmax: {
1230 if (dst.size() == 1) {
1231 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true);
1232 } else if (dst.size() == 2) {
1233 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1234 get_alu_src(ctx, instr->src[0]),
1235 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1236 } else {
1237 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1238 nir_print_instr(&instr->instr, stderr);
1239 fprintf(stderr, "\n");
1240 }
1241 break;
1242 }
1243 case nir_op_fmin: {
1244 if (dst.size() == 1) {
1245 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true);
1246 } else if (dst.size() == 2) {
1247 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1248 get_alu_src(ctx, instr->src[0]),
1249 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1250 } else {
1251 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1252 nir_print_instr(&instr->instr, stderr);
1253 fprintf(stderr, "\n");
1254 }
1255 break;
1256 }
1257 case nir_op_fmax3: {
1258 if (dst.size() == 1) {
1259 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst);
1260 } else {
1261 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1262 nir_print_instr(&instr->instr, stderr);
1263 fprintf(stderr, "\n");
1264 }
1265 break;
1266 }
1267 case nir_op_fmin3: {
1268 if (dst.size() == 1) {
1269 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst);
1270 } else {
1271 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1272 nir_print_instr(&instr->instr, stderr);
1273 fprintf(stderr, "\n");
1274 }
1275 break;
1276 }
1277 case nir_op_fmed3: {
1278 if (dst.size() == 1) {
1279 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst);
1280 } else {
1281 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1282 nir_print_instr(&instr->instr, stderr);
1283 fprintf(stderr, "\n");
1284 }
1285 break;
1286 }
1287 case nir_op_umax3: {
1288 if (dst.size() == 1) {
1289 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1290 } else {
1291 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1292 nir_print_instr(&instr->instr, stderr);
1293 fprintf(stderr, "\n");
1294 }
1295 break;
1296 }
1297 case nir_op_umin3: {
1298 if (dst.size() == 1) {
1299 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1300 } else {
1301 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1302 nir_print_instr(&instr->instr, stderr);
1303 fprintf(stderr, "\n");
1304 }
1305 break;
1306 }
1307 case nir_op_umed3: {
1308 if (dst.size() == 1) {
1309 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1310 } else {
1311 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1312 nir_print_instr(&instr->instr, stderr);
1313 fprintf(stderr, "\n");
1314 }
1315 break;
1316 }
1317 case nir_op_imax3: {
1318 if (dst.size() == 1) {
1319 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1320 } else {
1321 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1322 nir_print_instr(&instr->instr, stderr);
1323 fprintf(stderr, "\n");
1324 }
1325 break;
1326 }
1327 case nir_op_imin3: {
1328 if (dst.size() == 1) {
1329 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1330 } else {
1331 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1332 nir_print_instr(&instr->instr, stderr);
1333 fprintf(stderr, "\n");
1334 }
1335 break;
1336 }
1337 case nir_op_imed3: {
1338 if (dst.size() == 1) {
1339 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1340 } else {
1341 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1342 nir_print_instr(&instr->instr, stderr);
1343 fprintf(stderr, "\n");
1344 }
1345 break;
1346 }
1347 case nir_op_cube_face_coord: {
1348 Temp in = get_alu_src(ctx, instr->src[0], 3);
1349 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1350 emit_extract_vector(ctx, in, 1, v1),
1351 emit_extract_vector(ctx, in, 2, v1) };
1352 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1353 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1354 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1355 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1356 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1357 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1358 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1359 break;
1360 }
1361 case nir_op_cube_face_index: {
1362 Temp in = get_alu_src(ctx, instr->src[0], 3);
1363 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1364 emit_extract_vector(ctx, in, 1, v1),
1365 emit_extract_vector(ctx, in, 2, v1) };
1366 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1367 break;
1368 }
1369 case nir_op_bcsel: {
1370 emit_bcsel(ctx, instr, dst);
1371 break;
1372 }
1373 case nir_op_frsq: {
1374 if (dst.size() == 1) {
1375 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f32, dst);
1376 } else if (dst.size() == 2) {
1377 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1378 } else {
1379 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1380 nir_print_instr(&instr->instr, stderr);
1381 fprintf(stderr, "\n");
1382 }
1383 break;
1384 }
1385 case nir_op_fneg: {
1386 Temp src = get_alu_src(ctx, instr->src[0]);
1387 if (dst.size() == 1) {
1388 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1389 } else if (dst.size() == 2) {
1390 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1391 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1392 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1393 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1394 } else {
1395 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1396 nir_print_instr(&instr->instr, stderr);
1397 fprintf(stderr, "\n");
1398 }
1399 break;
1400 }
1401 case nir_op_fabs: {
1402 Temp src = get_alu_src(ctx, instr->src[0]);
1403 if (dst.size() == 1) {
1404 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1405 } else if (dst.size() == 2) {
1406 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1407 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1408 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1409 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1410 } else {
1411 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1412 nir_print_instr(&instr->instr, stderr);
1413 fprintf(stderr, "\n");
1414 }
1415 break;
1416 }
1417 case nir_op_fsat: {
1418 Temp src = get_alu_src(ctx, instr->src[0]);
1419 if (dst.size() == 1) {
1420 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1421 } else if (dst.size() == 2) {
1422 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1423 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1424 vop3->clamp = true;
1425 } else {
1426 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1427 nir_print_instr(&instr->instr, stderr);
1428 fprintf(stderr, "\n");
1429 }
1430 break;
1431 }
1432 case nir_op_flog2: {
1433 if (dst.size() == 1) {
1434 emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f32, dst);
1435 } else {
1436 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1437 nir_print_instr(&instr->instr, stderr);
1438 fprintf(stderr, "\n");
1439 }
1440 break;
1441 }
1442 case nir_op_frcp: {
1443 if (dst.size() == 1) {
1444 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f32, dst);
1445 } else if (dst.size() == 2) {
1446 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1447 } else {
1448 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1449 nir_print_instr(&instr->instr, stderr);
1450 fprintf(stderr, "\n");
1451 }
1452 break;
1453 }
1454 case nir_op_fexp2: {
1455 if (dst.size() == 1) {
1456 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1457 } else {
1458 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1459 nir_print_instr(&instr->instr, stderr);
1460 fprintf(stderr, "\n");
1461 }
1462 break;
1463 }
1464 case nir_op_fsqrt: {
1465 if (dst.size() == 1) {
1466 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f32, dst);
1467 } else if (dst.size() == 2) {
1468 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1469 } else {
1470 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1471 nir_print_instr(&instr->instr, stderr);
1472 fprintf(stderr, "\n");
1473 }
1474 break;
1475 }
1476 case nir_op_ffract: {
1477 if (dst.size() == 1) {
1478 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1479 } else if (dst.size() == 2) {
1480 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1481 } else {
1482 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1483 nir_print_instr(&instr->instr, stderr);
1484 fprintf(stderr, "\n");
1485 }
1486 break;
1487 }
1488 case nir_op_ffloor: {
1489 if (dst.size() == 1) {
1490 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1491 } else if (dst.size() == 2) {
1492 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f64, dst);
1493 } else {
1494 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1495 nir_print_instr(&instr->instr, stderr);
1496 fprintf(stderr, "\n");
1497 }
1498 break;
1499 }
1500 case nir_op_fceil: {
1501 if (dst.size() == 1) {
1502 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1503 } else if (dst.size() == 2) {
1504 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1505 } else {
1506 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1507 nir_print_instr(&instr->instr, stderr);
1508 fprintf(stderr, "\n");
1509 }
1510 break;
1511 }
1512 case nir_op_ftrunc: {
1513 if (dst.size() == 1) {
1514 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1515 } else if (dst.size() == 2) {
1516 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f64, dst);
1517 } else {
1518 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1519 nir_print_instr(&instr->instr, stderr);
1520 fprintf(stderr, "\n");
1521 }
1522 break;
1523 }
1524 case nir_op_fround_even: {
1525 if (dst.size() == 1) {
1526 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1527 } else if (dst.size() == 2) {
1528 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1529 } else {
1530 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1531 nir_print_instr(&instr->instr, stderr);
1532 fprintf(stderr, "\n");
1533 }
1534 break;
1535 }
1536 case nir_op_fsin:
1537 case nir_op_fcos: {
1538 Temp src = get_alu_src(ctx, instr->src[0]);
1539 aco_ptr<Instruction> norm;
1540 if (dst.size() == 1) {
1541 Temp tmp;
1542 Operand half_pi(0x3e22f983u);
1543 if (src.type() == RegType::sgpr)
1544 tmp = bld.vop2_e64(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
1545 else
1546 tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
1547
1548 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1549 if (ctx->options->chip_class < GFX9)
1550 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1551
1552 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1553 bld.vop1(opcode, Definition(dst), tmp);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_ldexp: {
1562 if (dst.size() == 1) {
1563 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1564 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1565 get_alu_src(ctx, instr->src[1]));
1566 } else if (dst.size() == 2) {
1567 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1568 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1569 get_alu_src(ctx, instr->src[1]));
1570 } else {
1571 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1572 nir_print_instr(&instr->instr, stderr);
1573 fprintf(stderr, "\n");
1574 }
1575 break;
1576 }
1577 case nir_op_frexp_sig: {
1578 if (dst.size() == 1) {
1579 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1580 get_alu_src(ctx, instr->src[0]));
1581 } else if (dst.size() == 2) {
1582 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1583 get_alu_src(ctx, instr->src[0]));
1584 } else {
1585 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1586 nir_print_instr(&instr->instr, stderr);
1587 fprintf(stderr, "\n");
1588 }
1589 break;
1590 }
1591 case nir_op_frexp_exp: {
1592 if (instr->src[0].src.ssa->bit_size == 32) {
1593 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1594 get_alu_src(ctx, instr->src[0]));
1595 } else if (instr->src[0].src.ssa->bit_size == 64) {
1596 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1597 get_alu_src(ctx, instr->src[0]));
1598 } else {
1599 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1600 nir_print_instr(&instr->instr, stderr);
1601 fprintf(stderr, "\n");
1602 }
1603 break;
1604 }
1605 case nir_op_fsign: {
1606 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1607 if (dst.size() == 1) {
1608 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
1609 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1610 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
1611 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1612 } else if (dst.size() == 2) {
1613 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
1614 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1615 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, src, cond);
1616
1617 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
1618 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1619 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1620
1621 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_f2f32: {
1630 if (instr->src[0].src.ssa->bit_size == 64) {
1631 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1632 } else {
1633 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1634 nir_print_instr(&instr->instr, stderr);
1635 fprintf(stderr, "\n");
1636 }
1637 break;
1638 }
1639 case nir_op_f2f64: {
1640 if (instr->src[0].src.ssa->bit_size == 32) {
1641 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1642 } else {
1643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1644 nir_print_instr(&instr->instr, stderr);
1645 fprintf(stderr, "\n");
1646 }
1647 break;
1648 }
1649 case nir_op_i2f32: {
1650 assert(dst.size() == 1);
1651 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1652 break;
1653 }
1654 case nir_op_i2f64: {
1655 if (instr->src[0].src.ssa->bit_size == 32) {
1656 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1657 } else if (instr->src[0].src.ssa->bit_size == 64) {
1658 Temp src = get_alu_src(ctx, instr->src[0]);
1659 RegClass rc = RegClass(src.type(), 1);
1660 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1661 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1662 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1663 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1664 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1665 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1666
1667 } else {
1668 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1669 nir_print_instr(&instr->instr, stderr);
1670 fprintf(stderr, "\n");
1671 }
1672 break;
1673 }
1674 case nir_op_u2f32: {
1675 assert(dst.size() == 1);
1676 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1677 break;
1678 }
1679 case nir_op_u2f64: {
1680 if (instr->src[0].src.ssa->bit_size == 32) {
1681 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1682 } else if (instr->src[0].src.ssa->bit_size == 64) {
1683 Temp src = get_alu_src(ctx, instr->src[0]);
1684 RegClass rc = RegClass(src.type(), 1);
1685 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1686 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1687 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1688 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1689 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1690 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1691 } else {
1692 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1693 nir_print_instr(&instr->instr, stderr);
1694 fprintf(stderr, "\n");
1695 }
1696 break;
1697 }
1698 case nir_op_f2i32: {
1699 Temp src = get_alu_src(ctx, instr->src[0]);
1700 if (instr->src[0].src.ssa->bit_size == 32) {
1701 if (dst.type() == RegType::vgpr)
1702 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1703 else
1704 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1705 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1706
1707 } else if (instr->src[0].src.ssa->bit_size == 64) {
1708 if (dst.type() == RegType::vgpr)
1709 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1710 else
1711 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1712 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1713
1714 } else {
1715 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1716 nir_print_instr(&instr->instr, stderr);
1717 fprintf(stderr, "\n");
1718 }
1719 break;
1720 }
1721 case nir_op_f2u32: {
1722 Temp src = get_alu_src(ctx, instr->src[0]);
1723 if (instr->src[0].src.ssa->bit_size == 32) {
1724 if (dst.type() == RegType::vgpr)
1725 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
1726 else
1727 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1728 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
1729
1730 } else if (instr->src[0].src.ssa->bit_size == 64) {
1731 if (dst.type() == RegType::vgpr)
1732 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
1733 else
1734 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1735 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
1736
1737 } else {
1738 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1739 nir_print_instr(&instr->instr, stderr);
1740 fprintf(stderr, "\n");
1741 }
1742 break;
1743 }
1744 case nir_op_f2i64: {
1745 Temp src = get_alu_src(ctx, instr->src[0]);
1746 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
1747 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
1748 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
1749 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
1750 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
1751 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
1752 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
1753 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
1754 Temp new_exponent = bld.tmp(v1);
1755 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
1756 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
1757 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
1758 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
1759 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1760 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
1761 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
1762 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
1763 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
1764 Temp new_lower = bld.tmp(v1);
1765 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
1766 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
1767 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
1768
1769 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
1770 if (src.type() == RegType::vgpr)
1771 src = bld.as_uniform(src);
1772 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
1773 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
1774 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
1775 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
1776 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
1777 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
1778 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
1779 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
1780 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
1781 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
1782 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
1783 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
1784 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
1785 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
1786 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
1787 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1788 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
1789 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
1790 Temp borrow = bld.tmp(s1);
1791 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
1792 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
1793 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1794
1795 } else if (instr->src[0].src.ssa->bit_size == 64) {
1796 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
1797 Temp trunc = bld.vop1(aco_opcode::v_trunc_f64, bld.def(v2), src);
1798 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
1799 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
1800 Temp floor = bld.vop1(aco_opcode::v_floor_f64, bld.def(v2), mul);
1801 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
1802 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
1803 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
1804 if (dst.type() == RegType::sgpr) {
1805 lower = bld.as_uniform(lower);
1806 upper = bld.as_uniform(upper);
1807 }
1808 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1809
1810 } else {
1811 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1812 nir_print_instr(&instr->instr, stderr);
1813 fprintf(stderr, "\n");
1814 }
1815 break;
1816 }
1817 case nir_op_f2u64: {
1818 Temp src = get_alu_src(ctx, instr->src[0]);
1819 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
1820 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
1821 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(s2)), Operand(64u), exponent);
1822 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
1823 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
1824 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
1825 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
1826 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
1827 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
1828 Temp new_exponent = bld.tmp(v1);
1829 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
1830 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
1831 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
1832 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1833 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
1834 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
1835 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
1836 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
1837 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1838
1839 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
1840 if (src.type() == RegType::vgpr)
1841 src = bld.as_uniform(src);
1842 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
1843 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
1844 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
1845 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
1846 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
1847 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
1848 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
1849 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
1850 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
1851 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
1852 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
1853 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
1854 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
1855 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1856 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
1857 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
1858 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
1859 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1860
1861 } else if (instr->src[0].src.ssa->bit_size == 64) {
1862 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
1863 Temp trunc = bld.vop1(aco_opcode::v_trunc_f64, bld.def(v2), src);
1864 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
1865 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
1866 Temp floor = bld.vop1(aco_opcode::v_floor_f64, bld.def(v2), mul);
1867 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
1868 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
1869 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
1870 if (dst.type() == RegType::sgpr) {
1871 lower = bld.as_uniform(lower);
1872 upper = bld.as_uniform(upper);
1873 }
1874 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1875
1876 } else {
1877 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1878 nir_print_instr(&instr->instr, stderr);
1879 fprintf(stderr, "\n");
1880 }
1881 break;
1882 }
1883 case nir_op_b2f32: {
1884 Temp src = get_alu_src(ctx, instr->src[0]);
1885 if (dst.regClass() == s1) {
1886 src = as_uniform_bool(ctx, src);
1887 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
1888 } else if (dst.regClass() == v1) {
1889 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u),
1890 as_divergent_bool(ctx, src, true));
1891 } else {
1892 unreachable("Wrong destination register class for nir_op_b2f32.");
1893 }
1894 break;
1895 }
1896 case nir_op_b2f64: {
1897 Temp src = get_alu_src(ctx, instr->src[0]);
1898 if (dst.regClass() == s2) {
1899 src = as_uniform_bool(ctx, src);
1900 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
1901 } else if (dst.regClass() == v2) {
1902 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
1903 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one,
1904 as_divergent_bool(ctx, src, true));
1905 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1906 } else {
1907 unreachable("Wrong destination register class for nir_op_b2f64.");
1908 }
1909 break;
1910 }
1911 case nir_op_i2i32: {
1912 Temp src = get_alu_src(ctx, instr->src[0]);
1913 if (instr->src[0].src.ssa->bit_size == 64) {
1914 /* we can actually just say dst = src, as it would map the lower register */
1915 emit_extract_vector(ctx, src, 0, dst);
1916 } else {
1917 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1918 nir_print_instr(&instr->instr, stderr);
1919 fprintf(stderr, "\n");
1920 }
1921 break;
1922 }
1923 case nir_op_u2u32: {
1924 Temp src = get_alu_src(ctx, instr->src[0]);
1925 if (instr->src[0].src.ssa->bit_size == 16) {
1926 if (dst.regClass() == s1) {
1927 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
1928 } else {
1929 // TODO: do better with SDWA
1930 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
1931 }
1932 } else if (instr->src[0].src.ssa->bit_size == 64) {
1933 /* we can actually just say dst = src, as it would map the lower register */
1934 emit_extract_vector(ctx, src, 0, dst);
1935 } else {
1936 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1937 nir_print_instr(&instr->instr, stderr);
1938 fprintf(stderr, "\n");
1939 }
1940 break;
1941 }
1942 case nir_op_i2i64: {
1943 Temp src = get_alu_src(ctx, instr->src[0]);
1944 if (instr->src[0].src.ssa->bit_size == 32) {
1945 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
1946 } else {
1947 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1948 nir_print_instr(&instr->instr, stderr);
1949 fprintf(stderr, "\n");
1950 }
1951 break;
1952 }
1953 case nir_op_u2u64: {
1954 Temp src = get_alu_src(ctx, instr->src[0]);
1955 if (instr->src[0].src.ssa->bit_size == 32) {
1956 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
1957 } else {
1958 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1959 nir_print_instr(&instr->instr, stderr);
1960 fprintf(stderr, "\n");
1961 }
1962 break;
1963 }
1964 case nir_op_b2i32: {
1965 Temp src = get_alu_src(ctx, instr->src[0]);
1966 if (dst.regClass() == s1) {
1967 if (src.regClass() == s1) {
1968 bld.copy(Definition(dst), src);
1969 } else {
1970 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
1971 assert(src.regClass() == s2);
1972 bld.sopc(aco_opcode::s_cmp_lg_u64, bld.scc(Definition(dst)), Operand(0u), src);
1973 }
1974 } else {
1975 assert(dst.regClass() == v1 && src.regClass() == s2);
1976 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
1977 }
1978 break;
1979 }
1980 case nir_op_i2b1: {
1981 Temp src = get_alu_src(ctx, instr->src[0]);
1982 if (dst.regClass() == s2) {
1983 assert(src.regClass() == v1 || src.regClass() == v2);
1984 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
1985 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
1986 } else {
1987 assert(src.regClass() == s1 && dst.regClass() == s1);
1988 bld.sopc(aco_opcode::s_cmp_lg_u32, bld.scc(Definition(dst)), Operand(0u), src);
1989 }
1990 break;
1991 }
1992 case nir_op_pack_64_2x32_split: {
1993 Temp src0 = get_alu_src(ctx, instr->src[0]);
1994 Temp src1 = get_alu_src(ctx, instr->src[1]);
1995
1996 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
1997 break;
1998 }
1999 case nir_op_unpack_64_2x32_split_x:
2000 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2001 break;
2002 case nir_op_unpack_64_2x32_split_y:
2003 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2004 break;
2005 case nir_op_pack_half_2x16: {
2006 Temp src = get_alu_src(ctx, instr->src[0], 2);
2007
2008 if (dst.regClass() == v1) {
2009 Temp src0 = bld.tmp(v1);
2010 Temp src1 = bld.tmp(v1);
2011 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2012 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2013
2014 } else {
2015 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2016 nir_print_instr(&instr->instr, stderr);
2017 fprintf(stderr, "\n");
2018 }
2019 break;
2020 }
2021 case nir_op_unpack_half_2x16_split_x: {
2022 if (dst.regClass() == v1) {
2023 Builder bld(ctx->program, ctx->block);
2024 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2025 } else {
2026 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2027 nir_print_instr(&instr->instr, stderr);
2028 fprintf(stderr, "\n");
2029 }
2030 break;
2031 }
2032 case nir_op_unpack_half_2x16_split_y: {
2033 if (dst.regClass() == v1) {
2034 Builder bld(ctx->program, ctx->block);
2035 /* TODO: use SDWA here */
2036 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2037 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2038 } else {
2039 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2040 nir_print_instr(&instr->instr, stderr);
2041 fprintf(stderr, "\n");
2042 }
2043 break;
2044 }
2045 case nir_op_fquantize2f16: {
2046 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), get_alu_src(ctx, instr->src[0]));
2047
2048 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2049
2050 Temp cmp_res = bld.tmp(s2);
2051 bld.vopc_e64(aco_opcode::v_cmp_class_f16, Definition(cmp_res), f16, mask).def(0).setHint(vcc);
2052
2053 Temp f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2054
2055 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2056 break;
2057 }
2058 case nir_op_bfm: {
2059 Temp bits = get_alu_src(ctx, instr->src[0]);
2060 Temp offset = get_alu_src(ctx, instr->src[1]);
2061
2062 if (dst.regClass() == s1) {
2063 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2064 } else if (dst.regClass() == v1) {
2065 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2066 } else {
2067 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2068 nir_print_instr(&instr->instr, stderr);
2069 fprintf(stderr, "\n");
2070 }
2071 break;
2072 }
2073 case nir_op_bitfield_select: {
2074 /* (mask & insert) | (~mask & base) */
2075 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2076 Temp insert = get_alu_src(ctx, instr->src[1]);
2077 Temp base = get_alu_src(ctx, instr->src[2]);
2078
2079 /* dst = (insert & bitmask) | (base & ~bitmask) */
2080 if (dst.regClass() == s1) {
2081 aco_ptr<Instruction> sop2;
2082 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2083 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2084 Operand lhs;
2085 if (const_insert && const_bitmask) {
2086 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2087 } else {
2088 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2089 lhs = Operand(insert);
2090 }
2091
2092 Operand rhs;
2093 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2094 if (const_base && const_bitmask) {
2095 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2096 } else {
2097 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2098 rhs = Operand(base);
2099 }
2100
2101 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2102
2103 } else if (dst.regClass() == v1) {
2104 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2105 base = as_vgpr(ctx, base);
2106 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2107 insert = as_vgpr(ctx, insert);
2108
2109 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2110
2111 } else {
2112 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2113 nir_print_instr(&instr->instr, stderr);
2114 fprintf(stderr, "\n");
2115 }
2116 break;
2117 }
2118 case nir_op_ubfe:
2119 case nir_op_ibfe: {
2120 Temp base = get_alu_src(ctx, instr->src[0]);
2121 Temp offset = get_alu_src(ctx, instr->src[1]);
2122 Temp bits = get_alu_src(ctx, instr->src[2]);
2123
2124 if (dst.type() == RegType::sgpr) {
2125 Operand extract;
2126 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2127 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2128 if (const_offset && const_bits) {
2129 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2130 extract = Operand(const_extract);
2131 } else {
2132 Operand width;
2133 if (const_bits) {
2134 width = Operand(const_bits->u32 << 16);
2135 } else {
2136 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2137 }
2138 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2139 }
2140
2141 aco_opcode opcode;
2142 if (dst.regClass() == s1) {
2143 if (instr->op == nir_op_ubfe)
2144 opcode = aco_opcode::s_bfe_u32;
2145 else
2146 opcode = aco_opcode::s_bfe_i32;
2147 } else if (dst.regClass() == s2) {
2148 if (instr->op == nir_op_ubfe)
2149 opcode = aco_opcode::s_bfe_u64;
2150 else
2151 opcode = aco_opcode::s_bfe_i64;
2152 } else {
2153 unreachable("Unsupported BFE bit size");
2154 }
2155
2156 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2157
2158 } else {
2159 aco_opcode opcode;
2160 if (dst.regClass() == v1) {
2161 if (instr->op == nir_op_ubfe)
2162 opcode = aco_opcode::v_bfe_u32;
2163 else
2164 opcode = aco_opcode::v_bfe_i32;
2165 } else {
2166 unreachable("Unsupported BFE bit size");
2167 }
2168
2169 emit_vop3a_instruction(ctx, instr, opcode, dst);
2170 }
2171 break;
2172 }
2173 case nir_op_bit_count: {
2174 Temp src = get_alu_src(ctx, instr->src[0]);
2175 if (src.regClass() == s1) {
2176 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2177 } else if (src.regClass() == v1) {
2178 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2179 } else if (src.regClass() == v2) {
2180 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2181 emit_extract_vector(ctx, src, 1, v1),
2182 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2183 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2184 } else if (src.regClass() == s2) {
2185 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2186 } else {
2187 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2188 nir_print_instr(&instr->instr, stderr);
2189 fprintf(stderr, "\n");
2190 }
2191 break;
2192 }
2193 case nir_op_flt: {
2194 if (instr->src[0].src.ssa->bit_size == 32)
2195 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_f32, dst);
2196 else if (instr->src[0].src.ssa->bit_size == 64)
2197 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_f64, dst);
2198 break;
2199 }
2200 case nir_op_fge: {
2201 if (instr->src[0].src.ssa->bit_size == 32)
2202 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_f32, dst);
2203 else if (instr->src[0].src.ssa->bit_size == 64)
2204 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_f64, dst);
2205 break;
2206 }
2207 case nir_op_feq: {
2208 if (instr->src[0].src.ssa->bit_size == 32)
2209 emit_comparison(ctx, instr, aco_opcode::v_cmp_eq_f32, dst);
2210 else if (instr->src[0].src.ssa->bit_size == 64)
2211 emit_comparison(ctx, instr, aco_opcode::v_cmp_eq_f64, dst);
2212 break;
2213 }
2214 case nir_op_fne: {
2215 if (instr->src[0].src.ssa->bit_size == 32)
2216 emit_comparison(ctx, instr, aco_opcode::v_cmp_neq_f32, dst);
2217 else if (instr->src[0].src.ssa->bit_size == 64)
2218 emit_comparison(ctx, instr, aco_opcode::v_cmp_neq_f64, dst);
2219 break;
2220 }
2221 case nir_op_ilt: {
2222 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32)
2223 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_i32, dst);
2224 else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32)
2225 emit_comparison(ctx, instr, aco_opcode::s_cmp_lt_i32, dst);
2226 else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64)
2227 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_i64, dst);
2228 break;
2229 }
2230 case nir_op_ige: {
2231 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32)
2232 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_i32, dst);
2233 else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32)
2234 emit_comparison(ctx, instr, aco_opcode::s_cmp_ge_i32, dst);
2235 else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64)
2236 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_i64, dst);
2237 break;
2238 }
2239 case nir_op_ieq: {
2240 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32) {
2241 emit_comparison(ctx, instr, aco_opcode::v_cmp_eq_i32, dst);
2242 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32) {
2243 emit_comparison(ctx, instr, aco_opcode::s_cmp_eq_i32, dst);
2244 } else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64) {
2245 emit_comparison(ctx, instr, aco_opcode::v_cmp_eq_i64, dst);
2246 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 64) {
2247 emit_comparison(ctx, instr, aco_opcode::s_cmp_eq_u64, dst);
2248 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 1) {
2249 Temp src0 = get_alu_src(ctx, instr->src[0]);
2250 Temp src1 = get_alu_src(ctx, instr->src[1]);
2251 bld.sopc(aco_opcode::s_cmp_eq_i32, bld.scc(Definition(dst)),
2252 as_uniform_bool(ctx, src0), as_uniform_bool(ctx, src1));
2253 } else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 1) {
2254 Temp src0 = get_alu_src(ctx, instr->src[0]);
2255 Temp src1 = get_alu_src(ctx, instr->src[1]);
2256 bld.sop2(aco_opcode::s_xnor_b64, Definition(dst), bld.def(s1, scc),
2257 as_divergent_bool(ctx, src0, false), as_divergent_bool(ctx, src1, false));
2258 } else {
2259 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2260 nir_print_instr(&instr->instr, stderr);
2261 fprintf(stderr, "\n");
2262 }
2263 break;
2264 }
2265 case nir_op_ine: {
2266 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32) {
2267 emit_comparison(ctx, instr, aco_opcode::v_cmp_lg_i32, dst);
2268 } else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64) {
2269 emit_comparison(ctx, instr, aco_opcode::v_cmp_lg_i64, dst);
2270 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32) {
2271 emit_comparison(ctx, instr, aco_opcode::s_cmp_lg_i32, dst);
2272 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 64) {
2273 emit_comparison(ctx, instr, aco_opcode::s_cmp_lg_u64, dst);
2274 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 1) {
2275 Temp src0 = get_alu_src(ctx, instr->src[0]);
2276 Temp src1 = get_alu_src(ctx, instr->src[1]);
2277 bld.sopc(aco_opcode::s_cmp_lg_i32, bld.scc(Definition(dst)),
2278 as_uniform_bool(ctx, src0), as_uniform_bool(ctx, src1));
2279 } else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 1) {
2280 Temp src0 = get_alu_src(ctx, instr->src[0]);
2281 Temp src1 = get_alu_src(ctx, instr->src[1]);
2282 bld.sop2(aco_opcode::s_xor_b64, Definition(dst), bld.def(s1, scc),
2283 as_divergent_bool(ctx, src0, false), as_divergent_bool(ctx, src1, false));
2284 } else {
2285 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2286 nir_print_instr(&instr->instr, stderr);
2287 fprintf(stderr, "\n");
2288 }
2289 break;
2290 }
2291 case nir_op_ult: {
2292 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32)
2293 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_u32, dst);
2294 else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32)
2295 emit_comparison(ctx, instr, aco_opcode::s_cmp_lt_u32, dst);
2296 else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64)
2297 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_u64, dst);
2298 break;
2299 }
2300 case nir_op_uge: {
2301 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32)
2302 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_u32, dst);
2303 else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32)
2304 emit_comparison(ctx, instr, aco_opcode::s_cmp_ge_u32, dst);
2305 else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64)
2306 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_u64, dst);
2307 break;
2308 }
2309 case nir_op_fddx:
2310 case nir_op_fddy:
2311 case nir_op_fddx_fine:
2312 case nir_op_fddy_fine:
2313 case nir_op_fddx_coarse:
2314 case nir_op_fddy_coarse: {
2315 Definition tl = bld.def(v1);
2316 uint16_t dpp_ctrl;
2317 if (instr->op == nir_op_fddx_fine) {
2318 bld.vop1_dpp(aco_opcode::v_mov_b32, tl, get_alu_src(ctx, instr->src[0]), dpp_quad_perm(0, 0, 2, 2));
2319 dpp_ctrl = dpp_quad_perm(1, 1, 3, 3);
2320 } else if (instr->op == nir_op_fddy_fine) {
2321 bld.vop1_dpp(aco_opcode::v_mov_b32, tl, get_alu_src(ctx, instr->src[0]), dpp_quad_perm(0, 1, 0, 1));
2322 dpp_ctrl = dpp_quad_perm(2, 3, 2, 3);
2323 } else {
2324 bld.vop1_dpp(aco_opcode::v_mov_b32, tl, get_alu_src(ctx, instr->src[0]), dpp_quad_perm(0, 0, 0, 0));
2325 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2326 dpp_ctrl = dpp_quad_perm(1, 1, 1, 1);
2327 else
2328 dpp_ctrl = dpp_quad_perm(2, 2, 2, 2);
2329 }
2330
2331 Definition tmp = bld.def(v1);
2332 bld.vop2_dpp(aco_opcode::v_sub_f32, tmp, get_alu_src(ctx, instr->src[0]), tl.getTemp(), dpp_ctrl);
2333 emit_wqm(ctx, tmp.getTemp(), dst, true);
2334 break;
2335 }
2336 default:
2337 fprintf(stderr, "Unknown NIR ALU instr: ");
2338 nir_print_instr(&instr->instr, stderr);
2339 fprintf(stderr, "\n");
2340 }
2341 }
2342
2343 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2344 {
2345 Temp dst = get_ssa_temp(ctx, &instr->def);
2346
2347 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2348 // which get truncated the lsb if double and msb if int
2349 // for now, we only use s_mov_b64 with 64bit inline constants
2350 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2351 assert(dst.type() == RegType::sgpr);
2352
2353 if (dst.size() == 1)
2354 {
2355 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(instr->value[0].u32));
2356 } else {
2357 assert(dst.size() != 1);
2358 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2359 if (instr->def.bit_size == 64)
2360 for (unsigned i = 0; i < dst.size(); i++)
2361 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2362 else {
2363 for (unsigned i = 0; i < dst.size(); i++)
2364 vec->operands[i] = Operand{instr->value[i].u32};
2365 }
2366 vec->definitions[0] = Definition(dst);
2367 ctx->block->instructions.emplace_back(std::move(vec));
2368 }
2369 }
2370
2371 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2372 {
2373 uint32_t new_mask = 0;
2374 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2375 if (mask & (1u << i))
2376 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2377 return new_mask;
2378 }
2379
2380 void visit_store_vs_output(isel_context *ctx, nir_intrinsic_instr *instr)
2381 {
2382 /* This wouldn't work inside control flow or with indirect offsets but
2383 * that doesn't happen because of nir_lower_io_to_temporaries(). */
2384
2385 unsigned write_mask = nir_intrinsic_write_mask(instr);
2386 unsigned component = nir_intrinsic_component(instr);
2387 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2388 unsigned idx = nir_intrinsic_base(instr) + component;
2389
2390 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2391 if (off_instr->type != nir_instr_type_load_const) {
2392 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2393 nir_print_instr(off_instr, stderr);
2394 fprintf(stderr, "\n");
2395 }
2396 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
2397
2398 if (instr->src[0].ssa->bit_size == 64)
2399 write_mask = widen_mask(write_mask, 2);
2400
2401 for (unsigned i = 0; i < 8; ++i) {
2402 if (write_mask & (1 << i)) {
2403 ctx->vs_output.mask[idx / 4u] |= 1 << (idx % 4u);
2404 ctx->vs_output.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
2405 }
2406 idx++;
2407 }
2408 }
2409
2410 void visit_store_fs_output(isel_context *ctx, nir_intrinsic_instr *instr)
2411 {
2412 unsigned write_mask = nir_intrinsic_write_mask(instr);
2413 Operand values[4];
2414 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2415 for (unsigned i = 0; i < 4; ++i) {
2416 if (write_mask & (1 << i)) {
2417 Temp tmp = emit_extract_vector(ctx, src, i, v1);
2418 values[i] = Operand(tmp);
2419 } else {
2420 values[i] = Operand(v1);
2421 }
2422 }
2423
2424 unsigned index = nir_intrinsic_base(instr) / 4;
2425 unsigned target, col_format;
2426 unsigned enabled_channels = 0xF;
2427 aco_opcode compr_op = (aco_opcode)0;
2428
2429 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
2430 assert(offset && "Non-const offsets on exports not yet supported");
2431 index += offset->u32;
2432
2433 assert(index != FRAG_RESULT_COLOR);
2434
2435 /* Unlike vertex shader exports, it's fine to use multiple exports to
2436 * export separate channels of one target. So shaders which export both
2437 * FRAG_RESULT_SAMPLE_MASK and FRAG_RESULT_DEPTH should work fine.
2438 * TODO: combine the exports in those cases and create better code
2439 */
2440
2441 if (index == FRAG_RESULT_SAMPLE_MASK) {
2442
2443 if (ctx->program->info->ps.writes_z) {
2444 target = V_008DFC_SQ_EXP_MRTZ;
2445 enabled_channels = 0x4;
2446 col_format = (unsigned) -1;
2447
2448 values[2] = values[0];
2449 values[0] = Operand(v1);
2450 } else {
2451 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
2452 exp->valid_mask = false;
2453 exp->done = false;
2454 exp->compressed = true;
2455 exp->dest = V_008DFC_SQ_EXP_MRTZ;
2456 exp->enabled_mask = 0xc;
2457 for (int i = 0; i < 4; i++)
2458 exp->operands[i] = Operand(v1);
2459 exp->operands[1] = Operand(values[0]);
2460 ctx->block->instructions.emplace_back(std::move(exp));
2461 return;
2462 }
2463
2464 } else if (index == FRAG_RESULT_DEPTH) {
2465
2466 target = V_008DFC_SQ_EXP_MRTZ;
2467 enabled_channels = 0x1;
2468 col_format = (unsigned) -1;
2469
2470 } else if (index == FRAG_RESULT_STENCIL) {
2471
2472 if (ctx->program->info->ps.writes_z) {
2473 target = V_008DFC_SQ_EXP_MRTZ;
2474 enabled_channels = 0x2;
2475 col_format = (unsigned) -1;
2476
2477 values[1] = values[0];
2478 values[0] = Operand(v1);
2479 } else {
2480 aco_ptr<Instruction> shift{create_instruction<VOP2_instruction>(aco_opcode::v_lshlrev_b32, Format::VOP2, 2, 1)};
2481 shift->operands[0] = Operand((uint32_t) 16);
2482 shift->operands[1] = values[0];
2483 Temp tmp = {ctx->program->allocateId(), v1};
2484 shift->definitions[0] = Definition(tmp);
2485 ctx->block->instructions.emplace_back(std::move(shift));
2486
2487 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
2488 exp->valid_mask = false;
2489 exp->done = false;
2490 exp->compressed = true;
2491 exp->dest = V_008DFC_SQ_EXP_MRTZ;
2492 exp->enabled_mask = 0x3;
2493 exp->operands[0] = Operand(tmp);
2494 for (int i = 1; i < 4; i++)
2495 exp->operands[i] = Operand(v1);
2496 ctx->block->instructions.emplace_back(std::move(exp));
2497 return;
2498 }
2499
2500 } else {
2501 index -= FRAG_RESULT_DATA0;
2502 target = V_008DFC_SQ_EXP_MRT + index;
2503 col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
2504 }
2505 ASSERTED bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
2506 ASSERTED bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
2507 assert(!is_int8 && !is_int10);
2508
2509 switch (col_format)
2510 {
2511 case V_028714_SPI_SHADER_ZERO:
2512 enabled_channels = 0; /* writemask */
2513 target = V_008DFC_SQ_EXP_NULL;
2514 break;
2515
2516 case V_028714_SPI_SHADER_32_R:
2517 enabled_channels = 1;
2518 break;
2519
2520 case V_028714_SPI_SHADER_32_GR:
2521 enabled_channels = 0x3;
2522 break;
2523
2524 case V_028714_SPI_SHADER_32_AR:
2525 enabled_channels = 0x9;
2526 break;
2527
2528 case V_028714_SPI_SHADER_FP16_ABGR:
2529 enabled_channels = 0x5;
2530 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
2531 break;
2532
2533 case V_028714_SPI_SHADER_UNORM16_ABGR:
2534 enabled_channels = 0x5;
2535 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
2536 break;
2537
2538 case V_028714_SPI_SHADER_SNORM16_ABGR:
2539 enabled_channels = 0x5;
2540 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
2541 break;
2542
2543 case V_028714_SPI_SHADER_UINT16_ABGR:
2544 enabled_channels = 0x5;
2545 compr_op = aco_opcode::v_cvt_pk_u16_u32;
2546 break;
2547
2548 case V_028714_SPI_SHADER_SINT16_ABGR:
2549 enabled_channels = 0x5;
2550 compr_op = aco_opcode::v_cvt_pk_i16_i32;
2551 break;
2552
2553 case V_028714_SPI_SHADER_32_ABGR:
2554 enabled_channels = 0xF;
2555 break;
2556
2557 default:
2558 break;
2559 }
2560
2561 if (target == V_008DFC_SQ_EXP_NULL)
2562 return;
2563
2564 if ((bool)compr_op)
2565 {
2566 for (int i = 0; i < 2; i++)
2567 {
2568 /* check if at least one of the values to be compressed is enabled */
2569 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
2570 if (enabled) {
2571 enabled_channels |= enabled << (i*2);
2572 aco_ptr<VOP3A_instruction> compr{create_instruction<VOP3A_instruction>(compr_op, Format::VOP3A, 2, 1)};
2573 Temp tmp{ctx->program->allocateId(), v1};
2574 compr->operands[0] = values[i*2].isUndefined() ? Operand(0u) : values[i*2];
2575 compr->operands[1] = values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1];
2576 compr->definitions[0] = Definition(tmp);
2577 values[i] = Operand(tmp);
2578 ctx->block->instructions.emplace_back(std::move(compr));
2579 } else {
2580 values[i] = Operand(v1);
2581 }
2582 }
2583 }
2584
2585 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
2586 exp->valid_mask = false;
2587 exp->done = false;
2588 exp->compressed = (bool) compr_op;
2589 exp->dest = target;
2590 exp->enabled_mask = enabled_channels;
2591 if ((bool) compr_op) {
2592 for (int i = 0; i < 2; i++)
2593 exp->operands[i] = enabled_channels & (3 << (i * 2)) ? values[i] : Operand(v1);
2594 exp->operands[2] = Operand(v1);
2595 exp->operands[3] = Operand(v1);
2596 } else {
2597 for (int i = 0; i < 4; i++)
2598 exp->operands[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
2599 }
2600
2601 ctx->block->instructions.emplace_back(std::move(exp));
2602 }
2603
2604 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
2605 {
2606 if (ctx->stage == vertex_vs) {
2607 visit_store_vs_output(ctx, instr);
2608 } else if (ctx->stage == fragment_fs) {
2609 visit_store_fs_output(ctx, instr);
2610 } else {
2611 unreachable("Shader stage not implemented");
2612 }
2613 }
2614
2615 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
2616 {
2617 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
2618 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
2619
2620 Builder bld(ctx->program, ctx->block);
2621 Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
2622 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
2623 }
2624
2625 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
2626 {
2627 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
2628 for (unsigned i = 0; i < num_components; i++)
2629 vec->operands[i] = Operand(ctx->fs_inputs[fs_input::frag_pos_0 + i]);
2630
2631 if (ctx->fs_vgpr_args[fs_input::frag_pos_3]) {
2632 assert(num_components == 4);
2633 Builder bld(ctx->program, ctx->block);
2634 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ctx->fs_inputs[fs_input::frag_pos_3]);
2635 }
2636
2637 for (Operand& op : vec->operands)
2638 op = op.isUndefined() ? Operand(0u) : op;
2639
2640 vec->definitions[0] = Definition(dst);
2641 ctx->block->instructions.emplace_back(std::move(vec));
2642 emit_split_vector(ctx, dst, num_components);
2643 return;
2644 }
2645
2646 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
2647 {
2648 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
2649 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
2650 unsigned idx = nir_intrinsic_base(instr);
2651 unsigned component = nir_intrinsic_component(instr);
2652 Temp prim_mask = ctx->prim_mask;
2653
2654 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
2655 if (offset) {
2656 assert(offset->u32 == 0);
2657 } else {
2658 /* the lower 15bit of the prim_mask contain the offset into LDS
2659 * while the upper bits contain the number of prims */
2660 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
2661 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
2662 Builder bld(ctx->program, ctx->block);
2663 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
2664 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
2665 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
2666 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
2667 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
2668 }
2669
2670 if (instr->dest.ssa.num_components == 1) {
2671 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
2672 } else {
2673 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
2674 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
2675 {
2676 Temp tmp = {ctx->program->allocateId(), v1};
2677 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
2678 vec->operands[i] = Operand(tmp);
2679 }
2680 vec->definitions[0] = Definition(dst);
2681 ctx->block->instructions.emplace_back(std::move(vec));
2682 }
2683 }
2684
2685 unsigned get_num_channels_from_data_format(unsigned data_format)
2686 {
2687 switch (data_format) {
2688 case V_008F0C_BUF_DATA_FORMAT_8:
2689 case V_008F0C_BUF_DATA_FORMAT_16:
2690 case V_008F0C_BUF_DATA_FORMAT_32:
2691 return 1;
2692 case V_008F0C_BUF_DATA_FORMAT_8_8:
2693 case V_008F0C_BUF_DATA_FORMAT_16_16:
2694 case V_008F0C_BUF_DATA_FORMAT_32_32:
2695 return 2;
2696 case V_008F0C_BUF_DATA_FORMAT_10_11_11:
2697 case V_008F0C_BUF_DATA_FORMAT_11_11_10:
2698 case V_008F0C_BUF_DATA_FORMAT_32_32_32:
2699 return 3;
2700 case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
2701 case V_008F0C_BUF_DATA_FORMAT_10_10_10_2:
2702 case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
2703 case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
2704 case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
2705 return 4;
2706 default:
2707 break;
2708 }
2709
2710 return 4;
2711 }
2712
2713 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
2714 * so we may need to fix it up. */
2715 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
2716 {
2717 Builder bld(ctx->program, ctx->block);
2718
2719 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
2720 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
2721
2722 /* For the integer-like cases, do a natural sign extension.
2723 *
2724 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
2725 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
2726 * exponent.
2727 */
2728 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
2729 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
2730
2731 /* Convert back to the right type. */
2732 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
2733 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
2734 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(s2)), Operand(0xbf800000u), alpha);
2735 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
2736 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
2737 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
2738 }
2739
2740 return alpha;
2741 }
2742
2743 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
2744 {
2745 Builder bld(ctx->program, ctx->block);
2746 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
2747 if (ctx->stage & sw_vs) {
2748
2749 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
2750 if (off_instr->type != nir_instr_type_load_const) {
2751 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2752 nir_print_instr(off_instr, stderr);
2753 fprintf(stderr, "\n");
2754 }
2755 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
2756
2757 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, ctx->vertex_buffers);
2758
2759 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
2760 unsigned component = nir_intrinsic_component(instr);
2761 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
2762 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
2763 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
2764 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
2765
2766 unsigned dfmt = attrib_format & 0xf;
2767
2768 unsigned nfmt = (attrib_format >> 4) & 0x7;
2769 unsigned num_dfmt_channels = get_num_channels_from_data_format(dfmt);
2770 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
2771 unsigned num_channels = MIN2(util_last_bit(mask), num_dfmt_channels);
2772 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
2773 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
2774 if (post_shuffle)
2775 num_channels = MAX2(num_channels, 3);
2776
2777 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, Operand(attrib_binding * 16u));
2778
2779 Temp index;
2780 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
2781 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
2782 if (divisor) {
2783 ctx->needs_instance_id = true;
2784
2785 if (divisor != 1) {
2786 Temp divided = bld.tmp(v1);
2787 emit_v_div_u32(ctx, divided, as_vgpr(ctx, ctx->instance_id), divisor);
2788 index = bld.vadd32(bld.def(v1), ctx->start_instance, divided);
2789 } else {
2790 index = bld.vadd32(bld.def(v1), ctx->start_instance, ctx->instance_id);
2791 }
2792 } else {
2793 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), ctx->start_instance);
2794 }
2795 } else {
2796 index = bld.vadd32(bld.def(v1), ctx->base_vertex, ctx->vertex_id);
2797 }
2798
2799 if (attrib_stride != 0 && attrib_offset > attrib_stride) {
2800 index = bld.vadd32(bld.def(v1), Operand(attrib_offset / attrib_stride), index);
2801 attrib_offset = attrib_offset % attrib_stride;
2802 }
2803
2804 Operand soffset(0u);
2805 if (attrib_offset >= 4096) {
2806 soffset = bld.copy(bld.def(s1), Operand(attrib_offset));
2807 attrib_offset = 0;
2808 }
2809
2810 aco_opcode opcode;
2811 switch (num_channels) {
2812 case 1:
2813 opcode = aco_opcode::tbuffer_load_format_x;
2814 break;
2815 case 2:
2816 opcode = aco_opcode::tbuffer_load_format_xy;
2817 break;
2818 case 3:
2819 opcode = aco_opcode::tbuffer_load_format_xyz;
2820 break;
2821 case 4:
2822 opcode = aco_opcode::tbuffer_load_format_xyzw;
2823 break;
2824 default:
2825 unreachable("Unimplemented load_input vector size");
2826 }
2827
2828 Temp tmp = post_shuffle || num_channels != dst.size() || alpha_adjust != RADV_ALPHA_ADJUST_NONE || component ? bld.tmp(RegType::vgpr, num_channels) : dst;
2829
2830 aco_ptr<MTBUF_instruction> mubuf{create_instruction<MTBUF_instruction>(opcode, Format::MTBUF, 3, 1)};
2831 mubuf->operands[0] = Operand(index);
2832 mubuf->operands[1] = Operand(list);
2833 mubuf->operands[2] = soffset;
2834 mubuf->definitions[0] = Definition(tmp);
2835 mubuf->idxen = true;
2836 mubuf->can_reorder = true;
2837 mubuf->dfmt = dfmt;
2838 mubuf->nfmt = nfmt;
2839 assert(attrib_offset < 4096);
2840 mubuf->offset = attrib_offset;
2841 ctx->block->instructions.emplace_back(std::move(mubuf));
2842
2843 emit_split_vector(ctx, tmp, tmp.size());
2844
2845 if (tmp.id() != dst.id()) {
2846 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
2847 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
2848
2849 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
2850 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
2851 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
2852
2853 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2854 for (unsigned i = 0; i < dst.size(); i++) {
2855 unsigned idx = i + component;
2856 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE && num_channels >= 4) {
2857 Temp alpha = emit_extract_vector(ctx, tmp, swizzle[3], v1);
2858 vec->operands[3] = Operand(adjust_vertex_fetch_alpha(ctx, alpha_adjust, alpha));
2859 } else if (idx < num_channels) {
2860 vec->operands[i] = Operand(emit_extract_vector(ctx, tmp, swizzle[idx], v1));
2861 } else if (is_float && idx == 3) {
2862 vec->operands[i] = Operand(0x3f800000u);
2863 } else if (!is_float && idx == 3) {
2864 vec->operands[i] = Operand(1u);
2865 } else {
2866 vec->operands[i] = Operand(0u);
2867 }
2868 }
2869 vec->definitions[0] = Definition(dst);
2870 ctx->block->instructions.emplace_back(std::move(vec));
2871 emit_split_vector(ctx, dst, dst.size());
2872 }
2873
2874 } else if (ctx->stage == fragment_fs) {
2875 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
2876 if (off_instr->type != nir_instr_type_load_const ||
2877 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
2878 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2879 nir_print_instr(off_instr, stderr);
2880 fprintf(stderr, "\n");
2881 }
2882
2883 Temp prim_mask = ctx->prim_mask;
2884 nir_const_value* offset = nir_src_as_const_value(instr->src[0]);
2885 if (offset) {
2886 assert(offset->u32 == 0);
2887 } else {
2888 /* the lower 15bit of the prim_mask contain the offset into LDS
2889 * while the upper bits contain the number of prims */
2890 Temp offset_src = get_ssa_temp(ctx, instr->src[0].ssa);
2891 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
2892 Builder bld(ctx->program, ctx->block);
2893 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
2894 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
2895 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
2896 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
2897 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
2898 }
2899
2900 unsigned idx = nir_intrinsic_base(instr);
2901 unsigned component = nir_intrinsic_component(instr);
2902
2903 if (dst.size() == 1) {
2904 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(2u), bld.m0(prim_mask), idx, component);
2905 } else {
2906 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2907 for (unsigned i = 0; i < dst.size(); i++)
2908 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(2u), bld.m0(prim_mask), idx, component + i);
2909 vec->definitions[0] = Definition(dst);
2910 bld.insert(std::move(vec));
2911 }
2912
2913 } else {
2914 unreachable("Shader stage not implemented");
2915 }
2916 }
2917
2918 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
2919 {
2920 if (ctx->program->info->need_indirect_descriptor_sets) {
2921 Builder bld(ctx->program, ctx->block);
2922 Temp ptr64 = convert_pointer_to_64_bit(ctx, ctx->descriptor_sets[0]);
2923 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, Operand(desc_set << 2));//, false, false, false);
2924 }
2925
2926 return ctx->descriptor_sets[desc_set];
2927 }
2928
2929
2930 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
2931 {
2932 Builder bld(ctx->program, ctx->block);
2933 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
2934 unsigned desc_set = nir_intrinsic_desc_set(instr);
2935 unsigned binding = nir_intrinsic_binding(instr);
2936
2937 Temp desc_ptr;
2938 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
2939 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
2940 unsigned offset = layout->binding[binding].offset;
2941 unsigned stride;
2942 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
2943 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
2944 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
2945 desc_ptr = ctx->push_constants;
2946 offset = pipeline_layout->push_constant_size + 16 * idx;
2947 stride = 16;
2948 } else {
2949 desc_ptr = load_desc_ptr(ctx, desc_set);
2950 stride = layout->binding[binding].size;
2951 }
2952
2953 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
2954 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
2955 if (stride != 1) {
2956 if (nir_const_index) {
2957 const_index = const_index * stride;
2958 } else {
2959 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
2960 }
2961 }
2962 if (offset) {
2963 if (nir_const_index) {
2964 const_index = const_index + offset;
2965 } else {
2966 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
2967 }
2968 }
2969
2970 if (nir_const_index && const_index == 0) {
2971 index = desc_ptr;
2972 } else {
2973 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
2974 nir_const_index ? Operand(const_index) : Operand(index),
2975 Operand(desc_ptr));
2976 }
2977
2978 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
2979 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), index);
2980 }
2981
2982 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst, Temp rsrc, Temp offset, bool glc=false)
2983 {
2984 Builder bld(ctx->program, ctx->block);
2985
2986 unsigned num_bytes = dst.size() * 4;
2987 bool dlc = glc && ctx->options->chip_class >= GFX10;
2988
2989 aco_opcode op;
2990 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
2991 if (ctx->options->chip_class < GFX8)
2992 offset = as_vgpr(ctx, offset);
2993
2994 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
2995 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
2996 unsigned const_offset = 0;
2997
2998 Temp lower = Temp();
2999 if (num_bytes > 16) {
3000 assert(num_components == 3 || num_components == 4);
3001 op = aco_opcode::buffer_load_dwordx4;
3002 lower = bld.tmp(v4);
3003 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3004 mubuf->definitions[0] = Definition(lower);
3005 mubuf->operands[0] = vaddr;
3006 mubuf->operands[1] = Operand(rsrc);
3007 mubuf->operands[2] = soffset;
3008 mubuf->offen = (offset.type() == RegType::vgpr);
3009 mubuf->glc = glc;
3010 mubuf->dlc = dlc;
3011 mubuf->barrier = barrier_buffer;
3012 bld.insert(std::move(mubuf));
3013 emit_split_vector(ctx, lower, 2);
3014 num_bytes -= 16;
3015 const_offset = 16;
3016 }
3017
3018 switch (num_bytes) {
3019 case 4:
3020 op = aco_opcode::buffer_load_dword;
3021 break;
3022 case 8:
3023 op = aco_opcode::buffer_load_dwordx2;
3024 break;
3025 case 12:
3026 op = aco_opcode::buffer_load_dwordx3;
3027 break;
3028 case 16:
3029 op = aco_opcode::buffer_load_dwordx4;
3030 break;
3031 default:
3032 unreachable("Load SSBO not implemented for this size.");
3033 }
3034 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3035 mubuf->operands[0] = vaddr;
3036 mubuf->operands[1] = Operand(rsrc);
3037 mubuf->operands[2] = soffset;
3038 mubuf->offen = (offset.type() == RegType::vgpr);
3039 mubuf->glc = glc;
3040 mubuf->dlc = dlc;
3041 mubuf->barrier = barrier_buffer;
3042 mubuf->offset = const_offset;
3043 aco_ptr<Instruction> instr = std::move(mubuf);
3044
3045 if (dst.size() > 4) {
3046 assert(lower != Temp());
3047 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
3048 instr->definitions[0] = Definition(upper);
3049 bld.insert(std::move(instr));
3050 if (dst.size() == 8)
3051 emit_split_vector(ctx, upper, 2);
3052 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
3053 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
3054 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
3055 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
3056 if (dst.size() == 8)
3057 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
3058 }
3059
3060 if (dst.type() == RegType::sgpr) {
3061 Temp vec = bld.tmp(RegType::vgpr, dst.size());
3062 instr->definitions[0] = Definition(vec);
3063 bld.insert(std::move(instr));
3064 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
3065 } else {
3066 instr->definitions[0] = Definition(dst);
3067 bld.insert(std::move(instr));
3068 }
3069 } else {
3070 switch (num_bytes) {
3071 case 4:
3072 op = aco_opcode::s_buffer_load_dword;
3073 break;
3074 case 8:
3075 op = aco_opcode::s_buffer_load_dwordx2;
3076 break;
3077 case 12:
3078 case 16:
3079 op = aco_opcode::s_buffer_load_dwordx4;
3080 break;
3081 case 24:
3082 case 32:
3083 op = aco_opcode::s_buffer_load_dwordx8;
3084 break;
3085 default:
3086 unreachable("Load SSBO not implemented for this size.");
3087 }
3088 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3089 load->operands[0] = Operand(rsrc);
3090 load->operands[1] = Operand(bld.as_uniform(offset));
3091 assert(load->operands[1].getTemp().type() == RegType::sgpr);
3092 load->definitions[0] = Definition(dst);
3093 load->glc = glc;
3094 load->dlc = dlc;
3095 load->barrier = barrier_buffer;
3096 assert(ctx->options->chip_class >= GFX8 || !glc);
3097
3098 /* trim vector */
3099 if (dst.size() == 3) {
3100 Temp vec = bld.tmp(s4);
3101 load->definitions[0] = Definition(vec);
3102 bld.insert(std::move(load));
3103 emit_split_vector(ctx, vec, 4);
3104
3105 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3106 emit_extract_vector(ctx, vec, 0, s1),
3107 emit_extract_vector(ctx, vec, 1, s1),
3108 emit_extract_vector(ctx, vec, 2, s1));
3109 } else if (dst.size() == 6) {
3110 Temp vec = bld.tmp(s8);
3111 load->definitions[0] = Definition(vec);
3112 bld.insert(std::move(load));
3113 emit_split_vector(ctx, vec, 4);
3114
3115 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3116 emit_extract_vector(ctx, vec, 0, s2),
3117 emit_extract_vector(ctx, vec, 1, s2),
3118 emit_extract_vector(ctx, vec, 2, s2));
3119 } else {
3120 bld.insert(std::move(load));
3121 }
3122
3123 }
3124 emit_split_vector(ctx, dst, num_components);
3125 }
3126
3127 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
3128 {
3129 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3130 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
3131
3132 Builder bld(ctx->program, ctx->block);
3133
3134 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3135 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
3136 unsigned binding = nir_intrinsic_binding(idx_instr);
3137 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
3138
3139 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
3140 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3141 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3142 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3143 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
3144 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3145 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3146 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
3147 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
3148 Operand(0xFFFFFFFFu),
3149 Operand(desc_type));
3150 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3151 rsrc, upper_dwords);
3152 } else {
3153 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
3154 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
3155 }
3156
3157 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
3158 }
3159
3160 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3161 {
3162 Builder bld(ctx->program, ctx->block);
3163 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3164
3165 unsigned offset = nir_intrinsic_base(instr);
3166 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
3167 if (index_cv && instr->dest.ssa.bit_size == 32) {
3168
3169 unsigned count = instr->dest.ssa.num_components;
3170 unsigned start = (offset + index_cv->u32) / 4u;
3171 start -= ctx->base_inline_push_consts;
3172 if (start + count <= ctx->num_inline_push_consts) {
3173 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3174 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
3175 for (unsigned i = 0; i < count; ++i) {
3176 elems[i] = ctx->inline_push_consts[start + i];
3177 vec->operands[i] = Operand{elems[i]};
3178 }
3179 vec->definitions[0] = Definition(dst);
3180 ctx->block->instructions.emplace_back(std::move(vec));
3181 ctx->allocated_vec.emplace(dst.id(), elems);
3182 return;
3183 }
3184 }
3185
3186 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
3187 if (offset != 0) // TODO check if index != 0 as well
3188 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
3189 Temp ptr = convert_pointer_to_64_bit(ctx, ctx->push_constants);
3190 Temp vec = dst;
3191 bool trim = false;
3192 aco_opcode op;
3193
3194 switch (dst.size()) {
3195 case 1:
3196 op = aco_opcode::s_load_dword;
3197 break;
3198 case 2:
3199 op = aco_opcode::s_load_dwordx2;
3200 break;
3201 case 3:
3202 vec = bld.tmp(s4);
3203 trim = true;
3204 case 4:
3205 op = aco_opcode::s_load_dwordx4;
3206 break;
3207 case 6:
3208 vec = bld.tmp(s8);
3209 trim = true;
3210 case 8:
3211 op = aco_opcode::s_load_dwordx8;
3212 break;
3213 default:
3214 unreachable("unimplemented or forbidden load_push_constant.");
3215 }
3216
3217 bld.smem(op, Definition(vec), ptr, index);
3218
3219 if (trim) {
3220 emit_split_vector(ctx, vec, 4);
3221 RegClass rc = dst.size() == 3 ? s1 : s2;
3222 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3223 emit_extract_vector(ctx, vec, 0, rc),
3224 emit_extract_vector(ctx, vec, 1, rc),
3225 emit_extract_vector(ctx, vec, 2, rc));
3226
3227 }
3228 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
3229 }
3230
3231 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3232 {
3233 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3234
3235 Builder bld(ctx->program, ctx->block);
3236
3237 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3238 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3239 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3240 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3241 if (ctx->options->chip_class >= GFX10) {
3242 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3243 S_008F0C_OOB_SELECT(3) |
3244 S_008F0C_RESOURCE_LEVEL(1);
3245 } else {
3246 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3247 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3248 }
3249
3250 unsigned base = nir_intrinsic_base(instr);
3251 unsigned range = nir_intrinsic_range(instr);
3252
3253 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
3254 if (base && offset.type() == RegType::sgpr)
3255 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
3256 else if (base && offset.type() == RegType::vgpr)
3257 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
3258
3259 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3260 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
3261 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
3262 Operand(desc_type));
3263
3264 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
3265 }
3266
3267 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
3268 {
3269 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3270 ctx->cf_info.exec_potentially_empty = true;
3271
3272 ctx->program->needs_exact = true;
3273
3274 // TODO: optimize uniform conditions
3275 Builder bld(ctx->program, ctx->block);
3276 Temp src = as_divergent_bool(ctx, get_ssa_temp(ctx, instr->src[0].ssa), false);
3277 src = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
3278 bld.pseudo(aco_opcode::p_discard_if, src);
3279 ctx->block->kind |= block_kind_uses_discard_if;
3280 return;
3281 }
3282
3283 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
3284 {
3285 Builder bld(ctx->program, ctx->block);
3286
3287 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3288 ctx->cf_info.exec_potentially_empty = true;
3289
3290 bool divergent = ctx->cf_info.parent_if.is_divergent ||
3291 ctx->cf_info.parent_loop.has_divergent_continue;
3292
3293 if (ctx->block->loop_nest_depth &&
3294 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
3295 /* we handle discards the same way as jump instructions */
3296 append_logical_end(ctx->block);
3297
3298 /* in loops, discard behaves like break */
3299 Block *linear_target = ctx->cf_info.parent_loop.exit;
3300 ctx->block->kind |= block_kind_discard;
3301
3302 if (!divergent) {
3303 /* uniform discard - loop ends here */
3304 assert(nir_instr_is_last(&instr->instr));
3305 ctx->block->kind |= block_kind_uniform;
3306 ctx->cf_info.has_branch = true;
3307 bld.branch(aco_opcode::p_branch);
3308 add_linear_edge(ctx->block->index, linear_target);
3309 return;
3310 }
3311
3312 /* we add a break right behind the discard() instructions */
3313 ctx->block->kind |= block_kind_break;
3314 unsigned idx = ctx->block->index;
3315
3316 /* remove critical edges from linear CFG */
3317 bld.branch(aco_opcode::p_branch);
3318 Block* break_block = ctx->program->create_and_insert_block();
3319 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3320 break_block->kind |= block_kind_uniform;
3321 add_linear_edge(idx, break_block);
3322 add_linear_edge(break_block->index, linear_target);
3323 bld.reset(break_block);
3324 bld.branch(aco_opcode::p_branch);
3325
3326 Block* continue_block = ctx->program->create_and_insert_block();
3327 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3328 add_linear_edge(idx, continue_block);
3329 append_logical_start(continue_block);
3330 ctx->block = continue_block;
3331
3332 return;
3333 }
3334
3335 /* it can currently happen that NIR doesn't remove the unreachable code */
3336 if (!nir_instr_is_last(&instr->instr)) {
3337 ctx->program->needs_exact = true;
3338 /* save exec somewhere temporarily so that it doesn't get
3339 * overwritten before the discard from outer exec masks */
3340 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, s2));
3341 bld.pseudo(aco_opcode::p_discard_if, cond);
3342 ctx->block->kind |= block_kind_uses_discard_if;
3343 return;
3344 }
3345
3346 /* This condition is incorrect for uniformly branched discards in a loop
3347 * predicated by a divergent condition, but the above code catches that case
3348 * and the discard would end up turning into a discard_if.
3349 * For example:
3350 * if (divergent) {
3351 * while (...) {
3352 * if (uniform) {
3353 * discard;
3354 * }
3355 * }
3356 * }
3357 */
3358 if (!ctx->cf_info.parent_if.is_divergent) {
3359 /* program just ends here */
3360 ctx->block->kind |= block_kind_uniform;
3361 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
3362 0 /* enabled mask */, 9 /* dest */,
3363 false /* compressed */, true/* done */, true /* valid mask */);
3364 bld.sopp(aco_opcode::s_endpgm);
3365 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
3366 } else {
3367 ctx->block->kind |= block_kind_discard;
3368 /* branch and linear edge is added by visit_if() */
3369 }
3370 }
3371
3372 enum aco_descriptor_type {
3373 ACO_DESC_IMAGE,
3374 ACO_DESC_FMASK,
3375 ACO_DESC_SAMPLER,
3376 ACO_DESC_BUFFER,
3377 ACO_DESC_PLANE_0,
3378 ACO_DESC_PLANE_1,
3379 ACO_DESC_PLANE_2,
3380 };
3381
3382 static bool
3383 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
3384 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
3385 return false;
3386 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
3387 return dim == ac_image_cube ||
3388 dim == ac_image_1darray ||
3389 dim == ac_image_2darray ||
3390 dim == ac_image_2darraymsaa;
3391 }
3392
3393 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
3394 enum aco_descriptor_type desc_type,
3395 const nir_tex_instr *tex_instr, bool image, bool write)
3396 {
3397 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
3398 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
3399 if (it != ctx->tex_desc.end())
3400 return it->second;
3401 */
3402 Temp index = Temp();
3403 bool index_set = false;
3404 unsigned constant_index = 0;
3405 unsigned descriptor_set;
3406 unsigned base_index;
3407 Builder bld(ctx->program, ctx->block);
3408
3409 if (!deref_instr) {
3410 assert(tex_instr && !image);
3411 descriptor_set = 0;
3412 base_index = tex_instr->sampler_index;
3413 } else {
3414 while(deref_instr->deref_type != nir_deref_type_var) {
3415 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
3416 if (!array_size)
3417 array_size = 1;
3418
3419 assert(deref_instr->deref_type == nir_deref_type_array);
3420 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
3421 if (const_value) {
3422 constant_index += array_size * const_value->u32;
3423 } else {
3424 Temp indirect = bld.as_uniform(get_ssa_temp(ctx, deref_instr->arr.index.ssa));
3425
3426 if (array_size != 1)
3427 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
3428
3429 if (!index_set) {
3430 index = indirect;
3431 index_set = true;
3432 } else {
3433 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
3434 }
3435 }
3436
3437 deref_instr = nir_src_as_deref(deref_instr->parent);
3438 }
3439 descriptor_set = deref_instr->var->data.descriptor_set;
3440 base_index = deref_instr->var->data.binding;
3441 }
3442
3443 Temp list = load_desc_ptr(ctx, descriptor_set);
3444 list = convert_pointer_to_64_bit(ctx, list);
3445
3446 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
3447 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
3448 unsigned offset = binding->offset;
3449 unsigned stride = binding->size;
3450 aco_opcode opcode;
3451 RegClass type;
3452
3453 assert(base_index < layout->binding_count);
3454
3455 switch (desc_type) {
3456 case ACO_DESC_IMAGE:
3457 type = s8;
3458 opcode = aco_opcode::s_load_dwordx8;
3459 break;
3460 case ACO_DESC_FMASK:
3461 type = s8;
3462 opcode = aco_opcode::s_load_dwordx8;
3463 offset += 32;
3464 break;
3465 case ACO_DESC_SAMPLER:
3466 type = s4;
3467 opcode = aco_opcode::s_load_dwordx4;
3468 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
3469 offset += radv_combined_image_descriptor_sampler_offset(binding);
3470 break;
3471 case ACO_DESC_BUFFER:
3472 type = s4;
3473 opcode = aco_opcode::s_load_dwordx4;
3474 break;
3475 case ACO_DESC_PLANE_0:
3476 case ACO_DESC_PLANE_1:
3477 type = s8;
3478 opcode = aco_opcode::s_load_dwordx8;
3479 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
3480 break;
3481 case ACO_DESC_PLANE_2:
3482 type = s4;
3483 opcode = aco_opcode::s_load_dwordx4;
3484 offset += 64;
3485 break;
3486 default:
3487 unreachable("invalid desc_type\n");
3488 }
3489
3490 offset += constant_index * stride;
3491
3492 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
3493 (!index_set || binding->immutable_samplers_equal)) {
3494 if (binding->immutable_samplers_equal)
3495 constant_index = 0;
3496
3497 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
3498 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3499 Operand(samplers[constant_index * 4 + 0]),
3500 Operand(samplers[constant_index * 4 + 1]),
3501 Operand(samplers[constant_index * 4 + 2]),
3502 Operand(samplers[constant_index * 4 + 3]));
3503 }
3504
3505 Operand off;
3506 if (!index_set) {
3507 off = Operand(offset);
3508 } else {
3509 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
3510 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
3511 }
3512
3513 Temp res = bld.smem(opcode, bld.def(type), list, off);
3514
3515 if (desc_type == ACO_DESC_PLANE_2) {
3516 Temp components[8];
3517 for (unsigned i = 0; i < 8; i++)
3518 components[i] = bld.tmp(s1);
3519 bld.pseudo(aco_opcode::p_split_vector,
3520 Definition(components[0]),
3521 Definition(components[1]),
3522 Definition(components[2]),
3523 Definition(components[3]),
3524 res);
3525
3526 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
3527 bld.pseudo(aco_opcode::p_split_vector,
3528 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
3529 Definition(components[4]),
3530 Definition(components[5]),
3531 Definition(components[6]),
3532 Definition(components[7]),
3533 desc2);
3534
3535 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
3536 components[0], components[1], components[2], components[3],
3537 components[4], components[5], components[6], components[7]);
3538 }
3539
3540 return res;
3541 }
3542
3543 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
3544 {
3545 switch (dim) {
3546 case GLSL_SAMPLER_DIM_BUF:
3547 return 1;
3548 case GLSL_SAMPLER_DIM_1D:
3549 return array ? 2 : 1;
3550 case GLSL_SAMPLER_DIM_2D:
3551 return array ? 3 : 2;
3552 case GLSL_SAMPLER_DIM_MS:
3553 return array ? 4 : 3;
3554 case GLSL_SAMPLER_DIM_3D:
3555 case GLSL_SAMPLER_DIM_CUBE:
3556 return 3;
3557 case GLSL_SAMPLER_DIM_RECT:
3558 case GLSL_SAMPLER_DIM_SUBPASS:
3559 return 2;
3560 case GLSL_SAMPLER_DIM_SUBPASS_MS:
3561 return 3;
3562 default:
3563 break;
3564 }
3565 return 0;
3566 }
3567
3568
3569 /* Adjust the sample index according to FMASK.
3570 *
3571 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
3572 * which is the identity mapping. Each nibble says which physical sample
3573 * should be fetched to get that sample.
3574 *
3575 * For example, 0x11111100 means there are only 2 samples stored and
3576 * the second sample covers 3/4 of the pixel. When reading samples 0
3577 * and 1, return physical sample 0 (determined by the first two 0s
3578 * in FMASK), otherwise return physical sample 1.
3579 *
3580 * The sample index should be adjusted as follows:
3581 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
3582 */
3583 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, Temp coords, Operand sample_index, Temp fmask_desc_ptr)
3584 {
3585 Builder bld(ctx->program, ctx->block);
3586 Temp fmask = bld.tmp(v1);
3587 unsigned dim = ctx->options->chip_class >= GFX10
3588 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
3589 : 0;
3590
3591 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 2, 1)};
3592 load->operands[0] = Operand(coords);
3593 load->operands[1] = Operand(fmask_desc_ptr);
3594 load->definitions[0] = Definition(fmask);
3595 load->glc = false;
3596 load->dlc = false;
3597 load->dmask = 0x1;
3598 load->unrm = true;
3599 load->da = da;
3600 load->dim = dim;
3601 load->can_reorder = true; /* fmask images shouldn't be modified */
3602 ctx->block->instructions.emplace_back(std::move(load));
3603
3604 Operand sample_index4;
3605 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
3606 sample_index4 = Operand(sample_index.constantValue() << 2);
3607 } else if (sample_index.regClass() == s1) {
3608 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
3609 } else {
3610 assert(sample_index.regClass() == v1);
3611 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
3612 }
3613
3614 Temp final_sample;
3615 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
3616 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
3617 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
3618 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
3619 else
3620 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
3621
3622 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
3623 * resource descriptor is 0 (invalid),
3624 */
3625 Temp compare = bld.tmp(s2);
3626 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
3627 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
3628
3629 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
3630
3631 /* Replace the MSAA sample index. */
3632 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
3633 }
3634
3635 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
3636 {
3637
3638 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
3639 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3640 bool is_array = glsl_sampler_type_is_array(type);
3641 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
3642 assert(!add_frag_pos && "Input attachments should be lowered.");
3643 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
3644 bool gfx9_1d = ctx->options->chip_class >= GFX9 && dim == GLSL_SAMPLER_DIM_1D;
3645 int count = image_type_to_components_count(dim, is_array);
3646 std::vector<Operand> coords(count);
3647
3648 if (is_ms) {
3649 Operand sample_index;
3650 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
3651 if (sample_cv)
3652 sample_index = Operand(sample_cv->u32);
3653 else
3654 sample_index = Operand(emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[2].ssa), 0, v1));
3655
3656 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
3657 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, is_array ? 3 : 2, 1)};
3658 for (unsigned i = 0; i < vec->operands.size(); i++)
3659 vec->operands[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
3660 Temp fmask_load_address = {ctx->program->allocateId(), is_array ? v3 : v2};
3661 vec->definitions[0] = Definition(fmask_load_address);
3662 ctx->block->instructions.emplace_back(std::move(vec));
3663
3664 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
3665 sample_index = Operand(adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr));
3666 }
3667 count--;
3668 coords[count] = sample_index;
3669 }
3670
3671 if (count == 1 && !gfx9_1d)
3672 return emit_extract_vector(ctx, src0, 0, v1);
3673
3674 if (gfx9_1d) {
3675 coords[0] = Operand(emit_extract_vector(ctx, src0, 0, v1));
3676 coords.resize(coords.size() + 1);
3677 coords[1] = Operand((uint32_t) 0);
3678 if (is_array)
3679 coords[2] = Operand(emit_extract_vector(ctx, src0, 1, v1));
3680 } else {
3681 for (int i = 0; i < count; i++)
3682 coords[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
3683 }
3684
3685 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
3686 for (unsigned i = 0; i < coords.size(); i++)
3687 vec->operands[i] = coords[i];
3688 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
3689 vec->definitions[0] = Definition(res);
3690 ctx->block->instructions.emplace_back(std::move(vec));
3691 return res;
3692 }
3693
3694
3695 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
3696 {
3697 Builder bld(ctx->program, ctx->block);
3698 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
3699 const struct glsl_type *type = glsl_without_array(var->type);
3700 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3701 bool is_array = glsl_sampler_type_is_array(type);
3702 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3703
3704 if (dim == GLSL_SAMPLER_DIM_BUF) {
3705 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
3706 unsigned num_channels = util_last_bit(mask);
3707 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
3708 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
3709
3710 aco_opcode opcode;
3711 switch (num_channels) {
3712 case 1:
3713 opcode = aco_opcode::buffer_load_format_x;
3714 break;
3715 case 2:
3716 opcode = aco_opcode::buffer_load_format_xy;
3717 break;
3718 case 3:
3719 opcode = aco_opcode::buffer_load_format_xyz;
3720 break;
3721 case 4:
3722 opcode = aco_opcode::buffer_load_format_xyzw;
3723 break;
3724 default:
3725 unreachable(">4 channel buffer image load");
3726 }
3727 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
3728 load->operands[0] = Operand(vindex);
3729 load->operands[1] = Operand(rsrc);
3730 load->operands[2] = Operand((uint32_t) 0);
3731 Temp tmp;
3732 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
3733 tmp = dst;
3734 else
3735 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
3736 load->definitions[0] = Definition(tmp);
3737 load->idxen = true;
3738 load->barrier = barrier_image;
3739 ctx->block->instructions.emplace_back(std::move(load));
3740
3741 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
3742 return;
3743 }
3744
3745 Temp coords = get_image_coords(ctx, instr, type);
3746 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
3747
3748 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
3749 unsigned num_components = util_bitcount(dmask);
3750 Temp tmp;
3751 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
3752 tmp = dst;
3753 else
3754 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
3755
3756 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 2, 1)};
3757 load->operands[0] = Operand(coords);
3758 load->operands[1] = Operand(resource);
3759 load->definitions[0] = Definition(tmp);
3760 load->glc = var->data.image.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
3761 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
3762 load->dmask = dmask;
3763 load->unrm = true;
3764 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
3765 load->barrier = barrier_image;
3766 ctx->block->instructions.emplace_back(std::move(load));
3767
3768 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
3769 return;
3770 }
3771
3772 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
3773 {
3774 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
3775 const struct glsl_type *type = glsl_without_array(var->type);
3776 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3777 bool is_array = glsl_sampler_type_is_array(type);
3778 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
3779
3780 bool glc = ctx->options->chip_class == GFX6 || var->data.image.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
3781
3782 if (dim == GLSL_SAMPLER_DIM_BUF) {
3783 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
3784 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
3785 aco_opcode opcode;
3786 switch (data.size()) {
3787 case 1:
3788 opcode = aco_opcode::buffer_store_format_x;
3789 break;
3790 case 2:
3791 opcode = aco_opcode::buffer_store_format_xy;
3792 break;
3793 case 3:
3794 opcode = aco_opcode::buffer_store_format_xyz;
3795 break;
3796 case 4:
3797 opcode = aco_opcode::buffer_store_format_xyzw;
3798 break;
3799 default:
3800 unreachable(">4 channel buffer image store");
3801 }
3802 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
3803 store->operands[0] = Operand(vindex);
3804 store->operands[1] = Operand(rsrc);
3805 store->operands[2] = Operand((uint32_t) 0);
3806 store->operands[3] = Operand(data);
3807 store->idxen = true;
3808 store->glc = glc;
3809 store->dlc = false;
3810 store->disable_wqm = true;
3811 store->barrier = barrier_image;
3812 ctx->program->needs_exact = true;
3813 ctx->block->instructions.emplace_back(std::move(store));
3814 return;
3815 }
3816
3817 assert(data.type() == RegType::vgpr);
3818 Temp coords = get_image_coords(ctx, instr, type);
3819 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
3820
3821 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(aco_opcode::image_store, Format::MIMG, 4, 0)};
3822 store->operands[0] = Operand(coords);
3823 store->operands[1] = Operand(resource);
3824 store->operands[2] = Operand(s4);
3825 store->operands[3] = Operand(data);
3826 store->glc = glc;
3827 store->dlc = false;
3828 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
3829 store->dmask = (1 << data.size()) - 1;
3830 store->unrm = true;
3831 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
3832 store->disable_wqm = true;
3833 store->barrier = barrier_image;
3834 ctx->program->needs_exact = true;
3835 ctx->block->instructions.emplace_back(std::move(store));
3836 return;
3837 }
3838
3839 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
3840 {
3841 /* return the previous value if dest is ever used */
3842 bool return_previous = false;
3843 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
3844 return_previous = true;
3845 break;
3846 }
3847 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
3848 return_previous = true;
3849 break;
3850 }
3851
3852 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
3853 const struct glsl_type *type = glsl_without_array(var->type);
3854 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3855 bool is_array = glsl_sampler_type_is_array(type);
3856 Builder bld(ctx->program, ctx->block);
3857
3858 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
3859 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
3860
3861 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
3862 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
3863
3864 aco_opcode buf_op, image_op;
3865 switch (instr->intrinsic) {
3866 case nir_intrinsic_image_deref_atomic_add:
3867 buf_op = aco_opcode::buffer_atomic_add;
3868 image_op = aco_opcode::image_atomic_add;
3869 break;
3870 case nir_intrinsic_image_deref_atomic_umin:
3871 buf_op = aco_opcode::buffer_atomic_umin;
3872 image_op = aco_opcode::image_atomic_umin;
3873 break;
3874 case nir_intrinsic_image_deref_atomic_imin:
3875 buf_op = aco_opcode::buffer_atomic_smin;
3876 image_op = aco_opcode::image_atomic_smin;
3877 break;
3878 case nir_intrinsic_image_deref_atomic_umax:
3879 buf_op = aco_opcode::buffer_atomic_umax;
3880 image_op = aco_opcode::image_atomic_umax;
3881 break;
3882 case nir_intrinsic_image_deref_atomic_imax:
3883 buf_op = aco_opcode::buffer_atomic_smax;
3884 image_op = aco_opcode::image_atomic_smax;
3885 break;
3886 case nir_intrinsic_image_deref_atomic_and:
3887 buf_op = aco_opcode::buffer_atomic_and;
3888 image_op = aco_opcode::image_atomic_and;
3889 break;
3890 case nir_intrinsic_image_deref_atomic_or:
3891 buf_op = aco_opcode::buffer_atomic_or;
3892 image_op = aco_opcode::image_atomic_or;
3893 break;
3894 case nir_intrinsic_image_deref_atomic_xor:
3895 buf_op = aco_opcode::buffer_atomic_xor;
3896 image_op = aco_opcode::image_atomic_xor;
3897 break;
3898 case nir_intrinsic_image_deref_atomic_exchange:
3899 buf_op = aco_opcode::buffer_atomic_swap;
3900 image_op = aco_opcode::image_atomic_swap;
3901 break;
3902 case nir_intrinsic_image_deref_atomic_comp_swap:
3903 buf_op = aco_opcode::buffer_atomic_cmpswap;
3904 image_op = aco_opcode::image_atomic_cmpswap;
3905 break;
3906 default:
3907 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
3908 }
3909
3910 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3911
3912 if (dim == GLSL_SAMPLER_DIM_BUF) {
3913 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
3914 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
3915 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
3916 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
3917 mubuf->operands[0] = Operand(vindex);
3918 mubuf->operands[1] = Operand(resource);
3919 mubuf->operands[2] = Operand((uint32_t)0);
3920 mubuf->operands[3] = Operand(data);
3921 if (return_previous)
3922 mubuf->definitions[0] = Definition(dst);
3923 mubuf->offset = 0;
3924 mubuf->idxen = true;
3925 mubuf->glc = return_previous;
3926 mubuf->dlc = false; /* Not needed for atomics */
3927 mubuf->disable_wqm = true;
3928 mubuf->barrier = barrier_image;
3929 ctx->program->needs_exact = true;
3930 ctx->block->instructions.emplace_back(std::move(mubuf));
3931 return;
3932 }
3933
3934 Temp coords = get_image_coords(ctx, instr, type);
3935 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
3936 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 4, return_previous ? 1 : 0)};
3937 mimg->operands[0] = Operand(coords);
3938 mimg->operands[1] = Operand(resource);
3939 mimg->operands[2] = Operand(s4); /* no sampler */
3940 mimg->operands[3] = Operand(data);
3941 if (return_previous)
3942 mimg->definitions[0] = Definition(dst);
3943 mimg->glc = return_previous;
3944 mimg->dlc = false; /* Not needed for atomics */
3945 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
3946 mimg->dmask = (1 << data.size()) - 1;
3947 mimg->unrm = true;
3948 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
3949 mimg->disable_wqm = true;
3950 mimg->barrier = barrier_image;
3951 ctx->program->needs_exact = true;
3952 ctx->block->instructions.emplace_back(std::move(mimg));
3953 return;
3954 }
3955
3956 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
3957 {
3958 if (in_elements && ctx->options->chip_class == GFX8) {
3959 Builder bld(ctx->program, ctx->block);
3960
3961 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
3962 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
3963 stride = bld.vop1(aco_opcode::v_cvt_f32_ubyte0, bld.def(v1), stride);
3964 stride = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), stride);
3965
3966 Temp size = emit_extract_vector(ctx, desc, 2, s1);
3967 size = bld.vop1(aco_opcode::v_cvt_f32_u32, bld.def(v1), size);
3968
3969 Temp res = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), size, stride);
3970 res = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), res);
3971 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
3972
3973 // TODO: we can probably calculate this faster on the scalar unit to do: size / stride{1,2,4,8,12,16}
3974 /* idea
3975 * for 1,2,4,8,16, the result is just (stride >> S_FF1_I32_B32)
3976 * in case 12 (or 3?), we have to divide by 3:
3977 * set v_skip in case it's 12 (if we also have to take care of 3, shift first)
3978 * use v_mul_hi_u32 with magic number to divide
3979 * we need some pseudo merge opcode to overwrite the original SALU result with readfirstlane
3980 * disable v_skip
3981 * total: 6 SALU + 2 VALU instructions vs 1 SALU + 6 VALU instructions
3982 */
3983
3984 } else {
3985 emit_extract_vector(ctx, desc, 2, dst);
3986 }
3987 }
3988
3989 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
3990 {
3991 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
3992 const struct glsl_type *type = glsl_without_array(var->type);
3993 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3994 bool is_array = glsl_sampler_type_is_array(type);
3995 Builder bld(ctx->program, ctx->block);
3996
3997 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
3998 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
3999 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
4000 }
4001
4002 /* LOD */
4003 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
4004
4005 /* Resource */
4006 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
4007
4008 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4009
4010 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1)};
4011 mimg->operands[0] = Operand(lod);
4012 mimg->operands[1] = Operand(resource);
4013 unsigned& dmask = mimg->dmask;
4014 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4015 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
4016 mimg->da = glsl_sampler_type_is_array(type);
4017 mimg->can_reorder = true;
4018 Definition& def = mimg->definitions[0];
4019 ctx->block->instructions.emplace_back(std::move(mimg));
4020
4021 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
4022 glsl_sampler_type_is_array(type)) {
4023
4024 assert(instr->dest.ssa.num_components == 3);
4025 Temp tmp = {ctx->program->allocateId(), v3};
4026 def = Definition(tmp);
4027 emit_split_vector(ctx, tmp, 3);
4028
4029 /* divide 3rd value by 6 by multiplying with magic number */
4030 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
4031 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
4032
4033 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4034 emit_extract_vector(ctx, tmp, 0, v1),
4035 emit_extract_vector(ctx, tmp, 1, v1),
4036 by_6);
4037
4038 } else if (ctx->options->chip_class >= GFX9 &&
4039 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
4040 glsl_sampler_type_is_array(type)) {
4041 assert(instr->dest.ssa.num_components == 2);
4042 def = Definition(dst);
4043 dmask = 0x5;
4044 } else {
4045 def = Definition(dst);
4046 }
4047
4048 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4049 }
4050
4051 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4052 {
4053 Builder bld(ctx->program, ctx->block);
4054 unsigned num_components = instr->num_components;
4055
4056 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4057 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4058 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4059
4060 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4061 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc);
4062 }
4063
4064 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4065 {
4066 Builder bld(ctx->program, ctx->block);
4067 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
4068 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4069 unsigned writemask = nir_intrinsic_write_mask(instr);
4070
4071 Temp offset;
4072 if (ctx->options->chip_class < GFX8)
4073 offset = as_vgpr(ctx,get_ssa_temp(ctx, instr->src[2].ssa));
4074 else
4075 offset = get_ssa_temp(ctx, instr->src[2].ssa);
4076
4077 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4078 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4079
4080 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
4081 ctx->options->chip_class >= GFX8;
4082 if (smem)
4083 offset = bld.as_uniform(offset);
4084 bool smem_nonfs = smem && ctx->stage != fragment_fs;
4085
4086 while (writemask) {
4087 int start, count;
4088 u_bit_scan_consecutive_range(&writemask, &start, &count);
4089 if (count == 3 && smem) {
4090 writemask |= 1u << (start + 2);
4091 count = 2;
4092 }
4093 int num_bytes = count * elem_size_bytes;
4094
4095 if (num_bytes > 16) {
4096 assert(elem_size_bytes == 8);
4097 writemask |= (((count - 2) << 1) - 1) << (start + 2);
4098 count = 2;
4099 num_bytes = 16;
4100 }
4101
4102 // TODO: check alignment of sub-dword stores
4103 // TODO: split 3 bytes. there is no store instruction for that
4104
4105 Temp write_data;
4106 if (count != instr->num_components) {
4107 emit_split_vector(ctx, data, instr->num_components);
4108 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4109 for (int i = 0; i < count; i++) {
4110 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
4111 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
4112 }
4113 write_data = bld.tmp(smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
4114 vec->definitions[0] = Definition(write_data);
4115 ctx->block->instructions.emplace_back(std::move(vec));
4116 } else if (!smem && data.type() != RegType::vgpr) {
4117 assert(num_bytes % 4 == 0);
4118 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
4119 } else if (smem_nonfs && data.type() == RegType::vgpr) {
4120 assert(num_bytes % 4 == 0);
4121 write_data = bld.as_uniform(data);
4122 } else {
4123 write_data = data;
4124 }
4125
4126 aco_opcode vmem_op, smem_op;
4127 switch (num_bytes) {
4128 case 4:
4129 vmem_op = aco_opcode::buffer_store_dword;
4130 smem_op = aco_opcode::s_buffer_store_dword;
4131 break;
4132 case 8:
4133 vmem_op = aco_opcode::buffer_store_dwordx2;
4134 smem_op = aco_opcode::s_buffer_store_dwordx2;
4135 break;
4136 case 12:
4137 vmem_op = aco_opcode::buffer_store_dwordx3;
4138 smem_op = aco_opcode::last_opcode;
4139 assert(!smem);
4140 break;
4141 case 16:
4142 vmem_op = aco_opcode::buffer_store_dwordx4;
4143 smem_op = aco_opcode::s_buffer_store_dwordx4;
4144 break;
4145 default:
4146 unreachable("Store SSBO not implemented for this size.");
4147 }
4148 if (ctx->stage == fragment_fs)
4149 smem_op = aco_opcode::p_fs_buffer_store_smem;
4150
4151 if (smem) {
4152 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
4153 store->operands[0] = Operand(rsrc);
4154 if (start) {
4155 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4156 offset, Operand(start * elem_size_bytes));
4157 store->operands[1] = Operand(off);
4158 } else {
4159 store->operands[1] = Operand(offset);
4160 }
4161 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
4162 store->operands[1].setFixed(m0);
4163 store->operands[2] = Operand(write_data);
4164 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4165 store->dlc = false;
4166 store->disable_wqm = true;
4167 store->barrier = barrier_buffer;
4168 ctx->block->instructions.emplace_back(std::move(store));
4169 ctx->program->wb_smem_l1_on_end = true;
4170 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
4171 ctx->block->kind |= block_kind_needs_lowering;
4172 ctx->program->needs_exact = true;
4173 }
4174 } else {
4175 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
4176 store->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4177 store->operands[1] = Operand(rsrc);
4178 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4179 store->operands[3] = Operand(write_data);
4180 store->offset = start * elem_size_bytes;
4181 store->offen = (offset.type() == RegType::vgpr);
4182 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4183 store->dlc = false;
4184 store->disable_wqm = true;
4185 store->barrier = barrier_buffer;
4186 ctx->program->needs_exact = true;
4187 ctx->block->instructions.emplace_back(std::move(store));
4188 }
4189 }
4190 }
4191
4192 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4193 {
4194 /* return the previous value if dest is ever used */
4195 bool return_previous = false;
4196 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4197 return_previous = true;
4198 break;
4199 }
4200 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4201 return_previous = true;
4202 break;
4203 }
4204
4205 Builder bld(ctx->program, ctx->block);
4206 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
4207
4208 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
4209 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
4210 get_ssa_temp(ctx, instr->src[3].ssa), data);
4211
4212 Temp offset;
4213 if (ctx->options->chip_class < GFX8)
4214 offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4215 else
4216 offset = get_ssa_temp(ctx, instr->src[1].ssa);
4217
4218 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4219 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4220
4221 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4222
4223 aco_opcode op32, op64;
4224 switch (instr->intrinsic) {
4225 case nir_intrinsic_ssbo_atomic_add:
4226 op32 = aco_opcode::buffer_atomic_add;
4227 op64 = aco_opcode::buffer_atomic_add_x2;
4228 break;
4229 case nir_intrinsic_ssbo_atomic_imin:
4230 op32 = aco_opcode::buffer_atomic_smin;
4231 op64 = aco_opcode::buffer_atomic_smin_x2;
4232 break;
4233 case nir_intrinsic_ssbo_atomic_umin:
4234 op32 = aco_opcode::buffer_atomic_umin;
4235 op64 = aco_opcode::buffer_atomic_umin_x2;
4236 break;
4237 case nir_intrinsic_ssbo_atomic_imax:
4238 op32 = aco_opcode::buffer_atomic_smax;
4239 op64 = aco_opcode::buffer_atomic_smax_x2;
4240 break;
4241 case nir_intrinsic_ssbo_atomic_umax:
4242 op32 = aco_opcode::buffer_atomic_umax;
4243 op64 = aco_opcode::buffer_atomic_umax_x2;
4244 break;
4245 case nir_intrinsic_ssbo_atomic_and:
4246 op32 = aco_opcode::buffer_atomic_and;
4247 op64 = aco_opcode::buffer_atomic_and_x2;
4248 break;
4249 case nir_intrinsic_ssbo_atomic_or:
4250 op32 = aco_opcode::buffer_atomic_or;
4251 op64 = aco_opcode::buffer_atomic_or_x2;
4252 break;
4253 case nir_intrinsic_ssbo_atomic_xor:
4254 op32 = aco_opcode::buffer_atomic_xor;
4255 op64 = aco_opcode::buffer_atomic_xor_x2;
4256 break;
4257 case nir_intrinsic_ssbo_atomic_exchange:
4258 op32 = aco_opcode::buffer_atomic_swap;
4259 op64 = aco_opcode::buffer_atomic_swap_x2;
4260 break;
4261 case nir_intrinsic_ssbo_atomic_comp_swap:
4262 op32 = aco_opcode::buffer_atomic_cmpswap;
4263 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
4264 break;
4265 default:
4266 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
4267 }
4268 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
4269 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4270 mubuf->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4271 mubuf->operands[1] = Operand(rsrc);
4272 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4273 mubuf->operands[3] = Operand(data);
4274 if (return_previous)
4275 mubuf->definitions[0] = Definition(dst);
4276 mubuf->offset = 0;
4277 mubuf->offen = (offset.type() == RegType::vgpr);
4278 mubuf->glc = return_previous;
4279 mubuf->dlc = false; /* Not needed for atomics */
4280 mubuf->disable_wqm = true;
4281 mubuf->barrier = barrier_buffer;
4282 ctx->program->needs_exact = true;
4283 ctx->block->instructions.emplace_back(std::move(mubuf));
4284 }
4285
4286 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
4287
4288 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4289 Builder bld(ctx->program, ctx->block);
4290 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
4291 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
4292 }
4293
4294 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
4295 {
4296 Builder bld(ctx->program, ctx->block);
4297 unsigned num_components = instr->num_components;
4298 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
4299
4300 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4301 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
4302
4303 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4304 bool dlc = glc && ctx->options->chip_class >= GFX10;
4305 aco_opcode op;
4306 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
4307 bool global = ctx->options->chip_class >= GFX9;
4308 aco_opcode op;
4309 switch (num_bytes) {
4310 case 4:
4311 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
4312 break;
4313 case 8:
4314 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
4315 break;
4316 case 12:
4317 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
4318 break;
4319 case 16:
4320 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
4321 break;
4322 default:
4323 unreachable("load_global not implemented for this size.");
4324 }
4325 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
4326 flat->operands[0] = Operand(addr);
4327 flat->operands[1] = Operand(s1);
4328 flat->glc = glc;
4329 flat->dlc = dlc;
4330
4331 if (dst.type() == RegType::sgpr) {
4332 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4333 flat->definitions[0] = Definition(vec);
4334 ctx->block->instructions.emplace_back(std::move(flat));
4335 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
4336 } else {
4337 flat->definitions[0] = Definition(dst);
4338 ctx->block->instructions.emplace_back(std::move(flat));
4339 }
4340 emit_split_vector(ctx, dst, num_components);
4341 } else {
4342 switch (num_bytes) {
4343 case 4:
4344 op = aco_opcode::s_load_dword;
4345 break;
4346 case 8:
4347 op = aco_opcode::s_load_dwordx2;
4348 break;
4349 case 12:
4350 case 16:
4351 op = aco_opcode::s_load_dwordx4;
4352 break;
4353 default:
4354 unreachable("load_global not implemented for this size.");
4355 }
4356 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4357 load->operands[0] = Operand(addr);
4358 load->operands[1] = Operand(0u);
4359 load->definitions[0] = Definition(dst);
4360 load->glc = glc;
4361 load->dlc = dlc;
4362 load->barrier = barrier_buffer;
4363 assert(ctx->options->chip_class >= GFX8 || !glc);
4364
4365 if (dst.size() == 3) {
4366 /* trim vector */
4367 Temp vec = bld.tmp(s4);
4368 load->definitions[0] = Definition(vec);
4369 ctx->block->instructions.emplace_back(std::move(load));
4370 emit_split_vector(ctx, vec, 4);
4371
4372 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4373 emit_extract_vector(ctx, vec, 0, s1),
4374 emit_extract_vector(ctx, vec, 1, s1),
4375 emit_extract_vector(ctx, vec, 2, s1));
4376 } else {
4377 ctx->block->instructions.emplace_back(std::move(load));
4378 }
4379 }
4380 }
4381
4382 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
4383 {
4384 Builder bld(ctx->program, ctx->block);
4385 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4386
4387 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4388 Temp addr = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4389
4390 unsigned writemask = nir_intrinsic_write_mask(instr);
4391 while (writemask) {
4392 int start, count;
4393 u_bit_scan_consecutive_range(&writemask, &start, &count);
4394 unsigned num_bytes = count * elem_size_bytes;
4395
4396 Temp write_data = data;
4397 if (count != instr->num_components) {
4398 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4399 for (int i = 0; i < count; i++)
4400 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
4401 write_data = bld.tmp(RegType::vgpr, count);
4402 vec->definitions[0] = Definition(write_data);
4403 ctx->block->instructions.emplace_back(std::move(vec));
4404 }
4405
4406 unsigned offset = start * elem_size_bytes;
4407 if (offset > 0 && ctx->options->chip_class < GFX9) {
4408 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
4409 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
4410 Temp carry = bld.tmp(s2);
4411 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
4412
4413 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
4414 Operand(offset), addr0);
4415 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(s2),
4416 Operand(0u), addr1,
4417 carry).def(1).setHint(vcc);
4418
4419 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
4420
4421 offset = 0;
4422 }
4423
4424 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4425 bool global = ctx->options->chip_class >= GFX9;
4426 aco_opcode op;
4427 switch (num_bytes) {
4428 case 4:
4429 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
4430 break;
4431 case 8:
4432 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
4433 break;
4434 case 12:
4435 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
4436 break;
4437 case 16:
4438 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
4439 break;
4440 default:
4441 unreachable("store_global not implemented for this size.");
4442 }
4443 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
4444 flat->operands[0] = Operand(addr);
4445 flat->operands[1] = Operand(s1);
4446 flat->operands[2] = Operand(data);
4447 flat->glc = glc;
4448 flat->dlc = false;
4449 flat->offset = offset;
4450 ctx->block->instructions.emplace_back(std::move(flat));
4451 }
4452 }
4453
4454 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
4455 Builder bld(ctx->program, ctx->block);
4456 switch(instr->intrinsic) {
4457 case nir_intrinsic_group_memory_barrier:
4458 case nir_intrinsic_memory_barrier:
4459 bld.barrier(aco_opcode::p_memory_barrier_all);
4460 break;
4461 case nir_intrinsic_memory_barrier_atomic_counter:
4462 bld.barrier(aco_opcode::p_memory_barrier_atomic);
4463 break;
4464 case nir_intrinsic_memory_barrier_buffer:
4465 bld.barrier(aco_opcode::p_memory_barrier_buffer);
4466 break;
4467 case nir_intrinsic_memory_barrier_image:
4468 bld.barrier(aco_opcode::p_memory_barrier_image);
4469 break;
4470 case nir_intrinsic_memory_barrier_shared:
4471 bld.barrier(aco_opcode::p_memory_barrier_shared);
4472 break;
4473 default:
4474 unreachable("Unimplemented memory barrier intrinsic");
4475 break;
4476 }
4477 }
4478
4479 Operand load_lds_size_m0(isel_context *ctx)
4480 {
4481 /* TODO: m0 does not need to be initialized on GFX9+ */
4482 Builder bld(ctx->program, ctx->block);
4483 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
4484 }
4485
4486
4487 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
4488 {
4489 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
4490 Operand m = load_lds_size_m0(ctx);
4491 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4492 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
4493 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4494 Builder bld(ctx->program, ctx->block);
4495
4496 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4497 unsigned bytes_read = 0;
4498 unsigned result_size = 0;
4499 unsigned total_bytes = instr->num_components * elem_size_bytes;
4500 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : instr->dest.ssa.bit_size / 8;
4501 std::array<Temp, 4> result;
4502
4503 while (bytes_read < total_bytes) {
4504 unsigned todo = total_bytes - bytes_read;
4505 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
4506 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
4507
4508 aco_opcode op = aco_opcode::last_opcode;
4509 if (todo >= 16 && aligned16) {
4510 op = aco_opcode::ds_read_b128;
4511 todo = 16;
4512 } else if (todo >= 12 && aligned16) {
4513 op = aco_opcode::ds_read_b96;
4514 todo = 12;
4515 } else if (todo >= 8) {
4516 op = aligned8 ? aco_opcode::ds_read_b64 : aco_opcode::ds_read2_b32;
4517 todo = 8;
4518 } else if (todo >= 4) {
4519 op = aco_opcode::ds_read_b32;
4520 todo = 4;
4521 } else {
4522 assert(false);
4523 }
4524 assert(todo % elem_size_bytes == 0);
4525 unsigned num_elements = todo / elem_size_bytes;
4526 unsigned offset = nir_intrinsic_base(instr) + bytes_read;
4527 unsigned max_offset = op == aco_opcode::ds_read2_b32 ? 1019 : 65535;
4528
4529 Temp address_offset = address;
4530 if (offset > max_offset) {
4531 address_offset = bld.vadd32(bld.def(v1), Operand((uint32_t)nir_intrinsic_base(instr)), address_offset);
4532 offset = bytes_read;
4533 }
4534 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
4535
4536 Temp res;
4537 if (instr->num_components == 1 && dst.type() == RegType::vgpr)
4538 res = dst;
4539 else
4540 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
4541
4542 if (op == aco_opcode::ds_read2_b32)
4543 res = bld.ds(op, Definition(res), address_offset, m, offset >> 2, (offset >> 2) + 1);
4544 else
4545 res = bld.ds(op, Definition(res), address_offset, m, offset);
4546
4547 if (instr->num_components == 1) {
4548 assert(todo == total_bytes);
4549 if (dst.type() == RegType::sgpr)
4550 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
4551 return;
4552 }
4553
4554 if (dst.type() == RegType::sgpr)
4555 res = bld.as_uniform(res);
4556
4557 if (num_elements == 1) {
4558 result[result_size++] = res;
4559 } else {
4560 assert(res != dst && res.size() % num_elements == 0);
4561 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
4562 split->operands[0] = Operand(res);
4563 for (unsigned i = 0; i < num_elements; i++)
4564 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
4565 ctx->block->instructions.emplace_back(std::move(split));
4566 }
4567
4568 bytes_read += todo;
4569 }
4570
4571 assert(result_size == instr->num_components && result_size > 1);
4572 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
4573 for (unsigned i = 0; i < result_size; i++)
4574 vec->operands[i] = Operand(result[i]);
4575 vec->definitions[0] = Definition(dst);
4576 ctx->block->instructions.emplace_back(std::move(vec));
4577 ctx->allocated_vec.emplace(dst.id(), result);
4578 }
4579
4580 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned offset0, unsigned offset1, unsigned align)
4581 {
4582 Builder bld(ctx->program, ctx->block);
4583 unsigned bytes_written = 0;
4584 while (bytes_written < data.size() * 4) {
4585 unsigned todo = data.size() * 4 - bytes_written;
4586 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
4587 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
4588
4589 aco_opcode op = aco_opcode::last_opcode;
4590 unsigned size = 0;
4591 if (todo >= 16 && aligned16) {
4592 op = aco_opcode::ds_write_b128;
4593 size = 4;
4594 } else if (todo >= 12 && aligned16) {
4595 op = aco_opcode::ds_write_b96;
4596 size = 3;
4597 } else if (todo >= 8) {
4598 op = aligned8 ? aco_opcode::ds_write_b64 : aco_opcode::ds_write2_b32;
4599 size = 2;
4600 } else if (todo >= 4) {
4601 op = aco_opcode::ds_write_b32;
4602 size = 1;
4603 } else {
4604 assert(false);
4605 }
4606
4607 bool write2 = op == aco_opcode::ds_write2_b32;
4608 unsigned offset = offset0 + offset1 + bytes_written;
4609 unsigned max_offset = write2 ? 1020 : 65535;
4610 Temp address_offset = address;
4611 if (offset > max_offset) {
4612 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
4613 offset = offset1 + bytes_written;
4614 }
4615 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
4616
4617 if (write2) {
4618 Temp val0 = emit_extract_vector(ctx, data, bytes_written >> 2, v1);
4619 Temp val1 = emit_extract_vector(ctx, data, (bytes_written >> 2) + 1, v1);
4620 bld.ds(op, address_offset, val0, val1, m, offset >> 2, (offset >> 2) + 1);
4621 } else {
4622 Temp val = emit_extract_vector(ctx, data, bytes_written >> 2, RegClass(RegType::vgpr, size));
4623 bld.ds(op, address_offset, val, m, offset);
4624 }
4625
4626 bytes_written += size * 4;
4627 }
4628 }
4629
4630 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
4631 {
4632 unsigned offset = nir_intrinsic_base(instr);
4633 unsigned writemask = nir_intrinsic_write_mask(instr);
4634 Operand m = load_lds_size_m0(ctx);
4635 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
4636 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4637 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4638 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
4639
4640 /* we need at most two stores for 32bit variables */
4641 int start[2], count[2];
4642 u_bit_scan_consecutive_range(&writemask, &start[0], &count[0]);
4643 u_bit_scan_consecutive_range(&writemask, &start[1], &count[1]);
4644 assert(writemask == 0);
4645
4646 /* one combined store is sufficient */
4647 if (count[0] == count[1]) {
4648 Builder bld(ctx->program, ctx->block);
4649
4650 Temp address_offset = address;
4651 if ((offset >> 2) + start[1] > 255) {
4652 address_offset = bld.vadd32(bld.def(v1), Operand(offset), address_offset);
4653 offset = 0;
4654 }
4655
4656 assert(count[0] == 1);
4657 Temp val0 = emit_extract_vector(ctx, data, start[0], v1);
4658 Temp val1 = emit_extract_vector(ctx, data, start[1], v1);
4659 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
4660 offset = offset / elem_size_bytes;
4661 bld.ds(op, address_offset, val0, val1, m,
4662 offset + start[0], offset + start[1]);
4663 return;
4664 }
4665
4666 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
4667 for (unsigned i = 0; i < 2; i++) {
4668 if (count[i] == 0)
4669 continue;
4670
4671 Temp write_data = emit_extract_vector(ctx, data, start[i], RegClass(RegType::vgpr, count[i] * elem_size_bytes / 4));
4672 ds_write_helper(ctx, m, address, write_data, offset, start[i] * elem_size_bytes, align);
4673 }
4674 return;
4675 }
4676
4677 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4678 {
4679 unsigned offset = nir_intrinsic_base(instr);
4680 Operand m = load_lds_size_m0(ctx);
4681 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4682 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4683
4684 unsigned num_operands = 3;
4685 aco_opcode op32, op64, op32_rtn, op64_rtn;
4686 switch(instr->intrinsic) {
4687 case nir_intrinsic_shared_atomic_add:
4688 op32 = aco_opcode::ds_add_u32;
4689 op64 = aco_opcode::ds_add_u64;
4690 op32_rtn = aco_opcode::ds_add_rtn_u32;
4691 op64_rtn = aco_opcode::ds_add_rtn_u64;
4692 break;
4693 case nir_intrinsic_shared_atomic_imin:
4694 op32 = aco_opcode::ds_min_i32;
4695 op64 = aco_opcode::ds_min_i64;
4696 op32_rtn = aco_opcode::ds_min_rtn_i32;
4697 op64_rtn = aco_opcode::ds_min_rtn_i64;
4698 break;
4699 case nir_intrinsic_shared_atomic_umin:
4700 op32 = aco_opcode::ds_min_u32;
4701 op64 = aco_opcode::ds_min_u64;
4702 op32_rtn = aco_opcode::ds_min_rtn_u32;
4703 op64_rtn = aco_opcode::ds_min_rtn_u64;
4704 break;
4705 case nir_intrinsic_shared_atomic_imax:
4706 op32 = aco_opcode::ds_max_i32;
4707 op64 = aco_opcode::ds_max_i64;
4708 op32_rtn = aco_opcode::ds_max_rtn_i32;
4709 op64_rtn = aco_opcode::ds_max_rtn_i64;
4710 break;
4711 case nir_intrinsic_shared_atomic_umax:
4712 op32 = aco_opcode::ds_max_u32;
4713 op64 = aco_opcode::ds_max_u64;
4714 op32_rtn = aco_opcode::ds_max_rtn_u32;
4715 op64_rtn = aco_opcode::ds_max_rtn_u64;
4716 break;
4717 case nir_intrinsic_shared_atomic_and:
4718 op32 = aco_opcode::ds_and_b32;
4719 op64 = aco_opcode::ds_and_b64;
4720 op32_rtn = aco_opcode::ds_and_rtn_b32;
4721 op64_rtn = aco_opcode::ds_and_rtn_b64;
4722 break;
4723 case nir_intrinsic_shared_atomic_or:
4724 op32 = aco_opcode::ds_or_b32;
4725 op64 = aco_opcode::ds_or_b64;
4726 op32_rtn = aco_opcode::ds_or_rtn_b32;
4727 op64_rtn = aco_opcode::ds_or_rtn_b64;
4728 break;
4729 case nir_intrinsic_shared_atomic_xor:
4730 op32 = aco_opcode::ds_xor_b32;
4731 op64 = aco_opcode::ds_xor_b64;
4732 op32_rtn = aco_opcode::ds_xor_rtn_b32;
4733 op64_rtn = aco_opcode::ds_xor_rtn_b64;
4734 break;
4735 case nir_intrinsic_shared_atomic_exchange:
4736 op32 = aco_opcode::ds_write_b32;
4737 op64 = aco_opcode::ds_write_b64;
4738 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
4739 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
4740 break;
4741 case nir_intrinsic_shared_atomic_comp_swap:
4742 op32 = aco_opcode::ds_cmpst_b32;
4743 op64 = aco_opcode::ds_cmpst_b64;
4744 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
4745 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
4746 num_operands = 4;
4747 break;
4748 default:
4749 unreachable("Unhandled shared atomic intrinsic");
4750 }
4751
4752 /* return the previous value if dest is ever used */
4753 bool return_previous = false;
4754 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4755 return_previous = true;
4756 break;
4757 }
4758 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4759 return_previous = true;
4760 break;
4761 }
4762
4763 aco_opcode op;
4764 if (data.size() == 1) {
4765 assert(instr->dest.ssa.bit_size == 32);
4766 op = return_previous ? op32_rtn : op32;
4767 } else {
4768 assert(instr->dest.ssa.bit_size == 64);
4769 op = return_previous ? op64_rtn : op64;
4770 }
4771
4772 if (offset > 65535) {
4773 Builder bld(ctx->program, ctx->block);
4774 address = bld.vadd32(bld.def(v1), Operand(offset), address);
4775 offset = 0;
4776 }
4777
4778 aco_ptr<DS_instruction> ds;
4779 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
4780 ds->operands[0] = Operand(address);
4781 ds->operands[1] = Operand(data);
4782 if (num_operands == 4)
4783 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
4784 ds->operands[num_operands - 1] = m;
4785 ds->offset0 = offset;
4786 if (return_previous)
4787 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
4788 ctx->block->instructions.emplace_back(std::move(ds));
4789 }
4790
4791 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
4792 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
4793 Builder bld(ctx->program, ctx->block);
4794 Temp scratch_addr = ctx->private_segment_buffer;
4795 if (ctx->stage != MESA_SHADER_COMPUTE)
4796 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), ctx->private_segment_buffer, Operand(0u));
4797 uint32_t rsrc_conf;
4798 /* older generations need element size = 16 bytes */
4799 if (ctx->program->chip_class >= GFX9)
4800 rsrc_conf = 0x00E00000u;
4801 else
4802 rsrc_conf = 0x00F80000u;
4803 /* buffer res = addr + num_records = -1, index_stride = 64, add_tid_enable = true */
4804 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
4805 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4806 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4807
4808 aco_opcode op;
4809 switch (dst.size()) {
4810 case 1:
4811 op = aco_opcode::buffer_load_dword;
4812 break;
4813 case 2:
4814 op = aco_opcode::buffer_load_dwordx2;
4815 break;
4816 case 3:
4817 op = aco_opcode::buffer_load_dwordx3;
4818 break;
4819 case 4:
4820 op = aco_opcode::buffer_load_dwordx4;
4821 break;
4822 case 6:
4823 case 8: {
4824 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4825 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
4826 bld.def(v4), offset, rsrc,
4827 ctx->scratch_offset, 0, true);
4828 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
4829 aco_opcode::buffer_load_dwordx4,
4830 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
4831 offset, rsrc, ctx->scratch_offset, 16, true);
4832 emit_split_vector(ctx, lower, 2);
4833 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
4834 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
4835 if (dst.size() == 8) {
4836 emit_split_vector(ctx, upper, 2);
4837 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
4838 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
4839 } else {
4840 elems[2] = upper;
4841 }
4842
4843 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
4844 Format::PSEUDO, dst.size() / 2, 1)};
4845 for (unsigned i = 0; i < dst.size() / 2; i++)
4846 vec->operands[i] = Operand(elems[i]);
4847 vec->definitions[0] = Definition(dst);
4848 bld.insert(std::move(vec));
4849 ctx->allocated_vec.emplace(dst.id(), elems);
4850 return;
4851 }
4852 default:
4853 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
4854 }
4855
4856 bld.mubuf(op, Definition(dst), offset, rsrc, ctx->scratch_offset, 0, true);
4857 emit_split_vector(ctx, dst, instr->num_components);
4858 }
4859
4860 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
4861 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
4862 Builder bld(ctx->program, ctx->block);
4863 Temp scratch_addr = ctx->private_segment_buffer;
4864 if (ctx->stage != MESA_SHADER_COMPUTE)
4865 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), ctx->private_segment_buffer, Operand(0u));
4866 uint32_t rsrc_conf;
4867 /* older generations need element size = 16 bytes */
4868 if (ctx->program->chip_class >= GFX9)
4869 rsrc_conf = 0x00E00000u;
4870 else
4871 rsrc_conf = 0x00F80000u;
4872 /* buffer res = addr + num_records = -1, index_stride = 64, add_tid_enable = true */
4873 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
4874 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4875 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4876
4877 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4878 unsigned writemask = nir_intrinsic_write_mask(instr);
4879
4880 while (writemask) {
4881 int start, count;
4882 u_bit_scan_consecutive_range(&writemask, &start, &count);
4883 int num_bytes = count * elem_size_bytes;
4884
4885 if (num_bytes > 16) {
4886 assert(elem_size_bytes == 8);
4887 writemask |= (((count - 2) << 1) - 1) << (start + 2);
4888 count = 2;
4889 num_bytes = 16;
4890 }
4891
4892 // TODO: check alignment of sub-dword stores
4893 // TODO: split 3 bytes. there is no store instruction for that
4894
4895 Temp write_data;
4896 if (count != instr->num_components) {
4897 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4898 for (int i = 0; i < count; i++) {
4899 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
4900 vec->operands[i] = Operand(elem);
4901 }
4902 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
4903 vec->definitions[0] = Definition(write_data);
4904 ctx->block->instructions.emplace_back(std::move(vec));
4905 } else {
4906 write_data = data;
4907 }
4908
4909 aco_opcode op;
4910 switch (num_bytes) {
4911 case 4:
4912 op = aco_opcode::buffer_store_dword;
4913 break;
4914 case 8:
4915 op = aco_opcode::buffer_store_dwordx2;
4916 break;
4917 case 12:
4918 op = aco_opcode::buffer_store_dwordx3;
4919 break;
4920 case 16:
4921 op = aco_opcode::buffer_store_dwordx4;
4922 break;
4923 default:
4924 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
4925 }
4926
4927 bld.mubuf(op, offset, rsrc, ctx->scratch_offset, write_data, start * elem_size_bytes, true);
4928 }
4929 }
4930
4931 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
4932 uint8_t log2_ps_iter_samples;
4933 if (ctx->program->info->ps.force_persample) {
4934 log2_ps_iter_samples =
4935 util_logbase2(ctx->options->key.fs.num_samples);
4936 } else {
4937 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
4938 }
4939
4940 /* The bit pattern matches that used by fixed function fragment
4941 * processing. */
4942 static const unsigned ps_iter_masks[] = {
4943 0xffff, /* not used */
4944 0x5555,
4945 0x1111,
4946 0x0101,
4947 0x0001,
4948 };
4949 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
4950
4951 Builder bld(ctx->program, ctx->block);
4952
4953 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), ctx->fs_inputs[fs_input::ancillary], Operand(8u), Operand(4u));
4954 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
4955 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
4956 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4957 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, ctx->fs_inputs[fs_input::sample_coverage]);
4958 }
4959
4960 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
4961 {
4962 Builder bld(ctx->program, ctx->block);
4963
4964 if (cluster_size == 1) {
4965 return src;
4966 } if (op == nir_op_iand && cluster_size == 4) {
4967 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
4968 Temp tmp = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc), Operand(exec, s2), src);
4969 return bld.sop1(aco_opcode::s_not_b64, bld.def(s2), bld.def(s1, scc),
4970 bld.sop1(aco_opcode::s_wqm_b64, bld.def(s2), bld.def(s1, scc), tmp));
4971 } else if (op == nir_op_ior && cluster_size == 4) {
4972 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
4973 return bld.sop1(aco_opcode::s_wqm_b64, bld.def(s2), bld.def(s1, scc),
4974 bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2)));
4975 } else if (op == nir_op_iand && cluster_size == 64) {
4976 //subgroupAnd(val) -> (exec & ~val) == 0
4977 Temp tmp = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc), Operand(exec, s2), src).def(1).getTemp();
4978 return bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), tmp, Operand(0u));
4979 } else if (op == nir_op_ior && cluster_size == 64) {
4980 //subgroupOr(val) -> (val & exec) != 0
4981 return bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2)).def(1).getTemp();
4982 } else if (op == nir_op_ixor && cluster_size == 64) {
4983 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
4984 Temp tmp = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
4985 tmp = bld.sop1(aco_opcode::s_bcnt1_i32_b64, bld.def(s2), bld.def(s1, scc), tmp);
4986 return bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
4987 } else {
4988 //subgroupClustered{And,Or,Xor}(val, n) ->
4989 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0))
4990 //cluster_offset = ~(n - 1) & lane_id
4991 //cluster_mask = ((1 << n) - 1)
4992 //subgroupClusteredAnd():
4993 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
4994 //subgroupClusteredOr():
4995 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
4996 //subgroupClusteredXor():
4997 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
4998 Temp lane_id = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), Operand((uint32_t) -1),
4999 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
5000 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
5001
5002 Temp tmp;
5003 if (op == nir_op_iand)
5004 tmp = bld.sop2(aco_opcode::s_orn2_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
5005 else
5006 tmp = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
5007
5008 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
5009 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
5010 tmp = emit_extract_vector(ctx, tmp, 0, v1);
5011 if (cluster_mask != 0xffffffff)
5012 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
5013
5014 Definition cmp_def = Definition();
5015 if (op == nir_op_iand) {
5016 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(s2), Operand(cluster_mask), tmp).def(0);
5017 } else if (op == nir_op_ior) {
5018 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), tmp).def(0);
5019 } else if (op == nir_op_ixor) {
5020 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
5021 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
5022 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), tmp).def(0);
5023 }
5024 cmp_def.setHint(vcc);
5025 return cmp_def.getTemp();
5026 }
5027 }
5028
5029 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
5030 {
5031 Builder bld(ctx->program, ctx->block);
5032
5033 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
5034 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
5035 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
5036 Temp tmp;
5037 if (op == nir_op_iand)
5038 tmp = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc), Operand(exec, s2), src);
5039 else
5040 tmp = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
5041
5042 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
5043 Temp lo = lohi.def(0).getTemp();
5044 Temp hi = lohi.def(1).getTemp();
5045 Temp mbcnt = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), hi,
5046 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), lo, Operand(0u)));
5047
5048 Definition cmp_def = Definition();
5049 if (op == nir_op_iand)
5050 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(s2), Operand(0u), mbcnt).def(0);
5051 else if (op == nir_op_ior)
5052 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), mbcnt).def(0);
5053 else if (op == nir_op_ixor)
5054 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u),
5055 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
5056 cmp_def.setHint(vcc);
5057 return cmp_def.getTemp();
5058 }
5059
5060 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
5061 {
5062 Builder bld(ctx->program, ctx->block);
5063
5064 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
5065 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
5066 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
5067 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
5068 if (op == nir_op_iand)
5069 return bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), tmp, src);
5070 else if (op == nir_op_ior)
5071 return bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), tmp, src);
5072 else if (op == nir_op_ixor)
5073 return bld.sop2(aco_opcode::s_xor_b64, bld.def(s2), bld.def(s1, scc), tmp, src);
5074
5075 assert(false);
5076 return Temp();
5077 }
5078
5079 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
5080 {
5081 Builder bld(ctx->program, ctx->block);
5082 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
5083 if (src.regClass().type() == RegType::vgpr) {
5084 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
5085 } else if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5086 bld.sopc(aco_opcode::s_cmp_lg_u64, bld.scc(dst), Operand(0u), Operand(src));
5087 } else if (src.regClass() == s1) {
5088 bld.sop1(aco_opcode::s_mov_b32, dst, src);
5089 } else if (src.regClass() == s2) {
5090 bld.sop1(aco_opcode::s_mov_b64, dst, src);
5091 } else {
5092 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5093 nir_print_instr(&instr->instr, stderr);
5094 fprintf(stderr, "\n");
5095 }
5096 }
5097
5098 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
5099 {
5100 Builder bld(ctx->program, ctx->block);
5101 Temp p1 = ctx->fs_inputs[fs_input::persp_center_p1];
5102 Temp p2 = ctx->fs_inputs[fs_input::persp_center_p2];
5103
5104 /* Build DD X/Y */
5105 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_quad_perm(0, 0, 0, 0));
5106 Temp ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_quad_perm(1, 1, 1, 1));
5107 Temp ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_quad_perm(2, 2, 2, 2));
5108 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_quad_perm(0, 0, 0, 0));
5109 Temp ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_quad_perm(1, 1, 1, 1));
5110 Temp ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_quad_perm(2, 2, 2, 2));
5111
5112 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
5113 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
5114 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
5115 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
5116 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
5117 Temp wqm1 = bld.tmp(v1);
5118 emit_wqm(ctx, tmp1, wqm1, true);
5119 Temp wqm2 = bld.tmp(v1);
5120 emit_wqm(ctx, tmp2, wqm2, true);
5121 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
5122 return;
5123 }
5124
5125 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
5126 {
5127 Builder bld(ctx->program, ctx->block);
5128 switch(instr->intrinsic) {
5129 case nir_intrinsic_load_barycentric_sample:
5130 case nir_intrinsic_load_barycentric_pixel:
5131 case nir_intrinsic_load_barycentric_centroid: {
5132 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
5133 fs_input input = get_interp_input(instr->intrinsic, mode);
5134
5135 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5136 if (input == fs_input::max_inputs) {
5137 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5138 Operand(0u), Operand(0u));
5139 } else {
5140 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5141 ctx->fs_inputs[input],
5142 ctx->fs_inputs[input + 1]);
5143 }
5144 emit_split_vector(ctx, dst, 2);
5145 break;
5146 }
5147 case nir_intrinsic_load_barycentric_at_sample: {
5148 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
5149 switch (ctx->options->key.fs.num_samples) {
5150 case 2: sample_pos_offset += 1 << 3; break;
5151 case 4: sample_pos_offset += 3 << 3; break;
5152 case 8: sample_pos_offset += 7 << 3; break;
5153 default: break;
5154 }
5155 Temp sample_pos;
5156 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5157 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
5158 if (addr.type() == RegType::sgpr) {
5159 Operand offset;
5160 if (const_addr) {
5161 sample_pos_offset += const_addr->u32 << 3;
5162 offset = Operand(sample_pos_offset);
5163 } else if (ctx->options->chip_class >= GFX9) {
5164 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
5165 } else {
5166 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
5167 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
5168 }
5169 addr = ctx->private_segment_buffer;
5170 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), addr, Operand(offset));
5171
5172 } else if (ctx->options->chip_class >= GFX9) {
5173 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
5174 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, ctx->private_segment_buffer, sample_pos_offset);
5175 } else {
5176 /* addr += ctx->private_segment_buffer + sample_pos_offset */
5177 Temp tmp0 = bld.tmp(s1);
5178 Temp tmp1 = bld.tmp(s1);
5179 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), ctx->private_segment_buffer);
5180 Definition scc_tmp = bld.def(s1, scc);
5181 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
5182 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), scc_tmp.getTemp());
5183 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
5184 Temp pck0 = bld.tmp(v1);
5185 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
5186 tmp1 = as_vgpr(ctx, tmp1);
5187 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(s2)), tmp1, Operand(0u), carry);
5188 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
5189
5190 /* sample_pos = flat_load_dwordx2 addr */
5191 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
5192 }
5193
5194 /* sample_pos -= 0.5 */
5195 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
5196 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
5197 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
5198 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
5199 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
5200
5201 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
5202 break;
5203 }
5204 case nir_intrinsic_load_barycentric_at_offset: {
5205 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5206 RegClass rc = RegClass(offset.type(), 1);
5207 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
5208 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
5209 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
5210 break;
5211 }
5212 case nir_intrinsic_load_front_face: {
5213 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5214 Operand(0u), ctx->fs_inputs[fs_input::front_face]).def(0).setHint(vcc);
5215 break;
5216 }
5217 case nir_intrinsic_load_view_index:
5218 case nir_intrinsic_load_layer_id: {
5219 if (instr->intrinsic == nir_intrinsic_load_view_index && (ctx->stage & sw_vs)) {
5220 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5221 bld.copy(Definition(dst), Operand(ctx->view_index));
5222 break;
5223 }
5224
5225 unsigned idx = nir_intrinsic_base(instr);
5226 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5227 Operand(2u), bld.m0(ctx->prim_mask), idx, 0);
5228 break;
5229 }
5230 case nir_intrinsic_load_frag_coord: {
5231 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
5232 break;
5233 }
5234 case nir_intrinsic_load_sample_pos: {
5235 Temp posx = ctx->fs_inputs[fs_input::frag_pos_0];
5236 Temp posy = ctx->fs_inputs[fs_input::frag_pos_1];
5237 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5238 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
5239 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
5240 break;
5241 }
5242 case nir_intrinsic_load_interpolated_input:
5243 visit_load_interpolated_input(ctx, instr);
5244 break;
5245 case nir_intrinsic_store_output:
5246 visit_store_output(ctx, instr);
5247 break;
5248 case nir_intrinsic_load_input:
5249 visit_load_input(ctx, instr);
5250 break;
5251 case nir_intrinsic_load_ubo:
5252 visit_load_ubo(ctx, instr);
5253 break;
5254 case nir_intrinsic_load_push_constant:
5255 visit_load_push_constant(ctx, instr);
5256 break;
5257 case nir_intrinsic_load_constant:
5258 visit_load_constant(ctx, instr);
5259 break;
5260 case nir_intrinsic_vulkan_resource_index:
5261 visit_load_resource(ctx, instr);
5262 break;
5263 case nir_intrinsic_discard:
5264 visit_discard(ctx, instr);
5265 break;
5266 case nir_intrinsic_discard_if:
5267 visit_discard_if(ctx, instr);
5268 break;
5269 case nir_intrinsic_load_shared:
5270 visit_load_shared(ctx, instr);
5271 break;
5272 case nir_intrinsic_store_shared:
5273 visit_store_shared(ctx, instr);
5274 break;
5275 case nir_intrinsic_shared_atomic_add:
5276 case nir_intrinsic_shared_atomic_imin:
5277 case nir_intrinsic_shared_atomic_umin:
5278 case nir_intrinsic_shared_atomic_imax:
5279 case nir_intrinsic_shared_atomic_umax:
5280 case nir_intrinsic_shared_atomic_and:
5281 case nir_intrinsic_shared_atomic_or:
5282 case nir_intrinsic_shared_atomic_xor:
5283 case nir_intrinsic_shared_atomic_exchange:
5284 case nir_intrinsic_shared_atomic_comp_swap:
5285 visit_shared_atomic(ctx, instr);
5286 break;
5287 case nir_intrinsic_image_deref_load:
5288 visit_image_load(ctx, instr);
5289 break;
5290 case nir_intrinsic_image_deref_store:
5291 visit_image_store(ctx, instr);
5292 break;
5293 case nir_intrinsic_image_deref_atomic_add:
5294 case nir_intrinsic_image_deref_atomic_umin:
5295 case nir_intrinsic_image_deref_atomic_imin:
5296 case nir_intrinsic_image_deref_atomic_umax:
5297 case nir_intrinsic_image_deref_atomic_imax:
5298 case nir_intrinsic_image_deref_atomic_and:
5299 case nir_intrinsic_image_deref_atomic_or:
5300 case nir_intrinsic_image_deref_atomic_xor:
5301 case nir_intrinsic_image_deref_atomic_exchange:
5302 case nir_intrinsic_image_deref_atomic_comp_swap:
5303 visit_image_atomic(ctx, instr);
5304 break;
5305 case nir_intrinsic_image_deref_size:
5306 visit_image_size(ctx, instr);
5307 break;
5308 case nir_intrinsic_load_ssbo:
5309 visit_load_ssbo(ctx, instr);
5310 break;
5311 case nir_intrinsic_store_ssbo:
5312 visit_store_ssbo(ctx, instr);
5313 break;
5314 case nir_intrinsic_load_global:
5315 visit_load_global(ctx, instr);
5316 break;
5317 case nir_intrinsic_store_global:
5318 visit_store_global(ctx, instr);
5319 break;
5320 case nir_intrinsic_ssbo_atomic_add:
5321 case nir_intrinsic_ssbo_atomic_imin:
5322 case nir_intrinsic_ssbo_atomic_umin:
5323 case nir_intrinsic_ssbo_atomic_imax:
5324 case nir_intrinsic_ssbo_atomic_umax:
5325 case nir_intrinsic_ssbo_atomic_and:
5326 case nir_intrinsic_ssbo_atomic_or:
5327 case nir_intrinsic_ssbo_atomic_xor:
5328 case nir_intrinsic_ssbo_atomic_exchange:
5329 case nir_intrinsic_ssbo_atomic_comp_swap:
5330 visit_atomic_ssbo(ctx, instr);
5331 break;
5332 case nir_intrinsic_load_scratch:
5333 visit_load_scratch(ctx, instr);
5334 break;
5335 case nir_intrinsic_store_scratch:
5336 visit_store_scratch(ctx, instr);
5337 break;
5338 case nir_intrinsic_get_buffer_size:
5339 visit_get_buffer_size(ctx, instr);
5340 break;
5341 case nir_intrinsic_barrier: {
5342 unsigned* bsize = ctx->program->info->cs.block_size;
5343 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
5344 if (workgroup_size > 64)
5345 bld.sopp(aco_opcode::s_barrier);
5346 break;
5347 }
5348 case nir_intrinsic_group_memory_barrier:
5349 case nir_intrinsic_memory_barrier:
5350 case nir_intrinsic_memory_barrier_atomic_counter:
5351 case nir_intrinsic_memory_barrier_buffer:
5352 case nir_intrinsic_memory_barrier_image:
5353 case nir_intrinsic_memory_barrier_shared:
5354 emit_memory_barrier(ctx, instr);
5355 break;
5356 case nir_intrinsic_load_num_work_groups:
5357 case nir_intrinsic_load_work_group_id:
5358 case nir_intrinsic_load_local_invocation_id: {
5359 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5360 Temp* ids;
5361 if (instr->intrinsic == nir_intrinsic_load_num_work_groups)
5362 ids = ctx->num_workgroups;
5363 else if (instr->intrinsic == nir_intrinsic_load_work_group_id)
5364 ids = ctx->workgroup_ids;
5365 else
5366 ids = ctx->local_invocation_ids;
5367 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5368 ids[0].id() ? Operand(ids[0]) : Operand(1u),
5369 ids[1].id() ? Operand(ids[1]) : Operand(1u),
5370 ids[2].id() ? Operand(ids[2]) : Operand(1u));
5371 emit_split_vector(ctx, dst, 3);
5372 break;
5373 }
5374 case nir_intrinsic_load_local_invocation_index: {
5375 Temp id = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), Operand((uint32_t) -1),
5376 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
5377 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u), ctx->tg_size);
5378 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
5379 break;
5380 }
5381 case nir_intrinsic_load_subgroup_id: {
5382 if (ctx->stage == compute_cs) {
5383 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u), ctx->tg_size);
5384 bld.sop2(aco_opcode::s_lshr_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), tg_num, Operand(0x6u));
5385 } else {
5386 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
5387 }
5388 break;
5389 }
5390 case nir_intrinsic_load_subgroup_invocation: {
5391 bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand((uint32_t) -1),
5392 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
5393 break;
5394 }
5395 case nir_intrinsic_load_num_subgroups: {
5396 if (ctx->stage == compute_cs)
5397 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu), ctx->tg_size);
5398 else
5399 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
5400 break;
5401 }
5402 case nir_intrinsic_ballot: {
5403 Definition tmp = bld.def(s2);
5404 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5405 if (instr->src[0].ssa->bit_size == 1 && src.regClass() == s2) {
5406 bld.sop2(aco_opcode::s_and_b64, tmp, bld.def(s1, scc), Operand(exec, s2), src);
5407 } else if (instr->src[0].ssa->bit_size == 1 && src.regClass() == s1) {
5408 bld.sop2(aco_opcode::s_cselect_b64, tmp, Operand(exec, s2), Operand(0u), bld.scc(src));
5409 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
5410 bld.vopc(aco_opcode::v_cmp_lg_u32, tmp, Operand(0u), src);
5411 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
5412 bld.vopc(aco_opcode::v_cmp_lg_u64, tmp, Operand(0u), src);
5413 } else {
5414 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5415 nir_print_instr(&instr->instr, stderr);
5416 fprintf(stderr, "\n");
5417 }
5418 emit_wqm(ctx, tmp.getTemp(), get_ssa_temp(ctx, &instr->dest.ssa));
5419 break;
5420 }
5421 case nir_intrinsic_shuffle: {
5422 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5423 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
5424 emit_uniform_subgroup(ctx, instr, src);
5425 } else {
5426 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
5427 assert(tid.regClass() == v1);
5428 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5429 if (src.regClass() == v1) {
5430 tid = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), tid);
5431 emit_wqm(ctx, bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), tid, src), dst);
5432 } else if (src.regClass() == v2) {
5433 tid = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), tid);
5434
5435 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5436 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5437 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), tid, lo));
5438 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), tid, hi));
5439 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5440 emit_split_vector(ctx, dst, 2);
5441 } else if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5442 Temp tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
5443 tmp = emit_extract_vector(ctx, tmp, 0, v1);
5444 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
5445 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), tmp), dst);
5446 } else {
5447 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5448 nir_print_instr(&instr->instr, stderr);
5449 fprintf(stderr, "\n");
5450 }
5451 }
5452 break;
5453 }
5454 case nir_intrinsic_load_sample_id: {
5455 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5456 ctx->fs_inputs[ancillary], Operand(8u), Operand(4u));
5457 break;
5458 }
5459 case nir_intrinsic_load_sample_mask_in: {
5460 visit_load_sample_mask_in(ctx, instr);
5461 break;
5462 }
5463 case nir_intrinsic_read_first_invocation: {
5464 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5465 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5466 if (src.regClass() == v1) {
5467 emit_wqm(ctx,
5468 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
5469 dst);
5470 } else if (src.regClass() == v2) {
5471 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5472 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5473 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
5474 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
5475 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5476 emit_split_vector(ctx, dst, 2);
5477 } else if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5478 emit_wqm(ctx,
5479 bld.sopc(aco_opcode::s_bitcmp1_b64, bld.def(s1, scc), src,
5480 bld.sop1(aco_opcode::s_ff1_i32_b64, bld.def(s1), Operand(exec, s2))),
5481 dst);
5482 } else if (src.regClass() == s1) {
5483 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
5484 } else if (src.regClass() == s2) {
5485 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
5486 } else {
5487 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5488 nir_print_instr(&instr->instr, stderr);
5489 fprintf(stderr, "\n");
5490 }
5491 break;
5492 }
5493 case nir_intrinsic_read_invocation: {
5494 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5495 Temp lane = get_ssa_temp(ctx, instr->src[1].ssa);
5496 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5497 assert(lane.regClass() == s1);
5498 if (src.regClass() == v1) {
5499 emit_wqm(ctx, bld.vop3(aco_opcode::v_readlane_b32, bld.def(s1), src, lane), dst);
5500 } else if (src.regClass() == v2) {
5501 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5502 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5503 lo = emit_wqm(ctx, bld.vop3(aco_opcode::v_readlane_b32, bld.def(s1), lo, lane));
5504 hi = emit_wqm(ctx, bld.vop3(aco_opcode::v_readlane_b32, bld.def(s1), hi, lane));
5505 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5506 emit_split_vector(ctx, dst, 2);
5507 } else if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5508 emit_wqm(ctx, bld.sopc(aco_opcode::s_bitcmp1_b64, bld.def(s1, scc), src, lane), dst);
5509 } else if (src.regClass() == s1) {
5510 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
5511 } else if (src.regClass() == s2) {
5512 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
5513 } else {
5514 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5515 nir_print_instr(&instr->instr, stderr);
5516 fprintf(stderr, "\n");
5517 }
5518 break;
5519 }
5520 case nir_intrinsic_vote_all: {
5521 Temp src = as_divergent_bool(ctx, get_ssa_temp(ctx, instr->src[0].ssa), false);
5522 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5523 assert(src.regClass() == s2);
5524 assert(dst.regClass() == s1);
5525
5526 Definition tmp = bld.def(s1);
5527 bld.sopc(aco_opcode::s_cmp_eq_u64, bld.scc(tmp),
5528 bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2)),
5529 Operand(exec, s2));
5530 emit_wqm(ctx, tmp.getTemp(), dst);
5531 break;
5532 }
5533 case nir_intrinsic_vote_any: {
5534 Temp src = as_divergent_bool(ctx, get_ssa_temp(ctx, instr->src[0].ssa), false);
5535 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5536 assert(src.regClass() == s2);
5537 assert(dst.regClass() == s1);
5538
5539 Definition tmp = bld.def(s1);
5540 bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.scc(tmp), src, Operand(exec, s2));
5541 emit_wqm(ctx, tmp.getTemp(), dst);
5542 break;
5543 }
5544 case nir_intrinsic_reduce:
5545 case nir_intrinsic_inclusive_scan:
5546 case nir_intrinsic_exclusive_scan: {
5547 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5548 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5549 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
5550 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
5551 nir_intrinsic_cluster_size(instr) : 0;
5552 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : 64, 64));
5553
5554 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
5555 emit_uniform_subgroup(ctx, instr, src);
5556 } else if (instr->dest.ssa.bit_size == 1) {
5557 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
5558 op = nir_op_iand;
5559 else if (op == nir_op_iadd)
5560 op = nir_op_ixor;
5561 else if (op == nir_op_umax || op == nir_op_imax)
5562 op = nir_op_ior;
5563 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
5564
5565 switch (instr->intrinsic) {
5566 case nir_intrinsic_reduce:
5567 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
5568 break;
5569 case nir_intrinsic_exclusive_scan:
5570 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
5571 break;
5572 case nir_intrinsic_inclusive_scan:
5573 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
5574 break;
5575 default:
5576 assert(false);
5577 }
5578 } else if (cluster_size == 1) {
5579 bld.copy(Definition(dst), src);
5580 } else {
5581 src = as_vgpr(ctx, src);
5582
5583 ReduceOp reduce_op;
5584 switch (op) {
5585 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
5586 CASE(iadd)
5587 CASE(imul)
5588 CASE(fadd)
5589 CASE(fmul)
5590 CASE(imin)
5591 CASE(umin)
5592 CASE(fmin)
5593 CASE(imax)
5594 CASE(umax)
5595 CASE(fmax)
5596 CASE(iand)
5597 CASE(ior)
5598 CASE(ixor)
5599 default:
5600 unreachable("unknown reduction op");
5601 #undef CASE
5602 }
5603
5604 aco_opcode aco_op;
5605 switch (instr->intrinsic) {
5606 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
5607 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
5608 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
5609 default:
5610 unreachable("unknown reduce intrinsic");
5611 }
5612
5613 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
5614 reduce->operands[0] = Operand(src);
5615 // filled in by aco_reduce_assign.cpp, used internally as part of the
5616 // reduce sequence
5617 assert(dst.size() == 1 || dst.size() == 2);
5618 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
5619 reduce->operands[2] = Operand(v1.as_linear());
5620
5621 Temp tmp_dst = bld.tmp(dst.regClass());
5622 reduce->definitions[0] = Definition(tmp_dst);
5623 reduce->definitions[1] = bld.def(s2); // used internally
5624 reduce->definitions[2] = Definition();
5625 reduce->definitions[3] = Definition(scc, s1);
5626 reduce->definitions[4] = Definition();
5627 reduce->reduce_op = reduce_op;
5628 reduce->cluster_size = cluster_size;
5629 ctx->block->instructions.emplace_back(std::move(reduce));
5630
5631 emit_wqm(ctx, tmp_dst, dst);
5632 }
5633 break;
5634 }
5635 case nir_intrinsic_quad_broadcast: {
5636 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5637 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
5638 emit_uniform_subgroup(ctx, instr, src);
5639 } else {
5640 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5641 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
5642 if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5643 uint32_t half_mask = 0x11111111u << lane;
5644 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
5645 Temp tmp = bld.tmp(s2);
5646 bld.sop1(aco_opcode::s_wqm_b64, Definition(tmp),
5647 bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), mask_tmp,
5648 bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2))));
5649 emit_wqm(ctx, tmp, dst);
5650 } else if (instr->dest.ssa.bit_size == 32) {
5651 emit_wqm(ctx,
5652 bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src,
5653 dpp_quad_perm(lane, lane, lane, lane)),
5654 dst);
5655 } else if (instr->dest.ssa.bit_size == 64) {
5656 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5657 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5658 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_quad_perm(lane, lane, lane, lane)));
5659 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_quad_perm(lane, lane, lane, lane)));
5660 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5661 emit_split_vector(ctx, dst, 2);
5662 } else {
5663 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5664 nir_print_instr(&instr->instr, stderr);
5665 fprintf(stderr, "\n");
5666 }
5667 }
5668 break;
5669 }
5670 case nir_intrinsic_quad_swap_horizontal:
5671 case nir_intrinsic_quad_swap_vertical:
5672 case nir_intrinsic_quad_swap_diagonal:
5673 case nir_intrinsic_quad_swizzle_amd: {
5674 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5675 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
5676 emit_uniform_subgroup(ctx, instr, src);
5677 break;
5678 }
5679 uint16_t dpp_ctrl = 0;
5680 switch (instr->intrinsic) {
5681 case nir_intrinsic_quad_swap_horizontal:
5682 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
5683 break;
5684 case nir_intrinsic_quad_swap_vertical:
5685 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
5686 break;
5687 case nir_intrinsic_quad_swap_diagonal:
5688 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
5689 break;
5690 case nir_intrinsic_quad_swizzle_amd: {
5691 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
5692 break;
5693 }
5694 default:
5695 break;
5696 }
5697
5698 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5699 if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5700 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
5701 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
5702 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), src);
5703 emit_wqm(ctx, tmp, dst);
5704 } else if (instr->dest.ssa.bit_size == 32) {
5705 Temp tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
5706 emit_wqm(ctx, tmp, dst);
5707 } else if (instr->dest.ssa.bit_size == 64) {
5708 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5709 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5710 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
5711 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
5712 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5713 emit_split_vector(ctx, dst, 2);
5714 } else {
5715 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5716 nir_print_instr(&instr->instr, stderr);
5717 fprintf(stderr, "\n");
5718 }
5719 break;
5720 }
5721 case nir_intrinsic_masked_swizzle_amd: {
5722 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5723 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
5724 emit_uniform_subgroup(ctx, instr, src);
5725 break;
5726 }
5727 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5728 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
5729 if (dst.regClass() == v1) {
5730 emit_wqm(ctx,
5731 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
5732 dst);
5733 } else if (dst.regClass() == v2) {
5734 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5735 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5736 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
5737 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
5738 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5739 emit_split_vector(ctx, dst, 2);
5740 } else {
5741 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5742 nir_print_instr(&instr->instr, stderr);
5743 fprintf(stderr, "\n");
5744 }
5745 break;
5746 }
5747 case nir_intrinsic_write_invocation_amd: {
5748 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5749 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
5750 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
5751 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5752 if (dst.regClass() == v1) {
5753 /* src2 is ignored for writelane. RA assigns the same reg for dst */
5754 emit_wqm(ctx, bld.vop3(aco_opcode::v_writelane_b32, bld.def(v1), val, lane, src), dst);
5755 } else if (dst.regClass() == v2) {
5756 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
5757 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
5758 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
5759 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
5760 Temp lo = emit_wqm(ctx, bld.vop3(aco_opcode::v_writelane_b32, bld.def(v1), val_lo, lane, src_hi));
5761 Temp hi = emit_wqm(ctx, bld.vop3(aco_opcode::v_writelane_b32, bld.def(v1), val_hi, lane, src_hi));
5762 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5763 emit_split_vector(ctx, dst, 2);
5764 } else {
5765 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5766 nir_print_instr(&instr->instr, stderr);
5767 fprintf(stderr, "\n");
5768 }
5769 break;
5770 }
5771 case nir_intrinsic_mbcnt_amd: {
5772 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5773 RegClass rc = RegClass(src.type(), 1);
5774 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
5775 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
5776 Temp tmp = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), mask_lo, Operand(0u));
5777 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5778 Temp wqm_tmp = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), mask_hi, tmp);
5779 emit_wqm(ctx, wqm_tmp, dst);
5780 break;
5781 }
5782 case nir_intrinsic_load_helper_invocation: {
5783 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5784 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
5785 ctx->block->kind |= block_kind_needs_lowering;
5786 ctx->program->needs_exact = true;
5787 break;
5788 }
5789 case nir_intrinsic_is_helper_invocation: {
5790 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5791 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
5792 ctx->block->kind |= block_kind_needs_lowering;
5793 ctx->program->needs_exact = true;
5794 break;
5795 }
5796 case nir_intrinsic_demote:
5797 bld.pseudo(aco_opcode::p_demote_to_helper);
5798 ctx->block->kind |= block_kind_uses_demote;
5799 ctx->program->needs_exact = true;
5800 break;
5801 case nir_intrinsic_demote_if: {
5802 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc),
5803 as_divergent_bool(ctx, get_ssa_temp(ctx, instr->src[0].ssa), false),
5804 Operand(exec, s2));
5805 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
5806 ctx->block->kind |= block_kind_uses_demote;
5807 ctx->program->needs_exact = true;
5808 break;
5809 }
5810 case nir_intrinsic_first_invocation: {
5811 emit_wqm(ctx, bld.sop1(aco_opcode::s_ff1_i32_b64, bld.def(s1), Operand(exec, s2)),
5812 get_ssa_temp(ctx, &instr->dest.ssa));
5813 break;
5814 }
5815 case nir_intrinsic_shader_clock:
5816 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
5817 break;
5818 case nir_intrinsic_load_vertex_id_zero_base: {
5819 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5820 bld.copy(Definition(dst), ctx->vertex_id);
5821 break;
5822 }
5823 case nir_intrinsic_load_first_vertex: {
5824 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5825 bld.copy(Definition(dst), ctx->base_vertex);
5826 break;
5827 }
5828 case nir_intrinsic_load_base_instance: {
5829 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5830 bld.copy(Definition(dst), ctx->start_instance);
5831 break;
5832 }
5833 case nir_intrinsic_load_instance_id: {
5834 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5835 bld.copy(Definition(dst), ctx->instance_id);
5836 break;
5837 }
5838 case nir_intrinsic_load_draw_id: {
5839 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5840 bld.copy(Definition(dst), ctx->draw_id);
5841 break;
5842 }
5843 default:
5844 fprintf(stderr, "Unimplemented intrinsic instr: ");
5845 nir_print_instr(&instr->instr, stderr);
5846 fprintf(stderr, "\n");
5847 abort();
5848
5849 break;
5850 }
5851 }
5852
5853
5854 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
5855 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
5856 enum glsl_base_type *stype)
5857 {
5858 nir_deref_instr *texture_deref_instr = NULL;
5859 nir_deref_instr *sampler_deref_instr = NULL;
5860 int plane = -1;
5861
5862 for (unsigned i = 0; i < instr->num_srcs; i++) {
5863 switch (instr->src[i].src_type) {
5864 case nir_tex_src_texture_deref:
5865 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
5866 break;
5867 case nir_tex_src_sampler_deref:
5868 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
5869 break;
5870 case nir_tex_src_plane:
5871 plane = nir_src_as_int(instr->src[i].src);
5872 break;
5873 default:
5874 break;
5875 }
5876 }
5877
5878 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
5879
5880 if (!sampler_deref_instr)
5881 sampler_deref_instr = texture_deref_instr;
5882
5883 if (plane >= 0) {
5884 assert(instr->op != nir_texop_txf_ms &&
5885 instr->op != nir_texop_samples_identical);
5886 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
5887 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
5888 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
5889 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
5890 } else {
5891 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
5892 }
5893 if (samp_ptr) {
5894 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
5895 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
5896 fprintf(stderr, "Unimplemented sampler descriptor: ");
5897 nir_print_instr(&instr->instr, stderr);
5898 fprintf(stderr, "\n");
5899 abort();
5900 // TODO: build samp_ptr = and(samp_ptr, res_ptr)
5901 }
5902 }
5903 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
5904 instr->op == nir_texop_samples_identical))
5905 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
5906 }
5907
5908 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
5909 Temp *out_ma, Temp *out_sc, Temp *out_tc)
5910 {
5911 Builder bld(ctx->program, ctx->block);
5912
5913 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
5914 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
5915 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
5916
5917 Operand neg_one(0xbf800000u);
5918 Operand one(0x3f800000u);
5919 Operand two(0x40000000u);
5920 Operand four(0x40800000u);
5921
5922 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(s2)), Operand(0u), ma);
5923 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
5924 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
5925
5926 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(s2)), four, id);
5927 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(s2), two, id);
5928 is_ma_y = bld.sop2(aco_opcode::s_andn2_b64, bld.hint_vcc(bld.def(s2)), is_ma_y, is_ma_z);
5929 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), is_ma_z, is_ma_y);
5930
5931 // select sc
5932 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
5933 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
5934 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
5935 one, is_ma_y);
5936 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
5937
5938 // select tc
5939 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
5940 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
5941 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
5942
5943 // select ma
5944 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
5945 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
5946 deriv_z, is_ma_z);
5947 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
5948 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
5949 }
5950
5951 void prepare_cube_coords(isel_context *ctx, Temp* coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
5952 {
5953 Builder bld(ctx->program, ctx->block);
5954 Temp coord_args[4], ma, tc, sc, id;
5955 for (unsigned i = 0; i < (is_array ? 4 : 3); i++)
5956 coord_args[i] = emit_extract_vector(ctx, *coords, i, v1);
5957
5958 if (is_array) {
5959 coord_args[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_args[3]);
5960
5961 // see comment in ac_prepare_cube_coords()
5962 if (ctx->options->chip_class <= GFX8)
5963 coord_args[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coord_args[3]);
5964 }
5965
5966 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
5967
5968 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
5969 vop3a->operands[0] = Operand(ma);
5970 vop3a->abs[0] = true;
5971 Temp invma = bld.tmp(v1);
5972 vop3a->definitions[0] = Definition(invma);
5973 ctx->block->instructions.emplace_back(std::move(vop3a));
5974
5975 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
5976 if (!is_deriv)
5977 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
5978
5979 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
5980 if (!is_deriv)
5981 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
5982
5983 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
5984
5985 if (is_deriv) {
5986 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
5987 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
5988
5989 for (unsigned i = 0; i < 2; i++) {
5990 // see comment in ac_prepare_cube_coords()
5991 Temp deriv_ma;
5992 Temp deriv_sc, deriv_tc;
5993 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
5994 &deriv_ma, &deriv_sc, &deriv_tc);
5995
5996 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
5997
5998 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
5999 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
6000 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
6001 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
6002 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
6003 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
6004 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
6005 }
6006
6007 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
6008 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
6009 }
6010
6011 if (is_array)
6012 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coord_args[3], id, Operand(0x41000000u/*8.0*/));
6013 *coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), sc, tc, id);
6014
6015 }
6016
6017 Temp apply_round_slice(isel_context *ctx, Temp coords, unsigned idx)
6018 {
6019 Temp coord_vec[3];
6020 for (unsigned i = 0; i < coords.size(); i++)
6021 coord_vec[i] = emit_extract_vector(ctx, coords, i, v1);
6022
6023 Builder bld(ctx->program, ctx->block);
6024 coord_vec[idx] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_vec[idx]);
6025
6026 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
6027 for (unsigned i = 0; i < coords.size(); i++)
6028 vec->operands[i] = Operand(coord_vec[i]);
6029 Temp res = bld.tmp(RegType::vgpr, coords.size());
6030 vec->definitions[0] = Definition(res);
6031 ctx->block->instructions.emplace_back(std::move(vec));
6032 return res;
6033 }
6034
6035 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
6036 {
6037 if (vec->parent_instr->type != nir_instr_type_alu)
6038 return;
6039 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
6040 if (vec_instr->op != nir_op_vec(vec->num_components))
6041 return;
6042
6043 for (unsigned i = 0; i < vec->num_components; i++) {
6044 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
6045 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
6046 }
6047 }
6048
6049 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
6050 {
6051 Builder bld(ctx->program, ctx->block);
6052 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
6053 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
6054 Temp resource, sampler, fmask_ptr, bias = Temp(), coords, compare = Temp(), sample_index = Temp(),
6055 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(), derivs = Temp();
6056 nir_const_value *sample_index_cv = NULL;
6057 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
6058 enum glsl_base_type stype;
6059 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
6060
6061 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
6062 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
6063 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
6064 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
6065
6066 for (unsigned i = 0; i < instr->num_srcs; i++) {
6067 switch (instr->src[i].src_type) {
6068 case nir_tex_src_coord:
6069 coords = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[i].src.ssa));
6070 break;
6071 case nir_tex_src_bias:
6072 if (instr->op == nir_texop_txb) {
6073 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
6074 has_bias = true;
6075 }
6076 break;
6077 case nir_tex_src_lod: {
6078 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
6079
6080 if (val && val->f32 <= 0.0) {
6081 level_zero = true;
6082 } else {
6083 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
6084 has_lod = true;
6085 }
6086 break;
6087 }
6088 case nir_tex_src_comparator:
6089 if (instr->is_shadow) {
6090 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
6091 has_compare = true;
6092 }
6093 break;
6094 case nir_tex_src_offset:
6095 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
6096 get_const_vec(instr->src[i].src.ssa, const_offset);
6097 has_offset = true;
6098 break;
6099 case nir_tex_src_ddx:
6100 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
6101 has_ddx = true;
6102 break;
6103 case nir_tex_src_ddy:
6104 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
6105 has_ddy = true;
6106 break;
6107 case nir_tex_src_ms_index:
6108 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
6109 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
6110 has_sample_index = true;
6111 break;
6112 case nir_tex_src_texture_offset:
6113 case nir_tex_src_sampler_offset:
6114 default:
6115 break;
6116 }
6117 }
6118 // TODO: all other cases: structure taken from ac_nir_to_llvm.c
6119 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
6120 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
6121
6122 if (instr->op == nir_texop_texture_samples) {
6123 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
6124
6125 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
6126 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
6127 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
6128 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
6129
6130 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6131 samples, Operand(1u), bld.scc(is_msaa));
6132 return;
6133 }
6134
6135 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
6136 aco_ptr<Instruction> tmp_instr;
6137 Temp acc, pack = Temp();
6138
6139 uint32_t pack_const = 0;
6140 for (unsigned i = 0; i < offset.size(); i++) {
6141 if (!const_offset[i])
6142 continue;
6143 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
6144 }
6145
6146 if (offset.type() == RegType::sgpr) {
6147 for (unsigned i = 0; i < offset.size(); i++) {
6148 if (const_offset[i])
6149 continue;
6150
6151 acc = emit_extract_vector(ctx, offset, i, s1);
6152 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
6153
6154 if (i) {
6155 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
6156 }
6157
6158 if (pack == Temp()) {
6159 pack = acc;
6160 } else {
6161 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
6162 }
6163 }
6164
6165 if (pack_const && pack != Temp())
6166 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
6167 } else {
6168 for (unsigned i = 0; i < offset.size(); i++) {
6169 if (const_offset[i])
6170 continue;
6171
6172 acc = emit_extract_vector(ctx, offset, i, v1);
6173 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
6174
6175 if (i) {
6176 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
6177 }
6178
6179 if (pack == Temp()) {
6180 pack = acc;
6181 } else {
6182 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
6183 }
6184 }
6185
6186 if (pack_const && pack != Temp())
6187 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
6188 }
6189 if (pack_const && pack == Temp())
6190 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
6191 else if (pack == Temp())
6192 has_offset = false;
6193 else
6194 offset = pack;
6195 }
6196
6197 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
6198 prepare_cube_coords(ctx, &coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
6199
6200 /* pack derivatives */
6201 if (has_ddx || has_ddy) {
6202 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class >= GFX9) {
6203 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(v4),
6204 ddx, Operand(0u), ddy, Operand(0u));
6205 } else {
6206 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, ddx.size() + ddy.size()), ddx, ddy);
6207 }
6208 has_derivs = true;
6209 }
6210
6211 if (instr->coord_components > 1 &&
6212 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
6213 instr->is_array &&
6214 instr->op != nir_texop_txf)
6215 coords = apply_round_slice(ctx, coords, 1);
6216
6217 if (instr->coord_components > 2 &&
6218 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
6219 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
6220 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
6221 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
6222 instr->is_array &&
6223 instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms)
6224 coords = apply_round_slice(ctx, coords, 2);
6225
6226 if (ctx->options->chip_class >= GFX9 &&
6227 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
6228 instr->op != nir_texop_lod && instr->coord_components) {
6229 assert(coords.size() > 0 && coords.size() < 3);
6230
6231 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size() + 1, 1)};
6232 vec->operands[0] = Operand(emit_extract_vector(ctx, coords, 0, v1));
6233 vec->operands[1] = instr->op == nir_texop_txf ? Operand((uint32_t) 0) : Operand((uint32_t) 0x3f000000);
6234 if (coords.size() > 1)
6235 vec->operands[2] = Operand(emit_extract_vector(ctx, coords, 1, v1));
6236 coords = bld.tmp(RegType::vgpr, coords.size() + 1);
6237 vec->definitions[0] = Definition(coords);
6238 ctx->block->instructions.emplace_back(std::move(vec));
6239 }
6240
6241 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
6242
6243 if (instr->op == nir_texop_samples_identical)
6244 resource = fmask_ptr;
6245
6246 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
6247 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
6248 instr->op != nir_texop_txs) {
6249 assert(has_sample_index);
6250 Operand op(sample_index);
6251 if (sample_index_cv)
6252 op = Operand(sample_index_cv->u32);
6253 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
6254 }
6255
6256 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
6257 Temp split_coords[coords.size()];
6258 emit_split_vector(ctx, coords, coords.size());
6259 for (unsigned i = 0; i < coords.size(); i++)
6260 split_coords[i] = emit_extract_vector(ctx, coords, i, v1);
6261
6262 unsigned i = 0;
6263 for (; i < std::min(offset.size(), instr->coord_components); i++) {
6264 Temp off = emit_extract_vector(ctx, offset, i, v1);
6265 split_coords[i] = bld.vadd32(bld.def(v1), split_coords[i], off);
6266 }
6267
6268 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
6269 for (unsigned i = 0; i < coords.size(); i++)
6270 vec->operands[i] = Operand(split_coords[i]);
6271 coords = bld.tmp(coords.regClass());
6272 vec->definitions[0] = Definition(coords);
6273 ctx->block->instructions.emplace_back(std::move(vec));
6274
6275 has_offset = false;
6276 }
6277
6278 /* Build tex instruction */
6279 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
6280 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
6281 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
6282 : 0;
6283 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6284 Temp tmp_dst = dst;
6285
6286 /* gather4 selects the component by dmask and always returns vec4 */
6287 if (instr->op == nir_texop_tg4) {
6288 assert(instr->dest.ssa.num_components == 4);
6289 if (instr->is_shadow)
6290 dmask = 1;
6291 else
6292 dmask = 1 << instr->component;
6293 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
6294 tmp_dst = bld.tmp(v4);
6295 } else if (instr->op == nir_texop_samples_identical) {
6296 tmp_dst = bld.tmp(v1);
6297 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
6298 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
6299 }
6300
6301 aco_ptr<MIMG_instruction> tex;
6302 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
6303 if (!has_lod)
6304 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6305
6306 bool div_by_6 = instr->op == nir_texop_txs &&
6307 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
6308 instr->is_array &&
6309 (dmask & (1 << 2));
6310 if (tmp_dst.id() == dst.id() && div_by_6)
6311 tmp_dst = bld.tmp(tmp_dst.regClass());
6312
6313 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
6314 tex->operands[0] = Operand(as_vgpr(ctx,lod));
6315 tex->operands[1] = Operand(resource);
6316 if (ctx->options->chip_class >= GFX9 &&
6317 instr->op == nir_texop_txs &&
6318 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
6319 instr->is_array) {
6320 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
6321 } else if (instr->op == nir_texop_query_levels) {
6322 tex->dmask = 1 << 3;
6323 } else {
6324 tex->dmask = dmask;
6325 }
6326 tex->da = da;
6327 tex->definitions[0] = Definition(tmp_dst);
6328 tex->dim = dim;
6329 tex->can_reorder = true;
6330 ctx->block->instructions.emplace_back(std::move(tex));
6331
6332 if (div_by_6) {
6333 /* divide 3rd value by 6 by multiplying with magic number */
6334 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
6335 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6336 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
6337 assert(instr->dest.ssa.num_components == 3);
6338 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
6339 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
6340 emit_extract_vector(ctx, tmp_dst, 0, v1),
6341 emit_extract_vector(ctx, tmp_dst, 1, v1),
6342 by_6);
6343
6344 }
6345
6346 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
6347 return;
6348 }
6349
6350 Temp tg4_compare_cube_wa64 = Temp();
6351
6352 if (tg4_integer_workarounds) {
6353 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
6354 tex->operands[0] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6355 tex->operands[1] = Operand(resource);
6356 tex->dim = dim;
6357 tex->dmask = 0x3;
6358 tex->da = da;
6359 Temp size = bld.tmp(v2);
6360 tex->definitions[0] = Definition(size);
6361 tex->can_reorder = true;
6362 ctx->block->instructions.emplace_back(std::move(tex));
6363 emit_split_vector(ctx, size, size.size());
6364
6365 Temp half_texel[2];
6366 for (unsigned i = 0; i < 2; i++) {
6367 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
6368 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
6369 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
6370 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
6371 }
6372
6373 Temp orig_coords[2] = {
6374 emit_extract_vector(ctx, coords, 0, v1),
6375 emit_extract_vector(ctx, coords, 1, v1)};
6376 Temp new_coords[2] = {
6377 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[0], half_texel[0]),
6378 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[1], half_texel[1])
6379 };
6380
6381 if (tg4_integer_cube_workaround) {
6382 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
6383 Temp desc[resource.size()];
6384 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
6385 Format::PSEUDO, 1, resource.size())};
6386 split->operands[0] = Operand(resource);
6387 for (unsigned i = 0; i < resource.size(); i++) {
6388 desc[i] = bld.tmp(s1);
6389 split->definitions[i] = Definition(desc[i]);
6390 }
6391 ctx->block->instructions.emplace_back(std::move(split));
6392
6393 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
6394 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
6395 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
6396
6397 Temp nfmt;
6398 if (stype == GLSL_TYPE_UINT) {
6399 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
6400 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
6401 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
6402 bld.scc(compare_cube_wa));
6403 } else {
6404 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
6405 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
6406 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
6407 bld.scc(compare_cube_wa));
6408 }
6409 tg4_compare_cube_wa64 = as_divergent_bool(ctx, compare_cube_wa, true);
6410 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
6411
6412 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
6413 Operand((uint32_t)C_008F14_NUM_FORMAT));
6414 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
6415
6416 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6417 Format::PSEUDO, resource.size(), 1)};
6418 for (unsigned i = 0; i < resource.size(); i++)
6419 vec->operands[i] = Operand(desc[i]);
6420 resource = bld.tmp(resource.regClass());
6421 vec->definitions[0] = Definition(resource);
6422 ctx->block->instructions.emplace_back(std::move(vec));
6423
6424 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
6425 new_coords[0], orig_coords[0], tg4_compare_cube_wa64);
6426 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
6427 new_coords[1], orig_coords[1], tg4_compare_cube_wa64);
6428 }
6429
6430 if (coords.size() == 3) {
6431 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3),
6432 new_coords[0], new_coords[1],
6433 emit_extract_vector(ctx, coords, 2, v1));
6434 } else {
6435 assert(coords.size() == 2);
6436 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2),
6437 new_coords[0], new_coords[1]);
6438 }
6439 }
6440
6441 if (!(has_ddx && has_ddy) && !has_lod && !level_zero &&
6442 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
6443 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
6444 coords = emit_wqm(ctx, coords, bld.tmp(coords.regClass()), true);
6445
6446 std::vector<Operand> args;
6447 if (has_offset)
6448 args.emplace_back(Operand(offset));
6449 if (has_bias)
6450 args.emplace_back(Operand(bias));
6451 if (has_compare)
6452 args.emplace_back(Operand(compare));
6453 if (has_derivs)
6454 args.emplace_back(Operand(derivs));
6455 args.emplace_back(Operand(coords));
6456 if (has_sample_index)
6457 args.emplace_back(Operand(sample_index));
6458 if (has_lod)
6459 args.emplace_back(lod);
6460
6461 Operand arg;
6462 if (args.size() > 1) {
6463 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
6464 unsigned size = 0;
6465 for (unsigned i = 0; i < args.size(); i++) {
6466 size += args[i].size();
6467 vec->operands[i] = args[i];
6468 }
6469 RegClass rc = RegClass(RegType::vgpr, size);
6470 Temp tmp = bld.tmp(rc);
6471 vec->definitions[0] = Definition(tmp);
6472 ctx->block->instructions.emplace_back(std::move(vec));
6473 arg = Operand(tmp);
6474 } else {
6475 assert(args[0].isTemp());
6476 arg = Operand(as_vgpr(ctx, args[0].getTemp()));
6477 }
6478
6479 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
6480 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
6481
6482 assert(coords.size() == 1);
6483 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
6484 aco_opcode op;
6485 switch (last_bit) {
6486 case 1:
6487 op = aco_opcode::buffer_load_format_x; break;
6488 case 2:
6489 op = aco_opcode::buffer_load_format_xy; break;
6490 case 3:
6491 op = aco_opcode::buffer_load_format_xyz; break;
6492 case 4:
6493 op = aco_opcode::buffer_load_format_xyzw; break;
6494 default:
6495 unreachable("Tex instruction loads more than 4 components.");
6496 }
6497
6498 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
6499 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
6500 tmp_dst = dst;
6501 else
6502 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
6503
6504 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
6505 mubuf->operands[0] = Operand(coords);
6506 mubuf->operands[1] = Operand(resource);
6507 mubuf->operands[2] = Operand((uint32_t) 0);
6508 mubuf->definitions[0] = Definition(tmp_dst);
6509 mubuf->idxen = true;
6510 mubuf->can_reorder = true;
6511 ctx->block->instructions.emplace_back(std::move(mubuf));
6512
6513 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
6514 return;
6515 }
6516
6517
6518 if (instr->op == nir_texop_txf ||
6519 instr->op == nir_texop_txf_ms ||
6520 instr->op == nir_texop_samples_identical) {
6521 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
6522 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 2, 1));
6523 tex->operands[0] = Operand(arg);
6524 tex->operands[1] = Operand(resource);
6525 tex->dim = dim;
6526 tex->dmask = dmask;
6527 tex->unrm = true;
6528 tex->da = da;
6529 tex->definitions[0] = Definition(tmp_dst);
6530 tex->can_reorder = true;
6531 ctx->block->instructions.emplace_back(std::move(tex));
6532
6533 if (instr->op == nir_texop_samples_identical) {
6534 assert(dmask == 1 && dst.regClass() == v1);
6535 assert(dst.id() != tmp_dst.id());
6536
6537 Temp tmp = bld.tmp(s2);
6538 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
6539 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
6540
6541 } else {
6542 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
6543 }
6544 return;
6545 }
6546
6547 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
6548 aco_opcode opcode = aco_opcode::image_sample;
6549 if (has_offset) { /* image_sample_*_o */
6550 if (has_compare) {
6551 opcode = aco_opcode::image_sample_c_o;
6552 if (has_derivs)
6553 opcode = aco_opcode::image_sample_c_d_o;
6554 if (has_bias)
6555 opcode = aco_opcode::image_sample_c_b_o;
6556 if (level_zero)
6557 opcode = aco_opcode::image_sample_c_lz_o;
6558 if (has_lod)
6559 opcode = aco_opcode::image_sample_c_l_o;
6560 } else {
6561 opcode = aco_opcode::image_sample_o;
6562 if (has_derivs)
6563 opcode = aco_opcode::image_sample_d_o;
6564 if (has_bias)
6565 opcode = aco_opcode::image_sample_b_o;
6566 if (level_zero)
6567 opcode = aco_opcode::image_sample_lz_o;
6568 if (has_lod)
6569 opcode = aco_opcode::image_sample_l_o;
6570 }
6571 } else { /* no offset */
6572 if (has_compare) {
6573 opcode = aco_opcode::image_sample_c;
6574 if (has_derivs)
6575 opcode = aco_opcode::image_sample_c_d;
6576 if (has_bias)
6577 opcode = aco_opcode::image_sample_c_b;
6578 if (level_zero)
6579 opcode = aco_opcode::image_sample_c_lz;
6580 if (has_lod)
6581 opcode = aco_opcode::image_sample_c_l;
6582 } else {
6583 opcode = aco_opcode::image_sample;
6584 if (has_derivs)
6585 opcode = aco_opcode::image_sample_d;
6586 if (has_bias)
6587 opcode = aco_opcode::image_sample_b;
6588 if (level_zero)
6589 opcode = aco_opcode::image_sample_lz;
6590 if (has_lod)
6591 opcode = aco_opcode::image_sample_l;
6592 }
6593 }
6594
6595 if (instr->op == nir_texop_tg4) {
6596 if (has_offset) {
6597 opcode = aco_opcode::image_gather4_lz_o;
6598 if (has_compare)
6599 opcode = aco_opcode::image_gather4_c_lz_o;
6600 } else {
6601 opcode = aco_opcode::image_gather4_lz;
6602 if (has_compare)
6603 opcode = aco_opcode::image_gather4_c_lz;
6604 }
6605 } else if (instr->op == nir_texop_lod) {
6606 opcode = aco_opcode::image_get_lod;
6607 }
6608
6609 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
6610 tex->operands[0] = arg;
6611 tex->operands[1] = Operand(resource);
6612 tex->operands[2] = Operand(sampler);
6613 tex->dim = dim;
6614 tex->dmask = dmask;
6615 tex->da = da;
6616 tex->definitions[0] = Definition(tmp_dst);
6617 tex->can_reorder = true;
6618 ctx->block->instructions.emplace_back(std::move(tex));
6619
6620 if (tg4_integer_cube_workaround) {
6621 assert(tmp_dst.id() != dst.id());
6622 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
6623
6624 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
6625 Temp val[4];
6626 for (unsigned i = 0; i < dst.size(); i++) {
6627 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
6628 Temp cvt_val;
6629 if (stype == GLSL_TYPE_UINT)
6630 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
6631 else
6632 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
6633 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
6634 }
6635 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
6636 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
6637 val[0], val[1], val[2], val[3]);
6638 }
6639 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
6640 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
6641
6642 }
6643
6644
6645 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
6646 {
6647 Temp tmp = get_ssa_temp(ctx, ssa);
6648 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
6649 return Operand(tmp.regClass());
6650 else
6651 return Operand(tmp);
6652 }
6653
6654 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
6655 {
6656 aco_ptr<Pseudo_instruction> phi;
6657 unsigned num_src = exec_list_length(&instr->srcs);
6658 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6659
6660 aco_opcode opcode = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index] ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
6661
6662 std::map<unsigned, nir_ssa_def*> phi_src;
6663 bool all_undef = true;
6664 nir_foreach_phi_src(src, instr) {
6665 phi_src[src->pred->index] = src->src.ssa;
6666 if (src->src.ssa->parent_instr->type != nir_instr_type_ssa_undef)
6667 all_undef = false;
6668 }
6669 if (all_undef) {
6670 Builder bld(ctx->program, ctx->block);
6671 if (dst.regClass() == s1) {
6672 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
6673 } else if (dst.regClass() == v1) {
6674 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
6675 } else {
6676 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
6677 for (unsigned i = 0; i < dst.size(); i++)
6678 vec->operands[i] = Operand(0u);
6679 vec->definitions[0] = Definition(dst);
6680 ctx->block->instructions.emplace_back(std::move(vec));
6681 }
6682 return;
6683 }
6684
6685 /* try to scalarize vector phis */
6686 if (dst.size() > 1) {
6687 // TODO: scalarize linear phis on divergent ifs
6688 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
6689 std::array<Temp, 4> new_vec;
6690 for (std::pair<const unsigned, nir_ssa_def*>& pair : phi_src) {
6691 Operand src = get_phi_operand(ctx, pair.second);
6692 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end()) {
6693 can_scalarize = false;
6694 break;
6695 }
6696 }
6697 if (can_scalarize) {
6698 unsigned num_components = instr->dest.ssa.num_components;
6699 assert(dst.size() % num_components == 0);
6700 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
6701
6702 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
6703 for (unsigned k = 0; k < num_components; k++) {
6704 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_src, 1));
6705 std::map<unsigned, nir_ssa_def*>::iterator it = phi_src.begin();
6706 for (unsigned i = 0; i < num_src; i++) {
6707 Operand src = get_phi_operand(ctx, it->second);
6708 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
6709 ++it;
6710 }
6711 Temp phi_dst = {ctx->program->allocateId(), rc};
6712 phi->definitions[0] = Definition(phi_dst);
6713 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
6714 new_vec[k] = phi_dst;
6715 vec->operands[k] = Operand(phi_dst);
6716 }
6717 vec->definitions[0] = Definition(dst);
6718 ctx->block->instructions.emplace_back(std::move(vec));
6719 ctx->allocated_vec.emplace(dst.id(), new_vec);
6720 return;
6721 }
6722 }
6723
6724 unsigned extra_src = 0;
6725 if (opcode == aco_opcode::p_linear_phi && (ctx->block->kind & block_kind_loop_exit) &&
6726 ctx->program->blocks[ctx->block->index-2].kind & block_kind_continue_or_break) {
6727 extra_src++;
6728 }
6729
6730 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_src + extra_src, 1));
6731
6732 /* if we have a linear phi on a divergent if, we know that one src is undef */
6733 if (opcode == aco_opcode::p_linear_phi && ctx->block->kind & block_kind_merge) {
6734 assert(extra_src == 0);
6735 Block* block;
6736 /* we place the phi either in the invert-block or in the current block */
6737 if (phi_src.begin()->second->parent_instr->type != nir_instr_type_ssa_undef) {
6738 assert((++phi_src.begin())->second->parent_instr->type == nir_instr_type_ssa_undef);
6739 Block& linear_else = ctx->program->blocks[ctx->block->linear_preds[1]];
6740 block = &ctx->program->blocks[linear_else.linear_preds[0]];
6741 assert(block->kind & block_kind_invert);
6742 phi->operands[0] = get_phi_operand(ctx, phi_src.begin()->second);
6743 } else {
6744 assert((++phi_src.begin())->second->parent_instr->type != nir_instr_type_ssa_undef);
6745 block = ctx->block;
6746 phi->operands[0] = get_phi_operand(ctx, (++phi_src.begin())->second);
6747 }
6748 phi->operands[1] = Operand(dst.regClass());
6749 phi->definitions[0] = Definition(dst);
6750 block->instructions.emplace(block->instructions.begin(), std::move(phi));
6751 return;
6752 }
6753
6754 std::map<unsigned, nir_ssa_def*>::iterator it = phi_src.begin();
6755 for (unsigned i = 0; i < num_src; i++) {
6756 phi->operands[i] = get_phi_operand(ctx, it->second);
6757 ++it;
6758 }
6759 for (unsigned i = 0; i < extra_src; i++)
6760 phi->operands[num_src + i] = Operand(dst.regClass());
6761 phi->definitions[0] = Definition(dst);
6762 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
6763 }
6764
6765
6766 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
6767 {
6768 Temp dst = get_ssa_temp(ctx, &instr->def);
6769
6770 assert(dst.type() == RegType::sgpr);
6771
6772 if (dst.size() == 1) {
6773 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
6774 } else {
6775 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
6776 for (unsigned i = 0; i < dst.size(); i++)
6777 vec->operands[i] = Operand(0u);
6778 vec->definitions[0] = Definition(dst);
6779 ctx->block->instructions.emplace_back(std::move(vec));
6780 }
6781 }
6782
6783 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
6784 {
6785 Builder bld(ctx->program, ctx->block);
6786 Block *logical_target;
6787 append_logical_end(ctx->block);
6788 unsigned idx = ctx->block->index;
6789
6790 switch (instr->type) {
6791 case nir_jump_break:
6792 logical_target = ctx->cf_info.parent_loop.exit;
6793 add_logical_edge(idx, logical_target);
6794 ctx->block->kind |= block_kind_break;
6795
6796 if (!ctx->cf_info.parent_if.is_divergent &&
6797 !ctx->cf_info.parent_loop.has_divergent_continue) {
6798 /* uniform break - directly jump out of the loop */
6799 ctx->block->kind |= block_kind_uniform;
6800 ctx->cf_info.has_branch = true;
6801 bld.branch(aco_opcode::p_branch);
6802 add_linear_edge(idx, logical_target);
6803 return;
6804 }
6805 ctx->cf_info.parent_loop.has_divergent_branch = true;
6806 break;
6807 case nir_jump_continue:
6808 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
6809 add_logical_edge(idx, logical_target);
6810 ctx->block->kind |= block_kind_continue;
6811
6812 if (ctx->cf_info.parent_if.is_divergent) {
6813 /* for potential uniform breaks after this continue,
6814 we must ensure that they are handled correctly */
6815 ctx->cf_info.parent_loop.has_divergent_continue = true;
6816 ctx->cf_info.parent_loop.has_divergent_branch = true;
6817 } else {
6818 /* uniform continue - directly jump to the loop header */
6819 ctx->block->kind |= block_kind_uniform;
6820 ctx->cf_info.has_branch = true;
6821 bld.branch(aco_opcode::p_branch);
6822 add_linear_edge(idx, logical_target);
6823 return;
6824 }
6825 break;
6826 default:
6827 fprintf(stderr, "Unknown NIR jump instr: ");
6828 nir_print_instr(&instr->instr, stderr);
6829 fprintf(stderr, "\n");
6830 abort();
6831 }
6832
6833 /* remove critical edges from linear CFG */
6834 bld.branch(aco_opcode::p_branch);
6835 Block* break_block = ctx->program->create_and_insert_block();
6836 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
6837 break_block->kind |= block_kind_uniform;
6838 add_linear_edge(idx, break_block);
6839 /* the loop_header pointer might be invalidated by this point */
6840 if (instr->type == nir_jump_continue)
6841 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
6842 add_linear_edge(break_block->index, logical_target);
6843 bld.reset(break_block);
6844 bld.branch(aco_opcode::p_branch);
6845
6846 Block* continue_block = ctx->program->create_and_insert_block();
6847 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
6848 add_linear_edge(idx, continue_block);
6849 append_logical_start(continue_block);
6850 ctx->block = continue_block;
6851 return;
6852 }
6853
6854 void visit_block(isel_context *ctx, nir_block *block)
6855 {
6856 nir_foreach_instr(instr, block) {
6857 switch (instr->type) {
6858 case nir_instr_type_alu:
6859 visit_alu_instr(ctx, nir_instr_as_alu(instr));
6860 break;
6861 case nir_instr_type_load_const:
6862 visit_load_const(ctx, nir_instr_as_load_const(instr));
6863 break;
6864 case nir_instr_type_intrinsic:
6865 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
6866 break;
6867 case nir_instr_type_tex:
6868 visit_tex(ctx, nir_instr_as_tex(instr));
6869 break;
6870 case nir_instr_type_phi:
6871 visit_phi(ctx, nir_instr_as_phi(instr));
6872 break;
6873 case nir_instr_type_ssa_undef:
6874 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
6875 break;
6876 case nir_instr_type_deref:
6877 break;
6878 case nir_instr_type_jump:
6879 visit_jump(ctx, nir_instr_as_jump(instr));
6880 break;
6881 default:
6882 fprintf(stderr, "Unknown NIR instr type: ");
6883 nir_print_instr(instr, stderr);
6884 fprintf(stderr, "\n");
6885 //abort();
6886 }
6887 }
6888 }
6889
6890
6891
6892 static void visit_loop(isel_context *ctx, nir_loop *loop)
6893 {
6894 append_logical_end(ctx->block);
6895 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
6896 Builder bld(ctx->program, ctx->block);
6897 bld.branch(aco_opcode::p_branch);
6898 unsigned loop_preheader_idx = ctx->block->index;
6899
6900 Block loop_exit = Block();
6901 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
6902 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
6903
6904 Block* loop_header = ctx->program->create_and_insert_block();
6905 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
6906 loop_header->kind |= block_kind_loop_header;
6907 add_edge(loop_preheader_idx, loop_header);
6908 ctx->block = loop_header;
6909
6910 /* emit loop body */
6911 unsigned loop_header_idx = loop_header->index;
6912 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
6913 append_logical_start(ctx->block);
6914 visit_cf_list(ctx, &loop->body);
6915
6916 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
6917 if (!ctx->cf_info.has_branch) {
6918 append_logical_end(ctx->block);
6919 if (ctx->cf_info.exec_potentially_empty) {
6920 /* Discards can result in code running with an empty exec mask.
6921 * This would result in divergent breaks not ever being taken. As a
6922 * workaround, break the loop when the loop mask is empty instead of
6923 * always continuing. */
6924 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
6925
6926 /* create "loop_almost_exit" to avoid critical edges */
6927 unsigned block_idx = ctx->block->index;
6928 Block *loop_almost_exit = ctx->program->create_and_insert_block();
6929 loop_almost_exit->loop_nest_depth = ctx->cf_info.loop_nest_depth;
6930 loop_almost_exit->kind = block_kind_uniform;
6931 bld.reset(loop_almost_exit);
6932 bld.branch(aco_opcode::p_branch);
6933
6934 add_linear_edge(block_idx, loop_almost_exit);
6935 add_linear_edge(loop_almost_exit->index, &loop_exit);
6936
6937 ctx->block = &ctx->program->blocks[block_idx];
6938 } else {
6939 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
6940 }
6941 if (!ctx->cf_info.parent_loop.has_divergent_branch)
6942 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
6943 else
6944 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
6945 bld.reset(ctx->block);
6946 bld.branch(aco_opcode::p_branch);
6947 }
6948
6949 /* fixup phis in loop header from unreachable blocks */
6950 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
6951 bool linear = ctx->cf_info.has_branch;
6952 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
6953 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
6954 if ((logical && instr->opcode == aco_opcode::p_phi) ||
6955 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
6956 /* the last operand should be the one that needs to be removed */
6957 instr->operands.pop_back();
6958 } else if (!is_phi(instr)) {
6959 break;
6960 }
6961 }
6962 }
6963
6964 ctx->cf_info.has_branch = false;
6965
6966 // TODO: if the loop has not a single exit, we must add one °°
6967 /* emit loop successor block */
6968 ctx->block = ctx->program->insert_block(std::move(loop_exit));
6969 append_logical_start(ctx->block);
6970
6971 #if 0
6972 // TODO: check if it is beneficial to not branch on continues
6973 /* trim linear phis in loop header */
6974 for (auto&& instr : loop_entry->instructions) {
6975 if (instr->opcode == aco_opcode::p_linear_phi) {
6976 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
6977 new_phi->definitions[0] = instr->definitions[0];
6978 for (unsigned i = 0; i < new_phi->operands.size(); i++)
6979 new_phi->operands[i] = instr->operands[i];
6980 /* check that the remaining operands are all the same */
6981 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
6982 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
6983 instr.swap(new_phi);
6984 } else if (instr->opcode == aco_opcode::p_phi) {
6985 continue;
6986 } else {
6987 break;
6988 }
6989 }
6990 #endif
6991 }
6992
6993 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
6994 {
6995 ic->cond = cond;
6996
6997 append_logical_end(ctx->block);
6998 ctx->block->kind |= block_kind_branch;
6999
7000 /* branch to linear then block */
7001 assert(cond.regClass() == s2);
7002 aco_ptr<Pseudo_branch_instruction> branch;
7003 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
7004 branch->operands[0] = Operand(cond);
7005 ctx->block->instructions.push_back(std::move(branch));
7006
7007 ic->BB_if_idx = ctx->block->index;
7008 ic->BB_invert = Block();
7009 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7010 /* Invert blocks are intentionally not marked as top level because they
7011 * are not part of the logical cfg. */
7012 ic->BB_invert.kind |= block_kind_invert;
7013 ic->BB_endif = Block();
7014 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7015 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
7016
7017 ic->exec_potentially_empty_old = ctx->cf_info.exec_potentially_empty;
7018 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
7019 ctx->cf_info.parent_if.is_divergent = true;
7020 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
7021
7022 /** emit logical then block */
7023 Block* BB_then_logical = ctx->program->create_and_insert_block();
7024 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7025 add_edge(ic->BB_if_idx, BB_then_logical);
7026 ctx->block = BB_then_logical;
7027 append_logical_start(BB_then_logical);
7028 }
7029
7030 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
7031 {
7032 Block *BB_then_logical = ctx->block;
7033 append_logical_end(BB_then_logical);
7034 /* branch from logical then block to invert block */
7035 aco_ptr<Pseudo_branch_instruction> branch;
7036 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7037 BB_then_logical->instructions.emplace_back(std::move(branch));
7038 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
7039 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7040 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
7041 BB_then_logical->kind |= block_kind_uniform;
7042 assert(!ctx->cf_info.has_branch);
7043 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
7044 ctx->cf_info.parent_loop.has_divergent_branch = false;
7045
7046 /** emit linear then block */
7047 Block* BB_then_linear = ctx->program->create_and_insert_block();
7048 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7049 BB_then_linear->kind |= block_kind_uniform;
7050 add_linear_edge(ic->BB_if_idx, BB_then_linear);
7051 /* branch from linear then block to invert block */
7052 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7053 BB_then_linear->instructions.emplace_back(std::move(branch));
7054 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
7055
7056 /** emit invert merge block */
7057 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
7058 ic->invert_idx = ctx->block->index;
7059
7060 /* branch to linear else block (skip else) */
7061 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
7062 branch->operands[0] = Operand(ic->cond);
7063 ctx->block->instructions.push_back(std::move(branch));
7064
7065 ic->exec_potentially_empty_old |= ctx->cf_info.exec_potentially_empty;
7066 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
7067
7068 /** emit logical else block */
7069 Block* BB_else_logical = ctx->program->create_and_insert_block();
7070 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7071 add_logical_edge(ic->BB_if_idx, BB_else_logical);
7072 add_linear_edge(ic->invert_idx, BB_else_logical);
7073 ctx->block = BB_else_logical;
7074 append_logical_start(BB_else_logical);
7075 }
7076
7077 static void end_divergent_if(isel_context *ctx, if_context *ic)
7078 {
7079 Block *BB_else_logical = ctx->block;
7080 append_logical_end(BB_else_logical);
7081
7082 /* branch from logical else block to endif block */
7083 aco_ptr<Pseudo_branch_instruction> branch;
7084 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7085 BB_else_logical->instructions.emplace_back(std::move(branch));
7086 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
7087 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7088 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
7089 BB_else_logical->kind |= block_kind_uniform;
7090
7091 assert(!ctx->cf_info.has_branch);
7092 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
7093
7094
7095 /** emit linear else block */
7096 Block* BB_else_linear = ctx->program->create_and_insert_block();
7097 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7098 BB_else_linear->kind |= block_kind_uniform;
7099 add_linear_edge(ic->invert_idx, BB_else_linear);
7100
7101 /* branch from linear else block to endif block */
7102 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7103 BB_else_linear->instructions.emplace_back(std::move(branch));
7104 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
7105
7106
7107 /** emit endif merge block */
7108 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
7109 append_logical_start(ctx->block);
7110
7111
7112 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
7113 ctx->cf_info.exec_potentially_empty |= ic->exec_potentially_empty_old;
7114 /* uniform control flow never has an empty exec-mask */
7115 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
7116 ctx->cf_info.exec_potentially_empty = false;
7117 }
7118
7119 static void visit_if(isel_context *ctx, nir_if *if_stmt)
7120 {
7121 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
7122 Builder bld(ctx->program, ctx->block);
7123 aco_ptr<Pseudo_branch_instruction> branch;
7124
7125 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
7126 /**
7127 * Uniform conditionals are represented in the following way*) :
7128 *
7129 * The linear and logical CFG:
7130 * BB_IF
7131 * / \
7132 * BB_THEN (logical) BB_ELSE (logical)
7133 * \ /
7134 * BB_ENDIF
7135 *
7136 * *) Exceptions may be due to break and continue statements within loops
7137 * If a break/continue happens within uniform control flow, it branches
7138 * to the loop exit/entry block. Otherwise, it branches to the next
7139 * merge block.
7140 **/
7141 append_logical_end(ctx->block);
7142 ctx->block->kind |= block_kind_uniform;
7143
7144 /* emit branch */
7145 if (cond.regClass() == s2) {
7146 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
7147 cond = as_uniform_bool(ctx, cond);
7148 }
7149 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
7150 branch->operands[0] = Operand(cond);
7151 branch->operands[0].setFixed(scc);
7152 ctx->block->instructions.emplace_back(std::move(branch));
7153
7154 unsigned BB_if_idx = ctx->block->index;
7155 Block BB_endif = Block();
7156 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7157 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
7158
7159 /** emit then block */
7160 Block* BB_then = ctx->program->create_and_insert_block();
7161 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7162 add_edge(BB_if_idx, BB_then);
7163 append_logical_start(BB_then);
7164 ctx->block = BB_then;
7165 visit_cf_list(ctx, &if_stmt->then_list);
7166 BB_then = ctx->block;
7167 bool then_branch = ctx->cf_info.has_branch;
7168 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
7169
7170 if (!then_branch) {
7171 append_logical_end(BB_then);
7172 /* branch from then block to endif block */
7173 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7174 BB_then->instructions.emplace_back(std::move(branch));
7175 add_linear_edge(BB_then->index, &BB_endif);
7176 if (!then_branch_divergent)
7177 add_logical_edge(BB_then->index, &BB_endif);
7178 BB_then->kind |= block_kind_uniform;
7179 }
7180
7181 ctx->cf_info.has_branch = false;
7182 ctx->cf_info.parent_loop.has_divergent_branch = false;
7183
7184 /** emit else block */
7185 Block* BB_else = ctx->program->create_and_insert_block();
7186 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7187 add_edge(BB_if_idx, BB_else);
7188 append_logical_start(BB_else);
7189 ctx->block = BB_else;
7190 visit_cf_list(ctx, &if_stmt->else_list);
7191 BB_else = ctx->block;
7192
7193 if (!ctx->cf_info.has_branch) {
7194 append_logical_end(BB_else);
7195 /* branch from then block to endif block */
7196 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7197 BB_else->instructions.emplace_back(std::move(branch));
7198 add_linear_edge(BB_else->index, &BB_endif);
7199 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7200 add_logical_edge(BB_else->index, &BB_endif);
7201 BB_else->kind |= block_kind_uniform;
7202 }
7203
7204 ctx->cf_info.has_branch &= then_branch;
7205 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
7206
7207 /** emit endif merge block */
7208 if (!ctx->cf_info.has_branch) {
7209 ctx->block = ctx->program->insert_block(std::move(BB_endif));
7210 append_logical_start(ctx->block);
7211 }
7212 } else { /* non-uniform condition */
7213 /**
7214 * To maintain a logical and linear CFG without critical edges,
7215 * non-uniform conditionals are represented in the following way*) :
7216 *
7217 * The linear CFG:
7218 * BB_IF
7219 * / \
7220 * BB_THEN (logical) BB_THEN (linear)
7221 * \ /
7222 * BB_INVERT (linear)
7223 * / \
7224 * BB_ELSE (logical) BB_ELSE (linear)
7225 * \ /
7226 * BB_ENDIF
7227 *
7228 * The logical CFG:
7229 * BB_IF
7230 * / \
7231 * BB_THEN (logical) BB_ELSE (logical)
7232 * \ /
7233 * BB_ENDIF
7234 *
7235 * *) Exceptions may be due to break and continue statements within loops
7236 **/
7237
7238 if_context ic;
7239
7240 begin_divergent_if_then(ctx, &ic, cond);
7241 visit_cf_list(ctx, &if_stmt->then_list);
7242
7243 begin_divergent_if_else(ctx, &ic);
7244 visit_cf_list(ctx, &if_stmt->else_list);
7245
7246 end_divergent_if(ctx, &ic);
7247 }
7248 }
7249
7250 static void visit_cf_list(isel_context *ctx,
7251 struct exec_list *list)
7252 {
7253 foreach_list_typed(nir_cf_node, node, node, list) {
7254 switch (node->type) {
7255 case nir_cf_node_block:
7256 visit_block(ctx, nir_cf_node_as_block(node));
7257 break;
7258 case nir_cf_node_if:
7259 visit_if(ctx, nir_cf_node_as_if(node));
7260 break;
7261 case nir_cf_node_loop:
7262 visit_loop(ctx, nir_cf_node_as_loop(node));
7263 break;
7264 default:
7265 unreachable("unimplemented cf list type");
7266 }
7267 }
7268 }
7269
7270 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
7271 {
7272 int offset = ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
7273 uint64_t mask = ctx->vs_output.mask[slot];
7274 if (!is_pos && !mask)
7275 return;
7276 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
7277 return;
7278 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
7279 exp->enabled_mask = mask;
7280 for (unsigned i = 0; i < 4; ++i) {
7281 if (mask & (1 << i))
7282 exp->operands[i] = Operand(ctx->vs_output.outputs[slot][i]);
7283 else
7284 exp->operands[i] = Operand(v1);
7285 }
7286 exp->valid_mask = false;
7287 exp->done = false;
7288 exp->compressed = false;
7289 if (is_pos)
7290 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
7291 else
7292 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
7293 ctx->block->instructions.emplace_back(std::move(exp));
7294 }
7295
7296 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
7297 {
7298 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
7299 exp->enabled_mask = 0;
7300 for (unsigned i = 0; i < 4; ++i)
7301 exp->operands[i] = Operand(v1);
7302 if (ctx->vs_output.mask[VARYING_SLOT_PSIZ]) {
7303 exp->operands[0] = Operand(ctx->vs_output.outputs[VARYING_SLOT_PSIZ][0]);
7304 exp->enabled_mask |= 0x1;
7305 }
7306 if (ctx->vs_output.mask[VARYING_SLOT_LAYER]) {
7307 exp->operands[2] = Operand(ctx->vs_output.outputs[VARYING_SLOT_LAYER][0]);
7308 exp->enabled_mask |= 0x4;
7309 }
7310 if (ctx->vs_output.mask[VARYING_SLOT_VIEWPORT]) {
7311 if (ctx->options->chip_class < GFX9) {
7312 exp->operands[3] = Operand(ctx->vs_output.outputs[VARYING_SLOT_VIEWPORT][0]);
7313 exp->enabled_mask |= 0x8;
7314 } else {
7315 Builder bld(ctx->program, ctx->block);
7316
7317 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
7318 Operand(ctx->vs_output.outputs[VARYING_SLOT_VIEWPORT][0]));
7319 if (exp->operands[2].isTemp())
7320 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
7321
7322 exp->operands[2] = Operand(out);
7323 exp->enabled_mask |= 0x4;
7324 }
7325 }
7326 exp->valid_mask = false;
7327 exp->done = false;
7328 exp->compressed = false;
7329 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
7330 ctx->block->instructions.emplace_back(std::move(exp));
7331 }
7332
7333 static void create_vs_exports(isel_context *ctx)
7334 {
7335 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
7336
7337 if (outinfo->export_prim_id) {
7338 ctx->vs_output.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
7339 ctx->vs_output.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = ctx->vs_prim_id;
7340 }
7341
7342 if (ctx->options->key.has_multiview_view_index) {
7343 ctx->vs_output.mask[VARYING_SLOT_LAYER] |= 0x1;
7344 ctx->vs_output.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, ctx->view_index);
7345 }
7346
7347 /* the order these position exports are created is important */
7348 int next_pos = 0;
7349 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
7350 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
7351 export_vs_psiz_layer_viewport(ctx, &next_pos);
7352 }
7353 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
7354 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
7355 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
7356 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
7357
7358 if (ctx->options->key.vs_common_out.export_clip_dists) {
7359 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
7360 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
7361 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
7362 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
7363 }
7364
7365 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
7366 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
7367 i != VARYING_SLOT_PRIMITIVE_ID)
7368 continue;
7369
7370 export_vs_varying(ctx, i, false, NULL);
7371 }
7372 }
7373
7374 static void emit_stream_output(isel_context *ctx,
7375 Temp const *so_buffers,
7376 Temp const *so_write_offset,
7377 const struct radv_stream_output *output)
7378 {
7379 unsigned num_comps = util_bitcount(output->component_mask);
7380 unsigned loc = output->location;
7381 unsigned buf = output->buffer;
7382 unsigned offset = output->offset;
7383
7384 assert(num_comps && num_comps <= 4);
7385 if (!num_comps || num_comps > 4)
7386 return;
7387
7388 unsigned start = ffs(output->component_mask) - 1;
7389
7390 Temp out[4];
7391 bool all_undef = true;
7392 assert(ctx->stage == vertex_vs);
7393 for (unsigned i = 0; i < num_comps; i++) {
7394 out[i] = ctx->vs_output.outputs[loc][start + i];
7395 all_undef = all_undef && !out[i].id();
7396 }
7397 if (all_undef)
7398 return;
7399
7400 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_comps)};
7401 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_comps, 1)};
7402 for (unsigned i = 0; i < num_comps; ++i)
7403 vec->operands[i] = (ctx->vs_output.mask[loc] & 1 << i) ? Operand(out[i]) : Operand(0u);
7404 vec->definitions[0] = Definition(write_data);
7405 ctx->block->instructions.emplace_back(std::move(vec));
7406
7407 aco_opcode opcode;
7408 switch (num_comps) {
7409 case 1:
7410 opcode = aco_opcode::buffer_store_dword;
7411 break;
7412 case 2:
7413 opcode = aco_opcode::buffer_store_dwordx2;
7414 break;
7415 case 3:
7416 opcode = aco_opcode::buffer_store_dwordx3;
7417 break;
7418 case 4:
7419 opcode = aco_opcode::buffer_store_dwordx4;
7420 break;
7421 }
7422
7423 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
7424 store->operands[0] = Operand(so_write_offset[buf]);
7425 store->operands[1] = Operand(so_buffers[buf]);
7426 store->operands[2] = Operand((uint32_t) 0);
7427 store->operands[3] = Operand(write_data);
7428 if (offset > 4095) {
7429 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
7430 Builder bld(ctx->program, ctx->block);
7431 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
7432 } else {
7433 store->offset = offset;
7434 }
7435 store->offen = true;
7436 store->glc = true;
7437 store->dlc = false;
7438 store->slc = true;
7439 store->can_reorder = true;
7440 ctx->block->instructions.emplace_back(std::move(store));
7441 }
7442
7443 static void emit_streamout(isel_context *ctx, unsigned stream)
7444 {
7445 Builder bld(ctx->program, ctx->block);
7446
7447 Temp so_buffers[4];
7448 Temp buf_ptr = convert_pointer_to_64_bit(ctx, ctx->streamout_buffers);
7449 for (unsigned i = 0; i < 4; i++) {
7450 unsigned stride = ctx->program->info->so.strides[i];
7451 if (!stride)
7452 continue;
7453
7454 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, Operand(i * 16u));
7455 }
7456
7457 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7458 ctx->streamout_config, Operand(0x70010u));
7459
7460 Temp tid = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), Operand((uint32_t) -1),
7461 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
7462
7463 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(s2), so_vtx_count, tid);
7464
7465 if_context ic;
7466 begin_divergent_if_then(ctx, &ic, can_emit);
7467
7468 bld.reset(ctx->block);
7469
7470 Temp so_write_index = bld.vadd32(bld.def(v1), ctx->streamout_write_idx, tid);
7471
7472 Temp so_write_offset[4];
7473
7474 for (unsigned i = 0; i < 4; i++) {
7475 unsigned stride = ctx->program->info->so.strides[i];
7476 if (!stride)
7477 continue;
7478
7479 if (stride == 1) {
7480 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
7481 ctx->streamout_write_idx, ctx->streamout_offset[i]);
7482 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
7483
7484 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
7485 } else {
7486 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
7487 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u), ctx->streamout_offset[i]);
7488 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
7489 }
7490 }
7491
7492 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
7493 struct radv_stream_output *output =
7494 &ctx->program->info->so.outputs[i];
7495 if (stream != output->stream)
7496 continue;
7497
7498 emit_stream_output(ctx, so_buffers, so_write_offset, output);
7499 }
7500
7501 begin_divergent_if_else(ctx, &ic);
7502 end_divergent_if(ctx, &ic);
7503 }
7504
7505 } /* end namespace */
7506
7507 void handle_bc_optimize(isel_context *ctx)
7508 {
7509 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
7510 Builder bld(ctx->program, ctx->block);
7511 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
7512 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
7513 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
7514 if (uses_center && uses_centroid) {
7515 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(s2)), ctx->prim_mask, Operand(0u));
7516
7517 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
7518 for (unsigned i = 0; i < 2; i++) {
7519 Temp new_coord = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7520 ctx->fs_inputs[fs_input::persp_centroid_p1 + i],
7521 ctx->fs_inputs[fs_input::persp_center_p1 + i],
7522 sel);
7523 ctx->fs_inputs[fs_input::persp_centroid_p1 + i] = new_coord;
7524 }
7525 }
7526
7527 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
7528 for (unsigned i = 0; i < 2; i++) {
7529 Temp new_coord = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7530 ctx->fs_inputs[fs_input::linear_centroid_p1 + i],
7531 ctx->fs_inputs[fs_input::linear_center_p1 + i],
7532 sel);
7533 ctx->fs_inputs[fs_input::linear_centroid_p1 + i] = new_coord;
7534 }
7535 }
7536 }
7537 }
7538
7539 void select_program(Program *program,
7540 unsigned shader_count,
7541 struct nir_shader *const *shaders,
7542 ac_shader_config* config,
7543 struct radv_shader_info *info,
7544 struct radv_nir_compiler_options *options)
7545 {
7546 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, info, options);
7547
7548 for (unsigned i = 0; i < shader_count; i++) {
7549 nir_shader *nir = shaders[i];
7550 init_context(&ctx, nir);
7551
7552 if (!i) {
7553 add_startpgm(&ctx); /* needs to be after init_context() for FS */
7554 append_logical_start(ctx.block);
7555 }
7556
7557 if_context ic;
7558 if (shader_count >= 2) {
7559 Builder bld(ctx.program, ctx.block);
7560 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), ctx.merged_wave_info, Operand((8u << 16) | (i * 8u)));
7561 Temp thread_id = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), Operand((uint32_t) -1),
7562 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
7563 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(s2)), count, thread_id);
7564
7565 begin_divergent_if_then(&ctx, &ic, cond);
7566 }
7567
7568 if (i) {
7569 Builder bld(ctx.program, ctx.block);
7570 bld.barrier(aco_opcode::p_memory_barrier_shared); //TODO: different barriers are needed for different stages
7571 bld.sopp(aco_opcode::s_barrier);
7572 }
7573
7574 if (ctx.stage == fragment_fs)
7575 handle_bc_optimize(&ctx);
7576
7577 nir_function_impl *func = nir_shader_get_entrypoint(nir);
7578 visit_cf_list(&ctx, &func->body);
7579
7580 if (ctx.program->info->so.num_outputs/*&& !ctx->is_gs_copy_shader */)
7581 emit_streamout(&ctx, 0);
7582
7583 if (ctx.stage == vertex_vs)
7584 create_vs_exports(&ctx);
7585
7586 if (shader_count >= 2) {
7587 begin_divergent_if_else(&ctx, &ic);
7588 end_divergent_if(&ctx, &ic);
7589 }
7590
7591 ralloc_free(ctx.divergent_vals);
7592 }
7593
7594 append_logical_end(ctx.block);
7595 ctx.block->kind |= block_kind_uniform;
7596 Builder bld(ctx.program, ctx.block);
7597 if (ctx.program->wb_smem_l1_on_end)
7598 bld.smem(aco_opcode::s_dcache_wb, false);
7599 bld.sopp(aco_opcode::s_endpgm);
7600
7601 /* cleanup CFG */
7602 for (Block& BB : program->blocks) {
7603 for (unsigned idx : BB.linear_preds)
7604 program->blocks[idx].linear_succs.emplace_back(BB.index);
7605 for (unsigned idx : BB.logical_preds)
7606 program->blocks[idx].logical_succs.emplace_back(BB.index);
7607 }
7608 }
7609 }