aco: use MUBUF in some situations instead of splitting vertex fetches
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_old;
83
84 unsigned BB_if_idx;
85 unsigned invert_idx;
86 bool then_branch_divergent;
87 Block BB_invert;
88 Block BB_endif;
89 };
90
91 static void visit_cf_list(struct isel_context *ctx,
92 struct exec_list *list);
93
94 static void add_logical_edge(unsigned pred_idx, Block *succ)
95 {
96 succ->logical_preds.emplace_back(pred_idx);
97 }
98
99
100 static void add_linear_edge(unsigned pred_idx, Block *succ)
101 {
102 succ->linear_preds.emplace_back(pred_idx);
103 }
104
105 static void add_edge(unsigned pred_idx, Block *succ)
106 {
107 add_logical_edge(pred_idx, succ);
108 add_linear_edge(pred_idx, succ);
109 }
110
111 static void append_logical_start(Block *b)
112 {
113 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
114 }
115
116 static void append_logical_end(Block *b)
117 {
118 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
119 }
120
121 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
122 {
123 assert(ctx->allocated[def->index].id());
124 return ctx->allocated[def->index];
125 }
126
127 Temp emit_mbcnt(isel_context *ctx, Definition dst,
128 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
129 {
130 Builder bld(ctx->program, ctx->block);
131 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
132 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
133
134 if (ctx->program->wave_size == 32) {
135 return thread_id_lo;
136 } else {
137 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
138 return thread_id_hi;
139 }
140 }
141
142 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
143 {
144 Builder bld(ctx->program, ctx->block);
145
146 if (!dst.id())
147 dst = bld.tmp(src.regClass());
148
149 assert(src.size() == dst.size());
150
151 if (ctx->stage != fragment_fs) {
152 if (!dst.id())
153 return src;
154
155 bld.copy(Definition(dst), src);
156 return dst;
157 }
158
159 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
160 ctx->program->needs_wqm |= program_needs_wqm;
161 return dst;
162 }
163
164 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
165 {
166 if (index.regClass() == s1)
167 return bld.readlane(bld.def(s1), data, index);
168
169 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
170
171 /* Currently not implemented on GFX6-7 */
172 assert(ctx->options->chip_class >= GFX8);
173
174 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
175 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
176 }
177
178 /* GFX10, wave64 mode:
179 * The bpermute instruction is limited to half-wave operation, which means that it can't
180 * properly support subgroup shuffle like older generations (or wave32 mode), so we
181 * emulate it here.
182 */
183 if (!ctx->has_gfx10_wave64_bpermute) {
184 ctx->has_gfx10_wave64_bpermute = true;
185 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
186 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
187 }
188
189 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
190 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
191 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
192 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
193
194 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
195 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
196 }
197
198 Temp as_vgpr(isel_context *ctx, Temp val)
199 {
200 if (val.type() == RegType::sgpr) {
201 Builder bld(ctx->program, ctx->block);
202 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
203 }
204 assert(val.type() == RegType::vgpr);
205 return val;
206 }
207
208 //assumes a != 0xffffffff
209 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
210 {
211 assert(b != 0);
212 Builder bld(ctx->program, ctx->block);
213
214 if (util_is_power_of_two_or_zero(b)) {
215 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
216 return;
217 }
218
219 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
220
221 assert(info.multiplier <= 0xffffffff);
222
223 bool pre_shift = info.pre_shift != 0;
224 bool increment = info.increment != 0;
225 bool multiply = true;
226 bool post_shift = info.post_shift != 0;
227
228 if (!pre_shift && !increment && !multiply && !post_shift) {
229 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
230 return;
231 }
232
233 Temp pre_shift_dst = a;
234 if (pre_shift) {
235 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
236 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
237 }
238
239 Temp increment_dst = pre_shift_dst;
240 if (increment) {
241 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
242 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
243 }
244
245 Temp multiply_dst = increment_dst;
246 if (multiply) {
247 multiply_dst = post_shift ? bld.tmp(v1) : dst;
248 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
249 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
250 }
251
252 if (post_shift) {
253 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
254 }
255 }
256
257 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
258 {
259 Builder bld(ctx->program, ctx->block);
260 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
261 }
262
263
264 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
265 {
266 /* no need to extract the whole vector */
267 if (src.regClass() == dst_rc) {
268 assert(idx == 0);
269 return src;
270 }
271 assert(src.size() > idx);
272 Builder bld(ctx->program, ctx->block);
273 auto it = ctx->allocated_vec.find(src.id());
274 /* the size check needs to be early because elements other than 0 may be garbage */
275 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
276 if (it->second[idx].regClass() == dst_rc) {
277 return it->second[idx];
278 } else {
279 assert(dst_rc.size() == it->second[idx].regClass().size());
280 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
281 return bld.copy(bld.def(dst_rc), it->second[idx]);
282 }
283 }
284
285 if (src.size() == dst_rc.size()) {
286 assert(idx == 0);
287 return bld.copy(bld.def(dst_rc), src);
288 } else {
289 Temp dst = bld.tmp(dst_rc);
290 emit_extract_vector(ctx, src, idx, dst);
291 return dst;
292 }
293 }
294
295 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
296 {
297 if (num_components == 1)
298 return;
299 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
300 return;
301 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
302 split->operands[0] = Operand(vec_src);
303 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
304 for (unsigned i = 0; i < num_components; i++) {
305 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
306 split->definitions[i] = Definition(elems[i]);
307 }
308 ctx->block->instructions.emplace_back(std::move(split));
309 ctx->allocated_vec.emplace(vec_src.id(), elems);
310 }
311
312 /* This vector expansion uses a mask to determine which elements in the new vector
313 * come from the original vector. The other elements are undefined. */
314 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
315 {
316 emit_split_vector(ctx, vec_src, util_bitcount(mask));
317
318 if (vec_src == dst)
319 return;
320
321 Builder bld(ctx->program, ctx->block);
322 if (num_components == 1) {
323 if (dst.type() == RegType::sgpr)
324 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
325 else
326 bld.copy(Definition(dst), vec_src);
327 return;
328 }
329
330 unsigned component_size = dst.size() / num_components;
331 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
332
333 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
334 vec->definitions[0] = Definition(dst);
335 unsigned k = 0;
336 for (unsigned i = 0; i < num_components; i++) {
337 if (mask & (1 << i)) {
338 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
339 if (dst.type() == RegType::sgpr)
340 src = bld.as_uniform(src);
341 vec->operands[i] = Operand(src);
342 } else {
343 vec->operands[i] = Operand(0u);
344 }
345 elems[i] = vec->operands[i].getTemp();
346 }
347 ctx->block->instructions.emplace_back(std::move(vec));
348 ctx->allocated_vec.emplace(dst.id(), elems);
349 }
350
351 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
352 {
353 Builder bld(ctx->program, ctx->block);
354 if (!dst.id())
355 dst = bld.tmp(bld.lm);
356
357 assert(val.regClass() == s1);
358 assert(dst.regClass() == bld.lm);
359
360 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
361 }
362
363 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
364 {
365 Builder bld(ctx->program, ctx->block);
366 if (!dst.id())
367 dst = bld.tmp(s1);
368
369 assert(val.regClass() == bld.lm);
370 assert(dst.regClass() == s1);
371
372 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
373 Temp tmp = bld.tmp(s1);
374 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
375 return emit_wqm(ctx, tmp, dst);
376 }
377
378 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
379 {
380 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
381 return get_ssa_temp(ctx, src.src.ssa);
382
383 if (src.src.ssa->num_components == size) {
384 bool identity_swizzle = true;
385 for (unsigned i = 0; identity_swizzle && i < size; i++) {
386 if (src.swizzle[i] != i)
387 identity_swizzle = false;
388 }
389 if (identity_swizzle)
390 return get_ssa_temp(ctx, src.src.ssa);
391 }
392
393 Temp vec = get_ssa_temp(ctx, src.src.ssa);
394 unsigned elem_size = vec.size() / src.src.ssa->num_components;
395 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
396 assert(vec.size() % elem_size == 0);
397
398 RegClass elem_rc = RegClass(vec.type(), elem_size);
399 if (size == 1) {
400 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
401 } else {
402 assert(size <= 4);
403 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
404 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
405 for (unsigned i = 0; i < size; ++i) {
406 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
407 vec_instr->operands[i] = Operand{elems[i]};
408 }
409 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
410 vec_instr->definitions[0] = Definition(dst);
411 ctx->block->instructions.emplace_back(std::move(vec_instr));
412 ctx->allocated_vec.emplace(dst.id(), elems);
413 return dst;
414 }
415 }
416
417 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
418 {
419 if (ptr.size() == 2)
420 return ptr;
421 Builder bld(ctx->program, ctx->block);
422 if (ptr.type() == RegType::vgpr)
423 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
424 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
425 ptr, Operand((unsigned)ctx->options->address32_hi));
426 }
427
428 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
429 {
430 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
431 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
432 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
433 sop2->definitions[0] = Definition(dst);
434 if (writes_scc)
435 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
436 ctx->block->instructions.emplace_back(std::move(sop2));
437 }
438
439 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
440 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
441 {
442 Builder bld(ctx->program, ctx->block);
443 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
444 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
445 if (src1.type() == RegType::sgpr) {
446 if (commutative && src0.type() == RegType::vgpr) {
447 Temp t = src0;
448 src0 = src1;
449 src1 = t;
450 } else if (src0.type() == RegType::vgpr &&
451 op != aco_opcode::v_madmk_f32 &&
452 op != aco_opcode::v_madak_f32 &&
453 op != aco_opcode::v_madmk_f16 &&
454 op != aco_opcode::v_madak_f16) {
455 /* If the instruction is not commutative, we emit a VOP3A instruction */
456 bld.vop2_e64(op, Definition(dst), src0, src1);
457 return;
458 } else {
459 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
460 }
461 }
462
463 if (flush_denorms && ctx->program->chip_class < GFX9) {
464 assert(dst.size() == 1);
465 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
466 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
467 } else {
468 bld.vop2(op, Definition(dst), src0, src1);
469 }
470 }
471
472 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
473 bool flush_denorms = false)
474 {
475 Temp src0 = get_alu_src(ctx, instr->src[0]);
476 Temp src1 = get_alu_src(ctx, instr->src[1]);
477 Temp src2 = get_alu_src(ctx, instr->src[2]);
478
479 /* ensure that the instruction has at most 1 sgpr operand
480 * The optimizer will inline constants for us */
481 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
482 src0 = as_vgpr(ctx, src0);
483 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
484 src1 = as_vgpr(ctx, src1);
485 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
486 src2 = as_vgpr(ctx, src2);
487
488 Builder bld(ctx->program, ctx->block);
489 if (flush_denorms && ctx->program->chip_class < GFX9) {
490 assert(dst.size() == 1);
491 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
492 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
493 } else {
494 bld.vop3(op, Definition(dst), src0, src1, src2);
495 }
496 }
497
498 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
499 {
500 Builder bld(ctx->program, ctx->block);
501 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
502 }
503
504 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
505 {
506 Temp src0 = get_alu_src(ctx, instr->src[0]);
507 Temp src1 = get_alu_src(ctx, instr->src[1]);
508 assert(src0.size() == src1.size());
509
510 aco_ptr<Instruction> vopc;
511 if (src1.type() == RegType::sgpr) {
512 if (src0.type() == RegType::vgpr) {
513 /* to swap the operands, we might also have to change the opcode */
514 switch (op) {
515 case aco_opcode::v_cmp_lt_f32:
516 op = aco_opcode::v_cmp_gt_f32;
517 break;
518 case aco_opcode::v_cmp_ge_f32:
519 op = aco_opcode::v_cmp_le_f32;
520 break;
521 case aco_opcode::v_cmp_lt_i32:
522 op = aco_opcode::v_cmp_gt_i32;
523 break;
524 case aco_opcode::v_cmp_ge_i32:
525 op = aco_opcode::v_cmp_le_i32;
526 break;
527 case aco_opcode::v_cmp_lt_u32:
528 op = aco_opcode::v_cmp_gt_u32;
529 break;
530 case aco_opcode::v_cmp_ge_u32:
531 op = aco_opcode::v_cmp_le_u32;
532 break;
533 case aco_opcode::v_cmp_lt_f64:
534 op = aco_opcode::v_cmp_gt_f64;
535 break;
536 case aco_opcode::v_cmp_ge_f64:
537 op = aco_opcode::v_cmp_le_f64;
538 break;
539 case aco_opcode::v_cmp_lt_i64:
540 op = aco_opcode::v_cmp_gt_i64;
541 break;
542 case aco_opcode::v_cmp_ge_i64:
543 op = aco_opcode::v_cmp_le_i64;
544 break;
545 case aco_opcode::v_cmp_lt_u64:
546 op = aco_opcode::v_cmp_gt_u64;
547 break;
548 case aco_opcode::v_cmp_ge_u64:
549 op = aco_opcode::v_cmp_le_u64;
550 break;
551 default: /* eq and ne are commutative */
552 break;
553 }
554 Temp t = src0;
555 src0 = src1;
556 src1 = t;
557 } else {
558 src1 = as_vgpr(ctx, src1);
559 }
560 }
561
562 Builder bld(ctx->program, ctx->block);
563 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
564 }
565
566 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
567 {
568 Temp src0 = get_alu_src(ctx, instr->src[0]);
569 Temp src1 = get_alu_src(ctx, instr->src[1]);
570 Builder bld(ctx->program, ctx->block);
571
572 assert(dst.regClass() == bld.lm);
573 assert(src0.type() == RegType::sgpr);
574 assert(src1.type() == RegType::sgpr);
575 assert(src0.regClass() == src1.regClass());
576
577 /* Emit the SALU comparison instruction */
578 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
579 /* Turn the result into a per-lane bool */
580 bool_to_vector_condition(ctx, cmp, dst);
581 }
582
583 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
584 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
585 {
586 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
587 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
588 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
589 bool use_valu = s_op == aco_opcode::num_opcodes ||
590 divergent_vals ||
591 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
592 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
593 aco_opcode op = use_valu ? v_op : s_op;
594 assert(op != aco_opcode::num_opcodes);
595 assert(dst.regClass() == ctx->program->lane_mask);
596
597 if (use_valu)
598 emit_vopc_instruction(ctx, instr, op, dst);
599 else
600 emit_sopc_instruction(ctx, instr, op, dst);
601 }
602
603 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
604 {
605 Builder bld(ctx->program, ctx->block);
606 Temp src0 = get_alu_src(ctx, instr->src[0]);
607 Temp src1 = get_alu_src(ctx, instr->src[1]);
608
609 assert(dst.regClass() == bld.lm);
610 assert(src0.regClass() == bld.lm);
611 assert(src1.regClass() == bld.lm);
612
613 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
614 }
615
616 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
617 {
618 Builder bld(ctx->program, ctx->block);
619 Temp cond = get_alu_src(ctx, instr->src[0]);
620 Temp then = get_alu_src(ctx, instr->src[1]);
621 Temp els = get_alu_src(ctx, instr->src[2]);
622
623 assert(cond.regClass() == bld.lm);
624
625 if (dst.type() == RegType::vgpr) {
626 aco_ptr<Instruction> bcsel;
627 if (dst.size() == 1) {
628 then = as_vgpr(ctx, then);
629 els = as_vgpr(ctx, els);
630
631 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
632 } else if (dst.size() == 2) {
633 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
634 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
635 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
636 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
637
638 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
639 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
640
641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
642 } else {
643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
644 nir_print_instr(&instr->instr, stderr);
645 fprintf(stderr, "\n");
646 }
647 return;
648 }
649
650 if (instr->dest.dest.ssa.bit_size == 1) {
651 assert(dst.regClass() == bld.lm);
652 assert(then.regClass() == bld.lm);
653 assert(els.regClass() == bld.lm);
654 }
655
656 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
657 if (dst.regClass() == s1 || dst.regClass() == s2) {
658 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
659 assert(dst.size() == then.size());
660 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
661 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
662 } else {
663 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
664 nir_print_instr(&instr->instr, stderr);
665 fprintf(stderr, "\n");
666 }
667 return;
668 }
669
670 /* divergent boolean bcsel
671 * this implements bcsel on bools: dst = s0 ? s1 : s2
672 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
673 assert(instr->dest.dest.ssa.bit_size == 1);
674
675 if (cond.id() != then.id())
676 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
677
678 if (cond.id() == els.id())
679 bld.sop1(Builder::s_mov, Definition(dst), then);
680 else
681 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
682 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
683 }
684
685 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
686 aco_opcode op, uint32_t undo)
687 {
688 /* multiply by 16777216 to handle denormals */
689 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
690 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
691 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
692 scaled = bld.vop1(op, bld.def(v1), scaled);
693 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
694
695 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
696
697 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
698 }
699
700 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
701 {
702 if (ctx->block->fp_mode.denorm32 == 0) {
703 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
704 return;
705 }
706
707 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
708 }
709
710 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
711 {
712 if (ctx->block->fp_mode.denorm32 == 0) {
713 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
714 return;
715 }
716
717 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
718 }
719
720 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
721 {
722 if (ctx->block->fp_mode.denorm32 == 0) {
723 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
724 return;
725 }
726
727 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
728 }
729
730 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
731 {
732 if (ctx->block->fp_mode.denorm32 == 0) {
733 bld.vop1(aco_opcode::v_log_f32, dst, val);
734 return;
735 }
736
737 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
738 }
739
740 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
741 {
742 if (ctx->options->chip_class >= GFX7)
743 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
744
745 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
746 /* TODO: create more efficient code! */
747 if (val.type() == RegType::sgpr)
748 val = as_vgpr(ctx, val);
749
750 /* Split the input value. */
751 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
752 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
753
754 /* Extract the exponent and compute the unbiased value. */
755 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
756
757 /* Extract the fractional part. */
758 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
759 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
760
761 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
762 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
763
764 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
765 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
766 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
767 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
768 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
769
770 /* Get the sign bit. */
771 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
772
773 /* Decide the operation to apply depending on the unbiased exponent. */
774 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
775 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
776 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
777 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
778 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
779 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
780
781 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
782 }
783
784 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
785 {
786 if (ctx->options->chip_class >= GFX7)
787 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
788
789 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
790 Temp src0 = as_vgpr(ctx, val);
791
792 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
793 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
794
795 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
796 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
797 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
798
799 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
800 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
801 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
802 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
803
804 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
805 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
806
807 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
808
809 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
810 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
811
812 return add->definitions[0].getTemp();
813 }
814
815 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
816 {
817 if (!instr->dest.dest.is_ssa) {
818 fprintf(stderr, "nir alu dst not in ssa: ");
819 nir_print_instr(&instr->instr, stderr);
820 fprintf(stderr, "\n");
821 abort();
822 }
823 Builder bld(ctx->program, ctx->block);
824 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
825 switch(instr->op) {
826 case nir_op_vec2:
827 case nir_op_vec3:
828 case nir_op_vec4: {
829 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
830 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
831 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
832 elems[i] = get_alu_src(ctx, instr->src[i]);
833 vec->operands[i] = Operand{elems[i]};
834 }
835 vec->definitions[0] = Definition(dst);
836 ctx->block->instructions.emplace_back(std::move(vec));
837 ctx->allocated_vec.emplace(dst.id(), elems);
838 break;
839 }
840 case nir_op_mov: {
841 Temp src = get_alu_src(ctx, instr->src[0]);
842 aco_ptr<Instruction> mov;
843 if (dst.type() == RegType::sgpr) {
844 if (src.type() == RegType::vgpr)
845 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
846 else if (src.regClass() == s1)
847 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
848 else if (src.regClass() == s2)
849 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
850 else
851 unreachable("wrong src register class for nir_op_imov");
852 } else if (dst.regClass() == v1) {
853 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
854 } else if (dst.regClass() == v2) {
855 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
856 } else {
857 nir_print_instr(&instr->instr, stderr);
858 unreachable("Should have been lowered to scalar.");
859 }
860 break;
861 }
862 case nir_op_inot: {
863 Temp src = get_alu_src(ctx, instr->src[0]);
864 if (instr->dest.dest.ssa.bit_size == 1) {
865 assert(src.regClass() == bld.lm);
866 assert(dst.regClass() == bld.lm);
867 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
868 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
869 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
870 } else if (dst.regClass() == v1) {
871 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
872 } else if (dst.type() == RegType::sgpr) {
873 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
874 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
875 } else {
876 fprintf(stderr, "Unimplemented NIR instr bit size: ");
877 nir_print_instr(&instr->instr, stderr);
878 fprintf(stderr, "\n");
879 }
880 break;
881 }
882 case nir_op_ineg: {
883 Temp src = get_alu_src(ctx, instr->src[0]);
884 if (dst.regClass() == v1) {
885 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
886 } else if (dst.regClass() == s1) {
887 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
888 } else if (dst.size() == 2) {
889 Temp src0 = bld.tmp(dst.type(), 1);
890 Temp src1 = bld.tmp(dst.type(), 1);
891 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
892
893 if (dst.regClass() == s2) {
894 Temp carry = bld.tmp(s1);
895 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
896 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
897 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
898 } else {
899 Temp lower = bld.tmp(v1);
900 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
901 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
902 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
903 }
904 } else {
905 fprintf(stderr, "Unimplemented NIR instr bit size: ");
906 nir_print_instr(&instr->instr, stderr);
907 fprintf(stderr, "\n");
908 }
909 break;
910 }
911 case nir_op_iabs: {
912 if (dst.regClass() == s1) {
913 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
914 } else if (dst.regClass() == v1) {
915 Temp src = get_alu_src(ctx, instr->src[0]);
916 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
917 } else {
918 fprintf(stderr, "Unimplemented NIR instr bit size: ");
919 nir_print_instr(&instr->instr, stderr);
920 fprintf(stderr, "\n");
921 }
922 break;
923 }
924 case nir_op_isign: {
925 Temp src = get_alu_src(ctx, instr->src[0]);
926 if (dst.regClass() == s1) {
927 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
928 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
929 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
930 } else if (dst.regClass() == s2) {
931 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
932 Temp neqz;
933 if (ctx->program->chip_class >= GFX8)
934 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
935 else
936 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
937 /* SCC gets zero-extended to 64 bit */
938 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
939 } else if (dst.regClass() == v1) {
940 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
941 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
942 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
943 } else if (dst.regClass() == v2) {
944 Temp upper = emit_extract_vector(ctx, src, 1, v1);
945 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
946 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
947 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
948 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
949 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
950 } else {
951 fprintf(stderr, "Unimplemented NIR instr bit size: ");
952 nir_print_instr(&instr->instr, stderr);
953 fprintf(stderr, "\n");
954 }
955 break;
956 }
957 case nir_op_imax: {
958 if (dst.regClass() == v1) {
959 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
960 } else if (dst.regClass() == s1) {
961 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
962 } else {
963 fprintf(stderr, "Unimplemented NIR instr bit size: ");
964 nir_print_instr(&instr->instr, stderr);
965 fprintf(stderr, "\n");
966 }
967 break;
968 }
969 case nir_op_umax: {
970 if (dst.regClass() == v1) {
971 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
972 } else if (dst.regClass() == s1) {
973 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
974 } else {
975 fprintf(stderr, "Unimplemented NIR instr bit size: ");
976 nir_print_instr(&instr->instr, stderr);
977 fprintf(stderr, "\n");
978 }
979 break;
980 }
981 case nir_op_imin: {
982 if (dst.regClass() == v1) {
983 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
984 } else if (dst.regClass() == s1) {
985 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
986 } else {
987 fprintf(stderr, "Unimplemented NIR instr bit size: ");
988 nir_print_instr(&instr->instr, stderr);
989 fprintf(stderr, "\n");
990 }
991 break;
992 }
993 case nir_op_umin: {
994 if (dst.regClass() == v1) {
995 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
996 } else if (dst.regClass() == s1) {
997 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
998 } else {
999 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1000 nir_print_instr(&instr->instr, stderr);
1001 fprintf(stderr, "\n");
1002 }
1003 break;
1004 }
1005 case nir_op_ior: {
1006 if (instr->dest.dest.ssa.bit_size == 1) {
1007 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1008 } else if (dst.regClass() == v1) {
1009 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1010 } else if (dst.regClass() == s1) {
1011 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1012 } else if (dst.regClass() == s2) {
1013 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1014 } else {
1015 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1016 nir_print_instr(&instr->instr, stderr);
1017 fprintf(stderr, "\n");
1018 }
1019 break;
1020 }
1021 case nir_op_iand: {
1022 if (instr->dest.dest.ssa.bit_size == 1) {
1023 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1024 } else if (dst.regClass() == v1) {
1025 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1026 } else if (dst.regClass() == s1) {
1027 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1028 } else if (dst.regClass() == s2) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1030 } else {
1031 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1032 nir_print_instr(&instr->instr, stderr);
1033 fprintf(stderr, "\n");
1034 }
1035 break;
1036 }
1037 case nir_op_ixor: {
1038 if (instr->dest.dest.ssa.bit_size == 1) {
1039 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1040 } else if (dst.regClass() == v1) {
1041 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1042 } else if (dst.regClass() == s1) {
1043 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1044 } else if (dst.regClass() == s2) {
1045 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1046 } else {
1047 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1048 nir_print_instr(&instr->instr, stderr);
1049 fprintf(stderr, "\n");
1050 }
1051 break;
1052 }
1053 case nir_op_ushr: {
1054 if (dst.regClass() == v1) {
1055 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1056 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1057 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1058 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1059 } else if (dst.regClass() == v2) {
1060 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1061 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1062 } else if (dst.regClass() == s2) {
1063 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1064 } else if (dst.regClass() == s1) {
1065 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1066 } else {
1067 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1068 nir_print_instr(&instr->instr, stderr);
1069 fprintf(stderr, "\n");
1070 }
1071 break;
1072 }
1073 case nir_op_ishl: {
1074 if (dst.regClass() == v1) {
1075 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1076 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1077 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1078 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1079 } else if (dst.regClass() == v2) {
1080 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1081 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1082 } else if (dst.regClass() == s1) {
1083 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1084 } else if (dst.regClass() == s2) {
1085 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1086 } else {
1087 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1088 nir_print_instr(&instr->instr, stderr);
1089 fprintf(stderr, "\n");
1090 }
1091 break;
1092 }
1093 case nir_op_ishr: {
1094 if (dst.regClass() == v1) {
1095 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1096 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1097 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1098 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1099 } else if (dst.regClass() == v2) {
1100 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1101 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1102 } else if (dst.regClass() == s1) {
1103 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1104 } else if (dst.regClass() == s2) {
1105 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1106 } else {
1107 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1108 nir_print_instr(&instr->instr, stderr);
1109 fprintf(stderr, "\n");
1110 }
1111 break;
1112 }
1113 case nir_op_find_lsb: {
1114 Temp src = get_alu_src(ctx, instr->src[0]);
1115 if (src.regClass() == s1) {
1116 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1117 } else if (src.regClass() == v1) {
1118 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1119 } else if (src.regClass() == s2) {
1120 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1121 } else {
1122 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1123 nir_print_instr(&instr->instr, stderr);
1124 fprintf(stderr, "\n");
1125 }
1126 break;
1127 }
1128 case nir_op_ufind_msb:
1129 case nir_op_ifind_msb: {
1130 Temp src = get_alu_src(ctx, instr->src[0]);
1131 if (src.regClass() == s1 || src.regClass() == s2) {
1132 aco_opcode op = src.regClass() == s2 ?
1133 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1134 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1135 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1136
1137 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1138 Operand(src.size() * 32u - 1u), msb_rev);
1139 Temp msb = sub.def(0).getTemp();
1140 Temp carry = sub.def(1).getTemp();
1141
1142 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1143 } else if (src.regClass() == v1) {
1144 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1145 Temp msb_rev = bld.tmp(v1);
1146 emit_vop1_instruction(ctx, instr, op, msb_rev);
1147 Temp msb = bld.tmp(v1);
1148 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1149 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1150 } else {
1151 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1152 nir_print_instr(&instr->instr, stderr);
1153 fprintf(stderr, "\n");
1154 }
1155 break;
1156 }
1157 case nir_op_bitfield_reverse: {
1158 if (dst.regClass() == s1) {
1159 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1160 } else if (dst.regClass() == v1) {
1161 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1162 } else {
1163 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1164 nir_print_instr(&instr->instr, stderr);
1165 fprintf(stderr, "\n");
1166 }
1167 break;
1168 }
1169 case nir_op_iadd: {
1170 if (dst.regClass() == s1) {
1171 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1172 break;
1173 }
1174
1175 Temp src0 = get_alu_src(ctx, instr->src[0]);
1176 Temp src1 = get_alu_src(ctx, instr->src[1]);
1177 if (dst.regClass() == v1) {
1178 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1179 break;
1180 }
1181
1182 assert(src0.size() == 2 && src1.size() == 2);
1183 Temp src00 = bld.tmp(src0.type(), 1);
1184 Temp src01 = bld.tmp(dst.type(), 1);
1185 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1186 Temp src10 = bld.tmp(src1.type(), 1);
1187 Temp src11 = bld.tmp(dst.type(), 1);
1188 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1189
1190 if (dst.regClass() == s2) {
1191 Temp carry = bld.tmp(s1);
1192 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1193 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1194 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1195 } else if (dst.regClass() == v2) {
1196 Temp dst0 = bld.tmp(v1);
1197 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1198 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1199 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1200 } else {
1201 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1202 nir_print_instr(&instr->instr, stderr);
1203 fprintf(stderr, "\n");
1204 }
1205 break;
1206 }
1207 case nir_op_uadd_sat: {
1208 Temp src0 = get_alu_src(ctx, instr->src[0]);
1209 Temp src1 = get_alu_src(ctx, instr->src[1]);
1210 if (dst.regClass() == s1) {
1211 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1212 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1213 src0, src1);
1214 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1215 } else if (dst.regClass() == v1) {
1216 if (ctx->options->chip_class >= GFX9) {
1217 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1218 add->operands[0] = Operand(src0);
1219 add->operands[1] = Operand(src1);
1220 add->definitions[0] = Definition(dst);
1221 add->clamp = 1;
1222 ctx->block->instructions.emplace_back(std::move(add));
1223 } else {
1224 if (src1.regClass() != v1)
1225 std::swap(src0, src1);
1226 assert(src1.regClass() == v1);
1227 Temp tmp = bld.tmp(v1);
1228 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1229 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1230 }
1231 } else {
1232 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1233 nir_print_instr(&instr->instr, stderr);
1234 fprintf(stderr, "\n");
1235 }
1236 break;
1237 }
1238 case nir_op_uadd_carry: {
1239 Temp src0 = get_alu_src(ctx, instr->src[0]);
1240 Temp src1 = get_alu_src(ctx, instr->src[1]);
1241 if (dst.regClass() == s1) {
1242 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1243 break;
1244 }
1245 if (dst.regClass() == v1) {
1246 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1247 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1248 break;
1249 }
1250
1251 Temp src00 = bld.tmp(src0.type(), 1);
1252 Temp src01 = bld.tmp(dst.type(), 1);
1253 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1254 Temp src10 = bld.tmp(src1.type(), 1);
1255 Temp src11 = bld.tmp(dst.type(), 1);
1256 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1257 if (dst.regClass() == s2) {
1258 Temp carry = bld.tmp(s1);
1259 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1260 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1261 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1262 } else if (dst.regClass() == v2) {
1263 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1264 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1265 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1266 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1267 } else {
1268 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1269 nir_print_instr(&instr->instr, stderr);
1270 fprintf(stderr, "\n");
1271 }
1272 break;
1273 }
1274 case nir_op_isub: {
1275 if (dst.regClass() == s1) {
1276 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1277 break;
1278 }
1279
1280 Temp src0 = get_alu_src(ctx, instr->src[0]);
1281 Temp src1 = get_alu_src(ctx, instr->src[1]);
1282 if (dst.regClass() == v1) {
1283 bld.vsub32(Definition(dst), src0, src1);
1284 break;
1285 }
1286
1287 Temp src00 = bld.tmp(src0.type(), 1);
1288 Temp src01 = bld.tmp(dst.type(), 1);
1289 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1290 Temp src10 = bld.tmp(src1.type(), 1);
1291 Temp src11 = bld.tmp(dst.type(), 1);
1292 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1293 if (dst.regClass() == s2) {
1294 Temp carry = bld.tmp(s1);
1295 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1296 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1297 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1298 } else if (dst.regClass() == v2) {
1299 Temp lower = bld.tmp(v1);
1300 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1301 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1302 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1303 } else {
1304 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1305 nir_print_instr(&instr->instr, stderr);
1306 fprintf(stderr, "\n");
1307 }
1308 break;
1309 }
1310 case nir_op_usub_borrow: {
1311 Temp src0 = get_alu_src(ctx, instr->src[0]);
1312 Temp src1 = get_alu_src(ctx, instr->src[1]);
1313 if (dst.regClass() == s1) {
1314 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1315 break;
1316 } else if (dst.regClass() == v1) {
1317 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1318 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1319 break;
1320 }
1321
1322 Temp src00 = bld.tmp(src0.type(), 1);
1323 Temp src01 = bld.tmp(dst.type(), 1);
1324 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1325 Temp src10 = bld.tmp(src1.type(), 1);
1326 Temp src11 = bld.tmp(dst.type(), 1);
1327 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1328 if (dst.regClass() == s2) {
1329 Temp borrow = bld.tmp(s1);
1330 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1331 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1332 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1333 } else if (dst.regClass() == v2) {
1334 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1335 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1336 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1337 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1338 } else {
1339 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1340 nir_print_instr(&instr->instr, stderr);
1341 fprintf(stderr, "\n");
1342 }
1343 break;
1344 }
1345 case nir_op_imul: {
1346 if (dst.regClass() == v1) {
1347 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1348 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1349 } else if (dst.regClass() == s1) {
1350 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1351 } else {
1352 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1353 nir_print_instr(&instr->instr, stderr);
1354 fprintf(stderr, "\n");
1355 }
1356 break;
1357 }
1358 case nir_op_umul_high: {
1359 if (dst.regClass() == v1) {
1360 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1361 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1362 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1363 } else if (dst.regClass() == s1) {
1364 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1365 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1366 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1367 } else {
1368 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1369 nir_print_instr(&instr->instr, stderr);
1370 fprintf(stderr, "\n");
1371 }
1372 break;
1373 }
1374 case nir_op_imul_high: {
1375 if (dst.regClass() == v1) {
1376 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1377 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1378 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1379 } else if (dst.regClass() == s1) {
1380 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1381 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1382 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1383 } else {
1384 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1385 nir_print_instr(&instr->instr, stderr);
1386 fprintf(stderr, "\n");
1387 }
1388 break;
1389 }
1390 case nir_op_fmul: {
1391 if (dst.size() == 1) {
1392 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1393 } else if (dst.size() == 2) {
1394 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1395 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1396 } else {
1397 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1398 nir_print_instr(&instr->instr, stderr);
1399 fprintf(stderr, "\n");
1400 }
1401 break;
1402 }
1403 case nir_op_fadd: {
1404 if (dst.size() == 1) {
1405 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1406 } else if (dst.size() == 2) {
1407 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1408 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1409 } else {
1410 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1411 nir_print_instr(&instr->instr, stderr);
1412 fprintf(stderr, "\n");
1413 }
1414 break;
1415 }
1416 case nir_op_fsub: {
1417 Temp src0 = get_alu_src(ctx, instr->src[0]);
1418 Temp src1 = get_alu_src(ctx, instr->src[1]);
1419 if (dst.size() == 1) {
1420 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1421 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1422 else
1423 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1424 } else if (dst.size() == 2) {
1425 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1426 get_alu_src(ctx, instr->src[0]),
1427 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1428 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1429 sub->neg[1] = true;
1430 } else {
1431 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1432 nir_print_instr(&instr->instr, stderr);
1433 fprintf(stderr, "\n");
1434 }
1435 break;
1436 }
1437 case nir_op_fmax: {
1438 if (dst.size() == 1) {
1439 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1440 } else if (dst.size() == 2) {
1441 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1442 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1443 get_alu_src(ctx, instr->src[0]),
1444 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1445 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1446 } else {
1447 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1448 get_alu_src(ctx, instr->src[0]),
1449 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1450 }
1451 } else {
1452 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1453 nir_print_instr(&instr->instr, stderr);
1454 fprintf(stderr, "\n");
1455 }
1456 break;
1457 }
1458 case nir_op_fmin: {
1459 if (dst.size() == 1) {
1460 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1461 } else if (dst.size() == 2) {
1462 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1463 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1464 get_alu_src(ctx, instr->src[0]),
1465 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1466 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1467 } else {
1468 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1469 get_alu_src(ctx, instr->src[0]),
1470 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1471 }
1472 } else {
1473 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1474 nir_print_instr(&instr->instr, stderr);
1475 fprintf(stderr, "\n");
1476 }
1477 break;
1478 }
1479 case nir_op_fmax3: {
1480 if (dst.size() == 1) {
1481 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1482 } else {
1483 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1484 nir_print_instr(&instr->instr, stderr);
1485 fprintf(stderr, "\n");
1486 }
1487 break;
1488 }
1489 case nir_op_fmin3: {
1490 if (dst.size() == 1) {
1491 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1492 } else {
1493 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1494 nir_print_instr(&instr->instr, stderr);
1495 fprintf(stderr, "\n");
1496 }
1497 break;
1498 }
1499 case nir_op_fmed3: {
1500 if (dst.size() == 1) {
1501 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1502 } else {
1503 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1504 nir_print_instr(&instr->instr, stderr);
1505 fprintf(stderr, "\n");
1506 }
1507 break;
1508 }
1509 case nir_op_umax3: {
1510 if (dst.size() == 1) {
1511 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1512 } else {
1513 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1514 nir_print_instr(&instr->instr, stderr);
1515 fprintf(stderr, "\n");
1516 }
1517 break;
1518 }
1519 case nir_op_umin3: {
1520 if (dst.size() == 1) {
1521 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1522 } else {
1523 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1524 nir_print_instr(&instr->instr, stderr);
1525 fprintf(stderr, "\n");
1526 }
1527 break;
1528 }
1529 case nir_op_umed3: {
1530 if (dst.size() == 1) {
1531 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1532 } else {
1533 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1534 nir_print_instr(&instr->instr, stderr);
1535 fprintf(stderr, "\n");
1536 }
1537 break;
1538 }
1539 case nir_op_imax3: {
1540 if (dst.size() == 1) {
1541 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1542 } else {
1543 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1544 nir_print_instr(&instr->instr, stderr);
1545 fprintf(stderr, "\n");
1546 }
1547 break;
1548 }
1549 case nir_op_imin3: {
1550 if (dst.size() == 1) {
1551 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1552 } else {
1553 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1554 nir_print_instr(&instr->instr, stderr);
1555 fprintf(stderr, "\n");
1556 }
1557 break;
1558 }
1559 case nir_op_imed3: {
1560 if (dst.size() == 1) {
1561 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1562 } else {
1563 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1564 nir_print_instr(&instr->instr, stderr);
1565 fprintf(stderr, "\n");
1566 }
1567 break;
1568 }
1569 case nir_op_cube_face_coord: {
1570 Temp in = get_alu_src(ctx, instr->src[0], 3);
1571 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1572 emit_extract_vector(ctx, in, 1, v1),
1573 emit_extract_vector(ctx, in, 2, v1) };
1574 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1575 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1576 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1577 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1578 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1579 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1580 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1581 break;
1582 }
1583 case nir_op_cube_face_index: {
1584 Temp in = get_alu_src(ctx, instr->src[0], 3);
1585 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1586 emit_extract_vector(ctx, in, 1, v1),
1587 emit_extract_vector(ctx, in, 2, v1) };
1588 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1589 break;
1590 }
1591 case nir_op_bcsel: {
1592 emit_bcsel(ctx, instr, dst);
1593 break;
1594 }
1595 case nir_op_frsq: {
1596 if (dst.size() == 1) {
1597 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1598 } else if (dst.size() == 2) {
1599 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1600 } else {
1601 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1602 nir_print_instr(&instr->instr, stderr);
1603 fprintf(stderr, "\n");
1604 }
1605 break;
1606 }
1607 case nir_op_fneg: {
1608 Temp src = get_alu_src(ctx, instr->src[0]);
1609 if (dst.size() == 1) {
1610 if (ctx->block->fp_mode.must_flush_denorms32)
1611 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1612 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1613 } else if (dst.size() == 2) {
1614 if (ctx->block->fp_mode.must_flush_denorms16_64)
1615 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1616 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1617 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1618 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1619 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1620 } else {
1621 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1622 nir_print_instr(&instr->instr, stderr);
1623 fprintf(stderr, "\n");
1624 }
1625 break;
1626 }
1627 case nir_op_fabs: {
1628 Temp src = get_alu_src(ctx, instr->src[0]);
1629 if (dst.size() == 1) {
1630 if (ctx->block->fp_mode.must_flush_denorms32)
1631 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1632 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1633 } else if (dst.size() == 2) {
1634 if (ctx->block->fp_mode.must_flush_denorms16_64)
1635 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1636 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1637 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1638 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1639 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1640 } else {
1641 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1642 nir_print_instr(&instr->instr, stderr);
1643 fprintf(stderr, "\n");
1644 }
1645 break;
1646 }
1647 case nir_op_fsat: {
1648 Temp src = get_alu_src(ctx, instr->src[0]);
1649 if (dst.size() == 1) {
1650 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1651 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1652 // TODO: confirm that this holds under any circumstances
1653 } else if (dst.size() == 2) {
1654 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1655 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1656 vop3->clamp = true;
1657 } else {
1658 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1659 nir_print_instr(&instr->instr, stderr);
1660 fprintf(stderr, "\n");
1661 }
1662 break;
1663 }
1664 case nir_op_flog2: {
1665 if (dst.size() == 1) {
1666 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1667 } else {
1668 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1669 nir_print_instr(&instr->instr, stderr);
1670 fprintf(stderr, "\n");
1671 }
1672 break;
1673 }
1674 case nir_op_frcp: {
1675 if (dst.size() == 1) {
1676 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1677 } else if (dst.size() == 2) {
1678 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1679 } else {
1680 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1681 nir_print_instr(&instr->instr, stderr);
1682 fprintf(stderr, "\n");
1683 }
1684 break;
1685 }
1686 case nir_op_fexp2: {
1687 if (dst.size() == 1) {
1688 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1689 } else {
1690 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1691 nir_print_instr(&instr->instr, stderr);
1692 fprintf(stderr, "\n");
1693 }
1694 break;
1695 }
1696 case nir_op_fsqrt: {
1697 if (dst.size() == 1) {
1698 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1699 } else if (dst.size() == 2) {
1700 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1701 } else {
1702 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1703 nir_print_instr(&instr->instr, stderr);
1704 fprintf(stderr, "\n");
1705 }
1706 break;
1707 }
1708 case nir_op_ffract: {
1709 if (dst.size() == 1) {
1710 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1711 } else if (dst.size() == 2) {
1712 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1713 } else {
1714 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1715 nir_print_instr(&instr->instr, stderr);
1716 fprintf(stderr, "\n");
1717 }
1718 break;
1719 }
1720 case nir_op_ffloor: {
1721 if (dst.size() == 1) {
1722 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1723 } else if (dst.size() == 2) {
1724 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1725 } else {
1726 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1727 nir_print_instr(&instr->instr, stderr);
1728 fprintf(stderr, "\n");
1729 }
1730 break;
1731 }
1732 case nir_op_fceil: {
1733 if (dst.size() == 1) {
1734 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1735 } else if (dst.size() == 2) {
1736 if (ctx->options->chip_class >= GFX7) {
1737 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1738 } else {
1739 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1740 Temp src0 = get_alu_src(ctx, instr->src[0]);
1741
1742 /* trunc = trunc(src0)
1743 * if (src0 > 0.0 && src0 != trunc)
1744 * trunc += 1.0
1745 */
1746 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1747 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1748 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1749 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1750 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1751 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1752 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1753 }
1754 } else {
1755 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1756 nir_print_instr(&instr->instr, stderr);
1757 fprintf(stderr, "\n");
1758 }
1759 break;
1760 }
1761 case nir_op_ftrunc: {
1762 if (dst.size() == 1) {
1763 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1764 } else if (dst.size() == 2) {
1765 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1766 } else {
1767 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1768 nir_print_instr(&instr->instr, stderr);
1769 fprintf(stderr, "\n");
1770 }
1771 break;
1772 }
1773 case nir_op_fround_even: {
1774 if (dst.size() == 1) {
1775 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1776 } else if (dst.size() == 2) {
1777 if (ctx->options->chip_class >= GFX7) {
1778 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1779 } else {
1780 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1781 Temp src0 = get_alu_src(ctx, instr->src[0]);
1782
1783 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1784 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1785
1786 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1787 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1788 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1789 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1790 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1791 tmp = sub->definitions[0].getTemp();
1792
1793 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1794 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1795 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1796 Temp cond = vop3->definitions[0].getTemp();
1797
1798 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1799 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1800 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1801 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1802
1803 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1804 }
1805 } else {
1806 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1807 nir_print_instr(&instr->instr, stderr);
1808 fprintf(stderr, "\n");
1809 }
1810 break;
1811 }
1812 case nir_op_fsin:
1813 case nir_op_fcos: {
1814 Temp src = get_alu_src(ctx, instr->src[0]);
1815 aco_ptr<Instruction> norm;
1816 if (dst.size() == 1) {
1817 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1818 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1819
1820 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1821 if (ctx->options->chip_class < GFX9)
1822 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1823
1824 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1825 bld.vop1(opcode, Definition(dst), tmp);
1826 } else {
1827 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1828 nir_print_instr(&instr->instr, stderr);
1829 fprintf(stderr, "\n");
1830 }
1831 break;
1832 }
1833 case nir_op_ldexp: {
1834 if (dst.size() == 1) {
1835 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1836 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1837 get_alu_src(ctx, instr->src[1]));
1838 } else if (dst.size() == 2) {
1839 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1840 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1841 get_alu_src(ctx, instr->src[1]));
1842 } else {
1843 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1844 nir_print_instr(&instr->instr, stderr);
1845 fprintf(stderr, "\n");
1846 }
1847 break;
1848 }
1849 case nir_op_frexp_sig: {
1850 if (dst.size() == 1) {
1851 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1852 get_alu_src(ctx, instr->src[0]));
1853 } else if (dst.size() == 2) {
1854 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1855 get_alu_src(ctx, instr->src[0]));
1856 } else {
1857 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1858 nir_print_instr(&instr->instr, stderr);
1859 fprintf(stderr, "\n");
1860 }
1861 break;
1862 }
1863 case nir_op_frexp_exp: {
1864 if (instr->src[0].src.ssa->bit_size == 32) {
1865 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1866 get_alu_src(ctx, instr->src[0]));
1867 } else if (instr->src[0].src.ssa->bit_size == 64) {
1868 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1869 get_alu_src(ctx, instr->src[0]));
1870 } else {
1871 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1872 nir_print_instr(&instr->instr, stderr);
1873 fprintf(stderr, "\n");
1874 }
1875 break;
1876 }
1877 case nir_op_fsign: {
1878 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1879 if (dst.size() == 1) {
1880 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1881 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1882 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1883 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1884 } else if (dst.size() == 2) {
1885 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1886 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1887 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1888
1889 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1890 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1891 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1892
1893 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1894 } else {
1895 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1896 nir_print_instr(&instr->instr, stderr);
1897 fprintf(stderr, "\n");
1898 }
1899 break;
1900 }
1901 case nir_op_f2f32: {
1902 if (instr->src[0].src.ssa->bit_size == 64) {
1903 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1904 } else {
1905 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1906 nir_print_instr(&instr->instr, stderr);
1907 fprintf(stderr, "\n");
1908 }
1909 break;
1910 }
1911 case nir_op_f2f64: {
1912 if (instr->src[0].src.ssa->bit_size == 32) {
1913 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1914 } else {
1915 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1916 nir_print_instr(&instr->instr, stderr);
1917 fprintf(stderr, "\n");
1918 }
1919 break;
1920 }
1921 case nir_op_i2f32: {
1922 assert(dst.size() == 1);
1923 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1924 break;
1925 }
1926 case nir_op_i2f64: {
1927 if (instr->src[0].src.ssa->bit_size == 32) {
1928 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1929 } else if (instr->src[0].src.ssa->bit_size == 64) {
1930 Temp src = get_alu_src(ctx, instr->src[0]);
1931 RegClass rc = RegClass(src.type(), 1);
1932 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1933 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1934 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1935 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1936 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1937 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1938
1939 } else {
1940 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1941 nir_print_instr(&instr->instr, stderr);
1942 fprintf(stderr, "\n");
1943 }
1944 break;
1945 }
1946 case nir_op_u2f32: {
1947 assert(dst.size() == 1);
1948 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1949 break;
1950 }
1951 case nir_op_u2f64: {
1952 if (instr->src[0].src.ssa->bit_size == 32) {
1953 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1954 } else if (instr->src[0].src.ssa->bit_size == 64) {
1955 Temp src = get_alu_src(ctx, instr->src[0]);
1956 RegClass rc = RegClass(src.type(), 1);
1957 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1958 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1959 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1960 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1961 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1962 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1963 } else {
1964 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1965 nir_print_instr(&instr->instr, stderr);
1966 fprintf(stderr, "\n");
1967 }
1968 break;
1969 }
1970 case nir_op_f2i32: {
1971 Temp src = get_alu_src(ctx, instr->src[0]);
1972 if (instr->src[0].src.ssa->bit_size == 32) {
1973 if (dst.type() == RegType::vgpr)
1974 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1975 else
1976 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1977 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1978
1979 } else if (instr->src[0].src.ssa->bit_size == 64) {
1980 if (dst.type() == RegType::vgpr)
1981 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1982 else
1983 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1984 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1985
1986 } else {
1987 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1988 nir_print_instr(&instr->instr, stderr);
1989 fprintf(stderr, "\n");
1990 }
1991 break;
1992 }
1993 case nir_op_f2u32: {
1994 Temp src = get_alu_src(ctx, instr->src[0]);
1995 if (instr->src[0].src.ssa->bit_size == 32) {
1996 if (dst.type() == RegType::vgpr)
1997 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
1998 else
1999 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2000 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2001
2002 } else if (instr->src[0].src.ssa->bit_size == 64) {
2003 if (dst.type() == RegType::vgpr)
2004 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2005 else
2006 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2007 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2008
2009 } else {
2010 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2011 nir_print_instr(&instr->instr, stderr);
2012 fprintf(stderr, "\n");
2013 }
2014 break;
2015 }
2016 case nir_op_f2i64: {
2017 Temp src = get_alu_src(ctx, instr->src[0]);
2018 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2019 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2020 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2021 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2022 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2023 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2024 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2025 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2026 Temp new_exponent = bld.tmp(v1);
2027 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2028 if (ctx->program->chip_class >= GFX8)
2029 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2030 else
2031 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2032 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2033 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2034 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2035 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2036 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2037 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2038 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2039 Temp new_lower = bld.tmp(v1);
2040 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2041 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2042 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2043
2044 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2045 if (src.type() == RegType::vgpr)
2046 src = bld.as_uniform(src);
2047 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2048 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2049 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2050 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2051 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2052 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2053 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2054 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2055 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2056 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2057 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2058 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2059 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2060 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2061 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2062 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2063 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2064 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2065 Temp borrow = bld.tmp(s1);
2066 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2067 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2068 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2069
2070 } else if (instr->src[0].src.ssa->bit_size == 64) {
2071 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2072 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2073 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2074 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2075 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2076 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2077 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2078 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2079 if (dst.type() == RegType::sgpr) {
2080 lower = bld.as_uniform(lower);
2081 upper = bld.as_uniform(upper);
2082 }
2083 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2084
2085 } else {
2086 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2087 nir_print_instr(&instr->instr, stderr);
2088 fprintf(stderr, "\n");
2089 }
2090 break;
2091 }
2092 case nir_op_f2u64: {
2093 Temp src = get_alu_src(ctx, instr->src[0]);
2094 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2095 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2096 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2097 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2098 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2099 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2100 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2101 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2102 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2103 Temp new_exponent = bld.tmp(v1);
2104 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2105 if (ctx->program->chip_class >= GFX8)
2106 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2107 else
2108 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2109 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2110 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2111 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2112 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2113 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2114 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2115 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2116
2117 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2118 if (src.type() == RegType::vgpr)
2119 src = bld.as_uniform(src);
2120 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2121 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2122 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2123 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2124 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2125 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2126 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2127 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2128 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2129 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2130 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2131 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2132 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2133 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2134 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2135 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2136 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2137 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2138
2139 } else if (instr->src[0].src.ssa->bit_size == 64) {
2140 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2141 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2142 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2143 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2144 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2145 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2146 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2147 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2148 if (dst.type() == RegType::sgpr) {
2149 lower = bld.as_uniform(lower);
2150 upper = bld.as_uniform(upper);
2151 }
2152 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2153
2154 } else {
2155 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2156 nir_print_instr(&instr->instr, stderr);
2157 fprintf(stderr, "\n");
2158 }
2159 break;
2160 }
2161 case nir_op_b2f32: {
2162 Temp src = get_alu_src(ctx, instr->src[0]);
2163 assert(src.regClass() == bld.lm);
2164
2165 if (dst.regClass() == s1) {
2166 src = bool_to_scalar_condition(ctx, src);
2167 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2168 } else if (dst.regClass() == v1) {
2169 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2170 } else {
2171 unreachable("Wrong destination register class for nir_op_b2f32.");
2172 }
2173 break;
2174 }
2175 case nir_op_b2f64: {
2176 Temp src = get_alu_src(ctx, instr->src[0]);
2177 assert(src.regClass() == bld.lm);
2178
2179 if (dst.regClass() == s2) {
2180 src = bool_to_scalar_condition(ctx, src);
2181 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2182 } else if (dst.regClass() == v2) {
2183 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2184 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2185 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2186 } else {
2187 unreachable("Wrong destination register class for nir_op_b2f64.");
2188 }
2189 break;
2190 }
2191 case nir_op_i2i32: {
2192 Temp src = get_alu_src(ctx, instr->src[0]);
2193 if (instr->src[0].src.ssa->bit_size == 64) {
2194 /* we can actually just say dst = src, as it would map the lower register */
2195 emit_extract_vector(ctx, src, 0, dst);
2196 } else {
2197 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2198 nir_print_instr(&instr->instr, stderr);
2199 fprintf(stderr, "\n");
2200 }
2201 break;
2202 }
2203 case nir_op_u2u32: {
2204 Temp src = get_alu_src(ctx, instr->src[0]);
2205 if (instr->src[0].src.ssa->bit_size == 16) {
2206 if (dst.regClass() == s1) {
2207 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2208 } else {
2209 // TODO: do better with SDWA
2210 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2211 }
2212 } else if (instr->src[0].src.ssa->bit_size == 64) {
2213 /* we can actually just say dst = src, as it would map the lower register */
2214 emit_extract_vector(ctx, src, 0, dst);
2215 } else {
2216 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2217 nir_print_instr(&instr->instr, stderr);
2218 fprintf(stderr, "\n");
2219 }
2220 break;
2221 }
2222 case nir_op_i2i64: {
2223 Temp src = get_alu_src(ctx, instr->src[0]);
2224 if (src.regClass() == s1) {
2225 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2226 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2227 } else if (src.regClass() == v1) {
2228 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2229 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2230 } else {
2231 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2232 nir_print_instr(&instr->instr, stderr);
2233 fprintf(stderr, "\n");
2234 }
2235 break;
2236 }
2237 case nir_op_u2u64: {
2238 Temp src = get_alu_src(ctx, instr->src[0]);
2239 if (instr->src[0].src.ssa->bit_size == 32) {
2240 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2241 } else {
2242 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2243 nir_print_instr(&instr->instr, stderr);
2244 fprintf(stderr, "\n");
2245 }
2246 break;
2247 }
2248 case nir_op_b2i32: {
2249 Temp src = get_alu_src(ctx, instr->src[0]);
2250 assert(src.regClass() == bld.lm);
2251
2252 if (dst.regClass() == s1) {
2253 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2254 bool_to_scalar_condition(ctx, src, dst);
2255 } else if (dst.regClass() == v1) {
2256 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2257 } else {
2258 unreachable("Invalid register class for b2i32");
2259 }
2260 break;
2261 }
2262 case nir_op_i2b1: {
2263 Temp src = get_alu_src(ctx, instr->src[0]);
2264 assert(dst.regClass() == bld.lm);
2265
2266 if (src.type() == RegType::vgpr) {
2267 assert(src.regClass() == v1 || src.regClass() == v2);
2268 assert(dst.regClass() == bld.lm);
2269 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2270 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2271 } else {
2272 assert(src.regClass() == s1 || src.regClass() == s2);
2273 Temp tmp;
2274 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2275 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2276 } else {
2277 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2278 bld.scc(bld.def(s1)), Operand(0u), src);
2279 }
2280 bool_to_vector_condition(ctx, tmp, dst);
2281 }
2282 break;
2283 }
2284 case nir_op_pack_64_2x32_split: {
2285 Temp src0 = get_alu_src(ctx, instr->src[0]);
2286 Temp src1 = get_alu_src(ctx, instr->src[1]);
2287
2288 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2289 break;
2290 }
2291 case nir_op_unpack_64_2x32_split_x:
2292 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2293 break;
2294 case nir_op_unpack_64_2x32_split_y:
2295 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2296 break;
2297 case nir_op_pack_half_2x16: {
2298 Temp src = get_alu_src(ctx, instr->src[0], 2);
2299
2300 if (dst.regClass() == v1) {
2301 Temp src0 = bld.tmp(v1);
2302 Temp src1 = bld.tmp(v1);
2303 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2304 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2305 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2306 else
2307 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2308 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2309 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2310 } else {
2311 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2312 nir_print_instr(&instr->instr, stderr);
2313 fprintf(stderr, "\n");
2314 }
2315 break;
2316 }
2317 case nir_op_unpack_half_2x16_split_x: {
2318 if (dst.regClass() == v1) {
2319 Builder bld(ctx->program, ctx->block);
2320 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2321 } else {
2322 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2323 nir_print_instr(&instr->instr, stderr);
2324 fprintf(stderr, "\n");
2325 }
2326 break;
2327 }
2328 case nir_op_unpack_half_2x16_split_y: {
2329 if (dst.regClass() == v1) {
2330 Builder bld(ctx->program, ctx->block);
2331 /* TODO: use SDWA here */
2332 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2333 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2334 } else {
2335 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2336 nir_print_instr(&instr->instr, stderr);
2337 fprintf(stderr, "\n");
2338 }
2339 break;
2340 }
2341 case nir_op_fquantize2f16: {
2342 Temp src = get_alu_src(ctx, instr->src[0]);
2343 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2344 Temp f32, cmp_res;
2345
2346 if (ctx->program->chip_class >= GFX8) {
2347 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2348 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2349 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2350 } else {
2351 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2352 * so compare the result and flush to 0 if it's smaller.
2353 */
2354 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2355 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2356 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2357 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2358 cmp_res = vop3->definitions[0].getTemp();
2359 }
2360
2361 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2362 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2363 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2364 } else {
2365 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2366 }
2367 break;
2368 }
2369 case nir_op_bfm: {
2370 Temp bits = get_alu_src(ctx, instr->src[0]);
2371 Temp offset = get_alu_src(ctx, instr->src[1]);
2372
2373 if (dst.regClass() == s1) {
2374 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2375 } else if (dst.regClass() == v1) {
2376 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2377 } else {
2378 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2379 nir_print_instr(&instr->instr, stderr);
2380 fprintf(stderr, "\n");
2381 }
2382 break;
2383 }
2384 case nir_op_bitfield_select: {
2385 /* (mask & insert) | (~mask & base) */
2386 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2387 Temp insert = get_alu_src(ctx, instr->src[1]);
2388 Temp base = get_alu_src(ctx, instr->src[2]);
2389
2390 /* dst = (insert & bitmask) | (base & ~bitmask) */
2391 if (dst.regClass() == s1) {
2392 aco_ptr<Instruction> sop2;
2393 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2394 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2395 Operand lhs;
2396 if (const_insert && const_bitmask) {
2397 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2398 } else {
2399 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2400 lhs = Operand(insert);
2401 }
2402
2403 Operand rhs;
2404 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2405 if (const_base && const_bitmask) {
2406 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2407 } else {
2408 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2409 rhs = Operand(base);
2410 }
2411
2412 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2413
2414 } else if (dst.regClass() == v1) {
2415 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2416 base = as_vgpr(ctx, base);
2417 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2418 insert = as_vgpr(ctx, insert);
2419
2420 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2421
2422 } else {
2423 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2424 nir_print_instr(&instr->instr, stderr);
2425 fprintf(stderr, "\n");
2426 }
2427 break;
2428 }
2429 case nir_op_ubfe:
2430 case nir_op_ibfe: {
2431 Temp base = get_alu_src(ctx, instr->src[0]);
2432 Temp offset = get_alu_src(ctx, instr->src[1]);
2433 Temp bits = get_alu_src(ctx, instr->src[2]);
2434
2435 if (dst.type() == RegType::sgpr) {
2436 Operand extract;
2437 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2438 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2439 if (const_offset && const_bits) {
2440 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2441 extract = Operand(const_extract);
2442 } else {
2443 Operand width;
2444 if (const_bits) {
2445 width = Operand(const_bits->u32 << 16);
2446 } else {
2447 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2448 }
2449 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2450 }
2451
2452 aco_opcode opcode;
2453 if (dst.regClass() == s1) {
2454 if (instr->op == nir_op_ubfe)
2455 opcode = aco_opcode::s_bfe_u32;
2456 else
2457 opcode = aco_opcode::s_bfe_i32;
2458 } else if (dst.regClass() == s2) {
2459 if (instr->op == nir_op_ubfe)
2460 opcode = aco_opcode::s_bfe_u64;
2461 else
2462 opcode = aco_opcode::s_bfe_i64;
2463 } else {
2464 unreachable("Unsupported BFE bit size");
2465 }
2466
2467 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2468
2469 } else {
2470 aco_opcode opcode;
2471 if (dst.regClass() == v1) {
2472 if (instr->op == nir_op_ubfe)
2473 opcode = aco_opcode::v_bfe_u32;
2474 else
2475 opcode = aco_opcode::v_bfe_i32;
2476 } else {
2477 unreachable("Unsupported BFE bit size");
2478 }
2479
2480 emit_vop3a_instruction(ctx, instr, opcode, dst);
2481 }
2482 break;
2483 }
2484 case nir_op_bit_count: {
2485 Temp src = get_alu_src(ctx, instr->src[0]);
2486 if (src.regClass() == s1) {
2487 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2488 } else if (src.regClass() == v1) {
2489 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2490 } else if (src.regClass() == v2) {
2491 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2492 emit_extract_vector(ctx, src, 1, v1),
2493 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2494 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2495 } else if (src.regClass() == s2) {
2496 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2497 } else {
2498 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2499 nir_print_instr(&instr->instr, stderr);
2500 fprintf(stderr, "\n");
2501 }
2502 break;
2503 }
2504 case nir_op_flt: {
2505 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2506 break;
2507 }
2508 case nir_op_fge: {
2509 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2510 break;
2511 }
2512 case nir_op_feq: {
2513 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2514 break;
2515 }
2516 case nir_op_fne: {
2517 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2518 break;
2519 }
2520 case nir_op_ilt: {
2521 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2522 break;
2523 }
2524 case nir_op_ige: {
2525 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2526 break;
2527 }
2528 case nir_op_ieq: {
2529 if (instr->src[0].src.ssa->bit_size == 1)
2530 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2531 else
2532 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2533 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2534 break;
2535 }
2536 case nir_op_ine: {
2537 if (instr->src[0].src.ssa->bit_size == 1)
2538 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2539 else
2540 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2541 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2542 break;
2543 }
2544 case nir_op_ult: {
2545 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2546 break;
2547 }
2548 case nir_op_uge: {
2549 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2550 break;
2551 }
2552 case nir_op_fddx:
2553 case nir_op_fddy:
2554 case nir_op_fddx_fine:
2555 case nir_op_fddy_fine:
2556 case nir_op_fddx_coarse:
2557 case nir_op_fddy_coarse: {
2558 Temp src = get_alu_src(ctx, instr->src[0]);
2559 uint16_t dpp_ctrl1, dpp_ctrl2;
2560 if (instr->op == nir_op_fddx_fine) {
2561 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2562 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2563 } else if (instr->op == nir_op_fddy_fine) {
2564 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2565 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2566 } else {
2567 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2568 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2569 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2570 else
2571 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2572 }
2573
2574 Temp tmp;
2575 if (ctx->program->chip_class >= GFX8) {
2576 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2577 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2578 } else {
2579 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2580 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2581 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2582 }
2583 emit_wqm(ctx, tmp, dst, true);
2584 break;
2585 }
2586 default:
2587 fprintf(stderr, "Unknown NIR ALU instr: ");
2588 nir_print_instr(&instr->instr, stderr);
2589 fprintf(stderr, "\n");
2590 }
2591 }
2592
2593 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2594 {
2595 Temp dst = get_ssa_temp(ctx, &instr->def);
2596
2597 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2598 // which get truncated the lsb if double and msb if int
2599 // for now, we only use s_mov_b64 with 64bit inline constants
2600 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2601 assert(dst.type() == RegType::sgpr);
2602
2603 Builder bld(ctx->program, ctx->block);
2604
2605 if (instr->def.bit_size == 1) {
2606 assert(dst.regClass() == bld.lm);
2607 int val = instr->value[0].b ? -1 : 0;
2608 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2609 bld.sop1(Builder::s_mov, Definition(dst), op);
2610 } else if (dst.size() == 1) {
2611 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2612 } else {
2613 assert(dst.size() != 1);
2614 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2615 if (instr->def.bit_size == 64)
2616 for (unsigned i = 0; i < dst.size(); i++)
2617 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2618 else {
2619 for (unsigned i = 0; i < dst.size(); i++)
2620 vec->operands[i] = Operand{instr->value[i].u32};
2621 }
2622 vec->definitions[0] = Definition(dst);
2623 ctx->block->instructions.emplace_back(std::move(vec));
2624 }
2625 }
2626
2627 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2628 {
2629 uint32_t new_mask = 0;
2630 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2631 if (mask & (1u << i))
2632 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2633 return new_mask;
2634 }
2635
2636 Operand load_lds_size_m0(isel_context *ctx)
2637 {
2638 /* TODO: m0 does not need to be initialized on GFX9+ */
2639 Builder bld(ctx->program, ctx->block);
2640 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2641 }
2642
2643 void load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2644 Temp address, unsigned base_offset, unsigned align)
2645 {
2646 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2647
2648 Builder bld(ctx->program, ctx->block);
2649
2650 Operand m = load_lds_size_m0(ctx);
2651
2652 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2653 unsigned bytes_read = 0;
2654 unsigned result_size = 0;
2655 unsigned total_bytes = num_components * elem_size_bytes;
2656 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2657 bool large_ds_read = ctx->options->chip_class >= GFX7;
2658
2659 while (bytes_read < total_bytes) {
2660 unsigned todo = total_bytes - bytes_read;
2661 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2662 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2663
2664 aco_opcode op = aco_opcode::last_opcode;
2665 bool read2 = false;
2666 if (todo >= 16 && aligned16 && large_ds_read) {
2667 op = aco_opcode::ds_read_b128;
2668 todo = 16;
2669 } else if (todo >= 16 && aligned8) {
2670 op = aco_opcode::ds_read2_b64;
2671 read2 = true;
2672 todo = 16;
2673 } else if (todo >= 12 && aligned16 && large_ds_read) {
2674 op = aco_opcode::ds_read_b96;
2675 todo = 12;
2676 } else if (todo >= 8 && aligned8) {
2677 op = aco_opcode::ds_read_b64;
2678 todo = 8;
2679 } else if (todo >= 8) {
2680 op = aco_opcode::ds_read2_b32;
2681 read2 = true;
2682 todo = 8;
2683 } else if (todo >= 4) {
2684 op = aco_opcode::ds_read_b32;
2685 todo = 4;
2686 } else {
2687 assert(false);
2688 }
2689 assert(todo % elem_size_bytes == 0);
2690 unsigned num_elements = todo / elem_size_bytes;
2691 unsigned offset = base_offset + bytes_read;
2692 unsigned max_offset = read2 ? 1019 : 65535;
2693
2694 Temp address_offset = address;
2695 if (offset > max_offset) {
2696 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2697 offset = bytes_read;
2698 }
2699 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2700
2701 Temp res;
2702 if (num_components == 1 && dst.type() == RegType::vgpr)
2703 res = dst;
2704 else
2705 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2706
2707 if (read2)
2708 res = bld.ds(op, Definition(res), address_offset, m, offset >> 2, (offset >> 2) + 1);
2709 else
2710 res = bld.ds(op, Definition(res), address_offset, m, offset);
2711
2712 if (num_components == 1) {
2713 assert(todo == total_bytes);
2714 if (dst.type() == RegType::sgpr)
2715 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2716 return;
2717 }
2718
2719 if (dst.type() == RegType::sgpr) {
2720 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2721 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2722 res = new_res;
2723 }
2724
2725 if (num_elements == 1) {
2726 result[result_size++] = res;
2727 } else {
2728 assert(res != dst && res.size() % num_elements == 0);
2729 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2730 split->operands[0] = Operand(res);
2731 for (unsigned i = 0; i < num_elements; i++)
2732 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2733 ctx->block->instructions.emplace_back(std::move(split));
2734 }
2735
2736 bytes_read += todo;
2737 }
2738
2739 assert(result_size == num_components && result_size > 1);
2740 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2741 for (unsigned i = 0; i < result_size; i++)
2742 vec->operands[i] = Operand(result[i]);
2743 vec->definitions[0] = Definition(dst);
2744 ctx->block->instructions.emplace_back(std::move(vec));
2745 ctx->allocated_vec.emplace(dst.id(), result);
2746 }
2747
2748 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2749 {
2750 if (start == 0 && size == data.size())
2751 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2752
2753 unsigned size_hint = 1;
2754 auto it = ctx->allocated_vec.find(data.id());
2755 if (it != ctx->allocated_vec.end())
2756 size_hint = it->second[0].size();
2757 if (size % size_hint || start % size_hint)
2758 size_hint = 1;
2759
2760 start /= size_hint;
2761 size /= size_hint;
2762
2763 Temp elems[size];
2764 for (unsigned i = 0; i < size; i++)
2765 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2766
2767 if (size == 1)
2768 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2769
2770 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2771 for (unsigned i = 0; i < size; i++)
2772 vec->operands[i] = Operand(elems[i]);
2773 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2774 vec->definitions[0] = Definition(res);
2775 ctx->block->instructions.emplace_back(std::move(vec));
2776 return res;
2777 }
2778
2779 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2780 {
2781 Builder bld(ctx->program, ctx->block);
2782 unsigned bytes_written = 0;
2783 bool large_ds_write = ctx->options->chip_class >= GFX7;
2784
2785 while (bytes_written < total_size * 4) {
2786 unsigned todo = total_size * 4 - bytes_written;
2787 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2788 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2789
2790 aco_opcode op = aco_opcode::last_opcode;
2791 bool write2 = false;
2792 unsigned size = 0;
2793 if (todo >= 16 && aligned16 && large_ds_write) {
2794 op = aco_opcode::ds_write_b128;
2795 size = 4;
2796 } else if (todo >= 16 && aligned8) {
2797 op = aco_opcode::ds_write2_b64;
2798 write2 = true;
2799 size = 4;
2800 } else if (todo >= 12 && aligned16 && large_ds_write) {
2801 op = aco_opcode::ds_write_b96;
2802 size = 3;
2803 } else if (todo >= 8 && aligned8) {
2804 op = aco_opcode::ds_write_b64;
2805 size = 2;
2806 } else if (todo >= 8) {
2807 op = aco_opcode::ds_write2_b32;
2808 write2 = true;
2809 size = 2;
2810 } else if (todo >= 4) {
2811 op = aco_opcode::ds_write_b32;
2812 size = 1;
2813 } else {
2814 assert(false);
2815 }
2816
2817 unsigned offset = offset0 + offset1 + bytes_written;
2818 unsigned max_offset = write2 ? 1020 : 65535;
2819 Temp address_offset = address;
2820 if (offset > max_offset) {
2821 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2822 offset = offset1 + bytes_written;
2823 }
2824 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2825
2826 if (write2) {
2827 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2828 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2829 bld.ds(op, address_offset, val0, val1, m, offset >> 2, (offset >> 2) + 1);
2830 } else {
2831 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2832 bld.ds(op, address_offset, val, m, offset);
2833 }
2834
2835 bytes_written += size * 4;
2836 }
2837 }
2838
2839 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2840 Temp address, unsigned base_offset, unsigned align)
2841 {
2842 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2843
2844 Operand m = load_lds_size_m0(ctx);
2845
2846 /* we need at most two stores for 32bit variables */
2847 int start[2], count[2];
2848 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2849 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2850 assert(wrmask == 0);
2851
2852 /* one combined store is sufficient */
2853 if (count[0] == count[1]) {
2854 Builder bld(ctx->program, ctx->block);
2855
2856 Temp address_offset = address;
2857 if ((base_offset >> 2) + start[1] > 255) {
2858 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2859 base_offset = 0;
2860 }
2861
2862 assert(count[0] == 1);
2863 Temp val0 = emit_extract_vector(ctx, data, start[0], v1);
2864 Temp val1 = emit_extract_vector(ctx, data, start[1], v1);
2865 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2866 base_offset = base_offset / elem_size_bytes;
2867 bld.ds(op, address_offset, val0, val1, m,
2868 base_offset + start[0], base_offset + start[1]);
2869 return;
2870 }
2871
2872 for (unsigned i = 0; i < 2; i++) {
2873 if (count[i] == 0)
2874 continue;
2875
2876 unsigned elem_size_words = elem_size_bytes / 4;
2877 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2878 base_offset, start[i] * elem_size_bytes, align);
2879 }
2880 return;
2881 }
2882
2883 void visit_store_vsgs_output(isel_context *ctx, nir_intrinsic_instr *instr)
2884 {
2885 unsigned write_mask = nir_intrinsic_write_mask(instr);
2886 unsigned component = nir_intrinsic_component(instr);
2887 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2888 unsigned idx = (nir_intrinsic_base(instr) + component) * 4u;
2889 Operand offset(s1);
2890 Builder bld(ctx->program, ctx->block);
2891
2892 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2893 if (off_instr->type != nir_instr_type_load_const)
2894 offset = bld.v_mul24_imm(bld.def(v1), get_ssa_temp(ctx, instr->src[1].ssa), 16u);
2895 else
2896 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 16u;
2897
2898 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
2899 if (ctx->stage == vertex_es) {
2900 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
2901
2902 Temp elems[NIR_MAX_VEC_COMPONENTS * 2];
2903 if (elem_size_bytes == 8) {
2904 for (unsigned i = 0; i < src.size() / 2; i++) {
2905 Temp elem = emit_extract_vector(ctx, src, i, v2);
2906 elems[i*2] = bld.tmp(v1);
2907 elems[i*2+1] = bld.tmp(v1);
2908 bld.pseudo(aco_opcode::p_split_vector, Definition(elems[i*2]), Definition(elems[i*2+1]), elem);
2909 }
2910 write_mask = widen_mask(write_mask, 2);
2911 elem_size_bytes /= 2u;
2912 } else {
2913 for (unsigned i = 0; i < src.size(); i++)
2914 elems[i] = emit_extract_vector(ctx, src, i, v1);
2915 }
2916
2917 while (write_mask) {
2918 unsigned index = u_bit_scan(&write_mask);
2919 unsigned offset = index * elem_size_bytes;
2920 Temp elem = emit_extract_vector(ctx, src, index, RegClass(RegType::vgpr, elem_size_bytes / 4));
2921
2922 Operand vaddr_offset(v1);
2923 unsigned const_offset = idx + offset;
2924 if (const_offset >= 4096u) {
2925 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
2926 const_offset %= 4096u;
2927 }
2928
2929 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
2930 mtbuf->operands[0] = vaddr_offset;
2931 mtbuf->operands[1] = Operand(esgs_ring);
2932 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->es2gs_offset));
2933 mtbuf->operands[3] = Operand(elem);
2934 mtbuf->offen = !vaddr_offset.isUndefined();
2935 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
2936 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
2937 mtbuf->offset = const_offset;
2938 mtbuf->glc = true;
2939 mtbuf->slc = true;
2940 mtbuf->barrier = barrier_none;
2941 mtbuf->can_reorder = true;
2942 bld.insert(std::move(mtbuf));
2943 }
2944 } else {
2945 unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
2946
2947 Temp vertex_idx = emit_mbcnt(ctx, bld.def(v1));
2948 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
2949 vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), vertex_idx,
2950 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
2951
2952 Temp lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
2953 if (!offset.isUndefined())
2954 lds_base = bld.vadd32(bld.def(v1), offset, lds_base);
2955
2956 unsigned align = 1 << (ffs(itemsize) - 1);
2957 if (idx)
2958 align = std::min(align, 1u << (ffs(idx) - 1));
2959
2960 store_lds(ctx, elem_size_bytes, src, write_mask, lds_base, idx, align);
2961 }
2962 }
2963
2964 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
2965 {
2966 if (ctx->stage == vertex_vs ||
2967 ctx->stage == fragment_fs ||
2968 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
2969 unsigned write_mask = nir_intrinsic_write_mask(instr);
2970 unsigned component = nir_intrinsic_component(instr);
2971 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2972 unsigned idx = nir_intrinsic_base(instr) + component;
2973
2974 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2975 if (off_instr->type != nir_instr_type_load_const) {
2976 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2977 nir_print_instr(off_instr, stderr);
2978 fprintf(stderr, "\n");
2979 }
2980 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
2981
2982 if (instr->src[0].ssa->bit_size == 64)
2983 write_mask = widen_mask(write_mask, 2);
2984
2985 for (unsigned i = 0; i < 8; ++i) {
2986 if (write_mask & (1 << i)) {
2987 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
2988 ctx->outputs.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
2989 }
2990 idx++;
2991 }
2992 } else if (ctx->stage == vertex_es ||
2993 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX)) {
2994 visit_store_vsgs_output(ctx, instr);
2995 } else {
2996 unreachable("Shader stage not implemented");
2997 }
2998 }
2999
3000 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3001 {
3002 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3003 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3004
3005 Builder bld(ctx->program, ctx->block);
3006 Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3007 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
3008 }
3009
3010 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3011 {
3012 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3013 for (unsigned i = 0; i < num_components; i++)
3014 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3015 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3016 assert(num_components == 4);
3017 Builder bld(ctx->program, ctx->block);
3018 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3019 }
3020
3021 for (Operand& op : vec->operands)
3022 op = op.isUndefined() ? Operand(0u) : op;
3023
3024 vec->definitions[0] = Definition(dst);
3025 ctx->block->instructions.emplace_back(std::move(vec));
3026 emit_split_vector(ctx, dst, num_components);
3027 return;
3028 }
3029
3030 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3031 {
3032 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3033 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3034 unsigned idx = nir_intrinsic_base(instr);
3035 unsigned component = nir_intrinsic_component(instr);
3036 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3037
3038 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3039 if (offset) {
3040 assert(offset->u32 == 0);
3041 } else {
3042 /* the lower 15bit of the prim_mask contain the offset into LDS
3043 * while the upper bits contain the number of prims */
3044 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3045 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3046 Builder bld(ctx->program, ctx->block);
3047 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3048 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3049 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3050 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3051 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3052 }
3053
3054 if (instr->dest.ssa.num_components == 1) {
3055 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3056 } else {
3057 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3058 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3059 {
3060 Temp tmp = {ctx->program->allocateId(), v1};
3061 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3062 vec->operands[i] = Operand(tmp);
3063 }
3064 vec->definitions[0] = Definition(dst);
3065 ctx->block->instructions.emplace_back(std::move(vec));
3066 }
3067 }
3068
3069 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3070 unsigned offset, unsigned stride, unsigned channels)
3071 {
3072 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3073 if (vtx_info->chan_byte_size != 4 && channels == 3)
3074 return false;
3075 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3076 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3077 }
3078
3079 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3080 unsigned offset, unsigned stride, unsigned *channels)
3081 {
3082 if (!vtx_info->chan_byte_size) {
3083 *channels = vtx_info->num_channels;
3084 return vtx_info->chan_format;
3085 }
3086
3087 unsigned num_channels = *channels;
3088 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3089 unsigned new_channels = num_channels + 1;
3090 /* first, assume more loads is worse and try using a larger data format */
3091 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3092 new_channels++;
3093 /* don't make the attribute potentially out-of-bounds */
3094 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3095 new_channels = 5;
3096 }
3097
3098 if (new_channels == 5) {
3099 /* then try decreasing load size (at the cost of more loads) */
3100 new_channels = *channels;
3101 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3102 new_channels--;
3103 }
3104
3105 if (new_channels < *channels)
3106 *channels = new_channels;
3107 num_channels = new_channels;
3108 }
3109
3110 switch (vtx_info->chan_format) {
3111 case V_008F0C_BUF_DATA_FORMAT_8:
3112 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3113 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3114 case V_008F0C_BUF_DATA_FORMAT_16:
3115 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3116 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3117 case V_008F0C_BUF_DATA_FORMAT_32:
3118 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3119 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3120 }
3121 unreachable("shouldn't reach here");
3122 return V_008F0C_BUF_DATA_FORMAT_INVALID;
3123 }
3124
3125 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3126 * so we may need to fix it up. */
3127 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3128 {
3129 Builder bld(ctx->program, ctx->block);
3130
3131 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3132 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3133
3134 /* For the integer-like cases, do a natural sign extension.
3135 *
3136 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3137 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3138 * exponent.
3139 */
3140 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3141 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3142
3143 /* Convert back to the right type. */
3144 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3145 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3146 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3147 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3148 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3149 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3150 }
3151
3152 return alpha;
3153 }
3154
3155 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3156 {
3157 Builder bld(ctx->program, ctx->block);
3158 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3159 if (ctx->stage & sw_vs) {
3160
3161 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3162 if (off_instr->type != nir_instr_type_load_const) {
3163 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3164 nir_print_instr(off_instr, stderr);
3165 fprintf(stderr, "\n");
3166 }
3167 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3168
3169 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3170
3171 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3172 unsigned component = nir_intrinsic_component(instr);
3173 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3174 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3175 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3176 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3177
3178 unsigned dfmt = attrib_format & 0xf;
3179 unsigned nfmt = (attrib_format >> 4) & 0x7;
3180 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
3181
3182 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3183 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
3184 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3185 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3186 if (post_shuffle)
3187 num_channels = MAX2(num_channels, 3);
3188
3189 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
3190 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
3191
3192 Temp index;
3193 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3194 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3195 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3196 if (divisor) {
3197 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3198 if (divisor != 1) {
3199 Temp divided = bld.tmp(v1);
3200 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3201 index = bld.vadd32(bld.def(v1), start_instance, divided);
3202 } else {
3203 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3204 }
3205 } else {
3206 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3207 }
3208 } else {
3209 index = bld.vadd32(bld.def(v1),
3210 get_arg(ctx, ctx->args->ac.base_vertex),
3211 get_arg(ctx, ctx->args->ac.vertex_id));
3212 }
3213
3214 Temp channels[num_channels];
3215 unsigned channel_start = 0;
3216 bool direct_fetch = false;
3217
3218 /* skip unused channels at the start */
3219 if (vtx_info->chan_byte_size && !post_shuffle) {
3220 channel_start = ffs(mask) - 1;
3221 for (unsigned i = 0; i < channel_start; i++)
3222 channels[i] = Temp(0, s1);
3223 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
3224 num_channels = 3 - (ffs(mask) - 1);
3225 }
3226
3227 /* load channels */
3228 while (channel_start < num_channels) {
3229 unsigned fetch_size = num_channels - channel_start;
3230 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
3231
3232 /* use MUBUF when possible to avoid possible alignment issues */
3233 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
3234 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
3235 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
3236 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
3237 vtx_info->chan_byte_size == 4;
3238 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
3239 if (!use_mubuf)
3240 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
3241
3242 Temp fetch_index = index;
3243 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
3244 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
3245 fetch_offset = fetch_offset % attrib_stride;
3246 }
3247
3248 Operand soffset(0u);
3249 if (fetch_offset >= 4096) {
3250 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
3251 fetch_offset %= 4096;
3252 }
3253
3254 aco_opcode opcode;
3255 switch (fetch_size) {
3256 case 1:
3257 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
3258 break;
3259 case 2:
3260 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
3261 break;
3262 case 3:
3263 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
3264 break;
3265 case 4:
3266 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
3267 break;
3268 default:
3269 unreachable("Unimplemented load_input vector size");
3270 }
3271
3272 Temp fetch_dst;
3273 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
3274 (alpha_adjust == RADV_ALPHA_ADJUST_NONE || num_channels <= 3)) {
3275 direct_fetch = true;
3276 fetch_dst = dst;
3277 } else {
3278 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
3279 }
3280
3281 if (use_mubuf) {
3282 Instruction *mubuf = bld.mubuf(opcode,
3283 Definition(fetch_dst), fetch_index, list, soffset,
3284 fetch_offset, false, true).instr;
3285 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
3286 } else {
3287 Instruction *mtbuf = bld.mtbuf(opcode,
3288 Definition(fetch_dst), fetch_index, list, soffset,
3289 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
3290 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
3291 }
3292
3293 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
3294
3295 if (fetch_size == 1) {
3296 channels[channel_start] = fetch_dst;
3297 } else {
3298 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
3299 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
3300 }
3301
3302 channel_start += fetch_size;
3303 }
3304
3305 if (!direct_fetch) {
3306 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3307 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3308
3309 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3310 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3311 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3312
3313 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3314 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3315 unsigned num_temp = 0;
3316 for (unsigned i = 0; i < dst.size(); i++) {
3317 unsigned idx = i + component;
3318 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
3319 Temp channel = channels[swizzle[idx]];
3320 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
3321 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
3322 vec->operands[i] = Operand(channel);
3323
3324 num_temp++;
3325 elems[i] = channel;
3326 } else if (is_float && idx == 3) {
3327 vec->operands[i] = Operand(0x3f800000u);
3328 } else if (!is_float && idx == 3) {
3329 vec->operands[i] = Operand(1u);
3330 } else {
3331 vec->operands[i] = Operand(0u);
3332 }
3333 }
3334 vec->definitions[0] = Definition(dst);
3335 ctx->block->instructions.emplace_back(std::move(vec));
3336 emit_split_vector(ctx, dst, dst.size());
3337
3338 if (num_temp == dst.size())
3339 ctx->allocated_vec.emplace(dst.id(), elems);
3340 }
3341 } else if (ctx->stage == fragment_fs) {
3342 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3343 if (off_instr->type != nir_instr_type_load_const ||
3344 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3345 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3346 nir_print_instr(off_instr, stderr);
3347 fprintf(stderr, "\n");
3348 }
3349
3350 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3351 nir_const_value* offset = nir_src_as_const_value(instr->src[0]);
3352 if (offset) {
3353 assert(offset->u32 == 0);
3354 } else {
3355 /* the lower 15bit of the prim_mask contain the offset into LDS
3356 * while the upper bits contain the number of prims */
3357 Temp offset_src = get_ssa_temp(ctx, instr->src[0].ssa);
3358 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3359 Builder bld(ctx->program, ctx->block);
3360 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3361 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3362 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3363 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3364 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3365 }
3366
3367 unsigned idx = nir_intrinsic_base(instr);
3368 unsigned component = nir_intrinsic_component(instr);
3369
3370 if (dst.size() == 1) {
3371 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(2u), bld.m0(prim_mask), idx, component);
3372 } else {
3373 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3374 for (unsigned i = 0; i < dst.size(); i++)
3375 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(2u), bld.m0(prim_mask), idx, component + i);
3376 vec->definitions[0] = Definition(dst);
3377 bld.insert(std::move(vec));
3378 }
3379
3380 } else {
3381 unreachable("Shader stage not implemented");
3382 }
3383 }
3384
3385 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3386 {
3387 assert(ctx->stage == vertex_geometry_gs || ctx->stage == geometry_gs);
3388 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3389
3390 Builder bld(ctx->program, ctx->block);
3391 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3392
3393 Temp offset = Temp();
3394 if (instr->src[0].ssa->parent_instr->type != nir_instr_type_load_const) {
3395 /* better code could be created, but this case probably doesn't happen
3396 * much in practice */
3397 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
3398 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
3399 Temp elem;
3400 if (ctx->stage == vertex_geometry_gs) {
3401 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
3402 if (i % 2u)
3403 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
3404 } else {
3405 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
3406 }
3407 if (offset.id()) {
3408 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(s2)),
3409 Operand(i), indirect_vertex);
3410 offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), offset, elem, cond);
3411 } else {
3412 offset = elem;
3413 }
3414 }
3415 if (ctx->stage == vertex_geometry_gs)
3416 offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), offset);
3417 } else {
3418 unsigned vertex = nir_src_as_uint(instr->src[0]);
3419 if (ctx->stage == vertex_geometry_gs)
3420 offset = bld.vop3(
3421 aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
3422 Operand((vertex % 2u) * 16u), Operand(16u));
3423 else
3424 offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
3425 }
3426
3427 unsigned const_offset = nir_intrinsic_base(instr);
3428 const_offset += nir_intrinsic_component(instr);
3429
3430 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3431 if (off_instr->type != nir_instr_type_load_const) {
3432 Temp indirect_offset = get_ssa_temp(ctx, instr->src[1].ssa);
3433 offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u),
3434 bld.vadd32(bld.def(v1), indirect_offset, offset));
3435 } else {
3436 const_offset += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
3437 }
3438 const_offset *= 4u;
3439
3440 offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), offset);
3441
3442 unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
3443
3444 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3445 if (ctx->stage == geometry_gs) {
3446 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
3447
3448 const_offset *= ctx->program->wave_size;
3449
3450 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3451 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3452 aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1)};
3453 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++) {
3454 Temp subelems[2];
3455 for (unsigned j = 0; j < elem_size_bytes / 4; j++) {
3456 Operand soffset(0u);
3457 if (const_offset >= 4096u)
3458 soffset = bld.copy(bld.def(s1), Operand(const_offset / 4096u * 4096u));
3459
3460 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
3461 mubuf->definitions[0] = bld.def(v1);
3462 subelems[j] = mubuf->definitions[0].getTemp();
3463 mubuf->operands[0] = Operand(offset);
3464 mubuf->operands[1] = Operand(esgs_ring);
3465 mubuf->operands[2] = Operand(soffset);
3466 mubuf->offen = true;
3467 mubuf->offset = const_offset % 4096u;
3468 mubuf->glc = true;
3469 mubuf->dlc = ctx->options->chip_class >= GFX10;
3470 mubuf->barrier = barrier_none;
3471 mubuf->can_reorder = true;
3472 bld.insert(std::move(mubuf));
3473
3474 const_offset += ctx->program->wave_size * 4u;
3475 }
3476
3477 if (elem_size_bytes == 4)
3478 elems[i] = subelems[0];
3479 else
3480 elems[i] = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), subelems[0], subelems[1]);
3481 vec->operands[i] = Operand(elems[i]);
3482 }
3483 vec->definitions[0] = Definition(dst);
3484 ctx->block->instructions.emplace_back(std::move(vec));
3485 ctx->allocated_vec.emplace(dst.id(), elems);
3486 } else {
3487 unsigned align = 16; /* alignment of indirect offset */
3488 align = std::min(align, 1u << (ffs(itemsize) - 1));
3489 if (const_offset)
3490 align = std::min(align, 1u << (ffs(const_offset) - 1));
3491
3492 load_lds(ctx, elem_size_bytes, dst, offset, const_offset, align);
3493 }
3494 }
3495
3496 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
3497 {
3498 if (ctx->program->info->need_indirect_descriptor_sets) {
3499 Builder bld(ctx->program, ctx->block);
3500 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
3501 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
3502 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
3503 }
3504
3505 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
3506 }
3507
3508
3509 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
3510 {
3511 Builder bld(ctx->program, ctx->block);
3512 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
3513 if (!ctx->divergent_vals[instr->dest.ssa.index])
3514 index = bld.as_uniform(index);
3515 unsigned desc_set = nir_intrinsic_desc_set(instr);
3516 unsigned binding = nir_intrinsic_binding(instr);
3517
3518 Temp desc_ptr;
3519 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
3520 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
3521 unsigned offset = layout->binding[binding].offset;
3522 unsigned stride;
3523 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
3524 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
3525 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
3526 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
3527 offset = pipeline_layout->push_constant_size + 16 * idx;
3528 stride = 16;
3529 } else {
3530 desc_ptr = load_desc_ptr(ctx, desc_set);
3531 stride = layout->binding[binding].size;
3532 }
3533
3534 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
3535 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
3536 if (stride != 1) {
3537 if (nir_const_index) {
3538 const_index = const_index * stride;
3539 } else if (index.type() == RegType::vgpr) {
3540 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
3541 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
3542 } else {
3543 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
3544 }
3545 }
3546 if (offset) {
3547 if (nir_const_index) {
3548 const_index = const_index + offset;
3549 } else if (index.type() == RegType::vgpr) {
3550 index = bld.vadd32(bld.def(v1), Operand(offset), index);
3551 } else {
3552 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
3553 }
3554 }
3555
3556 if (nir_const_index && const_index == 0) {
3557 index = desc_ptr;
3558 } else if (index.type() == RegType::vgpr) {
3559 index = bld.vadd32(bld.def(v1),
3560 nir_const_index ? Operand(const_index) : Operand(index),
3561 Operand(desc_ptr));
3562 } else {
3563 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3564 nir_const_index ? Operand(const_index) : Operand(index),
3565 Operand(desc_ptr));
3566 }
3567
3568 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
3569 }
3570
3571 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
3572 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
3573 {
3574 Builder bld(ctx->program, ctx->block);
3575
3576 unsigned num_bytes = dst.size() * 4;
3577 bool dlc = glc && ctx->options->chip_class >= GFX10;
3578
3579 aco_opcode op;
3580 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
3581 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3582 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3583 unsigned const_offset = 0;
3584
3585 Temp lower = Temp();
3586 if (num_bytes > 16) {
3587 assert(num_components == 3 || num_components == 4);
3588 op = aco_opcode::buffer_load_dwordx4;
3589 lower = bld.tmp(v4);
3590 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3591 mubuf->definitions[0] = Definition(lower);
3592 mubuf->operands[0] = vaddr;
3593 mubuf->operands[1] = Operand(rsrc);
3594 mubuf->operands[2] = soffset;
3595 mubuf->offen = (offset.type() == RegType::vgpr);
3596 mubuf->glc = glc;
3597 mubuf->dlc = dlc;
3598 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3599 mubuf->can_reorder = readonly;
3600 bld.insert(std::move(mubuf));
3601 emit_split_vector(ctx, lower, 2);
3602 num_bytes -= 16;
3603 const_offset = 16;
3604 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
3605 /* GFX6 doesn't support loading vec3, expand to vec4. */
3606 num_bytes = 16;
3607 }
3608
3609 switch (num_bytes) {
3610 case 4:
3611 op = aco_opcode::buffer_load_dword;
3612 break;
3613 case 8:
3614 op = aco_opcode::buffer_load_dwordx2;
3615 break;
3616 case 12:
3617 assert(ctx->options->chip_class > GFX6);
3618 op = aco_opcode::buffer_load_dwordx3;
3619 break;
3620 case 16:
3621 op = aco_opcode::buffer_load_dwordx4;
3622 break;
3623 default:
3624 unreachable("Load SSBO not implemented for this size.");
3625 }
3626 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3627 mubuf->operands[0] = vaddr;
3628 mubuf->operands[1] = Operand(rsrc);
3629 mubuf->operands[2] = soffset;
3630 mubuf->offen = (offset.type() == RegType::vgpr);
3631 mubuf->glc = glc;
3632 mubuf->dlc = dlc;
3633 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3634 mubuf->can_reorder = readonly;
3635 mubuf->offset = const_offset;
3636 aco_ptr<Instruction> instr = std::move(mubuf);
3637
3638 if (dst.size() > 4) {
3639 assert(lower != Temp());
3640 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
3641 instr->definitions[0] = Definition(upper);
3642 bld.insert(std::move(instr));
3643 if (dst.size() == 8)
3644 emit_split_vector(ctx, upper, 2);
3645 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
3646 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
3647 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
3648 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
3649 if (dst.size() == 8)
3650 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
3651 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
3652 Temp vec = bld.tmp(v4);
3653 instr->definitions[0] = Definition(vec);
3654 bld.insert(std::move(instr));
3655 emit_split_vector(ctx, vec, 4);
3656
3657 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
3658 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
3659 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
3660 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
3661 }
3662
3663 if (dst.type() == RegType::sgpr) {
3664 Temp vec = bld.tmp(RegType::vgpr, dst.size());
3665 instr->definitions[0] = Definition(vec);
3666 bld.insert(std::move(instr));
3667 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
3668 } else {
3669 instr->definitions[0] = Definition(dst);
3670 bld.insert(std::move(instr));
3671 emit_split_vector(ctx, dst, num_components);
3672 }
3673 } else {
3674 switch (num_bytes) {
3675 case 4:
3676 op = aco_opcode::s_buffer_load_dword;
3677 break;
3678 case 8:
3679 op = aco_opcode::s_buffer_load_dwordx2;
3680 break;
3681 case 12:
3682 case 16:
3683 op = aco_opcode::s_buffer_load_dwordx4;
3684 break;
3685 case 24:
3686 case 32:
3687 op = aco_opcode::s_buffer_load_dwordx8;
3688 break;
3689 default:
3690 unreachable("Load SSBO not implemented for this size.");
3691 }
3692 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3693 load->operands[0] = Operand(rsrc);
3694 load->operands[1] = Operand(bld.as_uniform(offset));
3695 assert(load->operands[1].getTemp().type() == RegType::sgpr);
3696 load->definitions[0] = Definition(dst);
3697 load->glc = glc;
3698 load->dlc = dlc;
3699 load->barrier = readonly ? barrier_none : barrier_buffer;
3700 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
3701 assert(ctx->options->chip_class >= GFX8 || !glc);
3702
3703 /* trim vector */
3704 if (dst.size() == 3) {
3705 Temp vec = bld.tmp(s4);
3706 load->definitions[0] = Definition(vec);
3707 bld.insert(std::move(load));
3708 emit_split_vector(ctx, vec, 4);
3709
3710 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3711 emit_extract_vector(ctx, vec, 0, s1),
3712 emit_extract_vector(ctx, vec, 1, s1),
3713 emit_extract_vector(ctx, vec, 2, s1));
3714 } else if (dst.size() == 6) {
3715 Temp vec = bld.tmp(s8);
3716 load->definitions[0] = Definition(vec);
3717 bld.insert(std::move(load));
3718 emit_split_vector(ctx, vec, 4);
3719
3720 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3721 emit_extract_vector(ctx, vec, 0, s2),
3722 emit_extract_vector(ctx, vec, 1, s2),
3723 emit_extract_vector(ctx, vec, 2, s2));
3724 } else {
3725 bld.insert(std::move(load));
3726 }
3727 emit_split_vector(ctx, dst, num_components);
3728 }
3729 }
3730
3731 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
3732 {
3733 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3734 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
3735
3736 Builder bld(ctx->program, ctx->block);
3737
3738 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3739 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
3740 unsigned binding = nir_intrinsic_binding(idx_instr);
3741 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
3742
3743 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
3744 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3745 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3746 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3747 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3748 if (ctx->options->chip_class >= GFX10) {
3749 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3750 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3751 S_008F0C_RESOURCE_LEVEL(1);
3752 } else {
3753 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3754 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3755 }
3756 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
3757 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
3758 Operand(0xFFFFFFFFu),
3759 Operand(desc_type));
3760 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3761 rsrc, upper_dwords);
3762 } else {
3763 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
3764 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
3765 }
3766
3767 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
3768 }
3769
3770 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3771 {
3772 Builder bld(ctx->program, ctx->block);
3773 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3774
3775 unsigned offset = nir_intrinsic_base(instr);
3776 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
3777 if (index_cv && instr->dest.ssa.bit_size == 32) {
3778
3779 unsigned count = instr->dest.ssa.num_components;
3780 unsigned start = (offset + index_cv->u32) / 4u;
3781 start -= ctx->args->ac.base_inline_push_consts;
3782 if (start + count <= ctx->args->ac.num_inline_push_consts) {
3783 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3784 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
3785 for (unsigned i = 0; i < count; ++i) {
3786 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
3787 vec->operands[i] = Operand{elems[i]};
3788 }
3789 vec->definitions[0] = Definition(dst);
3790 ctx->block->instructions.emplace_back(std::move(vec));
3791 ctx->allocated_vec.emplace(dst.id(), elems);
3792 return;
3793 }
3794 }
3795
3796 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
3797 if (offset != 0) // TODO check if index != 0 as well
3798 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
3799 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
3800 Temp vec = dst;
3801 bool trim = false;
3802 aco_opcode op;
3803
3804 switch (dst.size()) {
3805 case 1:
3806 op = aco_opcode::s_load_dword;
3807 break;
3808 case 2:
3809 op = aco_opcode::s_load_dwordx2;
3810 break;
3811 case 3:
3812 vec = bld.tmp(s4);
3813 trim = true;
3814 case 4:
3815 op = aco_opcode::s_load_dwordx4;
3816 break;
3817 case 6:
3818 vec = bld.tmp(s8);
3819 trim = true;
3820 case 8:
3821 op = aco_opcode::s_load_dwordx8;
3822 break;
3823 default:
3824 unreachable("unimplemented or forbidden load_push_constant.");
3825 }
3826
3827 bld.smem(op, Definition(vec), ptr, index);
3828
3829 if (trim) {
3830 emit_split_vector(ctx, vec, 4);
3831 RegClass rc = dst.size() == 3 ? s1 : s2;
3832 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3833 emit_extract_vector(ctx, vec, 0, rc),
3834 emit_extract_vector(ctx, vec, 1, rc),
3835 emit_extract_vector(ctx, vec, 2, rc));
3836
3837 }
3838 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
3839 }
3840
3841 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3842 {
3843 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3844
3845 Builder bld(ctx->program, ctx->block);
3846
3847 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3848 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3849 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3850 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3851 if (ctx->options->chip_class >= GFX10) {
3852 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3853 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3854 S_008F0C_RESOURCE_LEVEL(1);
3855 } else {
3856 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3857 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3858 }
3859
3860 unsigned base = nir_intrinsic_base(instr);
3861 unsigned range = nir_intrinsic_range(instr);
3862
3863 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
3864 if (base && offset.type() == RegType::sgpr)
3865 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
3866 else if (base && offset.type() == RegType::vgpr)
3867 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
3868
3869 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3870 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
3871 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
3872 Operand(desc_type));
3873
3874 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
3875 }
3876
3877 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
3878 {
3879 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3880 ctx->cf_info.exec_potentially_empty = true;
3881
3882 ctx->program->needs_exact = true;
3883
3884 // TODO: optimize uniform conditions
3885 Builder bld(ctx->program, ctx->block);
3886 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3887 assert(src.regClass() == bld.lm);
3888 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
3889 bld.pseudo(aco_opcode::p_discard_if, src);
3890 ctx->block->kind |= block_kind_uses_discard_if;
3891 return;
3892 }
3893
3894 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
3895 {
3896 Builder bld(ctx->program, ctx->block);
3897
3898 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3899 ctx->cf_info.exec_potentially_empty = true;
3900
3901 bool divergent = ctx->cf_info.parent_if.is_divergent ||
3902 ctx->cf_info.parent_loop.has_divergent_continue;
3903
3904 if (ctx->block->loop_nest_depth &&
3905 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
3906 /* we handle discards the same way as jump instructions */
3907 append_logical_end(ctx->block);
3908
3909 /* in loops, discard behaves like break */
3910 Block *linear_target = ctx->cf_info.parent_loop.exit;
3911 ctx->block->kind |= block_kind_discard;
3912
3913 if (!divergent) {
3914 /* uniform discard - loop ends here */
3915 assert(nir_instr_is_last(&instr->instr));
3916 ctx->block->kind |= block_kind_uniform;
3917 ctx->cf_info.has_branch = true;
3918 bld.branch(aco_opcode::p_branch);
3919 add_linear_edge(ctx->block->index, linear_target);
3920 return;
3921 }
3922
3923 /* we add a break right behind the discard() instructions */
3924 ctx->block->kind |= block_kind_break;
3925 unsigned idx = ctx->block->index;
3926
3927 /* remove critical edges from linear CFG */
3928 bld.branch(aco_opcode::p_branch);
3929 Block* break_block = ctx->program->create_and_insert_block();
3930 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3931 break_block->kind |= block_kind_uniform;
3932 add_linear_edge(idx, break_block);
3933 add_linear_edge(break_block->index, linear_target);
3934 bld.reset(break_block);
3935 bld.branch(aco_opcode::p_branch);
3936
3937 Block* continue_block = ctx->program->create_and_insert_block();
3938 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3939 add_linear_edge(idx, continue_block);
3940 append_logical_start(continue_block);
3941 ctx->block = continue_block;
3942
3943 return;
3944 }
3945
3946 /* it can currently happen that NIR doesn't remove the unreachable code */
3947 if (!nir_instr_is_last(&instr->instr)) {
3948 ctx->program->needs_exact = true;
3949 /* save exec somewhere temporarily so that it doesn't get
3950 * overwritten before the discard from outer exec masks */
3951 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
3952 bld.pseudo(aco_opcode::p_discard_if, cond);
3953 ctx->block->kind |= block_kind_uses_discard_if;
3954 return;
3955 }
3956
3957 /* This condition is incorrect for uniformly branched discards in a loop
3958 * predicated by a divergent condition, but the above code catches that case
3959 * and the discard would end up turning into a discard_if.
3960 * For example:
3961 * if (divergent) {
3962 * while (...) {
3963 * if (uniform) {
3964 * discard;
3965 * }
3966 * }
3967 * }
3968 */
3969 if (!ctx->cf_info.parent_if.is_divergent) {
3970 /* program just ends here */
3971 ctx->block->kind |= block_kind_uniform;
3972 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
3973 0 /* enabled mask */, 9 /* dest */,
3974 false /* compressed */, true/* done */, true /* valid mask */);
3975 bld.sopp(aco_opcode::s_endpgm);
3976 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
3977 } else {
3978 ctx->block->kind |= block_kind_discard;
3979 /* branch and linear edge is added by visit_if() */
3980 }
3981 }
3982
3983 enum aco_descriptor_type {
3984 ACO_DESC_IMAGE,
3985 ACO_DESC_FMASK,
3986 ACO_DESC_SAMPLER,
3987 ACO_DESC_BUFFER,
3988 ACO_DESC_PLANE_0,
3989 ACO_DESC_PLANE_1,
3990 ACO_DESC_PLANE_2,
3991 };
3992
3993 static bool
3994 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
3995 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
3996 return false;
3997 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
3998 return dim == ac_image_cube ||
3999 dim == ac_image_1darray ||
4000 dim == ac_image_2darray ||
4001 dim == ac_image_2darraymsaa;
4002 }
4003
4004 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
4005 enum aco_descriptor_type desc_type,
4006 const nir_tex_instr *tex_instr, bool image, bool write)
4007 {
4008 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
4009 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
4010 if (it != ctx->tex_desc.end())
4011 return it->second;
4012 */
4013 Temp index = Temp();
4014 bool index_set = false;
4015 unsigned constant_index = 0;
4016 unsigned descriptor_set;
4017 unsigned base_index;
4018 Builder bld(ctx->program, ctx->block);
4019
4020 if (!deref_instr) {
4021 assert(tex_instr && !image);
4022 descriptor_set = 0;
4023 base_index = tex_instr->sampler_index;
4024 } else {
4025 while(deref_instr->deref_type != nir_deref_type_var) {
4026 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
4027 if (!array_size)
4028 array_size = 1;
4029
4030 assert(deref_instr->deref_type == nir_deref_type_array);
4031 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
4032 if (const_value) {
4033 constant_index += array_size * const_value->u32;
4034 } else {
4035 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
4036 if (indirect.type() == RegType::vgpr)
4037 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
4038
4039 if (array_size != 1)
4040 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
4041
4042 if (!index_set) {
4043 index = indirect;
4044 index_set = true;
4045 } else {
4046 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
4047 }
4048 }
4049
4050 deref_instr = nir_src_as_deref(deref_instr->parent);
4051 }
4052 descriptor_set = deref_instr->var->data.descriptor_set;
4053 base_index = deref_instr->var->data.binding;
4054 }
4055
4056 Temp list = load_desc_ptr(ctx, descriptor_set);
4057 list = convert_pointer_to_64_bit(ctx, list);
4058
4059 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
4060 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
4061 unsigned offset = binding->offset;
4062 unsigned stride = binding->size;
4063 aco_opcode opcode;
4064 RegClass type;
4065
4066 assert(base_index < layout->binding_count);
4067
4068 switch (desc_type) {
4069 case ACO_DESC_IMAGE:
4070 type = s8;
4071 opcode = aco_opcode::s_load_dwordx8;
4072 break;
4073 case ACO_DESC_FMASK:
4074 type = s8;
4075 opcode = aco_opcode::s_load_dwordx8;
4076 offset += 32;
4077 break;
4078 case ACO_DESC_SAMPLER:
4079 type = s4;
4080 opcode = aco_opcode::s_load_dwordx4;
4081 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4082 offset += radv_combined_image_descriptor_sampler_offset(binding);
4083 break;
4084 case ACO_DESC_BUFFER:
4085 type = s4;
4086 opcode = aco_opcode::s_load_dwordx4;
4087 break;
4088 case ACO_DESC_PLANE_0:
4089 case ACO_DESC_PLANE_1:
4090 type = s8;
4091 opcode = aco_opcode::s_load_dwordx8;
4092 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
4093 break;
4094 case ACO_DESC_PLANE_2:
4095 type = s4;
4096 opcode = aco_opcode::s_load_dwordx4;
4097 offset += 64;
4098 break;
4099 default:
4100 unreachable("invalid desc_type\n");
4101 }
4102
4103 offset += constant_index * stride;
4104
4105 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
4106 (!index_set || binding->immutable_samplers_equal)) {
4107 if (binding->immutable_samplers_equal)
4108 constant_index = 0;
4109
4110 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4111 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4112 Operand(samplers[constant_index * 4 + 0]),
4113 Operand(samplers[constant_index * 4 + 1]),
4114 Operand(samplers[constant_index * 4 + 2]),
4115 Operand(samplers[constant_index * 4 + 3]));
4116 }
4117
4118 Operand off;
4119 if (!index_set) {
4120 off = bld.copy(bld.def(s1), Operand(offset));
4121 } else {
4122 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
4123 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
4124 }
4125
4126 Temp res = bld.smem(opcode, bld.def(type), list, off);
4127
4128 if (desc_type == ACO_DESC_PLANE_2) {
4129 Temp components[8];
4130 for (unsigned i = 0; i < 8; i++)
4131 components[i] = bld.tmp(s1);
4132 bld.pseudo(aco_opcode::p_split_vector,
4133 Definition(components[0]),
4134 Definition(components[1]),
4135 Definition(components[2]),
4136 Definition(components[3]),
4137 res);
4138
4139 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
4140 bld.pseudo(aco_opcode::p_split_vector,
4141 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
4142 Definition(components[4]),
4143 Definition(components[5]),
4144 Definition(components[6]),
4145 Definition(components[7]),
4146 desc2);
4147
4148 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
4149 components[0], components[1], components[2], components[3],
4150 components[4], components[5], components[6], components[7]);
4151 }
4152
4153 return res;
4154 }
4155
4156 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
4157 {
4158 switch (dim) {
4159 case GLSL_SAMPLER_DIM_BUF:
4160 return 1;
4161 case GLSL_SAMPLER_DIM_1D:
4162 return array ? 2 : 1;
4163 case GLSL_SAMPLER_DIM_2D:
4164 return array ? 3 : 2;
4165 case GLSL_SAMPLER_DIM_MS:
4166 return array ? 4 : 3;
4167 case GLSL_SAMPLER_DIM_3D:
4168 case GLSL_SAMPLER_DIM_CUBE:
4169 return 3;
4170 case GLSL_SAMPLER_DIM_RECT:
4171 case GLSL_SAMPLER_DIM_SUBPASS:
4172 return 2;
4173 case GLSL_SAMPLER_DIM_SUBPASS_MS:
4174 return 3;
4175 default:
4176 break;
4177 }
4178 return 0;
4179 }
4180
4181
4182 /* Adjust the sample index according to FMASK.
4183 *
4184 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4185 * which is the identity mapping. Each nibble says which physical sample
4186 * should be fetched to get that sample.
4187 *
4188 * For example, 0x11111100 means there are only 2 samples stored and
4189 * the second sample covers 3/4 of the pixel. When reading samples 0
4190 * and 1, return physical sample 0 (determined by the first two 0s
4191 * in FMASK), otherwise return physical sample 1.
4192 *
4193 * The sample index should be adjusted as follows:
4194 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4195 */
4196 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, Temp coords, Operand sample_index, Temp fmask_desc_ptr)
4197 {
4198 Builder bld(ctx->program, ctx->block);
4199 Temp fmask = bld.tmp(v1);
4200 unsigned dim = ctx->options->chip_class >= GFX10
4201 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
4202 : 0;
4203
4204 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 2, 1)};
4205 load->operands[0] = Operand(coords);
4206 load->operands[1] = Operand(fmask_desc_ptr);
4207 load->definitions[0] = Definition(fmask);
4208 load->glc = false;
4209 load->dlc = false;
4210 load->dmask = 0x1;
4211 load->unrm = true;
4212 load->da = da;
4213 load->dim = dim;
4214 load->can_reorder = true; /* fmask images shouldn't be modified */
4215 ctx->block->instructions.emplace_back(std::move(load));
4216
4217 Operand sample_index4;
4218 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4219 sample_index4 = Operand(sample_index.constantValue() << 2);
4220 } else if (sample_index.regClass() == s1) {
4221 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4222 } else {
4223 assert(sample_index.regClass() == v1);
4224 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4225 }
4226
4227 Temp final_sample;
4228 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4229 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4230 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4231 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4232 else
4233 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4234
4235 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4236 * resource descriptor is 0 (invalid),
4237 */
4238 Temp compare = bld.tmp(bld.lm);
4239 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4240 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4241
4242 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4243
4244 /* Replace the MSAA sample index. */
4245 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4246 }
4247
4248 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4249 {
4250
4251 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4252 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4253 bool is_array = glsl_sampler_type_is_array(type);
4254 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4255 assert(!add_frag_pos && "Input attachments should be lowered.");
4256 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4257 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4258 int count = image_type_to_components_count(dim, is_array);
4259 std::vector<Operand> coords(count);
4260
4261 if (is_ms) {
4262 Operand sample_index;
4263 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4264 if (sample_cv)
4265 sample_index = Operand(sample_cv->u32);
4266 else
4267 sample_index = Operand(emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[2].ssa), 0, v1));
4268
4269 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4270 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, is_array ? 3 : 2, 1)};
4271 for (unsigned i = 0; i < vec->operands.size(); i++)
4272 vec->operands[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
4273 Temp fmask_load_address = {ctx->program->allocateId(), is_array ? v3 : v2};
4274 vec->definitions[0] = Definition(fmask_load_address);
4275 ctx->block->instructions.emplace_back(std::move(vec));
4276
4277 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4278 sample_index = Operand(adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr));
4279 }
4280 count--;
4281 coords[count] = sample_index;
4282 }
4283
4284 if (count == 1 && !gfx9_1d)
4285 return emit_extract_vector(ctx, src0, 0, v1);
4286
4287 if (gfx9_1d) {
4288 coords[0] = Operand(emit_extract_vector(ctx, src0, 0, v1));
4289 coords.resize(coords.size() + 1);
4290 coords[1] = Operand((uint32_t) 0);
4291 if (is_array)
4292 coords[2] = Operand(emit_extract_vector(ctx, src0, 1, v1));
4293 } else {
4294 for (int i = 0; i < count; i++)
4295 coords[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
4296 }
4297
4298 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4299 instr->intrinsic == nir_intrinsic_image_deref_store) {
4300 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4301 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4302
4303 if (!level_zero)
4304 coords.emplace_back(Operand(get_ssa_temp(ctx, instr->src[lod_index].ssa)));
4305 }
4306
4307 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4308 for (unsigned i = 0; i < coords.size(); i++)
4309 vec->operands[i] = coords[i];
4310 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4311 vec->definitions[0] = Definition(res);
4312 ctx->block->instructions.emplace_back(std::move(vec));
4313 return res;
4314 }
4315
4316
4317 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4318 {
4319 Builder bld(ctx->program, ctx->block);
4320 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4321 const struct glsl_type *type = glsl_without_array(var->type);
4322 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4323 bool is_array = glsl_sampler_type_is_array(type);
4324 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4325
4326 if (dim == GLSL_SAMPLER_DIM_BUF) {
4327 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4328 unsigned num_channels = util_last_bit(mask);
4329 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4330 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4331
4332 aco_opcode opcode;
4333 switch (num_channels) {
4334 case 1:
4335 opcode = aco_opcode::buffer_load_format_x;
4336 break;
4337 case 2:
4338 opcode = aco_opcode::buffer_load_format_xy;
4339 break;
4340 case 3:
4341 opcode = aco_opcode::buffer_load_format_xyz;
4342 break;
4343 case 4:
4344 opcode = aco_opcode::buffer_load_format_xyzw;
4345 break;
4346 default:
4347 unreachable(">4 channel buffer image load");
4348 }
4349 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4350 load->operands[0] = Operand(vindex);
4351 load->operands[1] = Operand(rsrc);
4352 load->operands[2] = Operand((uint32_t) 0);
4353 Temp tmp;
4354 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4355 tmp = dst;
4356 else
4357 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4358 load->definitions[0] = Definition(tmp);
4359 load->idxen = true;
4360 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4361 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4362 load->barrier = barrier_image;
4363 ctx->block->instructions.emplace_back(std::move(load));
4364
4365 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4366 return;
4367 }
4368
4369 Temp coords = get_image_coords(ctx, instr, type);
4370 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4371
4372 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4373 unsigned num_components = util_bitcount(dmask);
4374 Temp tmp;
4375 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4376 tmp = dst;
4377 else
4378 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4379
4380 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4381 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4382
4383 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 2, 1)};
4384 load->operands[0] = Operand(coords);
4385 load->operands[1] = Operand(resource);
4386 load->definitions[0] = Definition(tmp);
4387 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4388 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4389 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4390 load->dmask = dmask;
4391 load->unrm = true;
4392 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4393 load->barrier = barrier_image;
4394 ctx->block->instructions.emplace_back(std::move(load));
4395
4396 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4397 return;
4398 }
4399
4400 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4401 {
4402 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4403 const struct glsl_type *type = glsl_without_array(var->type);
4404 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4405 bool is_array = glsl_sampler_type_is_array(type);
4406 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4407
4408 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4409
4410 if (dim == GLSL_SAMPLER_DIM_BUF) {
4411 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4412 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4413 aco_opcode opcode;
4414 switch (data.size()) {
4415 case 1:
4416 opcode = aco_opcode::buffer_store_format_x;
4417 break;
4418 case 2:
4419 opcode = aco_opcode::buffer_store_format_xy;
4420 break;
4421 case 3:
4422 opcode = aco_opcode::buffer_store_format_xyz;
4423 break;
4424 case 4:
4425 opcode = aco_opcode::buffer_store_format_xyzw;
4426 break;
4427 default:
4428 unreachable(">4 channel buffer image store");
4429 }
4430 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4431 store->operands[0] = Operand(vindex);
4432 store->operands[1] = Operand(rsrc);
4433 store->operands[2] = Operand((uint32_t) 0);
4434 store->operands[3] = Operand(data);
4435 store->idxen = true;
4436 store->glc = glc;
4437 store->dlc = false;
4438 store->disable_wqm = true;
4439 store->barrier = barrier_image;
4440 ctx->program->needs_exact = true;
4441 ctx->block->instructions.emplace_back(std::move(store));
4442 return;
4443 }
4444
4445 assert(data.type() == RegType::vgpr);
4446 Temp coords = get_image_coords(ctx, instr, type);
4447 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4448
4449 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
4450 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
4451
4452 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 4, 0)};
4453 store->operands[0] = Operand(coords);
4454 store->operands[1] = Operand(resource);
4455 store->operands[2] = Operand(s4);
4456 store->operands[3] = Operand(data);
4457 store->glc = glc;
4458 store->dlc = false;
4459 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4460 store->dmask = (1 << data.size()) - 1;
4461 store->unrm = true;
4462 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4463 store->disable_wqm = true;
4464 store->barrier = barrier_image;
4465 ctx->program->needs_exact = true;
4466 ctx->block->instructions.emplace_back(std::move(store));
4467 return;
4468 }
4469
4470 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4471 {
4472 /* return the previous value if dest is ever used */
4473 bool return_previous = false;
4474 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4475 return_previous = true;
4476 break;
4477 }
4478 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4479 return_previous = true;
4480 break;
4481 }
4482
4483 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4484 const struct glsl_type *type = glsl_without_array(var->type);
4485 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4486 bool is_array = glsl_sampler_type_is_array(type);
4487 Builder bld(ctx->program, ctx->block);
4488
4489 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4490 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
4491
4492 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
4493 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
4494
4495 aco_opcode buf_op, image_op;
4496 switch (instr->intrinsic) {
4497 case nir_intrinsic_image_deref_atomic_add:
4498 buf_op = aco_opcode::buffer_atomic_add;
4499 image_op = aco_opcode::image_atomic_add;
4500 break;
4501 case nir_intrinsic_image_deref_atomic_umin:
4502 buf_op = aco_opcode::buffer_atomic_umin;
4503 image_op = aco_opcode::image_atomic_umin;
4504 break;
4505 case nir_intrinsic_image_deref_atomic_imin:
4506 buf_op = aco_opcode::buffer_atomic_smin;
4507 image_op = aco_opcode::image_atomic_smin;
4508 break;
4509 case nir_intrinsic_image_deref_atomic_umax:
4510 buf_op = aco_opcode::buffer_atomic_umax;
4511 image_op = aco_opcode::image_atomic_umax;
4512 break;
4513 case nir_intrinsic_image_deref_atomic_imax:
4514 buf_op = aco_opcode::buffer_atomic_smax;
4515 image_op = aco_opcode::image_atomic_smax;
4516 break;
4517 case nir_intrinsic_image_deref_atomic_and:
4518 buf_op = aco_opcode::buffer_atomic_and;
4519 image_op = aco_opcode::image_atomic_and;
4520 break;
4521 case nir_intrinsic_image_deref_atomic_or:
4522 buf_op = aco_opcode::buffer_atomic_or;
4523 image_op = aco_opcode::image_atomic_or;
4524 break;
4525 case nir_intrinsic_image_deref_atomic_xor:
4526 buf_op = aco_opcode::buffer_atomic_xor;
4527 image_op = aco_opcode::image_atomic_xor;
4528 break;
4529 case nir_intrinsic_image_deref_atomic_exchange:
4530 buf_op = aco_opcode::buffer_atomic_swap;
4531 image_op = aco_opcode::image_atomic_swap;
4532 break;
4533 case nir_intrinsic_image_deref_atomic_comp_swap:
4534 buf_op = aco_opcode::buffer_atomic_cmpswap;
4535 image_op = aco_opcode::image_atomic_cmpswap;
4536 break;
4537 default:
4538 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
4539 }
4540
4541 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4542
4543 if (dim == GLSL_SAMPLER_DIM_BUF) {
4544 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4545 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4546 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
4547 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4548 mubuf->operands[0] = Operand(vindex);
4549 mubuf->operands[1] = Operand(resource);
4550 mubuf->operands[2] = Operand((uint32_t)0);
4551 mubuf->operands[3] = Operand(data);
4552 if (return_previous)
4553 mubuf->definitions[0] = Definition(dst);
4554 mubuf->offset = 0;
4555 mubuf->idxen = true;
4556 mubuf->glc = return_previous;
4557 mubuf->dlc = false; /* Not needed for atomics */
4558 mubuf->disable_wqm = true;
4559 mubuf->barrier = barrier_image;
4560 ctx->program->needs_exact = true;
4561 ctx->block->instructions.emplace_back(std::move(mubuf));
4562 return;
4563 }
4564
4565 Temp coords = get_image_coords(ctx, instr, type);
4566 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4567 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 4, return_previous ? 1 : 0)};
4568 mimg->operands[0] = Operand(coords);
4569 mimg->operands[1] = Operand(resource);
4570 mimg->operands[2] = Operand(s4); /* no sampler */
4571 mimg->operands[3] = Operand(data);
4572 if (return_previous)
4573 mimg->definitions[0] = Definition(dst);
4574 mimg->glc = return_previous;
4575 mimg->dlc = false; /* Not needed for atomics */
4576 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4577 mimg->dmask = (1 << data.size()) - 1;
4578 mimg->unrm = true;
4579 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4580 mimg->disable_wqm = true;
4581 mimg->barrier = barrier_image;
4582 ctx->program->needs_exact = true;
4583 ctx->block->instructions.emplace_back(std::move(mimg));
4584 return;
4585 }
4586
4587 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
4588 {
4589 if (in_elements && ctx->options->chip_class == GFX8) {
4590 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
4591 Builder bld(ctx->program, ctx->block);
4592
4593 Temp size = emit_extract_vector(ctx, desc, 2, s1);
4594
4595 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
4596 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
4597
4598 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
4599 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
4600
4601 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
4602 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
4603
4604 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
4605 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
4606 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
4607 if (dst.type() == RegType::vgpr)
4608 bld.copy(Definition(dst), shr_dst);
4609
4610 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
4611 } else {
4612 emit_extract_vector(ctx, desc, 2, dst);
4613 }
4614 }
4615
4616 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
4617 {
4618 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4619 const struct glsl_type *type = glsl_without_array(var->type);
4620 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4621 bool is_array = glsl_sampler_type_is_array(type);
4622 Builder bld(ctx->program, ctx->block);
4623
4624 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
4625 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
4626 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
4627 }
4628
4629 /* LOD */
4630 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
4631
4632 /* Resource */
4633 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
4634
4635 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4636
4637 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1)};
4638 mimg->operands[0] = Operand(lod);
4639 mimg->operands[1] = Operand(resource);
4640 uint8_t& dmask = mimg->dmask;
4641 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4642 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
4643 mimg->da = glsl_sampler_type_is_array(type);
4644 mimg->can_reorder = true;
4645 Definition& def = mimg->definitions[0];
4646 ctx->block->instructions.emplace_back(std::move(mimg));
4647
4648 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
4649 glsl_sampler_type_is_array(type)) {
4650
4651 assert(instr->dest.ssa.num_components == 3);
4652 Temp tmp = {ctx->program->allocateId(), v3};
4653 def = Definition(tmp);
4654 emit_split_vector(ctx, tmp, 3);
4655
4656 /* divide 3rd value by 6 by multiplying with magic number */
4657 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
4658 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
4659
4660 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4661 emit_extract_vector(ctx, tmp, 0, v1),
4662 emit_extract_vector(ctx, tmp, 1, v1),
4663 by_6);
4664
4665 } else if (ctx->options->chip_class == GFX9 &&
4666 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
4667 glsl_sampler_type_is_array(type)) {
4668 assert(instr->dest.ssa.num_components == 2);
4669 def = Definition(dst);
4670 dmask = 0x5;
4671 } else {
4672 def = Definition(dst);
4673 }
4674
4675 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4676 }
4677
4678 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4679 {
4680 Builder bld(ctx->program, ctx->block);
4681 unsigned num_components = instr->num_components;
4682
4683 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4684 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4685 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4686
4687 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4688 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
4689 }
4690
4691 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4692 {
4693 Builder bld(ctx->program, ctx->block);
4694 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
4695 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4696 unsigned writemask = nir_intrinsic_write_mask(instr);
4697 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
4698
4699 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4700 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4701
4702 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
4703 ctx->options->chip_class >= GFX8;
4704 if (smem)
4705 offset = bld.as_uniform(offset);
4706 bool smem_nonfs = smem && ctx->stage != fragment_fs;
4707
4708 while (writemask) {
4709 int start, count;
4710 u_bit_scan_consecutive_range(&writemask, &start, &count);
4711 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
4712 /* GFX6 doesn't support storing vec3, split it. */
4713 writemask |= 1u << (start + 2);
4714 count = 2;
4715 }
4716 int num_bytes = count * elem_size_bytes;
4717
4718 if (num_bytes > 16) {
4719 assert(elem_size_bytes == 8);
4720 writemask |= (((count - 2) << 1) - 1) << (start + 2);
4721 count = 2;
4722 num_bytes = 16;
4723 }
4724
4725 // TODO: check alignment of sub-dword stores
4726 // TODO: split 3 bytes. there is no store instruction for that
4727
4728 Temp write_data;
4729 if (count != instr->num_components) {
4730 emit_split_vector(ctx, data, instr->num_components);
4731 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4732 for (int i = 0; i < count; i++) {
4733 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
4734 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
4735 }
4736 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
4737 vec->definitions[0] = Definition(write_data);
4738 ctx->block->instructions.emplace_back(std::move(vec));
4739 } else if (!smem && data.type() != RegType::vgpr) {
4740 assert(num_bytes % 4 == 0);
4741 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
4742 } else if (smem_nonfs && data.type() == RegType::vgpr) {
4743 assert(num_bytes % 4 == 0);
4744 write_data = bld.as_uniform(data);
4745 } else {
4746 write_data = data;
4747 }
4748
4749 aco_opcode vmem_op, smem_op;
4750 switch (num_bytes) {
4751 case 4:
4752 vmem_op = aco_opcode::buffer_store_dword;
4753 smem_op = aco_opcode::s_buffer_store_dword;
4754 break;
4755 case 8:
4756 vmem_op = aco_opcode::buffer_store_dwordx2;
4757 smem_op = aco_opcode::s_buffer_store_dwordx2;
4758 break;
4759 case 12:
4760 vmem_op = aco_opcode::buffer_store_dwordx3;
4761 smem_op = aco_opcode::last_opcode;
4762 assert(!smem && ctx->options->chip_class > GFX6);
4763 break;
4764 case 16:
4765 vmem_op = aco_opcode::buffer_store_dwordx4;
4766 smem_op = aco_opcode::s_buffer_store_dwordx4;
4767 break;
4768 default:
4769 unreachable("Store SSBO not implemented for this size.");
4770 }
4771 if (ctx->stage == fragment_fs)
4772 smem_op = aco_opcode::p_fs_buffer_store_smem;
4773
4774 if (smem) {
4775 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
4776 store->operands[0] = Operand(rsrc);
4777 if (start) {
4778 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4779 offset, Operand(start * elem_size_bytes));
4780 store->operands[1] = Operand(off);
4781 } else {
4782 store->operands[1] = Operand(offset);
4783 }
4784 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
4785 store->operands[1].setFixed(m0);
4786 store->operands[2] = Operand(write_data);
4787 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4788 store->dlc = false;
4789 store->disable_wqm = true;
4790 store->barrier = barrier_buffer;
4791 ctx->block->instructions.emplace_back(std::move(store));
4792 ctx->program->wb_smem_l1_on_end = true;
4793 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
4794 ctx->block->kind |= block_kind_needs_lowering;
4795 ctx->program->needs_exact = true;
4796 }
4797 } else {
4798 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
4799 store->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4800 store->operands[1] = Operand(rsrc);
4801 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4802 store->operands[3] = Operand(write_data);
4803 store->offset = start * elem_size_bytes;
4804 store->offen = (offset.type() == RegType::vgpr);
4805 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4806 store->dlc = false;
4807 store->disable_wqm = true;
4808 store->barrier = barrier_buffer;
4809 ctx->program->needs_exact = true;
4810 ctx->block->instructions.emplace_back(std::move(store));
4811 }
4812 }
4813 }
4814
4815 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4816 {
4817 /* return the previous value if dest is ever used */
4818 bool return_previous = false;
4819 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4820 return_previous = true;
4821 break;
4822 }
4823 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4824 return_previous = true;
4825 break;
4826 }
4827
4828 Builder bld(ctx->program, ctx->block);
4829 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
4830
4831 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
4832 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
4833 get_ssa_temp(ctx, instr->src[3].ssa), data);
4834
4835 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
4836 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4837 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4838
4839 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4840
4841 aco_opcode op32, op64;
4842 switch (instr->intrinsic) {
4843 case nir_intrinsic_ssbo_atomic_add:
4844 op32 = aco_opcode::buffer_atomic_add;
4845 op64 = aco_opcode::buffer_atomic_add_x2;
4846 break;
4847 case nir_intrinsic_ssbo_atomic_imin:
4848 op32 = aco_opcode::buffer_atomic_smin;
4849 op64 = aco_opcode::buffer_atomic_smin_x2;
4850 break;
4851 case nir_intrinsic_ssbo_atomic_umin:
4852 op32 = aco_opcode::buffer_atomic_umin;
4853 op64 = aco_opcode::buffer_atomic_umin_x2;
4854 break;
4855 case nir_intrinsic_ssbo_atomic_imax:
4856 op32 = aco_opcode::buffer_atomic_smax;
4857 op64 = aco_opcode::buffer_atomic_smax_x2;
4858 break;
4859 case nir_intrinsic_ssbo_atomic_umax:
4860 op32 = aco_opcode::buffer_atomic_umax;
4861 op64 = aco_opcode::buffer_atomic_umax_x2;
4862 break;
4863 case nir_intrinsic_ssbo_atomic_and:
4864 op32 = aco_opcode::buffer_atomic_and;
4865 op64 = aco_opcode::buffer_atomic_and_x2;
4866 break;
4867 case nir_intrinsic_ssbo_atomic_or:
4868 op32 = aco_opcode::buffer_atomic_or;
4869 op64 = aco_opcode::buffer_atomic_or_x2;
4870 break;
4871 case nir_intrinsic_ssbo_atomic_xor:
4872 op32 = aco_opcode::buffer_atomic_xor;
4873 op64 = aco_opcode::buffer_atomic_xor_x2;
4874 break;
4875 case nir_intrinsic_ssbo_atomic_exchange:
4876 op32 = aco_opcode::buffer_atomic_swap;
4877 op64 = aco_opcode::buffer_atomic_swap_x2;
4878 break;
4879 case nir_intrinsic_ssbo_atomic_comp_swap:
4880 op32 = aco_opcode::buffer_atomic_cmpswap;
4881 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
4882 break;
4883 default:
4884 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
4885 }
4886 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
4887 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4888 mubuf->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4889 mubuf->operands[1] = Operand(rsrc);
4890 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4891 mubuf->operands[3] = Operand(data);
4892 if (return_previous)
4893 mubuf->definitions[0] = Definition(dst);
4894 mubuf->offset = 0;
4895 mubuf->offen = (offset.type() == RegType::vgpr);
4896 mubuf->glc = return_previous;
4897 mubuf->dlc = false; /* Not needed for atomics */
4898 mubuf->disable_wqm = true;
4899 mubuf->barrier = barrier_buffer;
4900 ctx->program->needs_exact = true;
4901 ctx->block->instructions.emplace_back(std::move(mubuf));
4902 }
4903
4904 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
4905
4906 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4907 Builder bld(ctx->program, ctx->block);
4908 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
4909 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
4910 }
4911
4912 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
4913 {
4914 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4915 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4916
4917 if (addr.type() == RegType::vgpr)
4918 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
4919 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
4920 }
4921
4922 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
4923 {
4924 Builder bld(ctx->program, ctx->block);
4925 unsigned num_components = instr->num_components;
4926 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
4927
4928 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4929 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
4930
4931 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4932 bool dlc = glc && ctx->options->chip_class >= GFX10;
4933 aco_opcode op;
4934 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
4935 bool global = ctx->options->chip_class >= GFX9;
4936
4937 if (ctx->options->chip_class >= GFX7) {
4938 aco_opcode op;
4939 switch (num_bytes) {
4940 case 4:
4941 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
4942 break;
4943 case 8:
4944 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
4945 break;
4946 case 12:
4947 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
4948 break;
4949 case 16:
4950 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
4951 break;
4952 default:
4953 unreachable("load_global not implemented for this size.");
4954 }
4955
4956 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
4957 flat->operands[0] = Operand(addr);
4958 flat->operands[1] = Operand(s1);
4959 flat->glc = glc;
4960 flat->dlc = dlc;
4961 flat->barrier = barrier_buffer;
4962
4963 if (dst.type() == RegType::sgpr) {
4964 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4965 flat->definitions[0] = Definition(vec);
4966 ctx->block->instructions.emplace_back(std::move(flat));
4967 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
4968 } else {
4969 flat->definitions[0] = Definition(dst);
4970 ctx->block->instructions.emplace_back(std::move(flat));
4971 }
4972 emit_split_vector(ctx, dst, num_components);
4973 } else {
4974 assert(ctx->options->chip_class == GFX6);
4975
4976 /* GFX6 doesn't support loading vec3, expand to vec4. */
4977 num_bytes = num_bytes == 12 ? 16 : num_bytes;
4978
4979 aco_opcode op;
4980 switch (num_bytes) {
4981 case 4:
4982 op = aco_opcode::buffer_load_dword;
4983 break;
4984 case 8:
4985 op = aco_opcode::buffer_load_dwordx2;
4986 break;
4987 case 16:
4988 op = aco_opcode::buffer_load_dwordx4;
4989 break;
4990 default:
4991 unreachable("load_global not implemented for this size.");
4992 }
4993
4994 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
4995
4996 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4997 mubuf->operands[0] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
4998 mubuf->operands[1] = Operand(rsrc);
4999 mubuf->operands[2] = Operand(0u);
5000 mubuf->glc = glc;
5001 mubuf->dlc = false;
5002 mubuf->offset = 0;
5003 mubuf->addr64 = addr.type() == RegType::vgpr;
5004 mubuf->disable_wqm = false;
5005 mubuf->barrier = barrier_buffer;
5006 aco_ptr<Instruction> instr = std::move(mubuf);
5007
5008 /* expand vector */
5009 if (dst.size() == 3) {
5010 Temp vec = bld.tmp(v4);
5011 instr->definitions[0] = Definition(vec);
5012 bld.insert(std::move(instr));
5013 emit_split_vector(ctx, vec, 4);
5014
5015 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
5016 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
5017 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
5018 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
5019 }
5020
5021 if (dst.type() == RegType::sgpr) {
5022 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5023 instr->definitions[0] = Definition(vec);
5024 bld.insert(std::move(instr));
5025 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
5026 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5027 } else {
5028 instr->definitions[0] = Definition(dst);
5029 bld.insert(std::move(instr));
5030 emit_split_vector(ctx, dst, num_components);
5031 }
5032 }
5033 } else {
5034 switch (num_bytes) {
5035 case 4:
5036 op = aco_opcode::s_load_dword;
5037 break;
5038 case 8:
5039 op = aco_opcode::s_load_dwordx2;
5040 break;
5041 case 12:
5042 case 16:
5043 op = aco_opcode::s_load_dwordx4;
5044 break;
5045 default:
5046 unreachable("load_global not implemented for this size.");
5047 }
5048 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
5049 load->operands[0] = Operand(addr);
5050 load->operands[1] = Operand(0u);
5051 load->definitions[0] = Definition(dst);
5052 load->glc = glc;
5053 load->dlc = dlc;
5054 load->barrier = barrier_buffer;
5055 assert(ctx->options->chip_class >= GFX8 || !glc);
5056
5057 if (dst.size() == 3) {
5058 /* trim vector */
5059 Temp vec = bld.tmp(s4);
5060 load->definitions[0] = Definition(vec);
5061 ctx->block->instructions.emplace_back(std::move(load));
5062 emit_split_vector(ctx, vec, 4);
5063
5064 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5065 emit_extract_vector(ctx, vec, 0, s1),
5066 emit_extract_vector(ctx, vec, 1, s1),
5067 emit_extract_vector(ctx, vec, 2, s1));
5068 } else {
5069 ctx->block->instructions.emplace_back(std::move(load));
5070 }
5071 }
5072 }
5073
5074 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
5075 {
5076 Builder bld(ctx->program, ctx->block);
5077 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5078
5079 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5080 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
5081
5082 if (ctx->options->chip_class >= GFX7)
5083 addr = as_vgpr(ctx, addr);
5084
5085 unsigned writemask = nir_intrinsic_write_mask(instr);
5086 while (writemask) {
5087 int start, count;
5088 u_bit_scan_consecutive_range(&writemask, &start, &count);
5089 if (count == 3 && ctx->options->chip_class == GFX6) {
5090 /* GFX6 doesn't support storing vec3, split it. */
5091 writemask |= 1u << (start + 2);
5092 count = 2;
5093 }
5094 unsigned num_bytes = count * elem_size_bytes;
5095
5096 Temp write_data = data;
5097 if (count != instr->num_components) {
5098 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5099 for (int i = 0; i < count; i++)
5100 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
5101 write_data = bld.tmp(RegType::vgpr, count);
5102 vec->definitions[0] = Definition(write_data);
5103 ctx->block->instructions.emplace_back(std::move(vec));
5104 }
5105
5106 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5107 unsigned offset = start * elem_size_bytes;
5108
5109 if (ctx->options->chip_class >= GFX7) {
5110 if (offset > 0 && ctx->options->chip_class < GFX9) {
5111 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
5112 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
5113 Temp carry = bld.tmp(bld.lm);
5114 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
5115
5116 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
5117 Operand(offset), addr0);
5118 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
5119 Operand(0u), addr1,
5120 carry).def(1).setHint(vcc);
5121
5122 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
5123
5124 offset = 0;
5125 }
5126
5127 bool global = ctx->options->chip_class >= GFX9;
5128 aco_opcode op;
5129 switch (num_bytes) {
5130 case 4:
5131 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
5132 break;
5133 case 8:
5134 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
5135 break;
5136 case 12:
5137 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
5138 break;
5139 case 16:
5140 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
5141 break;
5142 default:
5143 unreachable("store_global not implemented for this size.");
5144 }
5145
5146 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
5147 flat->operands[0] = Operand(addr);
5148 flat->operands[1] = Operand(s1);
5149 flat->operands[2] = Operand(data);
5150 flat->glc = glc;
5151 flat->dlc = false;
5152 flat->offset = offset;
5153 flat->disable_wqm = true;
5154 flat->barrier = barrier_buffer;
5155 ctx->program->needs_exact = true;
5156 ctx->block->instructions.emplace_back(std::move(flat));
5157 } else {
5158 assert(ctx->options->chip_class == GFX6);
5159
5160 aco_opcode op;
5161 switch (num_bytes) {
5162 case 4:
5163 op = aco_opcode::buffer_store_dword;
5164 break;
5165 case 8:
5166 op = aco_opcode::buffer_store_dwordx2;
5167 break;
5168 case 16:
5169 op = aco_opcode::buffer_store_dwordx4;
5170 break;
5171 default:
5172 unreachable("store_global not implemented for this size.");
5173 }
5174
5175 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5176
5177 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
5178 mubuf->operands[0] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5179 mubuf->operands[1] = Operand(rsrc);
5180 mubuf->operands[2] = Operand(0u);
5181 mubuf->operands[3] = Operand(write_data);
5182 mubuf->glc = glc;
5183 mubuf->dlc = false;
5184 mubuf->offset = offset;
5185 mubuf->addr64 = addr.type() == RegType::vgpr;
5186 mubuf->disable_wqm = true;
5187 mubuf->barrier = barrier_buffer;
5188 ctx->program->needs_exact = true;
5189 ctx->block->instructions.emplace_back(std::move(mubuf));
5190 }
5191 }
5192 }
5193
5194 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5195 {
5196 /* return the previous value if dest is ever used */
5197 bool return_previous = false;
5198 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5199 return_previous = true;
5200 break;
5201 }
5202 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5203 return_previous = true;
5204 break;
5205 }
5206
5207 Builder bld(ctx->program, ctx->block);
5208 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5209 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5210
5211 if (ctx->options->chip_class >= GFX7)
5212 addr = as_vgpr(ctx, addr);
5213
5214 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
5215 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5216 get_ssa_temp(ctx, instr->src[2].ssa), data);
5217
5218 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5219
5220 aco_opcode op32, op64;
5221
5222 if (ctx->options->chip_class >= GFX7) {
5223 bool global = ctx->options->chip_class >= GFX9;
5224 switch (instr->intrinsic) {
5225 case nir_intrinsic_global_atomic_add:
5226 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
5227 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
5228 break;
5229 case nir_intrinsic_global_atomic_imin:
5230 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
5231 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
5232 break;
5233 case nir_intrinsic_global_atomic_umin:
5234 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
5235 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
5236 break;
5237 case nir_intrinsic_global_atomic_imax:
5238 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
5239 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
5240 break;
5241 case nir_intrinsic_global_atomic_umax:
5242 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
5243 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
5244 break;
5245 case nir_intrinsic_global_atomic_and:
5246 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
5247 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
5248 break;
5249 case nir_intrinsic_global_atomic_or:
5250 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
5251 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
5252 break;
5253 case nir_intrinsic_global_atomic_xor:
5254 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
5255 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
5256 break;
5257 case nir_intrinsic_global_atomic_exchange:
5258 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
5259 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
5260 break;
5261 case nir_intrinsic_global_atomic_comp_swap:
5262 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
5263 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
5264 break;
5265 default:
5266 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5267 }
5268
5269 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5270 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
5271 flat->operands[0] = Operand(addr);
5272 flat->operands[1] = Operand(s1);
5273 flat->operands[2] = Operand(data);
5274 if (return_previous)
5275 flat->definitions[0] = Definition(dst);
5276 flat->glc = return_previous;
5277 flat->dlc = false; /* Not needed for atomics */
5278 flat->offset = 0;
5279 flat->disable_wqm = true;
5280 flat->barrier = barrier_buffer;
5281 ctx->program->needs_exact = true;
5282 ctx->block->instructions.emplace_back(std::move(flat));
5283 } else {
5284 assert(ctx->options->chip_class == GFX6);
5285
5286 switch (instr->intrinsic) {
5287 case nir_intrinsic_global_atomic_add:
5288 op32 = aco_opcode::buffer_atomic_add;
5289 op64 = aco_opcode::buffer_atomic_add_x2;
5290 break;
5291 case nir_intrinsic_global_atomic_imin:
5292 op32 = aco_opcode::buffer_atomic_smin;
5293 op64 = aco_opcode::buffer_atomic_smin_x2;
5294 break;
5295 case nir_intrinsic_global_atomic_umin:
5296 op32 = aco_opcode::buffer_atomic_umin;
5297 op64 = aco_opcode::buffer_atomic_umin_x2;
5298 break;
5299 case nir_intrinsic_global_atomic_imax:
5300 op32 = aco_opcode::buffer_atomic_smax;
5301 op64 = aco_opcode::buffer_atomic_smax_x2;
5302 break;
5303 case nir_intrinsic_global_atomic_umax:
5304 op32 = aco_opcode::buffer_atomic_umax;
5305 op64 = aco_opcode::buffer_atomic_umax_x2;
5306 break;
5307 case nir_intrinsic_global_atomic_and:
5308 op32 = aco_opcode::buffer_atomic_and;
5309 op64 = aco_opcode::buffer_atomic_and_x2;
5310 break;
5311 case nir_intrinsic_global_atomic_or:
5312 op32 = aco_opcode::buffer_atomic_or;
5313 op64 = aco_opcode::buffer_atomic_or_x2;
5314 break;
5315 case nir_intrinsic_global_atomic_xor:
5316 op32 = aco_opcode::buffer_atomic_xor;
5317 op64 = aco_opcode::buffer_atomic_xor_x2;
5318 break;
5319 case nir_intrinsic_global_atomic_exchange:
5320 op32 = aco_opcode::buffer_atomic_swap;
5321 op64 = aco_opcode::buffer_atomic_swap_x2;
5322 break;
5323 case nir_intrinsic_global_atomic_comp_swap:
5324 op32 = aco_opcode::buffer_atomic_cmpswap;
5325 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5326 break;
5327 default:
5328 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5329 }
5330
5331 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5332
5333 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5334
5335 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5336 mubuf->operands[0] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5337 mubuf->operands[1] = Operand(rsrc);
5338 mubuf->operands[2] = Operand(0u);
5339 mubuf->operands[3] = Operand(data);
5340 if (return_previous)
5341 mubuf->definitions[0] = Definition(dst);
5342 mubuf->glc = return_previous;
5343 mubuf->dlc = false;
5344 mubuf->offset = 0;
5345 mubuf->addr64 = addr.type() == RegType::vgpr;
5346 mubuf->disable_wqm = true;
5347 mubuf->barrier = barrier_buffer;
5348 ctx->program->needs_exact = true;
5349 ctx->block->instructions.emplace_back(std::move(mubuf));
5350 }
5351 }
5352
5353 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
5354 Builder bld(ctx->program, ctx->block);
5355 switch(instr->intrinsic) {
5356 case nir_intrinsic_group_memory_barrier:
5357 case nir_intrinsic_memory_barrier:
5358 bld.barrier(aco_opcode::p_memory_barrier_common);
5359 break;
5360 case nir_intrinsic_memory_barrier_buffer:
5361 bld.barrier(aco_opcode::p_memory_barrier_buffer);
5362 break;
5363 case nir_intrinsic_memory_barrier_image:
5364 bld.barrier(aco_opcode::p_memory_barrier_image);
5365 break;
5366 case nir_intrinsic_memory_barrier_shared:
5367 bld.barrier(aco_opcode::p_memory_barrier_shared);
5368 break;
5369 default:
5370 unreachable("Unimplemented memory barrier intrinsic");
5371 break;
5372 }
5373 }
5374
5375 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5376 {
5377 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
5378 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5379 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
5380 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5381 Builder bld(ctx->program, ctx->block);
5382
5383 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5384 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5385 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
5386 }
5387
5388 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5389 {
5390 unsigned writemask = nir_intrinsic_write_mask(instr);
5391 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5392 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5393 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5394 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
5395
5396 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5397 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
5398 }
5399
5400 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5401 {
5402 unsigned offset = nir_intrinsic_base(instr);
5403 Operand m = load_lds_size_m0(ctx);
5404 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5405 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5406
5407 unsigned num_operands = 3;
5408 aco_opcode op32, op64, op32_rtn, op64_rtn;
5409 switch(instr->intrinsic) {
5410 case nir_intrinsic_shared_atomic_add:
5411 op32 = aco_opcode::ds_add_u32;
5412 op64 = aco_opcode::ds_add_u64;
5413 op32_rtn = aco_opcode::ds_add_rtn_u32;
5414 op64_rtn = aco_opcode::ds_add_rtn_u64;
5415 break;
5416 case nir_intrinsic_shared_atomic_imin:
5417 op32 = aco_opcode::ds_min_i32;
5418 op64 = aco_opcode::ds_min_i64;
5419 op32_rtn = aco_opcode::ds_min_rtn_i32;
5420 op64_rtn = aco_opcode::ds_min_rtn_i64;
5421 break;
5422 case nir_intrinsic_shared_atomic_umin:
5423 op32 = aco_opcode::ds_min_u32;
5424 op64 = aco_opcode::ds_min_u64;
5425 op32_rtn = aco_opcode::ds_min_rtn_u32;
5426 op64_rtn = aco_opcode::ds_min_rtn_u64;
5427 break;
5428 case nir_intrinsic_shared_atomic_imax:
5429 op32 = aco_opcode::ds_max_i32;
5430 op64 = aco_opcode::ds_max_i64;
5431 op32_rtn = aco_opcode::ds_max_rtn_i32;
5432 op64_rtn = aco_opcode::ds_max_rtn_i64;
5433 break;
5434 case nir_intrinsic_shared_atomic_umax:
5435 op32 = aco_opcode::ds_max_u32;
5436 op64 = aco_opcode::ds_max_u64;
5437 op32_rtn = aco_opcode::ds_max_rtn_u32;
5438 op64_rtn = aco_opcode::ds_max_rtn_u64;
5439 break;
5440 case nir_intrinsic_shared_atomic_and:
5441 op32 = aco_opcode::ds_and_b32;
5442 op64 = aco_opcode::ds_and_b64;
5443 op32_rtn = aco_opcode::ds_and_rtn_b32;
5444 op64_rtn = aco_opcode::ds_and_rtn_b64;
5445 break;
5446 case nir_intrinsic_shared_atomic_or:
5447 op32 = aco_opcode::ds_or_b32;
5448 op64 = aco_opcode::ds_or_b64;
5449 op32_rtn = aco_opcode::ds_or_rtn_b32;
5450 op64_rtn = aco_opcode::ds_or_rtn_b64;
5451 break;
5452 case nir_intrinsic_shared_atomic_xor:
5453 op32 = aco_opcode::ds_xor_b32;
5454 op64 = aco_opcode::ds_xor_b64;
5455 op32_rtn = aco_opcode::ds_xor_rtn_b32;
5456 op64_rtn = aco_opcode::ds_xor_rtn_b64;
5457 break;
5458 case nir_intrinsic_shared_atomic_exchange:
5459 op32 = aco_opcode::ds_write_b32;
5460 op64 = aco_opcode::ds_write_b64;
5461 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
5462 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
5463 break;
5464 case nir_intrinsic_shared_atomic_comp_swap:
5465 op32 = aco_opcode::ds_cmpst_b32;
5466 op64 = aco_opcode::ds_cmpst_b64;
5467 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
5468 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
5469 num_operands = 4;
5470 break;
5471 default:
5472 unreachable("Unhandled shared atomic intrinsic");
5473 }
5474
5475 /* return the previous value if dest is ever used */
5476 bool return_previous = false;
5477 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5478 return_previous = true;
5479 break;
5480 }
5481 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5482 return_previous = true;
5483 break;
5484 }
5485
5486 aco_opcode op;
5487 if (data.size() == 1) {
5488 assert(instr->dest.ssa.bit_size == 32);
5489 op = return_previous ? op32_rtn : op32;
5490 } else {
5491 assert(instr->dest.ssa.bit_size == 64);
5492 op = return_previous ? op64_rtn : op64;
5493 }
5494
5495 if (offset > 65535) {
5496 Builder bld(ctx->program, ctx->block);
5497 address = bld.vadd32(bld.def(v1), Operand(offset), address);
5498 offset = 0;
5499 }
5500
5501 aco_ptr<DS_instruction> ds;
5502 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
5503 ds->operands[0] = Operand(address);
5504 ds->operands[1] = Operand(data);
5505 if (num_operands == 4)
5506 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
5507 ds->operands[num_operands - 1] = m;
5508 ds->offset0 = offset;
5509 if (return_previous)
5510 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
5511 ctx->block->instructions.emplace_back(std::move(ds));
5512 }
5513
5514 Temp get_scratch_resource(isel_context *ctx)
5515 {
5516 Builder bld(ctx->program, ctx->block);
5517 Temp scratch_addr = ctx->program->private_segment_buffer;
5518 if (ctx->stage != compute_cs)
5519 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
5520
5521 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
5522 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
5523
5524 if (ctx->program->chip_class >= GFX10) {
5525 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5526 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5527 S_008F0C_RESOURCE_LEVEL(1);
5528 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
5529 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5530 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5531 }
5532
5533 /* older generations need element size = 16 bytes. element size removed in GFX9 */
5534 if (ctx->program->chip_class <= GFX8)
5535 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
5536
5537 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
5538 }
5539
5540 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5541 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
5542 Builder bld(ctx->program, ctx->block);
5543 Temp rsrc = get_scratch_resource(ctx);
5544 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5545 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5546
5547 aco_opcode op;
5548 switch (dst.size()) {
5549 case 1:
5550 op = aco_opcode::buffer_load_dword;
5551 break;
5552 case 2:
5553 op = aco_opcode::buffer_load_dwordx2;
5554 break;
5555 case 3:
5556 op = aco_opcode::buffer_load_dwordx3;
5557 break;
5558 case 4:
5559 op = aco_opcode::buffer_load_dwordx4;
5560 break;
5561 case 6:
5562 case 8: {
5563 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5564 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
5565 bld.def(v4), offset, rsrc,
5566 ctx->program->scratch_offset, 0, true);
5567 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
5568 aco_opcode::buffer_load_dwordx4,
5569 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
5570 offset, rsrc, ctx->program->scratch_offset, 16, true);
5571 emit_split_vector(ctx, lower, 2);
5572 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
5573 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
5574 if (dst.size() == 8) {
5575 emit_split_vector(ctx, upper, 2);
5576 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
5577 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
5578 } else {
5579 elems[2] = upper;
5580 }
5581
5582 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
5583 Format::PSEUDO, dst.size() / 2, 1)};
5584 for (unsigned i = 0; i < dst.size() / 2; i++)
5585 vec->operands[i] = Operand(elems[i]);
5586 vec->definitions[0] = Definition(dst);
5587 bld.insert(std::move(vec));
5588 ctx->allocated_vec.emplace(dst.id(), elems);
5589 return;
5590 }
5591 default:
5592 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
5593 }
5594
5595 bld.mubuf(op, Definition(dst), offset, rsrc, ctx->program->scratch_offset, 0, true);
5596 emit_split_vector(ctx, dst, instr->num_components);
5597 }
5598
5599 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5600 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
5601 Builder bld(ctx->program, ctx->block);
5602 Temp rsrc = get_scratch_resource(ctx);
5603 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5604 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5605
5606 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5607 unsigned writemask = nir_intrinsic_write_mask(instr);
5608
5609 while (writemask) {
5610 int start, count;
5611 u_bit_scan_consecutive_range(&writemask, &start, &count);
5612 int num_bytes = count * elem_size_bytes;
5613
5614 if (num_bytes > 16) {
5615 assert(elem_size_bytes == 8);
5616 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5617 count = 2;
5618 num_bytes = 16;
5619 }
5620
5621 // TODO: check alignment of sub-dword stores
5622 // TODO: split 3 bytes. there is no store instruction for that
5623
5624 Temp write_data;
5625 if (count != instr->num_components) {
5626 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5627 for (int i = 0; i < count; i++) {
5628 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
5629 vec->operands[i] = Operand(elem);
5630 }
5631 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
5632 vec->definitions[0] = Definition(write_data);
5633 ctx->block->instructions.emplace_back(std::move(vec));
5634 } else {
5635 write_data = data;
5636 }
5637
5638 aco_opcode op;
5639 switch (num_bytes) {
5640 case 4:
5641 op = aco_opcode::buffer_store_dword;
5642 break;
5643 case 8:
5644 op = aco_opcode::buffer_store_dwordx2;
5645 break;
5646 case 12:
5647 op = aco_opcode::buffer_store_dwordx3;
5648 break;
5649 case 16:
5650 op = aco_opcode::buffer_store_dwordx4;
5651 break;
5652 default:
5653 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
5654 }
5655
5656 bld.mubuf(op, offset, rsrc, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
5657 }
5658 }
5659
5660 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
5661 uint8_t log2_ps_iter_samples;
5662 if (ctx->program->info->ps.force_persample) {
5663 log2_ps_iter_samples =
5664 util_logbase2(ctx->options->key.fs.num_samples);
5665 } else {
5666 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
5667 }
5668
5669 /* The bit pattern matches that used by fixed function fragment
5670 * processing. */
5671 static const unsigned ps_iter_masks[] = {
5672 0xffff, /* not used */
5673 0x5555,
5674 0x1111,
5675 0x0101,
5676 0x0001,
5677 };
5678 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
5679
5680 Builder bld(ctx->program, ctx->block);
5681
5682 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
5683 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
5684 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
5685 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
5686 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5687 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
5688 }
5689
5690 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
5691 Builder bld(ctx->program, ctx->block);
5692
5693 unsigned stream = nir_intrinsic_stream_id(instr);
5694 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5695 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
5696 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
5697
5698 /* get GSVS ring */
5699 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
5700
5701 unsigned num_components =
5702 ctx->program->info->gs.num_stream_output_components[stream];
5703 assert(num_components);
5704
5705 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
5706 unsigned stream_offset = 0;
5707 for (unsigned i = 0; i < stream; i++) {
5708 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
5709 stream_offset += prev_stride * ctx->program->wave_size;
5710 }
5711
5712 /* Limit on the stride field for <= GFX7. */
5713 assert(stride < (1 << 14));
5714
5715 Temp gsvs_dwords[4];
5716 for (unsigned i = 0; i < 4; i++)
5717 gsvs_dwords[i] = bld.tmp(s1);
5718 bld.pseudo(aco_opcode::p_split_vector,
5719 Definition(gsvs_dwords[0]),
5720 Definition(gsvs_dwords[1]),
5721 Definition(gsvs_dwords[2]),
5722 Definition(gsvs_dwords[3]),
5723 gsvs_ring);
5724
5725 if (stream_offset) {
5726 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
5727
5728 Temp carry = bld.tmp(s1);
5729 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
5730 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
5731 }
5732
5733 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
5734 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
5735
5736 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5737 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
5738
5739 unsigned offset = 0;
5740 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
5741 if (ctx->program->info->gs.output_streams[i] != stream)
5742 continue;
5743
5744 for (unsigned j = 0; j < 4; j++) {
5745 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
5746 continue;
5747
5748 if (ctx->outputs.mask[i] & (1 << j)) {
5749 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
5750 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
5751 if (const_offset >= 4096u) {
5752 if (vaddr_offset.isUndefined())
5753 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
5754 else
5755 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
5756 const_offset %= 4096u;
5757 }
5758
5759 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
5760 mtbuf->operands[0] = vaddr_offset;
5761 mtbuf->operands[1] = Operand(gsvs_ring);
5762 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
5763 mtbuf->operands[3] = Operand(ctx->outputs.outputs[i][j]);
5764 mtbuf->offen = !vaddr_offset.isUndefined();
5765 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
5766 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
5767 mtbuf->offset = const_offset;
5768 mtbuf->glc = true;
5769 mtbuf->slc = true;
5770 mtbuf->barrier = barrier_gs_data;
5771 mtbuf->can_reorder = true;
5772 bld.insert(std::move(mtbuf));
5773 }
5774
5775 offset += ctx->shader->info.gs.vertices_out;
5776 }
5777
5778 /* outputs for the next vertex are undefined and keeping them around can
5779 * create invalid IR with control flow */
5780 ctx->outputs.mask[i] = 0;
5781 }
5782
5783 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
5784 }
5785
5786 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
5787 {
5788 Builder bld(ctx->program, ctx->block);
5789
5790 if (cluster_size == 1) {
5791 return src;
5792 } if (op == nir_op_iand && cluster_size == 4) {
5793 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
5794 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5795 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
5796 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
5797 } else if (op == nir_op_ior && cluster_size == 4) {
5798 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
5799 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
5800 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
5801 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
5802 //subgroupAnd(val) -> (exec & ~val) == 0
5803 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
5804 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
5805 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
5806 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
5807 //subgroupOr(val) -> (val & exec) != 0
5808 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
5809 return bool_to_vector_condition(ctx, tmp);
5810 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
5811 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
5812 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5813 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
5814 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
5815 return bool_to_vector_condition(ctx, tmp);
5816 } else {
5817 //subgroupClustered{And,Or,Xor}(val, n) ->
5818 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
5819 //cluster_offset = ~(n - 1) & lane_id
5820 //cluster_mask = ((1 << n) - 1)
5821 //subgroupClusteredAnd():
5822 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
5823 //subgroupClusteredOr():
5824 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
5825 //subgroupClusteredXor():
5826 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
5827 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
5828 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
5829
5830 Temp tmp;
5831 if (op == nir_op_iand)
5832 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5833 else
5834 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5835
5836 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
5837
5838 if (ctx->program->chip_class <= GFX7)
5839 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
5840 else if (ctx->program->wave_size == 64)
5841 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
5842 else
5843 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
5844 tmp = emit_extract_vector(ctx, tmp, 0, v1);
5845 if (cluster_mask != 0xffffffff)
5846 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
5847
5848 Definition cmp_def = Definition();
5849 if (op == nir_op_iand) {
5850 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
5851 } else if (op == nir_op_ior) {
5852 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5853 } else if (op == nir_op_ixor) {
5854 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
5855 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
5856 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5857 }
5858 cmp_def.setHint(vcc);
5859 return cmp_def.getTemp();
5860 }
5861 }
5862
5863 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
5864 {
5865 Builder bld(ctx->program, ctx->block);
5866
5867 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
5868 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
5869 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
5870 Temp tmp;
5871 if (op == nir_op_iand)
5872 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5873 else
5874 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
5875
5876 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
5877 Temp lo = lohi.def(0).getTemp();
5878 Temp hi = lohi.def(1).getTemp();
5879 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
5880
5881 Definition cmp_def = Definition();
5882 if (op == nir_op_iand)
5883 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5884 else if (op == nir_op_ior)
5885 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5886 else if (op == nir_op_ixor)
5887 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
5888 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
5889 cmp_def.setHint(vcc);
5890 return cmp_def.getTemp();
5891 }
5892
5893 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
5894 {
5895 Builder bld(ctx->program, ctx->block);
5896
5897 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
5898 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
5899 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
5900 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
5901 if (op == nir_op_iand)
5902 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5903 else if (op == nir_op_ior)
5904 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5905 else if (op == nir_op_ixor)
5906 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5907
5908 assert(false);
5909 return Temp();
5910 }
5911
5912 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
5913 {
5914 Builder bld(ctx->program, ctx->block);
5915 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
5916 if (src.regClass().type() == RegType::vgpr) {
5917 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
5918 } else if (src.regClass() == s1) {
5919 bld.sop1(aco_opcode::s_mov_b32, dst, src);
5920 } else if (src.regClass() == s2) {
5921 bld.sop1(aco_opcode::s_mov_b64, dst, src);
5922 } else {
5923 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5924 nir_print_instr(&instr->instr, stderr);
5925 fprintf(stderr, "\n");
5926 }
5927 }
5928
5929 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
5930 {
5931 Builder bld(ctx->program, ctx->block);
5932 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
5933 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
5934 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
5935
5936 Temp ddx_1, ddx_2, ddy_1, ddy_2;
5937 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
5938 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
5939 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
5940
5941 /* Build DD X/Y */
5942 if (ctx->program->chip_class >= GFX8) {
5943 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
5944 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
5945 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
5946 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
5947 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
5948 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
5949 } else {
5950 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
5951 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
5952 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
5953 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
5954 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
5955 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
5956 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
5957 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
5958 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
5959 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
5960 }
5961
5962 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
5963 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
5964 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
5965 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
5966 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
5967 Temp wqm1 = bld.tmp(v1);
5968 emit_wqm(ctx, tmp1, wqm1, true);
5969 Temp wqm2 = bld.tmp(v1);
5970 emit_wqm(ctx, tmp2, wqm2, true);
5971 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
5972 return;
5973 }
5974
5975 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
5976 {
5977 Builder bld(ctx->program, ctx->block);
5978 switch(instr->intrinsic) {
5979 case nir_intrinsic_load_barycentric_sample:
5980 case nir_intrinsic_load_barycentric_pixel:
5981 case nir_intrinsic_load_barycentric_centroid: {
5982 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
5983 Temp bary = Temp(0, s2);
5984 switch (mode) {
5985 case INTERP_MODE_SMOOTH:
5986 case INTERP_MODE_NONE:
5987 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
5988 bary = get_arg(ctx, ctx->args->ac.persp_center);
5989 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
5990 bary = ctx->persp_centroid;
5991 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
5992 bary = get_arg(ctx, ctx->args->ac.persp_sample);
5993 break;
5994 case INTERP_MODE_NOPERSPECTIVE:
5995 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
5996 bary = get_arg(ctx, ctx->args->ac.linear_center);
5997 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
5998 bary = ctx->linear_centroid;
5999 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6000 bary = get_arg(ctx, ctx->args->ac.linear_sample);
6001 break;
6002 default:
6003 break;
6004 }
6005 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6006 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
6007 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
6008 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6009 Operand(p1), Operand(p2));
6010 emit_split_vector(ctx, dst, 2);
6011 break;
6012 }
6013 case nir_intrinsic_load_barycentric_at_sample: {
6014 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
6015 switch (ctx->options->key.fs.num_samples) {
6016 case 2: sample_pos_offset += 1 << 3; break;
6017 case 4: sample_pos_offset += 3 << 3; break;
6018 case 8: sample_pos_offset += 7 << 3; break;
6019 default: break;
6020 }
6021 Temp sample_pos;
6022 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6023 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
6024 Temp private_segment_buffer = ctx->program->private_segment_buffer;
6025 if (addr.type() == RegType::sgpr) {
6026 Operand offset;
6027 if (const_addr) {
6028 sample_pos_offset += const_addr->u32 << 3;
6029 offset = Operand(sample_pos_offset);
6030 } else if (ctx->options->chip_class >= GFX9) {
6031 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6032 } else {
6033 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
6034 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6035 }
6036
6037 Operand off = bld.copy(bld.def(s1), Operand(offset));
6038 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
6039
6040 } else if (ctx->options->chip_class >= GFX9) {
6041 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6042 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
6043 } else if (ctx->options->chip_class >= GFX7) {
6044 /* addr += private_segment_buffer + sample_pos_offset */
6045 Temp tmp0 = bld.tmp(s1);
6046 Temp tmp1 = bld.tmp(s1);
6047 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
6048 Definition scc_tmp = bld.def(s1, scc);
6049 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
6050 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
6051 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6052 Temp pck0 = bld.tmp(v1);
6053 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
6054 tmp1 = as_vgpr(ctx, tmp1);
6055 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
6056 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
6057
6058 /* sample_pos = flat_load_dwordx2 addr */
6059 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
6060 } else {
6061 assert(ctx->options->chip_class == GFX6);
6062
6063 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6064 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6065 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
6066
6067 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6068 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
6069
6070 sample_pos = bld.tmp(v2);
6071
6072 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
6073 load->definitions[0] = Definition(sample_pos);
6074 load->operands[0] = Operand(addr);
6075 load->operands[1] = Operand(rsrc);
6076 load->operands[2] = Operand(0u);
6077 load->offset = sample_pos_offset;
6078 load->offen = 0;
6079 load->addr64 = true;
6080 load->glc = false;
6081 load->dlc = false;
6082 load->disable_wqm = false;
6083 load->barrier = barrier_none;
6084 load->can_reorder = true;
6085 ctx->block->instructions.emplace_back(std::move(load));
6086 }
6087
6088 /* sample_pos -= 0.5 */
6089 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
6090 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
6091 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
6092 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
6093 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
6094
6095 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6096 break;
6097 }
6098 case nir_intrinsic_load_barycentric_at_offset: {
6099 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
6100 RegClass rc = RegClass(offset.type(), 1);
6101 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
6102 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
6103 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6104 break;
6105 }
6106 case nir_intrinsic_load_front_face: {
6107 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6108 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
6109 break;
6110 }
6111 case nir_intrinsic_load_view_index:
6112 case nir_intrinsic_load_layer_id: {
6113 if (instr->intrinsic == nir_intrinsic_load_view_index && (ctx->stage & (sw_vs | sw_gs))) {
6114 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6115 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
6116 break;
6117 }
6118
6119 unsigned idx = nir_intrinsic_base(instr);
6120 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6121 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
6122 break;
6123 }
6124 case nir_intrinsic_load_frag_coord: {
6125 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
6126 break;
6127 }
6128 case nir_intrinsic_load_sample_pos: {
6129 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
6130 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
6131 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6132 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
6133 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
6134 break;
6135 }
6136 case nir_intrinsic_load_interpolated_input:
6137 visit_load_interpolated_input(ctx, instr);
6138 break;
6139 case nir_intrinsic_store_output:
6140 visit_store_output(ctx, instr);
6141 break;
6142 case nir_intrinsic_load_input:
6143 visit_load_input(ctx, instr);
6144 break;
6145 case nir_intrinsic_load_per_vertex_input:
6146 visit_load_per_vertex_input(ctx, instr);
6147 break;
6148 case nir_intrinsic_load_ubo:
6149 visit_load_ubo(ctx, instr);
6150 break;
6151 case nir_intrinsic_load_push_constant:
6152 visit_load_push_constant(ctx, instr);
6153 break;
6154 case nir_intrinsic_load_constant:
6155 visit_load_constant(ctx, instr);
6156 break;
6157 case nir_intrinsic_vulkan_resource_index:
6158 visit_load_resource(ctx, instr);
6159 break;
6160 case nir_intrinsic_discard:
6161 visit_discard(ctx, instr);
6162 break;
6163 case nir_intrinsic_discard_if:
6164 visit_discard_if(ctx, instr);
6165 break;
6166 case nir_intrinsic_load_shared:
6167 visit_load_shared(ctx, instr);
6168 break;
6169 case nir_intrinsic_store_shared:
6170 visit_store_shared(ctx, instr);
6171 break;
6172 case nir_intrinsic_shared_atomic_add:
6173 case nir_intrinsic_shared_atomic_imin:
6174 case nir_intrinsic_shared_atomic_umin:
6175 case nir_intrinsic_shared_atomic_imax:
6176 case nir_intrinsic_shared_atomic_umax:
6177 case nir_intrinsic_shared_atomic_and:
6178 case nir_intrinsic_shared_atomic_or:
6179 case nir_intrinsic_shared_atomic_xor:
6180 case nir_intrinsic_shared_atomic_exchange:
6181 case nir_intrinsic_shared_atomic_comp_swap:
6182 visit_shared_atomic(ctx, instr);
6183 break;
6184 case nir_intrinsic_image_deref_load:
6185 visit_image_load(ctx, instr);
6186 break;
6187 case nir_intrinsic_image_deref_store:
6188 visit_image_store(ctx, instr);
6189 break;
6190 case nir_intrinsic_image_deref_atomic_add:
6191 case nir_intrinsic_image_deref_atomic_umin:
6192 case nir_intrinsic_image_deref_atomic_imin:
6193 case nir_intrinsic_image_deref_atomic_umax:
6194 case nir_intrinsic_image_deref_atomic_imax:
6195 case nir_intrinsic_image_deref_atomic_and:
6196 case nir_intrinsic_image_deref_atomic_or:
6197 case nir_intrinsic_image_deref_atomic_xor:
6198 case nir_intrinsic_image_deref_atomic_exchange:
6199 case nir_intrinsic_image_deref_atomic_comp_swap:
6200 visit_image_atomic(ctx, instr);
6201 break;
6202 case nir_intrinsic_image_deref_size:
6203 visit_image_size(ctx, instr);
6204 break;
6205 case nir_intrinsic_load_ssbo:
6206 visit_load_ssbo(ctx, instr);
6207 break;
6208 case nir_intrinsic_store_ssbo:
6209 visit_store_ssbo(ctx, instr);
6210 break;
6211 case nir_intrinsic_load_global:
6212 visit_load_global(ctx, instr);
6213 break;
6214 case nir_intrinsic_store_global:
6215 visit_store_global(ctx, instr);
6216 break;
6217 case nir_intrinsic_global_atomic_add:
6218 case nir_intrinsic_global_atomic_imin:
6219 case nir_intrinsic_global_atomic_umin:
6220 case nir_intrinsic_global_atomic_imax:
6221 case nir_intrinsic_global_atomic_umax:
6222 case nir_intrinsic_global_atomic_and:
6223 case nir_intrinsic_global_atomic_or:
6224 case nir_intrinsic_global_atomic_xor:
6225 case nir_intrinsic_global_atomic_exchange:
6226 case nir_intrinsic_global_atomic_comp_swap:
6227 visit_global_atomic(ctx, instr);
6228 break;
6229 case nir_intrinsic_ssbo_atomic_add:
6230 case nir_intrinsic_ssbo_atomic_imin:
6231 case nir_intrinsic_ssbo_atomic_umin:
6232 case nir_intrinsic_ssbo_atomic_imax:
6233 case nir_intrinsic_ssbo_atomic_umax:
6234 case nir_intrinsic_ssbo_atomic_and:
6235 case nir_intrinsic_ssbo_atomic_or:
6236 case nir_intrinsic_ssbo_atomic_xor:
6237 case nir_intrinsic_ssbo_atomic_exchange:
6238 case nir_intrinsic_ssbo_atomic_comp_swap:
6239 visit_atomic_ssbo(ctx, instr);
6240 break;
6241 case nir_intrinsic_load_scratch:
6242 visit_load_scratch(ctx, instr);
6243 break;
6244 case nir_intrinsic_store_scratch:
6245 visit_store_scratch(ctx, instr);
6246 break;
6247 case nir_intrinsic_get_buffer_size:
6248 visit_get_buffer_size(ctx, instr);
6249 break;
6250 case nir_intrinsic_control_barrier: {
6251 unsigned* bsize = ctx->program->info->cs.block_size;
6252 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
6253 if (workgroup_size > ctx->program->wave_size)
6254 bld.sopp(aco_opcode::s_barrier);
6255 break;
6256 }
6257 case nir_intrinsic_group_memory_barrier:
6258 case nir_intrinsic_memory_barrier:
6259 case nir_intrinsic_memory_barrier_buffer:
6260 case nir_intrinsic_memory_barrier_image:
6261 case nir_intrinsic_memory_barrier_shared:
6262 emit_memory_barrier(ctx, instr);
6263 break;
6264 case nir_intrinsic_memory_barrier_tcs_patch:
6265 break;
6266 case nir_intrinsic_load_num_work_groups: {
6267 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6268 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
6269 emit_split_vector(ctx, dst, 3);
6270 break;
6271 }
6272 case nir_intrinsic_load_local_invocation_id: {
6273 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6274 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
6275 emit_split_vector(ctx, dst, 3);
6276 break;
6277 }
6278 case nir_intrinsic_load_work_group_id: {
6279 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6280 struct ac_arg *args = ctx->args->ac.workgroup_ids;
6281 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6282 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
6283 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
6284 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
6285 emit_split_vector(ctx, dst, 3);
6286 break;
6287 }
6288 case nir_intrinsic_load_local_invocation_index: {
6289 Temp id = emit_mbcnt(ctx, bld.def(v1));
6290
6291 /* The tg_size bits [6:11] contain the subgroup id,
6292 * we need this multiplied by the wave size, and then OR the thread id to it.
6293 */
6294 if (ctx->program->wave_size == 64) {
6295 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
6296 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
6297 get_arg(ctx, ctx->args->ac.tg_size));
6298 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
6299 } else {
6300 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
6301 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
6302 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6303 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
6304 }
6305 break;
6306 }
6307 case nir_intrinsic_load_subgroup_id: {
6308 if (ctx->stage == compute_cs) {
6309 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
6310 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6311 } else {
6312 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
6313 }
6314 break;
6315 }
6316 case nir_intrinsic_load_subgroup_invocation: {
6317 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
6318 break;
6319 }
6320 case nir_intrinsic_load_num_subgroups: {
6321 if (ctx->stage == compute_cs)
6322 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
6323 get_arg(ctx, ctx->args->ac.tg_size));
6324 else
6325 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
6326 break;
6327 }
6328 case nir_intrinsic_ballot: {
6329 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6330 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6331 Definition tmp = bld.def(dst.regClass());
6332 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
6333 if (instr->src[0].ssa->bit_size == 1) {
6334 assert(src.regClass() == bld.lm);
6335 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
6336 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
6337 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
6338 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
6339 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
6340 } else {
6341 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6342 nir_print_instr(&instr->instr, stderr);
6343 fprintf(stderr, "\n");
6344 }
6345 if (dst.size() != bld.lm.size()) {
6346 /* Wave32 with ballot size set to 64 */
6347 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
6348 }
6349 emit_wqm(ctx, tmp.getTemp(), dst);
6350 break;
6351 }
6352 case nir_intrinsic_shuffle:
6353 case nir_intrinsic_read_invocation: {
6354 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6355 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
6356 emit_uniform_subgroup(ctx, instr, src);
6357 } else {
6358 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
6359 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
6360 tid = bld.as_uniform(tid);
6361 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6362 if (src.regClass() == v1) {
6363 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
6364 } else if (src.regClass() == v2) {
6365 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6366 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6367 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
6368 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
6369 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6370 emit_split_vector(ctx, dst, 2);
6371 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
6372 assert(src.regClass() == bld.lm);
6373 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
6374 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6375 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
6376 assert(src.regClass() == bld.lm);
6377 Temp tmp;
6378 if (ctx->program->chip_class <= GFX7)
6379 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
6380 else if (ctx->program->wave_size == 64)
6381 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
6382 else
6383 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
6384 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6385 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
6386 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
6387 } else {
6388 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6389 nir_print_instr(&instr->instr, stderr);
6390 fprintf(stderr, "\n");
6391 }
6392 }
6393 break;
6394 }
6395 case nir_intrinsic_load_sample_id: {
6396 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6397 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6398 break;
6399 }
6400 case nir_intrinsic_load_sample_mask_in: {
6401 visit_load_sample_mask_in(ctx, instr);
6402 break;
6403 }
6404 case nir_intrinsic_read_first_invocation: {
6405 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6406 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6407 if (src.regClass() == v1) {
6408 emit_wqm(ctx,
6409 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
6410 dst);
6411 } else if (src.regClass() == v2) {
6412 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6413 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6414 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
6415 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
6416 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6417 emit_split_vector(ctx, dst, 2);
6418 } else if (instr->dest.ssa.bit_size == 1) {
6419 assert(src.regClass() == bld.lm);
6420 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
6421 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
6422 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6423 } else if (src.regClass() == s1) {
6424 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
6425 } else if (src.regClass() == s2) {
6426 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
6427 } else {
6428 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6429 nir_print_instr(&instr->instr, stderr);
6430 fprintf(stderr, "\n");
6431 }
6432 break;
6433 }
6434 case nir_intrinsic_vote_all: {
6435 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6436 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6437 assert(src.regClass() == bld.lm);
6438 assert(dst.regClass() == bld.lm);
6439
6440 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6441 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6442 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
6443 break;
6444 }
6445 case nir_intrinsic_vote_any: {
6446 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6447 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6448 assert(src.regClass() == bld.lm);
6449 assert(dst.regClass() == bld.lm);
6450
6451 Temp tmp = bool_to_scalar_condition(ctx, src);
6452 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6453 break;
6454 }
6455 case nir_intrinsic_reduce:
6456 case nir_intrinsic_inclusive_scan:
6457 case nir_intrinsic_exclusive_scan: {
6458 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6459 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6460 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
6461 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
6462 nir_intrinsic_cluster_size(instr) : 0;
6463 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
6464
6465 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
6466 emit_uniform_subgroup(ctx, instr, src);
6467 } else if (instr->dest.ssa.bit_size == 1) {
6468 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
6469 op = nir_op_iand;
6470 else if (op == nir_op_iadd)
6471 op = nir_op_ixor;
6472 else if (op == nir_op_umax || op == nir_op_imax)
6473 op = nir_op_ior;
6474 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
6475
6476 switch (instr->intrinsic) {
6477 case nir_intrinsic_reduce:
6478 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
6479 break;
6480 case nir_intrinsic_exclusive_scan:
6481 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
6482 break;
6483 case nir_intrinsic_inclusive_scan:
6484 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
6485 break;
6486 default:
6487 assert(false);
6488 }
6489 } else if (cluster_size == 1) {
6490 bld.copy(Definition(dst), src);
6491 } else {
6492 src = as_vgpr(ctx, src);
6493
6494 ReduceOp reduce_op;
6495 switch (op) {
6496 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
6497 CASE(iadd)
6498 CASE(imul)
6499 CASE(fadd)
6500 CASE(fmul)
6501 CASE(imin)
6502 CASE(umin)
6503 CASE(fmin)
6504 CASE(imax)
6505 CASE(umax)
6506 CASE(fmax)
6507 CASE(iand)
6508 CASE(ior)
6509 CASE(ixor)
6510 default:
6511 unreachable("unknown reduction op");
6512 #undef CASE
6513 }
6514
6515 aco_opcode aco_op;
6516 switch (instr->intrinsic) {
6517 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
6518 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
6519 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
6520 default:
6521 unreachable("unknown reduce intrinsic");
6522 }
6523
6524 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
6525 reduce->operands[0] = Operand(src);
6526 // filled in by aco_reduce_assign.cpp, used internally as part of the
6527 // reduce sequence
6528 assert(dst.size() == 1 || dst.size() == 2);
6529 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
6530 reduce->operands[2] = Operand(v1.as_linear());
6531
6532 Temp tmp_dst = bld.tmp(dst.regClass());
6533 reduce->definitions[0] = Definition(tmp_dst);
6534 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
6535 reduce->definitions[2] = Definition();
6536 reduce->definitions[3] = Definition(scc, s1);
6537 reduce->definitions[4] = Definition();
6538 reduce->reduce_op = reduce_op;
6539 reduce->cluster_size = cluster_size;
6540 ctx->block->instructions.emplace_back(std::move(reduce));
6541
6542 emit_wqm(ctx, tmp_dst, dst);
6543 }
6544 break;
6545 }
6546 case nir_intrinsic_quad_broadcast: {
6547 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6548 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6549 emit_uniform_subgroup(ctx, instr, src);
6550 } else {
6551 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6552 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
6553 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
6554
6555 if (instr->dest.ssa.bit_size == 1) {
6556 assert(src.regClass() == bld.lm);
6557 assert(dst.regClass() == bld.lm);
6558 uint32_t half_mask = 0x11111111u << lane;
6559 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
6560 Temp tmp = bld.tmp(bld.lm);
6561 bld.sop1(Builder::s_wqm, Definition(tmp),
6562 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
6563 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
6564 emit_wqm(ctx, tmp, dst);
6565 } else if (instr->dest.ssa.bit_size == 32) {
6566 if (ctx->program->chip_class >= GFX8)
6567 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
6568 else
6569 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
6570 } else if (instr->dest.ssa.bit_size == 64) {
6571 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6572 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6573 if (ctx->program->chip_class >= GFX8) {
6574 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6575 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6576 } else {
6577 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
6578 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
6579 }
6580 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6581 emit_split_vector(ctx, dst, 2);
6582 } else {
6583 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6584 nir_print_instr(&instr->instr, stderr);
6585 fprintf(stderr, "\n");
6586 }
6587 }
6588 break;
6589 }
6590 case nir_intrinsic_quad_swap_horizontal:
6591 case nir_intrinsic_quad_swap_vertical:
6592 case nir_intrinsic_quad_swap_diagonal:
6593 case nir_intrinsic_quad_swizzle_amd: {
6594 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6595 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6596 emit_uniform_subgroup(ctx, instr, src);
6597 break;
6598 }
6599 uint16_t dpp_ctrl = 0;
6600 switch (instr->intrinsic) {
6601 case nir_intrinsic_quad_swap_horizontal:
6602 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
6603 break;
6604 case nir_intrinsic_quad_swap_vertical:
6605 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
6606 break;
6607 case nir_intrinsic_quad_swap_diagonal:
6608 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
6609 break;
6610 case nir_intrinsic_quad_swizzle_amd:
6611 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
6612 break;
6613 default:
6614 break;
6615 }
6616 if (ctx->program->chip_class < GFX8)
6617 dpp_ctrl |= (1 << 15);
6618
6619 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6620 if (instr->dest.ssa.bit_size == 1) {
6621 assert(src.regClass() == bld.lm);
6622 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
6623 if (ctx->program->chip_class >= GFX8)
6624 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6625 else
6626 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6627 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
6628 emit_wqm(ctx, tmp, dst);
6629 } else if (instr->dest.ssa.bit_size == 32) {
6630 Temp tmp;
6631 if (ctx->program->chip_class >= GFX8)
6632 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6633 else
6634 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6635 emit_wqm(ctx, tmp, dst);
6636 } else if (instr->dest.ssa.bit_size == 64) {
6637 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6638 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6639 if (ctx->program->chip_class >= GFX8) {
6640 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6641 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6642 } else {
6643 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
6644 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
6645 }
6646 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6647 emit_split_vector(ctx, dst, 2);
6648 } else {
6649 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6650 nir_print_instr(&instr->instr, stderr);
6651 fprintf(stderr, "\n");
6652 }
6653 break;
6654 }
6655 case nir_intrinsic_masked_swizzle_amd: {
6656 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6657 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6658 emit_uniform_subgroup(ctx, instr, src);
6659 break;
6660 }
6661 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6662 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
6663 if (dst.regClass() == v1) {
6664 emit_wqm(ctx,
6665 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
6666 dst);
6667 } else if (dst.regClass() == v2) {
6668 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6669 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6670 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
6671 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
6672 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6673 emit_split_vector(ctx, dst, 2);
6674 } else {
6675 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6676 nir_print_instr(&instr->instr, stderr);
6677 fprintf(stderr, "\n");
6678 }
6679 break;
6680 }
6681 case nir_intrinsic_write_invocation_amd: {
6682 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6683 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
6684 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
6685 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6686 if (dst.regClass() == v1) {
6687 /* src2 is ignored for writelane. RA assigns the same reg for dst */
6688 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
6689 } else if (dst.regClass() == v2) {
6690 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
6691 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
6692 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
6693 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
6694 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
6695 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
6696 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6697 emit_split_vector(ctx, dst, 2);
6698 } else {
6699 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6700 nir_print_instr(&instr->instr, stderr);
6701 fprintf(stderr, "\n");
6702 }
6703 break;
6704 }
6705 case nir_intrinsic_mbcnt_amd: {
6706 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6707 RegClass rc = RegClass(src.type(), 1);
6708 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
6709 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
6710 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6711 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
6712 emit_wqm(ctx, wqm_tmp, dst);
6713 break;
6714 }
6715 case nir_intrinsic_load_helper_invocation: {
6716 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6717 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
6718 ctx->block->kind |= block_kind_needs_lowering;
6719 ctx->program->needs_exact = true;
6720 break;
6721 }
6722 case nir_intrinsic_is_helper_invocation: {
6723 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6724 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
6725 ctx->block->kind |= block_kind_needs_lowering;
6726 ctx->program->needs_exact = true;
6727 break;
6728 }
6729 case nir_intrinsic_demote:
6730 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
6731
6732 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
6733 ctx->cf_info.exec_potentially_empty = true;
6734 ctx->block->kind |= block_kind_uses_demote;
6735 ctx->program->needs_exact = true;
6736 break;
6737 case nir_intrinsic_demote_if: {
6738 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6739 assert(src.regClass() == bld.lm);
6740 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6741 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
6742
6743 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
6744 ctx->cf_info.exec_potentially_empty = true;
6745 ctx->block->kind |= block_kind_uses_demote;
6746 ctx->program->needs_exact = true;
6747 break;
6748 }
6749 case nir_intrinsic_first_invocation: {
6750 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
6751 get_ssa_temp(ctx, &instr->dest.ssa));
6752 break;
6753 }
6754 case nir_intrinsic_shader_clock:
6755 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
6756 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
6757 break;
6758 case nir_intrinsic_load_vertex_id_zero_base: {
6759 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6760 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
6761 break;
6762 }
6763 case nir_intrinsic_load_first_vertex: {
6764 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6765 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
6766 break;
6767 }
6768 case nir_intrinsic_load_base_instance: {
6769 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6770 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
6771 break;
6772 }
6773 case nir_intrinsic_load_instance_id: {
6774 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6775 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
6776 break;
6777 }
6778 case nir_intrinsic_load_draw_id: {
6779 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6780 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
6781 break;
6782 }
6783 case nir_intrinsic_load_invocation_id: {
6784 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
6785 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6786 if (ctx->options->chip_class >= GFX10)
6787 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
6788 else
6789 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
6790 break;
6791 }
6792 case nir_intrinsic_load_primitive_id: {
6793 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
6794 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6795 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
6796 break;
6797 }
6798 case nir_intrinsic_emit_vertex_with_counter: {
6799 visit_emit_vertex_with_counter(ctx, instr);
6800 break;
6801 }
6802 case nir_intrinsic_end_primitive_with_counter: {
6803 unsigned stream = nir_intrinsic_stream_id(instr);
6804 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
6805 break;
6806 }
6807 case nir_intrinsic_set_vertex_count: {
6808 /* unused, the HW keeps track of this for us */
6809 break;
6810 }
6811 default:
6812 fprintf(stderr, "Unimplemented intrinsic instr: ");
6813 nir_print_instr(&instr->instr, stderr);
6814 fprintf(stderr, "\n");
6815 abort();
6816
6817 break;
6818 }
6819 }
6820
6821
6822 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
6823 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
6824 enum glsl_base_type *stype)
6825 {
6826 nir_deref_instr *texture_deref_instr = NULL;
6827 nir_deref_instr *sampler_deref_instr = NULL;
6828 int plane = -1;
6829
6830 for (unsigned i = 0; i < instr->num_srcs; i++) {
6831 switch (instr->src[i].src_type) {
6832 case nir_tex_src_texture_deref:
6833 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
6834 break;
6835 case nir_tex_src_sampler_deref:
6836 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
6837 break;
6838 case nir_tex_src_plane:
6839 plane = nir_src_as_int(instr->src[i].src);
6840 break;
6841 default:
6842 break;
6843 }
6844 }
6845
6846 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
6847
6848 if (!sampler_deref_instr)
6849 sampler_deref_instr = texture_deref_instr;
6850
6851 if (plane >= 0) {
6852 assert(instr->op != nir_texop_txf_ms &&
6853 instr->op != nir_texop_samples_identical);
6854 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
6855 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
6856 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
6857 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
6858 } else if (instr->op == nir_texop_fragment_mask_fetch) {
6859 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
6860 } else {
6861 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
6862 }
6863 if (samp_ptr) {
6864 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
6865
6866 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
6867 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
6868 Builder bld(ctx->program, ctx->block);
6869
6870 /* to avoid unnecessary moves, we split and recombine sampler and image */
6871 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
6872 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6873 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6874 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
6875 Definition(img[2]), Definition(img[3]), Definition(img[4]),
6876 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
6877 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
6878 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
6879
6880 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
6881 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
6882 img[0], img[1], img[2], img[3],
6883 img[4], img[5], img[6], img[7]);
6884 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6885 samp[0], samp[1], samp[2], samp[3]);
6886 }
6887 }
6888 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
6889 instr->op == nir_texop_samples_identical))
6890 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
6891 }
6892
6893 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
6894 Temp *out_ma, Temp *out_sc, Temp *out_tc)
6895 {
6896 Builder bld(ctx->program, ctx->block);
6897
6898 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
6899 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
6900 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
6901
6902 Operand neg_one(0xbf800000u);
6903 Operand one(0x3f800000u);
6904 Operand two(0x40000000u);
6905 Operand four(0x40800000u);
6906
6907 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
6908 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
6909 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
6910
6911 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
6912 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
6913 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
6914 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
6915
6916 // select sc
6917 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
6918 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
6919 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
6920 one, is_ma_y);
6921 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
6922
6923 // select tc
6924 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
6925 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
6926 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
6927
6928 // select ma
6929 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
6930 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
6931 deriv_z, is_ma_z);
6932 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
6933 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
6934 }
6935
6936 void prepare_cube_coords(isel_context *ctx, Temp* coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
6937 {
6938 Builder bld(ctx->program, ctx->block);
6939 Temp coord_args[4], ma, tc, sc, id;
6940 for (unsigned i = 0; i < (is_array ? 4 : 3); i++)
6941 coord_args[i] = emit_extract_vector(ctx, *coords, i, v1);
6942
6943 if (is_array) {
6944 coord_args[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_args[3]);
6945
6946 // see comment in ac_prepare_cube_coords()
6947 if (ctx->options->chip_class <= GFX8)
6948 coord_args[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coord_args[3]);
6949 }
6950
6951 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6952
6953 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
6954 vop3a->operands[0] = Operand(ma);
6955 vop3a->abs[0] = true;
6956 Temp invma = bld.tmp(v1);
6957 vop3a->definitions[0] = Definition(invma);
6958 ctx->block->instructions.emplace_back(std::move(vop3a));
6959
6960 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6961 if (!is_deriv)
6962 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
6963
6964 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6965 if (!is_deriv)
6966 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
6967
6968 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6969
6970 if (is_deriv) {
6971 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
6972 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
6973
6974 for (unsigned i = 0; i < 2; i++) {
6975 // see comment in ac_prepare_cube_coords()
6976 Temp deriv_ma;
6977 Temp deriv_sc, deriv_tc;
6978 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
6979 &deriv_ma, &deriv_sc, &deriv_tc);
6980
6981 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
6982
6983 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
6984 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
6985 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
6986 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
6987 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
6988 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
6989 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
6990 }
6991
6992 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
6993 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
6994 }
6995
6996 if (is_array)
6997 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coord_args[3], id, Operand(0x41000000u/*8.0*/));
6998 *coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), sc, tc, id);
6999
7000 }
7001
7002 Temp apply_round_slice(isel_context *ctx, Temp coords, unsigned idx)
7003 {
7004 Temp coord_vec[3];
7005 for (unsigned i = 0; i < coords.size(); i++)
7006 coord_vec[i] = emit_extract_vector(ctx, coords, i, v1);
7007
7008 Builder bld(ctx->program, ctx->block);
7009 coord_vec[idx] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_vec[idx]);
7010
7011 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
7012 for (unsigned i = 0; i < coords.size(); i++)
7013 vec->operands[i] = Operand(coord_vec[i]);
7014 Temp res = bld.tmp(RegType::vgpr, coords.size());
7015 vec->definitions[0] = Definition(res);
7016 ctx->block->instructions.emplace_back(std::move(vec));
7017 return res;
7018 }
7019
7020 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
7021 {
7022 if (vec->parent_instr->type != nir_instr_type_alu)
7023 return;
7024 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
7025 if (vec_instr->op != nir_op_vec(vec->num_components))
7026 return;
7027
7028 for (unsigned i = 0; i < vec->num_components; i++) {
7029 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
7030 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
7031 }
7032 }
7033
7034 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
7035 {
7036 Builder bld(ctx->program, ctx->block);
7037 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
7038 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
7039 Temp resource, sampler, fmask_ptr, bias = Temp(), coords, compare = Temp(), sample_index = Temp(),
7040 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(), derivs = Temp();
7041 nir_const_value *sample_index_cv = NULL;
7042 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
7043 enum glsl_base_type stype;
7044 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
7045
7046 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
7047 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
7048 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
7049 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
7050
7051 for (unsigned i = 0; i < instr->num_srcs; i++) {
7052 switch (instr->src[i].src_type) {
7053 case nir_tex_src_coord:
7054 coords = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[i].src.ssa));
7055 break;
7056 case nir_tex_src_bias:
7057 if (instr->op == nir_texop_txb) {
7058 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
7059 has_bias = true;
7060 }
7061 break;
7062 case nir_tex_src_lod: {
7063 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
7064
7065 if (val && val->f32 <= 0.0) {
7066 level_zero = true;
7067 } else {
7068 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
7069 has_lod = true;
7070 }
7071 break;
7072 }
7073 case nir_tex_src_comparator:
7074 if (instr->is_shadow) {
7075 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
7076 has_compare = true;
7077 }
7078 break;
7079 case nir_tex_src_offset:
7080 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
7081 get_const_vec(instr->src[i].src.ssa, const_offset);
7082 has_offset = true;
7083 break;
7084 case nir_tex_src_ddx:
7085 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
7086 has_ddx = true;
7087 break;
7088 case nir_tex_src_ddy:
7089 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
7090 has_ddy = true;
7091 break;
7092 case nir_tex_src_ms_index:
7093 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
7094 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
7095 has_sample_index = true;
7096 break;
7097 case nir_tex_src_texture_offset:
7098 case nir_tex_src_sampler_offset:
7099 default:
7100 break;
7101 }
7102 }
7103 // TODO: all other cases: structure taken from ac_nir_to_llvm.c
7104 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
7105 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
7106
7107 if (instr->op == nir_texop_texture_samples) {
7108 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
7109
7110 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
7111 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
7112 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
7113 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
7114
7115 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7116 samples, Operand(1u), bld.scc(is_msaa));
7117 return;
7118 }
7119
7120 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
7121 aco_ptr<Instruction> tmp_instr;
7122 Temp acc, pack = Temp();
7123
7124 uint32_t pack_const = 0;
7125 for (unsigned i = 0; i < offset.size(); i++) {
7126 if (!const_offset[i])
7127 continue;
7128 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
7129 }
7130
7131 if (offset.type() == RegType::sgpr) {
7132 for (unsigned i = 0; i < offset.size(); i++) {
7133 if (const_offset[i])
7134 continue;
7135
7136 acc = emit_extract_vector(ctx, offset, i, s1);
7137 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
7138
7139 if (i) {
7140 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
7141 }
7142
7143 if (pack == Temp()) {
7144 pack = acc;
7145 } else {
7146 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
7147 }
7148 }
7149
7150 if (pack_const && pack != Temp())
7151 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
7152 } else {
7153 for (unsigned i = 0; i < offset.size(); i++) {
7154 if (const_offset[i])
7155 continue;
7156
7157 acc = emit_extract_vector(ctx, offset, i, v1);
7158 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
7159
7160 if (i) {
7161 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
7162 }
7163
7164 if (pack == Temp()) {
7165 pack = acc;
7166 } else {
7167 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
7168 }
7169 }
7170
7171 if (pack_const && pack != Temp())
7172 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
7173 }
7174 if (pack_const && pack == Temp())
7175 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
7176 else if (pack == Temp())
7177 has_offset = false;
7178 else
7179 offset = pack;
7180 }
7181
7182 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
7183 prepare_cube_coords(ctx, &coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
7184
7185 /* pack derivatives */
7186 if (has_ddx || has_ddy) {
7187 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
7188 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(v4),
7189 ddx, Operand(0u), ddy, Operand(0u));
7190 } else {
7191 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, ddx.size() + ddy.size()), ddx, ddy);
7192 }
7193 has_derivs = true;
7194 }
7195
7196 if (instr->coord_components > 1 &&
7197 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7198 instr->is_array &&
7199 instr->op != nir_texop_txf)
7200 coords = apply_round_slice(ctx, coords, 1);
7201
7202 if (instr->coord_components > 2 &&
7203 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
7204 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7205 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
7206 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7207 instr->is_array &&
7208 instr->op != nir_texop_txf &&
7209 instr->op != nir_texop_txf_ms &&
7210 instr->op != nir_texop_fragment_fetch &&
7211 instr->op != nir_texop_fragment_mask_fetch)
7212 coords = apply_round_slice(ctx, coords, 2);
7213
7214 if (ctx->options->chip_class == GFX9 &&
7215 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7216 instr->op != nir_texop_lod && instr->coord_components) {
7217 assert(coords.size() > 0 && coords.size() < 3);
7218
7219 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size() + 1, 1)};
7220 vec->operands[0] = Operand(emit_extract_vector(ctx, coords, 0, v1));
7221 vec->operands[1] = instr->op == nir_texop_txf ? Operand((uint32_t) 0) : Operand((uint32_t) 0x3f000000);
7222 if (coords.size() > 1)
7223 vec->operands[2] = Operand(emit_extract_vector(ctx, coords, 1, v1));
7224 coords = bld.tmp(RegType::vgpr, coords.size() + 1);
7225 vec->definitions[0] = Definition(coords);
7226 ctx->block->instructions.emplace_back(std::move(vec));
7227 }
7228
7229 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
7230
7231 if (instr->op == nir_texop_samples_identical)
7232 resource = fmask_ptr;
7233
7234 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7235 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7236 instr->op != nir_texop_txs &&
7237 instr->op != nir_texop_fragment_fetch &&
7238 instr->op != nir_texop_fragment_mask_fetch) {
7239 assert(has_sample_index);
7240 Operand op(sample_index);
7241 if (sample_index_cv)
7242 op = Operand(sample_index_cv->u32);
7243 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
7244 }
7245
7246 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
7247 Temp split_coords[coords.size()];
7248 emit_split_vector(ctx, coords, coords.size());
7249 for (unsigned i = 0; i < coords.size(); i++)
7250 split_coords[i] = emit_extract_vector(ctx, coords, i, v1);
7251
7252 unsigned i = 0;
7253 for (; i < std::min(offset.size(), instr->coord_components); i++) {
7254 Temp off = emit_extract_vector(ctx, offset, i, v1);
7255 split_coords[i] = bld.vadd32(bld.def(v1), split_coords[i], off);
7256 }
7257
7258 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
7259 for (unsigned i = 0; i < coords.size(); i++)
7260 vec->operands[i] = Operand(split_coords[i]);
7261 coords = bld.tmp(coords.regClass());
7262 vec->definitions[0] = Definition(coords);
7263 ctx->block->instructions.emplace_back(std::move(vec));
7264
7265 has_offset = false;
7266 }
7267
7268 /* Build tex instruction */
7269 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
7270 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
7271 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
7272 : 0;
7273 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7274 Temp tmp_dst = dst;
7275
7276 /* gather4 selects the component by dmask and always returns vec4 */
7277 if (instr->op == nir_texop_tg4) {
7278 assert(instr->dest.ssa.num_components == 4);
7279 if (instr->is_shadow)
7280 dmask = 1;
7281 else
7282 dmask = 1 << instr->component;
7283 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
7284 tmp_dst = bld.tmp(v4);
7285 } else if (instr->op == nir_texop_samples_identical) {
7286 tmp_dst = bld.tmp(v1);
7287 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
7288 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
7289 }
7290
7291 aco_ptr<MIMG_instruction> tex;
7292 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
7293 if (!has_lod)
7294 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7295
7296 bool div_by_6 = instr->op == nir_texop_txs &&
7297 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
7298 instr->is_array &&
7299 (dmask & (1 << 2));
7300 if (tmp_dst.id() == dst.id() && div_by_6)
7301 tmp_dst = bld.tmp(tmp_dst.regClass());
7302
7303 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
7304 tex->operands[0] = Operand(as_vgpr(ctx,lod));
7305 tex->operands[1] = Operand(resource);
7306 if (ctx->options->chip_class == GFX9 &&
7307 instr->op == nir_texop_txs &&
7308 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7309 instr->is_array) {
7310 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
7311 } else if (instr->op == nir_texop_query_levels) {
7312 tex->dmask = 1 << 3;
7313 } else {
7314 tex->dmask = dmask;
7315 }
7316 tex->da = da;
7317 tex->definitions[0] = Definition(tmp_dst);
7318 tex->dim = dim;
7319 tex->can_reorder = true;
7320 ctx->block->instructions.emplace_back(std::move(tex));
7321
7322 if (div_by_6) {
7323 /* divide 3rd value by 6 by multiplying with magic number */
7324 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7325 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
7326 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
7327 assert(instr->dest.ssa.num_components == 3);
7328 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
7329 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7330 emit_extract_vector(ctx, tmp_dst, 0, v1),
7331 emit_extract_vector(ctx, tmp_dst, 1, v1),
7332 by_6);
7333
7334 }
7335
7336 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7337 return;
7338 }
7339
7340 Temp tg4_compare_cube_wa64 = Temp();
7341
7342 if (tg4_integer_workarounds) {
7343 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
7344 tex->operands[0] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7345 tex->operands[1] = Operand(resource);
7346 tex->dim = dim;
7347 tex->dmask = 0x3;
7348 tex->da = da;
7349 Temp size = bld.tmp(v2);
7350 tex->definitions[0] = Definition(size);
7351 tex->can_reorder = true;
7352 ctx->block->instructions.emplace_back(std::move(tex));
7353 emit_split_vector(ctx, size, size.size());
7354
7355 Temp half_texel[2];
7356 for (unsigned i = 0; i < 2; i++) {
7357 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
7358 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
7359 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
7360 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
7361 }
7362
7363 Temp orig_coords[2] = {
7364 emit_extract_vector(ctx, coords, 0, v1),
7365 emit_extract_vector(ctx, coords, 1, v1)};
7366 Temp new_coords[2] = {
7367 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[0], half_texel[0]),
7368 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[1], half_texel[1])
7369 };
7370
7371 if (tg4_integer_cube_workaround) {
7372 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
7373 Temp desc[resource.size()];
7374 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
7375 Format::PSEUDO, 1, resource.size())};
7376 split->operands[0] = Operand(resource);
7377 for (unsigned i = 0; i < resource.size(); i++) {
7378 desc[i] = bld.tmp(s1);
7379 split->definitions[i] = Definition(desc[i]);
7380 }
7381 ctx->block->instructions.emplace_back(std::move(split));
7382
7383 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
7384 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
7385 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
7386
7387 Temp nfmt;
7388 if (stype == GLSL_TYPE_UINT) {
7389 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7390 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
7391 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
7392 bld.scc(compare_cube_wa));
7393 } else {
7394 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7395 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
7396 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
7397 bld.scc(compare_cube_wa));
7398 }
7399 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
7400 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
7401
7402 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
7403
7404 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
7405 Operand((uint32_t)C_008F14_NUM_FORMAT));
7406 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
7407
7408 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
7409 Format::PSEUDO, resource.size(), 1)};
7410 for (unsigned i = 0; i < resource.size(); i++)
7411 vec->operands[i] = Operand(desc[i]);
7412 resource = bld.tmp(resource.regClass());
7413 vec->definitions[0] = Definition(resource);
7414 ctx->block->instructions.emplace_back(std::move(vec));
7415
7416 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7417 new_coords[0], orig_coords[0], tg4_compare_cube_wa64);
7418 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7419 new_coords[1], orig_coords[1], tg4_compare_cube_wa64);
7420 }
7421
7422 if (coords.size() == 3) {
7423 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3),
7424 new_coords[0], new_coords[1],
7425 emit_extract_vector(ctx, coords, 2, v1));
7426 } else {
7427 assert(coords.size() == 2);
7428 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2),
7429 new_coords[0], new_coords[1]);
7430 }
7431 }
7432
7433 std::vector<Operand> args;
7434 if (has_offset)
7435 args.emplace_back(Operand(offset));
7436 if (has_bias)
7437 args.emplace_back(Operand(bias));
7438 if (has_compare)
7439 args.emplace_back(Operand(compare));
7440 if (has_derivs)
7441 args.emplace_back(Operand(derivs));
7442 args.emplace_back(Operand(coords));
7443 if (has_sample_index)
7444 args.emplace_back(Operand(sample_index));
7445 if (has_lod)
7446 args.emplace_back(lod);
7447
7448 Temp arg;
7449 if (args.size() > 1) {
7450 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
7451 unsigned size = 0;
7452 for (unsigned i = 0; i < args.size(); i++) {
7453 size += args[i].size();
7454 vec->operands[i] = args[i];
7455 }
7456 RegClass rc = RegClass(RegType::vgpr, size);
7457 Temp tmp = bld.tmp(rc);
7458 vec->definitions[0] = Definition(tmp);
7459 ctx->block->instructions.emplace_back(std::move(vec));
7460 arg = tmp;
7461 } else {
7462 assert(args[0].isTemp());
7463 arg = as_vgpr(ctx, args[0].getTemp());
7464 }
7465
7466 /* we don't need the bias, sample index, compare value or offset to be
7467 * computed in WQM but if the p_create_vector copies the coordinates, then it
7468 * needs to be in WQM */
7469 if (!(has_ddx && has_ddy) && !has_lod && !level_zero &&
7470 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
7471 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
7472 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
7473
7474 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7475 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
7476
7477 assert(coords.size() == 1);
7478 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
7479 aco_opcode op;
7480 switch (last_bit) {
7481 case 1:
7482 op = aco_opcode::buffer_load_format_x; break;
7483 case 2:
7484 op = aco_opcode::buffer_load_format_xy; break;
7485 case 3:
7486 op = aco_opcode::buffer_load_format_xyz; break;
7487 case 4:
7488 op = aco_opcode::buffer_load_format_xyzw; break;
7489 default:
7490 unreachable("Tex instruction loads more than 4 components.");
7491 }
7492
7493 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
7494 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
7495 tmp_dst = dst;
7496 else
7497 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
7498
7499 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
7500 mubuf->operands[0] = Operand(coords);
7501 mubuf->operands[1] = Operand(resource);
7502 mubuf->operands[2] = Operand((uint32_t) 0);
7503 mubuf->definitions[0] = Definition(tmp_dst);
7504 mubuf->idxen = true;
7505 mubuf->can_reorder = true;
7506 ctx->block->instructions.emplace_back(std::move(mubuf));
7507
7508 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
7509 return;
7510 }
7511
7512
7513 if (instr->op == nir_texop_txf ||
7514 instr->op == nir_texop_txf_ms ||
7515 instr->op == nir_texop_samples_identical ||
7516 instr->op == nir_texop_fragment_fetch ||
7517 instr->op == nir_texop_fragment_mask_fetch) {
7518 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
7519 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 2, 1));
7520 tex->operands[0] = Operand(arg);
7521 tex->operands[1] = Operand(resource);
7522 tex->dim = dim;
7523 tex->dmask = dmask;
7524 tex->unrm = true;
7525 tex->da = da;
7526 tex->definitions[0] = Definition(tmp_dst);
7527 tex->can_reorder = true;
7528 ctx->block->instructions.emplace_back(std::move(tex));
7529
7530 if (instr->op == nir_texop_samples_identical) {
7531 assert(dmask == 1 && dst.regClass() == v1);
7532 assert(dst.id() != tmp_dst.id());
7533
7534 Temp tmp = bld.tmp(bld.lm);
7535 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
7536 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
7537
7538 } else {
7539 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7540 }
7541 return;
7542 }
7543
7544 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
7545 aco_opcode opcode = aco_opcode::image_sample;
7546 if (has_offset) { /* image_sample_*_o */
7547 if (has_compare) {
7548 opcode = aco_opcode::image_sample_c_o;
7549 if (has_derivs)
7550 opcode = aco_opcode::image_sample_c_d_o;
7551 if (has_bias)
7552 opcode = aco_opcode::image_sample_c_b_o;
7553 if (level_zero)
7554 opcode = aco_opcode::image_sample_c_lz_o;
7555 if (has_lod)
7556 opcode = aco_opcode::image_sample_c_l_o;
7557 } else {
7558 opcode = aco_opcode::image_sample_o;
7559 if (has_derivs)
7560 opcode = aco_opcode::image_sample_d_o;
7561 if (has_bias)
7562 opcode = aco_opcode::image_sample_b_o;
7563 if (level_zero)
7564 opcode = aco_opcode::image_sample_lz_o;
7565 if (has_lod)
7566 opcode = aco_opcode::image_sample_l_o;
7567 }
7568 } else { /* no offset */
7569 if (has_compare) {
7570 opcode = aco_opcode::image_sample_c;
7571 if (has_derivs)
7572 opcode = aco_opcode::image_sample_c_d;
7573 if (has_bias)
7574 opcode = aco_opcode::image_sample_c_b;
7575 if (level_zero)
7576 opcode = aco_opcode::image_sample_c_lz;
7577 if (has_lod)
7578 opcode = aco_opcode::image_sample_c_l;
7579 } else {
7580 opcode = aco_opcode::image_sample;
7581 if (has_derivs)
7582 opcode = aco_opcode::image_sample_d;
7583 if (has_bias)
7584 opcode = aco_opcode::image_sample_b;
7585 if (level_zero)
7586 opcode = aco_opcode::image_sample_lz;
7587 if (has_lod)
7588 opcode = aco_opcode::image_sample_l;
7589 }
7590 }
7591
7592 if (instr->op == nir_texop_tg4) {
7593 if (has_offset) {
7594 opcode = aco_opcode::image_gather4_lz_o;
7595 if (has_compare)
7596 opcode = aco_opcode::image_gather4_c_lz_o;
7597 } else {
7598 opcode = aco_opcode::image_gather4_lz;
7599 if (has_compare)
7600 opcode = aco_opcode::image_gather4_c_lz;
7601 }
7602 } else if (instr->op == nir_texop_lod) {
7603 opcode = aco_opcode::image_get_lod;
7604 }
7605
7606 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
7607 tex->operands[0] = Operand(arg);
7608 tex->operands[1] = Operand(resource);
7609 tex->operands[2] = Operand(sampler);
7610 tex->dim = dim;
7611 tex->dmask = dmask;
7612 tex->da = da;
7613 tex->definitions[0] = Definition(tmp_dst);
7614 tex->can_reorder = true;
7615 ctx->block->instructions.emplace_back(std::move(tex));
7616
7617 if (tg4_integer_cube_workaround) {
7618 assert(tmp_dst.id() != dst.id());
7619 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
7620
7621 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7622 Temp val[4];
7623 for (unsigned i = 0; i < dst.size(); i++) {
7624 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
7625 Temp cvt_val;
7626 if (stype == GLSL_TYPE_UINT)
7627 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
7628 else
7629 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
7630 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
7631 }
7632 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
7633 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7634 val[0], val[1], val[2], val[3]);
7635 }
7636 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
7637 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
7638
7639 }
7640
7641
7642 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
7643 {
7644 Temp tmp = get_ssa_temp(ctx, ssa);
7645 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
7646 return Operand(tmp.regClass());
7647 else
7648 return Operand(tmp);
7649 }
7650
7651 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
7652 {
7653 aco_ptr<Pseudo_instruction> phi;
7654 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7655 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
7656
7657 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
7658 logical |= ctx->block->kind & block_kind_merge;
7659 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
7660
7661 /* we want a sorted list of sources, since the predecessor list is also sorted */
7662 std::map<unsigned, nir_ssa_def*> phi_src;
7663 nir_foreach_phi_src(src, instr)
7664 phi_src[src->pred->index] = src->src.ssa;
7665
7666 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
7667 unsigned num_operands = 0;
7668 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size())];
7669 unsigned num_defined = 0;
7670 unsigned cur_pred_idx = 0;
7671 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
7672 if (cur_pred_idx < preds.size()) {
7673 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
7674 unsigned block = ctx->cf_info.nir_to_aco[src.first];
7675 unsigned skipped = 0;
7676 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
7677 skipped++;
7678 if (cur_pred_idx + skipped < preds.size()) {
7679 for (unsigned i = 0; i < skipped; i++)
7680 operands[num_operands++] = Operand(dst.regClass());
7681 cur_pred_idx += skipped;
7682 } else {
7683 continue;
7684 }
7685 }
7686 cur_pred_idx++;
7687 Operand op = get_phi_operand(ctx, src.second);
7688 operands[num_operands++] = op;
7689 num_defined += !op.isUndefined();
7690 }
7691 /* handle block_kind_continue_or_break at loop exit blocks */
7692 while (cur_pred_idx++ < preds.size())
7693 operands[num_operands++] = Operand(dst.regClass());
7694
7695 if (num_defined == 0) {
7696 Builder bld(ctx->program, ctx->block);
7697 if (dst.regClass() == s1) {
7698 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
7699 } else if (dst.regClass() == v1) {
7700 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
7701 } else {
7702 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7703 for (unsigned i = 0; i < dst.size(); i++)
7704 vec->operands[i] = Operand(0u);
7705 vec->definitions[0] = Definition(dst);
7706 ctx->block->instructions.emplace_back(std::move(vec));
7707 }
7708 return;
7709 }
7710
7711 /* we can use a linear phi in some cases if one src is undef */
7712 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
7713 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
7714
7715 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
7716 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
7717 assert(invert->kind & block_kind_invert);
7718
7719 unsigned then_block = invert->linear_preds[0];
7720
7721 Block* insert_block = NULL;
7722 for (unsigned i = 0; i < num_operands; i++) {
7723 Operand op = operands[i];
7724 if (op.isUndefined())
7725 continue;
7726 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
7727 phi->operands[0] = op;
7728 break;
7729 }
7730 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
7731 phi->operands[1] = Operand(dst.regClass());
7732 phi->definitions[0] = Definition(dst);
7733 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
7734 return;
7735 }
7736
7737 /* try to scalarize vector phis */
7738 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
7739 // TODO: scalarize linear phis on divergent ifs
7740 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
7741 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
7742 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
7743 Operand src = operands[i];
7744 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
7745 can_scalarize = false;
7746 }
7747 if (can_scalarize) {
7748 unsigned num_components = instr->dest.ssa.num_components;
7749 assert(dst.size() % num_components == 0);
7750 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
7751
7752 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
7753 for (unsigned k = 0; k < num_components; k++) {
7754 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7755 for (unsigned i = 0; i < num_operands; i++) {
7756 Operand src = operands[i];
7757 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
7758 }
7759 Temp phi_dst = {ctx->program->allocateId(), rc};
7760 phi->definitions[0] = Definition(phi_dst);
7761 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7762 new_vec[k] = phi_dst;
7763 vec->operands[k] = Operand(phi_dst);
7764 }
7765 vec->definitions[0] = Definition(dst);
7766 ctx->block->instructions.emplace_back(std::move(vec));
7767 ctx->allocated_vec.emplace(dst.id(), new_vec);
7768 return;
7769 }
7770 }
7771
7772 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7773 for (unsigned i = 0; i < num_operands; i++)
7774 phi->operands[i] = operands[i];
7775 phi->definitions[0] = Definition(dst);
7776 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7777 }
7778
7779
7780 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
7781 {
7782 Temp dst = get_ssa_temp(ctx, &instr->def);
7783
7784 assert(dst.type() == RegType::sgpr);
7785
7786 if (dst.size() == 1) {
7787 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
7788 } else {
7789 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7790 for (unsigned i = 0; i < dst.size(); i++)
7791 vec->operands[i] = Operand(0u);
7792 vec->definitions[0] = Definition(dst);
7793 ctx->block->instructions.emplace_back(std::move(vec));
7794 }
7795 }
7796
7797 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
7798 {
7799 Builder bld(ctx->program, ctx->block);
7800 Block *logical_target;
7801 append_logical_end(ctx->block);
7802 unsigned idx = ctx->block->index;
7803
7804 switch (instr->type) {
7805 case nir_jump_break:
7806 logical_target = ctx->cf_info.parent_loop.exit;
7807 add_logical_edge(idx, logical_target);
7808 ctx->block->kind |= block_kind_break;
7809
7810 if (!ctx->cf_info.parent_if.is_divergent &&
7811 !ctx->cf_info.parent_loop.has_divergent_continue) {
7812 /* uniform break - directly jump out of the loop */
7813 ctx->block->kind |= block_kind_uniform;
7814 ctx->cf_info.has_branch = true;
7815 bld.branch(aco_opcode::p_branch);
7816 add_linear_edge(idx, logical_target);
7817 return;
7818 }
7819 ctx->cf_info.parent_loop.has_divergent_branch = true;
7820 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7821 break;
7822 case nir_jump_continue:
7823 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7824 add_logical_edge(idx, logical_target);
7825 ctx->block->kind |= block_kind_continue;
7826
7827 if (ctx->cf_info.parent_if.is_divergent) {
7828 /* for potential uniform breaks after this continue,
7829 we must ensure that they are handled correctly */
7830 ctx->cf_info.parent_loop.has_divergent_continue = true;
7831 ctx->cf_info.parent_loop.has_divergent_branch = true;
7832 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7833 } else {
7834 /* uniform continue - directly jump to the loop header */
7835 ctx->block->kind |= block_kind_uniform;
7836 ctx->cf_info.has_branch = true;
7837 bld.branch(aco_opcode::p_branch);
7838 add_linear_edge(idx, logical_target);
7839 return;
7840 }
7841 break;
7842 default:
7843 fprintf(stderr, "Unknown NIR jump instr: ");
7844 nir_print_instr(&instr->instr, stderr);
7845 fprintf(stderr, "\n");
7846 abort();
7847 }
7848
7849 /* remove critical edges from linear CFG */
7850 bld.branch(aco_opcode::p_branch);
7851 Block* break_block = ctx->program->create_and_insert_block();
7852 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7853 break_block->kind |= block_kind_uniform;
7854 add_linear_edge(idx, break_block);
7855 /* the loop_header pointer might be invalidated by this point */
7856 if (instr->type == nir_jump_continue)
7857 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7858 add_linear_edge(break_block->index, logical_target);
7859 bld.reset(break_block);
7860 bld.branch(aco_opcode::p_branch);
7861
7862 Block* continue_block = ctx->program->create_and_insert_block();
7863 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7864 add_linear_edge(idx, continue_block);
7865 append_logical_start(continue_block);
7866 ctx->block = continue_block;
7867 return;
7868 }
7869
7870 void visit_block(isel_context *ctx, nir_block *block)
7871 {
7872 nir_foreach_instr(instr, block) {
7873 switch (instr->type) {
7874 case nir_instr_type_alu:
7875 visit_alu_instr(ctx, nir_instr_as_alu(instr));
7876 break;
7877 case nir_instr_type_load_const:
7878 visit_load_const(ctx, nir_instr_as_load_const(instr));
7879 break;
7880 case nir_instr_type_intrinsic:
7881 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
7882 break;
7883 case nir_instr_type_tex:
7884 visit_tex(ctx, nir_instr_as_tex(instr));
7885 break;
7886 case nir_instr_type_phi:
7887 visit_phi(ctx, nir_instr_as_phi(instr));
7888 break;
7889 case nir_instr_type_ssa_undef:
7890 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
7891 break;
7892 case nir_instr_type_deref:
7893 break;
7894 case nir_instr_type_jump:
7895 visit_jump(ctx, nir_instr_as_jump(instr));
7896 break;
7897 default:
7898 fprintf(stderr, "Unknown NIR instr type: ");
7899 nir_print_instr(instr, stderr);
7900 fprintf(stderr, "\n");
7901 //abort();
7902 }
7903 }
7904
7905 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7906 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
7907 }
7908
7909
7910
7911 static void visit_loop(isel_context *ctx, nir_loop *loop)
7912 {
7913 append_logical_end(ctx->block);
7914 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
7915 Builder bld(ctx->program, ctx->block);
7916 bld.branch(aco_opcode::p_branch);
7917 unsigned loop_preheader_idx = ctx->block->index;
7918
7919 Block loop_exit = Block();
7920 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7921 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
7922
7923 Block* loop_header = ctx->program->create_and_insert_block();
7924 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
7925 loop_header->kind |= block_kind_loop_header;
7926 add_edge(loop_preheader_idx, loop_header);
7927 ctx->block = loop_header;
7928
7929 /* emit loop body */
7930 unsigned loop_header_idx = loop_header->index;
7931 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
7932 append_logical_start(ctx->block);
7933 visit_cf_list(ctx, &loop->body);
7934
7935 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
7936 if (!ctx->cf_info.has_branch) {
7937 append_logical_end(ctx->block);
7938 if (ctx->cf_info.exec_potentially_empty) {
7939 /* Discards can result in code running with an empty exec mask.
7940 * This would result in divergent breaks not ever being taken. As a
7941 * workaround, break the loop when the loop mask is empty instead of
7942 * always continuing. */
7943 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
7944 unsigned block_idx = ctx->block->index;
7945
7946 /* create helper blocks to avoid critical edges */
7947 Block *break_block = ctx->program->create_and_insert_block();
7948 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7949 break_block->kind = block_kind_uniform;
7950 bld.reset(break_block);
7951 bld.branch(aco_opcode::p_branch);
7952 add_linear_edge(block_idx, break_block);
7953 add_linear_edge(break_block->index, &loop_exit);
7954
7955 Block *continue_block = ctx->program->create_and_insert_block();
7956 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7957 continue_block->kind = block_kind_uniform;
7958 bld.reset(continue_block);
7959 bld.branch(aco_opcode::p_branch);
7960 add_linear_edge(block_idx, continue_block);
7961 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
7962
7963 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
7964 ctx->block = &ctx->program->blocks[block_idx];
7965 } else {
7966 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
7967 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7968 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
7969 else
7970 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
7971 }
7972
7973 bld.reset(ctx->block);
7974 bld.branch(aco_opcode::p_branch);
7975 }
7976
7977 /* fixup phis in loop header from unreachable blocks */
7978 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
7979 bool linear = ctx->cf_info.has_branch;
7980 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
7981 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
7982 if ((logical && instr->opcode == aco_opcode::p_phi) ||
7983 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
7984 /* the last operand should be the one that needs to be removed */
7985 instr->operands.pop_back();
7986 } else if (!is_phi(instr)) {
7987 break;
7988 }
7989 }
7990 }
7991
7992 ctx->cf_info.has_branch = false;
7993
7994 // TODO: if the loop has not a single exit, we must add one °°
7995 /* emit loop successor block */
7996 ctx->block = ctx->program->insert_block(std::move(loop_exit));
7997 append_logical_start(ctx->block);
7998
7999 #if 0
8000 // TODO: check if it is beneficial to not branch on continues
8001 /* trim linear phis in loop header */
8002 for (auto&& instr : loop_entry->instructions) {
8003 if (instr->opcode == aco_opcode::p_linear_phi) {
8004 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
8005 new_phi->definitions[0] = instr->definitions[0];
8006 for (unsigned i = 0; i < new_phi->operands.size(); i++)
8007 new_phi->operands[i] = instr->operands[i];
8008 /* check that the remaining operands are all the same */
8009 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
8010 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
8011 instr.swap(new_phi);
8012 } else if (instr->opcode == aco_opcode::p_phi) {
8013 continue;
8014 } else {
8015 break;
8016 }
8017 }
8018 #endif
8019 }
8020
8021 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
8022 {
8023 ic->cond = cond;
8024
8025 append_logical_end(ctx->block);
8026 ctx->block->kind |= block_kind_branch;
8027
8028 /* branch to linear then block */
8029 assert(cond.regClass() == ctx->program->lane_mask);
8030 aco_ptr<Pseudo_branch_instruction> branch;
8031 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8032 branch->operands[0] = Operand(cond);
8033 ctx->block->instructions.push_back(std::move(branch));
8034
8035 ic->BB_if_idx = ctx->block->index;
8036 ic->BB_invert = Block();
8037 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8038 /* Invert blocks are intentionally not marked as top level because they
8039 * are not part of the logical cfg. */
8040 ic->BB_invert.kind |= block_kind_invert;
8041 ic->BB_endif = Block();
8042 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8043 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
8044
8045 ic->exec_potentially_empty_old = ctx->cf_info.exec_potentially_empty;
8046 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
8047 ctx->cf_info.parent_if.is_divergent = true;
8048 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
8049
8050 /** emit logical then block */
8051 Block* BB_then_logical = ctx->program->create_and_insert_block();
8052 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8053 add_edge(ic->BB_if_idx, BB_then_logical);
8054 ctx->block = BB_then_logical;
8055 append_logical_start(BB_then_logical);
8056 }
8057
8058 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
8059 {
8060 Block *BB_then_logical = ctx->block;
8061 append_logical_end(BB_then_logical);
8062 /* branch from logical then block to invert block */
8063 aco_ptr<Pseudo_branch_instruction> branch;
8064 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8065 BB_then_logical->instructions.emplace_back(std::move(branch));
8066 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
8067 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8068 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
8069 BB_then_logical->kind |= block_kind_uniform;
8070 assert(!ctx->cf_info.has_branch);
8071 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8072 ctx->cf_info.parent_loop.has_divergent_branch = false;
8073
8074 /** emit linear then block */
8075 Block* BB_then_linear = ctx->program->create_and_insert_block();
8076 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8077 BB_then_linear->kind |= block_kind_uniform;
8078 add_linear_edge(ic->BB_if_idx, BB_then_linear);
8079 /* branch from linear then block to invert block */
8080 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8081 BB_then_linear->instructions.emplace_back(std::move(branch));
8082 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
8083
8084 /** emit invert merge block */
8085 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
8086 ic->invert_idx = ctx->block->index;
8087
8088 /* branch to linear else block (skip else) */
8089 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
8090 branch->operands[0] = Operand(ic->cond);
8091 ctx->block->instructions.push_back(std::move(branch));
8092
8093 ic->exec_potentially_empty_old |= ctx->cf_info.exec_potentially_empty;
8094 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
8095
8096 /** emit logical else block */
8097 Block* BB_else_logical = ctx->program->create_and_insert_block();
8098 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8099 add_logical_edge(ic->BB_if_idx, BB_else_logical);
8100 add_linear_edge(ic->invert_idx, BB_else_logical);
8101 ctx->block = BB_else_logical;
8102 append_logical_start(BB_else_logical);
8103 }
8104
8105 static void end_divergent_if(isel_context *ctx, if_context *ic)
8106 {
8107 Block *BB_else_logical = ctx->block;
8108 append_logical_end(BB_else_logical);
8109
8110 /* branch from logical else block to endif block */
8111 aco_ptr<Pseudo_branch_instruction> branch;
8112 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8113 BB_else_logical->instructions.emplace_back(std::move(branch));
8114 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
8115 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8116 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
8117 BB_else_logical->kind |= block_kind_uniform;
8118
8119 assert(!ctx->cf_info.has_branch);
8120 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
8121
8122
8123 /** emit linear else block */
8124 Block* BB_else_linear = ctx->program->create_and_insert_block();
8125 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8126 BB_else_linear->kind |= block_kind_uniform;
8127 add_linear_edge(ic->invert_idx, BB_else_linear);
8128
8129 /* branch from linear else block to endif block */
8130 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8131 BB_else_linear->instructions.emplace_back(std::move(branch));
8132 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
8133
8134
8135 /** emit endif merge block */
8136 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
8137 append_logical_start(ctx->block);
8138
8139
8140 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
8141 ctx->cf_info.exec_potentially_empty |= ic->exec_potentially_empty_old;
8142 /* uniform control flow never has an empty exec-mask */
8143 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
8144 ctx->cf_info.exec_potentially_empty = false;
8145 }
8146
8147 static void visit_if(isel_context *ctx, nir_if *if_stmt)
8148 {
8149 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
8150 Builder bld(ctx->program, ctx->block);
8151 aco_ptr<Pseudo_branch_instruction> branch;
8152
8153 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
8154 /**
8155 * Uniform conditionals are represented in the following way*) :
8156 *
8157 * The linear and logical CFG:
8158 * BB_IF
8159 * / \
8160 * BB_THEN (logical) BB_ELSE (logical)
8161 * \ /
8162 * BB_ENDIF
8163 *
8164 * *) Exceptions may be due to break and continue statements within loops
8165 * If a break/continue happens within uniform control flow, it branches
8166 * to the loop exit/entry block. Otherwise, it branches to the next
8167 * merge block.
8168 **/
8169 append_logical_end(ctx->block);
8170 ctx->block->kind |= block_kind_uniform;
8171
8172 /* emit branch */
8173 assert(cond.regClass() == bld.lm);
8174 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
8175 cond = bool_to_scalar_condition(ctx, cond);
8176
8177 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8178 branch->operands[0] = Operand(cond);
8179 branch->operands[0].setFixed(scc);
8180 ctx->block->instructions.emplace_back(std::move(branch));
8181
8182 unsigned BB_if_idx = ctx->block->index;
8183 Block BB_endif = Block();
8184 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8185 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
8186
8187 /** emit then block */
8188 Block* BB_then = ctx->program->create_and_insert_block();
8189 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8190 add_edge(BB_if_idx, BB_then);
8191 append_logical_start(BB_then);
8192 ctx->block = BB_then;
8193 visit_cf_list(ctx, &if_stmt->then_list);
8194 BB_then = ctx->block;
8195 bool then_branch = ctx->cf_info.has_branch;
8196 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8197
8198 if (!then_branch) {
8199 append_logical_end(BB_then);
8200 /* branch from then block to endif block */
8201 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8202 BB_then->instructions.emplace_back(std::move(branch));
8203 add_linear_edge(BB_then->index, &BB_endif);
8204 if (!then_branch_divergent)
8205 add_logical_edge(BB_then->index, &BB_endif);
8206 BB_then->kind |= block_kind_uniform;
8207 }
8208
8209 ctx->cf_info.has_branch = false;
8210 ctx->cf_info.parent_loop.has_divergent_branch = false;
8211
8212 /** emit else block */
8213 Block* BB_else = ctx->program->create_and_insert_block();
8214 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8215 add_edge(BB_if_idx, BB_else);
8216 append_logical_start(BB_else);
8217 ctx->block = BB_else;
8218 visit_cf_list(ctx, &if_stmt->else_list);
8219 BB_else = ctx->block;
8220
8221 if (!ctx->cf_info.has_branch) {
8222 append_logical_end(BB_else);
8223 /* branch from then block to endif block */
8224 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8225 BB_else->instructions.emplace_back(std::move(branch));
8226 add_linear_edge(BB_else->index, &BB_endif);
8227 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8228 add_logical_edge(BB_else->index, &BB_endif);
8229 BB_else->kind |= block_kind_uniform;
8230 }
8231
8232 ctx->cf_info.has_branch &= then_branch;
8233 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
8234
8235 /** emit endif merge block */
8236 if (!ctx->cf_info.has_branch) {
8237 ctx->block = ctx->program->insert_block(std::move(BB_endif));
8238 append_logical_start(ctx->block);
8239 }
8240 } else { /* non-uniform condition */
8241 /**
8242 * To maintain a logical and linear CFG without critical edges,
8243 * non-uniform conditionals are represented in the following way*) :
8244 *
8245 * The linear CFG:
8246 * BB_IF
8247 * / \
8248 * BB_THEN (logical) BB_THEN (linear)
8249 * \ /
8250 * BB_INVERT (linear)
8251 * / \
8252 * BB_ELSE (logical) BB_ELSE (linear)
8253 * \ /
8254 * BB_ENDIF
8255 *
8256 * The logical CFG:
8257 * BB_IF
8258 * / \
8259 * BB_THEN (logical) BB_ELSE (logical)
8260 * \ /
8261 * BB_ENDIF
8262 *
8263 * *) Exceptions may be due to break and continue statements within loops
8264 **/
8265
8266 if_context ic;
8267
8268 begin_divergent_if_then(ctx, &ic, cond);
8269 visit_cf_list(ctx, &if_stmt->then_list);
8270
8271 begin_divergent_if_else(ctx, &ic);
8272 visit_cf_list(ctx, &if_stmt->else_list);
8273
8274 end_divergent_if(ctx, &ic);
8275 }
8276 }
8277
8278 static void visit_cf_list(isel_context *ctx,
8279 struct exec_list *list)
8280 {
8281 foreach_list_typed(nir_cf_node, node, node, list) {
8282 switch (node->type) {
8283 case nir_cf_node_block:
8284 visit_block(ctx, nir_cf_node_as_block(node));
8285 break;
8286 case nir_cf_node_if:
8287 visit_if(ctx, nir_cf_node_as_if(node));
8288 break;
8289 case nir_cf_node_loop:
8290 visit_loop(ctx, nir_cf_node_as_loop(node));
8291 break;
8292 default:
8293 unreachable("unimplemented cf list type");
8294 }
8295 }
8296 }
8297
8298 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
8299 {
8300 int offset = ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
8301 uint64_t mask = ctx->outputs.mask[slot];
8302 if (!is_pos && !mask)
8303 return;
8304 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
8305 return;
8306 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8307 exp->enabled_mask = mask;
8308 for (unsigned i = 0; i < 4; ++i) {
8309 if (mask & (1 << i))
8310 exp->operands[i] = Operand(ctx->outputs.outputs[slot][i]);
8311 else
8312 exp->operands[i] = Operand(v1);
8313 }
8314 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
8315 * Setting valid_mask=1 prevents it and has no other effect.
8316 */
8317 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
8318 exp->done = false;
8319 exp->compressed = false;
8320 if (is_pos)
8321 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8322 else
8323 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
8324 ctx->block->instructions.emplace_back(std::move(exp));
8325 }
8326
8327 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
8328 {
8329 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8330 exp->enabled_mask = 0;
8331 for (unsigned i = 0; i < 4; ++i)
8332 exp->operands[i] = Operand(v1);
8333 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
8334 exp->operands[0] = Operand(ctx->outputs.outputs[VARYING_SLOT_PSIZ][0]);
8335 exp->enabled_mask |= 0x1;
8336 }
8337 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
8338 exp->operands[2] = Operand(ctx->outputs.outputs[VARYING_SLOT_LAYER][0]);
8339 exp->enabled_mask |= 0x4;
8340 }
8341 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
8342 if (ctx->options->chip_class < GFX9) {
8343 exp->operands[3] = Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]);
8344 exp->enabled_mask |= 0x8;
8345 } else {
8346 Builder bld(ctx->program, ctx->block);
8347
8348 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
8349 Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]));
8350 if (exp->operands[2].isTemp())
8351 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
8352
8353 exp->operands[2] = Operand(out);
8354 exp->enabled_mask |= 0x4;
8355 }
8356 }
8357 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
8358 exp->done = false;
8359 exp->compressed = false;
8360 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8361 ctx->block->instructions.emplace_back(std::move(exp));
8362 }
8363
8364 static void create_vs_exports(isel_context *ctx)
8365 {
8366 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
8367
8368 if (outinfo->export_prim_id) {
8369 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
8370 ctx->outputs.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
8371 }
8372
8373 if (ctx->options->key.has_multiview_view_index) {
8374 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
8375 ctx->outputs.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
8376 }
8377
8378 /* the order these position exports are created is important */
8379 int next_pos = 0;
8380 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
8381 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
8382 export_vs_psiz_layer_viewport(ctx, &next_pos);
8383 }
8384 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8385 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
8386 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8387 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
8388
8389 if (ctx->export_clip_dists) {
8390 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8391 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
8392 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8393 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
8394 }
8395
8396 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
8397 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
8398 i != VARYING_SLOT_PRIMITIVE_ID)
8399 continue;
8400
8401 export_vs_varying(ctx, i, false, NULL);
8402 }
8403 }
8404
8405 static void export_fs_mrt_z(isel_context *ctx)
8406 {
8407 Builder bld(ctx->program, ctx->block);
8408 unsigned enabled_channels = 0;
8409 bool compr = false;
8410 Operand values[4];
8411
8412 for (unsigned i = 0; i < 4; ++i) {
8413 values[i] = Operand(v1);
8414 }
8415
8416 /* Both stencil and sample mask only need 16-bits. */
8417 if (!ctx->program->info->ps.writes_z &&
8418 (ctx->program->info->ps.writes_stencil ||
8419 ctx->program->info->ps.writes_sample_mask)) {
8420 compr = true; /* COMPR flag */
8421
8422 if (ctx->program->info->ps.writes_stencil) {
8423 /* Stencil should be in X[23:16]. */
8424 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8425 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
8426 enabled_channels |= 0x3;
8427 }
8428
8429 if (ctx->program->info->ps.writes_sample_mask) {
8430 /* SampleMask should be in Y[15:0]. */
8431 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8432 enabled_channels |= 0xc;
8433 }
8434 } else {
8435 if (ctx->program->info->ps.writes_z) {
8436 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_DEPTH][0]);
8437 enabled_channels |= 0x1;
8438 }
8439
8440 if (ctx->program->info->ps.writes_stencil) {
8441 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8442 enabled_channels |= 0x2;
8443 }
8444
8445 if (ctx->program->info->ps.writes_sample_mask) {
8446 values[2] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8447 enabled_channels |= 0x4;
8448 }
8449 }
8450
8451 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
8452 * writemask component.
8453 */
8454 if (ctx->options->chip_class == GFX6 &&
8455 ctx->options->family != CHIP_OLAND &&
8456 ctx->options->family != CHIP_HAINAN) {
8457 enabled_channels |= 0x1;
8458 }
8459
8460 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8461 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
8462 }
8463
8464 static void export_fs_mrt_color(isel_context *ctx, int slot)
8465 {
8466 Builder bld(ctx->program, ctx->block);
8467 unsigned write_mask = ctx->outputs.mask[slot];
8468 Operand values[4];
8469
8470 for (unsigned i = 0; i < 4; ++i) {
8471 if (write_mask & (1 << i)) {
8472 values[i] = Operand(ctx->outputs.outputs[slot][i]);
8473 } else {
8474 values[i] = Operand(v1);
8475 }
8476 }
8477
8478 unsigned target, col_format;
8479 unsigned enabled_channels = 0;
8480 aco_opcode compr_op = (aco_opcode)0;
8481
8482 slot -= FRAG_RESULT_DATA0;
8483 target = V_008DFC_SQ_EXP_MRT + slot;
8484 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
8485
8486 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
8487 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
8488
8489 switch (col_format)
8490 {
8491 case V_028714_SPI_SHADER_ZERO:
8492 enabled_channels = 0; /* writemask */
8493 target = V_008DFC_SQ_EXP_NULL;
8494 break;
8495
8496 case V_028714_SPI_SHADER_32_R:
8497 enabled_channels = 1;
8498 break;
8499
8500 case V_028714_SPI_SHADER_32_GR:
8501 enabled_channels = 0x3;
8502 break;
8503
8504 case V_028714_SPI_SHADER_32_AR:
8505 if (ctx->options->chip_class >= GFX10) {
8506 /* Special case: on GFX10, the outputs are different for 32_AR */
8507 enabled_channels = 0x3;
8508 values[1] = values[3];
8509 values[3] = Operand(v1);
8510 } else {
8511 enabled_channels = 0x9;
8512 }
8513 break;
8514
8515 case V_028714_SPI_SHADER_FP16_ABGR:
8516 enabled_channels = 0x5;
8517 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
8518 break;
8519
8520 case V_028714_SPI_SHADER_UNORM16_ABGR:
8521 enabled_channels = 0x5;
8522 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
8523 break;
8524
8525 case V_028714_SPI_SHADER_SNORM16_ABGR:
8526 enabled_channels = 0x5;
8527 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
8528 break;
8529
8530 case V_028714_SPI_SHADER_UINT16_ABGR: {
8531 enabled_channels = 0x5;
8532 compr_op = aco_opcode::v_cvt_pk_u16_u32;
8533 if (is_int8 || is_int10) {
8534 /* clamp */
8535 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
8536 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
8537
8538 for (unsigned i = 0; i < 4; i++) {
8539 if ((write_mask >> i) & 1) {
8540 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
8541 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
8542 values[i]);
8543 }
8544 }
8545 }
8546 break;
8547 }
8548
8549 case V_028714_SPI_SHADER_SINT16_ABGR:
8550 enabled_channels = 0x5;
8551 compr_op = aco_opcode::v_cvt_pk_i16_i32;
8552 if (is_int8 || is_int10) {
8553 /* clamp */
8554 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
8555 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
8556 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
8557 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
8558
8559 for (unsigned i = 0; i < 4; i++) {
8560 if ((write_mask >> i) & 1) {
8561 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
8562 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
8563 values[i]);
8564 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
8565 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
8566 values[i]);
8567 }
8568 }
8569 }
8570 break;
8571
8572 case V_028714_SPI_SHADER_32_ABGR:
8573 enabled_channels = 0xF;
8574 break;
8575
8576 default:
8577 break;
8578 }
8579
8580 if (target == V_008DFC_SQ_EXP_NULL)
8581 return;
8582
8583 if ((bool) compr_op) {
8584 for (int i = 0; i < 2; i++) {
8585 /* check if at least one of the values to be compressed is enabled */
8586 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
8587 if (enabled) {
8588 enabled_channels |= enabled << (i*2);
8589 values[i] = bld.vop3(compr_op, bld.def(v1),
8590 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
8591 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
8592 } else {
8593 values[i] = Operand(v1);
8594 }
8595 }
8596 values[2] = Operand(v1);
8597 values[3] = Operand(v1);
8598 } else {
8599 for (int i = 0; i < 4; i++)
8600 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
8601 }
8602
8603 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8604 enabled_channels, target, (bool) compr_op);
8605 }
8606
8607 static void create_fs_exports(isel_context *ctx)
8608 {
8609 /* Export depth, stencil and sample mask. */
8610 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
8611 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
8612 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) {
8613 export_fs_mrt_z(ctx);
8614 }
8615
8616 /* Export all color render targets. */
8617 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i) {
8618 if (ctx->outputs.mask[i])
8619 export_fs_mrt_color(ctx, i);
8620 }
8621 }
8622
8623 static void emit_stream_output(isel_context *ctx,
8624 Temp const *so_buffers,
8625 Temp const *so_write_offset,
8626 const struct radv_stream_output *output)
8627 {
8628 unsigned num_comps = util_bitcount(output->component_mask);
8629 unsigned writemask = (1 << num_comps) - 1;
8630 unsigned loc = output->location;
8631 unsigned buf = output->buffer;
8632
8633 assert(num_comps && num_comps <= 4);
8634 if (!num_comps || num_comps > 4)
8635 return;
8636
8637 unsigned start = ffs(output->component_mask) - 1;
8638
8639 Temp out[4];
8640 bool all_undef = true;
8641 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
8642 for (unsigned i = 0; i < num_comps; i++) {
8643 out[i] = ctx->outputs.outputs[loc][start + i];
8644 all_undef = all_undef && !out[i].id();
8645 }
8646 if (all_undef)
8647 return;
8648
8649 while (writemask) {
8650 int start, count;
8651 u_bit_scan_consecutive_range(&writemask, &start, &count);
8652 if (count == 3 && ctx->options->chip_class == GFX6) {
8653 /* GFX6 doesn't support storing vec3, split it. */
8654 writemask |= 1u << (start + 2);
8655 count = 2;
8656 }
8657
8658 unsigned offset = output->offset + start * 4;
8659
8660 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
8661 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
8662 for (int i = 0; i < count; ++i)
8663 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
8664 vec->definitions[0] = Definition(write_data);
8665 ctx->block->instructions.emplace_back(std::move(vec));
8666
8667 aco_opcode opcode;
8668 switch (count) {
8669 case 1:
8670 opcode = aco_opcode::buffer_store_dword;
8671 break;
8672 case 2:
8673 opcode = aco_opcode::buffer_store_dwordx2;
8674 break;
8675 case 3:
8676 opcode = aco_opcode::buffer_store_dwordx3;
8677 break;
8678 case 4:
8679 opcode = aco_opcode::buffer_store_dwordx4;
8680 break;
8681 default:
8682 unreachable("Unsupported dword count.");
8683 }
8684
8685 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
8686 store->operands[0] = Operand(so_write_offset[buf]);
8687 store->operands[1] = Operand(so_buffers[buf]);
8688 store->operands[2] = Operand((uint32_t) 0);
8689 store->operands[3] = Operand(write_data);
8690 if (offset > 4095) {
8691 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
8692 Builder bld(ctx->program, ctx->block);
8693 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
8694 } else {
8695 store->offset = offset;
8696 }
8697 store->offen = true;
8698 store->glc = true;
8699 store->dlc = false;
8700 store->slc = true;
8701 store->can_reorder = true;
8702 ctx->block->instructions.emplace_back(std::move(store));
8703 }
8704 }
8705
8706 static void emit_streamout(isel_context *ctx, unsigned stream)
8707 {
8708 Builder bld(ctx->program, ctx->block);
8709
8710 Temp so_buffers[4];
8711 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
8712 for (unsigned i = 0; i < 4; i++) {
8713 unsigned stride = ctx->program->info->so.strides[i];
8714 if (!stride)
8715 continue;
8716
8717 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
8718 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
8719 }
8720
8721 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
8722 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
8723
8724 Temp tid = emit_mbcnt(ctx, bld.def(v1));
8725
8726 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
8727
8728 if_context ic;
8729 begin_divergent_if_then(ctx, &ic, can_emit);
8730
8731 bld.reset(ctx->block);
8732
8733 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
8734
8735 Temp so_write_offset[4];
8736
8737 for (unsigned i = 0; i < 4; i++) {
8738 unsigned stride = ctx->program->info->so.strides[i];
8739 if (!stride)
8740 continue;
8741
8742 if (stride == 1) {
8743 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
8744 get_arg(ctx, ctx->args->streamout_write_idx),
8745 get_arg(ctx, ctx->args->streamout_offset[i]));
8746 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
8747
8748 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
8749 } else {
8750 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
8751 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
8752 get_arg(ctx, ctx->args->streamout_offset[i]));
8753 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
8754 }
8755 }
8756
8757 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
8758 struct radv_stream_output *output =
8759 &ctx->program->info->so.outputs[i];
8760 if (stream != output->stream)
8761 continue;
8762
8763 emit_stream_output(ctx, so_buffers, so_write_offset, output);
8764 }
8765
8766 begin_divergent_if_else(ctx, &ic);
8767 end_divergent_if(ctx, &ic);
8768 }
8769
8770 } /* end namespace */
8771
8772 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
8773 {
8774 /* Split all arguments except for the first (ring_offsets) and the last
8775 * (exec) so that the dead channels don't stay live throughout the program.
8776 */
8777 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
8778 if (startpgm->definitions[i].regClass().size() > 1) {
8779 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
8780 startpgm->definitions[i].regClass().size());
8781 }
8782 }
8783 }
8784
8785 void handle_bc_optimize(isel_context *ctx)
8786 {
8787 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
8788 Builder bld(ctx->program, ctx->block);
8789 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
8790 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
8791 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
8792 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
8793 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
8794 if (uses_center && uses_centroid) {
8795 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
8796 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
8797
8798 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
8799 Temp new_coord[2];
8800 for (unsigned i = 0; i < 2; i++) {
8801 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
8802 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
8803 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8804 persp_centroid, persp_center, sel);
8805 }
8806 ctx->persp_centroid = bld.tmp(v2);
8807 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
8808 Operand(new_coord[0]), Operand(new_coord[1]));
8809 emit_split_vector(ctx, ctx->persp_centroid, 2);
8810 }
8811
8812 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
8813 Temp new_coord[2];
8814 for (unsigned i = 0; i < 2; i++) {
8815 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
8816 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
8817 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8818 linear_centroid, linear_center, sel);
8819 }
8820 ctx->linear_centroid = bld.tmp(v2);
8821 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
8822 Operand(new_coord[0]), Operand(new_coord[1]));
8823 emit_split_vector(ctx, ctx->linear_centroid, 2);
8824 }
8825 }
8826 }
8827
8828 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
8829 {
8830 Program *program = ctx->program;
8831
8832 unsigned float_controls = shader->info.float_controls_execution_mode;
8833
8834 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
8835 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
8836 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
8837 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
8838 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
8839
8840 program->next_fp_mode.must_flush_denorms32 =
8841 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
8842 program->next_fp_mode.must_flush_denorms16_64 =
8843 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
8844 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
8845
8846 program->next_fp_mode.care_about_round32 =
8847 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
8848
8849 program->next_fp_mode.care_about_round16_64 =
8850 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
8851 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
8852
8853 /* default to preserving fp16 and fp64 denorms, since it's free */
8854 if (program->next_fp_mode.must_flush_denorms16_64)
8855 program->next_fp_mode.denorm16_64 = 0;
8856 else
8857 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
8858
8859 /* preserving fp32 denorms is expensive, so only do it if asked */
8860 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
8861 program->next_fp_mode.denorm32 = fp_denorm_keep;
8862 else
8863 program->next_fp_mode.denorm32 = 0;
8864
8865 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
8866 program->next_fp_mode.round32 = fp_round_tz;
8867 else
8868 program->next_fp_mode.round32 = fp_round_ne;
8869
8870 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
8871 program->next_fp_mode.round16_64 = fp_round_tz;
8872 else
8873 program->next_fp_mode.round16_64 = fp_round_ne;
8874
8875 ctx->block->fp_mode = program->next_fp_mode;
8876 }
8877
8878 void cleanup_cfg(Program *program)
8879 {
8880 /* create linear_succs/logical_succs */
8881 for (Block& BB : program->blocks) {
8882 for (unsigned idx : BB.linear_preds)
8883 program->blocks[idx].linear_succs.emplace_back(BB.index);
8884 for (unsigned idx : BB.logical_preds)
8885 program->blocks[idx].logical_succs.emplace_back(BB.index);
8886 }
8887 }
8888
8889 void select_program(Program *program,
8890 unsigned shader_count,
8891 struct nir_shader *const *shaders,
8892 ac_shader_config* config,
8893 struct radv_shader_args *args)
8894 {
8895 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
8896
8897 for (unsigned i = 0; i < shader_count; i++) {
8898 nir_shader *nir = shaders[i];
8899 init_context(&ctx, nir);
8900
8901 setup_fp_mode(&ctx, nir);
8902
8903 if (!i) {
8904 /* needs to be after init_context() for FS */
8905 Pseudo_instruction *startpgm = add_startpgm(&ctx);
8906 append_logical_start(ctx.block);
8907 split_arguments(&ctx, startpgm);
8908 }
8909
8910 if_context ic;
8911 if (shader_count >= 2) {
8912 Builder bld(ctx.program, ctx.block);
8913 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | (i * 8u)));
8914 Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
8915 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
8916
8917 begin_divergent_if_then(&ctx, &ic, cond);
8918 }
8919
8920 if (i) {
8921 Builder bld(ctx.program, ctx.block);
8922 assert(ctx.stage == vertex_geometry_gs);
8923 bld.barrier(aco_opcode::p_memory_barrier_shared);
8924 bld.sopp(aco_opcode::s_barrier);
8925
8926 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
8927 } else if (ctx.stage == geometry_gs)
8928 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
8929
8930 if (ctx.stage == fragment_fs)
8931 handle_bc_optimize(&ctx);
8932
8933 nir_function_impl *func = nir_shader_get_entrypoint(nir);
8934 visit_cf_list(&ctx, &func->body);
8935
8936 if (ctx.program->info->so.num_outputs && ctx.stage == vertex_vs)
8937 emit_streamout(&ctx, 0);
8938
8939 if (ctx.stage == vertex_vs) {
8940 create_vs_exports(&ctx);
8941 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
8942 Builder bld(ctx.program, ctx.block);
8943 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
8944 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
8945 }
8946
8947 if (ctx.stage == fragment_fs)
8948 create_fs_exports(&ctx);
8949
8950 if (shader_count >= 2) {
8951 begin_divergent_if_else(&ctx, &ic);
8952 end_divergent_if(&ctx, &ic);
8953 }
8954
8955 ralloc_free(ctx.divergent_vals);
8956 }
8957
8958 program->config->float_mode = program->blocks[0].fp_mode.val;
8959
8960 append_logical_end(ctx.block);
8961 ctx.block->kind |= block_kind_uniform | block_kind_export_end;
8962 Builder bld(ctx.program, ctx.block);
8963 if (ctx.program->wb_smem_l1_on_end)
8964 bld.smem(aco_opcode::s_dcache_wb, false);
8965 bld.sopp(aco_opcode::s_endpgm);
8966
8967 cleanup_cfg(program);
8968 }
8969
8970 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
8971 ac_shader_config* config,
8972 struct radv_shader_args *args)
8973 {
8974 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
8975
8976 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
8977 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
8978 program->next_fp_mode.must_flush_denorms32 = false;
8979 program->next_fp_mode.must_flush_denorms16_64 = false;
8980 program->next_fp_mode.care_about_round32 = false;
8981 program->next_fp_mode.care_about_round16_64 = false;
8982 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
8983 program->next_fp_mode.denorm32 = 0;
8984 program->next_fp_mode.round32 = fp_round_ne;
8985 program->next_fp_mode.round16_64 = fp_round_ne;
8986 ctx.block->fp_mode = program->next_fp_mode;
8987
8988 add_startpgm(&ctx);
8989 append_logical_start(ctx.block);
8990
8991 Builder bld(ctx.program, ctx.block);
8992
8993 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
8994
8995 Operand stream_id(0u);
8996 if (args->shader_info->so.num_outputs)
8997 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
8998 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
8999
9000 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
9001
9002 std::stack<Block> endif_blocks;
9003
9004 for (unsigned stream = 0; stream < 4; stream++) {
9005 if (stream_id.isConstant() && stream != stream_id.constantValue())
9006 continue;
9007
9008 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
9009 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
9010 continue;
9011
9012 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
9013
9014 unsigned BB_if_idx = ctx.block->index;
9015 Block BB_endif = Block();
9016 if (!stream_id.isConstant()) {
9017 /* begin IF */
9018 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
9019 append_logical_end(ctx.block);
9020 ctx.block->kind |= block_kind_uniform;
9021 bld.branch(aco_opcode::p_cbranch_z, cond);
9022
9023 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
9024
9025 ctx.block = ctx.program->create_and_insert_block();
9026 add_edge(BB_if_idx, ctx.block);
9027 bld.reset(ctx.block);
9028 append_logical_start(ctx.block);
9029 }
9030
9031 unsigned offset = 0;
9032 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9033 if (args->shader_info->gs.output_streams[i] != stream)
9034 continue;
9035
9036 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
9037 unsigned length = util_last_bit(output_usage_mask);
9038 for (unsigned j = 0; j < length; ++j) {
9039 if (!(output_usage_mask & (1 << j)))
9040 continue;
9041
9042 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
9043 Temp voffset = vtx_offset;
9044 if (const_offset >= 4096u) {
9045 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
9046 const_offset %= 4096u;
9047 }
9048
9049 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
9050 mubuf->definitions[0] = bld.def(v1);
9051 mubuf->operands[0] = Operand(voffset);
9052 mubuf->operands[1] = Operand(gsvs_ring);
9053 mubuf->operands[2] = Operand(0u);
9054 mubuf->offen = true;
9055 mubuf->offset = const_offset;
9056 mubuf->glc = true;
9057 mubuf->slc = true;
9058 mubuf->dlc = args->options->chip_class >= GFX10;
9059 mubuf->barrier = barrier_none;
9060 mubuf->can_reorder = true;
9061
9062 ctx.outputs.mask[i] |= 1 << j;
9063 ctx.outputs.outputs[i][j] = mubuf->definitions[0].getTemp();
9064
9065 bld.insert(std::move(mubuf));
9066
9067 offset++;
9068 }
9069 }
9070
9071 if (args->shader_info->so.num_outputs) {
9072 emit_streamout(&ctx, stream);
9073 bld.reset(ctx.block);
9074 }
9075
9076 if (stream == 0) {
9077 create_vs_exports(&ctx);
9078 ctx.block->kind |= block_kind_export_end;
9079 }
9080
9081 if (!stream_id.isConstant()) {
9082 append_logical_end(ctx.block);
9083
9084 /* branch from then block to endif block */
9085 bld.branch(aco_opcode::p_branch);
9086 add_edge(ctx.block->index, &BB_endif);
9087 ctx.block->kind |= block_kind_uniform;
9088
9089 /* emit else block */
9090 ctx.block = ctx.program->create_and_insert_block();
9091 add_edge(BB_if_idx, ctx.block);
9092 bld.reset(ctx.block);
9093 append_logical_start(ctx.block);
9094
9095 endif_blocks.push(std::move(BB_endif));
9096 }
9097 }
9098
9099 while (!endif_blocks.empty()) {
9100 Block BB_endif = std::move(endif_blocks.top());
9101 endif_blocks.pop();
9102
9103 Block *BB_else = ctx.block;
9104
9105 append_logical_end(BB_else);
9106 /* branch from else block to endif block */
9107 bld.branch(aco_opcode::p_branch);
9108 add_edge(BB_else->index, &BB_endif);
9109 BB_else->kind |= block_kind_uniform;
9110
9111 /** emit endif merge block */
9112 ctx.block = program->insert_block(std::move(BB_endif));
9113 bld.reset(ctx.block);
9114 append_logical_start(ctx.block);
9115 }
9116
9117 program->config->float_mode = program->blocks[0].fp_mode.val;
9118
9119 append_logical_end(ctx.block);
9120 ctx.block->kind |= block_kind_uniform;
9121 bld.sopp(aco_opcode::s_endpgm);
9122
9123 cleanup_cfg(program);
9124 }
9125 }