aco: rework scratch resource code
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <map>
29
30 #include "ac_shader_util.h"
31 #include "aco_ir.h"
32 #include "aco_builder.h"
33 #include "aco_interface.h"
34 #include "aco_instruction_selection_setup.cpp"
35 #include "util/fast_idiv_by_const.h"
36
37 namespace aco {
38 namespace {
39
40 class loop_info_RAII {
41 isel_context* ctx;
42 unsigned header_idx_old;
43 Block* exit_old;
44 bool divergent_cont_old;
45 bool divergent_branch_old;
46 bool divergent_if_old;
47
48 public:
49 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
50 : ctx(ctx),
51 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
52 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
53 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
54 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
55 {
56 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
57 ctx->cf_info.parent_loop.exit = loop_exit;
58 ctx->cf_info.parent_loop.has_divergent_continue = false;
59 ctx->cf_info.parent_loop.has_divergent_branch = false;
60 ctx->cf_info.parent_if.is_divergent = false;
61 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
62 }
63
64 ~loop_info_RAII()
65 {
66 ctx->cf_info.parent_loop.header_idx = header_idx_old;
67 ctx->cf_info.parent_loop.exit = exit_old;
68 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
69 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
70 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
71 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
72 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
73 ctx->cf_info.exec_potentially_empty = false;
74 }
75 };
76
77 struct if_context {
78 Temp cond;
79
80 bool divergent_old;
81 bool exec_potentially_empty_old;
82
83 unsigned BB_if_idx;
84 unsigned invert_idx;
85 bool then_branch_divergent;
86 Block BB_invert;
87 Block BB_endif;
88 };
89
90 static void visit_cf_list(struct isel_context *ctx,
91 struct exec_list *list);
92
93 static void add_logical_edge(unsigned pred_idx, Block *succ)
94 {
95 succ->logical_preds.emplace_back(pred_idx);
96 }
97
98
99 static void add_linear_edge(unsigned pred_idx, Block *succ)
100 {
101 succ->linear_preds.emplace_back(pred_idx);
102 }
103
104 static void add_edge(unsigned pred_idx, Block *succ)
105 {
106 add_logical_edge(pred_idx, succ);
107 add_linear_edge(pred_idx, succ);
108 }
109
110 static void append_logical_start(Block *b)
111 {
112 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
113 }
114
115 static void append_logical_end(Block *b)
116 {
117 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
118 }
119
120 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
121 {
122 assert(ctx->allocated[def->index].id());
123 return ctx->allocated[def->index];
124 }
125
126 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
127 {
128 Builder bld(ctx->program, ctx->block);
129
130 if (!dst.id())
131 dst = bld.tmp(src.regClass());
132
133 if (ctx->stage != fragment_fs) {
134 if (!dst.id())
135 return src;
136
137 if (src.type() == RegType::vgpr || src.size() > 1)
138 bld.copy(Definition(dst), src);
139 else
140 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
141 return dst;
142 }
143
144 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
145 ctx->program->needs_wqm |= program_needs_wqm;
146 return dst;
147 }
148
149 Temp as_vgpr(isel_context *ctx, Temp val)
150 {
151 if (val.type() == RegType::sgpr) {
152 Builder bld(ctx->program, ctx->block);
153 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
154 }
155 assert(val.type() == RegType::vgpr);
156 return val;
157 }
158
159 //assumes a != 0xffffffff
160 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
161 {
162 assert(b != 0);
163 Builder bld(ctx->program, ctx->block);
164
165 if (util_is_power_of_two_or_zero(b)) {
166 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
167 return;
168 }
169
170 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
171
172 assert(info.multiplier <= 0xffffffff);
173
174 bool pre_shift = info.pre_shift != 0;
175 bool increment = info.increment != 0;
176 bool multiply = true;
177 bool post_shift = info.post_shift != 0;
178
179 if (!pre_shift && !increment && !multiply && !post_shift) {
180 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
181 return;
182 }
183
184 Temp pre_shift_dst = a;
185 if (pre_shift) {
186 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
187 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
188 }
189
190 Temp increment_dst = pre_shift_dst;
191 if (increment) {
192 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
193 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
194 }
195
196 Temp multiply_dst = increment_dst;
197 if (multiply) {
198 multiply_dst = post_shift ? bld.tmp(v1) : dst;
199 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
200 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
201 }
202
203 if (post_shift) {
204 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
205 }
206 }
207
208 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
209 {
210 Builder bld(ctx->program, ctx->block);
211 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
212 }
213
214
215 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
216 {
217 /* no need to extract the whole vector */
218 if (src.regClass() == dst_rc) {
219 assert(idx == 0);
220 return src;
221 }
222 assert(src.size() > idx);
223 Builder bld(ctx->program, ctx->block);
224 auto it = ctx->allocated_vec.find(src.id());
225 /* the size check needs to be early because elements other than 0 may be garbage */
226 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
227 if (it->second[idx].regClass() == dst_rc) {
228 return it->second[idx];
229 } else {
230 assert(dst_rc.size() == it->second[idx].regClass().size());
231 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
232 return bld.copy(bld.def(dst_rc), it->second[idx]);
233 }
234 }
235
236 if (src.size() == dst_rc.size()) {
237 assert(idx == 0);
238 return bld.copy(bld.def(dst_rc), src);
239 } else {
240 Temp dst = bld.tmp(dst_rc);
241 emit_extract_vector(ctx, src, idx, dst);
242 return dst;
243 }
244 }
245
246 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
247 {
248 if (num_components == 1)
249 return;
250 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
251 return;
252 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
253 split->operands[0] = Operand(vec_src);
254 std::array<Temp,4> elems;
255 for (unsigned i = 0; i < num_components; i++) {
256 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
257 split->definitions[i] = Definition(elems[i]);
258 }
259 ctx->block->instructions.emplace_back(std::move(split));
260 ctx->allocated_vec.emplace(vec_src.id(), elems);
261 }
262
263 /* This vector expansion uses a mask to determine which elements in the new vector
264 * come from the original vector. The other elements are undefined. */
265 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
266 {
267 emit_split_vector(ctx, vec_src, util_bitcount(mask));
268
269 if (vec_src == dst)
270 return;
271
272 Builder bld(ctx->program, ctx->block);
273 if (num_components == 1) {
274 if (dst.type() == RegType::sgpr)
275 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
276 else
277 bld.copy(Definition(dst), vec_src);
278 return;
279 }
280
281 unsigned component_size = dst.size() / num_components;
282 std::array<Temp,4> elems;
283
284 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
285 vec->definitions[0] = Definition(dst);
286 unsigned k = 0;
287 for (unsigned i = 0; i < num_components; i++) {
288 if (mask & (1 << i)) {
289 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
290 if (dst.type() == RegType::sgpr)
291 src = bld.as_uniform(src);
292 vec->operands[i] = Operand(src);
293 } else {
294 vec->operands[i] = Operand(0u);
295 }
296 elems[i] = vec->operands[i].getTemp();
297 }
298 ctx->block->instructions.emplace_back(std::move(vec));
299 ctx->allocated_vec.emplace(dst.id(), elems);
300 }
301
302 Temp as_divergent_bool(isel_context *ctx, Temp val, bool vcc_hint)
303 {
304 if (val.regClass() == s2) {
305 return val;
306 } else {
307 assert(val.regClass() == s1);
308 Builder bld(ctx->program, ctx->block);
309 Definition& def = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2),
310 Operand((uint32_t) -1), Operand(0u), bld.scc(val)).def(0);
311 if (vcc_hint)
312 def.setHint(vcc);
313 return def.getTemp();
314 }
315 }
316
317 Temp as_uniform_bool(isel_context *ctx, Temp val)
318 {
319 if (val.regClass() == s1) {
320 return val;
321 } else {
322 assert(val.regClass() == s2);
323 Builder bld(ctx->program, ctx->block);
324 return bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), Operand(0u), Operand(val));
325 }
326 }
327
328 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
329 {
330 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
331 return get_ssa_temp(ctx, src.src.ssa);
332
333 if (src.src.ssa->num_components == size) {
334 bool identity_swizzle = true;
335 for (unsigned i = 0; identity_swizzle && i < size; i++) {
336 if (src.swizzle[i] != i)
337 identity_swizzle = false;
338 }
339 if (identity_swizzle)
340 return get_ssa_temp(ctx, src.src.ssa);
341 }
342
343 Temp vec = get_ssa_temp(ctx, src.src.ssa);
344 unsigned elem_size = vec.size() / src.src.ssa->num_components;
345 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
346 assert(vec.size() % elem_size == 0);
347
348 RegClass elem_rc = RegClass(vec.type(), elem_size);
349 if (size == 1) {
350 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
351 } else {
352 assert(size <= 4);
353 std::array<Temp,4> elems;
354 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
355 for (unsigned i = 0; i < size; ++i) {
356 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
357 vec_instr->operands[i] = Operand{elems[i]};
358 }
359 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
360 vec_instr->definitions[0] = Definition(dst);
361 ctx->block->instructions.emplace_back(std::move(vec_instr));
362 ctx->allocated_vec.emplace(dst.id(), elems);
363 return dst;
364 }
365 }
366
367 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
368 {
369 if (ptr.size() == 2)
370 return ptr;
371 Builder bld(ctx->program, ctx->block);
372 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
373 ptr, Operand((unsigned)ctx->options->address32_hi));
374 }
375
376 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
377 {
378 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
379 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
380 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
381 sop2->definitions[0] = Definition(dst);
382 if (writes_scc)
383 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
384 ctx->block->instructions.emplace_back(std::move(sop2));
385 }
386
387 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool commutative, bool swap_srcs=false)
388 {
389 Builder bld(ctx->program, ctx->block);
390 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
391 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
392 if (src1.type() == RegType::sgpr) {
393 if (commutative && src0.type() == RegType::vgpr) {
394 Temp t = src0;
395 src0 = src1;
396 src1 = t;
397 } else if (src0.type() == RegType::vgpr &&
398 op != aco_opcode::v_madmk_f32 &&
399 op != aco_opcode::v_madak_f32 &&
400 op != aco_opcode::v_madmk_f16 &&
401 op != aco_opcode::v_madak_f16) {
402 /* If the instruction is not commutative, we emit a VOP3A instruction */
403 bld.vop2_e64(op, Definition(dst), src0, src1);
404 return;
405 } else {
406 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
407 }
408 }
409 bld.vop2(op, Definition(dst), src0, src1);
410 }
411
412 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
413 {
414 Temp src0 = get_alu_src(ctx, instr->src[0]);
415 Temp src1 = get_alu_src(ctx, instr->src[1]);
416 Temp src2 = get_alu_src(ctx, instr->src[2]);
417
418 /* ensure that the instruction has at most 1 sgpr operand
419 * The optimizer will inline constants for us */
420 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
421 src0 = as_vgpr(ctx, src0);
422 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
423 src1 = as_vgpr(ctx, src1);
424 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
425 src2 = as_vgpr(ctx, src2);
426
427 Builder bld(ctx->program, ctx->block);
428 bld.vop3(op, Definition(dst), src0, src1, src2);
429 }
430
431 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
432 {
433 Builder bld(ctx->program, ctx->block);
434 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
435 }
436
437 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
438 {
439 Temp src0 = get_alu_src(ctx, instr->src[0]);
440 Temp src1 = get_alu_src(ctx, instr->src[1]);
441 aco_ptr<Instruction> vopc;
442 if (src1.type() == RegType::sgpr) {
443 if (src0.type() == RegType::vgpr) {
444 /* to swap the operands, we might also have to change the opcode */
445 switch (op) {
446 case aco_opcode::v_cmp_lt_f32:
447 op = aco_opcode::v_cmp_gt_f32;
448 break;
449 case aco_opcode::v_cmp_ge_f32:
450 op = aco_opcode::v_cmp_le_f32;
451 break;
452 case aco_opcode::v_cmp_lt_i32:
453 op = aco_opcode::v_cmp_gt_i32;
454 break;
455 case aco_opcode::v_cmp_ge_i32:
456 op = aco_opcode::v_cmp_le_i32;
457 break;
458 case aco_opcode::v_cmp_lt_u32:
459 op = aco_opcode::v_cmp_gt_u32;
460 break;
461 case aco_opcode::v_cmp_ge_u32:
462 op = aco_opcode::v_cmp_le_u32;
463 break;
464 case aco_opcode::v_cmp_lt_f64:
465 op = aco_opcode::v_cmp_gt_f64;
466 break;
467 case aco_opcode::v_cmp_ge_f64:
468 op = aco_opcode::v_cmp_le_f64;
469 break;
470 case aco_opcode::v_cmp_lt_i64:
471 op = aco_opcode::v_cmp_gt_i64;
472 break;
473 case aco_opcode::v_cmp_ge_i64:
474 op = aco_opcode::v_cmp_le_i64;
475 break;
476 case aco_opcode::v_cmp_lt_u64:
477 op = aco_opcode::v_cmp_gt_u64;
478 break;
479 case aco_opcode::v_cmp_ge_u64:
480 op = aco_opcode::v_cmp_le_u64;
481 break;
482 default: /* eq and ne are commutative */
483 break;
484 }
485 Temp t = src0;
486 src0 = src1;
487 src1 = t;
488 } else {
489 src1 = as_vgpr(ctx, src1);
490 }
491 }
492 Builder bld(ctx->program, ctx->block);
493 bld.vopc(op, Definition(dst), src0, src1).def(0).setHint(vcc);
494 }
495
496 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
497 {
498 if (dst.regClass() == s2) {
499 emit_vopc_instruction(ctx, instr, op, dst);
500 if (!ctx->divergent_vals[instr->dest.dest.ssa.index])
501 emit_split_vector(ctx, dst, 2);
502 } else if (dst.regClass() == s1) {
503 Temp src0 = get_alu_src(ctx, instr->src[0]);
504 Temp src1 = get_alu_src(ctx, instr->src[1]);
505 assert(src0.type() == RegType::sgpr && src1.type() == RegType::sgpr);
506
507 Builder bld(ctx->program, ctx->block);
508 bld.sopc(op, bld.scc(Definition(dst)), src0, src1);
509
510 } else {
511 assert(false);
512 }
513 }
514
515 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, aco_opcode op32, aco_opcode op64, Temp dst)
516 {
517 Builder bld(ctx->program, ctx->block);
518 Temp src0 = get_alu_src(ctx, instr->src[0]);
519 Temp src1 = get_alu_src(ctx, instr->src[1]);
520 if (dst.regClass() == s2) {
521 bld.sop2(op64, Definition(dst), bld.def(s1, scc),
522 as_divergent_bool(ctx, src0, false), as_divergent_bool(ctx, src1, false));
523 } else {
524 assert(dst.regClass() == s1);
525 bld.sop2(op32, bld.def(s1), bld.scc(Definition(dst)),
526 as_uniform_bool(ctx, src0), as_uniform_bool(ctx, src1));
527 }
528 }
529
530
531 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
532 {
533 Builder bld(ctx->program, ctx->block);
534 Temp cond = get_alu_src(ctx, instr->src[0]);
535 Temp then = get_alu_src(ctx, instr->src[1]);
536 Temp els = get_alu_src(ctx, instr->src[2]);
537
538 if (dst.type() == RegType::vgpr) {
539 cond = as_divergent_bool(ctx, cond, true);
540
541 aco_ptr<Instruction> bcsel;
542 if (dst.size() == 1) {
543 then = as_vgpr(ctx, then);
544 els = as_vgpr(ctx, els);
545
546 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
547 } else if (dst.size() == 2) {
548 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
549 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
550 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
551 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
552
553 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
554 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
555
556 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
557 } else {
558 fprintf(stderr, "Unimplemented NIR instr bit size: ");
559 nir_print_instr(&instr->instr, stderr);
560 fprintf(stderr, "\n");
561 }
562 return;
563 }
564
565 if (instr->dest.dest.ssa.bit_size != 1) { /* uniform condition and values in sgpr */
566 if (dst.regClass() == s1 || dst.regClass() == s2) {
567 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
568 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
569 bld.sop2(op, Definition(dst), then, els, bld.scc(as_uniform_bool(ctx, cond)));
570 } else {
571 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
572 nir_print_instr(&instr->instr, stderr);
573 fprintf(stderr, "\n");
574 }
575 return;
576 }
577
578 /* boolean bcsel */
579 assert(instr->dest.dest.ssa.bit_size == 1);
580
581 if (dst.regClass() == s1)
582 cond = as_uniform_bool(ctx, cond);
583
584 if (cond.regClass() == s1) { /* uniform selection */
585 aco_opcode op;
586 if (dst.regClass() == s2) {
587 op = aco_opcode::s_cselect_b64;
588 then = as_divergent_bool(ctx, then, false);
589 els = as_divergent_bool(ctx, els, false);
590 } else {
591 assert(dst.regClass() == s1);
592 op = aco_opcode::s_cselect_b32;
593 then = as_uniform_bool(ctx, then);
594 els = as_uniform_bool(ctx, els);
595 }
596 bld.sop2(op, Definition(dst), then, els, bld.scc(cond));
597 return;
598 }
599
600 /* divergent boolean bcsel
601 * this implements bcsel on bools: dst = s0 ? s1 : s2
602 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
603 assert (dst.regClass() == s2);
604 then = as_divergent_bool(ctx, then, false);
605 els = as_divergent_bool(ctx, els, false);
606
607 if (cond.id() != then.id())
608 then = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), cond, then);
609
610 if (cond.id() == els.id())
611 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), then);
612 else
613 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), then,
614 bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc), els, cond));
615 }
616
617 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
618 {
619 if (!instr->dest.dest.is_ssa) {
620 fprintf(stderr, "nir alu dst not in ssa: ");
621 nir_print_instr(&instr->instr, stderr);
622 fprintf(stderr, "\n");
623 abort();
624 }
625 Builder bld(ctx->program, ctx->block);
626 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
627 switch(instr->op) {
628 case nir_op_vec2:
629 case nir_op_vec3:
630 case nir_op_vec4: {
631 std::array<Temp,4> elems;
632 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
633 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
634 elems[i] = get_alu_src(ctx, instr->src[i]);
635 vec->operands[i] = Operand{elems[i]};
636 }
637 vec->definitions[0] = Definition(dst);
638 ctx->block->instructions.emplace_back(std::move(vec));
639 ctx->allocated_vec.emplace(dst.id(), elems);
640 break;
641 }
642 case nir_op_mov: {
643 Temp src = get_alu_src(ctx, instr->src[0]);
644 aco_ptr<Instruction> mov;
645 if (dst.type() == RegType::sgpr) {
646 if (src.type() == RegType::vgpr)
647 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
648 else if (src.regClass() == s1)
649 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
650 else if (src.regClass() == s2)
651 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
652 else
653 unreachable("wrong src register class for nir_op_imov");
654 } else if (dst.regClass() == v1) {
655 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
656 } else if (dst.regClass() == v2) {
657 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
658 } else {
659 nir_print_instr(&instr->instr, stderr);
660 unreachable("Should have been lowered to scalar.");
661 }
662 break;
663 }
664 case nir_op_inot: {
665 Temp src = get_alu_src(ctx, instr->src[0]);
666 /* uniform booleans */
667 if (instr->dest.dest.ssa.bit_size == 1 && dst.regClass() == s1) {
668 if (src.regClass() == s1) {
669 /* in this case, src is either 1 or 0 */
670 bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.scc(Definition(dst)), Operand(1u), src);
671 } else {
672 /* src is either exec_mask or 0 */
673 assert(src.regClass() == s2);
674 bld.sopc(aco_opcode::s_cmp_eq_u64, bld.scc(Definition(dst)), Operand(0u), src);
675 }
676 } else if (dst.regClass() == v1) {
677 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
678 } else if (dst.type() == RegType::sgpr) {
679 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
680 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
681 } else {
682 fprintf(stderr, "Unimplemented NIR instr bit size: ");
683 nir_print_instr(&instr->instr, stderr);
684 fprintf(stderr, "\n");
685 }
686 break;
687 }
688 case nir_op_ineg: {
689 Temp src = get_alu_src(ctx, instr->src[0]);
690 if (dst.regClass() == v1) {
691 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
692 } else if (dst.regClass() == s1) {
693 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
694 } else if (dst.size() == 2) {
695 Temp src0 = bld.tmp(dst.type(), 1);
696 Temp src1 = bld.tmp(dst.type(), 1);
697 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
698
699 if (dst.regClass() == s2) {
700 Temp carry = bld.tmp(s1);
701 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
702 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
703 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
704 } else {
705 Temp lower = bld.tmp(v1);
706 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
707 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
708 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
709 }
710 } else {
711 fprintf(stderr, "Unimplemented NIR instr bit size: ");
712 nir_print_instr(&instr->instr, stderr);
713 fprintf(stderr, "\n");
714 }
715 break;
716 }
717 case nir_op_iabs: {
718 if (dst.regClass() == s1) {
719 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
720 } else if (dst.regClass() == v1) {
721 Temp src = get_alu_src(ctx, instr->src[0]);
722 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
723 } else {
724 fprintf(stderr, "Unimplemented NIR instr bit size: ");
725 nir_print_instr(&instr->instr, stderr);
726 fprintf(stderr, "\n");
727 }
728 break;
729 }
730 case nir_op_isign: {
731 Temp src = get_alu_src(ctx, instr->src[0]);
732 if (dst.regClass() == s1) {
733 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
734 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
735 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
736 } else if (dst.regClass() == s2) {
737 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
738 Temp neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
739 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, neqz);
740 } else if (dst.regClass() == v1) {
741 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
742 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
743 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
744 } else if (dst.regClass() == v2) {
745 Temp upper = emit_extract_vector(ctx, src, 1, v1);
746 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
747 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
748 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
749 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
750 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
751 } else {
752 fprintf(stderr, "Unimplemented NIR instr bit size: ");
753 nir_print_instr(&instr->instr, stderr);
754 fprintf(stderr, "\n");
755 }
756 break;
757 }
758 case nir_op_imax: {
759 if (dst.regClass() == v1) {
760 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
761 } else if (dst.regClass() == s1) {
762 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
763 } else {
764 fprintf(stderr, "Unimplemented NIR instr bit size: ");
765 nir_print_instr(&instr->instr, stderr);
766 fprintf(stderr, "\n");
767 }
768 break;
769 }
770 case nir_op_umax: {
771 if (dst.regClass() == v1) {
772 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
773 } else if (dst.regClass() == s1) {
774 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
775 } else {
776 fprintf(stderr, "Unimplemented NIR instr bit size: ");
777 nir_print_instr(&instr->instr, stderr);
778 fprintf(stderr, "\n");
779 }
780 break;
781 }
782 case nir_op_imin: {
783 if (dst.regClass() == v1) {
784 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
785 } else if (dst.regClass() == s1) {
786 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
787 } else {
788 fprintf(stderr, "Unimplemented NIR instr bit size: ");
789 nir_print_instr(&instr->instr, stderr);
790 fprintf(stderr, "\n");
791 }
792 break;
793 }
794 case nir_op_umin: {
795 if (dst.regClass() == v1) {
796 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
797 } else if (dst.regClass() == s1) {
798 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
799 } else {
800 fprintf(stderr, "Unimplemented NIR instr bit size: ");
801 nir_print_instr(&instr->instr, stderr);
802 fprintf(stderr, "\n");
803 }
804 break;
805 }
806 case nir_op_ior: {
807 if (instr->dest.dest.ssa.bit_size == 1) {
808 emit_boolean_logic(ctx, instr, aco_opcode::s_or_b32, aco_opcode::s_or_b64, dst);
809 } else if (dst.regClass() == v1) {
810 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
811 } else if (dst.regClass() == s1) {
812 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
813 } else if (dst.regClass() == s2) {
814 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
815 } else {
816 fprintf(stderr, "Unimplemented NIR instr bit size: ");
817 nir_print_instr(&instr->instr, stderr);
818 fprintf(stderr, "\n");
819 }
820 break;
821 }
822 case nir_op_iand: {
823 if (instr->dest.dest.ssa.bit_size == 1) {
824 emit_boolean_logic(ctx, instr, aco_opcode::s_and_b32, aco_opcode::s_and_b64, dst);
825 } else if (dst.regClass() == v1) {
826 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
827 } else if (dst.regClass() == s1) {
828 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
829 } else if (dst.regClass() == s2) {
830 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
831 } else {
832 fprintf(stderr, "Unimplemented NIR instr bit size: ");
833 nir_print_instr(&instr->instr, stderr);
834 fprintf(stderr, "\n");
835 }
836 break;
837 }
838 case nir_op_ixor: {
839 if (instr->dest.dest.ssa.bit_size == 1) {
840 emit_boolean_logic(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::s_xor_b64, dst);
841 } else if (dst.regClass() == v1) {
842 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
843 } else if (dst.regClass() == s1) {
844 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
845 } else if (dst.regClass() == s2) {
846 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
847 } else {
848 fprintf(stderr, "Unimplemented NIR instr bit size: ");
849 nir_print_instr(&instr->instr, stderr);
850 fprintf(stderr, "\n");
851 }
852 break;
853 }
854 case nir_op_ushr: {
855 if (dst.regClass() == v1) {
856 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
857 } else if (dst.regClass() == v2) {
858 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
859 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
860 } else if (dst.regClass() == s2) {
861 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
862 } else if (dst.regClass() == s1) {
863 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
864 } else {
865 fprintf(stderr, "Unimplemented NIR instr bit size: ");
866 nir_print_instr(&instr->instr, stderr);
867 fprintf(stderr, "\n");
868 }
869 break;
870 }
871 case nir_op_ishl: {
872 if (dst.regClass() == v1) {
873 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
874 } else if (dst.regClass() == v2) {
875 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
876 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
877 } else if (dst.regClass() == s1) {
878 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
879 } else if (dst.regClass() == s2) {
880 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
881 } else {
882 fprintf(stderr, "Unimplemented NIR instr bit size: ");
883 nir_print_instr(&instr->instr, stderr);
884 fprintf(stderr, "\n");
885 }
886 break;
887 }
888 case nir_op_ishr: {
889 if (dst.regClass() == v1) {
890 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
891 } else if (dst.regClass() == v2) {
892 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
893 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
894 } else if (dst.regClass() == s1) {
895 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
896 } else if (dst.regClass() == s2) {
897 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
898 } else {
899 fprintf(stderr, "Unimplemented NIR instr bit size: ");
900 nir_print_instr(&instr->instr, stderr);
901 fprintf(stderr, "\n");
902 }
903 break;
904 }
905 case nir_op_find_lsb: {
906 Temp src = get_alu_src(ctx, instr->src[0]);
907 if (src.regClass() == s1) {
908 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
909 } else if (src.regClass() == v1) {
910 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
911 } else if (src.regClass() == s2) {
912 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
913 } else {
914 fprintf(stderr, "Unimplemented NIR instr bit size: ");
915 nir_print_instr(&instr->instr, stderr);
916 fprintf(stderr, "\n");
917 }
918 break;
919 }
920 case nir_op_ufind_msb:
921 case nir_op_ifind_msb: {
922 Temp src = get_alu_src(ctx, instr->src[0]);
923 if (src.regClass() == s1 || src.regClass() == s2) {
924 aco_opcode op = src.regClass() == s2 ?
925 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
926 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
927 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
928
929 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
930 Operand(src.size() * 32u - 1u), msb_rev);
931 Temp msb = sub.def(0).getTemp();
932 Temp carry = sub.def(1).getTemp();
933
934 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, carry);
935 } else if (src.regClass() == v1) {
936 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
937 Temp msb_rev = bld.tmp(v1);
938 emit_vop1_instruction(ctx, instr, op, msb_rev);
939 Temp msb = bld.tmp(v1);
940 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
941 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
942 } else {
943 fprintf(stderr, "Unimplemented NIR instr bit size: ");
944 nir_print_instr(&instr->instr, stderr);
945 fprintf(stderr, "\n");
946 }
947 break;
948 }
949 case nir_op_bitfield_reverse: {
950 if (dst.regClass() == s1) {
951 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
952 } else if (dst.regClass() == v1) {
953 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
954 } else {
955 fprintf(stderr, "Unimplemented NIR instr bit size: ");
956 nir_print_instr(&instr->instr, stderr);
957 fprintf(stderr, "\n");
958 }
959 break;
960 }
961 case nir_op_iadd: {
962 if (dst.regClass() == s1) {
963 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
964 break;
965 }
966
967 Temp src0 = get_alu_src(ctx, instr->src[0]);
968 Temp src1 = get_alu_src(ctx, instr->src[1]);
969 if (dst.regClass() == v1) {
970 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
971 break;
972 }
973
974 assert(src0.size() == 2 && src1.size() == 2);
975 Temp src00 = bld.tmp(src0.type(), 1);
976 Temp src01 = bld.tmp(dst.type(), 1);
977 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
978 Temp src10 = bld.tmp(src1.type(), 1);
979 Temp src11 = bld.tmp(dst.type(), 1);
980 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
981
982 if (dst.regClass() == s2) {
983 Temp carry = bld.tmp(s1);
984 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
985 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
986 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
987 } else if (dst.regClass() == v2) {
988 Temp dst0 = bld.tmp(v1);
989 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
990 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
991 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
992 } else {
993 fprintf(stderr, "Unimplemented NIR instr bit size: ");
994 nir_print_instr(&instr->instr, stderr);
995 fprintf(stderr, "\n");
996 }
997 break;
998 }
999 case nir_op_uadd_sat: {
1000 Temp src0 = get_alu_src(ctx, instr->src[0]);
1001 Temp src1 = get_alu_src(ctx, instr->src[1]);
1002 if (dst.regClass() == s1) {
1003 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1004 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1005 src0, src1);
1006 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1007 } else if (dst.regClass() == v1) {
1008 if (ctx->options->chip_class >= GFX9) {
1009 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1010 add->operands[0] = Operand(src0);
1011 add->operands[1] = Operand(src1);
1012 add->definitions[0] = Definition(dst);
1013 add->clamp = 1;
1014 ctx->block->instructions.emplace_back(std::move(add));
1015 } else {
1016 if (src1.regClass() != v1)
1017 std::swap(src0, src1);
1018 assert(src1.regClass() == v1);
1019 Temp tmp = bld.tmp(v1);
1020 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1021 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1022 }
1023 } else {
1024 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1025 nir_print_instr(&instr->instr, stderr);
1026 fprintf(stderr, "\n");
1027 }
1028 break;
1029 }
1030 case nir_op_uadd_carry: {
1031 Temp src0 = get_alu_src(ctx, instr->src[0]);
1032 Temp src1 = get_alu_src(ctx, instr->src[1]);
1033 if (dst.regClass() == s1) {
1034 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1035 break;
1036 }
1037 if (dst.regClass() == v1) {
1038 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1039 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1040 break;
1041 }
1042
1043 Temp src00 = bld.tmp(src0.type(), 1);
1044 Temp src01 = bld.tmp(dst.type(), 1);
1045 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1046 Temp src10 = bld.tmp(src1.type(), 1);
1047 Temp src11 = bld.tmp(dst.type(), 1);
1048 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1049 if (dst.regClass() == s2) {
1050 Temp carry = bld.tmp(s1);
1051 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1052 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1053 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1054 } else if (dst.regClass() == v2) {
1055 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1056 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1057 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1058 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1059 } else {
1060 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1061 nir_print_instr(&instr->instr, stderr);
1062 fprintf(stderr, "\n");
1063 }
1064 break;
1065 }
1066 case nir_op_isub: {
1067 if (dst.regClass() == s1) {
1068 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1069 break;
1070 }
1071
1072 Temp src0 = get_alu_src(ctx, instr->src[0]);
1073 Temp src1 = get_alu_src(ctx, instr->src[1]);
1074 if (dst.regClass() == v1) {
1075 bld.vsub32(Definition(dst), src0, src1);
1076 break;
1077 }
1078
1079 Temp src00 = bld.tmp(src0.type(), 1);
1080 Temp src01 = bld.tmp(dst.type(), 1);
1081 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1082 Temp src10 = bld.tmp(src1.type(), 1);
1083 Temp src11 = bld.tmp(dst.type(), 1);
1084 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1085 if (dst.regClass() == s2) {
1086 Temp carry = bld.tmp(s1);
1087 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1088 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1089 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1090 } else if (dst.regClass() == v2) {
1091 Temp lower = bld.tmp(v1);
1092 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1093 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1094 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1095 } else {
1096 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1097 nir_print_instr(&instr->instr, stderr);
1098 fprintf(stderr, "\n");
1099 }
1100 break;
1101 }
1102 case nir_op_usub_borrow: {
1103 Temp src0 = get_alu_src(ctx, instr->src[0]);
1104 Temp src1 = get_alu_src(ctx, instr->src[1]);
1105 if (dst.regClass() == s1) {
1106 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1107 break;
1108 } else if (dst.regClass() == v1) {
1109 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1110 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1111 break;
1112 }
1113
1114 Temp src00 = bld.tmp(src0.type(), 1);
1115 Temp src01 = bld.tmp(dst.type(), 1);
1116 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1117 Temp src10 = bld.tmp(src1.type(), 1);
1118 Temp src11 = bld.tmp(dst.type(), 1);
1119 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1120 if (dst.regClass() == s2) {
1121 Temp borrow = bld.tmp(s1);
1122 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1123 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1124 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1125 } else if (dst.regClass() == v2) {
1126 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1127 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1128 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1129 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1130 } else {
1131 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1132 nir_print_instr(&instr->instr, stderr);
1133 fprintf(stderr, "\n");
1134 }
1135 break;
1136 }
1137 case nir_op_imul: {
1138 if (dst.regClass() == v1) {
1139 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1140 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1141 } else if (dst.regClass() == s1) {
1142 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1143 } else {
1144 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1145 nir_print_instr(&instr->instr, stderr);
1146 fprintf(stderr, "\n");
1147 }
1148 break;
1149 }
1150 case nir_op_umul_high: {
1151 if (dst.regClass() == v1) {
1152 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1153 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1154 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1155 } else if (dst.regClass() == s1) {
1156 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1157 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1158 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1159 } else {
1160 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1161 nir_print_instr(&instr->instr, stderr);
1162 fprintf(stderr, "\n");
1163 }
1164 break;
1165 }
1166 case nir_op_imul_high: {
1167 if (dst.regClass() == v1) {
1168 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1169 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1170 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1171 } else if (dst.regClass() == s1) {
1172 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1173 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1174 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1175 } else {
1176 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1177 nir_print_instr(&instr->instr, stderr);
1178 fprintf(stderr, "\n");
1179 }
1180 break;
1181 }
1182 case nir_op_fmul: {
1183 if (dst.size() == 1) {
1184 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1185 } else if (dst.size() == 2) {
1186 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1187 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1188 } else {
1189 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1190 nir_print_instr(&instr->instr, stderr);
1191 fprintf(stderr, "\n");
1192 }
1193 break;
1194 }
1195 case nir_op_fadd: {
1196 if (dst.size() == 1) {
1197 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1198 } else if (dst.size() == 2) {
1199 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1200 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1201 } else {
1202 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1203 nir_print_instr(&instr->instr, stderr);
1204 fprintf(stderr, "\n");
1205 }
1206 break;
1207 }
1208 case nir_op_fsub: {
1209 Temp src0 = get_alu_src(ctx, instr->src[0]);
1210 Temp src1 = get_alu_src(ctx, instr->src[1]);
1211 if (dst.size() == 1) {
1212 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1213 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1214 else
1215 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1216 } else if (dst.size() == 2) {
1217 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1218 get_alu_src(ctx, instr->src[0]),
1219 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1220 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1221 sub->neg[1] = true;
1222 } else {
1223 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1224 nir_print_instr(&instr->instr, stderr);
1225 fprintf(stderr, "\n");
1226 }
1227 break;
1228 }
1229 case nir_op_fmax: {
1230 if (dst.size() == 1) {
1231 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true);
1232 } else if (dst.size() == 2) {
1233 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1234 get_alu_src(ctx, instr->src[0]),
1235 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1236 } else {
1237 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1238 nir_print_instr(&instr->instr, stderr);
1239 fprintf(stderr, "\n");
1240 }
1241 break;
1242 }
1243 case nir_op_fmin: {
1244 if (dst.size() == 1) {
1245 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true);
1246 } else if (dst.size() == 2) {
1247 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1248 get_alu_src(ctx, instr->src[0]),
1249 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1250 } else {
1251 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1252 nir_print_instr(&instr->instr, stderr);
1253 fprintf(stderr, "\n");
1254 }
1255 break;
1256 }
1257 case nir_op_fmax3: {
1258 if (dst.size() == 1) {
1259 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst);
1260 } else {
1261 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1262 nir_print_instr(&instr->instr, stderr);
1263 fprintf(stderr, "\n");
1264 }
1265 break;
1266 }
1267 case nir_op_fmin3: {
1268 if (dst.size() == 1) {
1269 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst);
1270 } else {
1271 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1272 nir_print_instr(&instr->instr, stderr);
1273 fprintf(stderr, "\n");
1274 }
1275 break;
1276 }
1277 case nir_op_fmed3: {
1278 if (dst.size() == 1) {
1279 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst);
1280 } else {
1281 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1282 nir_print_instr(&instr->instr, stderr);
1283 fprintf(stderr, "\n");
1284 }
1285 break;
1286 }
1287 case nir_op_umax3: {
1288 if (dst.size() == 1) {
1289 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1290 } else {
1291 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1292 nir_print_instr(&instr->instr, stderr);
1293 fprintf(stderr, "\n");
1294 }
1295 break;
1296 }
1297 case nir_op_umin3: {
1298 if (dst.size() == 1) {
1299 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1300 } else {
1301 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1302 nir_print_instr(&instr->instr, stderr);
1303 fprintf(stderr, "\n");
1304 }
1305 break;
1306 }
1307 case nir_op_umed3: {
1308 if (dst.size() == 1) {
1309 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1310 } else {
1311 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1312 nir_print_instr(&instr->instr, stderr);
1313 fprintf(stderr, "\n");
1314 }
1315 break;
1316 }
1317 case nir_op_imax3: {
1318 if (dst.size() == 1) {
1319 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1320 } else {
1321 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1322 nir_print_instr(&instr->instr, stderr);
1323 fprintf(stderr, "\n");
1324 }
1325 break;
1326 }
1327 case nir_op_imin3: {
1328 if (dst.size() == 1) {
1329 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1330 } else {
1331 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1332 nir_print_instr(&instr->instr, stderr);
1333 fprintf(stderr, "\n");
1334 }
1335 break;
1336 }
1337 case nir_op_imed3: {
1338 if (dst.size() == 1) {
1339 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1340 } else {
1341 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1342 nir_print_instr(&instr->instr, stderr);
1343 fprintf(stderr, "\n");
1344 }
1345 break;
1346 }
1347 case nir_op_cube_face_coord: {
1348 Temp in = get_alu_src(ctx, instr->src[0], 3);
1349 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1350 emit_extract_vector(ctx, in, 1, v1),
1351 emit_extract_vector(ctx, in, 2, v1) };
1352 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1353 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1354 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1355 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1356 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1357 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1358 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1359 break;
1360 }
1361 case nir_op_cube_face_index: {
1362 Temp in = get_alu_src(ctx, instr->src[0], 3);
1363 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1364 emit_extract_vector(ctx, in, 1, v1),
1365 emit_extract_vector(ctx, in, 2, v1) };
1366 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1367 break;
1368 }
1369 case nir_op_bcsel: {
1370 emit_bcsel(ctx, instr, dst);
1371 break;
1372 }
1373 case nir_op_frsq: {
1374 if (dst.size() == 1) {
1375 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f32, dst);
1376 } else if (dst.size() == 2) {
1377 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1378 } else {
1379 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1380 nir_print_instr(&instr->instr, stderr);
1381 fprintf(stderr, "\n");
1382 }
1383 break;
1384 }
1385 case nir_op_fneg: {
1386 Temp src = get_alu_src(ctx, instr->src[0]);
1387 if (dst.size() == 1) {
1388 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1389 } else if (dst.size() == 2) {
1390 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1391 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1392 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1393 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1394 } else {
1395 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1396 nir_print_instr(&instr->instr, stderr);
1397 fprintf(stderr, "\n");
1398 }
1399 break;
1400 }
1401 case nir_op_fabs: {
1402 Temp src = get_alu_src(ctx, instr->src[0]);
1403 if (dst.size() == 1) {
1404 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1405 } else if (dst.size() == 2) {
1406 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1407 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1408 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1409 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1410 } else {
1411 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1412 nir_print_instr(&instr->instr, stderr);
1413 fprintf(stderr, "\n");
1414 }
1415 break;
1416 }
1417 case nir_op_fsat: {
1418 Temp src = get_alu_src(ctx, instr->src[0]);
1419 if (dst.size() == 1) {
1420 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1421 } else if (dst.size() == 2) {
1422 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1423 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1424 vop3->clamp = true;
1425 } else {
1426 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1427 nir_print_instr(&instr->instr, stderr);
1428 fprintf(stderr, "\n");
1429 }
1430 break;
1431 }
1432 case nir_op_flog2: {
1433 if (dst.size() == 1) {
1434 emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f32, dst);
1435 } else {
1436 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1437 nir_print_instr(&instr->instr, stderr);
1438 fprintf(stderr, "\n");
1439 }
1440 break;
1441 }
1442 case nir_op_frcp: {
1443 if (dst.size() == 1) {
1444 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f32, dst);
1445 } else if (dst.size() == 2) {
1446 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1447 } else {
1448 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1449 nir_print_instr(&instr->instr, stderr);
1450 fprintf(stderr, "\n");
1451 }
1452 break;
1453 }
1454 case nir_op_fexp2: {
1455 if (dst.size() == 1) {
1456 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1457 } else {
1458 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1459 nir_print_instr(&instr->instr, stderr);
1460 fprintf(stderr, "\n");
1461 }
1462 break;
1463 }
1464 case nir_op_fsqrt: {
1465 if (dst.size() == 1) {
1466 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f32, dst);
1467 } else if (dst.size() == 2) {
1468 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1469 } else {
1470 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1471 nir_print_instr(&instr->instr, stderr);
1472 fprintf(stderr, "\n");
1473 }
1474 break;
1475 }
1476 case nir_op_ffract: {
1477 if (dst.size() == 1) {
1478 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1479 } else if (dst.size() == 2) {
1480 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1481 } else {
1482 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1483 nir_print_instr(&instr->instr, stderr);
1484 fprintf(stderr, "\n");
1485 }
1486 break;
1487 }
1488 case nir_op_ffloor: {
1489 if (dst.size() == 1) {
1490 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1491 } else if (dst.size() == 2) {
1492 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f64, dst);
1493 } else {
1494 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1495 nir_print_instr(&instr->instr, stderr);
1496 fprintf(stderr, "\n");
1497 }
1498 break;
1499 }
1500 case nir_op_fceil: {
1501 if (dst.size() == 1) {
1502 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1503 } else if (dst.size() == 2) {
1504 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1505 } else {
1506 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1507 nir_print_instr(&instr->instr, stderr);
1508 fprintf(stderr, "\n");
1509 }
1510 break;
1511 }
1512 case nir_op_ftrunc: {
1513 if (dst.size() == 1) {
1514 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1515 } else if (dst.size() == 2) {
1516 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f64, dst);
1517 } else {
1518 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1519 nir_print_instr(&instr->instr, stderr);
1520 fprintf(stderr, "\n");
1521 }
1522 break;
1523 }
1524 case nir_op_fround_even: {
1525 if (dst.size() == 1) {
1526 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1527 } else if (dst.size() == 2) {
1528 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1529 } else {
1530 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1531 nir_print_instr(&instr->instr, stderr);
1532 fprintf(stderr, "\n");
1533 }
1534 break;
1535 }
1536 case nir_op_fsin:
1537 case nir_op_fcos: {
1538 Temp src = get_alu_src(ctx, instr->src[0]);
1539 aco_ptr<Instruction> norm;
1540 if (dst.size() == 1) {
1541 Temp tmp;
1542 Operand half_pi(0x3e22f983u);
1543 if (src.type() == RegType::sgpr)
1544 tmp = bld.vop2_e64(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
1545 else
1546 tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
1547
1548 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1549 if (ctx->options->chip_class < GFX9)
1550 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1551
1552 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1553 bld.vop1(opcode, Definition(dst), tmp);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_ldexp: {
1562 if (dst.size() == 1) {
1563 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1564 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1565 get_alu_src(ctx, instr->src[1]));
1566 } else if (dst.size() == 2) {
1567 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1568 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1569 get_alu_src(ctx, instr->src[1]));
1570 } else {
1571 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1572 nir_print_instr(&instr->instr, stderr);
1573 fprintf(stderr, "\n");
1574 }
1575 break;
1576 }
1577 case nir_op_frexp_sig: {
1578 if (dst.size() == 1) {
1579 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1580 get_alu_src(ctx, instr->src[0]));
1581 } else if (dst.size() == 2) {
1582 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1583 get_alu_src(ctx, instr->src[0]));
1584 } else {
1585 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1586 nir_print_instr(&instr->instr, stderr);
1587 fprintf(stderr, "\n");
1588 }
1589 break;
1590 }
1591 case nir_op_frexp_exp: {
1592 if (instr->src[0].src.ssa->bit_size == 32) {
1593 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1594 get_alu_src(ctx, instr->src[0]));
1595 } else if (instr->src[0].src.ssa->bit_size == 64) {
1596 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1597 get_alu_src(ctx, instr->src[0]));
1598 } else {
1599 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1600 nir_print_instr(&instr->instr, stderr);
1601 fprintf(stderr, "\n");
1602 }
1603 break;
1604 }
1605 case nir_op_fsign: {
1606 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1607 if (dst.size() == 1) {
1608 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
1609 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1610 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
1611 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1612 } else if (dst.size() == 2) {
1613 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
1614 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1615 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, src, cond);
1616
1617 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
1618 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1619 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1620
1621 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_f2f32: {
1630 if (instr->src[0].src.ssa->bit_size == 64) {
1631 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1632 } else {
1633 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1634 nir_print_instr(&instr->instr, stderr);
1635 fprintf(stderr, "\n");
1636 }
1637 break;
1638 }
1639 case nir_op_f2f64: {
1640 if (instr->src[0].src.ssa->bit_size == 32) {
1641 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1642 } else {
1643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1644 nir_print_instr(&instr->instr, stderr);
1645 fprintf(stderr, "\n");
1646 }
1647 break;
1648 }
1649 case nir_op_i2f32: {
1650 assert(dst.size() == 1);
1651 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1652 break;
1653 }
1654 case nir_op_i2f64: {
1655 if (instr->src[0].src.ssa->bit_size == 32) {
1656 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1657 } else if (instr->src[0].src.ssa->bit_size == 64) {
1658 Temp src = get_alu_src(ctx, instr->src[0]);
1659 RegClass rc = RegClass(src.type(), 1);
1660 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1661 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1662 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1663 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1664 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1665 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1666
1667 } else {
1668 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1669 nir_print_instr(&instr->instr, stderr);
1670 fprintf(stderr, "\n");
1671 }
1672 break;
1673 }
1674 case nir_op_u2f32: {
1675 assert(dst.size() == 1);
1676 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1677 break;
1678 }
1679 case nir_op_u2f64: {
1680 if (instr->src[0].src.ssa->bit_size == 32) {
1681 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1682 } else if (instr->src[0].src.ssa->bit_size == 64) {
1683 Temp src = get_alu_src(ctx, instr->src[0]);
1684 RegClass rc = RegClass(src.type(), 1);
1685 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1686 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1687 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1688 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1689 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1690 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1691 } else {
1692 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1693 nir_print_instr(&instr->instr, stderr);
1694 fprintf(stderr, "\n");
1695 }
1696 break;
1697 }
1698 case nir_op_f2i32: {
1699 Temp src = get_alu_src(ctx, instr->src[0]);
1700 if (instr->src[0].src.ssa->bit_size == 32) {
1701 if (dst.type() == RegType::vgpr)
1702 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1703 else
1704 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1705 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1706
1707 } else if (instr->src[0].src.ssa->bit_size == 64) {
1708 if (dst.type() == RegType::vgpr)
1709 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1710 else
1711 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1712 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1713
1714 } else {
1715 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1716 nir_print_instr(&instr->instr, stderr);
1717 fprintf(stderr, "\n");
1718 }
1719 break;
1720 }
1721 case nir_op_f2u32: {
1722 Temp src = get_alu_src(ctx, instr->src[0]);
1723 if (instr->src[0].src.ssa->bit_size == 32) {
1724 if (dst.type() == RegType::vgpr)
1725 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
1726 else
1727 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1728 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
1729
1730 } else if (instr->src[0].src.ssa->bit_size == 64) {
1731 if (dst.type() == RegType::vgpr)
1732 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
1733 else
1734 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1735 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
1736
1737 } else {
1738 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1739 nir_print_instr(&instr->instr, stderr);
1740 fprintf(stderr, "\n");
1741 }
1742 break;
1743 }
1744 case nir_op_f2i64: {
1745 Temp src = get_alu_src(ctx, instr->src[0]);
1746 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
1747 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
1748 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
1749 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
1750 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
1751 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
1752 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
1753 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
1754 Temp new_exponent = bld.tmp(v1);
1755 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
1756 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
1757 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
1758 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
1759 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1760 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
1761 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
1762 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
1763 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
1764 Temp new_lower = bld.tmp(v1);
1765 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
1766 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
1767 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
1768
1769 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
1770 if (src.type() == RegType::vgpr)
1771 src = bld.as_uniform(src);
1772 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
1773 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
1774 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
1775 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
1776 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
1777 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
1778 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
1779 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
1780 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
1781 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
1782 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
1783 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
1784 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
1785 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
1786 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
1787 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1788 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
1789 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
1790 Temp borrow = bld.tmp(s1);
1791 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
1792 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
1793 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1794
1795 } else if (instr->src[0].src.ssa->bit_size == 64) {
1796 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
1797 Temp trunc = bld.vop1(aco_opcode::v_trunc_f64, bld.def(v2), src);
1798 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
1799 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
1800 Temp floor = bld.vop1(aco_opcode::v_floor_f64, bld.def(v2), mul);
1801 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
1802 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
1803 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
1804 if (dst.type() == RegType::sgpr) {
1805 lower = bld.as_uniform(lower);
1806 upper = bld.as_uniform(upper);
1807 }
1808 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1809
1810 } else {
1811 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1812 nir_print_instr(&instr->instr, stderr);
1813 fprintf(stderr, "\n");
1814 }
1815 break;
1816 }
1817 case nir_op_f2u64: {
1818 Temp src = get_alu_src(ctx, instr->src[0]);
1819 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
1820 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
1821 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(s2)), Operand(64u), exponent);
1822 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
1823 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
1824 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
1825 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
1826 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
1827 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
1828 Temp new_exponent = bld.tmp(v1);
1829 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
1830 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
1831 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
1832 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1833 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
1834 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
1835 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
1836 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
1837 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1838
1839 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
1840 if (src.type() == RegType::vgpr)
1841 src = bld.as_uniform(src);
1842 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
1843 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
1844 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
1845 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
1846 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
1847 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
1848 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
1849 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
1850 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
1851 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
1852 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
1853 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
1854 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
1855 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1856 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
1857 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
1858 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
1859 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1860
1861 } else if (instr->src[0].src.ssa->bit_size == 64) {
1862 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
1863 Temp trunc = bld.vop1(aco_opcode::v_trunc_f64, bld.def(v2), src);
1864 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
1865 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
1866 Temp floor = bld.vop1(aco_opcode::v_floor_f64, bld.def(v2), mul);
1867 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
1868 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
1869 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
1870 if (dst.type() == RegType::sgpr) {
1871 lower = bld.as_uniform(lower);
1872 upper = bld.as_uniform(upper);
1873 }
1874 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1875
1876 } else {
1877 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1878 nir_print_instr(&instr->instr, stderr);
1879 fprintf(stderr, "\n");
1880 }
1881 break;
1882 }
1883 case nir_op_b2f32: {
1884 Temp src = get_alu_src(ctx, instr->src[0]);
1885 if (dst.regClass() == s1) {
1886 src = as_uniform_bool(ctx, src);
1887 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
1888 } else if (dst.regClass() == v1) {
1889 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u),
1890 as_divergent_bool(ctx, src, true));
1891 } else {
1892 unreachable("Wrong destination register class for nir_op_b2f32.");
1893 }
1894 break;
1895 }
1896 case nir_op_b2f64: {
1897 Temp src = get_alu_src(ctx, instr->src[0]);
1898 if (dst.regClass() == s2) {
1899 src = as_uniform_bool(ctx, src);
1900 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
1901 } else if (dst.regClass() == v2) {
1902 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
1903 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one,
1904 as_divergent_bool(ctx, src, true));
1905 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1906 } else {
1907 unreachable("Wrong destination register class for nir_op_b2f64.");
1908 }
1909 break;
1910 }
1911 case nir_op_i2i32: {
1912 Temp src = get_alu_src(ctx, instr->src[0]);
1913 if (instr->src[0].src.ssa->bit_size == 64) {
1914 /* we can actually just say dst = src, as it would map the lower register */
1915 emit_extract_vector(ctx, src, 0, dst);
1916 } else {
1917 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1918 nir_print_instr(&instr->instr, stderr);
1919 fprintf(stderr, "\n");
1920 }
1921 break;
1922 }
1923 case nir_op_u2u32: {
1924 Temp src = get_alu_src(ctx, instr->src[0]);
1925 if (instr->src[0].src.ssa->bit_size == 16) {
1926 if (dst.regClass() == s1) {
1927 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
1928 } else {
1929 // TODO: do better with SDWA
1930 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
1931 }
1932 } else if (instr->src[0].src.ssa->bit_size == 64) {
1933 /* we can actually just say dst = src, as it would map the lower register */
1934 emit_extract_vector(ctx, src, 0, dst);
1935 } else {
1936 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1937 nir_print_instr(&instr->instr, stderr);
1938 fprintf(stderr, "\n");
1939 }
1940 break;
1941 }
1942 case nir_op_i2i64: {
1943 Temp src = get_alu_src(ctx, instr->src[0]);
1944 if (instr->src[0].src.ssa->bit_size == 32) {
1945 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
1946 } else {
1947 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1948 nir_print_instr(&instr->instr, stderr);
1949 fprintf(stderr, "\n");
1950 }
1951 break;
1952 }
1953 case nir_op_u2u64: {
1954 Temp src = get_alu_src(ctx, instr->src[0]);
1955 if (instr->src[0].src.ssa->bit_size == 32) {
1956 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
1957 } else {
1958 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1959 nir_print_instr(&instr->instr, stderr);
1960 fprintf(stderr, "\n");
1961 }
1962 break;
1963 }
1964 case nir_op_b2i32: {
1965 Temp src = get_alu_src(ctx, instr->src[0]);
1966 if (dst.regClass() == s1) {
1967 if (src.regClass() == s1) {
1968 bld.copy(Definition(dst), src);
1969 } else {
1970 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
1971 assert(src.regClass() == s2);
1972 bld.sopc(aco_opcode::s_cmp_lg_u64, bld.scc(Definition(dst)), Operand(0u), src);
1973 }
1974 } else {
1975 assert(dst.regClass() == v1 && src.regClass() == s2);
1976 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
1977 }
1978 break;
1979 }
1980 case nir_op_i2b1: {
1981 Temp src = get_alu_src(ctx, instr->src[0]);
1982 if (dst.regClass() == s2) {
1983 assert(src.regClass() == v1 || src.regClass() == v2);
1984 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
1985 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
1986 } else {
1987 assert(src.regClass() == s1 && dst.regClass() == s1);
1988 bld.sopc(aco_opcode::s_cmp_lg_u32, bld.scc(Definition(dst)), Operand(0u), src);
1989 }
1990 break;
1991 }
1992 case nir_op_pack_64_2x32_split: {
1993 Temp src0 = get_alu_src(ctx, instr->src[0]);
1994 Temp src1 = get_alu_src(ctx, instr->src[1]);
1995
1996 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
1997 break;
1998 }
1999 case nir_op_unpack_64_2x32_split_x:
2000 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2001 break;
2002 case nir_op_unpack_64_2x32_split_y:
2003 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2004 break;
2005 case nir_op_pack_half_2x16: {
2006 Temp src = get_alu_src(ctx, instr->src[0], 2);
2007
2008 if (dst.regClass() == v1) {
2009 Temp src0 = bld.tmp(v1);
2010 Temp src1 = bld.tmp(v1);
2011 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2012 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2013
2014 } else {
2015 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2016 nir_print_instr(&instr->instr, stderr);
2017 fprintf(stderr, "\n");
2018 }
2019 break;
2020 }
2021 case nir_op_unpack_half_2x16_split_x: {
2022 if (dst.regClass() == v1) {
2023 Builder bld(ctx->program, ctx->block);
2024 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2025 } else {
2026 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2027 nir_print_instr(&instr->instr, stderr);
2028 fprintf(stderr, "\n");
2029 }
2030 break;
2031 }
2032 case nir_op_unpack_half_2x16_split_y: {
2033 if (dst.regClass() == v1) {
2034 Builder bld(ctx->program, ctx->block);
2035 /* TODO: use SDWA here */
2036 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2037 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2038 } else {
2039 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2040 nir_print_instr(&instr->instr, stderr);
2041 fprintf(stderr, "\n");
2042 }
2043 break;
2044 }
2045 case nir_op_fquantize2f16: {
2046 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), get_alu_src(ctx, instr->src[0]));
2047
2048 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2049
2050 Temp cmp_res = bld.tmp(s2);
2051 bld.vopc_e64(aco_opcode::v_cmp_class_f16, Definition(cmp_res), f16, mask).def(0).setHint(vcc);
2052
2053 Temp f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2054
2055 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2056 break;
2057 }
2058 case nir_op_bfm: {
2059 Temp bits = get_alu_src(ctx, instr->src[0]);
2060 Temp offset = get_alu_src(ctx, instr->src[1]);
2061
2062 if (dst.regClass() == s1) {
2063 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2064 } else if (dst.regClass() == v1) {
2065 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2066 } else {
2067 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2068 nir_print_instr(&instr->instr, stderr);
2069 fprintf(stderr, "\n");
2070 }
2071 break;
2072 }
2073 case nir_op_bitfield_select: {
2074 /* (mask & insert) | (~mask & base) */
2075 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2076 Temp insert = get_alu_src(ctx, instr->src[1]);
2077 Temp base = get_alu_src(ctx, instr->src[2]);
2078
2079 /* dst = (insert & bitmask) | (base & ~bitmask) */
2080 if (dst.regClass() == s1) {
2081 aco_ptr<Instruction> sop2;
2082 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2083 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2084 Operand lhs;
2085 if (const_insert && const_bitmask) {
2086 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2087 } else {
2088 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2089 lhs = Operand(insert);
2090 }
2091
2092 Operand rhs;
2093 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2094 if (const_base && const_bitmask) {
2095 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2096 } else {
2097 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2098 rhs = Operand(base);
2099 }
2100
2101 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2102
2103 } else if (dst.regClass() == v1) {
2104 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2105 base = as_vgpr(ctx, base);
2106 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2107 insert = as_vgpr(ctx, insert);
2108
2109 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2110
2111 } else {
2112 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2113 nir_print_instr(&instr->instr, stderr);
2114 fprintf(stderr, "\n");
2115 }
2116 break;
2117 }
2118 case nir_op_ubfe:
2119 case nir_op_ibfe: {
2120 Temp base = get_alu_src(ctx, instr->src[0]);
2121 Temp offset = get_alu_src(ctx, instr->src[1]);
2122 Temp bits = get_alu_src(ctx, instr->src[2]);
2123
2124 if (dst.type() == RegType::sgpr) {
2125 Operand extract;
2126 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2127 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2128 if (const_offset && const_bits) {
2129 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2130 extract = Operand(const_extract);
2131 } else {
2132 Operand width;
2133 if (const_bits) {
2134 width = Operand(const_bits->u32 << 16);
2135 } else {
2136 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2137 }
2138 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2139 }
2140
2141 aco_opcode opcode;
2142 if (dst.regClass() == s1) {
2143 if (instr->op == nir_op_ubfe)
2144 opcode = aco_opcode::s_bfe_u32;
2145 else
2146 opcode = aco_opcode::s_bfe_i32;
2147 } else if (dst.regClass() == s2) {
2148 if (instr->op == nir_op_ubfe)
2149 opcode = aco_opcode::s_bfe_u64;
2150 else
2151 opcode = aco_opcode::s_bfe_i64;
2152 } else {
2153 unreachable("Unsupported BFE bit size");
2154 }
2155
2156 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2157
2158 } else {
2159 aco_opcode opcode;
2160 if (dst.regClass() == v1) {
2161 if (instr->op == nir_op_ubfe)
2162 opcode = aco_opcode::v_bfe_u32;
2163 else
2164 opcode = aco_opcode::v_bfe_i32;
2165 } else {
2166 unreachable("Unsupported BFE bit size");
2167 }
2168
2169 emit_vop3a_instruction(ctx, instr, opcode, dst);
2170 }
2171 break;
2172 }
2173 case nir_op_bit_count: {
2174 Temp src = get_alu_src(ctx, instr->src[0]);
2175 if (src.regClass() == s1) {
2176 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2177 } else if (src.regClass() == v1) {
2178 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2179 } else if (src.regClass() == v2) {
2180 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2181 emit_extract_vector(ctx, src, 1, v1),
2182 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2183 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2184 } else if (src.regClass() == s2) {
2185 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2186 } else {
2187 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2188 nir_print_instr(&instr->instr, stderr);
2189 fprintf(stderr, "\n");
2190 }
2191 break;
2192 }
2193 case nir_op_flt: {
2194 if (instr->src[0].src.ssa->bit_size == 32)
2195 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_f32, dst);
2196 else if (instr->src[0].src.ssa->bit_size == 64)
2197 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_f64, dst);
2198 break;
2199 }
2200 case nir_op_fge: {
2201 if (instr->src[0].src.ssa->bit_size == 32)
2202 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_f32, dst);
2203 else if (instr->src[0].src.ssa->bit_size == 64)
2204 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_f64, dst);
2205 break;
2206 }
2207 case nir_op_feq: {
2208 if (instr->src[0].src.ssa->bit_size == 32)
2209 emit_comparison(ctx, instr, aco_opcode::v_cmp_eq_f32, dst);
2210 else if (instr->src[0].src.ssa->bit_size == 64)
2211 emit_comparison(ctx, instr, aco_opcode::v_cmp_eq_f64, dst);
2212 break;
2213 }
2214 case nir_op_fne: {
2215 if (instr->src[0].src.ssa->bit_size == 32)
2216 emit_comparison(ctx, instr, aco_opcode::v_cmp_neq_f32, dst);
2217 else if (instr->src[0].src.ssa->bit_size == 64)
2218 emit_comparison(ctx, instr, aco_opcode::v_cmp_neq_f64, dst);
2219 break;
2220 }
2221 case nir_op_ilt: {
2222 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32)
2223 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_i32, dst);
2224 else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32)
2225 emit_comparison(ctx, instr, aco_opcode::s_cmp_lt_i32, dst);
2226 else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64)
2227 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_i64, dst);
2228 break;
2229 }
2230 case nir_op_ige: {
2231 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32)
2232 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_i32, dst);
2233 else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32)
2234 emit_comparison(ctx, instr, aco_opcode::s_cmp_ge_i32, dst);
2235 else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64)
2236 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_i64, dst);
2237 break;
2238 }
2239 case nir_op_ieq: {
2240 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32) {
2241 emit_comparison(ctx, instr, aco_opcode::v_cmp_eq_i32, dst);
2242 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32) {
2243 emit_comparison(ctx, instr, aco_opcode::s_cmp_eq_i32, dst);
2244 } else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64) {
2245 emit_comparison(ctx, instr, aco_opcode::v_cmp_eq_i64, dst);
2246 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 64) {
2247 emit_comparison(ctx, instr, aco_opcode::s_cmp_eq_u64, dst);
2248 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 1) {
2249 Temp src0 = get_alu_src(ctx, instr->src[0]);
2250 Temp src1 = get_alu_src(ctx, instr->src[1]);
2251 bld.sopc(aco_opcode::s_cmp_eq_i32, bld.scc(Definition(dst)),
2252 as_uniform_bool(ctx, src0), as_uniform_bool(ctx, src1));
2253 } else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 1) {
2254 Temp src0 = get_alu_src(ctx, instr->src[0]);
2255 Temp src1 = get_alu_src(ctx, instr->src[1]);
2256 bld.sop2(aco_opcode::s_xnor_b64, Definition(dst), bld.def(s1, scc),
2257 as_divergent_bool(ctx, src0, false), as_divergent_bool(ctx, src1, false));
2258 } else {
2259 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2260 nir_print_instr(&instr->instr, stderr);
2261 fprintf(stderr, "\n");
2262 }
2263 break;
2264 }
2265 case nir_op_ine: {
2266 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32) {
2267 emit_comparison(ctx, instr, aco_opcode::v_cmp_lg_i32, dst);
2268 } else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64) {
2269 emit_comparison(ctx, instr, aco_opcode::v_cmp_lg_i64, dst);
2270 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32) {
2271 emit_comparison(ctx, instr, aco_opcode::s_cmp_lg_i32, dst);
2272 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 64) {
2273 emit_comparison(ctx, instr, aco_opcode::s_cmp_lg_u64, dst);
2274 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 1) {
2275 Temp src0 = get_alu_src(ctx, instr->src[0]);
2276 Temp src1 = get_alu_src(ctx, instr->src[1]);
2277 bld.sopc(aco_opcode::s_cmp_lg_i32, bld.scc(Definition(dst)),
2278 as_uniform_bool(ctx, src0), as_uniform_bool(ctx, src1));
2279 } else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 1) {
2280 Temp src0 = get_alu_src(ctx, instr->src[0]);
2281 Temp src1 = get_alu_src(ctx, instr->src[1]);
2282 bld.sop2(aco_opcode::s_xor_b64, Definition(dst), bld.def(s1, scc),
2283 as_divergent_bool(ctx, src0, false), as_divergent_bool(ctx, src1, false));
2284 } else {
2285 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2286 nir_print_instr(&instr->instr, stderr);
2287 fprintf(stderr, "\n");
2288 }
2289 break;
2290 }
2291 case nir_op_ult: {
2292 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32)
2293 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_u32, dst);
2294 else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32)
2295 emit_comparison(ctx, instr, aco_opcode::s_cmp_lt_u32, dst);
2296 else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64)
2297 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_u64, dst);
2298 break;
2299 }
2300 case nir_op_uge: {
2301 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32)
2302 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_u32, dst);
2303 else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32)
2304 emit_comparison(ctx, instr, aco_opcode::s_cmp_ge_u32, dst);
2305 else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64)
2306 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_u64, dst);
2307 break;
2308 }
2309 case nir_op_fddx:
2310 case nir_op_fddy:
2311 case nir_op_fddx_fine:
2312 case nir_op_fddy_fine:
2313 case nir_op_fddx_coarse:
2314 case nir_op_fddy_coarse: {
2315 Definition tl = bld.def(v1);
2316 uint16_t dpp_ctrl;
2317 if (instr->op == nir_op_fddx_fine) {
2318 bld.vop1_dpp(aco_opcode::v_mov_b32, tl, get_alu_src(ctx, instr->src[0]), dpp_quad_perm(0, 0, 2, 2));
2319 dpp_ctrl = dpp_quad_perm(1, 1, 3, 3);
2320 } else if (instr->op == nir_op_fddy_fine) {
2321 bld.vop1_dpp(aco_opcode::v_mov_b32, tl, get_alu_src(ctx, instr->src[0]), dpp_quad_perm(0, 1, 0, 1));
2322 dpp_ctrl = dpp_quad_perm(2, 3, 2, 3);
2323 } else {
2324 bld.vop1_dpp(aco_opcode::v_mov_b32, tl, get_alu_src(ctx, instr->src[0]), dpp_quad_perm(0, 0, 0, 0));
2325 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2326 dpp_ctrl = dpp_quad_perm(1, 1, 1, 1);
2327 else
2328 dpp_ctrl = dpp_quad_perm(2, 2, 2, 2);
2329 }
2330
2331 Definition tmp = bld.def(v1);
2332 bld.vop2_dpp(aco_opcode::v_sub_f32, tmp, get_alu_src(ctx, instr->src[0]), tl.getTemp(), dpp_ctrl);
2333 emit_wqm(ctx, tmp.getTemp(), dst, true);
2334 break;
2335 }
2336 default:
2337 fprintf(stderr, "Unknown NIR ALU instr: ");
2338 nir_print_instr(&instr->instr, stderr);
2339 fprintf(stderr, "\n");
2340 }
2341 }
2342
2343 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2344 {
2345 Temp dst = get_ssa_temp(ctx, &instr->def);
2346
2347 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2348 // which get truncated the lsb if double and msb if int
2349 // for now, we only use s_mov_b64 with 64bit inline constants
2350 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2351 assert(dst.type() == RegType::sgpr);
2352
2353 if (dst.size() == 1)
2354 {
2355 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(instr->value[0].u32));
2356 } else {
2357 assert(dst.size() != 1);
2358 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2359 if (instr->def.bit_size == 64)
2360 for (unsigned i = 0; i < dst.size(); i++)
2361 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2362 else {
2363 for (unsigned i = 0; i < dst.size(); i++)
2364 vec->operands[i] = Operand{instr->value[i].u32};
2365 }
2366 vec->definitions[0] = Definition(dst);
2367 ctx->block->instructions.emplace_back(std::move(vec));
2368 }
2369 }
2370
2371 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2372 {
2373 uint32_t new_mask = 0;
2374 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2375 if (mask & (1u << i))
2376 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2377 return new_mask;
2378 }
2379
2380 void visit_store_vs_output(isel_context *ctx, nir_intrinsic_instr *instr)
2381 {
2382 /* This wouldn't work inside control flow or with indirect offsets but
2383 * that doesn't happen because of nir_lower_io_to_temporaries(). */
2384
2385 unsigned write_mask = nir_intrinsic_write_mask(instr);
2386 unsigned component = nir_intrinsic_component(instr);
2387 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2388 unsigned idx = nir_intrinsic_base(instr) + component;
2389
2390 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2391 if (off_instr->type != nir_instr_type_load_const) {
2392 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2393 nir_print_instr(off_instr, stderr);
2394 fprintf(stderr, "\n");
2395 }
2396 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
2397
2398 if (instr->src[0].ssa->bit_size == 64)
2399 write_mask = widen_mask(write_mask, 2);
2400
2401 for (unsigned i = 0; i < 8; ++i) {
2402 if (write_mask & (1 << i)) {
2403 ctx->vs_output.mask[idx / 4u] |= 1 << (idx % 4u);
2404 ctx->vs_output.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
2405 }
2406 idx++;
2407 }
2408 }
2409
2410 void visit_store_fs_output(isel_context *ctx, nir_intrinsic_instr *instr)
2411 {
2412 unsigned write_mask = nir_intrinsic_write_mask(instr);
2413 Operand values[4];
2414 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2415 for (unsigned i = 0; i < 4; ++i) {
2416 if (write_mask & (1 << i)) {
2417 Temp tmp = emit_extract_vector(ctx, src, i, v1);
2418 values[i] = Operand(tmp);
2419 } else {
2420 values[i] = Operand(v1);
2421 }
2422 }
2423
2424 unsigned index = nir_intrinsic_base(instr) / 4;
2425 unsigned target, col_format;
2426 unsigned enabled_channels = 0xF;
2427 aco_opcode compr_op = (aco_opcode)0;
2428
2429 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
2430 assert(offset && "Non-const offsets on exports not yet supported");
2431 index += offset->u32;
2432
2433 assert(index != FRAG_RESULT_COLOR);
2434
2435 /* Unlike vertex shader exports, it's fine to use multiple exports to
2436 * export separate channels of one target. So shaders which export both
2437 * FRAG_RESULT_SAMPLE_MASK and FRAG_RESULT_DEPTH should work fine.
2438 * TODO: combine the exports in those cases and create better code
2439 */
2440
2441 if (index == FRAG_RESULT_SAMPLE_MASK) {
2442
2443 if (ctx->program->info->ps.writes_z) {
2444 target = V_008DFC_SQ_EXP_MRTZ;
2445 enabled_channels = 0x4;
2446 col_format = (unsigned) -1;
2447
2448 values[2] = values[0];
2449 values[0] = Operand(v1);
2450 } else {
2451 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
2452 exp->valid_mask = false;
2453 exp->done = false;
2454 exp->compressed = true;
2455 exp->dest = V_008DFC_SQ_EXP_MRTZ;
2456 exp->enabled_mask = 0xc;
2457 for (int i = 0; i < 4; i++)
2458 exp->operands[i] = Operand(v1);
2459 exp->operands[1] = Operand(values[0]);
2460 ctx->block->instructions.emplace_back(std::move(exp));
2461 return;
2462 }
2463
2464 } else if (index == FRAG_RESULT_DEPTH) {
2465
2466 target = V_008DFC_SQ_EXP_MRTZ;
2467 enabled_channels = 0x1;
2468 col_format = (unsigned) -1;
2469
2470 } else if (index == FRAG_RESULT_STENCIL) {
2471
2472 if (ctx->program->info->ps.writes_z) {
2473 target = V_008DFC_SQ_EXP_MRTZ;
2474 enabled_channels = 0x2;
2475 col_format = (unsigned) -1;
2476
2477 values[1] = values[0];
2478 values[0] = Operand(v1);
2479 } else {
2480 aco_ptr<Instruction> shift{create_instruction<VOP2_instruction>(aco_opcode::v_lshlrev_b32, Format::VOP2, 2, 1)};
2481 shift->operands[0] = Operand((uint32_t) 16);
2482 shift->operands[1] = values[0];
2483 Temp tmp = {ctx->program->allocateId(), v1};
2484 shift->definitions[0] = Definition(tmp);
2485 ctx->block->instructions.emplace_back(std::move(shift));
2486
2487 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
2488 exp->valid_mask = false;
2489 exp->done = false;
2490 exp->compressed = true;
2491 exp->dest = V_008DFC_SQ_EXP_MRTZ;
2492 exp->enabled_mask = 0x3;
2493 exp->operands[0] = Operand(tmp);
2494 for (int i = 1; i < 4; i++)
2495 exp->operands[i] = Operand(v1);
2496 ctx->block->instructions.emplace_back(std::move(exp));
2497 return;
2498 }
2499
2500 } else {
2501 index -= FRAG_RESULT_DATA0;
2502 target = V_008DFC_SQ_EXP_MRT + index;
2503 col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
2504 }
2505 ASSERTED bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
2506 ASSERTED bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
2507 assert(!is_int8 && !is_int10);
2508
2509 switch (col_format)
2510 {
2511 case V_028714_SPI_SHADER_ZERO:
2512 enabled_channels = 0; /* writemask */
2513 target = V_008DFC_SQ_EXP_NULL;
2514 break;
2515
2516 case V_028714_SPI_SHADER_32_R:
2517 enabled_channels = 1;
2518 break;
2519
2520 case V_028714_SPI_SHADER_32_GR:
2521 enabled_channels = 0x3;
2522 break;
2523
2524 case V_028714_SPI_SHADER_32_AR:
2525 enabled_channels = 0x9;
2526 break;
2527
2528 case V_028714_SPI_SHADER_FP16_ABGR:
2529 enabled_channels = 0x5;
2530 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
2531 break;
2532
2533 case V_028714_SPI_SHADER_UNORM16_ABGR:
2534 enabled_channels = 0x5;
2535 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
2536 break;
2537
2538 case V_028714_SPI_SHADER_SNORM16_ABGR:
2539 enabled_channels = 0x5;
2540 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
2541 break;
2542
2543 case V_028714_SPI_SHADER_UINT16_ABGR:
2544 enabled_channels = 0x5;
2545 compr_op = aco_opcode::v_cvt_pk_u16_u32;
2546 break;
2547
2548 case V_028714_SPI_SHADER_SINT16_ABGR:
2549 enabled_channels = 0x5;
2550 compr_op = aco_opcode::v_cvt_pk_i16_i32;
2551 break;
2552
2553 case V_028714_SPI_SHADER_32_ABGR:
2554 enabled_channels = 0xF;
2555 break;
2556
2557 default:
2558 break;
2559 }
2560
2561 if (target == V_008DFC_SQ_EXP_NULL)
2562 return;
2563
2564 if ((bool)compr_op)
2565 {
2566 for (int i = 0; i < 2; i++)
2567 {
2568 /* check if at least one of the values to be compressed is enabled */
2569 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
2570 if (enabled) {
2571 enabled_channels |= enabled << (i*2);
2572 aco_ptr<VOP3A_instruction> compr{create_instruction<VOP3A_instruction>(compr_op, Format::VOP3A, 2, 1)};
2573 Temp tmp{ctx->program->allocateId(), v1};
2574 compr->operands[0] = values[i*2].isUndefined() ? Operand(0u) : values[i*2];
2575 compr->operands[1] = values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1];
2576 compr->definitions[0] = Definition(tmp);
2577 values[i] = Operand(tmp);
2578 ctx->block->instructions.emplace_back(std::move(compr));
2579 } else {
2580 values[i] = Operand(v1);
2581 }
2582 }
2583 }
2584
2585 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
2586 exp->valid_mask = false;
2587 exp->done = false;
2588 exp->compressed = (bool) compr_op;
2589 exp->dest = target;
2590 exp->enabled_mask = enabled_channels;
2591 if ((bool) compr_op) {
2592 for (int i = 0; i < 2; i++)
2593 exp->operands[i] = enabled_channels & (3 << (i * 2)) ? values[i] : Operand(v1);
2594 exp->operands[2] = Operand(v1);
2595 exp->operands[3] = Operand(v1);
2596 } else {
2597 for (int i = 0; i < 4; i++)
2598 exp->operands[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
2599 }
2600
2601 ctx->block->instructions.emplace_back(std::move(exp));
2602 }
2603
2604 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
2605 {
2606 if (ctx->stage == vertex_vs) {
2607 visit_store_vs_output(ctx, instr);
2608 } else if (ctx->stage == fragment_fs) {
2609 visit_store_fs_output(ctx, instr);
2610 } else {
2611 unreachable("Shader stage not implemented");
2612 }
2613 }
2614
2615 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
2616 {
2617 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
2618 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
2619
2620 Builder bld(ctx->program, ctx->block);
2621 Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
2622 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
2623 }
2624
2625 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
2626 {
2627 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
2628 for (unsigned i = 0; i < num_components; i++)
2629 vec->operands[i] = Operand(ctx->fs_inputs[fs_input::frag_pos_0 + i]);
2630
2631 if (ctx->fs_vgpr_args[fs_input::frag_pos_3]) {
2632 assert(num_components == 4);
2633 Builder bld(ctx->program, ctx->block);
2634 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ctx->fs_inputs[fs_input::frag_pos_3]);
2635 }
2636
2637 for (Operand& op : vec->operands)
2638 op = op.isUndefined() ? Operand(0u) : op;
2639
2640 vec->definitions[0] = Definition(dst);
2641 ctx->block->instructions.emplace_back(std::move(vec));
2642 emit_split_vector(ctx, dst, num_components);
2643 return;
2644 }
2645
2646 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
2647 {
2648 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
2649 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
2650 unsigned idx = nir_intrinsic_base(instr);
2651 unsigned component = nir_intrinsic_component(instr);
2652 Temp prim_mask = ctx->prim_mask;
2653
2654 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
2655 if (offset) {
2656 assert(offset->u32 == 0);
2657 } else {
2658 /* the lower 15bit of the prim_mask contain the offset into LDS
2659 * while the upper bits contain the number of prims */
2660 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
2661 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
2662 Builder bld(ctx->program, ctx->block);
2663 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
2664 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
2665 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
2666 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
2667 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
2668 }
2669
2670 if (instr->dest.ssa.num_components == 1) {
2671 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
2672 } else {
2673 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
2674 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
2675 {
2676 Temp tmp = {ctx->program->allocateId(), v1};
2677 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
2678 vec->operands[i] = Operand(tmp);
2679 }
2680 vec->definitions[0] = Definition(dst);
2681 ctx->block->instructions.emplace_back(std::move(vec));
2682 }
2683 }
2684
2685 unsigned get_num_channels_from_data_format(unsigned data_format)
2686 {
2687 switch (data_format) {
2688 case V_008F0C_BUF_DATA_FORMAT_8:
2689 case V_008F0C_BUF_DATA_FORMAT_16:
2690 case V_008F0C_BUF_DATA_FORMAT_32:
2691 return 1;
2692 case V_008F0C_BUF_DATA_FORMAT_8_8:
2693 case V_008F0C_BUF_DATA_FORMAT_16_16:
2694 case V_008F0C_BUF_DATA_FORMAT_32_32:
2695 return 2;
2696 case V_008F0C_BUF_DATA_FORMAT_10_11_11:
2697 case V_008F0C_BUF_DATA_FORMAT_11_11_10:
2698 case V_008F0C_BUF_DATA_FORMAT_32_32_32:
2699 return 3;
2700 case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
2701 case V_008F0C_BUF_DATA_FORMAT_10_10_10_2:
2702 case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
2703 case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
2704 case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
2705 return 4;
2706 default:
2707 break;
2708 }
2709
2710 return 4;
2711 }
2712
2713 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
2714 * so we may need to fix it up. */
2715 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
2716 {
2717 Builder bld(ctx->program, ctx->block);
2718
2719 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
2720 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
2721
2722 /* For the integer-like cases, do a natural sign extension.
2723 *
2724 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
2725 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
2726 * exponent.
2727 */
2728 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
2729 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
2730
2731 /* Convert back to the right type. */
2732 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
2733 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
2734 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(s2)), Operand(0xbf800000u), alpha);
2735 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
2736 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
2737 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
2738 }
2739
2740 return alpha;
2741 }
2742
2743 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
2744 {
2745 Builder bld(ctx->program, ctx->block);
2746 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
2747 if (ctx->stage & sw_vs) {
2748
2749 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
2750 if (off_instr->type != nir_instr_type_load_const) {
2751 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2752 nir_print_instr(off_instr, stderr);
2753 fprintf(stderr, "\n");
2754 }
2755 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
2756
2757 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, ctx->vertex_buffers);
2758
2759 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
2760 unsigned component = nir_intrinsic_component(instr);
2761 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
2762 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
2763 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
2764 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
2765
2766 unsigned dfmt = attrib_format & 0xf;
2767
2768 unsigned nfmt = (attrib_format >> 4) & 0x7;
2769 unsigned num_dfmt_channels = get_num_channels_from_data_format(dfmt);
2770 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
2771 unsigned num_channels = MIN2(util_last_bit(mask), num_dfmt_channels);
2772 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
2773 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
2774 if (post_shuffle)
2775 num_channels = MAX2(num_channels, 3);
2776
2777 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, Operand(attrib_binding * 16u));
2778
2779 Temp index;
2780 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
2781 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
2782 if (divisor) {
2783 ctx->needs_instance_id = true;
2784
2785 if (divisor != 1) {
2786 Temp divided = bld.tmp(v1);
2787 emit_v_div_u32(ctx, divided, as_vgpr(ctx, ctx->instance_id), divisor);
2788 index = bld.vadd32(bld.def(v1), ctx->start_instance, divided);
2789 } else {
2790 index = bld.vadd32(bld.def(v1), ctx->start_instance, ctx->instance_id);
2791 }
2792 } else {
2793 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), ctx->start_instance);
2794 }
2795 } else {
2796 index = bld.vadd32(bld.def(v1), ctx->base_vertex, ctx->vertex_id);
2797 }
2798
2799 if (attrib_stride != 0 && attrib_offset > attrib_stride) {
2800 index = bld.vadd32(bld.def(v1), Operand(attrib_offset / attrib_stride), index);
2801 attrib_offset = attrib_offset % attrib_stride;
2802 }
2803
2804 Operand soffset(0u);
2805 if (attrib_offset >= 4096) {
2806 soffset = bld.copy(bld.def(s1), Operand(attrib_offset));
2807 attrib_offset = 0;
2808 }
2809
2810 aco_opcode opcode;
2811 switch (num_channels) {
2812 case 1:
2813 opcode = aco_opcode::tbuffer_load_format_x;
2814 break;
2815 case 2:
2816 opcode = aco_opcode::tbuffer_load_format_xy;
2817 break;
2818 case 3:
2819 opcode = aco_opcode::tbuffer_load_format_xyz;
2820 break;
2821 case 4:
2822 opcode = aco_opcode::tbuffer_load_format_xyzw;
2823 break;
2824 default:
2825 unreachable("Unimplemented load_input vector size");
2826 }
2827
2828 Temp tmp = post_shuffle || num_channels != dst.size() || alpha_adjust != RADV_ALPHA_ADJUST_NONE || component ? bld.tmp(RegType::vgpr, num_channels) : dst;
2829
2830 aco_ptr<MTBUF_instruction> mubuf{create_instruction<MTBUF_instruction>(opcode, Format::MTBUF, 3, 1)};
2831 mubuf->operands[0] = Operand(index);
2832 mubuf->operands[1] = Operand(list);
2833 mubuf->operands[2] = soffset;
2834 mubuf->definitions[0] = Definition(tmp);
2835 mubuf->idxen = true;
2836 mubuf->can_reorder = true;
2837 mubuf->dfmt = dfmt;
2838 mubuf->nfmt = nfmt;
2839 assert(attrib_offset < 4096);
2840 mubuf->offset = attrib_offset;
2841 ctx->block->instructions.emplace_back(std::move(mubuf));
2842
2843 emit_split_vector(ctx, tmp, tmp.size());
2844
2845 if (tmp.id() != dst.id()) {
2846 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
2847 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
2848
2849 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
2850 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
2851 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
2852
2853 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2854 for (unsigned i = 0; i < dst.size(); i++) {
2855 unsigned idx = i + component;
2856 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE && num_channels >= 4) {
2857 Temp alpha = emit_extract_vector(ctx, tmp, swizzle[3], v1);
2858 vec->operands[3] = Operand(adjust_vertex_fetch_alpha(ctx, alpha_adjust, alpha));
2859 } else if (idx < num_channels) {
2860 vec->operands[i] = Operand(emit_extract_vector(ctx, tmp, swizzle[idx], v1));
2861 } else if (is_float && idx == 3) {
2862 vec->operands[i] = Operand(0x3f800000u);
2863 } else if (!is_float && idx == 3) {
2864 vec->operands[i] = Operand(1u);
2865 } else {
2866 vec->operands[i] = Operand(0u);
2867 }
2868 }
2869 vec->definitions[0] = Definition(dst);
2870 ctx->block->instructions.emplace_back(std::move(vec));
2871 emit_split_vector(ctx, dst, dst.size());
2872 }
2873
2874 } else if (ctx->stage == fragment_fs) {
2875 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
2876 if (off_instr->type != nir_instr_type_load_const ||
2877 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
2878 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2879 nir_print_instr(off_instr, stderr);
2880 fprintf(stderr, "\n");
2881 }
2882
2883 Temp prim_mask = ctx->prim_mask;
2884 nir_const_value* offset = nir_src_as_const_value(instr->src[0]);
2885 if (offset) {
2886 assert(offset->u32 == 0);
2887 } else {
2888 /* the lower 15bit of the prim_mask contain the offset into LDS
2889 * while the upper bits contain the number of prims */
2890 Temp offset_src = get_ssa_temp(ctx, instr->src[0].ssa);
2891 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
2892 Builder bld(ctx->program, ctx->block);
2893 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
2894 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
2895 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
2896 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
2897 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
2898 }
2899
2900 unsigned idx = nir_intrinsic_base(instr);
2901 unsigned component = nir_intrinsic_component(instr);
2902
2903 if (dst.size() == 1) {
2904 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(2u), bld.m0(prim_mask), idx, component);
2905 } else {
2906 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2907 for (unsigned i = 0; i < dst.size(); i++)
2908 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(2u), bld.m0(prim_mask), idx, component + i);
2909 vec->definitions[0] = Definition(dst);
2910 bld.insert(std::move(vec));
2911 }
2912
2913 } else {
2914 unreachable("Shader stage not implemented");
2915 }
2916 }
2917
2918 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
2919 {
2920 if (ctx->program->info->need_indirect_descriptor_sets) {
2921 Builder bld(ctx->program, ctx->block);
2922 Temp ptr64 = convert_pointer_to_64_bit(ctx, ctx->descriptor_sets[0]);
2923 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, Operand(desc_set << 2));//, false, false, false);
2924 }
2925
2926 return ctx->descriptor_sets[desc_set];
2927 }
2928
2929
2930 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
2931 {
2932 Builder bld(ctx->program, ctx->block);
2933 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
2934 unsigned desc_set = nir_intrinsic_desc_set(instr);
2935 unsigned binding = nir_intrinsic_binding(instr);
2936
2937 Temp desc_ptr;
2938 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
2939 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
2940 unsigned offset = layout->binding[binding].offset;
2941 unsigned stride;
2942 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
2943 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
2944 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
2945 desc_ptr = ctx->push_constants;
2946 offset = pipeline_layout->push_constant_size + 16 * idx;
2947 stride = 16;
2948 } else {
2949 desc_ptr = load_desc_ptr(ctx, desc_set);
2950 stride = layout->binding[binding].size;
2951 }
2952
2953 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
2954 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
2955 if (stride != 1) {
2956 if (nir_const_index) {
2957 const_index = const_index * stride;
2958 } else {
2959 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
2960 }
2961 }
2962 if (offset) {
2963 if (nir_const_index) {
2964 const_index = const_index + offset;
2965 } else {
2966 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
2967 }
2968 }
2969
2970 if (nir_const_index && const_index == 0) {
2971 index = desc_ptr;
2972 } else {
2973 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
2974 nir_const_index ? Operand(const_index) : Operand(index),
2975 Operand(desc_ptr));
2976 }
2977
2978 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
2979 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), index);
2980 }
2981
2982 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst, Temp rsrc, Temp offset, bool glc=false)
2983 {
2984 Builder bld(ctx->program, ctx->block);
2985
2986 unsigned num_bytes = dst.size() * 4;
2987 bool dlc = glc && ctx->options->chip_class >= GFX10;
2988
2989 aco_opcode op;
2990 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
2991 if (ctx->options->chip_class < GFX8)
2992 offset = as_vgpr(ctx, offset);
2993
2994 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
2995 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
2996 unsigned const_offset = 0;
2997
2998 Temp lower = Temp();
2999 if (num_bytes > 16) {
3000 assert(num_components == 3 || num_components == 4);
3001 op = aco_opcode::buffer_load_dwordx4;
3002 lower = bld.tmp(v4);
3003 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3004 mubuf->definitions[0] = Definition(lower);
3005 mubuf->operands[0] = vaddr;
3006 mubuf->operands[1] = Operand(rsrc);
3007 mubuf->operands[2] = soffset;
3008 mubuf->offen = (offset.type() == RegType::vgpr);
3009 mubuf->glc = glc;
3010 mubuf->dlc = dlc;
3011 mubuf->barrier = barrier_buffer;
3012 bld.insert(std::move(mubuf));
3013 emit_split_vector(ctx, lower, 2);
3014 num_bytes -= 16;
3015 const_offset = 16;
3016 }
3017
3018 switch (num_bytes) {
3019 case 4:
3020 op = aco_opcode::buffer_load_dword;
3021 break;
3022 case 8:
3023 op = aco_opcode::buffer_load_dwordx2;
3024 break;
3025 case 12:
3026 op = aco_opcode::buffer_load_dwordx3;
3027 break;
3028 case 16:
3029 op = aco_opcode::buffer_load_dwordx4;
3030 break;
3031 default:
3032 unreachable("Load SSBO not implemented for this size.");
3033 }
3034 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3035 mubuf->operands[0] = vaddr;
3036 mubuf->operands[1] = Operand(rsrc);
3037 mubuf->operands[2] = soffset;
3038 mubuf->offen = (offset.type() == RegType::vgpr);
3039 mubuf->glc = glc;
3040 mubuf->dlc = dlc;
3041 mubuf->barrier = barrier_buffer;
3042 mubuf->offset = const_offset;
3043 aco_ptr<Instruction> instr = std::move(mubuf);
3044
3045 if (dst.size() > 4) {
3046 assert(lower != Temp());
3047 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
3048 instr->definitions[0] = Definition(upper);
3049 bld.insert(std::move(instr));
3050 if (dst.size() == 8)
3051 emit_split_vector(ctx, upper, 2);
3052 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
3053 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
3054 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
3055 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
3056 if (dst.size() == 8)
3057 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
3058 }
3059
3060 if (dst.type() == RegType::sgpr) {
3061 Temp vec = bld.tmp(RegType::vgpr, dst.size());
3062 instr->definitions[0] = Definition(vec);
3063 bld.insert(std::move(instr));
3064 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
3065 } else {
3066 instr->definitions[0] = Definition(dst);
3067 bld.insert(std::move(instr));
3068 }
3069 } else {
3070 switch (num_bytes) {
3071 case 4:
3072 op = aco_opcode::s_buffer_load_dword;
3073 break;
3074 case 8:
3075 op = aco_opcode::s_buffer_load_dwordx2;
3076 break;
3077 case 12:
3078 case 16:
3079 op = aco_opcode::s_buffer_load_dwordx4;
3080 break;
3081 case 24:
3082 case 32:
3083 op = aco_opcode::s_buffer_load_dwordx8;
3084 break;
3085 default:
3086 unreachable("Load SSBO not implemented for this size.");
3087 }
3088 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3089 load->operands[0] = Operand(rsrc);
3090 load->operands[1] = Operand(bld.as_uniform(offset));
3091 assert(load->operands[1].getTemp().type() == RegType::sgpr);
3092 load->definitions[0] = Definition(dst);
3093 load->glc = glc;
3094 load->dlc = dlc;
3095 load->barrier = barrier_buffer;
3096 assert(ctx->options->chip_class >= GFX8 || !glc);
3097
3098 /* trim vector */
3099 if (dst.size() == 3) {
3100 Temp vec = bld.tmp(s4);
3101 load->definitions[0] = Definition(vec);
3102 bld.insert(std::move(load));
3103 emit_split_vector(ctx, vec, 4);
3104
3105 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3106 emit_extract_vector(ctx, vec, 0, s1),
3107 emit_extract_vector(ctx, vec, 1, s1),
3108 emit_extract_vector(ctx, vec, 2, s1));
3109 } else if (dst.size() == 6) {
3110 Temp vec = bld.tmp(s8);
3111 load->definitions[0] = Definition(vec);
3112 bld.insert(std::move(load));
3113 emit_split_vector(ctx, vec, 4);
3114
3115 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3116 emit_extract_vector(ctx, vec, 0, s2),
3117 emit_extract_vector(ctx, vec, 1, s2),
3118 emit_extract_vector(ctx, vec, 2, s2));
3119 } else {
3120 bld.insert(std::move(load));
3121 }
3122
3123 }
3124 emit_split_vector(ctx, dst, num_components);
3125 }
3126
3127 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
3128 {
3129 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3130 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
3131
3132 Builder bld(ctx->program, ctx->block);
3133
3134 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3135 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
3136 unsigned binding = nir_intrinsic_binding(idx_instr);
3137 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
3138
3139 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
3140 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3141 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3142 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3143 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3144 if (ctx->options->chip_class >= GFX10) {
3145 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3146 S_008F0C_OOB_SELECT(3) |
3147 S_008F0C_RESOURCE_LEVEL(1);
3148 } else {
3149 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3150 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3151 }
3152 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
3153 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
3154 Operand(0xFFFFFFFFu),
3155 Operand(desc_type));
3156 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3157 rsrc, upper_dwords);
3158 } else {
3159 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
3160 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
3161 }
3162
3163 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
3164 }
3165
3166 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3167 {
3168 Builder bld(ctx->program, ctx->block);
3169 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3170
3171 unsigned offset = nir_intrinsic_base(instr);
3172 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
3173 if (index_cv && instr->dest.ssa.bit_size == 32) {
3174
3175 unsigned count = instr->dest.ssa.num_components;
3176 unsigned start = (offset + index_cv->u32) / 4u;
3177 start -= ctx->base_inline_push_consts;
3178 if (start + count <= ctx->num_inline_push_consts) {
3179 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3180 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
3181 for (unsigned i = 0; i < count; ++i) {
3182 elems[i] = ctx->inline_push_consts[start + i];
3183 vec->operands[i] = Operand{elems[i]};
3184 }
3185 vec->definitions[0] = Definition(dst);
3186 ctx->block->instructions.emplace_back(std::move(vec));
3187 ctx->allocated_vec.emplace(dst.id(), elems);
3188 return;
3189 }
3190 }
3191
3192 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
3193 if (offset != 0) // TODO check if index != 0 as well
3194 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
3195 Temp ptr = convert_pointer_to_64_bit(ctx, ctx->push_constants);
3196 Temp vec = dst;
3197 bool trim = false;
3198 aco_opcode op;
3199
3200 switch (dst.size()) {
3201 case 1:
3202 op = aco_opcode::s_load_dword;
3203 break;
3204 case 2:
3205 op = aco_opcode::s_load_dwordx2;
3206 break;
3207 case 3:
3208 vec = bld.tmp(s4);
3209 trim = true;
3210 case 4:
3211 op = aco_opcode::s_load_dwordx4;
3212 break;
3213 case 6:
3214 vec = bld.tmp(s8);
3215 trim = true;
3216 case 8:
3217 op = aco_opcode::s_load_dwordx8;
3218 break;
3219 default:
3220 unreachable("unimplemented or forbidden load_push_constant.");
3221 }
3222
3223 bld.smem(op, Definition(vec), ptr, index);
3224
3225 if (trim) {
3226 emit_split_vector(ctx, vec, 4);
3227 RegClass rc = dst.size() == 3 ? s1 : s2;
3228 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3229 emit_extract_vector(ctx, vec, 0, rc),
3230 emit_extract_vector(ctx, vec, 1, rc),
3231 emit_extract_vector(ctx, vec, 2, rc));
3232
3233 }
3234 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
3235 }
3236
3237 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3238 {
3239 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3240
3241 Builder bld(ctx->program, ctx->block);
3242
3243 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3244 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3245 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3246 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3247 if (ctx->options->chip_class >= GFX10) {
3248 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3249 S_008F0C_OOB_SELECT(3) |
3250 S_008F0C_RESOURCE_LEVEL(1);
3251 } else {
3252 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3253 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3254 }
3255
3256 unsigned base = nir_intrinsic_base(instr);
3257 unsigned range = nir_intrinsic_range(instr);
3258
3259 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
3260 if (base && offset.type() == RegType::sgpr)
3261 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
3262 else if (base && offset.type() == RegType::vgpr)
3263 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
3264
3265 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3266 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
3267 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
3268 Operand(desc_type));
3269
3270 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
3271 }
3272
3273 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
3274 {
3275 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3276 ctx->cf_info.exec_potentially_empty = true;
3277
3278 ctx->program->needs_exact = true;
3279
3280 // TODO: optimize uniform conditions
3281 Builder bld(ctx->program, ctx->block);
3282 Temp src = as_divergent_bool(ctx, get_ssa_temp(ctx, instr->src[0].ssa), false);
3283 src = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
3284 bld.pseudo(aco_opcode::p_discard_if, src);
3285 ctx->block->kind |= block_kind_uses_discard_if;
3286 return;
3287 }
3288
3289 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
3290 {
3291 Builder bld(ctx->program, ctx->block);
3292
3293 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3294 ctx->cf_info.exec_potentially_empty = true;
3295
3296 bool divergent = ctx->cf_info.parent_if.is_divergent ||
3297 ctx->cf_info.parent_loop.has_divergent_continue;
3298
3299 if (ctx->block->loop_nest_depth &&
3300 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
3301 /* we handle discards the same way as jump instructions */
3302 append_logical_end(ctx->block);
3303
3304 /* in loops, discard behaves like break */
3305 Block *linear_target = ctx->cf_info.parent_loop.exit;
3306 ctx->block->kind |= block_kind_discard;
3307
3308 if (!divergent) {
3309 /* uniform discard - loop ends here */
3310 assert(nir_instr_is_last(&instr->instr));
3311 ctx->block->kind |= block_kind_uniform;
3312 ctx->cf_info.has_branch = true;
3313 bld.branch(aco_opcode::p_branch);
3314 add_linear_edge(ctx->block->index, linear_target);
3315 return;
3316 }
3317
3318 /* we add a break right behind the discard() instructions */
3319 ctx->block->kind |= block_kind_break;
3320 unsigned idx = ctx->block->index;
3321
3322 /* remove critical edges from linear CFG */
3323 bld.branch(aco_opcode::p_branch);
3324 Block* break_block = ctx->program->create_and_insert_block();
3325 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3326 break_block->kind |= block_kind_uniform;
3327 add_linear_edge(idx, break_block);
3328 add_linear_edge(break_block->index, linear_target);
3329 bld.reset(break_block);
3330 bld.branch(aco_opcode::p_branch);
3331
3332 Block* continue_block = ctx->program->create_and_insert_block();
3333 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3334 add_linear_edge(idx, continue_block);
3335 append_logical_start(continue_block);
3336 ctx->block = continue_block;
3337
3338 return;
3339 }
3340
3341 /* it can currently happen that NIR doesn't remove the unreachable code */
3342 if (!nir_instr_is_last(&instr->instr)) {
3343 ctx->program->needs_exact = true;
3344 /* save exec somewhere temporarily so that it doesn't get
3345 * overwritten before the discard from outer exec masks */
3346 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, s2));
3347 bld.pseudo(aco_opcode::p_discard_if, cond);
3348 ctx->block->kind |= block_kind_uses_discard_if;
3349 return;
3350 }
3351
3352 /* This condition is incorrect for uniformly branched discards in a loop
3353 * predicated by a divergent condition, but the above code catches that case
3354 * and the discard would end up turning into a discard_if.
3355 * For example:
3356 * if (divergent) {
3357 * while (...) {
3358 * if (uniform) {
3359 * discard;
3360 * }
3361 * }
3362 * }
3363 */
3364 if (!ctx->cf_info.parent_if.is_divergent) {
3365 /* program just ends here */
3366 ctx->block->kind |= block_kind_uniform;
3367 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
3368 0 /* enabled mask */, 9 /* dest */,
3369 false /* compressed */, true/* done */, true /* valid mask */);
3370 bld.sopp(aco_opcode::s_endpgm);
3371 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
3372 } else {
3373 ctx->block->kind |= block_kind_discard;
3374 /* branch and linear edge is added by visit_if() */
3375 }
3376 }
3377
3378 enum aco_descriptor_type {
3379 ACO_DESC_IMAGE,
3380 ACO_DESC_FMASK,
3381 ACO_DESC_SAMPLER,
3382 ACO_DESC_BUFFER,
3383 ACO_DESC_PLANE_0,
3384 ACO_DESC_PLANE_1,
3385 ACO_DESC_PLANE_2,
3386 };
3387
3388 static bool
3389 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
3390 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
3391 return false;
3392 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
3393 return dim == ac_image_cube ||
3394 dim == ac_image_1darray ||
3395 dim == ac_image_2darray ||
3396 dim == ac_image_2darraymsaa;
3397 }
3398
3399 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
3400 enum aco_descriptor_type desc_type,
3401 const nir_tex_instr *tex_instr, bool image, bool write)
3402 {
3403 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
3404 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
3405 if (it != ctx->tex_desc.end())
3406 return it->second;
3407 */
3408 Temp index = Temp();
3409 bool index_set = false;
3410 unsigned constant_index = 0;
3411 unsigned descriptor_set;
3412 unsigned base_index;
3413 Builder bld(ctx->program, ctx->block);
3414
3415 if (!deref_instr) {
3416 assert(tex_instr && !image);
3417 descriptor_set = 0;
3418 base_index = tex_instr->sampler_index;
3419 } else {
3420 while(deref_instr->deref_type != nir_deref_type_var) {
3421 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
3422 if (!array_size)
3423 array_size = 1;
3424
3425 assert(deref_instr->deref_type == nir_deref_type_array);
3426 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
3427 if (const_value) {
3428 constant_index += array_size * const_value->u32;
3429 } else {
3430 Temp indirect = bld.as_uniform(get_ssa_temp(ctx, deref_instr->arr.index.ssa));
3431
3432 if (array_size != 1)
3433 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
3434
3435 if (!index_set) {
3436 index = indirect;
3437 index_set = true;
3438 } else {
3439 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
3440 }
3441 }
3442
3443 deref_instr = nir_src_as_deref(deref_instr->parent);
3444 }
3445 descriptor_set = deref_instr->var->data.descriptor_set;
3446 base_index = deref_instr->var->data.binding;
3447 }
3448
3449 Temp list = load_desc_ptr(ctx, descriptor_set);
3450 list = convert_pointer_to_64_bit(ctx, list);
3451
3452 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
3453 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
3454 unsigned offset = binding->offset;
3455 unsigned stride = binding->size;
3456 aco_opcode opcode;
3457 RegClass type;
3458
3459 assert(base_index < layout->binding_count);
3460
3461 switch (desc_type) {
3462 case ACO_DESC_IMAGE:
3463 type = s8;
3464 opcode = aco_opcode::s_load_dwordx8;
3465 break;
3466 case ACO_DESC_FMASK:
3467 type = s8;
3468 opcode = aco_opcode::s_load_dwordx8;
3469 offset += 32;
3470 break;
3471 case ACO_DESC_SAMPLER:
3472 type = s4;
3473 opcode = aco_opcode::s_load_dwordx4;
3474 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
3475 offset += radv_combined_image_descriptor_sampler_offset(binding);
3476 break;
3477 case ACO_DESC_BUFFER:
3478 type = s4;
3479 opcode = aco_opcode::s_load_dwordx4;
3480 break;
3481 case ACO_DESC_PLANE_0:
3482 case ACO_DESC_PLANE_1:
3483 type = s8;
3484 opcode = aco_opcode::s_load_dwordx8;
3485 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
3486 break;
3487 case ACO_DESC_PLANE_2:
3488 type = s4;
3489 opcode = aco_opcode::s_load_dwordx4;
3490 offset += 64;
3491 break;
3492 default:
3493 unreachable("invalid desc_type\n");
3494 }
3495
3496 offset += constant_index * stride;
3497
3498 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
3499 (!index_set || binding->immutable_samplers_equal)) {
3500 if (binding->immutable_samplers_equal)
3501 constant_index = 0;
3502
3503 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
3504 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3505 Operand(samplers[constant_index * 4 + 0]),
3506 Operand(samplers[constant_index * 4 + 1]),
3507 Operand(samplers[constant_index * 4 + 2]),
3508 Operand(samplers[constant_index * 4 + 3]));
3509 }
3510
3511 Operand off;
3512 if (!index_set) {
3513 off = Operand(offset);
3514 } else {
3515 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
3516 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
3517 }
3518
3519 Temp res = bld.smem(opcode, bld.def(type), list, off);
3520
3521 if (desc_type == ACO_DESC_PLANE_2) {
3522 Temp components[8];
3523 for (unsigned i = 0; i < 8; i++)
3524 components[i] = bld.tmp(s1);
3525 bld.pseudo(aco_opcode::p_split_vector,
3526 Definition(components[0]),
3527 Definition(components[1]),
3528 Definition(components[2]),
3529 Definition(components[3]),
3530 res);
3531
3532 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
3533 bld.pseudo(aco_opcode::p_split_vector,
3534 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
3535 Definition(components[4]),
3536 Definition(components[5]),
3537 Definition(components[6]),
3538 Definition(components[7]),
3539 desc2);
3540
3541 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
3542 components[0], components[1], components[2], components[3],
3543 components[4], components[5], components[6], components[7]);
3544 }
3545
3546 return res;
3547 }
3548
3549 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
3550 {
3551 switch (dim) {
3552 case GLSL_SAMPLER_DIM_BUF:
3553 return 1;
3554 case GLSL_SAMPLER_DIM_1D:
3555 return array ? 2 : 1;
3556 case GLSL_SAMPLER_DIM_2D:
3557 return array ? 3 : 2;
3558 case GLSL_SAMPLER_DIM_MS:
3559 return array ? 4 : 3;
3560 case GLSL_SAMPLER_DIM_3D:
3561 case GLSL_SAMPLER_DIM_CUBE:
3562 return 3;
3563 case GLSL_SAMPLER_DIM_RECT:
3564 case GLSL_SAMPLER_DIM_SUBPASS:
3565 return 2;
3566 case GLSL_SAMPLER_DIM_SUBPASS_MS:
3567 return 3;
3568 default:
3569 break;
3570 }
3571 return 0;
3572 }
3573
3574
3575 /* Adjust the sample index according to FMASK.
3576 *
3577 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
3578 * which is the identity mapping. Each nibble says which physical sample
3579 * should be fetched to get that sample.
3580 *
3581 * For example, 0x11111100 means there are only 2 samples stored and
3582 * the second sample covers 3/4 of the pixel. When reading samples 0
3583 * and 1, return physical sample 0 (determined by the first two 0s
3584 * in FMASK), otherwise return physical sample 1.
3585 *
3586 * The sample index should be adjusted as follows:
3587 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
3588 */
3589 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, Temp coords, Operand sample_index, Temp fmask_desc_ptr)
3590 {
3591 Builder bld(ctx->program, ctx->block);
3592 Temp fmask = bld.tmp(v1);
3593 unsigned dim = ctx->options->chip_class >= GFX10
3594 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
3595 : 0;
3596
3597 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 2, 1)};
3598 load->operands[0] = Operand(coords);
3599 load->operands[1] = Operand(fmask_desc_ptr);
3600 load->definitions[0] = Definition(fmask);
3601 load->glc = false;
3602 load->dlc = false;
3603 load->dmask = 0x1;
3604 load->unrm = true;
3605 load->da = da;
3606 load->dim = dim;
3607 load->can_reorder = true; /* fmask images shouldn't be modified */
3608 ctx->block->instructions.emplace_back(std::move(load));
3609
3610 Operand sample_index4;
3611 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
3612 sample_index4 = Operand(sample_index.constantValue() << 2);
3613 } else if (sample_index.regClass() == s1) {
3614 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
3615 } else {
3616 assert(sample_index.regClass() == v1);
3617 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
3618 }
3619
3620 Temp final_sample;
3621 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
3622 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
3623 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
3624 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
3625 else
3626 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
3627
3628 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
3629 * resource descriptor is 0 (invalid),
3630 */
3631 Temp compare = bld.tmp(s2);
3632 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
3633 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
3634
3635 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
3636
3637 /* Replace the MSAA sample index. */
3638 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
3639 }
3640
3641 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
3642 {
3643
3644 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
3645 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3646 bool is_array = glsl_sampler_type_is_array(type);
3647 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
3648 assert(!add_frag_pos && "Input attachments should be lowered.");
3649 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
3650 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
3651 int count = image_type_to_components_count(dim, is_array);
3652 std::vector<Operand> coords(count);
3653
3654 if (is_ms) {
3655 Operand sample_index;
3656 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
3657 if (sample_cv)
3658 sample_index = Operand(sample_cv->u32);
3659 else
3660 sample_index = Operand(emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[2].ssa), 0, v1));
3661
3662 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
3663 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, is_array ? 3 : 2, 1)};
3664 for (unsigned i = 0; i < vec->operands.size(); i++)
3665 vec->operands[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
3666 Temp fmask_load_address = {ctx->program->allocateId(), is_array ? v3 : v2};
3667 vec->definitions[0] = Definition(fmask_load_address);
3668 ctx->block->instructions.emplace_back(std::move(vec));
3669
3670 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
3671 sample_index = Operand(adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr));
3672 }
3673 count--;
3674 coords[count] = sample_index;
3675 }
3676
3677 if (count == 1 && !gfx9_1d)
3678 return emit_extract_vector(ctx, src0, 0, v1);
3679
3680 if (gfx9_1d) {
3681 coords[0] = Operand(emit_extract_vector(ctx, src0, 0, v1));
3682 coords.resize(coords.size() + 1);
3683 coords[1] = Operand((uint32_t) 0);
3684 if (is_array)
3685 coords[2] = Operand(emit_extract_vector(ctx, src0, 1, v1));
3686 } else {
3687 for (int i = 0; i < count; i++)
3688 coords[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
3689 }
3690
3691 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
3692 for (unsigned i = 0; i < coords.size(); i++)
3693 vec->operands[i] = coords[i];
3694 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
3695 vec->definitions[0] = Definition(res);
3696 ctx->block->instructions.emplace_back(std::move(vec));
3697 return res;
3698 }
3699
3700
3701 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
3702 {
3703 Builder bld(ctx->program, ctx->block);
3704 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
3705 const struct glsl_type *type = glsl_without_array(var->type);
3706 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3707 bool is_array = glsl_sampler_type_is_array(type);
3708 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3709
3710 if (dim == GLSL_SAMPLER_DIM_BUF) {
3711 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
3712 unsigned num_channels = util_last_bit(mask);
3713 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
3714 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
3715
3716 aco_opcode opcode;
3717 switch (num_channels) {
3718 case 1:
3719 opcode = aco_opcode::buffer_load_format_x;
3720 break;
3721 case 2:
3722 opcode = aco_opcode::buffer_load_format_xy;
3723 break;
3724 case 3:
3725 opcode = aco_opcode::buffer_load_format_xyz;
3726 break;
3727 case 4:
3728 opcode = aco_opcode::buffer_load_format_xyzw;
3729 break;
3730 default:
3731 unreachable(">4 channel buffer image load");
3732 }
3733 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
3734 load->operands[0] = Operand(vindex);
3735 load->operands[1] = Operand(rsrc);
3736 load->operands[2] = Operand((uint32_t) 0);
3737 Temp tmp;
3738 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
3739 tmp = dst;
3740 else
3741 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
3742 load->definitions[0] = Definition(tmp);
3743 load->idxen = true;
3744 load->barrier = barrier_image;
3745 ctx->block->instructions.emplace_back(std::move(load));
3746
3747 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
3748 return;
3749 }
3750
3751 Temp coords = get_image_coords(ctx, instr, type);
3752 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
3753
3754 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
3755 unsigned num_components = util_bitcount(dmask);
3756 Temp tmp;
3757 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
3758 tmp = dst;
3759 else
3760 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
3761
3762 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 2, 1)};
3763 load->operands[0] = Operand(coords);
3764 load->operands[1] = Operand(resource);
3765 load->definitions[0] = Definition(tmp);
3766 load->glc = var->data.image.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
3767 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
3768 load->dmask = dmask;
3769 load->unrm = true;
3770 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
3771 load->barrier = barrier_image;
3772 ctx->block->instructions.emplace_back(std::move(load));
3773
3774 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
3775 return;
3776 }
3777
3778 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
3779 {
3780 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
3781 const struct glsl_type *type = glsl_without_array(var->type);
3782 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3783 bool is_array = glsl_sampler_type_is_array(type);
3784 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
3785
3786 bool glc = ctx->options->chip_class == GFX6 || var->data.image.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
3787
3788 if (dim == GLSL_SAMPLER_DIM_BUF) {
3789 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
3790 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
3791 aco_opcode opcode;
3792 switch (data.size()) {
3793 case 1:
3794 opcode = aco_opcode::buffer_store_format_x;
3795 break;
3796 case 2:
3797 opcode = aco_opcode::buffer_store_format_xy;
3798 break;
3799 case 3:
3800 opcode = aco_opcode::buffer_store_format_xyz;
3801 break;
3802 case 4:
3803 opcode = aco_opcode::buffer_store_format_xyzw;
3804 break;
3805 default:
3806 unreachable(">4 channel buffer image store");
3807 }
3808 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
3809 store->operands[0] = Operand(vindex);
3810 store->operands[1] = Operand(rsrc);
3811 store->operands[2] = Operand((uint32_t) 0);
3812 store->operands[3] = Operand(data);
3813 store->idxen = true;
3814 store->glc = glc;
3815 store->dlc = false;
3816 store->disable_wqm = true;
3817 store->barrier = barrier_image;
3818 ctx->program->needs_exact = true;
3819 ctx->block->instructions.emplace_back(std::move(store));
3820 return;
3821 }
3822
3823 assert(data.type() == RegType::vgpr);
3824 Temp coords = get_image_coords(ctx, instr, type);
3825 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
3826
3827 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(aco_opcode::image_store, Format::MIMG, 4, 0)};
3828 store->operands[0] = Operand(coords);
3829 store->operands[1] = Operand(resource);
3830 store->operands[2] = Operand(s4);
3831 store->operands[3] = Operand(data);
3832 store->glc = glc;
3833 store->dlc = false;
3834 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
3835 store->dmask = (1 << data.size()) - 1;
3836 store->unrm = true;
3837 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
3838 store->disable_wqm = true;
3839 store->barrier = barrier_image;
3840 ctx->program->needs_exact = true;
3841 ctx->block->instructions.emplace_back(std::move(store));
3842 return;
3843 }
3844
3845 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
3846 {
3847 /* return the previous value if dest is ever used */
3848 bool return_previous = false;
3849 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
3850 return_previous = true;
3851 break;
3852 }
3853 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
3854 return_previous = true;
3855 break;
3856 }
3857
3858 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
3859 const struct glsl_type *type = glsl_without_array(var->type);
3860 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3861 bool is_array = glsl_sampler_type_is_array(type);
3862 Builder bld(ctx->program, ctx->block);
3863
3864 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
3865 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
3866
3867 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
3868 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
3869
3870 aco_opcode buf_op, image_op;
3871 switch (instr->intrinsic) {
3872 case nir_intrinsic_image_deref_atomic_add:
3873 buf_op = aco_opcode::buffer_atomic_add;
3874 image_op = aco_opcode::image_atomic_add;
3875 break;
3876 case nir_intrinsic_image_deref_atomic_umin:
3877 buf_op = aco_opcode::buffer_atomic_umin;
3878 image_op = aco_opcode::image_atomic_umin;
3879 break;
3880 case nir_intrinsic_image_deref_atomic_imin:
3881 buf_op = aco_opcode::buffer_atomic_smin;
3882 image_op = aco_opcode::image_atomic_smin;
3883 break;
3884 case nir_intrinsic_image_deref_atomic_umax:
3885 buf_op = aco_opcode::buffer_atomic_umax;
3886 image_op = aco_opcode::image_atomic_umax;
3887 break;
3888 case nir_intrinsic_image_deref_atomic_imax:
3889 buf_op = aco_opcode::buffer_atomic_smax;
3890 image_op = aco_opcode::image_atomic_smax;
3891 break;
3892 case nir_intrinsic_image_deref_atomic_and:
3893 buf_op = aco_opcode::buffer_atomic_and;
3894 image_op = aco_opcode::image_atomic_and;
3895 break;
3896 case nir_intrinsic_image_deref_atomic_or:
3897 buf_op = aco_opcode::buffer_atomic_or;
3898 image_op = aco_opcode::image_atomic_or;
3899 break;
3900 case nir_intrinsic_image_deref_atomic_xor:
3901 buf_op = aco_opcode::buffer_atomic_xor;
3902 image_op = aco_opcode::image_atomic_xor;
3903 break;
3904 case nir_intrinsic_image_deref_atomic_exchange:
3905 buf_op = aco_opcode::buffer_atomic_swap;
3906 image_op = aco_opcode::image_atomic_swap;
3907 break;
3908 case nir_intrinsic_image_deref_atomic_comp_swap:
3909 buf_op = aco_opcode::buffer_atomic_cmpswap;
3910 image_op = aco_opcode::image_atomic_cmpswap;
3911 break;
3912 default:
3913 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
3914 }
3915
3916 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3917
3918 if (dim == GLSL_SAMPLER_DIM_BUF) {
3919 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
3920 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
3921 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
3922 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
3923 mubuf->operands[0] = Operand(vindex);
3924 mubuf->operands[1] = Operand(resource);
3925 mubuf->operands[2] = Operand((uint32_t)0);
3926 mubuf->operands[3] = Operand(data);
3927 if (return_previous)
3928 mubuf->definitions[0] = Definition(dst);
3929 mubuf->offset = 0;
3930 mubuf->idxen = true;
3931 mubuf->glc = return_previous;
3932 mubuf->dlc = false; /* Not needed for atomics */
3933 mubuf->disable_wqm = true;
3934 mubuf->barrier = barrier_image;
3935 ctx->program->needs_exact = true;
3936 ctx->block->instructions.emplace_back(std::move(mubuf));
3937 return;
3938 }
3939
3940 Temp coords = get_image_coords(ctx, instr, type);
3941 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
3942 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 4, return_previous ? 1 : 0)};
3943 mimg->operands[0] = Operand(coords);
3944 mimg->operands[1] = Operand(resource);
3945 mimg->operands[2] = Operand(s4); /* no sampler */
3946 mimg->operands[3] = Operand(data);
3947 if (return_previous)
3948 mimg->definitions[0] = Definition(dst);
3949 mimg->glc = return_previous;
3950 mimg->dlc = false; /* Not needed for atomics */
3951 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
3952 mimg->dmask = (1 << data.size()) - 1;
3953 mimg->unrm = true;
3954 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
3955 mimg->disable_wqm = true;
3956 mimg->barrier = barrier_image;
3957 ctx->program->needs_exact = true;
3958 ctx->block->instructions.emplace_back(std::move(mimg));
3959 return;
3960 }
3961
3962 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
3963 {
3964 if (in_elements && ctx->options->chip_class == GFX8) {
3965 Builder bld(ctx->program, ctx->block);
3966
3967 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
3968 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
3969 stride = bld.vop1(aco_opcode::v_cvt_f32_ubyte0, bld.def(v1), stride);
3970 stride = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), stride);
3971
3972 Temp size = emit_extract_vector(ctx, desc, 2, s1);
3973 size = bld.vop1(aco_opcode::v_cvt_f32_u32, bld.def(v1), size);
3974
3975 Temp res = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), size, stride);
3976 res = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), res);
3977 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
3978
3979 // TODO: we can probably calculate this faster on the scalar unit to do: size / stride{1,2,4,8,12,16}
3980 /* idea
3981 * for 1,2,4,8,16, the result is just (stride >> S_FF1_I32_B32)
3982 * in case 12 (or 3?), we have to divide by 3:
3983 * set v_skip in case it's 12 (if we also have to take care of 3, shift first)
3984 * use v_mul_hi_u32 with magic number to divide
3985 * we need some pseudo merge opcode to overwrite the original SALU result with readfirstlane
3986 * disable v_skip
3987 * total: 6 SALU + 2 VALU instructions vs 1 SALU + 6 VALU instructions
3988 */
3989
3990 } else {
3991 emit_extract_vector(ctx, desc, 2, dst);
3992 }
3993 }
3994
3995 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
3996 {
3997 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
3998 const struct glsl_type *type = glsl_without_array(var->type);
3999 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4000 bool is_array = glsl_sampler_type_is_array(type);
4001 Builder bld(ctx->program, ctx->block);
4002
4003 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
4004 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
4005 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
4006 }
4007
4008 /* LOD */
4009 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
4010
4011 /* Resource */
4012 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
4013
4014 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4015
4016 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1)};
4017 mimg->operands[0] = Operand(lod);
4018 mimg->operands[1] = Operand(resource);
4019 unsigned& dmask = mimg->dmask;
4020 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4021 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
4022 mimg->da = glsl_sampler_type_is_array(type);
4023 mimg->can_reorder = true;
4024 Definition& def = mimg->definitions[0];
4025 ctx->block->instructions.emplace_back(std::move(mimg));
4026
4027 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
4028 glsl_sampler_type_is_array(type)) {
4029
4030 assert(instr->dest.ssa.num_components == 3);
4031 Temp tmp = {ctx->program->allocateId(), v3};
4032 def = Definition(tmp);
4033 emit_split_vector(ctx, tmp, 3);
4034
4035 /* divide 3rd value by 6 by multiplying with magic number */
4036 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
4037 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
4038
4039 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4040 emit_extract_vector(ctx, tmp, 0, v1),
4041 emit_extract_vector(ctx, tmp, 1, v1),
4042 by_6);
4043
4044 } else if (ctx->options->chip_class == GFX9 &&
4045 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
4046 glsl_sampler_type_is_array(type)) {
4047 assert(instr->dest.ssa.num_components == 2);
4048 def = Definition(dst);
4049 dmask = 0x5;
4050 } else {
4051 def = Definition(dst);
4052 }
4053
4054 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4055 }
4056
4057 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4058 {
4059 Builder bld(ctx->program, ctx->block);
4060 unsigned num_components = instr->num_components;
4061
4062 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4063 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4064 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4065
4066 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4067 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc);
4068 }
4069
4070 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4071 {
4072 Builder bld(ctx->program, ctx->block);
4073 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
4074 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4075 unsigned writemask = nir_intrinsic_write_mask(instr);
4076
4077 Temp offset;
4078 if (ctx->options->chip_class < GFX8)
4079 offset = as_vgpr(ctx,get_ssa_temp(ctx, instr->src[2].ssa));
4080 else
4081 offset = get_ssa_temp(ctx, instr->src[2].ssa);
4082
4083 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4084 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4085
4086 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
4087 ctx->options->chip_class >= GFX8;
4088 if (smem)
4089 offset = bld.as_uniform(offset);
4090 bool smem_nonfs = smem && ctx->stage != fragment_fs;
4091
4092 while (writemask) {
4093 int start, count;
4094 u_bit_scan_consecutive_range(&writemask, &start, &count);
4095 if (count == 3 && smem) {
4096 writemask |= 1u << (start + 2);
4097 count = 2;
4098 }
4099 int num_bytes = count * elem_size_bytes;
4100
4101 if (num_bytes > 16) {
4102 assert(elem_size_bytes == 8);
4103 writemask |= (((count - 2) << 1) - 1) << (start + 2);
4104 count = 2;
4105 num_bytes = 16;
4106 }
4107
4108 // TODO: check alignment of sub-dword stores
4109 // TODO: split 3 bytes. there is no store instruction for that
4110
4111 Temp write_data;
4112 if (count != instr->num_components) {
4113 emit_split_vector(ctx, data, instr->num_components);
4114 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4115 for (int i = 0; i < count; i++) {
4116 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
4117 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
4118 }
4119 write_data = bld.tmp(smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
4120 vec->definitions[0] = Definition(write_data);
4121 ctx->block->instructions.emplace_back(std::move(vec));
4122 } else if (!smem && data.type() != RegType::vgpr) {
4123 assert(num_bytes % 4 == 0);
4124 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
4125 } else if (smem_nonfs && data.type() == RegType::vgpr) {
4126 assert(num_bytes % 4 == 0);
4127 write_data = bld.as_uniform(data);
4128 } else {
4129 write_data = data;
4130 }
4131
4132 aco_opcode vmem_op, smem_op;
4133 switch (num_bytes) {
4134 case 4:
4135 vmem_op = aco_opcode::buffer_store_dword;
4136 smem_op = aco_opcode::s_buffer_store_dword;
4137 break;
4138 case 8:
4139 vmem_op = aco_opcode::buffer_store_dwordx2;
4140 smem_op = aco_opcode::s_buffer_store_dwordx2;
4141 break;
4142 case 12:
4143 vmem_op = aco_opcode::buffer_store_dwordx3;
4144 smem_op = aco_opcode::last_opcode;
4145 assert(!smem);
4146 break;
4147 case 16:
4148 vmem_op = aco_opcode::buffer_store_dwordx4;
4149 smem_op = aco_opcode::s_buffer_store_dwordx4;
4150 break;
4151 default:
4152 unreachable("Store SSBO not implemented for this size.");
4153 }
4154 if (ctx->stage == fragment_fs)
4155 smem_op = aco_opcode::p_fs_buffer_store_smem;
4156
4157 if (smem) {
4158 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
4159 store->operands[0] = Operand(rsrc);
4160 if (start) {
4161 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4162 offset, Operand(start * elem_size_bytes));
4163 store->operands[1] = Operand(off);
4164 } else {
4165 store->operands[1] = Operand(offset);
4166 }
4167 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
4168 store->operands[1].setFixed(m0);
4169 store->operands[2] = Operand(write_data);
4170 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4171 store->dlc = false;
4172 store->disable_wqm = true;
4173 store->barrier = barrier_buffer;
4174 ctx->block->instructions.emplace_back(std::move(store));
4175 ctx->program->wb_smem_l1_on_end = true;
4176 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
4177 ctx->block->kind |= block_kind_needs_lowering;
4178 ctx->program->needs_exact = true;
4179 }
4180 } else {
4181 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
4182 store->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4183 store->operands[1] = Operand(rsrc);
4184 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4185 store->operands[3] = Operand(write_data);
4186 store->offset = start * elem_size_bytes;
4187 store->offen = (offset.type() == RegType::vgpr);
4188 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4189 store->dlc = false;
4190 store->disable_wqm = true;
4191 store->barrier = barrier_buffer;
4192 ctx->program->needs_exact = true;
4193 ctx->block->instructions.emplace_back(std::move(store));
4194 }
4195 }
4196 }
4197
4198 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4199 {
4200 /* return the previous value if dest is ever used */
4201 bool return_previous = false;
4202 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4203 return_previous = true;
4204 break;
4205 }
4206 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4207 return_previous = true;
4208 break;
4209 }
4210
4211 Builder bld(ctx->program, ctx->block);
4212 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
4213
4214 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
4215 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
4216 get_ssa_temp(ctx, instr->src[3].ssa), data);
4217
4218 Temp offset;
4219 if (ctx->options->chip_class < GFX8)
4220 offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4221 else
4222 offset = get_ssa_temp(ctx, instr->src[1].ssa);
4223
4224 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4225 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4226
4227 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4228
4229 aco_opcode op32, op64;
4230 switch (instr->intrinsic) {
4231 case nir_intrinsic_ssbo_atomic_add:
4232 op32 = aco_opcode::buffer_atomic_add;
4233 op64 = aco_opcode::buffer_atomic_add_x2;
4234 break;
4235 case nir_intrinsic_ssbo_atomic_imin:
4236 op32 = aco_opcode::buffer_atomic_smin;
4237 op64 = aco_opcode::buffer_atomic_smin_x2;
4238 break;
4239 case nir_intrinsic_ssbo_atomic_umin:
4240 op32 = aco_opcode::buffer_atomic_umin;
4241 op64 = aco_opcode::buffer_atomic_umin_x2;
4242 break;
4243 case nir_intrinsic_ssbo_atomic_imax:
4244 op32 = aco_opcode::buffer_atomic_smax;
4245 op64 = aco_opcode::buffer_atomic_smax_x2;
4246 break;
4247 case nir_intrinsic_ssbo_atomic_umax:
4248 op32 = aco_opcode::buffer_atomic_umax;
4249 op64 = aco_opcode::buffer_atomic_umax_x2;
4250 break;
4251 case nir_intrinsic_ssbo_atomic_and:
4252 op32 = aco_opcode::buffer_atomic_and;
4253 op64 = aco_opcode::buffer_atomic_and_x2;
4254 break;
4255 case nir_intrinsic_ssbo_atomic_or:
4256 op32 = aco_opcode::buffer_atomic_or;
4257 op64 = aco_opcode::buffer_atomic_or_x2;
4258 break;
4259 case nir_intrinsic_ssbo_atomic_xor:
4260 op32 = aco_opcode::buffer_atomic_xor;
4261 op64 = aco_opcode::buffer_atomic_xor_x2;
4262 break;
4263 case nir_intrinsic_ssbo_atomic_exchange:
4264 op32 = aco_opcode::buffer_atomic_swap;
4265 op64 = aco_opcode::buffer_atomic_swap_x2;
4266 break;
4267 case nir_intrinsic_ssbo_atomic_comp_swap:
4268 op32 = aco_opcode::buffer_atomic_cmpswap;
4269 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
4270 break;
4271 default:
4272 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
4273 }
4274 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
4275 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4276 mubuf->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4277 mubuf->operands[1] = Operand(rsrc);
4278 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4279 mubuf->operands[3] = Operand(data);
4280 if (return_previous)
4281 mubuf->definitions[0] = Definition(dst);
4282 mubuf->offset = 0;
4283 mubuf->offen = (offset.type() == RegType::vgpr);
4284 mubuf->glc = return_previous;
4285 mubuf->dlc = false; /* Not needed for atomics */
4286 mubuf->disable_wqm = true;
4287 mubuf->barrier = barrier_buffer;
4288 ctx->program->needs_exact = true;
4289 ctx->block->instructions.emplace_back(std::move(mubuf));
4290 }
4291
4292 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
4293
4294 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4295 Builder bld(ctx->program, ctx->block);
4296 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
4297 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
4298 }
4299
4300 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
4301 {
4302 Builder bld(ctx->program, ctx->block);
4303 unsigned num_components = instr->num_components;
4304 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
4305
4306 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4307 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
4308
4309 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4310 bool dlc = glc && ctx->options->chip_class >= GFX10;
4311 aco_opcode op;
4312 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
4313 bool global = ctx->options->chip_class >= GFX9;
4314 aco_opcode op;
4315 switch (num_bytes) {
4316 case 4:
4317 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
4318 break;
4319 case 8:
4320 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
4321 break;
4322 case 12:
4323 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
4324 break;
4325 case 16:
4326 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
4327 break;
4328 default:
4329 unreachable("load_global not implemented for this size.");
4330 }
4331 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
4332 flat->operands[0] = Operand(addr);
4333 flat->operands[1] = Operand(s1);
4334 flat->glc = glc;
4335 flat->dlc = dlc;
4336
4337 if (dst.type() == RegType::sgpr) {
4338 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4339 flat->definitions[0] = Definition(vec);
4340 ctx->block->instructions.emplace_back(std::move(flat));
4341 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
4342 } else {
4343 flat->definitions[0] = Definition(dst);
4344 ctx->block->instructions.emplace_back(std::move(flat));
4345 }
4346 emit_split_vector(ctx, dst, num_components);
4347 } else {
4348 switch (num_bytes) {
4349 case 4:
4350 op = aco_opcode::s_load_dword;
4351 break;
4352 case 8:
4353 op = aco_opcode::s_load_dwordx2;
4354 break;
4355 case 12:
4356 case 16:
4357 op = aco_opcode::s_load_dwordx4;
4358 break;
4359 default:
4360 unreachable("load_global not implemented for this size.");
4361 }
4362 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4363 load->operands[0] = Operand(addr);
4364 load->operands[1] = Operand(0u);
4365 load->definitions[0] = Definition(dst);
4366 load->glc = glc;
4367 load->dlc = dlc;
4368 load->barrier = barrier_buffer;
4369 assert(ctx->options->chip_class >= GFX8 || !glc);
4370
4371 if (dst.size() == 3) {
4372 /* trim vector */
4373 Temp vec = bld.tmp(s4);
4374 load->definitions[0] = Definition(vec);
4375 ctx->block->instructions.emplace_back(std::move(load));
4376 emit_split_vector(ctx, vec, 4);
4377
4378 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4379 emit_extract_vector(ctx, vec, 0, s1),
4380 emit_extract_vector(ctx, vec, 1, s1),
4381 emit_extract_vector(ctx, vec, 2, s1));
4382 } else {
4383 ctx->block->instructions.emplace_back(std::move(load));
4384 }
4385 }
4386 }
4387
4388 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
4389 {
4390 Builder bld(ctx->program, ctx->block);
4391 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4392
4393 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4394 Temp addr = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4395
4396 unsigned writemask = nir_intrinsic_write_mask(instr);
4397 while (writemask) {
4398 int start, count;
4399 u_bit_scan_consecutive_range(&writemask, &start, &count);
4400 unsigned num_bytes = count * elem_size_bytes;
4401
4402 Temp write_data = data;
4403 if (count != instr->num_components) {
4404 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4405 for (int i = 0; i < count; i++)
4406 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
4407 write_data = bld.tmp(RegType::vgpr, count);
4408 vec->definitions[0] = Definition(write_data);
4409 ctx->block->instructions.emplace_back(std::move(vec));
4410 }
4411
4412 unsigned offset = start * elem_size_bytes;
4413 if (offset > 0 && ctx->options->chip_class < GFX9) {
4414 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
4415 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
4416 Temp carry = bld.tmp(s2);
4417 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
4418
4419 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
4420 Operand(offset), addr0);
4421 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(s2),
4422 Operand(0u), addr1,
4423 carry).def(1).setHint(vcc);
4424
4425 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
4426
4427 offset = 0;
4428 }
4429
4430 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4431 bool global = ctx->options->chip_class >= GFX9;
4432 aco_opcode op;
4433 switch (num_bytes) {
4434 case 4:
4435 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
4436 break;
4437 case 8:
4438 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
4439 break;
4440 case 12:
4441 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
4442 break;
4443 case 16:
4444 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
4445 break;
4446 default:
4447 unreachable("store_global not implemented for this size.");
4448 }
4449 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
4450 flat->operands[0] = Operand(addr);
4451 flat->operands[1] = Operand(s1);
4452 flat->operands[2] = Operand(data);
4453 flat->glc = glc;
4454 flat->dlc = false;
4455 flat->offset = offset;
4456 ctx->block->instructions.emplace_back(std::move(flat));
4457 }
4458 }
4459
4460 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
4461 Builder bld(ctx->program, ctx->block);
4462 switch(instr->intrinsic) {
4463 case nir_intrinsic_group_memory_barrier:
4464 case nir_intrinsic_memory_barrier:
4465 bld.barrier(aco_opcode::p_memory_barrier_all);
4466 break;
4467 case nir_intrinsic_memory_barrier_atomic_counter:
4468 bld.barrier(aco_opcode::p_memory_barrier_atomic);
4469 break;
4470 case nir_intrinsic_memory_barrier_buffer:
4471 bld.barrier(aco_opcode::p_memory_barrier_buffer);
4472 break;
4473 case nir_intrinsic_memory_barrier_image:
4474 bld.barrier(aco_opcode::p_memory_barrier_image);
4475 break;
4476 case nir_intrinsic_memory_barrier_shared:
4477 bld.barrier(aco_opcode::p_memory_barrier_shared);
4478 break;
4479 default:
4480 unreachable("Unimplemented memory barrier intrinsic");
4481 break;
4482 }
4483 }
4484
4485 Operand load_lds_size_m0(isel_context *ctx)
4486 {
4487 /* TODO: m0 does not need to be initialized on GFX9+ */
4488 Builder bld(ctx->program, ctx->block);
4489 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
4490 }
4491
4492
4493 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
4494 {
4495 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
4496 Operand m = load_lds_size_m0(ctx);
4497 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4498 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
4499 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4500 Builder bld(ctx->program, ctx->block);
4501
4502 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4503 unsigned bytes_read = 0;
4504 unsigned result_size = 0;
4505 unsigned total_bytes = instr->num_components * elem_size_bytes;
4506 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : instr->dest.ssa.bit_size / 8;
4507 std::array<Temp, 4> result;
4508
4509 while (bytes_read < total_bytes) {
4510 unsigned todo = total_bytes - bytes_read;
4511 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
4512 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
4513
4514 aco_opcode op = aco_opcode::last_opcode;
4515 if (todo >= 16 && aligned16) {
4516 op = aco_opcode::ds_read_b128;
4517 todo = 16;
4518 } else if (todo >= 12 && aligned16) {
4519 op = aco_opcode::ds_read_b96;
4520 todo = 12;
4521 } else if (todo >= 8) {
4522 op = aligned8 ? aco_opcode::ds_read_b64 : aco_opcode::ds_read2_b32;
4523 todo = 8;
4524 } else if (todo >= 4) {
4525 op = aco_opcode::ds_read_b32;
4526 todo = 4;
4527 } else {
4528 assert(false);
4529 }
4530 assert(todo % elem_size_bytes == 0);
4531 unsigned num_elements = todo / elem_size_bytes;
4532 unsigned offset = nir_intrinsic_base(instr) + bytes_read;
4533 unsigned max_offset = op == aco_opcode::ds_read2_b32 ? 1019 : 65535;
4534
4535 Temp address_offset = address;
4536 if (offset > max_offset) {
4537 address_offset = bld.vadd32(bld.def(v1), Operand((uint32_t)nir_intrinsic_base(instr)), address_offset);
4538 offset = bytes_read;
4539 }
4540 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
4541
4542 Temp res;
4543 if (instr->num_components == 1 && dst.type() == RegType::vgpr)
4544 res = dst;
4545 else
4546 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
4547
4548 if (op == aco_opcode::ds_read2_b32)
4549 res = bld.ds(op, Definition(res), address_offset, m, offset >> 2, (offset >> 2) + 1);
4550 else
4551 res = bld.ds(op, Definition(res), address_offset, m, offset);
4552
4553 if (instr->num_components == 1) {
4554 assert(todo == total_bytes);
4555 if (dst.type() == RegType::sgpr)
4556 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
4557 return;
4558 }
4559
4560 if (dst.type() == RegType::sgpr)
4561 res = bld.as_uniform(res);
4562
4563 if (num_elements == 1) {
4564 result[result_size++] = res;
4565 } else {
4566 assert(res != dst && res.size() % num_elements == 0);
4567 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
4568 split->operands[0] = Operand(res);
4569 for (unsigned i = 0; i < num_elements; i++)
4570 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
4571 ctx->block->instructions.emplace_back(std::move(split));
4572 }
4573
4574 bytes_read += todo;
4575 }
4576
4577 assert(result_size == instr->num_components && result_size > 1);
4578 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
4579 for (unsigned i = 0; i < result_size; i++)
4580 vec->operands[i] = Operand(result[i]);
4581 vec->definitions[0] = Definition(dst);
4582 ctx->block->instructions.emplace_back(std::move(vec));
4583 ctx->allocated_vec.emplace(dst.id(), result);
4584 }
4585
4586 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned offset0, unsigned offset1, unsigned align)
4587 {
4588 Builder bld(ctx->program, ctx->block);
4589 unsigned bytes_written = 0;
4590 while (bytes_written < data.size() * 4) {
4591 unsigned todo = data.size() * 4 - bytes_written;
4592 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
4593 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
4594
4595 aco_opcode op = aco_opcode::last_opcode;
4596 unsigned size = 0;
4597 if (todo >= 16 && aligned16) {
4598 op = aco_opcode::ds_write_b128;
4599 size = 4;
4600 } else if (todo >= 12 && aligned16) {
4601 op = aco_opcode::ds_write_b96;
4602 size = 3;
4603 } else if (todo >= 8) {
4604 op = aligned8 ? aco_opcode::ds_write_b64 : aco_opcode::ds_write2_b32;
4605 size = 2;
4606 } else if (todo >= 4) {
4607 op = aco_opcode::ds_write_b32;
4608 size = 1;
4609 } else {
4610 assert(false);
4611 }
4612
4613 bool write2 = op == aco_opcode::ds_write2_b32;
4614 unsigned offset = offset0 + offset1 + bytes_written;
4615 unsigned max_offset = write2 ? 1020 : 65535;
4616 Temp address_offset = address;
4617 if (offset > max_offset) {
4618 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
4619 offset = offset1 + bytes_written;
4620 }
4621 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
4622
4623 if (write2) {
4624 Temp val0 = emit_extract_vector(ctx, data, bytes_written >> 2, v1);
4625 Temp val1 = emit_extract_vector(ctx, data, (bytes_written >> 2) + 1, v1);
4626 bld.ds(op, address_offset, val0, val1, m, offset >> 2, (offset >> 2) + 1);
4627 } else {
4628 Temp val = emit_extract_vector(ctx, data, bytes_written >> 2, RegClass(RegType::vgpr, size));
4629 bld.ds(op, address_offset, val, m, offset);
4630 }
4631
4632 bytes_written += size * 4;
4633 }
4634 }
4635
4636 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
4637 {
4638 unsigned offset = nir_intrinsic_base(instr);
4639 unsigned writemask = nir_intrinsic_write_mask(instr);
4640 Operand m = load_lds_size_m0(ctx);
4641 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
4642 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4643 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4644 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
4645
4646 /* we need at most two stores for 32bit variables */
4647 int start[2], count[2];
4648 u_bit_scan_consecutive_range(&writemask, &start[0], &count[0]);
4649 u_bit_scan_consecutive_range(&writemask, &start[1], &count[1]);
4650 assert(writemask == 0);
4651
4652 /* one combined store is sufficient */
4653 if (count[0] == count[1]) {
4654 Builder bld(ctx->program, ctx->block);
4655
4656 Temp address_offset = address;
4657 if ((offset >> 2) + start[1] > 255) {
4658 address_offset = bld.vadd32(bld.def(v1), Operand(offset), address_offset);
4659 offset = 0;
4660 }
4661
4662 assert(count[0] == 1);
4663 Temp val0 = emit_extract_vector(ctx, data, start[0], v1);
4664 Temp val1 = emit_extract_vector(ctx, data, start[1], v1);
4665 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
4666 offset = offset / elem_size_bytes;
4667 bld.ds(op, address_offset, val0, val1, m,
4668 offset + start[0], offset + start[1]);
4669 return;
4670 }
4671
4672 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
4673 for (unsigned i = 0; i < 2; i++) {
4674 if (count[i] == 0)
4675 continue;
4676
4677 Temp write_data = emit_extract_vector(ctx, data, start[i], RegClass(RegType::vgpr, count[i] * elem_size_bytes / 4));
4678 ds_write_helper(ctx, m, address, write_data, offset, start[i] * elem_size_bytes, align);
4679 }
4680 return;
4681 }
4682
4683 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4684 {
4685 unsigned offset = nir_intrinsic_base(instr);
4686 Operand m = load_lds_size_m0(ctx);
4687 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4688 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4689
4690 unsigned num_operands = 3;
4691 aco_opcode op32, op64, op32_rtn, op64_rtn;
4692 switch(instr->intrinsic) {
4693 case nir_intrinsic_shared_atomic_add:
4694 op32 = aco_opcode::ds_add_u32;
4695 op64 = aco_opcode::ds_add_u64;
4696 op32_rtn = aco_opcode::ds_add_rtn_u32;
4697 op64_rtn = aco_opcode::ds_add_rtn_u64;
4698 break;
4699 case nir_intrinsic_shared_atomic_imin:
4700 op32 = aco_opcode::ds_min_i32;
4701 op64 = aco_opcode::ds_min_i64;
4702 op32_rtn = aco_opcode::ds_min_rtn_i32;
4703 op64_rtn = aco_opcode::ds_min_rtn_i64;
4704 break;
4705 case nir_intrinsic_shared_atomic_umin:
4706 op32 = aco_opcode::ds_min_u32;
4707 op64 = aco_opcode::ds_min_u64;
4708 op32_rtn = aco_opcode::ds_min_rtn_u32;
4709 op64_rtn = aco_opcode::ds_min_rtn_u64;
4710 break;
4711 case nir_intrinsic_shared_atomic_imax:
4712 op32 = aco_opcode::ds_max_i32;
4713 op64 = aco_opcode::ds_max_i64;
4714 op32_rtn = aco_opcode::ds_max_rtn_i32;
4715 op64_rtn = aco_opcode::ds_max_rtn_i64;
4716 break;
4717 case nir_intrinsic_shared_atomic_umax:
4718 op32 = aco_opcode::ds_max_u32;
4719 op64 = aco_opcode::ds_max_u64;
4720 op32_rtn = aco_opcode::ds_max_rtn_u32;
4721 op64_rtn = aco_opcode::ds_max_rtn_u64;
4722 break;
4723 case nir_intrinsic_shared_atomic_and:
4724 op32 = aco_opcode::ds_and_b32;
4725 op64 = aco_opcode::ds_and_b64;
4726 op32_rtn = aco_opcode::ds_and_rtn_b32;
4727 op64_rtn = aco_opcode::ds_and_rtn_b64;
4728 break;
4729 case nir_intrinsic_shared_atomic_or:
4730 op32 = aco_opcode::ds_or_b32;
4731 op64 = aco_opcode::ds_or_b64;
4732 op32_rtn = aco_opcode::ds_or_rtn_b32;
4733 op64_rtn = aco_opcode::ds_or_rtn_b64;
4734 break;
4735 case nir_intrinsic_shared_atomic_xor:
4736 op32 = aco_opcode::ds_xor_b32;
4737 op64 = aco_opcode::ds_xor_b64;
4738 op32_rtn = aco_opcode::ds_xor_rtn_b32;
4739 op64_rtn = aco_opcode::ds_xor_rtn_b64;
4740 break;
4741 case nir_intrinsic_shared_atomic_exchange:
4742 op32 = aco_opcode::ds_write_b32;
4743 op64 = aco_opcode::ds_write_b64;
4744 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
4745 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
4746 break;
4747 case nir_intrinsic_shared_atomic_comp_swap:
4748 op32 = aco_opcode::ds_cmpst_b32;
4749 op64 = aco_opcode::ds_cmpst_b64;
4750 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
4751 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
4752 num_operands = 4;
4753 break;
4754 default:
4755 unreachable("Unhandled shared atomic intrinsic");
4756 }
4757
4758 /* return the previous value if dest is ever used */
4759 bool return_previous = false;
4760 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4761 return_previous = true;
4762 break;
4763 }
4764 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4765 return_previous = true;
4766 break;
4767 }
4768
4769 aco_opcode op;
4770 if (data.size() == 1) {
4771 assert(instr->dest.ssa.bit_size == 32);
4772 op = return_previous ? op32_rtn : op32;
4773 } else {
4774 assert(instr->dest.ssa.bit_size == 64);
4775 op = return_previous ? op64_rtn : op64;
4776 }
4777
4778 if (offset > 65535) {
4779 Builder bld(ctx->program, ctx->block);
4780 address = bld.vadd32(bld.def(v1), Operand(offset), address);
4781 offset = 0;
4782 }
4783
4784 aco_ptr<DS_instruction> ds;
4785 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
4786 ds->operands[0] = Operand(address);
4787 ds->operands[1] = Operand(data);
4788 if (num_operands == 4)
4789 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
4790 ds->operands[num_operands - 1] = m;
4791 ds->offset0 = offset;
4792 if (return_previous)
4793 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
4794 ctx->block->instructions.emplace_back(std::move(ds));
4795 }
4796
4797 Temp get_scratch_resource(isel_context *ctx)
4798 {
4799 Builder bld(ctx->program, ctx->block);
4800 Temp scratch_addr = ctx->private_segment_buffer;
4801 if (ctx->stage != compute_cs)
4802 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), ctx->private_segment_buffer, Operand(0u));
4803
4804 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
4805 S_008F0C_INDEX_STRIDE(ctx->options->wave_size == 64 ? 3 : 2);;
4806
4807 if (ctx->program->chip_class >= GFX10) {
4808 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4809 S_008F0C_OOB_SELECT(3) |
4810 S_008F0C_RESOURCE_LEVEL(1);
4811 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
4812 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4813 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4814 }
4815
4816 /* older generations need element size = 16 bytes. element size removed in GFX9 */
4817 if (ctx->program->chip_class <= GFX8)
4818 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
4819
4820 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
4821 }
4822
4823 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
4824 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
4825 Builder bld(ctx->program, ctx->block);
4826 Temp rsrc = get_scratch_resource(ctx);
4827 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4828 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4829
4830 aco_opcode op;
4831 switch (dst.size()) {
4832 case 1:
4833 op = aco_opcode::buffer_load_dword;
4834 break;
4835 case 2:
4836 op = aco_opcode::buffer_load_dwordx2;
4837 break;
4838 case 3:
4839 op = aco_opcode::buffer_load_dwordx3;
4840 break;
4841 case 4:
4842 op = aco_opcode::buffer_load_dwordx4;
4843 break;
4844 case 6:
4845 case 8: {
4846 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4847 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
4848 bld.def(v4), offset, rsrc,
4849 ctx->scratch_offset, 0, true);
4850 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
4851 aco_opcode::buffer_load_dwordx4,
4852 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
4853 offset, rsrc, ctx->scratch_offset, 16, true);
4854 emit_split_vector(ctx, lower, 2);
4855 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
4856 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
4857 if (dst.size() == 8) {
4858 emit_split_vector(ctx, upper, 2);
4859 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
4860 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
4861 } else {
4862 elems[2] = upper;
4863 }
4864
4865 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
4866 Format::PSEUDO, dst.size() / 2, 1)};
4867 for (unsigned i = 0; i < dst.size() / 2; i++)
4868 vec->operands[i] = Operand(elems[i]);
4869 vec->definitions[0] = Definition(dst);
4870 bld.insert(std::move(vec));
4871 ctx->allocated_vec.emplace(dst.id(), elems);
4872 return;
4873 }
4874 default:
4875 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
4876 }
4877
4878 bld.mubuf(op, Definition(dst), offset, rsrc, ctx->scratch_offset, 0, true);
4879 emit_split_vector(ctx, dst, instr->num_components);
4880 }
4881
4882 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
4883 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
4884 Builder bld(ctx->program, ctx->block);
4885 Temp rsrc = get_scratch_resource(ctx);
4886 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4887 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4888
4889 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4890 unsigned writemask = nir_intrinsic_write_mask(instr);
4891
4892 while (writemask) {
4893 int start, count;
4894 u_bit_scan_consecutive_range(&writemask, &start, &count);
4895 int num_bytes = count * elem_size_bytes;
4896
4897 if (num_bytes > 16) {
4898 assert(elem_size_bytes == 8);
4899 writemask |= (((count - 2) << 1) - 1) << (start + 2);
4900 count = 2;
4901 num_bytes = 16;
4902 }
4903
4904 // TODO: check alignment of sub-dword stores
4905 // TODO: split 3 bytes. there is no store instruction for that
4906
4907 Temp write_data;
4908 if (count != instr->num_components) {
4909 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4910 for (int i = 0; i < count; i++) {
4911 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
4912 vec->operands[i] = Operand(elem);
4913 }
4914 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
4915 vec->definitions[0] = Definition(write_data);
4916 ctx->block->instructions.emplace_back(std::move(vec));
4917 } else {
4918 write_data = data;
4919 }
4920
4921 aco_opcode op;
4922 switch (num_bytes) {
4923 case 4:
4924 op = aco_opcode::buffer_store_dword;
4925 break;
4926 case 8:
4927 op = aco_opcode::buffer_store_dwordx2;
4928 break;
4929 case 12:
4930 op = aco_opcode::buffer_store_dwordx3;
4931 break;
4932 case 16:
4933 op = aco_opcode::buffer_store_dwordx4;
4934 break;
4935 default:
4936 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
4937 }
4938
4939 bld.mubuf(op, offset, rsrc, ctx->scratch_offset, write_data, start * elem_size_bytes, true);
4940 }
4941 }
4942
4943 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
4944 uint8_t log2_ps_iter_samples;
4945 if (ctx->program->info->ps.force_persample) {
4946 log2_ps_iter_samples =
4947 util_logbase2(ctx->options->key.fs.num_samples);
4948 } else {
4949 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
4950 }
4951
4952 /* The bit pattern matches that used by fixed function fragment
4953 * processing. */
4954 static const unsigned ps_iter_masks[] = {
4955 0xffff, /* not used */
4956 0x5555,
4957 0x1111,
4958 0x0101,
4959 0x0001,
4960 };
4961 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
4962
4963 Builder bld(ctx->program, ctx->block);
4964
4965 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), ctx->fs_inputs[fs_input::ancillary], Operand(8u), Operand(4u));
4966 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
4967 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
4968 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4969 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, ctx->fs_inputs[fs_input::sample_coverage]);
4970 }
4971
4972 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
4973 {
4974 Builder bld(ctx->program, ctx->block);
4975
4976 if (cluster_size == 1) {
4977 return src;
4978 } if (op == nir_op_iand && cluster_size == 4) {
4979 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
4980 Temp tmp = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc), Operand(exec, s2), src);
4981 return bld.sop1(aco_opcode::s_not_b64, bld.def(s2), bld.def(s1, scc),
4982 bld.sop1(aco_opcode::s_wqm_b64, bld.def(s2), bld.def(s1, scc), tmp));
4983 } else if (op == nir_op_ior && cluster_size == 4) {
4984 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
4985 return bld.sop1(aco_opcode::s_wqm_b64, bld.def(s2), bld.def(s1, scc),
4986 bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2)));
4987 } else if (op == nir_op_iand && cluster_size == 64) {
4988 //subgroupAnd(val) -> (exec & ~val) == 0
4989 Temp tmp = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc), Operand(exec, s2), src).def(1).getTemp();
4990 return bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), tmp, Operand(0u));
4991 } else if (op == nir_op_ior && cluster_size == 64) {
4992 //subgroupOr(val) -> (val & exec) != 0
4993 return bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2)).def(1).getTemp();
4994 } else if (op == nir_op_ixor && cluster_size == 64) {
4995 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
4996 Temp tmp = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
4997 tmp = bld.sop1(aco_opcode::s_bcnt1_i32_b64, bld.def(s2), bld.def(s1, scc), tmp);
4998 return bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
4999 } else {
5000 //subgroupClustered{And,Or,Xor}(val, n) ->
5001 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0))
5002 //cluster_offset = ~(n - 1) & lane_id
5003 //cluster_mask = ((1 << n) - 1)
5004 //subgroupClusteredAnd():
5005 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
5006 //subgroupClusteredOr():
5007 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
5008 //subgroupClusteredXor():
5009 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
5010 Temp lane_id = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), Operand((uint32_t) -1),
5011 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
5012 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
5013
5014 Temp tmp;
5015 if (op == nir_op_iand)
5016 tmp = bld.sop2(aco_opcode::s_orn2_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
5017 else
5018 tmp = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
5019
5020 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
5021 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
5022 tmp = emit_extract_vector(ctx, tmp, 0, v1);
5023 if (cluster_mask != 0xffffffff)
5024 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
5025
5026 Definition cmp_def = Definition();
5027 if (op == nir_op_iand) {
5028 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(s2), Operand(cluster_mask), tmp).def(0);
5029 } else if (op == nir_op_ior) {
5030 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), tmp).def(0);
5031 } else if (op == nir_op_ixor) {
5032 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
5033 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
5034 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), tmp).def(0);
5035 }
5036 cmp_def.setHint(vcc);
5037 return cmp_def.getTemp();
5038 }
5039 }
5040
5041 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
5042 {
5043 Builder bld(ctx->program, ctx->block);
5044
5045 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
5046 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
5047 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
5048 Temp tmp;
5049 if (op == nir_op_iand)
5050 tmp = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc), Operand(exec, s2), src);
5051 else
5052 tmp = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
5053
5054 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
5055 Temp lo = lohi.def(0).getTemp();
5056 Temp hi = lohi.def(1).getTemp();
5057 Temp mbcnt = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), hi,
5058 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), lo, Operand(0u)));
5059
5060 Definition cmp_def = Definition();
5061 if (op == nir_op_iand)
5062 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(s2), Operand(0u), mbcnt).def(0);
5063 else if (op == nir_op_ior)
5064 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), mbcnt).def(0);
5065 else if (op == nir_op_ixor)
5066 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u),
5067 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
5068 cmp_def.setHint(vcc);
5069 return cmp_def.getTemp();
5070 }
5071
5072 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
5073 {
5074 Builder bld(ctx->program, ctx->block);
5075
5076 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
5077 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
5078 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
5079 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
5080 if (op == nir_op_iand)
5081 return bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), tmp, src);
5082 else if (op == nir_op_ior)
5083 return bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), tmp, src);
5084 else if (op == nir_op_ixor)
5085 return bld.sop2(aco_opcode::s_xor_b64, bld.def(s2), bld.def(s1, scc), tmp, src);
5086
5087 assert(false);
5088 return Temp();
5089 }
5090
5091 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
5092 {
5093 Builder bld(ctx->program, ctx->block);
5094 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
5095 if (src.regClass().type() == RegType::vgpr) {
5096 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
5097 } else if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5098 bld.sopc(aco_opcode::s_cmp_lg_u64, bld.scc(dst), Operand(0u), Operand(src));
5099 } else if (src.regClass() == s1) {
5100 bld.sop1(aco_opcode::s_mov_b32, dst, src);
5101 } else if (src.regClass() == s2) {
5102 bld.sop1(aco_opcode::s_mov_b64, dst, src);
5103 } else {
5104 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5105 nir_print_instr(&instr->instr, stderr);
5106 fprintf(stderr, "\n");
5107 }
5108 }
5109
5110 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
5111 {
5112 Builder bld(ctx->program, ctx->block);
5113 Temp p1 = ctx->fs_inputs[fs_input::persp_center_p1];
5114 Temp p2 = ctx->fs_inputs[fs_input::persp_center_p2];
5115
5116 /* Build DD X/Y */
5117 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_quad_perm(0, 0, 0, 0));
5118 Temp ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_quad_perm(1, 1, 1, 1));
5119 Temp ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_quad_perm(2, 2, 2, 2));
5120 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_quad_perm(0, 0, 0, 0));
5121 Temp ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_quad_perm(1, 1, 1, 1));
5122 Temp ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_quad_perm(2, 2, 2, 2));
5123
5124 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
5125 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
5126 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
5127 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
5128 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
5129 Temp wqm1 = bld.tmp(v1);
5130 emit_wqm(ctx, tmp1, wqm1, true);
5131 Temp wqm2 = bld.tmp(v1);
5132 emit_wqm(ctx, tmp2, wqm2, true);
5133 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
5134 return;
5135 }
5136
5137 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
5138 {
5139 Builder bld(ctx->program, ctx->block);
5140 switch(instr->intrinsic) {
5141 case nir_intrinsic_load_barycentric_sample:
5142 case nir_intrinsic_load_barycentric_pixel:
5143 case nir_intrinsic_load_barycentric_centroid: {
5144 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
5145 fs_input input = get_interp_input(instr->intrinsic, mode);
5146
5147 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5148 if (input == fs_input::max_inputs) {
5149 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5150 Operand(0u), Operand(0u));
5151 } else {
5152 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5153 ctx->fs_inputs[input],
5154 ctx->fs_inputs[input + 1]);
5155 }
5156 emit_split_vector(ctx, dst, 2);
5157 break;
5158 }
5159 case nir_intrinsic_load_barycentric_at_sample: {
5160 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
5161 switch (ctx->options->key.fs.num_samples) {
5162 case 2: sample_pos_offset += 1 << 3; break;
5163 case 4: sample_pos_offset += 3 << 3; break;
5164 case 8: sample_pos_offset += 7 << 3; break;
5165 default: break;
5166 }
5167 Temp sample_pos;
5168 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5169 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
5170 if (addr.type() == RegType::sgpr) {
5171 Operand offset;
5172 if (const_addr) {
5173 sample_pos_offset += const_addr->u32 << 3;
5174 offset = Operand(sample_pos_offset);
5175 } else if (ctx->options->chip_class >= GFX9) {
5176 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
5177 } else {
5178 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
5179 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
5180 }
5181 addr = ctx->private_segment_buffer;
5182 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), addr, Operand(offset));
5183
5184 } else if (ctx->options->chip_class >= GFX9) {
5185 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
5186 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, ctx->private_segment_buffer, sample_pos_offset);
5187 } else {
5188 /* addr += ctx->private_segment_buffer + sample_pos_offset */
5189 Temp tmp0 = bld.tmp(s1);
5190 Temp tmp1 = bld.tmp(s1);
5191 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), ctx->private_segment_buffer);
5192 Definition scc_tmp = bld.def(s1, scc);
5193 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
5194 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), scc_tmp.getTemp());
5195 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
5196 Temp pck0 = bld.tmp(v1);
5197 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
5198 tmp1 = as_vgpr(ctx, tmp1);
5199 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(s2)), tmp1, Operand(0u), carry);
5200 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
5201
5202 /* sample_pos = flat_load_dwordx2 addr */
5203 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
5204 }
5205
5206 /* sample_pos -= 0.5 */
5207 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
5208 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
5209 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
5210 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
5211 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
5212
5213 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
5214 break;
5215 }
5216 case nir_intrinsic_load_barycentric_at_offset: {
5217 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5218 RegClass rc = RegClass(offset.type(), 1);
5219 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
5220 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
5221 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
5222 break;
5223 }
5224 case nir_intrinsic_load_front_face: {
5225 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5226 Operand(0u), ctx->fs_inputs[fs_input::front_face]).def(0).setHint(vcc);
5227 break;
5228 }
5229 case nir_intrinsic_load_view_index:
5230 case nir_intrinsic_load_layer_id: {
5231 if (instr->intrinsic == nir_intrinsic_load_view_index && (ctx->stage & sw_vs)) {
5232 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5233 bld.copy(Definition(dst), Operand(ctx->view_index));
5234 break;
5235 }
5236
5237 unsigned idx = nir_intrinsic_base(instr);
5238 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5239 Operand(2u), bld.m0(ctx->prim_mask), idx, 0);
5240 break;
5241 }
5242 case nir_intrinsic_load_frag_coord: {
5243 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
5244 break;
5245 }
5246 case nir_intrinsic_load_sample_pos: {
5247 Temp posx = ctx->fs_inputs[fs_input::frag_pos_0];
5248 Temp posy = ctx->fs_inputs[fs_input::frag_pos_1];
5249 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5250 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
5251 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
5252 break;
5253 }
5254 case nir_intrinsic_load_interpolated_input:
5255 visit_load_interpolated_input(ctx, instr);
5256 break;
5257 case nir_intrinsic_store_output:
5258 visit_store_output(ctx, instr);
5259 break;
5260 case nir_intrinsic_load_input:
5261 visit_load_input(ctx, instr);
5262 break;
5263 case nir_intrinsic_load_ubo:
5264 visit_load_ubo(ctx, instr);
5265 break;
5266 case nir_intrinsic_load_push_constant:
5267 visit_load_push_constant(ctx, instr);
5268 break;
5269 case nir_intrinsic_load_constant:
5270 visit_load_constant(ctx, instr);
5271 break;
5272 case nir_intrinsic_vulkan_resource_index:
5273 visit_load_resource(ctx, instr);
5274 break;
5275 case nir_intrinsic_discard:
5276 visit_discard(ctx, instr);
5277 break;
5278 case nir_intrinsic_discard_if:
5279 visit_discard_if(ctx, instr);
5280 break;
5281 case nir_intrinsic_load_shared:
5282 visit_load_shared(ctx, instr);
5283 break;
5284 case nir_intrinsic_store_shared:
5285 visit_store_shared(ctx, instr);
5286 break;
5287 case nir_intrinsic_shared_atomic_add:
5288 case nir_intrinsic_shared_atomic_imin:
5289 case nir_intrinsic_shared_atomic_umin:
5290 case nir_intrinsic_shared_atomic_imax:
5291 case nir_intrinsic_shared_atomic_umax:
5292 case nir_intrinsic_shared_atomic_and:
5293 case nir_intrinsic_shared_atomic_or:
5294 case nir_intrinsic_shared_atomic_xor:
5295 case nir_intrinsic_shared_atomic_exchange:
5296 case nir_intrinsic_shared_atomic_comp_swap:
5297 visit_shared_atomic(ctx, instr);
5298 break;
5299 case nir_intrinsic_image_deref_load:
5300 visit_image_load(ctx, instr);
5301 break;
5302 case nir_intrinsic_image_deref_store:
5303 visit_image_store(ctx, instr);
5304 break;
5305 case nir_intrinsic_image_deref_atomic_add:
5306 case nir_intrinsic_image_deref_atomic_umin:
5307 case nir_intrinsic_image_deref_atomic_imin:
5308 case nir_intrinsic_image_deref_atomic_umax:
5309 case nir_intrinsic_image_deref_atomic_imax:
5310 case nir_intrinsic_image_deref_atomic_and:
5311 case nir_intrinsic_image_deref_atomic_or:
5312 case nir_intrinsic_image_deref_atomic_xor:
5313 case nir_intrinsic_image_deref_atomic_exchange:
5314 case nir_intrinsic_image_deref_atomic_comp_swap:
5315 visit_image_atomic(ctx, instr);
5316 break;
5317 case nir_intrinsic_image_deref_size:
5318 visit_image_size(ctx, instr);
5319 break;
5320 case nir_intrinsic_load_ssbo:
5321 visit_load_ssbo(ctx, instr);
5322 break;
5323 case nir_intrinsic_store_ssbo:
5324 visit_store_ssbo(ctx, instr);
5325 break;
5326 case nir_intrinsic_load_global:
5327 visit_load_global(ctx, instr);
5328 break;
5329 case nir_intrinsic_store_global:
5330 visit_store_global(ctx, instr);
5331 break;
5332 case nir_intrinsic_ssbo_atomic_add:
5333 case nir_intrinsic_ssbo_atomic_imin:
5334 case nir_intrinsic_ssbo_atomic_umin:
5335 case nir_intrinsic_ssbo_atomic_imax:
5336 case nir_intrinsic_ssbo_atomic_umax:
5337 case nir_intrinsic_ssbo_atomic_and:
5338 case nir_intrinsic_ssbo_atomic_or:
5339 case nir_intrinsic_ssbo_atomic_xor:
5340 case nir_intrinsic_ssbo_atomic_exchange:
5341 case nir_intrinsic_ssbo_atomic_comp_swap:
5342 visit_atomic_ssbo(ctx, instr);
5343 break;
5344 case nir_intrinsic_load_scratch:
5345 visit_load_scratch(ctx, instr);
5346 break;
5347 case nir_intrinsic_store_scratch:
5348 visit_store_scratch(ctx, instr);
5349 break;
5350 case nir_intrinsic_get_buffer_size:
5351 visit_get_buffer_size(ctx, instr);
5352 break;
5353 case nir_intrinsic_barrier: {
5354 unsigned* bsize = ctx->program->info->cs.block_size;
5355 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
5356 if (workgroup_size > 64)
5357 bld.sopp(aco_opcode::s_barrier);
5358 break;
5359 }
5360 case nir_intrinsic_group_memory_barrier:
5361 case nir_intrinsic_memory_barrier:
5362 case nir_intrinsic_memory_barrier_atomic_counter:
5363 case nir_intrinsic_memory_barrier_buffer:
5364 case nir_intrinsic_memory_barrier_image:
5365 case nir_intrinsic_memory_barrier_shared:
5366 emit_memory_barrier(ctx, instr);
5367 break;
5368 case nir_intrinsic_load_num_work_groups:
5369 case nir_intrinsic_load_work_group_id:
5370 case nir_intrinsic_load_local_invocation_id: {
5371 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5372 Temp* ids;
5373 if (instr->intrinsic == nir_intrinsic_load_num_work_groups)
5374 ids = ctx->num_workgroups;
5375 else if (instr->intrinsic == nir_intrinsic_load_work_group_id)
5376 ids = ctx->workgroup_ids;
5377 else
5378 ids = ctx->local_invocation_ids;
5379 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5380 ids[0].id() ? Operand(ids[0]) : Operand(1u),
5381 ids[1].id() ? Operand(ids[1]) : Operand(1u),
5382 ids[2].id() ? Operand(ids[2]) : Operand(1u));
5383 emit_split_vector(ctx, dst, 3);
5384 break;
5385 }
5386 case nir_intrinsic_load_local_invocation_index: {
5387 Temp id = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), Operand((uint32_t) -1),
5388 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
5389 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u), ctx->tg_size);
5390 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
5391 break;
5392 }
5393 case nir_intrinsic_load_subgroup_id: {
5394 if (ctx->stage == compute_cs) {
5395 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u), ctx->tg_size);
5396 bld.sop2(aco_opcode::s_lshr_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), tg_num, Operand(0x6u));
5397 } else {
5398 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
5399 }
5400 break;
5401 }
5402 case nir_intrinsic_load_subgroup_invocation: {
5403 bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand((uint32_t) -1),
5404 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
5405 break;
5406 }
5407 case nir_intrinsic_load_num_subgroups: {
5408 if (ctx->stage == compute_cs)
5409 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu), ctx->tg_size);
5410 else
5411 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
5412 break;
5413 }
5414 case nir_intrinsic_ballot: {
5415 Definition tmp = bld.def(s2);
5416 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5417 if (instr->src[0].ssa->bit_size == 1 && src.regClass() == s2) {
5418 bld.sop2(aco_opcode::s_and_b64, tmp, bld.def(s1, scc), Operand(exec, s2), src);
5419 } else if (instr->src[0].ssa->bit_size == 1 && src.regClass() == s1) {
5420 bld.sop2(aco_opcode::s_cselect_b64, tmp, Operand(exec, s2), Operand(0u), bld.scc(src));
5421 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
5422 bld.vopc(aco_opcode::v_cmp_lg_u32, tmp, Operand(0u), src);
5423 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
5424 bld.vopc(aco_opcode::v_cmp_lg_u64, tmp, Operand(0u), src);
5425 } else {
5426 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5427 nir_print_instr(&instr->instr, stderr);
5428 fprintf(stderr, "\n");
5429 }
5430 emit_wqm(ctx, tmp.getTemp(), get_ssa_temp(ctx, &instr->dest.ssa));
5431 break;
5432 }
5433 case nir_intrinsic_shuffle: {
5434 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5435 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
5436 emit_uniform_subgroup(ctx, instr, src);
5437 } else {
5438 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
5439 assert(tid.regClass() == v1);
5440 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5441 if (src.regClass() == v1) {
5442 tid = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), tid);
5443 emit_wqm(ctx, bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), tid, src), dst);
5444 } else if (src.regClass() == v2) {
5445 tid = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), tid);
5446
5447 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5448 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5449 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), tid, lo));
5450 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), tid, hi));
5451 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5452 emit_split_vector(ctx, dst, 2);
5453 } else if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5454 Temp tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
5455 tmp = emit_extract_vector(ctx, tmp, 0, v1);
5456 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
5457 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), tmp), dst);
5458 } else {
5459 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5460 nir_print_instr(&instr->instr, stderr);
5461 fprintf(stderr, "\n");
5462 }
5463 }
5464 break;
5465 }
5466 case nir_intrinsic_load_sample_id: {
5467 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5468 ctx->fs_inputs[ancillary], Operand(8u), Operand(4u));
5469 break;
5470 }
5471 case nir_intrinsic_load_sample_mask_in: {
5472 visit_load_sample_mask_in(ctx, instr);
5473 break;
5474 }
5475 case nir_intrinsic_read_first_invocation: {
5476 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5477 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5478 if (src.regClass() == v1) {
5479 emit_wqm(ctx,
5480 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
5481 dst);
5482 } else if (src.regClass() == v2) {
5483 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5484 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5485 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
5486 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
5487 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5488 emit_split_vector(ctx, dst, 2);
5489 } else if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5490 emit_wqm(ctx,
5491 bld.sopc(aco_opcode::s_bitcmp1_b64, bld.def(s1, scc), src,
5492 bld.sop1(aco_opcode::s_ff1_i32_b64, bld.def(s1), Operand(exec, s2))),
5493 dst);
5494 } else if (src.regClass() == s1) {
5495 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
5496 } else if (src.regClass() == s2) {
5497 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
5498 } else {
5499 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5500 nir_print_instr(&instr->instr, stderr);
5501 fprintf(stderr, "\n");
5502 }
5503 break;
5504 }
5505 case nir_intrinsic_read_invocation: {
5506 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5507 Temp lane = get_ssa_temp(ctx, instr->src[1].ssa);
5508 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5509 assert(lane.regClass() == s1);
5510 if (src.regClass() == v1) {
5511 emit_wqm(ctx, bld.vop3(aco_opcode::v_readlane_b32, bld.def(s1), src, lane), dst);
5512 } else if (src.regClass() == v2) {
5513 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5514 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5515 lo = emit_wqm(ctx, bld.vop3(aco_opcode::v_readlane_b32, bld.def(s1), lo, lane));
5516 hi = emit_wqm(ctx, bld.vop3(aco_opcode::v_readlane_b32, bld.def(s1), hi, lane));
5517 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5518 emit_split_vector(ctx, dst, 2);
5519 } else if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5520 emit_wqm(ctx, bld.sopc(aco_opcode::s_bitcmp1_b64, bld.def(s1, scc), src, lane), dst);
5521 } else if (src.regClass() == s1) {
5522 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
5523 } else if (src.regClass() == s2) {
5524 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
5525 } else {
5526 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5527 nir_print_instr(&instr->instr, stderr);
5528 fprintf(stderr, "\n");
5529 }
5530 break;
5531 }
5532 case nir_intrinsic_vote_all: {
5533 Temp src = as_divergent_bool(ctx, get_ssa_temp(ctx, instr->src[0].ssa), false);
5534 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5535 assert(src.regClass() == s2);
5536 assert(dst.regClass() == s1);
5537
5538 Definition tmp = bld.def(s1);
5539 bld.sopc(aco_opcode::s_cmp_eq_u64, bld.scc(tmp),
5540 bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2)),
5541 Operand(exec, s2));
5542 emit_wqm(ctx, tmp.getTemp(), dst);
5543 break;
5544 }
5545 case nir_intrinsic_vote_any: {
5546 Temp src = as_divergent_bool(ctx, get_ssa_temp(ctx, instr->src[0].ssa), false);
5547 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5548 assert(src.regClass() == s2);
5549 assert(dst.regClass() == s1);
5550
5551 Definition tmp = bld.def(s1);
5552 bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.scc(tmp), src, Operand(exec, s2));
5553 emit_wqm(ctx, tmp.getTemp(), dst);
5554 break;
5555 }
5556 case nir_intrinsic_reduce:
5557 case nir_intrinsic_inclusive_scan:
5558 case nir_intrinsic_exclusive_scan: {
5559 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5560 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5561 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
5562 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
5563 nir_intrinsic_cluster_size(instr) : 0;
5564 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : 64, 64));
5565
5566 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
5567 emit_uniform_subgroup(ctx, instr, src);
5568 } else if (instr->dest.ssa.bit_size == 1) {
5569 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
5570 op = nir_op_iand;
5571 else if (op == nir_op_iadd)
5572 op = nir_op_ixor;
5573 else if (op == nir_op_umax || op == nir_op_imax)
5574 op = nir_op_ior;
5575 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
5576
5577 switch (instr->intrinsic) {
5578 case nir_intrinsic_reduce:
5579 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
5580 break;
5581 case nir_intrinsic_exclusive_scan:
5582 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
5583 break;
5584 case nir_intrinsic_inclusive_scan:
5585 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
5586 break;
5587 default:
5588 assert(false);
5589 }
5590 } else if (cluster_size == 1) {
5591 bld.copy(Definition(dst), src);
5592 } else {
5593 src = as_vgpr(ctx, src);
5594
5595 ReduceOp reduce_op;
5596 switch (op) {
5597 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
5598 CASE(iadd)
5599 CASE(imul)
5600 CASE(fadd)
5601 CASE(fmul)
5602 CASE(imin)
5603 CASE(umin)
5604 CASE(fmin)
5605 CASE(imax)
5606 CASE(umax)
5607 CASE(fmax)
5608 CASE(iand)
5609 CASE(ior)
5610 CASE(ixor)
5611 default:
5612 unreachable("unknown reduction op");
5613 #undef CASE
5614 }
5615
5616 aco_opcode aco_op;
5617 switch (instr->intrinsic) {
5618 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
5619 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
5620 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
5621 default:
5622 unreachable("unknown reduce intrinsic");
5623 }
5624
5625 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
5626 reduce->operands[0] = Operand(src);
5627 // filled in by aco_reduce_assign.cpp, used internally as part of the
5628 // reduce sequence
5629 assert(dst.size() == 1 || dst.size() == 2);
5630 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
5631 reduce->operands[2] = Operand(v1.as_linear());
5632
5633 Temp tmp_dst = bld.tmp(dst.regClass());
5634 reduce->definitions[0] = Definition(tmp_dst);
5635 reduce->definitions[1] = bld.def(s2); // used internally
5636 reduce->definitions[2] = Definition();
5637 reduce->definitions[3] = Definition(scc, s1);
5638 reduce->definitions[4] = Definition();
5639 reduce->reduce_op = reduce_op;
5640 reduce->cluster_size = cluster_size;
5641 ctx->block->instructions.emplace_back(std::move(reduce));
5642
5643 emit_wqm(ctx, tmp_dst, dst);
5644 }
5645 break;
5646 }
5647 case nir_intrinsic_quad_broadcast: {
5648 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5649 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
5650 emit_uniform_subgroup(ctx, instr, src);
5651 } else {
5652 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5653 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
5654 if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5655 uint32_t half_mask = 0x11111111u << lane;
5656 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
5657 Temp tmp = bld.tmp(s2);
5658 bld.sop1(aco_opcode::s_wqm_b64, Definition(tmp),
5659 bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), mask_tmp,
5660 bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2))));
5661 emit_wqm(ctx, tmp, dst);
5662 } else if (instr->dest.ssa.bit_size == 32) {
5663 emit_wqm(ctx,
5664 bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src,
5665 dpp_quad_perm(lane, lane, lane, lane)),
5666 dst);
5667 } else if (instr->dest.ssa.bit_size == 64) {
5668 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5669 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5670 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_quad_perm(lane, lane, lane, lane)));
5671 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_quad_perm(lane, lane, lane, lane)));
5672 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5673 emit_split_vector(ctx, dst, 2);
5674 } else {
5675 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5676 nir_print_instr(&instr->instr, stderr);
5677 fprintf(stderr, "\n");
5678 }
5679 }
5680 break;
5681 }
5682 case nir_intrinsic_quad_swap_horizontal:
5683 case nir_intrinsic_quad_swap_vertical:
5684 case nir_intrinsic_quad_swap_diagonal:
5685 case nir_intrinsic_quad_swizzle_amd: {
5686 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5687 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
5688 emit_uniform_subgroup(ctx, instr, src);
5689 break;
5690 }
5691 uint16_t dpp_ctrl = 0;
5692 switch (instr->intrinsic) {
5693 case nir_intrinsic_quad_swap_horizontal:
5694 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
5695 break;
5696 case nir_intrinsic_quad_swap_vertical:
5697 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
5698 break;
5699 case nir_intrinsic_quad_swap_diagonal:
5700 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
5701 break;
5702 case nir_intrinsic_quad_swizzle_amd: {
5703 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
5704 break;
5705 }
5706 default:
5707 break;
5708 }
5709
5710 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5711 if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5712 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
5713 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
5714 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), src);
5715 emit_wqm(ctx, tmp, dst);
5716 } else if (instr->dest.ssa.bit_size == 32) {
5717 Temp tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
5718 emit_wqm(ctx, tmp, dst);
5719 } else if (instr->dest.ssa.bit_size == 64) {
5720 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5721 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5722 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
5723 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
5724 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5725 emit_split_vector(ctx, dst, 2);
5726 } else {
5727 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5728 nir_print_instr(&instr->instr, stderr);
5729 fprintf(stderr, "\n");
5730 }
5731 break;
5732 }
5733 case nir_intrinsic_masked_swizzle_amd: {
5734 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5735 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
5736 emit_uniform_subgroup(ctx, instr, src);
5737 break;
5738 }
5739 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5740 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
5741 if (dst.regClass() == v1) {
5742 emit_wqm(ctx,
5743 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
5744 dst);
5745 } else if (dst.regClass() == v2) {
5746 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5747 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5748 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
5749 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
5750 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5751 emit_split_vector(ctx, dst, 2);
5752 } else {
5753 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5754 nir_print_instr(&instr->instr, stderr);
5755 fprintf(stderr, "\n");
5756 }
5757 break;
5758 }
5759 case nir_intrinsic_write_invocation_amd: {
5760 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5761 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
5762 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
5763 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5764 if (dst.regClass() == v1) {
5765 /* src2 is ignored for writelane. RA assigns the same reg for dst */
5766 emit_wqm(ctx, bld.vop3(aco_opcode::v_writelane_b32, bld.def(v1), val, lane, src), dst);
5767 } else if (dst.regClass() == v2) {
5768 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
5769 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
5770 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
5771 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
5772 Temp lo = emit_wqm(ctx, bld.vop3(aco_opcode::v_writelane_b32, bld.def(v1), val_lo, lane, src_hi));
5773 Temp hi = emit_wqm(ctx, bld.vop3(aco_opcode::v_writelane_b32, bld.def(v1), val_hi, lane, src_hi));
5774 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5775 emit_split_vector(ctx, dst, 2);
5776 } else {
5777 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5778 nir_print_instr(&instr->instr, stderr);
5779 fprintf(stderr, "\n");
5780 }
5781 break;
5782 }
5783 case nir_intrinsic_mbcnt_amd: {
5784 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5785 RegClass rc = RegClass(src.type(), 1);
5786 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
5787 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
5788 Temp tmp = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), mask_lo, Operand(0u));
5789 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5790 Temp wqm_tmp = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), mask_hi, tmp);
5791 emit_wqm(ctx, wqm_tmp, dst);
5792 break;
5793 }
5794 case nir_intrinsic_load_helper_invocation: {
5795 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5796 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
5797 ctx->block->kind |= block_kind_needs_lowering;
5798 ctx->program->needs_exact = true;
5799 break;
5800 }
5801 case nir_intrinsic_is_helper_invocation: {
5802 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5803 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
5804 ctx->block->kind |= block_kind_needs_lowering;
5805 ctx->program->needs_exact = true;
5806 break;
5807 }
5808 case nir_intrinsic_demote:
5809 bld.pseudo(aco_opcode::p_demote_to_helper);
5810 ctx->block->kind |= block_kind_uses_demote;
5811 ctx->program->needs_exact = true;
5812 break;
5813 case nir_intrinsic_demote_if: {
5814 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc),
5815 as_divergent_bool(ctx, get_ssa_temp(ctx, instr->src[0].ssa), false),
5816 Operand(exec, s2));
5817 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
5818 ctx->block->kind |= block_kind_uses_demote;
5819 ctx->program->needs_exact = true;
5820 break;
5821 }
5822 case nir_intrinsic_first_invocation: {
5823 emit_wqm(ctx, bld.sop1(aco_opcode::s_ff1_i32_b64, bld.def(s1), Operand(exec, s2)),
5824 get_ssa_temp(ctx, &instr->dest.ssa));
5825 break;
5826 }
5827 case nir_intrinsic_shader_clock:
5828 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
5829 break;
5830 case nir_intrinsic_load_vertex_id_zero_base: {
5831 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5832 bld.copy(Definition(dst), ctx->vertex_id);
5833 break;
5834 }
5835 case nir_intrinsic_load_first_vertex: {
5836 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5837 bld.copy(Definition(dst), ctx->base_vertex);
5838 break;
5839 }
5840 case nir_intrinsic_load_base_instance: {
5841 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5842 bld.copy(Definition(dst), ctx->start_instance);
5843 break;
5844 }
5845 case nir_intrinsic_load_instance_id: {
5846 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5847 bld.copy(Definition(dst), ctx->instance_id);
5848 break;
5849 }
5850 case nir_intrinsic_load_draw_id: {
5851 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5852 bld.copy(Definition(dst), ctx->draw_id);
5853 break;
5854 }
5855 default:
5856 fprintf(stderr, "Unimplemented intrinsic instr: ");
5857 nir_print_instr(&instr->instr, stderr);
5858 fprintf(stderr, "\n");
5859 abort();
5860
5861 break;
5862 }
5863 }
5864
5865
5866 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
5867 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
5868 enum glsl_base_type *stype)
5869 {
5870 nir_deref_instr *texture_deref_instr = NULL;
5871 nir_deref_instr *sampler_deref_instr = NULL;
5872 int plane = -1;
5873
5874 for (unsigned i = 0; i < instr->num_srcs; i++) {
5875 switch (instr->src[i].src_type) {
5876 case nir_tex_src_texture_deref:
5877 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
5878 break;
5879 case nir_tex_src_sampler_deref:
5880 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
5881 break;
5882 case nir_tex_src_plane:
5883 plane = nir_src_as_int(instr->src[i].src);
5884 break;
5885 default:
5886 break;
5887 }
5888 }
5889
5890 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
5891
5892 if (!sampler_deref_instr)
5893 sampler_deref_instr = texture_deref_instr;
5894
5895 if (plane >= 0) {
5896 assert(instr->op != nir_texop_txf_ms &&
5897 instr->op != nir_texop_samples_identical);
5898 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
5899 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
5900 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
5901 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
5902 } else {
5903 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
5904 }
5905 if (samp_ptr) {
5906 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
5907 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
5908 fprintf(stderr, "Unimplemented sampler descriptor: ");
5909 nir_print_instr(&instr->instr, stderr);
5910 fprintf(stderr, "\n");
5911 abort();
5912 // TODO: build samp_ptr = and(samp_ptr, res_ptr)
5913 }
5914 }
5915 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
5916 instr->op == nir_texop_samples_identical))
5917 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
5918 }
5919
5920 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
5921 Temp *out_ma, Temp *out_sc, Temp *out_tc)
5922 {
5923 Builder bld(ctx->program, ctx->block);
5924
5925 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
5926 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
5927 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
5928
5929 Operand neg_one(0xbf800000u);
5930 Operand one(0x3f800000u);
5931 Operand two(0x40000000u);
5932 Operand four(0x40800000u);
5933
5934 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(s2)), Operand(0u), ma);
5935 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
5936 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
5937
5938 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(s2)), four, id);
5939 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(s2), two, id);
5940 is_ma_y = bld.sop2(aco_opcode::s_andn2_b64, bld.hint_vcc(bld.def(s2)), is_ma_y, is_ma_z);
5941 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), is_ma_z, is_ma_y);
5942
5943 // select sc
5944 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
5945 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
5946 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
5947 one, is_ma_y);
5948 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
5949
5950 // select tc
5951 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
5952 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
5953 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
5954
5955 // select ma
5956 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
5957 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
5958 deriv_z, is_ma_z);
5959 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
5960 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
5961 }
5962
5963 void prepare_cube_coords(isel_context *ctx, Temp* coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
5964 {
5965 Builder bld(ctx->program, ctx->block);
5966 Temp coord_args[4], ma, tc, sc, id;
5967 for (unsigned i = 0; i < (is_array ? 4 : 3); i++)
5968 coord_args[i] = emit_extract_vector(ctx, *coords, i, v1);
5969
5970 if (is_array) {
5971 coord_args[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_args[3]);
5972
5973 // see comment in ac_prepare_cube_coords()
5974 if (ctx->options->chip_class <= GFX8)
5975 coord_args[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coord_args[3]);
5976 }
5977
5978 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
5979
5980 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
5981 vop3a->operands[0] = Operand(ma);
5982 vop3a->abs[0] = true;
5983 Temp invma = bld.tmp(v1);
5984 vop3a->definitions[0] = Definition(invma);
5985 ctx->block->instructions.emplace_back(std::move(vop3a));
5986
5987 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
5988 if (!is_deriv)
5989 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
5990
5991 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
5992 if (!is_deriv)
5993 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
5994
5995 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
5996
5997 if (is_deriv) {
5998 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
5999 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
6000
6001 for (unsigned i = 0; i < 2; i++) {
6002 // see comment in ac_prepare_cube_coords()
6003 Temp deriv_ma;
6004 Temp deriv_sc, deriv_tc;
6005 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
6006 &deriv_ma, &deriv_sc, &deriv_tc);
6007
6008 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
6009
6010 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
6011 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
6012 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
6013 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
6014 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
6015 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
6016 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
6017 }
6018
6019 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
6020 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
6021 }
6022
6023 if (is_array)
6024 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coord_args[3], id, Operand(0x41000000u/*8.0*/));
6025 *coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), sc, tc, id);
6026
6027 }
6028
6029 Temp apply_round_slice(isel_context *ctx, Temp coords, unsigned idx)
6030 {
6031 Temp coord_vec[3];
6032 for (unsigned i = 0; i < coords.size(); i++)
6033 coord_vec[i] = emit_extract_vector(ctx, coords, i, v1);
6034
6035 Builder bld(ctx->program, ctx->block);
6036 coord_vec[idx] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_vec[idx]);
6037
6038 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
6039 for (unsigned i = 0; i < coords.size(); i++)
6040 vec->operands[i] = Operand(coord_vec[i]);
6041 Temp res = bld.tmp(RegType::vgpr, coords.size());
6042 vec->definitions[0] = Definition(res);
6043 ctx->block->instructions.emplace_back(std::move(vec));
6044 return res;
6045 }
6046
6047 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
6048 {
6049 if (vec->parent_instr->type != nir_instr_type_alu)
6050 return;
6051 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
6052 if (vec_instr->op != nir_op_vec(vec->num_components))
6053 return;
6054
6055 for (unsigned i = 0; i < vec->num_components; i++) {
6056 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
6057 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
6058 }
6059 }
6060
6061 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
6062 {
6063 Builder bld(ctx->program, ctx->block);
6064 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
6065 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
6066 Temp resource, sampler, fmask_ptr, bias = Temp(), coords, compare = Temp(), sample_index = Temp(),
6067 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(), derivs = Temp();
6068 nir_const_value *sample_index_cv = NULL;
6069 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
6070 enum glsl_base_type stype;
6071 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
6072
6073 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
6074 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
6075 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
6076 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
6077
6078 for (unsigned i = 0; i < instr->num_srcs; i++) {
6079 switch (instr->src[i].src_type) {
6080 case nir_tex_src_coord:
6081 coords = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[i].src.ssa));
6082 break;
6083 case nir_tex_src_bias:
6084 if (instr->op == nir_texop_txb) {
6085 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
6086 has_bias = true;
6087 }
6088 break;
6089 case nir_tex_src_lod: {
6090 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
6091
6092 if (val && val->f32 <= 0.0) {
6093 level_zero = true;
6094 } else {
6095 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
6096 has_lod = true;
6097 }
6098 break;
6099 }
6100 case nir_tex_src_comparator:
6101 if (instr->is_shadow) {
6102 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
6103 has_compare = true;
6104 }
6105 break;
6106 case nir_tex_src_offset:
6107 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
6108 get_const_vec(instr->src[i].src.ssa, const_offset);
6109 has_offset = true;
6110 break;
6111 case nir_tex_src_ddx:
6112 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
6113 has_ddx = true;
6114 break;
6115 case nir_tex_src_ddy:
6116 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
6117 has_ddy = true;
6118 break;
6119 case nir_tex_src_ms_index:
6120 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
6121 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
6122 has_sample_index = true;
6123 break;
6124 case nir_tex_src_texture_offset:
6125 case nir_tex_src_sampler_offset:
6126 default:
6127 break;
6128 }
6129 }
6130 // TODO: all other cases: structure taken from ac_nir_to_llvm.c
6131 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
6132 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
6133
6134 if (instr->op == nir_texop_texture_samples) {
6135 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
6136
6137 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
6138 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
6139 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
6140 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
6141
6142 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6143 samples, Operand(1u), bld.scc(is_msaa));
6144 return;
6145 }
6146
6147 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
6148 aco_ptr<Instruction> tmp_instr;
6149 Temp acc, pack = Temp();
6150
6151 uint32_t pack_const = 0;
6152 for (unsigned i = 0; i < offset.size(); i++) {
6153 if (!const_offset[i])
6154 continue;
6155 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
6156 }
6157
6158 if (offset.type() == RegType::sgpr) {
6159 for (unsigned i = 0; i < offset.size(); i++) {
6160 if (const_offset[i])
6161 continue;
6162
6163 acc = emit_extract_vector(ctx, offset, i, s1);
6164 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
6165
6166 if (i) {
6167 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
6168 }
6169
6170 if (pack == Temp()) {
6171 pack = acc;
6172 } else {
6173 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
6174 }
6175 }
6176
6177 if (pack_const && pack != Temp())
6178 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
6179 } else {
6180 for (unsigned i = 0; i < offset.size(); i++) {
6181 if (const_offset[i])
6182 continue;
6183
6184 acc = emit_extract_vector(ctx, offset, i, v1);
6185 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
6186
6187 if (i) {
6188 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
6189 }
6190
6191 if (pack == Temp()) {
6192 pack = acc;
6193 } else {
6194 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
6195 }
6196 }
6197
6198 if (pack_const && pack != Temp())
6199 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
6200 }
6201 if (pack_const && pack == Temp())
6202 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
6203 else if (pack == Temp())
6204 has_offset = false;
6205 else
6206 offset = pack;
6207 }
6208
6209 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
6210 prepare_cube_coords(ctx, &coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
6211
6212 /* pack derivatives */
6213 if (has_ddx || has_ddy) {
6214 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
6215 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(v4),
6216 ddx, Operand(0u), ddy, Operand(0u));
6217 } else {
6218 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, ddx.size() + ddy.size()), ddx, ddy);
6219 }
6220 has_derivs = true;
6221 }
6222
6223 if (instr->coord_components > 1 &&
6224 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
6225 instr->is_array &&
6226 instr->op != nir_texop_txf)
6227 coords = apply_round_slice(ctx, coords, 1);
6228
6229 if (instr->coord_components > 2 &&
6230 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
6231 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
6232 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
6233 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
6234 instr->is_array &&
6235 instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms)
6236 coords = apply_round_slice(ctx, coords, 2);
6237
6238 if (ctx->options->chip_class == GFX9 &&
6239 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
6240 instr->op != nir_texop_lod && instr->coord_components) {
6241 assert(coords.size() > 0 && coords.size() < 3);
6242
6243 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size() + 1, 1)};
6244 vec->operands[0] = Operand(emit_extract_vector(ctx, coords, 0, v1));
6245 vec->operands[1] = instr->op == nir_texop_txf ? Operand((uint32_t) 0) : Operand((uint32_t) 0x3f000000);
6246 if (coords.size() > 1)
6247 vec->operands[2] = Operand(emit_extract_vector(ctx, coords, 1, v1));
6248 coords = bld.tmp(RegType::vgpr, coords.size() + 1);
6249 vec->definitions[0] = Definition(coords);
6250 ctx->block->instructions.emplace_back(std::move(vec));
6251 }
6252
6253 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
6254
6255 if (instr->op == nir_texop_samples_identical)
6256 resource = fmask_ptr;
6257
6258 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
6259 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
6260 instr->op != nir_texop_txs) {
6261 assert(has_sample_index);
6262 Operand op(sample_index);
6263 if (sample_index_cv)
6264 op = Operand(sample_index_cv->u32);
6265 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
6266 }
6267
6268 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
6269 Temp split_coords[coords.size()];
6270 emit_split_vector(ctx, coords, coords.size());
6271 for (unsigned i = 0; i < coords.size(); i++)
6272 split_coords[i] = emit_extract_vector(ctx, coords, i, v1);
6273
6274 unsigned i = 0;
6275 for (; i < std::min(offset.size(), instr->coord_components); i++) {
6276 Temp off = emit_extract_vector(ctx, offset, i, v1);
6277 split_coords[i] = bld.vadd32(bld.def(v1), split_coords[i], off);
6278 }
6279
6280 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
6281 for (unsigned i = 0; i < coords.size(); i++)
6282 vec->operands[i] = Operand(split_coords[i]);
6283 coords = bld.tmp(coords.regClass());
6284 vec->definitions[0] = Definition(coords);
6285 ctx->block->instructions.emplace_back(std::move(vec));
6286
6287 has_offset = false;
6288 }
6289
6290 /* Build tex instruction */
6291 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
6292 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
6293 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
6294 : 0;
6295 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6296 Temp tmp_dst = dst;
6297
6298 /* gather4 selects the component by dmask and always returns vec4 */
6299 if (instr->op == nir_texop_tg4) {
6300 assert(instr->dest.ssa.num_components == 4);
6301 if (instr->is_shadow)
6302 dmask = 1;
6303 else
6304 dmask = 1 << instr->component;
6305 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
6306 tmp_dst = bld.tmp(v4);
6307 } else if (instr->op == nir_texop_samples_identical) {
6308 tmp_dst = bld.tmp(v1);
6309 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
6310 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
6311 }
6312
6313 aco_ptr<MIMG_instruction> tex;
6314 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
6315 if (!has_lod)
6316 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6317
6318 bool div_by_6 = instr->op == nir_texop_txs &&
6319 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
6320 instr->is_array &&
6321 (dmask & (1 << 2));
6322 if (tmp_dst.id() == dst.id() && div_by_6)
6323 tmp_dst = bld.tmp(tmp_dst.regClass());
6324
6325 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
6326 tex->operands[0] = Operand(as_vgpr(ctx,lod));
6327 tex->operands[1] = Operand(resource);
6328 if (ctx->options->chip_class == GFX9 &&
6329 instr->op == nir_texop_txs &&
6330 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
6331 instr->is_array) {
6332 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
6333 } else if (instr->op == nir_texop_query_levels) {
6334 tex->dmask = 1 << 3;
6335 } else {
6336 tex->dmask = dmask;
6337 }
6338 tex->da = da;
6339 tex->definitions[0] = Definition(tmp_dst);
6340 tex->dim = dim;
6341 tex->can_reorder = true;
6342 ctx->block->instructions.emplace_back(std::move(tex));
6343
6344 if (div_by_6) {
6345 /* divide 3rd value by 6 by multiplying with magic number */
6346 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
6347 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6348 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
6349 assert(instr->dest.ssa.num_components == 3);
6350 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
6351 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
6352 emit_extract_vector(ctx, tmp_dst, 0, v1),
6353 emit_extract_vector(ctx, tmp_dst, 1, v1),
6354 by_6);
6355
6356 }
6357
6358 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
6359 return;
6360 }
6361
6362 Temp tg4_compare_cube_wa64 = Temp();
6363
6364 if (tg4_integer_workarounds) {
6365 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
6366 tex->operands[0] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6367 tex->operands[1] = Operand(resource);
6368 tex->dim = dim;
6369 tex->dmask = 0x3;
6370 tex->da = da;
6371 Temp size = bld.tmp(v2);
6372 tex->definitions[0] = Definition(size);
6373 tex->can_reorder = true;
6374 ctx->block->instructions.emplace_back(std::move(tex));
6375 emit_split_vector(ctx, size, size.size());
6376
6377 Temp half_texel[2];
6378 for (unsigned i = 0; i < 2; i++) {
6379 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
6380 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
6381 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
6382 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
6383 }
6384
6385 Temp orig_coords[2] = {
6386 emit_extract_vector(ctx, coords, 0, v1),
6387 emit_extract_vector(ctx, coords, 1, v1)};
6388 Temp new_coords[2] = {
6389 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[0], half_texel[0]),
6390 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[1], half_texel[1])
6391 };
6392
6393 if (tg4_integer_cube_workaround) {
6394 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
6395 Temp desc[resource.size()];
6396 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
6397 Format::PSEUDO, 1, resource.size())};
6398 split->operands[0] = Operand(resource);
6399 for (unsigned i = 0; i < resource.size(); i++) {
6400 desc[i] = bld.tmp(s1);
6401 split->definitions[i] = Definition(desc[i]);
6402 }
6403 ctx->block->instructions.emplace_back(std::move(split));
6404
6405 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
6406 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
6407 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
6408
6409 Temp nfmt;
6410 if (stype == GLSL_TYPE_UINT) {
6411 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
6412 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
6413 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
6414 bld.scc(compare_cube_wa));
6415 } else {
6416 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
6417 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
6418 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
6419 bld.scc(compare_cube_wa));
6420 }
6421 tg4_compare_cube_wa64 = as_divergent_bool(ctx, compare_cube_wa, true);
6422 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
6423
6424 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
6425 Operand((uint32_t)C_008F14_NUM_FORMAT));
6426 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
6427
6428 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6429 Format::PSEUDO, resource.size(), 1)};
6430 for (unsigned i = 0; i < resource.size(); i++)
6431 vec->operands[i] = Operand(desc[i]);
6432 resource = bld.tmp(resource.regClass());
6433 vec->definitions[0] = Definition(resource);
6434 ctx->block->instructions.emplace_back(std::move(vec));
6435
6436 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
6437 new_coords[0], orig_coords[0], tg4_compare_cube_wa64);
6438 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
6439 new_coords[1], orig_coords[1], tg4_compare_cube_wa64);
6440 }
6441
6442 if (coords.size() == 3) {
6443 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3),
6444 new_coords[0], new_coords[1],
6445 emit_extract_vector(ctx, coords, 2, v1));
6446 } else {
6447 assert(coords.size() == 2);
6448 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2),
6449 new_coords[0], new_coords[1]);
6450 }
6451 }
6452
6453 if (!(has_ddx && has_ddy) && !has_lod && !level_zero &&
6454 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
6455 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
6456 coords = emit_wqm(ctx, coords, bld.tmp(coords.regClass()), true);
6457
6458 std::vector<Operand> args;
6459 if (has_offset)
6460 args.emplace_back(Operand(offset));
6461 if (has_bias)
6462 args.emplace_back(Operand(bias));
6463 if (has_compare)
6464 args.emplace_back(Operand(compare));
6465 if (has_derivs)
6466 args.emplace_back(Operand(derivs));
6467 args.emplace_back(Operand(coords));
6468 if (has_sample_index)
6469 args.emplace_back(Operand(sample_index));
6470 if (has_lod)
6471 args.emplace_back(lod);
6472
6473 Operand arg;
6474 if (args.size() > 1) {
6475 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
6476 unsigned size = 0;
6477 for (unsigned i = 0; i < args.size(); i++) {
6478 size += args[i].size();
6479 vec->operands[i] = args[i];
6480 }
6481 RegClass rc = RegClass(RegType::vgpr, size);
6482 Temp tmp = bld.tmp(rc);
6483 vec->definitions[0] = Definition(tmp);
6484 ctx->block->instructions.emplace_back(std::move(vec));
6485 arg = Operand(tmp);
6486 } else {
6487 assert(args[0].isTemp());
6488 arg = Operand(as_vgpr(ctx, args[0].getTemp()));
6489 }
6490
6491 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
6492 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
6493
6494 assert(coords.size() == 1);
6495 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
6496 aco_opcode op;
6497 switch (last_bit) {
6498 case 1:
6499 op = aco_opcode::buffer_load_format_x; break;
6500 case 2:
6501 op = aco_opcode::buffer_load_format_xy; break;
6502 case 3:
6503 op = aco_opcode::buffer_load_format_xyz; break;
6504 case 4:
6505 op = aco_opcode::buffer_load_format_xyzw; break;
6506 default:
6507 unreachable("Tex instruction loads more than 4 components.");
6508 }
6509
6510 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
6511 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
6512 tmp_dst = dst;
6513 else
6514 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
6515
6516 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
6517 mubuf->operands[0] = Operand(coords);
6518 mubuf->operands[1] = Operand(resource);
6519 mubuf->operands[2] = Operand((uint32_t) 0);
6520 mubuf->definitions[0] = Definition(tmp_dst);
6521 mubuf->idxen = true;
6522 mubuf->can_reorder = true;
6523 ctx->block->instructions.emplace_back(std::move(mubuf));
6524
6525 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
6526 return;
6527 }
6528
6529
6530 if (instr->op == nir_texop_txf ||
6531 instr->op == nir_texop_txf_ms ||
6532 instr->op == nir_texop_samples_identical) {
6533 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
6534 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 2, 1));
6535 tex->operands[0] = Operand(arg);
6536 tex->operands[1] = Operand(resource);
6537 tex->dim = dim;
6538 tex->dmask = dmask;
6539 tex->unrm = true;
6540 tex->da = da;
6541 tex->definitions[0] = Definition(tmp_dst);
6542 tex->can_reorder = true;
6543 ctx->block->instructions.emplace_back(std::move(tex));
6544
6545 if (instr->op == nir_texop_samples_identical) {
6546 assert(dmask == 1 && dst.regClass() == v1);
6547 assert(dst.id() != tmp_dst.id());
6548
6549 Temp tmp = bld.tmp(s2);
6550 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
6551 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
6552
6553 } else {
6554 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
6555 }
6556 return;
6557 }
6558
6559 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
6560 aco_opcode opcode = aco_opcode::image_sample;
6561 if (has_offset) { /* image_sample_*_o */
6562 if (has_compare) {
6563 opcode = aco_opcode::image_sample_c_o;
6564 if (has_derivs)
6565 opcode = aco_opcode::image_sample_c_d_o;
6566 if (has_bias)
6567 opcode = aco_opcode::image_sample_c_b_o;
6568 if (level_zero)
6569 opcode = aco_opcode::image_sample_c_lz_o;
6570 if (has_lod)
6571 opcode = aco_opcode::image_sample_c_l_o;
6572 } else {
6573 opcode = aco_opcode::image_sample_o;
6574 if (has_derivs)
6575 opcode = aco_opcode::image_sample_d_o;
6576 if (has_bias)
6577 opcode = aco_opcode::image_sample_b_o;
6578 if (level_zero)
6579 opcode = aco_opcode::image_sample_lz_o;
6580 if (has_lod)
6581 opcode = aco_opcode::image_sample_l_o;
6582 }
6583 } else { /* no offset */
6584 if (has_compare) {
6585 opcode = aco_opcode::image_sample_c;
6586 if (has_derivs)
6587 opcode = aco_opcode::image_sample_c_d;
6588 if (has_bias)
6589 opcode = aco_opcode::image_sample_c_b;
6590 if (level_zero)
6591 opcode = aco_opcode::image_sample_c_lz;
6592 if (has_lod)
6593 opcode = aco_opcode::image_sample_c_l;
6594 } else {
6595 opcode = aco_opcode::image_sample;
6596 if (has_derivs)
6597 opcode = aco_opcode::image_sample_d;
6598 if (has_bias)
6599 opcode = aco_opcode::image_sample_b;
6600 if (level_zero)
6601 opcode = aco_opcode::image_sample_lz;
6602 if (has_lod)
6603 opcode = aco_opcode::image_sample_l;
6604 }
6605 }
6606
6607 if (instr->op == nir_texop_tg4) {
6608 if (has_offset) {
6609 opcode = aco_opcode::image_gather4_lz_o;
6610 if (has_compare)
6611 opcode = aco_opcode::image_gather4_c_lz_o;
6612 } else {
6613 opcode = aco_opcode::image_gather4_lz;
6614 if (has_compare)
6615 opcode = aco_opcode::image_gather4_c_lz;
6616 }
6617 } else if (instr->op == nir_texop_lod) {
6618 opcode = aco_opcode::image_get_lod;
6619 }
6620
6621 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
6622 tex->operands[0] = arg;
6623 tex->operands[1] = Operand(resource);
6624 tex->operands[2] = Operand(sampler);
6625 tex->dim = dim;
6626 tex->dmask = dmask;
6627 tex->da = da;
6628 tex->definitions[0] = Definition(tmp_dst);
6629 tex->can_reorder = true;
6630 ctx->block->instructions.emplace_back(std::move(tex));
6631
6632 if (tg4_integer_cube_workaround) {
6633 assert(tmp_dst.id() != dst.id());
6634 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
6635
6636 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
6637 Temp val[4];
6638 for (unsigned i = 0; i < dst.size(); i++) {
6639 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
6640 Temp cvt_val;
6641 if (stype == GLSL_TYPE_UINT)
6642 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
6643 else
6644 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
6645 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
6646 }
6647 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
6648 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
6649 val[0], val[1], val[2], val[3]);
6650 }
6651 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
6652 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
6653
6654 }
6655
6656
6657 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
6658 {
6659 Temp tmp = get_ssa_temp(ctx, ssa);
6660 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
6661 return Operand(tmp.regClass());
6662 else
6663 return Operand(tmp);
6664 }
6665
6666 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
6667 {
6668 aco_ptr<Pseudo_instruction> phi;
6669 unsigned num_src = exec_list_length(&instr->srcs);
6670 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6671
6672 aco_opcode opcode = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index] ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
6673
6674 std::map<unsigned, nir_ssa_def*> phi_src;
6675 bool all_undef = true;
6676 nir_foreach_phi_src(src, instr) {
6677 phi_src[src->pred->index] = src->src.ssa;
6678 if (src->src.ssa->parent_instr->type != nir_instr_type_ssa_undef)
6679 all_undef = false;
6680 }
6681 if (all_undef) {
6682 Builder bld(ctx->program, ctx->block);
6683 if (dst.regClass() == s1) {
6684 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
6685 } else if (dst.regClass() == v1) {
6686 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
6687 } else {
6688 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
6689 for (unsigned i = 0; i < dst.size(); i++)
6690 vec->operands[i] = Operand(0u);
6691 vec->definitions[0] = Definition(dst);
6692 ctx->block->instructions.emplace_back(std::move(vec));
6693 }
6694 return;
6695 }
6696
6697 /* try to scalarize vector phis */
6698 if (dst.size() > 1) {
6699 // TODO: scalarize linear phis on divergent ifs
6700 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
6701 std::array<Temp, 4> new_vec;
6702 for (std::pair<const unsigned, nir_ssa_def*>& pair : phi_src) {
6703 Operand src = get_phi_operand(ctx, pair.second);
6704 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end()) {
6705 can_scalarize = false;
6706 break;
6707 }
6708 }
6709 if (can_scalarize) {
6710 unsigned num_components = instr->dest.ssa.num_components;
6711 assert(dst.size() % num_components == 0);
6712 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
6713
6714 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
6715 for (unsigned k = 0; k < num_components; k++) {
6716 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_src, 1));
6717 std::map<unsigned, nir_ssa_def*>::iterator it = phi_src.begin();
6718 for (unsigned i = 0; i < num_src; i++) {
6719 Operand src = get_phi_operand(ctx, it->second);
6720 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
6721 ++it;
6722 }
6723 Temp phi_dst = {ctx->program->allocateId(), rc};
6724 phi->definitions[0] = Definition(phi_dst);
6725 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
6726 new_vec[k] = phi_dst;
6727 vec->operands[k] = Operand(phi_dst);
6728 }
6729 vec->definitions[0] = Definition(dst);
6730 ctx->block->instructions.emplace_back(std::move(vec));
6731 ctx->allocated_vec.emplace(dst.id(), new_vec);
6732 return;
6733 }
6734 }
6735
6736 unsigned extra_src = 0;
6737 if (opcode == aco_opcode::p_linear_phi && (ctx->block->kind & block_kind_loop_exit) &&
6738 ctx->program->blocks[ctx->block->index-2].kind & block_kind_continue_or_break) {
6739 extra_src++;
6740 }
6741
6742 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_src + extra_src, 1));
6743
6744 /* if we have a linear phi on a divergent if, we know that one src is undef */
6745 if (opcode == aco_opcode::p_linear_phi && ctx->block->kind & block_kind_merge) {
6746 assert(extra_src == 0);
6747 Block* block;
6748 /* we place the phi either in the invert-block or in the current block */
6749 if (phi_src.begin()->second->parent_instr->type != nir_instr_type_ssa_undef) {
6750 assert((++phi_src.begin())->second->parent_instr->type == nir_instr_type_ssa_undef);
6751 Block& linear_else = ctx->program->blocks[ctx->block->linear_preds[1]];
6752 block = &ctx->program->blocks[linear_else.linear_preds[0]];
6753 assert(block->kind & block_kind_invert);
6754 phi->operands[0] = get_phi_operand(ctx, phi_src.begin()->second);
6755 } else {
6756 assert((++phi_src.begin())->second->parent_instr->type != nir_instr_type_ssa_undef);
6757 block = ctx->block;
6758 phi->operands[0] = get_phi_operand(ctx, (++phi_src.begin())->second);
6759 }
6760 phi->operands[1] = Operand(dst.regClass());
6761 phi->definitions[0] = Definition(dst);
6762 block->instructions.emplace(block->instructions.begin(), std::move(phi));
6763 return;
6764 }
6765
6766 std::map<unsigned, nir_ssa_def*>::iterator it = phi_src.begin();
6767 for (unsigned i = 0; i < num_src; i++) {
6768 phi->operands[i] = get_phi_operand(ctx, it->second);
6769 ++it;
6770 }
6771 for (unsigned i = 0; i < extra_src; i++)
6772 phi->operands[num_src + i] = Operand(dst.regClass());
6773 phi->definitions[0] = Definition(dst);
6774 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
6775 }
6776
6777
6778 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
6779 {
6780 Temp dst = get_ssa_temp(ctx, &instr->def);
6781
6782 assert(dst.type() == RegType::sgpr);
6783
6784 if (dst.size() == 1) {
6785 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
6786 } else {
6787 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
6788 for (unsigned i = 0; i < dst.size(); i++)
6789 vec->operands[i] = Operand(0u);
6790 vec->definitions[0] = Definition(dst);
6791 ctx->block->instructions.emplace_back(std::move(vec));
6792 }
6793 }
6794
6795 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
6796 {
6797 Builder bld(ctx->program, ctx->block);
6798 Block *logical_target;
6799 append_logical_end(ctx->block);
6800 unsigned idx = ctx->block->index;
6801
6802 switch (instr->type) {
6803 case nir_jump_break:
6804 logical_target = ctx->cf_info.parent_loop.exit;
6805 add_logical_edge(idx, logical_target);
6806 ctx->block->kind |= block_kind_break;
6807
6808 if (!ctx->cf_info.parent_if.is_divergent &&
6809 !ctx->cf_info.parent_loop.has_divergent_continue) {
6810 /* uniform break - directly jump out of the loop */
6811 ctx->block->kind |= block_kind_uniform;
6812 ctx->cf_info.has_branch = true;
6813 bld.branch(aco_opcode::p_branch);
6814 add_linear_edge(idx, logical_target);
6815 return;
6816 }
6817 ctx->cf_info.parent_loop.has_divergent_branch = true;
6818 break;
6819 case nir_jump_continue:
6820 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
6821 add_logical_edge(idx, logical_target);
6822 ctx->block->kind |= block_kind_continue;
6823
6824 if (ctx->cf_info.parent_if.is_divergent) {
6825 /* for potential uniform breaks after this continue,
6826 we must ensure that they are handled correctly */
6827 ctx->cf_info.parent_loop.has_divergent_continue = true;
6828 ctx->cf_info.parent_loop.has_divergent_branch = true;
6829 } else {
6830 /* uniform continue - directly jump to the loop header */
6831 ctx->block->kind |= block_kind_uniform;
6832 ctx->cf_info.has_branch = true;
6833 bld.branch(aco_opcode::p_branch);
6834 add_linear_edge(idx, logical_target);
6835 return;
6836 }
6837 break;
6838 default:
6839 fprintf(stderr, "Unknown NIR jump instr: ");
6840 nir_print_instr(&instr->instr, stderr);
6841 fprintf(stderr, "\n");
6842 abort();
6843 }
6844
6845 /* remove critical edges from linear CFG */
6846 bld.branch(aco_opcode::p_branch);
6847 Block* break_block = ctx->program->create_and_insert_block();
6848 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
6849 break_block->kind |= block_kind_uniform;
6850 add_linear_edge(idx, break_block);
6851 /* the loop_header pointer might be invalidated by this point */
6852 if (instr->type == nir_jump_continue)
6853 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
6854 add_linear_edge(break_block->index, logical_target);
6855 bld.reset(break_block);
6856 bld.branch(aco_opcode::p_branch);
6857
6858 Block* continue_block = ctx->program->create_and_insert_block();
6859 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
6860 add_linear_edge(idx, continue_block);
6861 append_logical_start(continue_block);
6862 ctx->block = continue_block;
6863 return;
6864 }
6865
6866 void visit_block(isel_context *ctx, nir_block *block)
6867 {
6868 nir_foreach_instr(instr, block) {
6869 switch (instr->type) {
6870 case nir_instr_type_alu:
6871 visit_alu_instr(ctx, nir_instr_as_alu(instr));
6872 break;
6873 case nir_instr_type_load_const:
6874 visit_load_const(ctx, nir_instr_as_load_const(instr));
6875 break;
6876 case nir_instr_type_intrinsic:
6877 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
6878 break;
6879 case nir_instr_type_tex:
6880 visit_tex(ctx, nir_instr_as_tex(instr));
6881 break;
6882 case nir_instr_type_phi:
6883 visit_phi(ctx, nir_instr_as_phi(instr));
6884 break;
6885 case nir_instr_type_ssa_undef:
6886 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
6887 break;
6888 case nir_instr_type_deref:
6889 break;
6890 case nir_instr_type_jump:
6891 visit_jump(ctx, nir_instr_as_jump(instr));
6892 break;
6893 default:
6894 fprintf(stderr, "Unknown NIR instr type: ");
6895 nir_print_instr(instr, stderr);
6896 fprintf(stderr, "\n");
6897 //abort();
6898 }
6899 }
6900 }
6901
6902
6903
6904 static void visit_loop(isel_context *ctx, nir_loop *loop)
6905 {
6906 append_logical_end(ctx->block);
6907 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
6908 Builder bld(ctx->program, ctx->block);
6909 bld.branch(aco_opcode::p_branch);
6910 unsigned loop_preheader_idx = ctx->block->index;
6911
6912 Block loop_exit = Block();
6913 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
6914 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
6915
6916 Block* loop_header = ctx->program->create_and_insert_block();
6917 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
6918 loop_header->kind |= block_kind_loop_header;
6919 add_edge(loop_preheader_idx, loop_header);
6920 ctx->block = loop_header;
6921
6922 /* emit loop body */
6923 unsigned loop_header_idx = loop_header->index;
6924 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
6925 append_logical_start(ctx->block);
6926 visit_cf_list(ctx, &loop->body);
6927
6928 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
6929 if (!ctx->cf_info.has_branch) {
6930 append_logical_end(ctx->block);
6931 if (ctx->cf_info.exec_potentially_empty) {
6932 /* Discards can result in code running with an empty exec mask.
6933 * This would result in divergent breaks not ever being taken. As a
6934 * workaround, break the loop when the loop mask is empty instead of
6935 * always continuing. */
6936 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
6937
6938 /* create "loop_almost_exit" to avoid critical edges */
6939 unsigned block_idx = ctx->block->index;
6940 Block *loop_almost_exit = ctx->program->create_and_insert_block();
6941 loop_almost_exit->loop_nest_depth = ctx->cf_info.loop_nest_depth;
6942 loop_almost_exit->kind = block_kind_uniform;
6943 bld.reset(loop_almost_exit);
6944 bld.branch(aco_opcode::p_branch);
6945
6946 add_linear_edge(block_idx, loop_almost_exit);
6947 add_linear_edge(loop_almost_exit->index, &loop_exit);
6948
6949 ctx->block = &ctx->program->blocks[block_idx];
6950 } else {
6951 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
6952 }
6953 if (!ctx->cf_info.parent_loop.has_divergent_branch)
6954 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
6955 else
6956 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
6957 bld.reset(ctx->block);
6958 bld.branch(aco_opcode::p_branch);
6959 }
6960
6961 /* fixup phis in loop header from unreachable blocks */
6962 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
6963 bool linear = ctx->cf_info.has_branch;
6964 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
6965 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
6966 if ((logical && instr->opcode == aco_opcode::p_phi) ||
6967 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
6968 /* the last operand should be the one that needs to be removed */
6969 instr->operands.pop_back();
6970 } else if (!is_phi(instr)) {
6971 break;
6972 }
6973 }
6974 }
6975
6976 ctx->cf_info.has_branch = false;
6977
6978 // TODO: if the loop has not a single exit, we must add one °°
6979 /* emit loop successor block */
6980 ctx->block = ctx->program->insert_block(std::move(loop_exit));
6981 append_logical_start(ctx->block);
6982
6983 #if 0
6984 // TODO: check if it is beneficial to not branch on continues
6985 /* trim linear phis in loop header */
6986 for (auto&& instr : loop_entry->instructions) {
6987 if (instr->opcode == aco_opcode::p_linear_phi) {
6988 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
6989 new_phi->definitions[0] = instr->definitions[0];
6990 for (unsigned i = 0; i < new_phi->operands.size(); i++)
6991 new_phi->operands[i] = instr->operands[i];
6992 /* check that the remaining operands are all the same */
6993 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
6994 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
6995 instr.swap(new_phi);
6996 } else if (instr->opcode == aco_opcode::p_phi) {
6997 continue;
6998 } else {
6999 break;
7000 }
7001 }
7002 #endif
7003 }
7004
7005 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
7006 {
7007 ic->cond = cond;
7008
7009 append_logical_end(ctx->block);
7010 ctx->block->kind |= block_kind_branch;
7011
7012 /* branch to linear then block */
7013 assert(cond.regClass() == s2);
7014 aco_ptr<Pseudo_branch_instruction> branch;
7015 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
7016 branch->operands[0] = Operand(cond);
7017 ctx->block->instructions.push_back(std::move(branch));
7018
7019 ic->BB_if_idx = ctx->block->index;
7020 ic->BB_invert = Block();
7021 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7022 /* Invert blocks are intentionally not marked as top level because they
7023 * are not part of the logical cfg. */
7024 ic->BB_invert.kind |= block_kind_invert;
7025 ic->BB_endif = Block();
7026 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7027 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
7028
7029 ic->exec_potentially_empty_old = ctx->cf_info.exec_potentially_empty;
7030 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
7031 ctx->cf_info.parent_if.is_divergent = true;
7032 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
7033
7034 /** emit logical then block */
7035 Block* BB_then_logical = ctx->program->create_and_insert_block();
7036 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7037 add_edge(ic->BB_if_idx, BB_then_logical);
7038 ctx->block = BB_then_logical;
7039 append_logical_start(BB_then_logical);
7040 }
7041
7042 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
7043 {
7044 Block *BB_then_logical = ctx->block;
7045 append_logical_end(BB_then_logical);
7046 /* branch from logical then block to invert block */
7047 aco_ptr<Pseudo_branch_instruction> branch;
7048 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7049 BB_then_logical->instructions.emplace_back(std::move(branch));
7050 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
7051 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7052 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
7053 BB_then_logical->kind |= block_kind_uniform;
7054 assert(!ctx->cf_info.has_branch);
7055 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
7056 ctx->cf_info.parent_loop.has_divergent_branch = false;
7057
7058 /** emit linear then block */
7059 Block* BB_then_linear = ctx->program->create_and_insert_block();
7060 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7061 BB_then_linear->kind |= block_kind_uniform;
7062 add_linear_edge(ic->BB_if_idx, BB_then_linear);
7063 /* branch from linear then block to invert block */
7064 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7065 BB_then_linear->instructions.emplace_back(std::move(branch));
7066 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
7067
7068 /** emit invert merge block */
7069 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
7070 ic->invert_idx = ctx->block->index;
7071
7072 /* branch to linear else block (skip else) */
7073 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
7074 branch->operands[0] = Operand(ic->cond);
7075 ctx->block->instructions.push_back(std::move(branch));
7076
7077 ic->exec_potentially_empty_old |= ctx->cf_info.exec_potentially_empty;
7078 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
7079
7080 /** emit logical else block */
7081 Block* BB_else_logical = ctx->program->create_and_insert_block();
7082 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7083 add_logical_edge(ic->BB_if_idx, BB_else_logical);
7084 add_linear_edge(ic->invert_idx, BB_else_logical);
7085 ctx->block = BB_else_logical;
7086 append_logical_start(BB_else_logical);
7087 }
7088
7089 static void end_divergent_if(isel_context *ctx, if_context *ic)
7090 {
7091 Block *BB_else_logical = ctx->block;
7092 append_logical_end(BB_else_logical);
7093
7094 /* branch from logical else block to endif block */
7095 aco_ptr<Pseudo_branch_instruction> branch;
7096 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7097 BB_else_logical->instructions.emplace_back(std::move(branch));
7098 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
7099 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7100 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
7101 BB_else_logical->kind |= block_kind_uniform;
7102
7103 assert(!ctx->cf_info.has_branch);
7104 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
7105
7106
7107 /** emit linear else block */
7108 Block* BB_else_linear = ctx->program->create_and_insert_block();
7109 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7110 BB_else_linear->kind |= block_kind_uniform;
7111 add_linear_edge(ic->invert_idx, BB_else_linear);
7112
7113 /* branch from linear else block to endif block */
7114 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7115 BB_else_linear->instructions.emplace_back(std::move(branch));
7116 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
7117
7118
7119 /** emit endif merge block */
7120 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
7121 append_logical_start(ctx->block);
7122
7123
7124 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
7125 ctx->cf_info.exec_potentially_empty |= ic->exec_potentially_empty_old;
7126 /* uniform control flow never has an empty exec-mask */
7127 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
7128 ctx->cf_info.exec_potentially_empty = false;
7129 }
7130
7131 static void visit_if(isel_context *ctx, nir_if *if_stmt)
7132 {
7133 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
7134 Builder bld(ctx->program, ctx->block);
7135 aco_ptr<Pseudo_branch_instruction> branch;
7136
7137 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
7138 /**
7139 * Uniform conditionals are represented in the following way*) :
7140 *
7141 * The linear and logical CFG:
7142 * BB_IF
7143 * / \
7144 * BB_THEN (logical) BB_ELSE (logical)
7145 * \ /
7146 * BB_ENDIF
7147 *
7148 * *) Exceptions may be due to break and continue statements within loops
7149 * If a break/continue happens within uniform control flow, it branches
7150 * to the loop exit/entry block. Otherwise, it branches to the next
7151 * merge block.
7152 **/
7153 append_logical_end(ctx->block);
7154 ctx->block->kind |= block_kind_uniform;
7155
7156 /* emit branch */
7157 if (cond.regClass() == s2) {
7158 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
7159 cond = as_uniform_bool(ctx, cond);
7160 }
7161 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
7162 branch->operands[0] = Operand(cond);
7163 branch->operands[0].setFixed(scc);
7164 ctx->block->instructions.emplace_back(std::move(branch));
7165
7166 unsigned BB_if_idx = ctx->block->index;
7167 Block BB_endif = Block();
7168 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7169 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
7170
7171 /** emit then block */
7172 Block* BB_then = ctx->program->create_and_insert_block();
7173 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7174 add_edge(BB_if_idx, BB_then);
7175 append_logical_start(BB_then);
7176 ctx->block = BB_then;
7177 visit_cf_list(ctx, &if_stmt->then_list);
7178 BB_then = ctx->block;
7179 bool then_branch = ctx->cf_info.has_branch;
7180 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
7181
7182 if (!then_branch) {
7183 append_logical_end(BB_then);
7184 /* branch from then block to endif block */
7185 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7186 BB_then->instructions.emplace_back(std::move(branch));
7187 add_linear_edge(BB_then->index, &BB_endif);
7188 if (!then_branch_divergent)
7189 add_logical_edge(BB_then->index, &BB_endif);
7190 BB_then->kind |= block_kind_uniform;
7191 }
7192
7193 ctx->cf_info.has_branch = false;
7194 ctx->cf_info.parent_loop.has_divergent_branch = false;
7195
7196 /** emit else block */
7197 Block* BB_else = ctx->program->create_and_insert_block();
7198 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7199 add_edge(BB_if_idx, BB_else);
7200 append_logical_start(BB_else);
7201 ctx->block = BB_else;
7202 visit_cf_list(ctx, &if_stmt->else_list);
7203 BB_else = ctx->block;
7204
7205 if (!ctx->cf_info.has_branch) {
7206 append_logical_end(BB_else);
7207 /* branch from then block to endif block */
7208 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7209 BB_else->instructions.emplace_back(std::move(branch));
7210 add_linear_edge(BB_else->index, &BB_endif);
7211 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7212 add_logical_edge(BB_else->index, &BB_endif);
7213 BB_else->kind |= block_kind_uniform;
7214 }
7215
7216 ctx->cf_info.has_branch &= then_branch;
7217 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
7218
7219 /** emit endif merge block */
7220 if (!ctx->cf_info.has_branch) {
7221 ctx->block = ctx->program->insert_block(std::move(BB_endif));
7222 append_logical_start(ctx->block);
7223 }
7224 } else { /* non-uniform condition */
7225 /**
7226 * To maintain a logical and linear CFG without critical edges,
7227 * non-uniform conditionals are represented in the following way*) :
7228 *
7229 * The linear CFG:
7230 * BB_IF
7231 * / \
7232 * BB_THEN (logical) BB_THEN (linear)
7233 * \ /
7234 * BB_INVERT (linear)
7235 * / \
7236 * BB_ELSE (logical) BB_ELSE (linear)
7237 * \ /
7238 * BB_ENDIF
7239 *
7240 * The logical CFG:
7241 * BB_IF
7242 * / \
7243 * BB_THEN (logical) BB_ELSE (logical)
7244 * \ /
7245 * BB_ENDIF
7246 *
7247 * *) Exceptions may be due to break and continue statements within loops
7248 **/
7249
7250 if_context ic;
7251
7252 begin_divergent_if_then(ctx, &ic, cond);
7253 visit_cf_list(ctx, &if_stmt->then_list);
7254
7255 begin_divergent_if_else(ctx, &ic);
7256 visit_cf_list(ctx, &if_stmt->else_list);
7257
7258 end_divergent_if(ctx, &ic);
7259 }
7260 }
7261
7262 static void visit_cf_list(isel_context *ctx,
7263 struct exec_list *list)
7264 {
7265 foreach_list_typed(nir_cf_node, node, node, list) {
7266 switch (node->type) {
7267 case nir_cf_node_block:
7268 visit_block(ctx, nir_cf_node_as_block(node));
7269 break;
7270 case nir_cf_node_if:
7271 visit_if(ctx, nir_cf_node_as_if(node));
7272 break;
7273 case nir_cf_node_loop:
7274 visit_loop(ctx, nir_cf_node_as_loop(node));
7275 break;
7276 default:
7277 unreachable("unimplemented cf list type");
7278 }
7279 }
7280 }
7281
7282 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
7283 {
7284 int offset = ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
7285 uint64_t mask = ctx->vs_output.mask[slot];
7286 if (!is_pos && !mask)
7287 return;
7288 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
7289 return;
7290 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
7291 exp->enabled_mask = mask;
7292 for (unsigned i = 0; i < 4; ++i) {
7293 if (mask & (1 << i))
7294 exp->operands[i] = Operand(ctx->vs_output.outputs[slot][i]);
7295 else
7296 exp->operands[i] = Operand(v1);
7297 }
7298 exp->valid_mask = false;
7299 exp->done = false;
7300 exp->compressed = false;
7301 if (is_pos)
7302 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
7303 else
7304 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
7305 ctx->block->instructions.emplace_back(std::move(exp));
7306 }
7307
7308 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
7309 {
7310 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
7311 exp->enabled_mask = 0;
7312 for (unsigned i = 0; i < 4; ++i)
7313 exp->operands[i] = Operand(v1);
7314 if (ctx->vs_output.mask[VARYING_SLOT_PSIZ]) {
7315 exp->operands[0] = Operand(ctx->vs_output.outputs[VARYING_SLOT_PSIZ][0]);
7316 exp->enabled_mask |= 0x1;
7317 }
7318 if (ctx->vs_output.mask[VARYING_SLOT_LAYER]) {
7319 exp->operands[2] = Operand(ctx->vs_output.outputs[VARYING_SLOT_LAYER][0]);
7320 exp->enabled_mask |= 0x4;
7321 }
7322 if (ctx->vs_output.mask[VARYING_SLOT_VIEWPORT]) {
7323 if (ctx->options->chip_class < GFX9) {
7324 exp->operands[3] = Operand(ctx->vs_output.outputs[VARYING_SLOT_VIEWPORT][0]);
7325 exp->enabled_mask |= 0x8;
7326 } else {
7327 Builder bld(ctx->program, ctx->block);
7328
7329 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
7330 Operand(ctx->vs_output.outputs[VARYING_SLOT_VIEWPORT][0]));
7331 if (exp->operands[2].isTemp())
7332 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
7333
7334 exp->operands[2] = Operand(out);
7335 exp->enabled_mask |= 0x4;
7336 }
7337 }
7338 exp->valid_mask = false;
7339 exp->done = false;
7340 exp->compressed = false;
7341 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
7342 ctx->block->instructions.emplace_back(std::move(exp));
7343 }
7344
7345 static void create_vs_exports(isel_context *ctx)
7346 {
7347 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
7348
7349 if (outinfo->export_prim_id) {
7350 ctx->vs_output.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
7351 ctx->vs_output.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = ctx->vs_prim_id;
7352 }
7353
7354 if (ctx->options->key.has_multiview_view_index) {
7355 ctx->vs_output.mask[VARYING_SLOT_LAYER] |= 0x1;
7356 ctx->vs_output.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, ctx->view_index);
7357 }
7358
7359 /* the order these position exports are created is important */
7360 int next_pos = 0;
7361 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
7362 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
7363 export_vs_psiz_layer_viewport(ctx, &next_pos);
7364 }
7365 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
7366 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
7367 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
7368 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
7369
7370 if (ctx->options->key.vs_common_out.export_clip_dists) {
7371 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
7372 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
7373 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
7374 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
7375 }
7376
7377 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
7378 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
7379 i != VARYING_SLOT_PRIMITIVE_ID)
7380 continue;
7381
7382 export_vs_varying(ctx, i, false, NULL);
7383 }
7384 }
7385
7386 static void emit_stream_output(isel_context *ctx,
7387 Temp const *so_buffers,
7388 Temp const *so_write_offset,
7389 const struct radv_stream_output *output)
7390 {
7391 unsigned num_comps = util_bitcount(output->component_mask);
7392 unsigned loc = output->location;
7393 unsigned buf = output->buffer;
7394 unsigned offset = output->offset;
7395
7396 assert(num_comps && num_comps <= 4);
7397 if (!num_comps || num_comps > 4)
7398 return;
7399
7400 unsigned start = ffs(output->component_mask) - 1;
7401
7402 Temp out[4];
7403 bool all_undef = true;
7404 assert(ctx->stage == vertex_vs);
7405 for (unsigned i = 0; i < num_comps; i++) {
7406 out[i] = ctx->vs_output.outputs[loc][start + i];
7407 all_undef = all_undef && !out[i].id();
7408 }
7409 if (all_undef)
7410 return;
7411
7412 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_comps)};
7413 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_comps, 1)};
7414 for (unsigned i = 0; i < num_comps; ++i)
7415 vec->operands[i] = (ctx->vs_output.mask[loc] & 1 << i) ? Operand(out[i]) : Operand(0u);
7416 vec->definitions[0] = Definition(write_data);
7417 ctx->block->instructions.emplace_back(std::move(vec));
7418
7419 aco_opcode opcode;
7420 switch (num_comps) {
7421 case 1:
7422 opcode = aco_opcode::buffer_store_dword;
7423 break;
7424 case 2:
7425 opcode = aco_opcode::buffer_store_dwordx2;
7426 break;
7427 case 3:
7428 opcode = aco_opcode::buffer_store_dwordx3;
7429 break;
7430 case 4:
7431 opcode = aco_opcode::buffer_store_dwordx4;
7432 break;
7433 }
7434
7435 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
7436 store->operands[0] = Operand(so_write_offset[buf]);
7437 store->operands[1] = Operand(so_buffers[buf]);
7438 store->operands[2] = Operand((uint32_t) 0);
7439 store->operands[3] = Operand(write_data);
7440 if (offset > 4095) {
7441 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
7442 Builder bld(ctx->program, ctx->block);
7443 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
7444 } else {
7445 store->offset = offset;
7446 }
7447 store->offen = true;
7448 store->glc = true;
7449 store->dlc = false;
7450 store->slc = true;
7451 store->can_reorder = true;
7452 ctx->block->instructions.emplace_back(std::move(store));
7453 }
7454
7455 static void emit_streamout(isel_context *ctx, unsigned stream)
7456 {
7457 Builder bld(ctx->program, ctx->block);
7458
7459 Temp so_buffers[4];
7460 Temp buf_ptr = convert_pointer_to_64_bit(ctx, ctx->streamout_buffers);
7461 for (unsigned i = 0; i < 4; i++) {
7462 unsigned stride = ctx->program->info->so.strides[i];
7463 if (!stride)
7464 continue;
7465
7466 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, Operand(i * 16u));
7467 }
7468
7469 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7470 ctx->streamout_config, Operand(0x70010u));
7471
7472 Temp tid = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), Operand((uint32_t) -1),
7473 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
7474
7475 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(s2), so_vtx_count, tid);
7476
7477 if_context ic;
7478 begin_divergent_if_then(ctx, &ic, can_emit);
7479
7480 bld.reset(ctx->block);
7481
7482 Temp so_write_index = bld.vadd32(bld.def(v1), ctx->streamout_write_idx, tid);
7483
7484 Temp so_write_offset[4];
7485
7486 for (unsigned i = 0; i < 4; i++) {
7487 unsigned stride = ctx->program->info->so.strides[i];
7488 if (!stride)
7489 continue;
7490
7491 if (stride == 1) {
7492 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
7493 ctx->streamout_write_idx, ctx->streamout_offset[i]);
7494 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
7495
7496 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
7497 } else {
7498 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
7499 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u), ctx->streamout_offset[i]);
7500 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
7501 }
7502 }
7503
7504 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
7505 struct radv_stream_output *output =
7506 &ctx->program->info->so.outputs[i];
7507 if (stream != output->stream)
7508 continue;
7509
7510 emit_stream_output(ctx, so_buffers, so_write_offset, output);
7511 }
7512
7513 begin_divergent_if_else(ctx, &ic);
7514 end_divergent_if(ctx, &ic);
7515 }
7516
7517 } /* end namespace */
7518
7519 void handle_bc_optimize(isel_context *ctx)
7520 {
7521 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
7522 Builder bld(ctx->program, ctx->block);
7523 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
7524 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
7525 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
7526 if (uses_center && uses_centroid) {
7527 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(s2)), ctx->prim_mask, Operand(0u));
7528
7529 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
7530 for (unsigned i = 0; i < 2; i++) {
7531 Temp new_coord = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7532 ctx->fs_inputs[fs_input::persp_centroid_p1 + i],
7533 ctx->fs_inputs[fs_input::persp_center_p1 + i],
7534 sel);
7535 ctx->fs_inputs[fs_input::persp_centroid_p1 + i] = new_coord;
7536 }
7537 }
7538
7539 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
7540 for (unsigned i = 0; i < 2; i++) {
7541 Temp new_coord = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7542 ctx->fs_inputs[fs_input::linear_centroid_p1 + i],
7543 ctx->fs_inputs[fs_input::linear_center_p1 + i],
7544 sel);
7545 ctx->fs_inputs[fs_input::linear_centroid_p1 + i] = new_coord;
7546 }
7547 }
7548 }
7549 }
7550
7551 void select_program(Program *program,
7552 unsigned shader_count,
7553 struct nir_shader *const *shaders,
7554 ac_shader_config* config,
7555 struct radv_shader_info *info,
7556 struct radv_nir_compiler_options *options)
7557 {
7558 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, info, options);
7559
7560 for (unsigned i = 0; i < shader_count; i++) {
7561 nir_shader *nir = shaders[i];
7562 init_context(&ctx, nir);
7563
7564 if (!i) {
7565 add_startpgm(&ctx); /* needs to be after init_context() for FS */
7566 append_logical_start(ctx.block);
7567 }
7568
7569 if_context ic;
7570 if (shader_count >= 2) {
7571 Builder bld(ctx.program, ctx.block);
7572 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), ctx.merged_wave_info, Operand((8u << 16) | (i * 8u)));
7573 Temp thread_id = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), Operand((uint32_t) -1),
7574 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
7575 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(s2)), count, thread_id);
7576
7577 begin_divergent_if_then(&ctx, &ic, cond);
7578 }
7579
7580 if (i) {
7581 Builder bld(ctx.program, ctx.block);
7582 bld.barrier(aco_opcode::p_memory_barrier_shared); //TODO: different barriers are needed for different stages
7583 bld.sopp(aco_opcode::s_barrier);
7584 }
7585
7586 if (ctx.stage == fragment_fs)
7587 handle_bc_optimize(&ctx);
7588
7589 nir_function_impl *func = nir_shader_get_entrypoint(nir);
7590 visit_cf_list(&ctx, &func->body);
7591
7592 if (ctx.program->info->so.num_outputs/*&& !ctx->is_gs_copy_shader */)
7593 emit_streamout(&ctx, 0);
7594
7595 if (ctx.stage == vertex_vs)
7596 create_vs_exports(&ctx);
7597
7598 if (shader_count >= 2) {
7599 begin_divergent_if_else(&ctx, &ic);
7600 end_divergent_if(&ctx, &ic);
7601 }
7602
7603 ralloc_free(ctx.divergent_vals);
7604 }
7605
7606 append_logical_end(ctx.block);
7607 ctx.block->kind |= block_kind_uniform;
7608 Builder bld(ctx.program, ctx.block);
7609 if (ctx.program->wb_smem_l1_on_end)
7610 bld.smem(aco_opcode::s_dcache_wb, false);
7611 bld.sopp(aco_opcode::s_endpgm);
7612
7613 /* cleanup CFG */
7614 for (Block& BB : program->blocks) {
7615 for (unsigned idx : BB.linear_preds)
7616 program->blocks[idx].linear_succs.emplace_back(BB.index);
7617 for (unsigned idx : BB.logical_preds)
7618 program->blocks[idx].logical_succs.emplace_back(BB.index);
7619 }
7620 }
7621 }