aco: implement VK_AMD_shader_explicit_vertex_parameter
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_old;
83
84 unsigned BB_if_idx;
85 unsigned invert_idx;
86 bool then_branch_divergent;
87 Block BB_invert;
88 Block BB_endif;
89 };
90
91 static void visit_cf_list(struct isel_context *ctx,
92 struct exec_list *list);
93
94 static void add_logical_edge(unsigned pred_idx, Block *succ)
95 {
96 succ->logical_preds.emplace_back(pred_idx);
97 }
98
99
100 static void add_linear_edge(unsigned pred_idx, Block *succ)
101 {
102 succ->linear_preds.emplace_back(pred_idx);
103 }
104
105 static void add_edge(unsigned pred_idx, Block *succ)
106 {
107 add_logical_edge(pred_idx, succ);
108 add_linear_edge(pred_idx, succ);
109 }
110
111 static void append_logical_start(Block *b)
112 {
113 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
114 }
115
116 static void append_logical_end(Block *b)
117 {
118 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
119 }
120
121 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
122 {
123 assert(ctx->allocated[def->index].id());
124 return ctx->allocated[def->index];
125 }
126
127 Temp emit_mbcnt(isel_context *ctx, Definition dst,
128 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
129 {
130 Builder bld(ctx->program, ctx->block);
131 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
132 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
133
134 if (ctx->program->wave_size == 32) {
135 return thread_id_lo;
136 } else {
137 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
138 return thread_id_hi;
139 }
140 }
141
142 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
143 {
144 Builder bld(ctx->program, ctx->block);
145
146 if (!dst.id())
147 dst = bld.tmp(src.regClass());
148
149 assert(src.size() == dst.size());
150
151 if (ctx->stage != fragment_fs) {
152 if (!dst.id())
153 return src;
154
155 bld.copy(Definition(dst), src);
156 return dst;
157 }
158
159 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
160 ctx->program->needs_wqm |= program_needs_wqm;
161 return dst;
162 }
163
164 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
165 {
166 if (index.regClass() == s1)
167 return bld.readlane(bld.def(s1), data, index);
168
169 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
170
171 /* Currently not implemented on GFX6-7 */
172 assert(ctx->options->chip_class >= GFX8);
173
174 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
175 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
176 }
177
178 /* GFX10, wave64 mode:
179 * The bpermute instruction is limited to half-wave operation, which means that it can't
180 * properly support subgroup shuffle like older generations (or wave32 mode), so we
181 * emulate it here.
182 */
183 if (!ctx->has_gfx10_wave64_bpermute) {
184 ctx->has_gfx10_wave64_bpermute = true;
185 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
186 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
187 }
188
189 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
190 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
191 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
192 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
193
194 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
195 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
196 }
197
198 Temp as_vgpr(isel_context *ctx, Temp val)
199 {
200 if (val.type() == RegType::sgpr) {
201 Builder bld(ctx->program, ctx->block);
202 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
203 }
204 assert(val.type() == RegType::vgpr);
205 return val;
206 }
207
208 //assumes a != 0xffffffff
209 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
210 {
211 assert(b != 0);
212 Builder bld(ctx->program, ctx->block);
213
214 if (util_is_power_of_two_or_zero(b)) {
215 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
216 return;
217 }
218
219 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
220
221 assert(info.multiplier <= 0xffffffff);
222
223 bool pre_shift = info.pre_shift != 0;
224 bool increment = info.increment != 0;
225 bool multiply = true;
226 bool post_shift = info.post_shift != 0;
227
228 if (!pre_shift && !increment && !multiply && !post_shift) {
229 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
230 return;
231 }
232
233 Temp pre_shift_dst = a;
234 if (pre_shift) {
235 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
236 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
237 }
238
239 Temp increment_dst = pre_shift_dst;
240 if (increment) {
241 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
242 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
243 }
244
245 Temp multiply_dst = increment_dst;
246 if (multiply) {
247 multiply_dst = post_shift ? bld.tmp(v1) : dst;
248 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
249 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
250 }
251
252 if (post_shift) {
253 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
254 }
255 }
256
257 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
258 {
259 Builder bld(ctx->program, ctx->block);
260 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
261 }
262
263
264 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
265 {
266 /* no need to extract the whole vector */
267 if (src.regClass() == dst_rc) {
268 assert(idx == 0);
269 return src;
270 }
271 assert(src.size() > idx);
272 Builder bld(ctx->program, ctx->block);
273 auto it = ctx->allocated_vec.find(src.id());
274 /* the size check needs to be early because elements other than 0 may be garbage */
275 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
276 if (it->second[idx].regClass() == dst_rc) {
277 return it->second[idx];
278 } else {
279 assert(dst_rc.size() == it->second[idx].regClass().size());
280 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
281 return bld.copy(bld.def(dst_rc), it->second[idx]);
282 }
283 }
284
285 if (src.size() == dst_rc.size()) {
286 assert(idx == 0);
287 return bld.copy(bld.def(dst_rc), src);
288 } else {
289 Temp dst = bld.tmp(dst_rc);
290 emit_extract_vector(ctx, src, idx, dst);
291 return dst;
292 }
293 }
294
295 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
296 {
297 if (num_components == 1)
298 return;
299 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
300 return;
301 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
302 split->operands[0] = Operand(vec_src);
303 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
304 for (unsigned i = 0; i < num_components; i++) {
305 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
306 split->definitions[i] = Definition(elems[i]);
307 }
308 ctx->block->instructions.emplace_back(std::move(split));
309 ctx->allocated_vec.emplace(vec_src.id(), elems);
310 }
311
312 /* This vector expansion uses a mask to determine which elements in the new vector
313 * come from the original vector. The other elements are undefined. */
314 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
315 {
316 emit_split_vector(ctx, vec_src, util_bitcount(mask));
317
318 if (vec_src == dst)
319 return;
320
321 Builder bld(ctx->program, ctx->block);
322 if (num_components == 1) {
323 if (dst.type() == RegType::sgpr)
324 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
325 else
326 bld.copy(Definition(dst), vec_src);
327 return;
328 }
329
330 unsigned component_size = dst.size() / num_components;
331 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
332
333 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
334 vec->definitions[0] = Definition(dst);
335 unsigned k = 0;
336 for (unsigned i = 0; i < num_components; i++) {
337 if (mask & (1 << i)) {
338 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
339 if (dst.type() == RegType::sgpr)
340 src = bld.as_uniform(src);
341 vec->operands[i] = Operand(src);
342 } else {
343 vec->operands[i] = Operand(0u);
344 }
345 elems[i] = vec->operands[i].getTemp();
346 }
347 ctx->block->instructions.emplace_back(std::move(vec));
348 ctx->allocated_vec.emplace(dst.id(), elems);
349 }
350
351 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
352 {
353 Builder bld(ctx->program, ctx->block);
354 if (!dst.id())
355 dst = bld.tmp(bld.lm);
356
357 assert(val.regClass() == s1);
358 assert(dst.regClass() == bld.lm);
359
360 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
361 }
362
363 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
364 {
365 Builder bld(ctx->program, ctx->block);
366 if (!dst.id())
367 dst = bld.tmp(s1);
368
369 assert(val.regClass() == bld.lm);
370 assert(dst.regClass() == s1);
371
372 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
373 Temp tmp = bld.tmp(s1);
374 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
375 return emit_wqm(ctx, tmp, dst);
376 }
377
378 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
379 {
380 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
381 return get_ssa_temp(ctx, src.src.ssa);
382
383 if (src.src.ssa->num_components == size) {
384 bool identity_swizzle = true;
385 for (unsigned i = 0; identity_swizzle && i < size; i++) {
386 if (src.swizzle[i] != i)
387 identity_swizzle = false;
388 }
389 if (identity_swizzle)
390 return get_ssa_temp(ctx, src.src.ssa);
391 }
392
393 Temp vec = get_ssa_temp(ctx, src.src.ssa);
394 unsigned elem_size = vec.size() / src.src.ssa->num_components;
395 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
396 assert(vec.size() % elem_size == 0);
397
398 RegClass elem_rc = RegClass(vec.type(), elem_size);
399 if (size == 1) {
400 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
401 } else {
402 assert(size <= 4);
403 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
404 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
405 for (unsigned i = 0; i < size; ++i) {
406 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
407 vec_instr->operands[i] = Operand{elems[i]};
408 }
409 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
410 vec_instr->definitions[0] = Definition(dst);
411 ctx->block->instructions.emplace_back(std::move(vec_instr));
412 ctx->allocated_vec.emplace(dst.id(), elems);
413 return dst;
414 }
415 }
416
417 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
418 {
419 if (ptr.size() == 2)
420 return ptr;
421 Builder bld(ctx->program, ctx->block);
422 if (ptr.type() == RegType::vgpr)
423 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
424 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
425 ptr, Operand((unsigned)ctx->options->address32_hi));
426 }
427
428 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
429 {
430 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
431 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
432 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
433 sop2->definitions[0] = Definition(dst);
434 if (writes_scc)
435 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
436 ctx->block->instructions.emplace_back(std::move(sop2));
437 }
438
439 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
440 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
441 {
442 Builder bld(ctx->program, ctx->block);
443 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
444 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
445 if (src1.type() == RegType::sgpr) {
446 if (commutative && src0.type() == RegType::vgpr) {
447 Temp t = src0;
448 src0 = src1;
449 src1 = t;
450 } else if (src0.type() == RegType::vgpr &&
451 op != aco_opcode::v_madmk_f32 &&
452 op != aco_opcode::v_madak_f32 &&
453 op != aco_opcode::v_madmk_f16 &&
454 op != aco_opcode::v_madak_f16) {
455 /* If the instruction is not commutative, we emit a VOP3A instruction */
456 bld.vop2_e64(op, Definition(dst), src0, src1);
457 return;
458 } else {
459 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
460 }
461 }
462
463 if (flush_denorms && ctx->program->chip_class < GFX9) {
464 assert(dst.size() == 1);
465 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
466 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
467 } else {
468 bld.vop2(op, Definition(dst), src0, src1);
469 }
470 }
471
472 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
473 bool flush_denorms = false)
474 {
475 Temp src0 = get_alu_src(ctx, instr->src[0]);
476 Temp src1 = get_alu_src(ctx, instr->src[1]);
477 Temp src2 = get_alu_src(ctx, instr->src[2]);
478
479 /* ensure that the instruction has at most 1 sgpr operand
480 * The optimizer will inline constants for us */
481 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
482 src0 = as_vgpr(ctx, src0);
483 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
484 src1 = as_vgpr(ctx, src1);
485 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
486 src2 = as_vgpr(ctx, src2);
487
488 Builder bld(ctx->program, ctx->block);
489 if (flush_denorms && ctx->program->chip_class < GFX9) {
490 assert(dst.size() == 1);
491 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
492 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
493 } else {
494 bld.vop3(op, Definition(dst), src0, src1, src2);
495 }
496 }
497
498 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
499 {
500 Builder bld(ctx->program, ctx->block);
501 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
502 }
503
504 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
505 {
506 Temp src0 = get_alu_src(ctx, instr->src[0]);
507 Temp src1 = get_alu_src(ctx, instr->src[1]);
508 assert(src0.size() == src1.size());
509
510 aco_ptr<Instruction> vopc;
511 if (src1.type() == RegType::sgpr) {
512 if (src0.type() == RegType::vgpr) {
513 /* to swap the operands, we might also have to change the opcode */
514 switch (op) {
515 case aco_opcode::v_cmp_lt_f32:
516 op = aco_opcode::v_cmp_gt_f32;
517 break;
518 case aco_opcode::v_cmp_ge_f32:
519 op = aco_opcode::v_cmp_le_f32;
520 break;
521 case aco_opcode::v_cmp_lt_i32:
522 op = aco_opcode::v_cmp_gt_i32;
523 break;
524 case aco_opcode::v_cmp_ge_i32:
525 op = aco_opcode::v_cmp_le_i32;
526 break;
527 case aco_opcode::v_cmp_lt_u32:
528 op = aco_opcode::v_cmp_gt_u32;
529 break;
530 case aco_opcode::v_cmp_ge_u32:
531 op = aco_opcode::v_cmp_le_u32;
532 break;
533 case aco_opcode::v_cmp_lt_f64:
534 op = aco_opcode::v_cmp_gt_f64;
535 break;
536 case aco_opcode::v_cmp_ge_f64:
537 op = aco_opcode::v_cmp_le_f64;
538 break;
539 case aco_opcode::v_cmp_lt_i64:
540 op = aco_opcode::v_cmp_gt_i64;
541 break;
542 case aco_opcode::v_cmp_ge_i64:
543 op = aco_opcode::v_cmp_le_i64;
544 break;
545 case aco_opcode::v_cmp_lt_u64:
546 op = aco_opcode::v_cmp_gt_u64;
547 break;
548 case aco_opcode::v_cmp_ge_u64:
549 op = aco_opcode::v_cmp_le_u64;
550 break;
551 default: /* eq and ne are commutative */
552 break;
553 }
554 Temp t = src0;
555 src0 = src1;
556 src1 = t;
557 } else {
558 src1 = as_vgpr(ctx, src1);
559 }
560 }
561
562 Builder bld(ctx->program, ctx->block);
563 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
564 }
565
566 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
567 {
568 Temp src0 = get_alu_src(ctx, instr->src[0]);
569 Temp src1 = get_alu_src(ctx, instr->src[1]);
570 Builder bld(ctx->program, ctx->block);
571
572 assert(dst.regClass() == bld.lm);
573 assert(src0.type() == RegType::sgpr);
574 assert(src1.type() == RegType::sgpr);
575 assert(src0.regClass() == src1.regClass());
576
577 /* Emit the SALU comparison instruction */
578 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
579 /* Turn the result into a per-lane bool */
580 bool_to_vector_condition(ctx, cmp, dst);
581 }
582
583 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
584 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
585 {
586 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
587 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
588 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
589 bool use_valu = s_op == aco_opcode::num_opcodes ||
590 divergent_vals ||
591 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
592 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
593 aco_opcode op = use_valu ? v_op : s_op;
594 assert(op != aco_opcode::num_opcodes);
595 assert(dst.regClass() == ctx->program->lane_mask);
596
597 if (use_valu)
598 emit_vopc_instruction(ctx, instr, op, dst);
599 else
600 emit_sopc_instruction(ctx, instr, op, dst);
601 }
602
603 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
604 {
605 Builder bld(ctx->program, ctx->block);
606 Temp src0 = get_alu_src(ctx, instr->src[0]);
607 Temp src1 = get_alu_src(ctx, instr->src[1]);
608
609 assert(dst.regClass() == bld.lm);
610 assert(src0.regClass() == bld.lm);
611 assert(src1.regClass() == bld.lm);
612
613 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
614 }
615
616 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
617 {
618 Builder bld(ctx->program, ctx->block);
619 Temp cond = get_alu_src(ctx, instr->src[0]);
620 Temp then = get_alu_src(ctx, instr->src[1]);
621 Temp els = get_alu_src(ctx, instr->src[2]);
622
623 assert(cond.regClass() == bld.lm);
624
625 if (dst.type() == RegType::vgpr) {
626 aco_ptr<Instruction> bcsel;
627 if (dst.size() == 1) {
628 then = as_vgpr(ctx, then);
629 els = as_vgpr(ctx, els);
630
631 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
632 } else if (dst.size() == 2) {
633 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
634 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
635 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
636 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
637
638 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
639 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
640
641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
642 } else {
643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
644 nir_print_instr(&instr->instr, stderr);
645 fprintf(stderr, "\n");
646 }
647 return;
648 }
649
650 if (instr->dest.dest.ssa.bit_size == 1) {
651 assert(dst.regClass() == bld.lm);
652 assert(then.regClass() == bld.lm);
653 assert(els.regClass() == bld.lm);
654 }
655
656 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
657 if (dst.regClass() == s1 || dst.regClass() == s2) {
658 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
659 assert(dst.size() == then.size());
660 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
661 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
662 } else {
663 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
664 nir_print_instr(&instr->instr, stderr);
665 fprintf(stderr, "\n");
666 }
667 return;
668 }
669
670 /* divergent boolean bcsel
671 * this implements bcsel on bools: dst = s0 ? s1 : s2
672 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
673 assert(instr->dest.dest.ssa.bit_size == 1);
674
675 if (cond.id() != then.id())
676 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
677
678 if (cond.id() == els.id())
679 bld.sop1(Builder::s_mov, Definition(dst), then);
680 else
681 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
682 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
683 }
684
685 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
686 aco_opcode op, uint32_t undo)
687 {
688 /* multiply by 16777216 to handle denormals */
689 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
690 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
691 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
692 scaled = bld.vop1(op, bld.def(v1), scaled);
693 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
694
695 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
696
697 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
698 }
699
700 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
701 {
702 if (ctx->block->fp_mode.denorm32 == 0) {
703 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
704 return;
705 }
706
707 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
708 }
709
710 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
711 {
712 if (ctx->block->fp_mode.denorm32 == 0) {
713 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
714 return;
715 }
716
717 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
718 }
719
720 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
721 {
722 if (ctx->block->fp_mode.denorm32 == 0) {
723 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
724 return;
725 }
726
727 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
728 }
729
730 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
731 {
732 if (ctx->block->fp_mode.denorm32 == 0) {
733 bld.vop1(aco_opcode::v_log_f32, dst, val);
734 return;
735 }
736
737 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
738 }
739
740 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
741 {
742 if (ctx->options->chip_class >= GFX7)
743 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
744
745 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
746 /* TODO: create more efficient code! */
747 if (val.type() == RegType::sgpr)
748 val = as_vgpr(ctx, val);
749
750 /* Split the input value. */
751 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
752 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
753
754 /* Extract the exponent and compute the unbiased value. */
755 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
756
757 /* Extract the fractional part. */
758 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
759 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
760
761 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
762 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
763
764 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
765 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
766 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
767 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
768 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
769
770 /* Get the sign bit. */
771 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
772
773 /* Decide the operation to apply depending on the unbiased exponent. */
774 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
775 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
776 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
777 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
778 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
779 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
780
781 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
782 }
783
784 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
785 {
786 if (ctx->options->chip_class >= GFX7)
787 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
788
789 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
790 Temp src0 = as_vgpr(ctx, val);
791
792 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
793 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
794
795 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
796 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
797 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
798
799 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
800 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
801 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
802 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
803
804 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
805 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
806
807 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
808
809 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
810 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
811
812 return add->definitions[0].getTemp();
813 }
814
815 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
816 {
817 if (!instr->dest.dest.is_ssa) {
818 fprintf(stderr, "nir alu dst not in ssa: ");
819 nir_print_instr(&instr->instr, stderr);
820 fprintf(stderr, "\n");
821 abort();
822 }
823 Builder bld(ctx->program, ctx->block);
824 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
825 switch(instr->op) {
826 case nir_op_vec2:
827 case nir_op_vec3:
828 case nir_op_vec4: {
829 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
830 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
831 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
832 elems[i] = get_alu_src(ctx, instr->src[i]);
833 vec->operands[i] = Operand{elems[i]};
834 }
835 vec->definitions[0] = Definition(dst);
836 ctx->block->instructions.emplace_back(std::move(vec));
837 ctx->allocated_vec.emplace(dst.id(), elems);
838 break;
839 }
840 case nir_op_mov: {
841 Temp src = get_alu_src(ctx, instr->src[0]);
842 aco_ptr<Instruction> mov;
843 if (dst.type() == RegType::sgpr) {
844 if (src.type() == RegType::vgpr)
845 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
846 else if (src.regClass() == s1)
847 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
848 else if (src.regClass() == s2)
849 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
850 else
851 unreachable("wrong src register class for nir_op_imov");
852 } else if (dst.regClass() == v1) {
853 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
854 } else if (dst.regClass() == v2) {
855 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
856 } else {
857 nir_print_instr(&instr->instr, stderr);
858 unreachable("Should have been lowered to scalar.");
859 }
860 break;
861 }
862 case nir_op_inot: {
863 Temp src = get_alu_src(ctx, instr->src[0]);
864 if (instr->dest.dest.ssa.bit_size == 1) {
865 assert(src.regClass() == bld.lm);
866 assert(dst.regClass() == bld.lm);
867 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
868 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
869 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
870 } else if (dst.regClass() == v1) {
871 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
872 } else if (dst.type() == RegType::sgpr) {
873 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
874 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
875 } else {
876 fprintf(stderr, "Unimplemented NIR instr bit size: ");
877 nir_print_instr(&instr->instr, stderr);
878 fprintf(stderr, "\n");
879 }
880 break;
881 }
882 case nir_op_ineg: {
883 Temp src = get_alu_src(ctx, instr->src[0]);
884 if (dst.regClass() == v1) {
885 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
886 } else if (dst.regClass() == s1) {
887 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
888 } else if (dst.size() == 2) {
889 Temp src0 = bld.tmp(dst.type(), 1);
890 Temp src1 = bld.tmp(dst.type(), 1);
891 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
892
893 if (dst.regClass() == s2) {
894 Temp carry = bld.tmp(s1);
895 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
896 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
897 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
898 } else {
899 Temp lower = bld.tmp(v1);
900 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
901 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
902 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
903 }
904 } else {
905 fprintf(stderr, "Unimplemented NIR instr bit size: ");
906 nir_print_instr(&instr->instr, stderr);
907 fprintf(stderr, "\n");
908 }
909 break;
910 }
911 case nir_op_iabs: {
912 if (dst.regClass() == s1) {
913 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
914 } else if (dst.regClass() == v1) {
915 Temp src = get_alu_src(ctx, instr->src[0]);
916 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
917 } else {
918 fprintf(stderr, "Unimplemented NIR instr bit size: ");
919 nir_print_instr(&instr->instr, stderr);
920 fprintf(stderr, "\n");
921 }
922 break;
923 }
924 case nir_op_isign: {
925 Temp src = get_alu_src(ctx, instr->src[0]);
926 if (dst.regClass() == s1) {
927 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
928 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
929 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
930 } else if (dst.regClass() == s2) {
931 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
932 Temp neqz;
933 if (ctx->program->chip_class >= GFX8)
934 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
935 else
936 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
937 /* SCC gets zero-extended to 64 bit */
938 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
939 } else if (dst.regClass() == v1) {
940 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
941 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
942 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
943 } else if (dst.regClass() == v2) {
944 Temp upper = emit_extract_vector(ctx, src, 1, v1);
945 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
946 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
947 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
948 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
949 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
950 } else {
951 fprintf(stderr, "Unimplemented NIR instr bit size: ");
952 nir_print_instr(&instr->instr, stderr);
953 fprintf(stderr, "\n");
954 }
955 break;
956 }
957 case nir_op_imax: {
958 if (dst.regClass() == v1) {
959 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
960 } else if (dst.regClass() == s1) {
961 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
962 } else {
963 fprintf(stderr, "Unimplemented NIR instr bit size: ");
964 nir_print_instr(&instr->instr, stderr);
965 fprintf(stderr, "\n");
966 }
967 break;
968 }
969 case nir_op_umax: {
970 if (dst.regClass() == v1) {
971 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
972 } else if (dst.regClass() == s1) {
973 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
974 } else {
975 fprintf(stderr, "Unimplemented NIR instr bit size: ");
976 nir_print_instr(&instr->instr, stderr);
977 fprintf(stderr, "\n");
978 }
979 break;
980 }
981 case nir_op_imin: {
982 if (dst.regClass() == v1) {
983 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
984 } else if (dst.regClass() == s1) {
985 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
986 } else {
987 fprintf(stderr, "Unimplemented NIR instr bit size: ");
988 nir_print_instr(&instr->instr, stderr);
989 fprintf(stderr, "\n");
990 }
991 break;
992 }
993 case nir_op_umin: {
994 if (dst.regClass() == v1) {
995 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
996 } else if (dst.regClass() == s1) {
997 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
998 } else {
999 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1000 nir_print_instr(&instr->instr, stderr);
1001 fprintf(stderr, "\n");
1002 }
1003 break;
1004 }
1005 case nir_op_ior: {
1006 if (instr->dest.dest.ssa.bit_size == 1) {
1007 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1008 } else if (dst.regClass() == v1) {
1009 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1010 } else if (dst.regClass() == s1) {
1011 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1012 } else if (dst.regClass() == s2) {
1013 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1014 } else {
1015 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1016 nir_print_instr(&instr->instr, stderr);
1017 fprintf(stderr, "\n");
1018 }
1019 break;
1020 }
1021 case nir_op_iand: {
1022 if (instr->dest.dest.ssa.bit_size == 1) {
1023 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1024 } else if (dst.regClass() == v1) {
1025 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1026 } else if (dst.regClass() == s1) {
1027 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1028 } else if (dst.regClass() == s2) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1030 } else {
1031 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1032 nir_print_instr(&instr->instr, stderr);
1033 fprintf(stderr, "\n");
1034 }
1035 break;
1036 }
1037 case nir_op_ixor: {
1038 if (instr->dest.dest.ssa.bit_size == 1) {
1039 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1040 } else if (dst.regClass() == v1) {
1041 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1042 } else if (dst.regClass() == s1) {
1043 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1044 } else if (dst.regClass() == s2) {
1045 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1046 } else {
1047 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1048 nir_print_instr(&instr->instr, stderr);
1049 fprintf(stderr, "\n");
1050 }
1051 break;
1052 }
1053 case nir_op_ushr: {
1054 if (dst.regClass() == v1) {
1055 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1056 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1057 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1058 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1059 } else if (dst.regClass() == v2) {
1060 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1061 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1062 } else if (dst.regClass() == s2) {
1063 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1064 } else if (dst.regClass() == s1) {
1065 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1066 } else {
1067 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1068 nir_print_instr(&instr->instr, stderr);
1069 fprintf(stderr, "\n");
1070 }
1071 break;
1072 }
1073 case nir_op_ishl: {
1074 if (dst.regClass() == v1) {
1075 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1076 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1077 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1078 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1079 } else if (dst.regClass() == v2) {
1080 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1081 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1082 } else if (dst.regClass() == s1) {
1083 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1084 } else if (dst.regClass() == s2) {
1085 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1086 } else {
1087 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1088 nir_print_instr(&instr->instr, stderr);
1089 fprintf(stderr, "\n");
1090 }
1091 break;
1092 }
1093 case nir_op_ishr: {
1094 if (dst.regClass() == v1) {
1095 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1096 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1097 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1098 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1099 } else if (dst.regClass() == v2) {
1100 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1101 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1102 } else if (dst.regClass() == s1) {
1103 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1104 } else if (dst.regClass() == s2) {
1105 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1106 } else {
1107 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1108 nir_print_instr(&instr->instr, stderr);
1109 fprintf(stderr, "\n");
1110 }
1111 break;
1112 }
1113 case nir_op_find_lsb: {
1114 Temp src = get_alu_src(ctx, instr->src[0]);
1115 if (src.regClass() == s1) {
1116 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1117 } else if (src.regClass() == v1) {
1118 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1119 } else if (src.regClass() == s2) {
1120 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1121 } else {
1122 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1123 nir_print_instr(&instr->instr, stderr);
1124 fprintf(stderr, "\n");
1125 }
1126 break;
1127 }
1128 case nir_op_ufind_msb:
1129 case nir_op_ifind_msb: {
1130 Temp src = get_alu_src(ctx, instr->src[0]);
1131 if (src.regClass() == s1 || src.regClass() == s2) {
1132 aco_opcode op = src.regClass() == s2 ?
1133 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1134 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1135 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1136
1137 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1138 Operand(src.size() * 32u - 1u), msb_rev);
1139 Temp msb = sub.def(0).getTemp();
1140 Temp carry = sub.def(1).getTemp();
1141
1142 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1143 } else if (src.regClass() == v1) {
1144 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1145 Temp msb_rev = bld.tmp(v1);
1146 emit_vop1_instruction(ctx, instr, op, msb_rev);
1147 Temp msb = bld.tmp(v1);
1148 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1149 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1150 } else {
1151 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1152 nir_print_instr(&instr->instr, stderr);
1153 fprintf(stderr, "\n");
1154 }
1155 break;
1156 }
1157 case nir_op_bitfield_reverse: {
1158 if (dst.regClass() == s1) {
1159 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1160 } else if (dst.regClass() == v1) {
1161 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1162 } else {
1163 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1164 nir_print_instr(&instr->instr, stderr);
1165 fprintf(stderr, "\n");
1166 }
1167 break;
1168 }
1169 case nir_op_iadd: {
1170 if (dst.regClass() == s1) {
1171 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1172 break;
1173 }
1174
1175 Temp src0 = get_alu_src(ctx, instr->src[0]);
1176 Temp src1 = get_alu_src(ctx, instr->src[1]);
1177 if (dst.regClass() == v1) {
1178 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1179 break;
1180 }
1181
1182 assert(src0.size() == 2 && src1.size() == 2);
1183 Temp src00 = bld.tmp(src0.type(), 1);
1184 Temp src01 = bld.tmp(dst.type(), 1);
1185 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1186 Temp src10 = bld.tmp(src1.type(), 1);
1187 Temp src11 = bld.tmp(dst.type(), 1);
1188 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1189
1190 if (dst.regClass() == s2) {
1191 Temp carry = bld.tmp(s1);
1192 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1193 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1194 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1195 } else if (dst.regClass() == v2) {
1196 Temp dst0 = bld.tmp(v1);
1197 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1198 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1199 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1200 } else {
1201 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1202 nir_print_instr(&instr->instr, stderr);
1203 fprintf(stderr, "\n");
1204 }
1205 break;
1206 }
1207 case nir_op_uadd_sat: {
1208 Temp src0 = get_alu_src(ctx, instr->src[0]);
1209 Temp src1 = get_alu_src(ctx, instr->src[1]);
1210 if (dst.regClass() == s1) {
1211 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1212 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1213 src0, src1);
1214 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1215 } else if (dst.regClass() == v1) {
1216 if (ctx->options->chip_class >= GFX9) {
1217 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1218 add->operands[0] = Operand(src0);
1219 add->operands[1] = Operand(src1);
1220 add->definitions[0] = Definition(dst);
1221 add->clamp = 1;
1222 ctx->block->instructions.emplace_back(std::move(add));
1223 } else {
1224 if (src1.regClass() != v1)
1225 std::swap(src0, src1);
1226 assert(src1.regClass() == v1);
1227 Temp tmp = bld.tmp(v1);
1228 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1229 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1230 }
1231 } else {
1232 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1233 nir_print_instr(&instr->instr, stderr);
1234 fprintf(stderr, "\n");
1235 }
1236 break;
1237 }
1238 case nir_op_uadd_carry: {
1239 Temp src0 = get_alu_src(ctx, instr->src[0]);
1240 Temp src1 = get_alu_src(ctx, instr->src[1]);
1241 if (dst.regClass() == s1) {
1242 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1243 break;
1244 }
1245 if (dst.regClass() == v1) {
1246 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1247 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1248 break;
1249 }
1250
1251 Temp src00 = bld.tmp(src0.type(), 1);
1252 Temp src01 = bld.tmp(dst.type(), 1);
1253 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1254 Temp src10 = bld.tmp(src1.type(), 1);
1255 Temp src11 = bld.tmp(dst.type(), 1);
1256 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1257 if (dst.regClass() == s2) {
1258 Temp carry = bld.tmp(s1);
1259 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1260 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1261 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1262 } else if (dst.regClass() == v2) {
1263 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1264 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1265 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1266 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1267 } else {
1268 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1269 nir_print_instr(&instr->instr, stderr);
1270 fprintf(stderr, "\n");
1271 }
1272 break;
1273 }
1274 case nir_op_isub: {
1275 if (dst.regClass() == s1) {
1276 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1277 break;
1278 }
1279
1280 Temp src0 = get_alu_src(ctx, instr->src[0]);
1281 Temp src1 = get_alu_src(ctx, instr->src[1]);
1282 if (dst.regClass() == v1) {
1283 bld.vsub32(Definition(dst), src0, src1);
1284 break;
1285 }
1286
1287 Temp src00 = bld.tmp(src0.type(), 1);
1288 Temp src01 = bld.tmp(dst.type(), 1);
1289 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1290 Temp src10 = bld.tmp(src1.type(), 1);
1291 Temp src11 = bld.tmp(dst.type(), 1);
1292 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1293 if (dst.regClass() == s2) {
1294 Temp carry = bld.tmp(s1);
1295 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1296 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1297 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1298 } else if (dst.regClass() == v2) {
1299 Temp lower = bld.tmp(v1);
1300 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1301 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1302 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1303 } else {
1304 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1305 nir_print_instr(&instr->instr, stderr);
1306 fprintf(stderr, "\n");
1307 }
1308 break;
1309 }
1310 case nir_op_usub_borrow: {
1311 Temp src0 = get_alu_src(ctx, instr->src[0]);
1312 Temp src1 = get_alu_src(ctx, instr->src[1]);
1313 if (dst.regClass() == s1) {
1314 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1315 break;
1316 } else if (dst.regClass() == v1) {
1317 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1318 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1319 break;
1320 }
1321
1322 Temp src00 = bld.tmp(src0.type(), 1);
1323 Temp src01 = bld.tmp(dst.type(), 1);
1324 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1325 Temp src10 = bld.tmp(src1.type(), 1);
1326 Temp src11 = bld.tmp(dst.type(), 1);
1327 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1328 if (dst.regClass() == s2) {
1329 Temp borrow = bld.tmp(s1);
1330 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1331 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1332 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1333 } else if (dst.regClass() == v2) {
1334 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1335 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1336 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1337 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1338 } else {
1339 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1340 nir_print_instr(&instr->instr, stderr);
1341 fprintf(stderr, "\n");
1342 }
1343 break;
1344 }
1345 case nir_op_imul: {
1346 if (dst.regClass() == v1) {
1347 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1348 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1349 } else if (dst.regClass() == s1) {
1350 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1351 } else {
1352 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1353 nir_print_instr(&instr->instr, stderr);
1354 fprintf(stderr, "\n");
1355 }
1356 break;
1357 }
1358 case nir_op_umul_high: {
1359 if (dst.regClass() == v1) {
1360 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1361 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1362 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1363 } else if (dst.regClass() == s1) {
1364 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1365 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1366 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1367 } else {
1368 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1369 nir_print_instr(&instr->instr, stderr);
1370 fprintf(stderr, "\n");
1371 }
1372 break;
1373 }
1374 case nir_op_imul_high: {
1375 if (dst.regClass() == v1) {
1376 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1377 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1378 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1379 } else if (dst.regClass() == s1) {
1380 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1381 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1382 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1383 } else {
1384 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1385 nir_print_instr(&instr->instr, stderr);
1386 fprintf(stderr, "\n");
1387 }
1388 break;
1389 }
1390 case nir_op_fmul: {
1391 if (dst.size() == 1) {
1392 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1393 } else if (dst.size() == 2) {
1394 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1395 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1396 } else {
1397 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1398 nir_print_instr(&instr->instr, stderr);
1399 fprintf(stderr, "\n");
1400 }
1401 break;
1402 }
1403 case nir_op_fadd: {
1404 if (dst.size() == 1) {
1405 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1406 } else if (dst.size() == 2) {
1407 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1408 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1409 } else {
1410 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1411 nir_print_instr(&instr->instr, stderr);
1412 fprintf(stderr, "\n");
1413 }
1414 break;
1415 }
1416 case nir_op_fsub: {
1417 Temp src0 = get_alu_src(ctx, instr->src[0]);
1418 Temp src1 = get_alu_src(ctx, instr->src[1]);
1419 if (dst.size() == 1) {
1420 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1421 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1422 else
1423 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1424 } else if (dst.size() == 2) {
1425 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1426 get_alu_src(ctx, instr->src[0]),
1427 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1428 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1429 sub->neg[1] = true;
1430 } else {
1431 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1432 nir_print_instr(&instr->instr, stderr);
1433 fprintf(stderr, "\n");
1434 }
1435 break;
1436 }
1437 case nir_op_fmax: {
1438 if (dst.size() == 1) {
1439 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1440 } else if (dst.size() == 2) {
1441 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1442 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1443 get_alu_src(ctx, instr->src[0]),
1444 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1445 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1446 } else {
1447 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1448 get_alu_src(ctx, instr->src[0]),
1449 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1450 }
1451 } else {
1452 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1453 nir_print_instr(&instr->instr, stderr);
1454 fprintf(stderr, "\n");
1455 }
1456 break;
1457 }
1458 case nir_op_fmin: {
1459 if (dst.size() == 1) {
1460 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1461 } else if (dst.size() == 2) {
1462 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1463 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1464 get_alu_src(ctx, instr->src[0]),
1465 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1466 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1467 } else {
1468 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1469 get_alu_src(ctx, instr->src[0]),
1470 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1471 }
1472 } else {
1473 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1474 nir_print_instr(&instr->instr, stderr);
1475 fprintf(stderr, "\n");
1476 }
1477 break;
1478 }
1479 case nir_op_fmax3: {
1480 if (dst.size() == 1) {
1481 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1482 } else {
1483 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1484 nir_print_instr(&instr->instr, stderr);
1485 fprintf(stderr, "\n");
1486 }
1487 break;
1488 }
1489 case nir_op_fmin3: {
1490 if (dst.size() == 1) {
1491 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1492 } else {
1493 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1494 nir_print_instr(&instr->instr, stderr);
1495 fprintf(stderr, "\n");
1496 }
1497 break;
1498 }
1499 case nir_op_fmed3: {
1500 if (dst.size() == 1) {
1501 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1502 } else {
1503 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1504 nir_print_instr(&instr->instr, stderr);
1505 fprintf(stderr, "\n");
1506 }
1507 break;
1508 }
1509 case nir_op_umax3: {
1510 if (dst.size() == 1) {
1511 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1512 } else {
1513 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1514 nir_print_instr(&instr->instr, stderr);
1515 fprintf(stderr, "\n");
1516 }
1517 break;
1518 }
1519 case nir_op_umin3: {
1520 if (dst.size() == 1) {
1521 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1522 } else {
1523 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1524 nir_print_instr(&instr->instr, stderr);
1525 fprintf(stderr, "\n");
1526 }
1527 break;
1528 }
1529 case nir_op_umed3: {
1530 if (dst.size() == 1) {
1531 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1532 } else {
1533 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1534 nir_print_instr(&instr->instr, stderr);
1535 fprintf(stderr, "\n");
1536 }
1537 break;
1538 }
1539 case nir_op_imax3: {
1540 if (dst.size() == 1) {
1541 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1542 } else {
1543 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1544 nir_print_instr(&instr->instr, stderr);
1545 fprintf(stderr, "\n");
1546 }
1547 break;
1548 }
1549 case nir_op_imin3: {
1550 if (dst.size() == 1) {
1551 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1552 } else {
1553 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1554 nir_print_instr(&instr->instr, stderr);
1555 fprintf(stderr, "\n");
1556 }
1557 break;
1558 }
1559 case nir_op_imed3: {
1560 if (dst.size() == 1) {
1561 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1562 } else {
1563 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1564 nir_print_instr(&instr->instr, stderr);
1565 fprintf(stderr, "\n");
1566 }
1567 break;
1568 }
1569 case nir_op_cube_face_coord: {
1570 Temp in = get_alu_src(ctx, instr->src[0], 3);
1571 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1572 emit_extract_vector(ctx, in, 1, v1),
1573 emit_extract_vector(ctx, in, 2, v1) };
1574 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1575 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1576 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1577 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1578 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1579 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1580 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1581 break;
1582 }
1583 case nir_op_cube_face_index: {
1584 Temp in = get_alu_src(ctx, instr->src[0], 3);
1585 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1586 emit_extract_vector(ctx, in, 1, v1),
1587 emit_extract_vector(ctx, in, 2, v1) };
1588 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1589 break;
1590 }
1591 case nir_op_bcsel: {
1592 emit_bcsel(ctx, instr, dst);
1593 break;
1594 }
1595 case nir_op_frsq: {
1596 if (dst.size() == 1) {
1597 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1598 } else if (dst.size() == 2) {
1599 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1600 } else {
1601 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1602 nir_print_instr(&instr->instr, stderr);
1603 fprintf(stderr, "\n");
1604 }
1605 break;
1606 }
1607 case nir_op_fneg: {
1608 Temp src = get_alu_src(ctx, instr->src[0]);
1609 if (dst.size() == 1) {
1610 if (ctx->block->fp_mode.must_flush_denorms32)
1611 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1612 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1613 } else if (dst.size() == 2) {
1614 if (ctx->block->fp_mode.must_flush_denorms16_64)
1615 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1616 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1617 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1618 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1619 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1620 } else {
1621 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1622 nir_print_instr(&instr->instr, stderr);
1623 fprintf(stderr, "\n");
1624 }
1625 break;
1626 }
1627 case nir_op_fabs: {
1628 Temp src = get_alu_src(ctx, instr->src[0]);
1629 if (dst.size() == 1) {
1630 if (ctx->block->fp_mode.must_flush_denorms32)
1631 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1632 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1633 } else if (dst.size() == 2) {
1634 if (ctx->block->fp_mode.must_flush_denorms16_64)
1635 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1636 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1637 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1638 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1639 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1640 } else {
1641 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1642 nir_print_instr(&instr->instr, stderr);
1643 fprintf(stderr, "\n");
1644 }
1645 break;
1646 }
1647 case nir_op_fsat: {
1648 Temp src = get_alu_src(ctx, instr->src[0]);
1649 if (dst.size() == 1) {
1650 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1651 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1652 // TODO: confirm that this holds under any circumstances
1653 } else if (dst.size() == 2) {
1654 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1655 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1656 vop3->clamp = true;
1657 } else {
1658 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1659 nir_print_instr(&instr->instr, stderr);
1660 fprintf(stderr, "\n");
1661 }
1662 break;
1663 }
1664 case nir_op_flog2: {
1665 if (dst.size() == 1) {
1666 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1667 } else {
1668 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1669 nir_print_instr(&instr->instr, stderr);
1670 fprintf(stderr, "\n");
1671 }
1672 break;
1673 }
1674 case nir_op_frcp: {
1675 if (dst.size() == 1) {
1676 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1677 } else if (dst.size() == 2) {
1678 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1679 } else {
1680 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1681 nir_print_instr(&instr->instr, stderr);
1682 fprintf(stderr, "\n");
1683 }
1684 break;
1685 }
1686 case nir_op_fexp2: {
1687 if (dst.size() == 1) {
1688 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1689 } else {
1690 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1691 nir_print_instr(&instr->instr, stderr);
1692 fprintf(stderr, "\n");
1693 }
1694 break;
1695 }
1696 case nir_op_fsqrt: {
1697 if (dst.size() == 1) {
1698 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1699 } else if (dst.size() == 2) {
1700 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1701 } else {
1702 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1703 nir_print_instr(&instr->instr, stderr);
1704 fprintf(stderr, "\n");
1705 }
1706 break;
1707 }
1708 case nir_op_ffract: {
1709 if (dst.size() == 1) {
1710 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1711 } else if (dst.size() == 2) {
1712 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1713 } else {
1714 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1715 nir_print_instr(&instr->instr, stderr);
1716 fprintf(stderr, "\n");
1717 }
1718 break;
1719 }
1720 case nir_op_ffloor: {
1721 if (dst.size() == 1) {
1722 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1723 } else if (dst.size() == 2) {
1724 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1725 } else {
1726 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1727 nir_print_instr(&instr->instr, stderr);
1728 fprintf(stderr, "\n");
1729 }
1730 break;
1731 }
1732 case nir_op_fceil: {
1733 if (dst.size() == 1) {
1734 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1735 } else if (dst.size() == 2) {
1736 if (ctx->options->chip_class >= GFX7) {
1737 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1738 } else {
1739 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1740 Temp src0 = get_alu_src(ctx, instr->src[0]);
1741
1742 /* trunc = trunc(src0)
1743 * if (src0 > 0.0 && src0 != trunc)
1744 * trunc += 1.0
1745 */
1746 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1747 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1748 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1749 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1750 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1751 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1752 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1753 }
1754 } else {
1755 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1756 nir_print_instr(&instr->instr, stderr);
1757 fprintf(stderr, "\n");
1758 }
1759 break;
1760 }
1761 case nir_op_ftrunc: {
1762 if (dst.size() == 1) {
1763 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1764 } else if (dst.size() == 2) {
1765 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1766 } else {
1767 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1768 nir_print_instr(&instr->instr, stderr);
1769 fprintf(stderr, "\n");
1770 }
1771 break;
1772 }
1773 case nir_op_fround_even: {
1774 if (dst.size() == 1) {
1775 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1776 } else if (dst.size() == 2) {
1777 if (ctx->options->chip_class >= GFX7) {
1778 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1779 } else {
1780 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1781 Temp src0 = get_alu_src(ctx, instr->src[0]);
1782
1783 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1784 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1785
1786 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1787 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1788 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1789 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1790 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1791 tmp = sub->definitions[0].getTemp();
1792
1793 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1794 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1795 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1796 Temp cond = vop3->definitions[0].getTemp();
1797
1798 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1799 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1800 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1801 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1802
1803 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1804 }
1805 } else {
1806 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1807 nir_print_instr(&instr->instr, stderr);
1808 fprintf(stderr, "\n");
1809 }
1810 break;
1811 }
1812 case nir_op_fsin:
1813 case nir_op_fcos: {
1814 Temp src = get_alu_src(ctx, instr->src[0]);
1815 aco_ptr<Instruction> norm;
1816 if (dst.size() == 1) {
1817 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1818 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1819
1820 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1821 if (ctx->options->chip_class < GFX9)
1822 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1823
1824 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1825 bld.vop1(opcode, Definition(dst), tmp);
1826 } else {
1827 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1828 nir_print_instr(&instr->instr, stderr);
1829 fprintf(stderr, "\n");
1830 }
1831 break;
1832 }
1833 case nir_op_ldexp: {
1834 if (dst.size() == 1) {
1835 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1836 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1837 get_alu_src(ctx, instr->src[1]));
1838 } else if (dst.size() == 2) {
1839 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1840 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1841 get_alu_src(ctx, instr->src[1]));
1842 } else {
1843 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1844 nir_print_instr(&instr->instr, stderr);
1845 fprintf(stderr, "\n");
1846 }
1847 break;
1848 }
1849 case nir_op_frexp_sig: {
1850 if (dst.size() == 1) {
1851 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1852 get_alu_src(ctx, instr->src[0]));
1853 } else if (dst.size() == 2) {
1854 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1855 get_alu_src(ctx, instr->src[0]));
1856 } else {
1857 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1858 nir_print_instr(&instr->instr, stderr);
1859 fprintf(stderr, "\n");
1860 }
1861 break;
1862 }
1863 case nir_op_frexp_exp: {
1864 if (instr->src[0].src.ssa->bit_size == 32) {
1865 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1866 get_alu_src(ctx, instr->src[0]));
1867 } else if (instr->src[0].src.ssa->bit_size == 64) {
1868 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1869 get_alu_src(ctx, instr->src[0]));
1870 } else {
1871 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1872 nir_print_instr(&instr->instr, stderr);
1873 fprintf(stderr, "\n");
1874 }
1875 break;
1876 }
1877 case nir_op_fsign: {
1878 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1879 if (dst.size() == 1) {
1880 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1881 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1882 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1883 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1884 } else if (dst.size() == 2) {
1885 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1886 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1887 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1888
1889 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1890 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1891 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1892
1893 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1894 } else {
1895 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1896 nir_print_instr(&instr->instr, stderr);
1897 fprintf(stderr, "\n");
1898 }
1899 break;
1900 }
1901 case nir_op_f2f32: {
1902 if (instr->src[0].src.ssa->bit_size == 64) {
1903 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1904 } else {
1905 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1906 nir_print_instr(&instr->instr, stderr);
1907 fprintf(stderr, "\n");
1908 }
1909 break;
1910 }
1911 case nir_op_f2f64: {
1912 if (instr->src[0].src.ssa->bit_size == 32) {
1913 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1914 } else {
1915 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1916 nir_print_instr(&instr->instr, stderr);
1917 fprintf(stderr, "\n");
1918 }
1919 break;
1920 }
1921 case nir_op_i2f32: {
1922 assert(dst.size() == 1);
1923 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1924 break;
1925 }
1926 case nir_op_i2f64: {
1927 if (instr->src[0].src.ssa->bit_size == 32) {
1928 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1929 } else if (instr->src[0].src.ssa->bit_size == 64) {
1930 Temp src = get_alu_src(ctx, instr->src[0]);
1931 RegClass rc = RegClass(src.type(), 1);
1932 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1933 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1934 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1935 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1936 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1937 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1938
1939 } else {
1940 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1941 nir_print_instr(&instr->instr, stderr);
1942 fprintf(stderr, "\n");
1943 }
1944 break;
1945 }
1946 case nir_op_u2f32: {
1947 assert(dst.size() == 1);
1948 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1949 break;
1950 }
1951 case nir_op_u2f64: {
1952 if (instr->src[0].src.ssa->bit_size == 32) {
1953 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1954 } else if (instr->src[0].src.ssa->bit_size == 64) {
1955 Temp src = get_alu_src(ctx, instr->src[0]);
1956 RegClass rc = RegClass(src.type(), 1);
1957 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1958 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1959 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1960 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1961 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1962 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1963 } else {
1964 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1965 nir_print_instr(&instr->instr, stderr);
1966 fprintf(stderr, "\n");
1967 }
1968 break;
1969 }
1970 case nir_op_f2i32: {
1971 Temp src = get_alu_src(ctx, instr->src[0]);
1972 if (instr->src[0].src.ssa->bit_size == 32) {
1973 if (dst.type() == RegType::vgpr)
1974 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1975 else
1976 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1977 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1978
1979 } else if (instr->src[0].src.ssa->bit_size == 64) {
1980 if (dst.type() == RegType::vgpr)
1981 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1982 else
1983 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1984 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1985
1986 } else {
1987 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1988 nir_print_instr(&instr->instr, stderr);
1989 fprintf(stderr, "\n");
1990 }
1991 break;
1992 }
1993 case nir_op_f2u32: {
1994 Temp src = get_alu_src(ctx, instr->src[0]);
1995 if (instr->src[0].src.ssa->bit_size == 32) {
1996 if (dst.type() == RegType::vgpr)
1997 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
1998 else
1999 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2000 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2001
2002 } else if (instr->src[0].src.ssa->bit_size == 64) {
2003 if (dst.type() == RegType::vgpr)
2004 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2005 else
2006 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2007 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2008
2009 } else {
2010 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2011 nir_print_instr(&instr->instr, stderr);
2012 fprintf(stderr, "\n");
2013 }
2014 break;
2015 }
2016 case nir_op_f2i64: {
2017 Temp src = get_alu_src(ctx, instr->src[0]);
2018 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2019 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2020 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2021 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2022 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2023 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2024 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2025 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2026 Temp new_exponent = bld.tmp(v1);
2027 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2028 if (ctx->program->chip_class >= GFX8)
2029 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2030 else
2031 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2032 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2033 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2034 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2035 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2036 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2037 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2038 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2039 Temp new_lower = bld.tmp(v1);
2040 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2041 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2042 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2043
2044 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2045 if (src.type() == RegType::vgpr)
2046 src = bld.as_uniform(src);
2047 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2048 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2049 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2050 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2051 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2052 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2053 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2054 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2055 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2056 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2057 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2058 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2059 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2060 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2061 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2062 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2063 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2064 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2065 Temp borrow = bld.tmp(s1);
2066 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2067 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2068 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2069
2070 } else if (instr->src[0].src.ssa->bit_size == 64) {
2071 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2072 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2073 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2074 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2075 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2076 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2077 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2078 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2079 if (dst.type() == RegType::sgpr) {
2080 lower = bld.as_uniform(lower);
2081 upper = bld.as_uniform(upper);
2082 }
2083 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2084
2085 } else {
2086 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2087 nir_print_instr(&instr->instr, stderr);
2088 fprintf(stderr, "\n");
2089 }
2090 break;
2091 }
2092 case nir_op_f2u64: {
2093 Temp src = get_alu_src(ctx, instr->src[0]);
2094 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2095 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2096 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2097 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2098 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2099 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2100 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2101 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2102 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2103 Temp new_exponent = bld.tmp(v1);
2104 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2105 if (ctx->program->chip_class >= GFX8)
2106 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2107 else
2108 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2109 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2110 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2111 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2112 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2113 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2114 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2115 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2116
2117 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2118 if (src.type() == RegType::vgpr)
2119 src = bld.as_uniform(src);
2120 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2121 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2122 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2123 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2124 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2125 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2126 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2127 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2128 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2129 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2130 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2131 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2132 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2133 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2134 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2135 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2136 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2137 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2138
2139 } else if (instr->src[0].src.ssa->bit_size == 64) {
2140 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2141 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2142 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2143 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2144 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2145 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2146 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2147 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2148 if (dst.type() == RegType::sgpr) {
2149 lower = bld.as_uniform(lower);
2150 upper = bld.as_uniform(upper);
2151 }
2152 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2153
2154 } else {
2155 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2156 nir_print_instr(&instr->instr, stderr);
2157 fprintf(stderr, "\n");
2158 }
2159 break;
2160 }
2161 case nir_op_b2f32: {
2162 Temp src = get_alu_src(ctx, instr->src[0]);
2163 assert(src.regClass() == bld.lm);
2164
2165 if (dst.regClass() == s1) {
2166 src = bool_to_scalar_condition(ctx, src);
2167 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2168 } else if (dst.regClass() == v1) {
2169 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2170 } else {
2171 unreachable("Wrong destination register class for nir_op_b2f32.");
2172 }
2173 break;
2174 }
2175 case nir_op_b2f64: {
2176 Temp src = get_alu_src(ctx, instr->src[0]);
2177 assert(src.regClass() == bld.lm);
2178
2179 if (dst.regClass() == s2) {
2180 src = bool_to_scalar_condition(ctx, src);
2181 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2182 } else if (dst.regClass() == v2) {
2183 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2184 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2185 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2186 } else {
2187 unreachable("Wrong destination register class for nir_op_b2f64.");
2188 }
2189 break;
2190 }
2191 case nir_op_i2i32: {
2192 Temp src = get_alu_src(ctx, instr->src[0]);
2193 if (instr->src[0].src.ssa->bit_size == 64) {
2194 /* we can actually just say dst = src, as it would map the lower register */
2195 emit_extract_vector(ctx, src, 0, dst);
2196 } else {
2197 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2198 nir_print_instr(&instr->instr, stderr);
2199 fprintf(stderr, "\n");
2200 }
2201 break;
2202 }
2203 case nir_op_u2u32: {
2204 Temp src = get_alu_src(ctx, instr->src[0]);
2205 if (instr->src[0].src.ssa->bit_size == 16) {
2206 if (dst.regClass() == s1) {
2207 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2208 } else {
2209 // TODO: do better with SDWA
2210 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2211 }
2212 } else if (instr->src[0].src.ssa->bit_size == 64) {
2213 /* we can actually just say dst = src, as it would map the lower register */
2214 emit_extract_vector(ctx, src, 0, dst);
2215 } else {
2216 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2217 nir_print_instr(&instr->instr, stderr);
2218 fprintf(stderr, "\n");
2219 }
2220 break;
2221 }
2222 case nir_op_i2i64: {
2223 Temp src = get_alu_src(ctx, instr->src[0]);
2224 if (src.regClass() == s1) {
2225 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2226 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2227 } else if (src.regClass() == v1) {
2228 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2229 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2230 } else {
2231 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2232 nir_print_instr(&instr->instr, stderr);
2233 fprintf(stderr, "\n");
2234 }
2235 break;
2236 }
2237 case nir_op_u2u64: {
2238 Temp src = get_alu_src(ctx, instr->src[0]);
2239 if (instr->src[0].src.ssa->bit_size == 32) {
2240 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2241 } else {
2242 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2243 nir_print_instr(&instr->instr, stderr);
2244 fprintf(stderr, "\n");
2245 }
2246 break;
2247 }
2248 case nir_op_b2i32: {
2249 Temp src = get_alu_src(ctx, instr->src[0]);
2250 assert(src.regClass() == bld.lm);
2251
2252 if (dst.regClass() == s1) {
2253 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2254 bool_to_scalar_condition(ctx, src, dst);
2255 } else if (dst.regClass() == v1) {
2256 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2257 } else {
2258 unreachable("Invalid register class for b2i32");
2259 }
2260 break;
2261 }
2262 case nir_op_i2b1: {
2263 Temp src = get_alu_src(ctx, instr->src[0]);
2264 assert(dst.regClass() == bld.lm);
2265
2266 if (src.type() == RegType::vgpr) {
2267 assert(src.regClass() == v1 || src.regClass() == v2);
2268 assert(dst.regClass() == bld.lm);
2269 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2270 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2271 } else {
2272 assert(src.regClass() == s1 || src.regClass() == s2);
2273 Temp tmp;
2274 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2275 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2276 } else {
2277 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2278 bld.scc(bld.def(s1)), Operand(0u), src);
2279 }
2280 bool_to_vector_condition(ctx, tmp, dst);
2281 }
2282 break;
2283 }
2284 case nir_op_pack_64_2x32_split: {
2285 Temp src0 = get_alu_src(ctx, instr->src[0]);
2286 Temp src1 = get_alu_src(ctx, instr->src[1]);
2287
2288 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2289 break;
2290 }
2291 case nir_op_unpack_64_2x32_split_x:
2292 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2293 break;
2294 case nir_op_unpack_64_2x32_split_y:
2295 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2296 break;
2297 case nir_op_pack_half_2x16: {
2298 Temp src = get_alu_src(ctx, instr->src[0], 2);
2299
2300 if (dst.regClass() == v1) {
2301 Temp src0 = bld.tmp(v1);
2302 Temp src1 = bld.tmp(v1);
2303 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2304 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2305 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2306 else
2307 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2308 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2309 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2310 } else {
2311 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2312 nir_print_instr(&instr->instr, stderr);
2313 fprintf(stderr, "\n");
2314 }
2315 break;
2316 }
2317 case nir_op_unpack_half_2x16_split_x: {
2318 if (dst.regClass() == v1) {
2319 Builder bld(ctx->program, ctx->block);
2320 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2321 } else {
2322 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2323 nir_print_instr(&instr->instr, stderr);
2324 fprintf(stderr, "\n");
2325 }
2326 break;
2327 }
2328 case nir_op_unpack_half_2x16_split_y: {
2329 if (dst.regClass() == v1) {
2330 Builder bld(ctx->program, ctx->block);
2331 /* TODO: use SDWA here */
2332 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2333 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2334 } else {
2335 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2336 nir_print_instr(&instr->instr, stderr);
2337 fprintf(stderr, "\n");
2338 }
2339 break;
2340 }
2341 case nir_op_fquantize2f16: {
2342 Temp src = get_alu_src(ctx, instr->src[0]);
2343 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2344 Temp f32, cmp_res;
2345
2346 if (ctx->program->chip_class >= GFX8) {
2347 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2348 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2349 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2350 } else {
2351 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2352 * so compare the result and flush to 0 if it's smaller.
2353 */
2354 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2355 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2356 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2357 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2358 cmp_res = vop3->definitions[0].getTemp();
2359 }
2360
2361 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2362 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2363 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2364 } else {
2365 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2366 }
2367 break;
2368 }
2369 case nir_op_bfm: {
2370 Temp bits = get_alu_src(ctx, instr->src[0]);
2371 Temp offset = get_alu_src(ctx, instr->src[1]);
2372
2373 if (dst.regClass() == s1) {
2374 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2375 } else if (dst.regClass() == v1) {
2376 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2377 } else {
2378 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2379 nir_print_instr(&instr->instr, stderr);
2380 fprintf(stderr, "\n");
2381 }
2382 break;
2383 }
2384 case nir_op_bitfield_select: {
2385 /* (mask & insert) | (~mask & base) */
2386 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2387 Temp insert = get_alu_src(ctx, instr->src[1]);
2388 Temp base = get_alu_src(ctx, instr->src[2]);
2389
2390 /* dst = (insert & bitmask) | (base & ~bitmask) */
2391 if (dst.regClass() == s1) {
2392 aco_ptr<Instruction> sop2;
2393 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2394 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2395 Operand lhs;
2396 if (const_insert && const_bitmask) {
2397 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2398 } else {
2399 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2400 lhs = Operand(insert);
2401 }
2402
2403 Operand rhs;
2404 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2405 if (const_base && const_bitmask) {
2406 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2407 } else {
2408 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2409 rhs = Operand(base);
2410 }
2411
2412 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2413
2414 } else if (dst.regClass() == v1) {
2415 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2416 base = as_vgpr(ctx, base);
2417 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2418 insert = as_vgpr(ctx, insert);
2419
2420 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2421
2422 } else {
2423 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2424 nir_print_instr(&instr->instr, stderr);
2425 fprintf(stderr, "\n");
2426 }
2427 break;
2428 }
2429 case nir_op_ubfe:
2430 case nir_op_ibfe: {
2431 Temp base = get_alu_src(ctx, instr->src[0]);
2432 Temp offset = get_alu_src(ctx, instr->src[1]);
2433 Temp bits = get_alu_src(ctx, instr->src[2]);
2434
2435 if (dst.type() == RegType::sgpr) {
2436 Operand extract;
2437 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2438 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2439 if (const_offset && const_bits) {
2440 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2441 extract = Operand(const_extract);
2442 } else {
2443 Operand width;
2444 if (const_bits) {
2445 width = Operand(const_bits->u32 << 16);
2446 } else {
2447 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2448 }
2449 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2450 }
2451
2452 aco_opcode opcode;
2453 if (dst.regClass() == s1) {
2454 if (instr->op == nir_op_ubfe)
2455 opcode = aco_opcode::s_bfe_u32;
2456 else
2457 opcode = aco_opcode::s_bfe_i32;
2458 } else if (dst.regClass() == s2) {
2459 if (instr->op == nir_op_ubfe)
2460 opcode = aco_opcode::s_bfe_u64;
2461 else
2462 opcode = aco_opcode::s_bfe_i64;
2463 } else {
2464 unreachable("Unsupported BFE bit size");
2465 }
2466
2467 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2468
2469 } else {
2470 aco_opcode opcode;
2471 if (dst.regClass() == v1) {
2472 if (instr->op == nir_op_ubfe)
2473 opcode = aco_opcode::v_bfe_u32;
2474 else
2475 opcode = aco_opcode::v_bfe_i32;
2476 } else {
2477 unreachable("Unsupported BFE bit size");
2478 }
2479
2480 emit_vop3a_instruction(ctx, instr, opcode, dst);
2481 }
2482 break;
2483 }
2484 case nir_op_bit_count: {
2485 Temp src = get_alu_src(ctx, instr->src[0]);
2486 if (src.regClass() == s1) {
2487 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2488 } else if (src.regClass() == v1) {
2489 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2490 } else if (src.regClass() == v2) {
2491 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2492 emit_extract_vector(ctx, src, 1, v1),
2493 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2494 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2495 } else if (src.regClass() == s2) {
2496 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2497 } else {
2498 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2499 nir_print_instr(&instr->instr, stderr);
2500 fprintf(stderr, "\n");
2501 }
2502 break;
2503 }
2504 case nir_op_flt: {
2505 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2506 break;
2507 }
2508 case nir_op_fge: {
2509 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2510 break;
2511 }
2512 case nir_op_feq: {
2513 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2514 break;
2515 }
2516 case nir_op_fne: {
2517 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2518 break;
2519 }
2520 case nir_op_ilt: {
2521 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2522 break;
2523 }
2524 case nir_op_ige: {
2525 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2526 break;
2527 }
2528 case nir_op_ieq: {
2529 if (instr->src[0].src.ssa->bit_size == 1)
2530 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2531 else
2532 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2533 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2534 break;
2535 }
2536 case nir_op_ine: {
2537 if (instr->src[0].src.ssa->bit_size == 1)
2538 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2539 else
2540 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2541 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2542 break;
2543 }
2544 case nir_op_ult: {
2545 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2546 break;
2547 }
2548 case nir_op_uge: {
2549 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2550 break;
2551 }
2552 case nir_op_fddx:
2553 case nir_op_fddy:
2554 case nir_op_fddx_fine:
2555 case nir_op_fddy_fine:
2556 case nir_op_fddx_coarse:
2557 case nir_op_fddy_coarse: {
2558 Temp src = get_alu_src(ctx, instr->src[0]);
2559 uint16_t dpp_ctrl1, dpp_ctrl2;
2560 if (instr->op == nir_op_fddx_fine) {
2561 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2562 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2563 } else if (instr->op == nir_op_fddy_fine) {
2564 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2565 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2566 } else {
2567 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2568 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2569 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2570 else
2571 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2572 }
2573
2574 Temp tmp;
2575 if (ctx->program->chip_class >= GFX8) {
2576 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2577 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2578 } else {
2579 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2580 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2581 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2582 }
2583 emit_wqm(ctx, tmp, dst, true);
2584 break;
2585 }
2586 default:
2587 fprintf(stderr, "Unknown NIR ALU instr: ");
2588 nir_print_instr(&instr->instr, stderr);
2589 fprintf(stderr, "\n");
2590 }
2591 }
2592
2593 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2594 {
2595 Temp dst = get_ssa_temp(ctx, &instr->def);
2596
2597 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2598 // which get truncated the lsb if double and msb if int
2599 // for now, we only use s_mov_b64 with 64bit inline constants
2600 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2601 assert(dst.type() == RegType::sgpr);
2602
2603 Builder bld(ctx->program, ctx->block);
2604
2605 if (instr->def.bit_size == 1) {
2606 assert(dst.regClass() == bld.lm);
2607 int val = instr->value[0].b ? -1 : 0;
2608 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2609 bld.sop1(Builder::s_mov, Definition(dst), op);
2610 } else if (dst.size() == 1) {
2611 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2612 } else {
2613 assert(dst.size() != 1);
2614 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2615 if (instr->def.bit_size == 64)
2616 for (unsigned i = 0; i < dst.size(); i++)
2617 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2618 else {
2619 for (unsigned i = 0; i < dst.size(); i++)
2620 vec->operands[i] = Operand{instr->value[i].u32};
2621 }
2622 vec->definitions[0] = Definition(dst);
2623 ctx->block->instructions.emplace_back(std::move(vec));
2624 }
2625 }
2626
2627 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2628 {
2629 uint32_t new_mask = 0;
2630 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2631 if (mask & (1u << i))
2632 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2633 return new_mask;
2634 }
2635
2636 Operand load_lds_size_m0(isel_context *ctx)
2637 {
2638 /* TODO: m0 does not need to be initialized on GFX9+ */
2639 Builder bld(ctx->program, ctx->block);
2640 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2641 }
2642
2643 void load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2644 Temp address, unsigned base_offset, unsigned align)
2645 {
2646 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2647
2648 Builder bld(ctx->program, ctx->block);
2649
2650 Operand m = load_lds_size_m0(ctx);
2651
2652 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2653 unsigned bytes_read = 0;
2654 unsigned result_size = 0;
2655 unsigned total_bytes = num_components * elem_size_bytes;
2656 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2657 bool large_ds_read = ctx->options->chip_class >= GFX7;
2658
2659 while (bytes_read < total_bytes) {
2660 unsigned todo = total_bytes - bytes_read;
2661 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2662 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2663
2664 aco_opcode op = aco_opcode::last_opcode;
2665 bool read2 = false;
2666 if (todo >= 16 && aligned16 && large_ds_read) {
2667 op = aco_opcode::ds_read_b128;
2668 todo = 16;
2669 } else if (todo >= 16 && aligned8) {
2670 op = aco_opcode::ds_read2_b64;
2671 read2 = true;
2672 todo = 16;
2673 } else if (todo >= 12 && aligned16 && large_ds_read) {
2674 op = aco_opcode::ds_read_b96;
2675 todo = 12;
2676 } else if (todo >= 8 && aligned8) {
2677 op = aco_opcode::ds_read_b64;
2678 todo = 8;
2679 } else if (todo >= 8) {
2680 op = aco_opcode::ds_read2_b32;
2681 read2 = true;
2682 todo = 8;
2683 } else if (todo >= 4) {
2684 op = aco_opcode::ds_read_b32;
2685 todo = 4;
2686 } else {
2687 assert(false);
2688 }
2689 assert(todo % elem_size_bytes == 0);
2690 unsigned num_elements = todo / elem_size_bytes;
2691 unsigned offset = base_offset + bytes_read;
2692 unsigned max_offset = read2 ? 1019 : 65535;
2693
2694 Temp address_offset = address;
2695 if (offset > max_offset) {
2696 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2697 offset = bytes_read;
2698 }
2699 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2700
2701 Temp res;
2702 if (num_components == 1 && dst.type() == RegType::vgpr)
2703 res = dst;
2704 else
2705 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2706
2707 if (read2)
2708 res = bld.ds(op, Definition(res), address_offset, m, offset >> 2, (offset >> 2) + 1);
2709 else
2710 res = bld.ds(op, Definition(res), address_offset, m, offset);
2711
2712 if (num_components == 1) {
2713 assert(todo == total_bytes);
2714 if (dst.type() == RegType::sgpr)
2715 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2716 return;
2717 }
2718
2719 if (dst.type() == RegType::sgpr) {
2720 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2721 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2722 res = new_res;
2723 }
2724
2725 if (num_elements == 1) {
2726 result[result_size++] = res;
2727 } else {
2728 assert(res != dst && res.size() % num_elements == 0);
2729 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2730 split->operands[0] = Operand(res);
2731 for (unsigned i = 0; i < num_elements; i++)
2732 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2733 ctx->block->instructions.emplace_back(std::move(split));
2734 }
2735
2736 bytes_read += todo;
2737 }
2738
2739 assert(result_size == num_components && result_size > 1);
2740 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2741 for (unsigned i = 0; i < result_size; i++)
2742 vec->operands[i] = Operand(result[i]);
2743 vec->definitions[0] = Definition(dst);
2744 ctx->block->instructions.emplace_back(std::move(vec));
2745 ctx->allocated_vec.emplace(dst.id(), result);
2746 }
2747
2748 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2749 {
2750 if (start == 0 && size == data.size())
2751 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2752
2753 unsigned size_hint = 1;
2754 auto it = ctx->allocated_vec.find(data.id());
2755 if (it != ctx->allocated_vec.end())
2756 size_hint = it->second[0].size();
2757 if (size % size_hint || start % size_hint)
2758 size_hint = 1;
2759
2760 start /= size_hint;
2761 size /= size_hint;
2762
2763 Temp elems[size];
2764 for (unsigned i = 0; i < size; i++)
2765 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2766
2767 if (size == 1)
2768 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2769
2770 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2771 for (unsigned i = 0; i < size; i++)
2772 vec->operands[i] = Operand(elems[i]);
2773 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2774 vec->definitions[0] = Definition(res);
2775 ctx->block->instructions.emplace_back(std::move(vec));
2776 return res;
2777 }
2778
2779 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2780 {
2781 Builder bld(ctx->program, ctx->block);
2782 unsigned bytes_written = 0;
2783 bool large_ds_write = ctx->options->chip_class >= GFX7;
2784
2785 while (bytes_written < total_size * 4) {
2786 unsigned todo = total_size * 4 - bytes_written;
2787 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2788 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2789
2790 aco_opcode op = aco_opcode::last_opcode;
2791 bool write2 = false;
2792 unsigned size = 0;
2793 if (todo >= 16 && aligned16 && large_ds_write) {
2794 op = aco_opcode::ds_write_b128;
2795 size = 4;
2796 } else if (todo >= 16 && aligned8) {
2797 op = aco_opcode::ds_write2_b64;
2798 write2 = true;
2799 size = 4;
2800 } else if (todo >= 12 && aligned16 && large_ds_write) {
2801 op = aco_opcode::ds_write_b96;
2802 size = 3;
2803 } else if (todo >= 8 && aligned8) {
2804 op = aco_opcode::ds_write_b64;
2805 size = 2;
2806 } else if (todo >= 8) {
2807 op = aco_opcode::ds_write2_b32;
2808 write2 = true;
2809 size = 2;
2810 } else if (todo >= 4) {
2811 op = aco_opcode::ds_write_b32;
2812 size = 1;
2813 } else {
2814 assert(false);
2815 }
2816
2817 unsigned offset = offset0 + offset1 + bytes_written;
2818 unsigned max_offset = write2 ? 1020 : 65535;
2819 Temp address_offset = address;
2820 if (offset > max_offset) {
2821 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2822 offset = offset1 + bytes_written;
2823 }
2824 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2825
2826 if (write2) {
2827 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2828 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2829 bld.ds(op, address_offset, val0, val1, m, offset >> 2, (offset >> 2) + 1);
2830 } else {
2831 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2832 bld.ds(op, address_offset, val, m, offset);
2833 }
2834
2835 bytes_written += size * 4;
2836 }
2837 }
2838
2839 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2840 Temp address, unsigned base_offset, unsigned align)
2841 {
2842 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2843
2844 Operand m = load_lds_size_m0(ctx);
2845
2846 /* we need at most two stores for 32bit variables */
2847 int start[2], count[2];
2848 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2849 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2850 assert(wrmask == 0);
2851
2852 /* one combined store is sufficient */
2853 if (count[0] == count[1]) {
2854 Builder bld(ctx->program, ctx->block);
2855
2856 Temp address_offset = address;
2857 if ((base_offset >> 2) + start[1] > 255) {
2858 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2859 base_offset = 0;
2860 }
2861
2862 assert(count[0] == 1);
2863 Temp val0 = emit_extract_vector(ctx, data, start[0], v1);
2864 Temp val1 = emit_extract_vector(ctx, data, start[1], v1);
2865 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2866 base_offset = base_offset / elem_size_bytes;
2867 bld.ds(op, address_offset, val0, val1, m,
2868 base_offset + start[0], base_offset + start[1]);
2869 return;
2870 }
2871
2872 for (unsigned i = 0; i < 2; i++) {
2873 if (count[i] == 0)
2874 continue;
2875
2876 unsigned elem_size_words = elem_size_bytes / 4;
2877 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2878 base_offset, start[i] * elem_size_bytes, align);
2879 }
2880 return;
2881 }
2882
2883 void visit_store_vsgs_output(isel_context *ctx, nir_intrinsic_instr *instr)
2884 {
2885 unsigned write_mask = nir_intrinsic_write_mask(instr);
2886 unsigned component = nir_intrinsic_component(instr);
2887 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2888 unsigned idx = (nir_intrinsic_base(instr) + component) * 4u;
2889 Operand offset(s1);
2890 Builder bld(ctx->program, ctx->block);
2891
2892 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2893 if (off_instr->type != nir_instr_type_load_const)
2894 offset = bld.v_mul24_imm(bld.def(v1), get_ssa_temp(ctx, instr->src[1].ssa), 16u);
2895 else
2896 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 16u;
2897
2898 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
2899 if (ctx->stage == vertex_es) {
2900 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
2901
2902 Temp elems[NIR_MAX_VEC_COMPONENTS * 2];
2903 if (elem_size_bytes == 8) {
2904 for (unsigned i = 0; i < src.size() / 2; i++) {
2905 Temp elem = emit_extract_vector(ctx, src, i, v2);
2906 elems[i*2] = bld.tmp(v1);
2907 elems[i*2+1] = bld.tmp(v1);
2908 bld.pseudo(aco_opcode::p_split_vector, Definition(elems[i*2]), Definition(elems[i*2+1]), elem);
2909 }
2910 write_mask = widen_mask(write_mask, 2);
2911 elem_size_bytes /= 2u;
2912 } else {
2913 for (unsigned i = 0; i < src.size(); i++)
2914 elems[i] = emit_extract_vector(ctx, src, i, v1);
2915 }
2916
2917 while (write_mask) {
2918 unsigned index = u_bit_scan(&write_mask);
2919 unsigned offset = index * elem_size_bytes;
2920 Temp elem = emit_extract_vector(ctx, src, index, RegClass(RegType::vgpr, elem_size_bytes / 4));
2921
2922 Operand vaddr_offset(v1);
2923 unsigned const_offset = idx + offset;
2924 if (const_offset >= 4096u) {
2925 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
2926 const_offset %= 4096u;
2927 }
2928
2929 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
2930 mtbuf->operands[0] = vaddr_offset;
2931 mtbuf->operands[1] = Operand(esgs_ring);
2932 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->es2gs_offset));
2933 mtbuf->operands[3] = Operand(elem);
2934 mtbuf->offen = !vaddr_offset.isUndefined();
2935 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
2936 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
2937 mtbuf->offset = const_offset;
2938 mtbuf->glc = true;
2939 mtbuf->slc = true;
2940 mtbuf->barrier = barrier_none;
2941 mtbuf->can_reorder = true;
2942 bld.insert(std::move(mtbuf));
2943 }
2944 } else {
2945 unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
2946
2947 Temp vertex_idx = emit_mbcnt(ctx, bld.def(v1));
2948 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
2949 vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), vertex_idx,
2950 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
2951
2952 Temp lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
2953 if (!offset.isUndefined())
2954 lds_base = bld.vadd32(bld.def(v1), offset, lds_base);
2955
2956 unsigned align = 1 << (ffs(itemsize) - 1);
2957 if (idx)
2958 align = std::min(align, 1u << (ffs(idx) - 1));
2959
2960 store_lds(ctx, elem_size_bytes, src, write_mask, lds_base, idx, align);
2961 }
2962 }
2963
2964 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
2965 {
2966 if (ctx->stage == vertex_vs ||
2967 ctx->stage == fragment_fs ||
2968 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
2969 unsigned write_mask = nir_intrinsic_write_mask(instr);
2970 unsigned component = nir_intrinsic_component(instr);
2971 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2972 unsigned idx = nir_intrinsic_base(instr) + component;
2973
2974 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2975 if (off_instr->type != nir_instr_type_load_const) {
2976 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2977 nir_print_instr(off_instr, stderr);
2978 fprintf(stderr, "\n");
2979 }
2980 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
2981
2982 if (instr->src[0].ssa->bit_size == 64)
2983 write_mask = widen_mask(write_mask, 2);
2984
2985 for (unsigned i = 0; i < 8; ++i) {
2986 if (write_mask & (1 << i)) {
2987 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
2988 ctx->outputs.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
2989 }
2990 idx++;
2991 }
2992 } else if (ctx->stage == vertex_es ||
2993 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX)) {
2994 visit_store_vsgs_output(ctx, instr);
2995 } else {
2996 unreachable("Shader stage not implemented");
2997 }
2998 }
2999
3000 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3001 {
3002 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3003 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3004
3005 Builder bld(ctx->program, ctx->block);
3006 Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3007 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
3008 }
3009
3010 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3011 {
3012 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3013 for (unsigned i = 0; i < num_components; i++)
3014 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3015 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3016 assert(num_components == 4);
3017 Builder bld(ctx->program, ctx->block);
3018 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3019 }
3020
3021 for (Operand& op : vec->operands)
3022 op = op.isUndefined() ? Operand(0u) : op;
3023
3024 vec->definitions[0] = Definition(dst);
3025 ctx->block->instructions.emplace_back(std::move(vec));
3026 emit_split_vector(ctx, dst, num_components);
3027 return;
3028 }
3029
3030 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3031 {
3032 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3033 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3034 unsigned idx = nir_intrinsic_base(instr);
3035 unsigned component = nir_intrinsic_component(instr);
3036 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3037
3038 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3039 if (offset) {
3040 assert(offset->u32 == 0);
3041 } else {
3042 /* the lower 15bit of the prim_mask contain the offset into LDS
3043 * while the upper bits contain the number of prims */
3044 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3045 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3046 Builder bld(ctx->program, ctx->block);
3047 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3048 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3049 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3050 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3051 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3052 }
3053
3054 if (instr->dest.ssa.num_components == 1) {
3055 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3056 } else {
3057 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3058 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3059 {
3060 Temp tmp = {ctx->program->allocateId(), v1};
3061 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3062 vec->operands[i] = Operand(tmp);
3063 }
3064 vec->definitions[0] = Definition(dst);
3065 ctx->block->instructions.emplace_back(std::move(vec));
3066 }
3067 }
3068
3069 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3070 unsigned offset, unsigned stride, unsigned channels)
3071 {
3072 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3073 if (vtx_info->chan_byte_size != 4 && channels == 3)
3074 return false;
3075 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3076 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3077 }
3078
3079 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3080 unsigned offset, unsigned stride, unsigned *channels)
3081 {
3082 if (!vtx_info->chan_byte_size) {
3083 *channels = vtx_info->num_channels;
3084 return vtx_info->chan_format;
3085 }
3086
3087 unsigned num_channels = *channels;
3088 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3089 unsigned new_channels = num_channels + 1;
3090 /* first, assume more loads is worse and try using a larger data format */
3091 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3092 new_channels++;
3093 /* don't make the attribute potentially out-of-bounds */
3094 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3095 new_channels = 5;
3096 }
3097
3098 if (new_channels == 5) {
3099 /* then try decreasing load size (at the cost of more loads) */
3100 new_channels = *channels;
3101 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3102 new_channels--;
3103 }
3104
3105 if (new_channels < *channels)
3106 *channels = new_channels;
3107 num_channels = new_channels;
3108 }
3109
3110 switch (vtx_info->chan_format) {
3111 case V_008F0C_BUF_DATA_FORMAT_8:
3112 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3113 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3114 case V_008F0C_BUF_DATA_FORMAT_16:
3115 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3116 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3117 case V_008F0C_BUF_DATA_FORMAT_32:
3118 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3119 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3120 }
3121 unreachable("shouldn't reach here");
3122 return V_008F0C_BUF_DATA_FORMAT_INVALID;
3123 }
3124
3125 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3126 * so we may need to fix it up. */
3127 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3128 {
3129 Builder bld(ctx->program, ctx->block);
3130
3131 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3132 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3133
3134 /* For the integer-like cases, do a natural sign extension.
3135 *
3136 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3137 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3138 * exponent.
3139 */
3140 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3141 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3142
3143 /* Convert back to the right type. */
3144 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3145 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3146 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3147 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3148 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3149 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3150 }
3151
3152 return alpha;
3153 }
3154
3155 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3156 {
3157 Builder bld(ctx->program, ctx->block);
3158 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3159 if (ctx->stage & sw_vs) {
3160
3161 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3162 if (off_instr->type != nir_instr_type_load_const) {
3163 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3164 nir_print_instr(off_instr, stderr);
3165 fprintf(stderr, "\n");
3166 }
3167 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3168
3169 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3170
3171 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3172 unsigned component = nir_intrinsic_component(instr);
3173 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3174 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3175 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3176 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3177
3178 unsigned dfmt = attrib_format & 0xf;
3179 unsigned nfmt = (attrib_format >> 4) & 0x7;
3180 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
3181
3182 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3183 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
3184 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3185 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3186 if (post_shuffle)
3187 num_channels = MAX2(num_channels, 3);
3188
3189 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
3190 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
3191
3192 Temp index;
3193 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3194 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3195 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3196 if (divisor) {
3197 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3198 if (divisor != 1) {
3199 Temp divided = bld.tmp(v1);
3200 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3201 index = bld.vadd32(bld.def(v1), start_instance, divided);
3202 } else {
3203 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3204 }
3205 } else {
3206 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3207 }
3208 } else {
3209 index = bld.vadd32(bld.def(v1),
3210 get_arg(ctx, ctx->args->ac.base_vertex),
3211 get_arg(ctx, ctx->args->ac.vertex_id));
3212 }
3213
3214 Temp channels[num_channels];
3215 unsigned channel_start = 0;
3216 bool direct_fetch = false;
3217
3218 /* skip unused channels at the start */
3219 if (vtx_info->chan_byte_size && !post_shuffle) {
3220 channel_start = ffs(mask) - 1;
3221 for (unsigned i = 0; i < channel_start; i++)
3222 channels[i] = Temp(0, s1);
3223 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
3224 num_channels = 3 - (ffs(mask) - 1);
3225 }
3226
3227 /* load channels */
3228 while (channel_start < num_channels) {
3229 unsigned fetch_size = num_channels - channel_start;
3230 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
3231
3232 /* use MUBUF when possible to avoid possible alignment issues */
3233 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
3234 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
3235 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
3236 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
3237 vtx_info->chan_byte_size == 4;
3238 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
3239 if (!use_mubuf)
3240 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
3241
3242 Temp fetch_index = index;
3243 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
3244 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
3245 fetch_offset = fetch_offset % attrib_stride;
3246 }
3247
3248 Operand soffset(0u);
3249 if (fetch_offset >= 4096) {
3250 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
3251 fetch_offset %= 4096;
3252 }
3253
3254 aco_opcode opcode;
3255 switch (fetch_size) {
3256 case 1:
3257 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
3258 break;
3259 case 2:
3260 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
3261 break;
3262 case 3:
3263 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
3264 break;
3265 case 4:
3266 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
3267 break;
3268 default:
3269 unreachable("Unimplemented load_input vector size");
3270 }
3271
3272 Temp fetch_dst;
3273 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
3274 (alpha_adjust == RADV_ALPHA_ADJUST_NONE || num_channels <= 3)) {
3275 direct_fetch = true;
3276 fetch_dst = dst;
3277 } else {
3278 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
3279 }
3280
3281 if (use_mubuf) {
3282 Instruction *mubuf = bld.mubuf(opcode,
3283 Definition(fetch_dst), fetch_index, list, soffset,
3284 fetch_offset, false, true).instr;
3285 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
3286 } else {
3287 Instruction *mtbuf = bld.mtbuf(opcode,
3288 Definition(fetch_dst), fetch_index, list, soffset,
3289 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
3290 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
3291 }
3292
3293 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
3294
3295 if (fetch_size == 1) {
3296 channels[channel_start] = fetch_dst;
3297 } else {
3298 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
3299 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
3300 }
3301
3302 channel_start += fetch_size;
3303 }
3304
3305 if (!direct_fetch) {
3306 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3307 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3308
3309 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3310 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3311 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3312
3313 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3314 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3315 unsigned num_temp = 0;
3316 for (unsigned i = 0; i < dst.size(); i++) {
3317 unsigned idx = i + component;
3318 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
3319 Temp channel = channels[swizzle[idx]];
3320 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
3321 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
3322 vec->operands[i] = Operand(channel);
3323
3324 num_temp++;
3325 elems[i] = channel;
3326 } else if (is_float && idx == 3) {
3327 vec->operands[i] = Operand(0x3f800000u);
3328 } else if (!is_float && idx == 3) {
3329 vec->operands[i] = Operand(1u);
3330 } else {
3331 vec->operands[i] = Operand(0u);
3332 }
3333 }
3334 vec->definitions[0] = Definition(dst);
3335 ctx->block->instructions.emplace_back(std::move(vec));
3336 emit_split_vector(ctx, dst, dst.size());
3337
3338 if (num_temp == dst.size())
3339 ctx->allocated_vec.emplace(dst.id(), elems);
3340 }
3341 } else if (ctx->stage == fragment_fs) {
3342 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
3343 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
3344 if (off_instr->type != nir_instr_type_load_const ||
3345 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3346 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3347 nir_print_instr(off_instr, stderr);
3348 fprintf(stderr, "\n");
3349 }
3350
3351 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3352 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
3353 if (offset) {
3354 assert(offset->u32 == 0);
3355 } else {
3356 /* the lower 15bit of the prim_mask contain the offset into LDS
3357 * while the upper bits contain the number of prims */
3358 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
3359 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3360 Builder bld(ctx->program, ctx->block);
3361 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3362 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3363 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3364 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3365 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3366 }
3367
3368 unsigned idx = nir_intrinsic_base(instr);
3369 unsigned component = nir_intrinsic_component(instr);
3370 unsigned vertex_id = 2; /* P0 */
3371
3372 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
3373 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
3374 switch (src0->u32) {
3375 case 0:
3376 vertex_id = 2; /* P0 */
3377 break;
3378 case 1:
3379 vertex_id = 0; /* P10 */
3380 break;
3381 case 2:
3382 vertex_id = 1; /* P20 */
3383 break;
3384 default:
3385 unreachable("invalid vertex index");
3386 }
3387 }
3388
3389 if (dst.size() == 1) {
3390 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
3391 } else {
3392 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3393 for (unsigned i = 0; i < dst.size(); i++)
3394 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
3395 vec->definitions[0] = Definition(dst);
3396 bld.insert(std::move(vec));
3397 }
3398
3399 } else {
3400 unreachable("Shader stage not implemented");
3401 }
3402 }
3403
3404 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3405 {
3406 assert(ctx->stage == vertex_geometry_gs || ctx->stage == geometry_gs);
3407 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3408
3409 Builder bld(ctx->program, ctx->block);
3410 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3411
3412 Temp offset = Temp();
3413 if (instr->src[0].ssa->parent_instr->type != nir_instr_type_load_const) {
3414 /* better code could be created, but this case probably doesn't happen
3415 * much in practice */
3416 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
3417 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
3418 Temp elem;
3419 if (ctx->stage == vertex_geometry_gs) {
3420 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
3421 if (i % 2u)
3422 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
3423 } else {
3424 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
3425 }
3426 if (offset.id()) {
3427 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(s2)),
3428 Operand(i), indirect_vertex);
3429 offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), offset, elem, cond);
3430 } else {
3431 offset = elem;
3432 }
3433 }
3434 if (ctx->stage == vertex_geometry_gs)
3435 offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), offset);
3436 } else {
3437 unsigned vertex = nir_src_as_uint(instr->src[0]);
3438 if (ctx->stage == vertex_geometry_gs)
3439 offset = bld.vop3(
3440 aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
3441 Operand((vertex % 2u) * 16u), Operand(16u));
3442 else
3443 offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
3444 }
3445
3446 unsigned const_offset = nir_intrinsic_base(instr);
3447 const_offset += nir_intrinsic_component(instr);
3448
3449 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3450 if (off_instr->type != nir_instr_type_load_const) {
3451 Temp indirect_offset = get_ssa_temp(ctx, instr->src[1].ssa);
3452 offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u),
3453 bld.vadd32(bld.def(v1), indirect_offset, offset));
3454 } else {
3455 const_offset += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
3456 }
3457 const_offset *= 4u;
3458
3459 offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), offset);
3460
3461 unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
3462
3463 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3464 if (ctx->stage == geometry_gs) {
3465 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
3466
3467 const_offset *= ctx->program->wave_size;
3468
3469 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3470 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3471 aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1)};
3472 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++) {
3473 Temp subelems[2];
3474 for (unsigned j = 0; j < elem_size_bytes / 4; j++) {
3475 Operand soffset(0u);
3476 if (const_offset >= 4096u)
3477 soffset = bld.copy(bld.def(s1), Operand(const_offset / 4096u * 4096u));
3478
3479 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
3480 mubuf->definitions[0] = bld.def(v1);
3481 subelems[j] = mubuf->definitions[0].getTemp();
3482 mubuf->operands[0] = Operand(offset);
3483 mubuf->operands[1] = Operand(esgs_ring);
3484 mubuf->operands[2] = Operand(soffset);
3485 mubuf->offen = true;
3486 mubuf->offset = const_offset % 4096u;
3487 mubuf->glc = true;
3488 mubuf->dlc = ctx->options->chip_class >= GFX10;
3489 mubuf->barrier = barrier_none;
3490 mubuf->can_reorder = true;
3491 bld.insert(std::move(mubuf));
3492
3493 const_offset += ctx->program->wave_size * 4u;
3494 }
3495
3496 if (elem_size_bytes == 4)
3497 elems[i] = subelems[0];
3498 else
3499 elems[i] = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), subelems[0], subelems[1]);
3500 vec->operands[i] = Operand(elems[i]);
3501 }
3502 vec->definitions[0] = Definition(dst);
3503 ctx->block->instructions.emplace_back(std::move(vec));
3504 ctx->allocated_vec.emplace(dst.id(), elems);
3505 } else {
3506 unsigned align = 16; /* alignment of indirect offset */
3507 align = std::min(align, 1u << (ffs(itemsize) - 1));
3508 if (const_offset)
3509 align = std::min(align, 1u << (ffs(const_offset) - 1));
3510
3511 load_lds(ctx, elem_size_bytes, dst, offset, const_offset, align);
3512 }
3513 }
3514
3515 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
3516 {
3517 if (ctx->program->info->need_indirect_descriptor_sets) {
3518 Builder bld(ctx->program, ctx->block);
3519 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
3520 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
3521 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
3522 }
3523
3524 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
3525 }
3526
3527
3528 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
3529 {
3530 Builder bld(ctx->program, ctx->block);
3531 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
3532 if (!ctx->divergent_vals[instr->dest.ssa.index])
3533 index = bld.as_uniform(index);
3534 unsigned desc_set = nir_intrinsic_desc_set(instr);
3535 unsigned binding = nir_intrinsic_binding(instr);
3536
3537 Temp desc_ptr;
3538 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
3539 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
3540 unsigned offset = layout->binding[binding].offset;
3541 unsigned stride;
3542 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
3543 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
3544 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
3545 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
3546 offset = pipeline_layout->push_constant_size + 16 * idx;
3547 stride = 16;
3548 } else {
3549 desc_ptr = load_desc_ptr(ctx, desc_set);
3550 stride = layout->binding[binding].size;
3551 }
3552
3553 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
3554 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
3555 if (stride != 1) {
3556 if (nir_const_index) {
3557 const_index = const_index * stride;
3558 } else if (index.type() == RegType::vgpr) {
3559 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
3560 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
3561 } else {
3562 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
3563 }
3564 }
3565 if (offset) {
3566 if (nir_const_index) {
3567 const_index = const_index + offset;
3568 } else if (index.type() == RegType::vgpr) {
3569 index = bld.vadd32(bld.def(v1), Operand(offset), index);
3570 } else {
3571 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
3572 }
3573 }
3574
3575 if (nir_const_index && const_index == 0) {
3576 index = desc_ptr;
3577 } else if (index.type() == RegType::vgpr) {
3578 index = bld.vadd32(bld.def(v1),
3579 nir_const_index ? Operand(const_index) : Operand(index),
3580 Operand(desc_ptr));
3581 } else {
3582 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3583 nir_const_index ? Operand(const_index) : Operand(index),
3584 Operand(desc_ptr));
3585 }
3586
3587 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
3588 }
3589
3590 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
3591 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
3592 {
3593 Builder bld(ctx->program, ctx->block);
3594
3595 unsigned num_bytes = dst.size() * 4;
3596 bool dlc = glc && ctx->options->chip_class >= GFX10;
3597
3598 aco_opcode op;
3599 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
3600 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3601 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3602 unsigned const_offset = 0;
3603
3604 Temp lower = Temp();
3605 if (num_bytes > 16) {
3606 assert(num_components == 3 || num_components == 4);
3607 op = aco_opcode::buffer_load_dwordx4;
3608 lower = bld.tmp(v4);
3609 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3610 mubuf->definitions[0] = Definition(lower);
3611 mubuf->operands[0] = vaddr;
3612 mubuf->operands[1] = Operand(rsrc);
3613 mubuf->operands[2] = soffset;
3614 mubuf->offen = (offset.type() == RegType::vgpr);
3615 mubuf->glc = glc;
3616 mubuf->dlc = dlc;
3617 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3618 mubuf->can_reorder = readonly;
3619 bld.insert(std::move(mubuf));
3620 emit_split_vector(ctx, lower, 2);
3621 num_bytes -= 16;
3622 const_offset = 16;
3623 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
3624 /* GFX6 doesn't support loading vec3, expand to vec4. */
3625 num_bytes = 16;
3626 }
3627
3628 switch (num_bytes) {
3629 case 4:
3630 op = aco_opcode::buffer_load_dword;
3631 break;
3632 case 8:
3633 op = aco_opcode::buffer_load_dwordx2;
3634 break;
3635 case 12:
3636 assert(ctx->options->chip_class > GFX6);
3637 op = aco_opcode::buffer_load_dwordx3;
3638 break;
3639 case 16:
3640 op = aco_opcode::buffer_load_dwordx4;
3641 break;
3642 default:
3643 unreachable("Load SSBO not implemented for this size.");
3644 }
3645 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3646 mubuf->operands[0] = vaddr;
3647 mubuf->operands[1] = Operand(rsrc);
3648 mubuf->operands[2] = soffset;
3649 mubuf->offen = (offset.type() == RegType::vgpr);
3650 mubuf->glc = glc;
3651 mubuf->dlc = dlc;
3652 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3653 mubuf->can_reorder = readonly;
3654 mubuf->offset = const_offset;
3655 aco_ptr<Instruction> instr = std::move(mubuf);
3656
3657 if (dst.size() > 4) {
3658 assert(lower != Temp());
3659 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
3660 instr->definitions[0] = Definition(upper);
3661 bld.insert(std::move(instr));
3662 if (dst.size() == 8)
3663 emit_split_vector(ctx, upper, 2);
3664 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
3665 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
3666 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
3667 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
3668 if (dst.size() == 8)
3669 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
3670 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
3671 Temp vec = bld.tmp(v4);
3672 instr->definitions[0] = Definition(vec);
3673 bld.insert(std::move(instr));
3674 emit_split_vector(ctx, vec, 4);
3675
3676 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
3677 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
3678 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
3679 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
3680 }
3681
3682 if (dst.type() == RegType::sgpr) {
3683 Temp vec = bld.tmp(RegType::vgpr, dst.size());
3684 instr->definitions[0] = Definition(vec);
3685 bld.insert(std::move(instr));
3686 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
3687 } else {
3688 instr->definitions[0] = Definition(dst);
3689 bld.insert(std::move(instr));
3690 emit_split_vector(ctx, dst, num_components);
3691 }
3692 } else {
3693 switch (num_bytes) {
3694 case 4:
3695 op = aco_opcode::s_buffer_load_dword;
3696 break;
3697 case 8:
3698 op = aco_opcode::s_buffer_load_dwordx2;
3699 break;
3700 case 12:
3701 case 16:
3702 op = aco_opcode::s_buffer_load_dwordx4;
3703 break;
3704 case 24:
3705 case 32:
3706 op = aco_opcode::s_buffer_load_dwordx8;
3707 break;
3708 default:
3709 unreachable("Load SSBO not implemented for this size.");
3710 }
3711 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3712 load->operands[0] = Operand(rsrc);
3713 load->operands[1] = Operand(bld.as_uniform(offset));
3714 assert(load->operands[1].getTemp().type() == RegType::sgpr);
3715 load->definitions[0] = Definition(dst);
3716 load->glc = glc;
3717 load->dlc = dlc;
3718 load->barrier = readonly ? barrier_none : barrier_buffer;
3719 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
3720 assert(ctx->options->chip_class >= GFX8 || !glc);
3721
3722 /* trim vector */
3723 if (dst.size() == 3) {
3724 Temp vec = bld.tmp(s4);
3725 load->definitions[0] = Definition(vec);
3726 bld.insert(std::move(load));
3727 emit_split_vector(ctx, vec, 4);
3728
3729 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3730 emit_extract_vector(ctx, vec, 0, s1),
3731 emit_extract_vector(ctx, vec, 1, s1),
3732 emit_extract_vector(ctx, vec, 2, s1));
3733 } else if (dst.size() == 6) {
3734 Temp vec = bld.tmp(s8);
3735 load->definitions[0] = Definition(vec);
3736 bld.insert(std::move(load));
3737 emit_split_vector(ctx, vec, 4);
3738
3739 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3740 emit_extract_vector(ctx, vec, 0, s2),
3741 emit_extract_vector(ctx, vec, 1, s2),
3742 emit_extract_vector(ctx, vec, 2, s2));
3743 } else {
3744 bld.insert(std::move(load));
3745 }
3746 emit_split_vector(ctx, dst, num_components);
3747 }
3748 }
3749
3750 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
3751 {
3752 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3753 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
3754
3755 Builder bld(ctx->program, ctx->block);
3756
3757 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3758 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
3759 unsigned binding = nir_intrinsic_binding(idx_instr);
3760 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
3761
3762 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
3763 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3764 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3765 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3766 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3767 if (ctx->options->chip_class >= GFX10) {
3768 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3769 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3770 S_008F0C_RESOURCE_LEVEL(1);
3771 } else {
3772 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3773 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3774 }
3775 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
3776 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
3777 Operand(0xFFFFFFFFu),
3778 Operand(desc_type));
3779 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3780 rsrc, upper_dwords);
3781 } else {
3782 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
3783 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
3784 }
3785
3786 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
3787 }
3788
3789 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3790 {
3791 Builder bld(ctx->program, ctx->block);
3792 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3793
3794 unsigned offset = nir_intrinsic_base(instr);
3795 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
3796 if (index_cv && instr->dest.ssa.bit_size == 32) {
3797
3798 unsigned count = instr->dest.ssa.num_components;
3799 unsigned start = (offset + index_cv->u32) / 4u;
3800 start -= ctx->args->ac.base_inline_push_consts;
3801 if (start + count <= ctx->args->ac.num_inline_push_consts) {
3802 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3803 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
3804 for (unsigned i = 0; i < count; ++i) {
3805 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
3806 vec->operands[i] = Operand{elems[i]};
3807 }
3808 vec->definitions[0] = Definition(dst);
3809 ctx->block->instructions.emplace_back(std::move(vec));
3810 ctx->allocated_vec.emplace(dst.id(), elems);
3811 return;
3812 }
3813 }
3814
3815 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
3816 if (offset != 0) // TODO check if index != 0 as well
3817 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
3818 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
3819 Temp vec = dst;
3820 bool trim = false;
3821 aco_opcode op;
3822
3823 switch (dst.size()) {
3824 case 1:
3825 op = aco_opcode::s_load_dword;
3826 break;
3827 case 2:
3828 op = aco_opcode::s_load_dwordx2;
3829 break;
3830 case 3:
3831 vec = bld.tmp(s4);
3832 trim = true;
3833 case 4:
3834 op = aco_opcode::s_load_dwordx4;
3835 break;
3836 case 6:
3837 vec = bld.tmp(s8);
3838 trim = true;
3839 case 8:
3840 op = aco_opcode::s_load_dwordx8;
3841 break;
3842 default:
3843 unreachable("unimplemented or forbidden load_push_constant.");
3844 }
3845
3846 bld.smem(op, Definition(vec), ptr, index);
3847
3848 if (trim) {
3849 emit_split_vector(ctx, vec, 4);
3850 RegClass rc = dst.size() == 3 ? s1 : s2;
3851 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3852 emit_extract_vector(ctx, vec, 0, rc),
3853 emit_extract_vector(ctx, vec, 1, rc),
3854 emit_extract_vector(ctx, vec, 2, rc));
3855
3856 }
3857 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
3858 }
3859
3860 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3861 {
3862 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3863
3864 Builder bld(ctx->program, ctx->block);
3865
3866 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3867 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3868 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3869 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3870 if (ctx->options->chip_class >= GFX10) {
3871 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3872 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3873 S_008F0C_RESOURCE_LEVEL(1);
3874 } else {
3875 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3876 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3877 }
3878
3879 unsigned base = nir_intrinsic_base(instr);
3880 unsigned range = nir_intrinsic_range(instr);
3881
3882 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
3883 if (base && offset.type() == RegType::sgpr)
3884 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
3885 else if (base && offset.type() == RegType::vgpr)
3886 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
3887
3888 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3889 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
3890 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
3891 Operand(desc_type));
3892
3893 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
3894 }
3895
3896 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
3897 {
3898 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3899 ctx->cf_info.exec_potentially_empty = true;
3900
3901 ctx->program->needs_exact = true;
3902
3903 // TODO: optimize uniform conditions
3904 Builder bld(ctx->program, ctx->block);
3905 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3906 assert(src.regClass() == bld.lm);
3907 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
3908 bld.pseudo(aco_opcode::p_discard_if, src);
3909 ctx->block->kind |= block_kind_uses_discard_if;
3910 return;
3911 }
3912
3913 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
3914 {
3915 Builder bld(ctx->program, ctx->block);
3916
3917 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3918 ctx->cf_info.exec_potentially_empty = true;
3919
3920 bool divergent = ctx->cf_info.parent_if.is_divergent ||
3921 ctx->cf_info.parent_loop.has_divergent_continue;
3922
3923 if (ctx->block->loop_nest_depth &&
3924 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
3925 /* we handle discards the same way as jump instructions */
3926 append_logical_end(ctx->block);
3927
3928 /* in loops, discard behaves like break */
3929 Block *linear_target = ctx->cf_info.parent_loop.exit;
3930 ctx->block->kind |= block_kind_discard;
3931
3932 if (!divergent) {
3933 /* uniform discard - loop ends here */
3934 assert(nir_instr_is_last(&instr->instr));
3935 ctx->block->kind |= block_kind_uniform;
3936 ctx->cf_info.has_branch = true;
3937 bld.branch(aco_opcode::p_branch);
3938 add_linear_edge(ctx->block->index, linear_target);
3939 return;
3940 }
3941
3942 /* we add a break right behind the discard() instructions */
3943 ctx->block->kind |= block_kind_break;
3944 unsigned idx = ctx->block->index;
3945
3946 /* remove critical edges from linear CFG */
3947 bld.branch(aco_opcode::p_branch);
3948 Block* break_block = ctx->program->create_and_insert_block();
3949 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3950 break_block->kind |= block_kind_uniform;
3951 add_linear_edge(idx, break_block);
3952 add_linear_edge(break_block->index, linear_target);
3953 bld.reset(break_block);
3954 bld.branch(aco_opcode::p_branch);
3955
3956 Block* continue_block = ctx->program->create_and_insert_block();
3957 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3958 add_linear_edge(idx, continue_block);
3959 append_logical_start(continue_block);
3960 ctx->block = continue_block;
3961
3962 return;
3963 }
3964
3965 /* it can currently happen that NIR doesn't remove the unreachable code */
3966 if (!nir_instr_is_last(&instr->instr)) {
3967 ctx->program->needs_exact = true;
3968 /* save exec somewhere temporarily so that it doesn't get
3969 * overwritten before the discard from outer exec masks */
3970 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
3971 bld.pseudo(aco_opcode::p_discard_if, cond);
3972 ctx->block->kind |= block_kind_uses_discard_if;
3973 return;
3974 }
3975
3976 /* This condition is incorrect for uniformly branched discards in a loop
3977 * predicated by a divergent condition, but the above code catches that case
3978 * and the discard would end up turning into a discard_if.
3979 * For example:
3980 * if (divergent) {
3981 * while (...) {
3982 * if (uniform) {
3983 * discard;
3984 * }
3985 * }
3986 * }
3987 */
3988 if (!ctx->cf_info.parent_if.is_divergent) {
3989 /* program just ends here */
3990 ctx->block->kind |= block_kind_uniform;
3991 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
3992 0 /* enabled mask */, 9 /* dest */,
3993 false /* compressed */, true/* done */, true /* valid mask */);
3994 bld.sopp(aco_opcode::s_endpgm);
3995 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
3996 } else {
3997 ctx->block->kind |= block_kind_discard;
3998 /* branch and linear edge is added by visit_if() */
3999 }
4000 }
4001
4002 enum aco_descriptor_type {
4003 ACO_DESC_IMAGE,
4004 ACO_DESC_FMASK,
4005 ACO_DESC_SAMPLER,
4006 ACO_DESC_BUFFER,
4007 ACO_DESC_PLANE_0,
4008 ACO_DESC_PLANE_1,
4009 ACO_DESC_PLANE_2,
4010 };
4011
4012 static bool
4013 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
4014 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
4015 return false;
4016 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
4017 return dim == ac_image_cube ||
4018 dim == ac_image_1darray ||
4019 dim == ac_image_2darray ||
4020 dim == ac_image_2darraymsaa;
4021 }
4022
4023 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
4024 enum aco_descriptor_type desc_type,
4025 const nir_tex_instr *tex_instr, bool image, bool write)
4026 {
4027 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
4028 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
4029 if (it != ctx->tex_desc.end())
4030 return it->second;
4031 */
4032 Temp index = Temp();
4033 bool index_set = false;
4034 unsigned constant_index = 0;
4035 unsigned descriptor_set;
4036 unsigned base_index;
4037 Builder bld(ctx->program, ctx->block);
4038
4039 if (!deref_instr) {
4040 assert(tex_instr && !image);
4041 descriptor_set = 0;
4042 base_index = tex_instr->sampler_index;
4043 } else {
4044 while(deref_instr->deref_type != nir_deref_type_var) {
4045 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
4046 if (!array_size)
4047 array_size = 1;
4048
4049 assert(deref_instr->deref_type == nir_deref_type_array);
4050 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
4051 if (const_value) {
4052 constant_index += array_size * const_value->u32;
4053 } else {
4054 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
4055 if (indirect.type() == RegType::vgpr)
4056 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
4057
4058 if (array_size != 1)
4059 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
4060
4061 if (!index_set) {
4062 index = indirect;
4063 index_set = true;
4064 } else {
4065 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
4066 }
4067 }
4068
4069 deref_instr = nir_src_as_deref(deref_instr->parent);
4070 }
4071 descriptor_set = deref_instr->var->data.descriptor_set;
4072 base_index = deref_instr->var->data.binding;
4073 }
4074
4075 Temp list = load_desc_ptr(ctx, descriptor_set);
4076 list = convert_pointer_to_64_bit(ctx, list);
4077
4078 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
4079 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
4080 unsigned offset = binding->offset;
4081 unsigned stride = binding->size;
4082 aco_opcode opcode;
4083 RegClass type;
4084
4085 assert(base_index < layout->binding_count);
4086
4087 switch (desc_type) {
4088 case ACO_DESC_IMAGE:
4089 type = s8;
4090 opcode = aco_opcode::s_load_dwordx8;
4091 break;
4092 case ACO_DESC_FMASK:
4093 type = s8;
4094 opcode = aco_opcode::s_load_dwordx8;
4095 offset += 32;
4096 break;
4097 case ACO_DESC_SAMPLER:
4098 type = s4;
4099 opcode = aco_opcode::s_load_dwordx4;
4100 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4101 offset += radv_combined_image_descriptor_sampler_offset(binding);
4102 break;
4103 case ACO_DESC_BUFFER:
4104 type = s4;
4105 opcode = aco_opcode::s_load_dwordx4;
4106 break;
4107 case ACO_DESC_PLANE_0:
4108 case ACO_DESC_PLANE_1:
4109 type = s8;
4110 opcode = aco_opcode::s_load_dwordx8;
4111 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
4112 break;
4113 case ACO_DESC_PLANE_2:
4114 type = s4;
4115 opcode = aco_opcode::s_load_dwordx4;
4116 offset += 64;
4117 break;
4118 default:
4119 unreachable("invalid desc_type\n");
4120 }
4121
4122 offset += constant_index * stride;
4123
4124 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
4125 (!index_set || binding->immutable_samplers_equal)) {
4126 if (binding->immutable_samplers_equal)
4127 constant_index = 0;
4128
4129 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4130 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4131 Operand(samplers[constant_index * 4 + 0]),
4132 Operand(samplers[constant_index * 4 + 1]),
4133 Operand(samplers[constant_index * 4 + 2]),
4134 Operand(samplers[constant_index * 4 + 3]));
4135 }
4136
4137 Operand off;
4138 if (!index_set) {
4139 off = bld.copy(bld.def(s1), Operand(offset));
4140 } else {
4141 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
4142 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
4143 }
4144
4145 Temp res = bld.smem(opcode, bld.def(type), list, off);
4146
4147 if (desc_type == ACO_DESC_PLANE_2) {
4148 Temp components[8];
4149 for (unsigned i = 0; i < 8; i++)
4150 components[i] = bld.tmp(s1);
4151 bld.pseudo(aco_opcode::p_split_vector,
4152 Definition(components[0]),
4153 Definition(components[1]),
4154 Definition(components[2]),
4155 Definition(components[3]),
4156 res);
4157
4158 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
4159 bld.pseudo(aco_opcode::p_split_vector,
4160 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
4161 Definition(components[4]),
4162 Definition(components[5]),
4163 Definition(components[6]),
4164 Definition(components[7]),
4165 desc2);
4166
4167 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
4168 components[0], components[1], components[2], components[3],
4169 components[4], components[5], components[6], components[7]);
4170 }
4171
4172 return res;
4173 }
4174
4175 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
4176 {
4177 switch (dim) {
4178 case GLSL_SAMPLER_DIM_BUF:
4179 return 1;
4180 case GLSL_SAMPLER_DIM_1D:
4181 return array ? 2 : 1;
4182 case GLSL_SAMPLER_DIM_2D:
4183 return array ? 3 : 2;
4184 case GLSL_SAMPLER_DIM_MS:
4185 return array ? 4 : 3;
4186 case GLSL_SAMPLER_DIM_3D:
4187 case GLSL_SAMPLER_DIM_CUBE:
4188 return 3;
4189 case GLSL_SAMPLER_DIM_RECT:
4190 case GLSL_SAMPLER_DIM_SUBPASS:
4191 return 2;
4192 case GLSL_SAMPLER_DIM_SUBPASS_MS:
4193 return 3;
4194 default:
4195 break;
4196 }
4197 return 0;
4198 }
4199
4200
4201 /* Adjust the sample index according to FMASK.
4202 *
4203 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4204 * which is the identity mapping. Each nibble says which physical sample
4205 * should be fetched to get that sample.
4206 *
4207 * For example, 0x11111100 means there are only 2 samples stored and
4208 * the second sample covers 3/4 of the pixel. When reading samples 0
4209 * and 1, return physical sample 0 (determined by the first two 0s
4210 * in FMASK), otherwise return physical sample 1.
4211 *
4212 * The sample index should be adjusted as follows:
4213 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4214 */
4215 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, Temp coords, Operand sample_index, Temp fmask_desc_ptr)
4216 {
4217 Builder bld(ctx->program, ctx->block);
4218 Temp fmask = bld.tmp(v1);
4219 unsigned dim = ctx->options->chip_class >= GFX10
4220 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
4221 : 0;
4222
4223 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 2, 1)};
4224 load->operands[0] = Operand(coords);
4225 load->operands[1] = Operand(fmask_desc_ptr);
4226 load->definitions[0] = Definition(fmask);
4227 load->glc = false;
4228 load->dlc = false;
4229 load->dmask = 0x1;
4230 load->unrm = true;
4231 load->da = da;
4232 load->dim = dim;
4233 load->can_reorder = true; /* fmask images shouldn't be modified */
4234 ctx->block->instructions.emplace_back(std::move(load));
4235
4236 Operand sample_index4;
4237 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4238 sample_index4 = Operand(sample_index.constantValue() << 2);
4239 } else if (sample_index.regClass() == s1) {
4240 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4241 } else {
4242 assert(sample_index.regClass() == v1);
4243 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4244 }
4245
4246 Temp final_sample;
4247 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4248 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4249 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4250 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4251 else
4252 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4253
4254 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4255 * resource descriptor is 0 (invalid),
4256 */
4257 Temp compare = bld.tmp(bld.lm);
4258 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4259 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4260
4261 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4262
4263 /* Replace the MSAA sample index. */
4264 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4265 }
4266
4267 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4268 {
4269
4270 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4271 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4272 bool is_array = glsl_sampler_type_is_array(type);
4273 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4274 assert(!add_frag_pos && "Input attachments should be lowered.");
4275 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4276 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4277 int count = image_type_to_components_count(dim, is_array);
4278 std::vector<Operand> coords(count);
4279
4280 if (is_ms) {
4281 Operand sample_index;
4282 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4283 if (sample_cv)
4284 sample_index = Operand(sample_cv->u32);
4285 else
4286 sample_index = Operand(emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[2].ssa), 0, v1));
4287
4288 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4289 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, is_array ? 3 : 2, 1)};
4290 for (unsigned i = 0; i < vec->operands.size(); i++)
4291 vec->operands[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
4292 Temp fmask_load_address = {ctx->program->allocateId(), is_array ? v3 : v2};
4293 vec->definitions[0] = Definition(fmask_load_address);
4294 ctx->block->instructions.emplace_back(std::move(vec));
4295
4296 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4297 sample_index = Operand(adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr));
4298 }
4299 count--;
4300 coords[count] = sample_index;
4301 }
4302
4303 if (count == 1 && !gfx9_1d)
4304 return emit_extract_vector(ctx, src0, 0, v1);
4305
4306 if (gfx9_1d) {
4307 coords[0] = Operand(emit_extract_vector(ctx, src0, 0, v1));
4308 coords.resize(coords.size() + 1);
4309 coords[1] = Operand((uint32_t) 0);
4310 if (is_array)
4311 coords[2] = Operand(emit_extract_vector(ctx, src0, 1, v1));
4312 } else {
4313 for (int i = 0; i < count; i++)
4314 coords[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
4315 }
4316
4317 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4318 instr->intrinsic == nir_intrinsic_image_deref_store) {
4319 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4320 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4321
4322 if (!level_zero)
4323 coords.emplace_back(Operand(get_ssa_temp(ctx, instr->src[lod_index].ssa)));
4324 }
4325
4326 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4327 for (unsigned i = 0; i < coords.size(); i++)
4328 vec->operands[i] = coords[i];
4329 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4330 vec->definitions[0] = Definition(res);
4331 ctx->block->instructions.emplace_back(std::move(vec));
4332 return res;
4333 }
4334
4335
4336 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4337 {
4338 Builder bld(ctx->program, ctx->block);
4339 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4340 const struct glsl_type *type = glsl_without_array(var->type);
4341 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4342 bool is_array = glsl_sampler_type_is_array(type);
4343 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4344
4345 if (dim == GLSL_SAMPLER_DIM_BUF) {
4346 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4347 unsigned num_channels = util_last_bit(mask);
4348 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4349 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4350
4351 aco_opcode opcode;
4352 switch (num_channels) {
4353 case 1:
4354 opcode = aco_opcode::buffer_load_format_x;
4355 break;
4356 case 2:
4357 opcode = aco_opcode::buffer_load_format_xy;
4358 break;
4359 case 3:
4360 opcode = aco_opcode::buffer_load_format_xyz;
4361 break;
4362 case 4:
4363 opcode = aco_opcode::buffer_load_format_xyzw;
4364 break;
4365 default:
4366 unreachable(">4 channel buffer image load");
4367 }
4368 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4369 load->operands[0] = Operand(vindex);
4370 load->operands[1] = Operand(rsrc);
4371 load->operands[2] = Operand((uint32_t) 0);
4372 Temp tmp;
4373 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4374 tmp = dst;
4375 else
4376 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4377 load->definitions[0] = Definition(tmp);
4378 load->idxen = true;
4379 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4380 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4381 load->barrier = barrier_image;
4382 ctx->block->instructions.emplace_back(std::move(load));
4383
4384 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4385 return;
4386 }
4387
4388 Temp coords = get_image_coords(ctx, instr, type);
4389 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4390
4391 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4392 unsigned num_components = util_bitcount(dmask);
4393 Temp tmp;
4394 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4395 tmp = dst;
4396 else
4397 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4398
4399 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4400 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4401
4402 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 2, 1)};
4403 load->operands[0] = Operand(coords);
4404 load->operands[1] = Operand(resource);
4405 load->definitions[0] = Definition(tmp);
4406 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4407 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4408 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4409 load->dmask = dmask;
4410 load->unrm = true;
4411 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4412 load->barrier = barrier_image;
4413 ctx->block->instructions.emplace_back(std::move(load));
4414
4415 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4416 return;
4417 }
4418
4419 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4420 {
4421 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4422 const struct glsl_type *type = glsl_without_array(var->type);
4423 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4424 bool is_array = glsl_sampler_type_is_array(type);
4425 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4426
4427 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4428
4429 if (dim == GLSL_SAMPLER_DIM_BUF) {
4430 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4431 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4432 aco_opcode opcode;
4433 switch (data.size()) {
4434 case 1:
4435 opcode = aco_opcode::buffer_store_format_x;
4436 break;
4437 case 2:
4438 opcode = aco_opcode::buffer_store_format_xy;
4439 break;
4440 case 3:
4441 opcode = aco_opcode::buffer_store_format_xyz;
4442 break;
4443 case 4:
4444 opcode = aco_opcode::buffer_store_format_xyzw;
4445 break;
4446 default:
4447 unreachable(">4 channel buffer image store");
4448 }
4449 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4450 store->operands[0] = Operand(vindex);
4451 store->operands[1] = Operand(rsrc);
4452 store->operands[2] = Operand((uint32_t) 0);
4453 store->operands[3] = Operand(data);
4454 store->idxen = true;
4455 store->glc = glc;
4456 store->dlc = false;
4457 store->disable_wqm = true;
4458 store->barrier = barrier_image;
4459 ctx->program->needs_exact = true;
4460 ctx->block->instructions.emplace_back(std::move(store));
4461 return;
4462 }
4463
4464 assert(data.type() == RegType::vgpr);
4465 Temp coords = get_image_coords(ctx, instr, type);
4466 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4467
4468 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
4469 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
4470
4471 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 4, 0)};
4472 store->operands[0] = Operand(coords);
4473 store->operands[1] = Operand(resource);
4474 store->operands[2] = Operand(s4);
4475 store->operands[3] = Operand(data);
4476 store->glc = glc;
4477 store->dlc = false;
4478 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4479 store->dmask = (1 << data.size()) - 1;
4480 store->unrm = true;
4481 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4482 store->disable_wqm = true;
4483 store->barrier = barrier_image;
4484 ctx->program->needs_exact = true;
4485 ctx->block->instructions.emplace_back(std::move(store));
4486 return;
4487 }
4488
4489 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4490 {
4491 /* return the previous value if dest is ever used */
4492 bool return_previous = false;
4493 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4494 return_previous = true;
4495 break;
4496 }
4497 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4498 return_previous = true;
4499 break;
4500 }
4501
4502 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4503 const struct glsl_type *type = glsl_without_array(var->type);
4504 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4505 bool is_array = glsl_sampler_type_is_array(type);
4506 Builder bld(ctx->program, ctx->block);
4507
4508 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4509 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
4510
4511 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
4512 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
4513
4514 aco_opcode buf_op, image_op;
4515 switch (instr->intrinsic) {
4516 case nir_intrinsic_image_deref_atomic_add:
4517 buf_op = aco_opcode::buffer_atomic_add;
4518 image_op = aco_opcode::image_atomic_add;
4519 break;
4520 case nir_intrinsic_image_deref_atomic_umin:
4521 buf_op = aco_opcode::buffer_atomic_umin;
4522 image_op = aco_opcode::image_atomic_umin;
4523 break;
4524 case nir_intrinsic_image_deref_atomic_imin:
4525 buf_op = aco_opcode::buffer_atomic_smin;
4526 image_op = aco_opcode::image_atomic_smin;
4527 break;
4528 case nir_intrinsic_image_deref_atomic_umax:
4529 buf_op = aco_opcode::buffer_atomic_umax;
4530 image_op = aco_opcode::image_atomic_umax;
4531 break;
4532 case nir_intrinsic_image_deref_atomic_imax:
4533 buf_op = aco_opcode::buffer_atomic_smax;
4534 image_op = aco_opcode::image_atomic_smax;
4535 break;
4536 case nir_intrinsic_image_deref_atomic_and:
4537 buf_op = aco_opcode::buffer_atomic_and;
4538 image_op = aco_opcode::image_atomic_and;
4539 break;
4540 case nir_intrinsic_image_deref_atomic_or:
4541 buf_op = aco_opcode::buffer_atomic_or;
4542 image_op = aco_opcode::image_atomic_or;
4543 break;
4544 case nir_intrinsic_image_deref_atomic_xor:
4545 buf_op = aco_opcode::buffer_atomic_xor;
4546 image_op = aco_opcode::image_atomic_xor;
4547 break;
4548 case nir_intrinsic_image_deref_atomic_exchange:
4549 buf_op = aco_opcode::buffer_atomic_swap;
4550 image_op = aco_opcode::image_atomic_swap;
4551 break;
4552 case nir_intrinsic_image_deref_atomic_comp_swap:
4553 buf_op = aco_opcode::buffer_atomic_cmpswap;
4554 image_op = aco_opcode::image_atomic_cmpswap;
4555 break;
4556 default:
4557 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
4558 }
4559
4560 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4561
4562 if (dim == GLSL_SAMPLER_DIM_BUF) {
4563 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4564 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4565 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
4566 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4567 mubuf->operands[0] = Operand(vindex);
4568 mubuf->operands[1] = Operand(resource);
4569 mubuf->operands[2] = Operand((uint32_t)0);
4570 mubuf->operands[3] = Operand(data);
4571 if (return_previous)
4572 mubuf->definitions[0] = Definition(dst);
4573 mubuf->offset = 0;
4574 mubuf->idxen = true;
4575 mubuf->glc = return_previous;
4576 mubuf->dlc = false; /* Not needed for atomics */
4577 mubuf->disable_wqm = true;
4578 mubuf->barrier = barrier_image;
4579 ctx->program->needs_exact = true;
4580 ctx->block->instructions.emplace_back(std::move(mubuf));
4581 return;
4582 }
4583
4584 Temp coords = get_image_coords(ctx, instr, type);
4585 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4586 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 4, return_previous ? 1 : 0)};
4587 mimg->operands[0] = Operand(coords);
4588 mimg->operands[1] = Operand(resource);
4589 mimg->operands[2] = Operand(s4); /* no sampler */
4590 mimg->operands[3] = Operand(data);
4591 if (return_previous)
4592 mimg->definitions[0] = Definition(dst);
4593 mimg->glc = return_previous;
4594 mimg->dlc = false; /* Not needed for atomics */
4595 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4596 mimg->dmask = (1 << data.size()) - 1;
4597 mimg->unrm = true;
4598 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4599 mimg->disable_wqm = true;
4600 mimg->barrier = barrier_image;
4601 ctx->program->needs_exact = true;
4602 ctx->block->instructions.emplace_back(std::move(mimg));
4603 return;
4604 }
4605
4606 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
4607 {
4608 if (in_elements && ctx->options->chip_class == GFX8) {
4609 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
4610 Builder bld(ctx->program, ctx->block);
4611
4612 Temp size = emit_extract_vector(ctx, desc, 2, s1);
4613
4614 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
4615 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
4616
4617 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
4618 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
4619
4620 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
4621 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
4622
4623 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
4624 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
4625 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
4626 if (dst.type() == RegType::vgpr)
4627 bld.copy(Definition(dst), shr_dst);
4628
4629 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
4630 } else {
4631 emit_extract_vector(ctx, desc, 2, dst);
4632 }
4633 }
4634
4635 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
4636 {
4637 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4638 const struct glsl_type *type = glsl_without_array(var->type);
4639 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4640 bool is_array = glsl_sampler_type_is_array(type);
4641 Builder bld(ctx->program, ctx->block);
4642
4643 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
4644 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
4645 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
4646 }
4647
4648 /* LOD */
4649 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
4650
4651 /* Resource */
4652 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
4653
4654 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4655
4656 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1)};
4657 mimg->operands[0] = Operand(lod);
4658 mimg->operands[1] = Operand(resource);
4659 uint8_t& dmask = mimg->dmask;
4660 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4661 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
4662 mimg->da = glsl_sampler_type_is_array(type);
4663 mimg->can_reorder = true;
4664 Definition& def = mimg->definitions[0];
4665 ctx->block->instructions.emplace_back(std::move(mimg));
4666
4667 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
4668 glsl_sampler_type_is_array(type)) {
4669
4670 assert(instr->dest.ssa.num_components == 3);
4671 Temp tmp = {ctx->program->allocateId(), v3};
4672 def = Definition(tmp);
4673 emit_split_vector(ctx, tmp, 3);
4674
4675 /* divide 3rd value by 6 by multiplying with magic number */
4676 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
4677 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
4678
4679 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4680 emit_extract_vector(ctx, tmp, 0, v1),
4681 emit_extract_vector(ctx, tmp, 1, v1),
4682 by_6);
4683
4684 } else if (ctx->options->chip_class == GFX9 &&
4685 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
4686 glsl_sampler_type_is_array(type)) {
4687 assert(instr->dest.ssa.num_components == 2);
4688 def = Definition(dst);
4689 dmask = 0x5;
4690 } else {
4691 def = Definition(dst);
4692 }
4693
4694 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4695 }
4696
4697 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4698 {
4699 Builder bld(ctx->program, ctx->block);
4700 unsigned num_components = instr->num_components;
4701
4702 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4703 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4704 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4705
4706 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4707 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
4708 }
4709
4710 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4711 {
4712 Builder bld(ctx->program, ctx->block);
4713 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
4714 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4715 unsigned writemask = nir_intrinsic_write_mask(instr);
4716 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
4717
4718 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4719 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4720
4721 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
4722 ctx->options->chip_class >= GFX8;
4723 if (smem)
4724 offset = bld.as_uniform(offset);
4725 bool smem_nonfs = smem && ctx->stage != fragment_fs;
4726
4727 while (writemask) {
4728 int start, count;
4729 u_bit_scan_consecutive_range(&writemask, &start, &count);
4730 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
4731 /* GFX6 doesn't support storing vec3, split it. */
4732 writemask |= 1u << (start + 2);
4733 count = 2;
4734 }
4735 int num_bytes = count * elem_size_bytes;
4736
4737 if (num_bytes > 16) {
4738 assert(elem_size_bytes == 8);
4739 writemask |= (((count - 2) << 1) - 1) << (start + 2);
4740 count = 2;
4741 num_bytes = 16;
4742 }
4743
4744 // TODO: check alignment of sub-dword stores
4745 // TODO: split 3 bytes. there is no store instruction for that
4746
4747 Temp write_data;
4748 if (count != instr->num_components) {
4749 emit_split_vector(ctx, data, instr->num_components);
4750 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4751 for (int i = 0; i < count; i++) {
4752 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
4753 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
4754 }
4755 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
4756 vec->definitions[0] = Definition(write_data);
4757 ctx->block->instructions.emplace_back(std::move(vec));
4758 } else if (!smem && data.type() != RegType::vgpr) {
4759 assert(num_bytes % 4 == 0);
4760 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
4761 } else if (smem_nonfs && data.type() == RegType::vgpr) {
4762 assert(num_bytes % 4 == 0);
4763 write_data = bld.as_uniform(data);
4764 } else {
4765 write_data = data;
4766 }
4767
4768 aco_opcode vmem_op, smem_op;
4769 switch (num_bytes) {
4770 case 4:
4771 vmem_op = aco_opcode::buffer_store_dword;
4772 smem_op = aco_opcode::s_buffer_store_dword;
4773 break;
4774 case 8:
4775 vmem_op = aco_opcode::buffer_store_dwordx2;
4776 smem_op = aco_opcode::s_buffer_store_dwordx2;
4777 break;
4778 case 12:
4779 vmem_op = aco_opcode::buffer_store_dwordx3;
4780 smem_op = aco_opcode::last_opcode;
4781 assert(!smem && ctx->options->chip_class > GFX6);
4782 break;
4783 case 16:
4784 vmem_op = aco_opcode::buffer_store_dwordx4;
4785 smem_op = aco_opcode::s_buffer_store_dwordx4;
4786 break;
4787 default:
4788 unreachable("Store SSBO not implemented for this size.");
4789 }
4790 if (ctx->stage == fragment_fs)
4791 smem_op = aco_opcode::p_fs_buffer_store_smem;
4792
4793 if (smem) {
4794 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
4795 store->operands[0] = Operand(rsrc);
4796 if (start) {
4797 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4798 offset, Operand(start * elem_size_bytes));
4799 store->operands[1] = Operand(off);
4800 } else {
4801 store->operands[1] = Operand(offset);
4802 }
4803 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
4804 store->operands[1].setFixed(m0);
4805 store->operands[2] = Operand(write_data);
4806 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4807 store->dlc = false;
4808 store->disable_wqm = true;
4809 store->barrier = barrier_buffer;
4810 ctx->block->instructions.emplace_back(std::move(store));
4811 ctx->program->wb_smem_l1_on_end = true;
4812 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
4813 ctx->block->kind |= block_kind_needs_lowering;
4814 ctx->program->needs_exact = true;
4815 }
4816 } else {
4817 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
4818 store->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4819 store->operands[1] = Operand(rsrc);
4820 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4821 store->operands[3] = Operand(write_data);
4822 store->offset = start * elem_size_bytes;
4823 store->offen = (offset.type() == RegType::vgpr);
4824 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4825 store->dlc = false;
4826 store->disable_wqm = true;
4827 store->barrier = barrier_buffer;
4828 ctx->program->needs_exact = true;
4829 ctx->block->instructions.emplace_back(std::move(store));
4830 }
4831 }
4832 }
4833
4834 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4835 {
4836 /* return the previous value if dest is ever used */
4837 bool return_previous = false;
4838 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4839 return_previous = true;
4840 break;
4841 }
4842 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4843 return_previous = true;
4844 break;
4845 }
4846
4847 Builder bld(ctx->program, ctx->block);
4848 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
4849
4850 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
4851 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
4852 get_ssa_temp(ctx, instr->src[3].ssa), data);
4853
4854 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
4855 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4856 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4857
4858 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4859
4860 aco_opcode op32, op64;
4861 switch (instr->intrinsic) {
4862 case nir_intrinsic_ssbo_atomic_add:
4863 op32 = aco_opcode::buffer_atomic_add;
4864 op64 = aco_opcode::buffer_atomic_add_x2;
4865 break;
4866 case nir_intrinsic_ssbo_atomic_imin:
4867 op32 = aco_opcode::buffer_atomic_smin;
4868 op64 = aco_opcode::buffer_atomic_smin_x2;
4869 break;
4870 case nir_intrinsic_ssbo_atomic_umin:
4871 op32 = aco_opcode::buffer_atomic_umin;
4872 op64 = aco_opcode::buffer_atomic_umin_x2;
4873 break;
4874 case nir_intrinsic_ssbo_atomic_imax:
4875 op32 = aco_opcode::buffer_atomic_smax;
4876 op64 = aco_opcode::buffer_atomic_smax_x2;
4877 break;
4878 case nir_intrinsic_ssbo_atomic_umax:
4879 op32 = aco_opcode::buffer_atomic_umax;
4880 op64 = aco_opcode::buffer_atomic_umax_x2;
4881 break;
4882 case nir_intrinsic_ssbo_atomic_and:
4883 op32 = aco_opcode::buffer_atomic_and;
4884 op64 = aco_opcode::buffer_atomic_and_x2;
4885 break;
4886 case nir_intrinsic_ssbo_atomic_or:
4887 op32 = aco_opcode::buffer_atomic_or;
4888 op64 = aco_opcode::buffer_atomic_or_x2;
4889 break;
4890 case nir_intrinsic_ssbo_atomic_xor:
4891 op32 = aco_opcode::buffer_atomic_xor;
4892 op64 = aco_opcode::buffer_atomic_xor_x2;
4893 break;
4894 case nir_intrinsic_ssbo_atomic_exchange:
4895 op32 = aco_opcode::buffer_atomic_swap;
4896 op64 = aco_opcode::buffer_atomic_swap_x2;
4897 break;
4898 case nir_intrinsic_ssbo_atomic_comp_swap:
4899 op32 = aco_opcode::buffer_atomic_cmpswap;
4900 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
4901 break;
4902 default:
4903 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
4904 }
4905 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
4906 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4907 mubuf->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4908 mubuf->operands[1] = Operand(rsrc);
4909 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4910 mubuf->operands[3] = Operand(data);
4911 if (return_previous)
4912 mubuf->definitions[0] = Definition(dst);
4913 mubuf->offset = 0;
4914 mubuf->offen = (offset.type() == RegType::vgpr);
4915 mubuf->glc = return_previous;
4916 mubuf->dlc = false; /* Not needed for atomics */
4917 mubuf->disable_wqm = true;
4918 mubuf->barrier = barrier_buffer;
4919 ctx->program->needs_exact = true;
4920 ctx->block->instructions.emplace_back(std::move(mubuf));
4921 }
4922
4923 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
4924
4925 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4926 Builder bld(ctx->program, ctx->block);
4927 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
4928 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
4929 }
4930
4931 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
4932 {
4933 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4934 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4935
4936 if (addr.type() == RegType::vgpr)
4937 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
4938 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
4939 }
4940
4941 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
4942 {
4943 Builder bld(ctx->program, ctx->block);
4944 unsigned num_components = instr->num_components;
4945 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
4946
4947 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4948 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
4949
4950 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4951 bool dlc = glc && ctx->options->chip_class >= GFX10;
4952 aco_opcode op;
4953 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
4954 bool global = ctx->options->chip_class >= GFX9;
4955
4956 if (ctx->options->chip_class >= GFX7) {
4957 aco_opcode op;
4958 switch (num_bytes) {
4959 case 4:
4960 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
4961 break;
4962 case 8:
4963 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
4964 break;
4965 case 12:
4966 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
4967 break;
4968 case 16:
4969 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
4970 break;
4971 default:
4972 unreachable("load_global not implemented for this size.");
4973 }
4974
4975 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
4976 flat->operands[0] = Operand(addr);
4977 flat->operands[1] = Operand(s1);
4978 flat->glc = glc;
4979 flat->dlc = dlc;
4980 flat->barrier = barrier_buffer;
4981
4982 if (dst.type() == RegType::sgpr) {
4983 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4984 flat->definitions[0] = Definition(vec);
4985 ctx->block->instructions.emplace_back(std::move(flat));
4986 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
4987 } else {
4988 flat->definitions[0] = Definition(dst);
4989 ctx->block->instructions.emplace_back(std::move(flat));
4990 }
4991 emit_split_vector(ctx, dst, num_components);
4992 } else {
4993 assert(ctx->options->chip_class == GFX6);
4994
4995 /* GFX6 doesn't support loading vec3, expand to vec4. */
4996 num_bytes = num_bytes == 12 ? 16 : num_bytes;
4997
4998 aco_opcode op;
4999 switch (num_bytes) {
5000 case 4:
5001 op = aco_opcode::buffer_load_dword;
5002 break;
5003 case 8:
5004 op = aco_opcode::buffer_load_dwordx2;
5005 break;
5006 case 16:
5007 op = aco_opcode::buffer_load_dwordx4;
5008 break;
5009 default:
5010 unreachable("load_global not implemented for this size.");
5011 }
5012
5013 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5014
5015 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
5016 mubuf->operands[0] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5017 mubuf->operands[1] = Operand(rsrc);
5018 mubuf->operands[2] = Operand(0u);
5019 mubuf->glc = glc;
5020 mubuf->dlc = false;
5021 mubuf->offset = 0;
5022 mubuf->addr64 = addr.type() == RegType::vgpr;
5023 mubuf->disable_wqm = false;
5024 mubuf->barrier = barrier_buffer;
5025 aco_ptr<Instruction> instr = std::move(mubuf);
5026
5027 /* expand vector */
5028 if (dst.size() == 3) {
5029 Temp vec = bld.tmp(v4);
5030 instr->definitions[0] = Definition(vec);
5031 bld.insert(std::move(instr));
5032 emit_split_vector(ctx, vec, 4);
5033
5034 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
5035 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
5036 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
5037 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
5038 }
5039
5040 if (dst.type() == RegType::sgpr) {
5041 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5042 instr->definitions[0] = Definition(vec);
5043 bld.insert(std::move(instr));
5044 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
5045 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5046 } else {
5047 instr->definitions[0] = Definition(dst);
5048 bld.insert(std::move(instr));
5049 emit_split_vector(ctx, dst, num_components);
5050 }
5051 }
5052 } else {
5053 switch (num_bytes) {
5054 case 4:
5055 op = aco_opcode::s_load_dword;
5056 break;
5057 case 8:
5058 op = aco_opcode::s_load_dwordx2;
5059 break;
5060 case 12:
5061 case 16:
5062 op = aco_opcode::s_load_dwordx4;
5063 break;
5064 default:
5065 unreachable("load_global not implemented for this size.");
5066 }
5067 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
5068 load->operands[0] = Operand(addr);
5069 load->operands[1] = Operand(0u);
5070 load->definitions[0] = Definition(dst);
5071 load->glc = glc;
5072 load->dlc = dlc;
5073 load->barrier = barrier_buffer;
5074 assert(ctx->options->chip_class >= GFX8 || !glc);
5075
5076 if (dst.size() == 3) {
5077 /* trim vector */
5078 Temp vec = bld.tmp(s4);
5079 load->definitions[0] = Definition(vec);
5080 ctx->block->instructions.emplace_back(std::move(load));
5081 emit_split_vector(ctx, vec, 4);
5082
5083 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5084 emit_extract_vector(ctx, vec, 0, s1),
5085 emit_extract_vector(ctx, vec, 1, s1),
5086 emit_extract_vector(ctx, vec, 2, s1));
5087 } else {
5088 ctx->block->instructions.emplace_back(std::move(load));
5089 }
5090 }
5091 }
5092
5093 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
5094 {
5095 Builder bld(ctx->program, ctx->block);
5096 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5097
5098 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5099 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
5100
5101 if (ctx->options->chip_class >= GFX7)
5102 addr = as_vgpr(ctx, addr);
5103
5104 unsigned writemask = nir_intrinsic_write_mask(instr);
5105 while (writemask) {
5106 int start, count;
5107 u_bit_scan_consecutive_range(&writemask, &start, &count);
5108 if (count == 3 && ctx->options->chip_class == GFX6) {
5109 /* GFX6 doesn't support storing vec3, split it. */
5110 writemask |= 1u << (start + 2);
5111 count = 2;
5112 }
5113 unsigned num_bytes = count * elem_size_bytes;
5114
5115 Temp write_data = data;
5116 if (count != instr->num_components) {
5117 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5118 for (int i = 0; i < count; i++)
5119 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
5120 write_data = bld.tmp(RegType::vgpr, count);
5121 vec->definitions[0] = Definition(write_data);
5122 ctx->block->instructions.emplace_back(std::move(vec));
5123 }
5124
5125 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5126 unsigned offset = start * elem_size_bytes;
5127
5128 if (ctx->options->chip_class >= GFX7) {
5129 if (offset > 0 && ctx->options->chip_class < GFX9) {
5130 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
5131 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
5132 Temp carry = bld.tmp(bld.lm);
5133 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
5134
5135 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
5136 Operand(offset), addr0);
5137 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
5138 Operand(0u), addr1,
5139 carry).def(1).setHint(vcc);
5140
5141 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
5142
5143 offset = 0;
5144 }
5145
5146 bool global = ctx->options->chip_class >= GFX9;
5147 aco_opcode op;
5148 switch (num_bytes) {
5149 case 4:
5150 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
5151 break;
5152 case 8:
5153 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
5154 break;
5155 case 12:
5156 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
5157 break;
5158 case 16:
5159 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
5160 break;
5161 default:
5162 unreachable("store_global not implemented for this size.");
5163 }
5164
5165 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
5166 flat->operands[0] = Operand(addr);
5167 flat->operands[1] = Operand(s1);
5168 flat->operands[2] = Operand(data);
5169 flat->glc = glc;
5170 flat->dlc = false;
5171 flat->offset = offset;
5172 flat->disable_wqm = true;
5173 flat->barrier = barrier_buffer;
5174 ctx->program->needs_exact = true;
5175 ctx->block->instructions.emplace_back(std::move(flat));
5176 } else {
5177 assert(ctx->options->chip_class == GFX6);
5178
5179 aco_opcode op;
5180 switch (num_bytes) {
5181 case 4:
5182 op = aco_opcode::buffer_store_dword;
5183 break;
5184 case 8:
5185 op = aco_opcode::buffer_store_dwordx2;
5186 break;
5187 case 16:
5188 op = aco_opcode::buffer_store_dwordx4;
5189 break;
5190 default:
5191 unreachable("store_global not implemented for this size.");
5192 }
5193
5194 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5195
5196 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
5197 mubuf->operands[0] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5198 mubuf->operands[1] = Operand(rsrc);
5199 mubuf->operands[2] = Operand(0u);
5200 mubuf->operands[3] = Operand(write_data);
5201 mubuf->glc = glc;
5202 mubuf->dlc = false;
5203 mubuf->offset = offset;
5204 mubuf->addr64 = addr.type() == RegType::vgpr;
5205 mubuf->disable_wqm = true;
5206 mubuf->barrier = barrier_buffer;
5207 ctx->program->needs_exact = true;
5208 ctx->block->instructions.emplace_back(std::move(mubuf));
5209 }
5210 }
5211 }
5212
5213 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5214 {
5215 /* return the previous value if dest is ever used */
5216 bool return_previous = false;
5217 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5218 return_previous = true;
5219 break;
5220 }
5221 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5222 return_previous = true;
5223 break;
5224 }
5225
5226 Builder bld(ctx->program, ctx->block);
5227 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5228 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5229
5230 if (ctx->options->chip_class >= GFX7)
5231 addr = as_vgpr(ctx, addr);
5232
5233 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
5234 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5235 get_ssa_temp(ctx, instr->src[2].ssa), data);
5236
5237 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5238
5239 aco_opcode op32, op64;
5240
5241 if (ctx->options->chip_class >= GFX7) {
5242 bool global = ctx->options->chip_class >= GFX9;
5243 switch (instr->intrinsic) {
5244 case nir_intrinsic_global_atomic_add:
5245 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
5246 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
5247 break;
5248 case nir_intrinsic_global_atomic_imin:
5249 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
5250 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
5251 break;
5252 case nir_intrinsic_global_atomic_umin:
5253 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
5254 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
5255 break;
5256 case nir_intrinsic_global_atomic_imax:
5257 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
5258 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
5259 break;
5260 case nir_intrinsic_global_atomic_umax:
5261 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
5262 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
5263 break;
5264 case nir_intrinsic_global_atomic_and:
5265 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
5266 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
5267 break;
5268 case nir_intrinsic_global_atomic_or:
5269 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
5270 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
5271 break;
5272 case nir_intrinsic_global_atomic_xor:
5273 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
5274 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
5275 break;
5276 case nir_intrinsic_global_atomic_exchange:
5277 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
5278 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
5279 break;
5280 case nir_intrinsic_global_atomic_comp_swap:
5281 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
5282 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
5283 break;
5284 default:
5285 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5286 }
5287
5288 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5289 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
5290 flat->operands[0] = Operand(addr);
5291 flat->operands[1] = Operand(s1);
5292 flat->operands[2] = Operand(data);
5293 if (return_previous)
5294 flat->definitions[0] = Definition(dst);
5295 flat->glc = return_previous;
5296 flat->dlc = false; /* Not needed for atomics */
5297 flat->offset = 0;
5298 flat->disable_wqm = true;
5299 flat->barrier = barrier_buffer;
5300 ctx->program->needs_exact = true;
5301 ctx->block->instructions.emplace_back(std::move(flat));
5302 } else {
5303 assert(ctx->options->chip_class == GFX6);
5304
5305 switch (instr->intrinsic) {
5306 case nir_intrinsic_global_atomic_add:
5307 op32 = aco_opcode::buffer_atomic_add;
5308 op64 = aco_opcode::buffer_atomic_add_x2;
5309 break;
5310 case nir_intrinsic_global_atomic_imin:
5311 op32 = aco_opcode::buffer_atomic_smin;
5312 op64 = aco_opcode::buffer_atomic_smin_x2;
5313 break;
5314 case nir_intrinsic_global_atomic_umin:
5315 op32 = aco_opcode::buffer_atomic_umin;
5316 op64 = aco_opcode::buffer_atomic_umin_x2;
5317 break;
5318 case nir_intrinsic_global_atomic_imax:
5319 op32 = aco_opcode::buffer_atomic_smax;
5320 op64 = aco_opcode::buffer_atomic_smax_x2;
5321 break;
5322 case nir_intrinsic_global_atomic_umax:
5323 op32 = aco_opcode::buffer_atomic_umax;
5324 op64 = aco_opcode::buffer_atomic_umax_x2;
5325 break;
5326 case nir_intrinsic_global_atomic_and:
5327 op32 = aco_opcode::buffer_atomic_and;
5328 op64 = aco_opcode::buffer_atomic_and_x2;
5329 break;
5330 case nir_intrinsic_global_atomic_or:
5331 op32 = aco_opcode::buffer_atomic_or;
5332 op64 = aco_opcode::buffer_atomic_or_x2;
5333 break;
5334 case nir_intrinsic_global_atomic_xor:
5335 op32 = aco_opcode::buffer_atomic_xor;
5336 op64 = aco_opcode::buffer_atomic_xor_x2;
5337 break;
5338 case nir_intrinsic_global_atomic_exchange:
5339 op32 = aco_opcode::buffer_atomic_swap;
5340 op64 = aco_opcode::buffer_atomic_swap_x2;
5341 break;
5342 case nir_intrinsic_global_atomic_comp_swap:
5343 op32 = aco_opcode::buffer_atomic_cmpswap;
5344 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5345 break;
5346 default:
5347 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5348 }
5349
5350 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5351
5352 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5353
5354 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5355 mubuf->operands[0] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5356 mubuf->operands[1] = Operand(rsrc);
5357 mubuf->operands[2] = Operand(0u);
5358 mubuf->operands[3] = Operand(data);
5359 if (return_previous)
5360 mubuf->definitions[0] = Definition(dst);
5361 mubuf->glc = return_previous;
5362 mubuf->dlc = false;
5363 mubuf->offset = 0;
5364 mubuf->addr64 = addr.type() == RegType::vgpr;
5365 mubuf->disable_wqm = true;
5366 mubuf->barrier = barrier_buffer;
5367 ctx->program->needs_exact = true;
5368 ctx->block->instructions.emplace_back(std::move(mubuf));
5369 }
5370 }
5371
5372 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
5373 Builder bld(ctx->program, ctx->block);
5374 switch(instr->intrinsic) {
5375 case nir_intrinsic_group_memory_barrier:
5376 case nir_intrinsic_memory_barrier:
5377 bld.barrier(aco_opcode::p_memory_barrier_common);
5378 break;
5379 case nir_intrinsic_memory_barrier_buffer:
5380 bld.barrier(aco_opcode::p_memory_barrier_buffer);
5381 break;
5382 case nir_intrinsic_memory_barrier_image:
5383 bld.barrier(aco_opcode::p_memory_barrier_image);
5384 break;
5385 case nir_intrinsic_memory_barrier_shared:
5386 bld.barrier(aco_opcode::p_memory_barrier_shared);
5387 break;
5388 default:
5389 unreachable("Unimplemented memory barrier intrinsic");
5390 break;
5391 }
5392 }
5393
5394 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5395 {
5396 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
5397 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5398 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
5399 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5400 Builder bld(ctx->program, ctx->block);
5401
5402 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5403 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5404 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
5405 }
5406
5407 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5408 {
5409 unsigned writemask = nir_intrinsic_write_mask(instr);
5410 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5411 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5412 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5413 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
5414
5415 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5416 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
5417 }
5418
5419 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5420 {
5421 unsigned offset = nir_intrinsic_base(instr);
5422 Operand m = load_lds_size_m0(ctx);
5423 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5424 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5425
5426 unsigned num_operands = 3;
5427 aco_opcode op32, op64, op32_rtn, op64_rtn;
5428 switch(instr->intrinsic) {
5429 case nir_intrinsic_shared_atomic_add:
5430 op32 = aco_opcode::ds_add_u32;
5431 op64 = aco_opcode::ds_add_u64;
5432 op32_rtn = aco_opcode::ds_add_rtn_u32;
5433 op64_rtn = aco_opcode::ds_add_rtn_u64;
5434 break;
5435 case nir_intrinsic_shared_atomic_imin:
5436 op32 = aco_opcode::ds_min_i32;
5437 op64 = aco_opcode::ds_min_i64;
5438 op32_rtn = aco_opcode::ds_min_rtn_i32;
5439 op64_rtn = aco_opcode::ds_min_rtn_i64;
5440 break;
5441 case nir_intrinsic_shared_atomic_umin:
5442 op32 = aco_opcode::ds_min_u32;
5443 op64 = aco_opcode::ds_min_u64;
5444 op32_rtn = aco_opcode::ds_min_rtn_u32;
5445 op64_rtn = aco_opcode::ds_min_rtn_u64;
5446 break;
5447 case nir_intrinsic_shared_atomic_imax:
5448 op32 = aco_opcode::ds_max_i32;
5449 op64 = aco_opcode::ds_max_i64;
5450 op32_rtn = aco_opcode::ds_max_rtn_i32;
5451 op64_rtn = aco_opcode::ds_max_rtn_i64;
5452 break;
5453 case nir_intrinsic_shared_atomic_umax:
5454 op32 = aco_opcode::ds_max_u32;
5455 op64 = aco_opcode::ds_max_u64;
5456 op32_rtn = aco_opcode::ds_max_rtn_u32;
5457 op64_rtn = aco_opcode::ds_max_rtn_u64;
5458 break;
5459 case nir_intrinsic_shared_atomic_and:
5460 op32 = aco_opcode::ds_and_b32;
5461 op64 = aco_opcode::ds_and_b64;
5462 op32_rtn = aco_opcode::ds_and_rtn_b32;
5463 op64_rtn = aco_opcode::ds_and_rtn_b64;
5464 break;
5465 case nir_intrinsic_shared_atomic_or:
5466 op32 = aco_opcode::ds_or_b32;
5467 op64 = aco_opcode::ds_or_b64;
5468 op32_rtn = aco_opcode::ds_or_rtn_b32;
5469 op64_rtn = aco_opcode::ds_or_rtn_b64;
5470 break;
5471 case nir_intrinsic_shared_atomic_xor:
5472 op32 = aco_opcode::ds_xor_b32;
5473 op64 = aco_opcode::ds_xor_b64;
5474 op32_rtn = aco_opcode::ds_xor_rtn_b32;
5475 op64_rtn = aco_opcode::ds_xor_rtn_b64;
5476 break;
5477 case nir_intrinsic_shared_atomic_exchange:
5478 op32 = aco_opcode::ds_write_b32;
5479 op64 = aco_opcode::ds_write_b64;
5480 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
5481 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
5482 break;
5483 case nir_intrinsic_shared_atomic_comp_swap:
5484 op32 = aco_opcode::ds_cmpst_b32;
5485 op64 = aco_opcode::ds_cmpst_b64;
5486 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
5487 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
5488 num_operands = 4;
5489 break;
5490 default:
5491 unreachable("Unhandled shared atomic intrinsic");
5492 }
5493
5494 /* return the previous value if dest is ever used */
5495 bool return_previous = false;
5496 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5497 return_previous = true;
5498 break;
5499 }
5500 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5501 return_previous = true;
5502 break;
5503 }
5504
5505 aco_opcode op;
5506 if (data.size() == 1) {
5507 assert(instr->dest.ssa.bit_size == 32);
5508 op = return_previous ? op32_rtn : op32;
5509 } else {
5510 assert(instr->dest.ssa.bit_size == 64);
5511 op = return_previous ? op64_rtn : op64;
5512 }
5513
5514 if (offset > 65535) {
5515 Builder bld(ctx->program, ctx->block);
5516 address = bld.vadd32(bld.def(v1), Operand(offset), address);
5517 offset = 0;
5518 }
5519
5520 aco_ptr<DS_instruction> ds;
5521 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
5522 ds->operands[0] = Operand(address);
5523 ds->operands[1] = Operand(data);
5524 if (num_operands == 4)
5525 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
5526 ds->operands[num_operands - 1] = m;
5527 ds->offset0 = offset;
5528 if (return_previous)
5529 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
5530 ctx->block->instructions.emplace_back(std::move(ds));
5531 }
5532
5533 Temp get_scratch_resource(isel_context *ctx)
5534 {
5535 Builder bld(ctx->program, ctx->block);
5536 Temp scratch_addr = ctx->program->private_segment_buffer;
5537 if (ctx->stage != compute_cs)
5538 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
5539
5540 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
5541 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
5542
5543 if (ctx->program->chip_class >= GFX10) {
5544 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5545 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5546 S_008F0C_RESOURCE_LEVEL(1);
5547 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
5548 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5549 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5550 }
5551
5552 /* older generations need element size = 16 bytes. element size removed in GFX9 */
5553 if (ctx->program->chip_class <= GFX8)
5554 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
5555
5556 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
5557 }
5558
5559 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5560 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
5561 Builder bld(ctx->program, ctx->block);
5562 Temp rsrc = get_scratch_resource(ctx);
5563 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5564 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5565
5566 aco_opcode op;
5567 switch (dst.size()) {
5568 case 1:
5569 op = aco_opcode::buffer_load_dword;
5570 break;
5571 case 2:
5572 op = aco_opcode::buffer_load_dwordx2;
5573 break;
5574 case 3:
5575 op = aco_opcode::buffer_load_dwordx3;
5576 break;
5577 case 4:
5578 op = aco_opcode::buffer_load_dwordx4;
5579 break;
5580 case 6:
5581 case 8: {
5582 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5583 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
5584 bld.def(v4), offset, rsrc,
5585 ctx->program->scratch_offset, 0, true);
5586 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
5587 aco_opcode::buffer_load_dwordx4,
5588 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
5589 offset, rsrc, ctx->program->scratch_offset, 16, true);
5590 emit_split_vector(ctx, lower, 2);
5591 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
5592 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
5593 if (dst.size() == 8) {
5594 emit_split_vector(ctx, upper, 2);
5595 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
5596 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
5597 } else {
5598 elems[2] = upper;
5599 }
5600
5601 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
5602 Format::PSEUDO, dst.size() / 2, 1)};
5603 for (unsigned i = 0; i < dst.size() / 2; i++)
5604 vec->operands[i] = Operand(elems[i]);
5605 vec->definitions[0] = Definition(dst);
5606 bld.insert(std::move(vec));
5607 ctx->allocated_vec.emplace(dst.id(), elems);
5608 return;
5609 }
5610 default:
5611 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
5612 }
5613
5614 bld.mubuf(op, Definition(dst), offset, rsrc, ctx->program->scratch_offset, 0, true);
5615 emit_split_vector(ctx, dst, instr->num_components);
5616 }
5617
5618 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5619 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
5620 Builder bld(ctx->program, ctx->block);
5621 Temp rsrc = get_scratch_resource(ctx);
5622 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5623 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5624
5625 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5626 unsigned writemask = nir_intrinsic_write_mask(instr);
5627
5628 while (writemask) {
5629 int start, count;
5630 u_bit_scan_consecutive_range(&writemask, &start, &count);
5631 int num_bytes = count * elem_size_bytes;
5632
5633 if (num_bytes > 16) {
5634 assert(elem_size_bytes == 8);
5635 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5636 count = 2;
5637 num_bytes = 16;
5638 }
5639
5640 // TODO: check alignment of sub-dword stores
5641 // TODO: split 3 bytes. there is no store instruction for that
5642
5643 Temp write_data;
5644 if (count != instr->num_components) {
5645 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5646 for (int i = 0; i < count; i++) {
5647 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
5648 vec->operands[i] = Operand(elem);
5649 }
5650 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
5651 vec->definitions[0] = Definition(write_data);
5652 ctx->block->instructions.emplace_back(std::move(vec));
5653 } else {
5654 write_data = data;
5655 }
5656
5657 aco_opcode op;
5658 switch (num_bytes) {
5659 case 4:
5660 op = aco_opcode::buffer_store_dword;
5661 break;
5662 case 8:
5663 op = aco_opcode::buffer_store_dwordx2;
5664 break;
5665 case 12:
5666 op = aco_opcode::buffer_store_dwordx3;
5667 break;
5668 case 16:
5669 op = aco_opcode::buffer_store_dwordx4;
5670 break;
5671 default:
5672 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
5673 }
5674
5675 bld.mubuf(op, offset, rsrc, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
5676 }
5677 }
5678
5679 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
5680 uint8_t log2_ps_iter_samples;
5681 if (ctx->program->info->ps.force_persample) {
5682 log2_ps_iter_samples =
5683 util_logbase2(ctx->options->key.fs.num_samples);
5684 } else {
5685 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
5686 }
5687
5688 /* The bit pattern matches that used by fixed function fragment
5689 * processing. */
5690 static const unsigned ps_iter_masks[] = {
5691 0xffff, /* not used */
5692 0x5555,
5693 0x1111,
5694 0x0101,
5695 0x0001,
5696 };
5697 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
5698
5699 Builder bld(ctx->program, ctx->block);
5700
5701 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
5702 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
5703 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
5704 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
5705 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5706 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
5707 }
5708
5709 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
5710 Builder bld(ctx->program, ctx->block);
5711
5712 unsigned stream = nir_intrinsic_stream_id(instr);
5713 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5714 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
5715 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
5716
5717 /* get GSVS ring */
5718 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
5719
5720 unsigned num_components =
5721 ctx->program->info->gs.num_stream_output_components[stream];
5722 assert(num_components);
5723
5724 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
5725 unsigned stream_offset = 0;
5726 for (unsigned i = 0; i < stream; i++) {
5727 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
5728 stream_offset += prev_stride * ctx->program->wave_size;
5729 }
5730
5731 /* Limit on the stride field for <= GFX7. */
5732 assert(stride < (1 << 14));
5733
5734 Temp gsvs_dwords[4];
5735 for (unsigned i = 0; i < 4; i++)
5736 gsvs_dwords[i] = bld.tmp(s1);
5737 bld.pseudo(aco_opcode::p_split_vector,
5738 Definition(gsvs_dwords[0]),
5739 Definition(gsvs_dwords[1]),
5740 Definition(gsvs_dwords[2]),
5741 Definition(gsvs_dwords[3]),
5742 gsvs_ring);
5743
5744 if (stream_offset) {
5745 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
5746
5747 Temp carry = bld.tmp(s1);
5748 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
5749 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
5750 }
5751
5752 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
5753 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
5754
5755 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5756 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
5757
5758 unsigned offset = 0;
5759 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
5760 if (ctx->program->info->gs.output_streams[i] != stream)
5761 continue;
5762
5763 for (unsigned j = 0; j < 4; j++) {
5764 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
5765 continue;
5766
5767 if (ctx->outputs.mask[i] & (1 << j)) {
5768 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
5769 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
5770 if (const_offset >= 4096u) {
5771 if (vaddr_offset.isUndefined())
5772 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
5773 else
5774 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
5775 const_offset %= 4096u;
5776 }
5777
5778 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
5779 mtbuf->operands[0] = vaddr_offset;
5780 mtbuf->operands[1] = Operand(gsvs_ring);
5781 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
5782 mtbuf->operands[3] = Operand(ctx->outputs.outputs[i][j]);
5783 mtbuf->offen = !vaddr_offset.isUndefined();
5784 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
5785 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
5786 mtbuf->offset = const_offset;
5787 mtbuf->glc = true;
5788 mtbuf->slc = true;
5789 mtbuf->barrier = barrier_gs_data;
5790 mtbuf->can_reorder = true;
5791 bld.insert(std::move(mtbuf));
5792 }
5793
5794 offset += ctx->shader->info.gs.vertices_out;
5795 }
5796
5797 /* outputs for the next vertex are undefined and keeping them around can
5798 * create invalid IR with control flow */
5799 ctx->outputs.mask[i] = 0;
5800 }
5801
5802 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
5803 }
5804
5805 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
5806 {
5807 Builder bld(ctx->program, ctx->block);
5808
5809 if (cluster_size == 1) {
5810 return src;
5811 } if (op == nir_op_iand && cluster_size == 4) {
5812 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
5813 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5814 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
5815 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
5816 } else if (op == nir_op_ior && cluster_size == 4) {
5817 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
5818 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
5819 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
5820 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
5821 //subgroupAnd(val) -> (exec & ~val) == 0
5822 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
5823 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
5824 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
5825 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
5826 //subgroupOr(val) -> (val & exec) != 0
5827 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
5828 return bool_to_vector_condition(ctx, tmp);
5829 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
5830 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
5831 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5832 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
5833 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
5834 return bool_to_vector_condition(ctx, tmp);
5835 } else {
5836 //subgroupClustered{And,Or,Xor}(val, n) ->
5837 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
5838 //cluster_offset = ~(n - 1) & lane_id
5839 //cluster_mask = ((1 << n) - 1)
5840 //subgroupClusteredAnd():
5841 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
5842 //subgroupClusteredOr():
5843 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
5844 //subgroupClusteredXor():
5845 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
5846 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
5847 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
5848
5849 Temp tmp;
5850 if (op == nir_op_iand)
5851 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5852 else
5853 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5854
5855 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
5856
5857 if (ctx->program->chip_class <= GFX7)
5858 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
5859 else if (ctx->program->wave_size == 64)
5860 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
5861 else
5862 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
5863 tmp = emit_extract_vector(ctx, tmp, 0, v1);
5864 if (cluster_mask != 0xffffffff)
5865 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
5866
5867 Definition cmp_def = Definition();
5868 if (op == nir_op_iand) {
5869 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
5870 } else if (op == nir_op_ior) {
5871 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5872 } else if (op == nir_op_ixor) {
5873 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
5874 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
5875 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5876 }
5877 cmp_def.setHint(vcc);
5878 return cmp_def.getTemp();
5879 }
5880 }
5881
5882 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
5883 {
5884 Builder bld(ctx->program, ctx->block);
5885
5886 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
5887 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
5888 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
5889 Temp tmp;
5890 if (op == nir_op_iand)
5891 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5892 else
5893 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
5894
5895 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
5896 Temp lo = lohi.def(0).getTemp();
5897 Temp hi = lohi.def(1).getTemp();
5898 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
5899
5900 Definition cmp_def = Definition();
5901 if (op == nir_op_iand)
5902 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5903 else if (op == nir_op_ior)
5904 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5905 else if (op == nir_op_ixor)
5906 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
5907 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
5908 cmp_def.setHint(vcc);
5909 return cmp_def.getTemp();
5910 }
5911
5912 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
5913 {
5914 Builder bld(ctx->program, ctx->block);
5915
5916 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
5917 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
5918 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
5919 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
5920 if (op == nir_op_iand)
5921 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5922 else if (op == nir_op_ior)
5923 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5924 else if (op == nir_op_ixor)
5925 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5926
5927 assert(false);
5928 return Temp();
5929 }
5930
5931 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
5932 {
5933 Builder bld(ctx->program, ctx->block);
5934 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
5935 if (src.regClass().type() == RegType::vgpr) {
5936 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
5937 } else if (src.regClass() == s1) {
5938 bld.sop1(aco_opcode::s_mov_b32, dst, src);
5939 } else if (src.regClass() == s2) {
5940 bld.sop1(aco_opcode::s_mov_b64, dst, src);
5941 } else {
5942 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5943 nir_print_instr(&instr->instr, stderr);
5944 fprintf(stderr, "\n");
5945 }
5946 }
5947
5948 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
5949 {
5950 Builder bld(ctx->program, ctx->block);
5951 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
5952 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
5953 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
5954
5955 Temp ddx_1, ddx_2, ddy_1, ddy_2;
5956 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
5957 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
5958 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
5959
5960 /* Build DD X/Y */
5961 if (ctx->program->chip_class >= GFX8) {
5962 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
5963 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
5964 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
5965 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
5966 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
5967 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
5968 } else {
5969 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
5970 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
5971 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
5972 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
5973 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
5974 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
5975 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
5976 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
5977 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
5978 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
5979 }
5980
5981 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
5982 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
5983 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
5984 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
5985 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
5986 Temp wqm1 = bld.tmp(v1);
5987 emit_wqm(ctx, tmp1, wqm1, true);
5988 Temp wqm2 = bld.tmp(v1);
5989 emit_wqm(ctx, tmp2, wqm2, true);
5990 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
5991 return;
5992 }
5993
5994 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
5995 {
5996 Builder bld(ctx->program, ctx->block);
5997 switch(instr->intrinsic) {
5998 case nir_intrinsic_load_barycentric_sample:
5999 case nir_intrinsic_load_barycentric_pixel:
6000 case nir_intrinsic_load_barycentric_centroid: {
6001 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
6002 Temp bary = Temp(0, s2);
6003 switch (mode) {
6004 case INTERP_MODE_SMOOTH:
6005 case INTERP_MODE_NONE:
6006 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6007 bary = get_arg(ctx, ctx->args->ac.persp_center);
6008 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6009 bary = ctx->persp_centroid;
6010 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6011 bary = get_arg(ctx, ctx->args->ac.persp_sample);
6012 break;
6013 case INTERP_MODE_NOPERSPECTIVE:
6014 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6015 bary = get_arg(ctx, ctx->args->ac.linear_center);
6016 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6017 bary = ctx->linear_centroid;
6018 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6019 bary = get_arg(ctx, ctx->args->ac.linear_sample);
6020 break;
6021 default:
6022 break;
6023 }
6024 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6025 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
6026 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
6027 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6028 Operand(p1), Operand(p2));
6029 emit_split_vector(ctx, dst, 2);
6030 break;
6031 }
6032 case nir_intrinsic_load_barycentric_model: {
6033 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
6034
6035 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6036 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
6037 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
6038 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
6039 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6040 Operand(p1), Operand(p2), Operand(p3));
6041 emit_split_vector(ctx, dst, 3);
6042 break;
6043 }
6044 case nir_intrinsic_load_barycentric_at_sample: {
6045 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
6046 switch (ctx->options->key.fs.num_samples) {
6047 case 2: sample_pos_offset += 1 << 3; break;
6048 case 4: sample_pos_offset += 3 << 3; break;
6049 case 8: sample_pos_offset += 7 << 3; break;
6050 default: break;
6051 }
6052 Temp sample_pos;
6053 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6054 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
6055 Temp private_segment_buffer = ctx->program->private_segment_buffer;
6056 if (addr.type() == RegType::sgpr) {
6057 Operand offset;
6058 if (const_addr) {
6059 sample_pos_offset += const_addr->u32 << 3;
6060 offset = Operand(sample_pos_offset);
6061 } else if (ctx->options->chip_class >= GFX9) {
6062 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6063 } else {
6064 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
6065 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6066 }
6067
6068 Operand off = bld.copy(bld.def(s1), Operand(offset));
6069 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
6070
6071 } else if (ctx->options->chip_class >= GFX9) {
6072 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6073 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
6074 } else if (ctx->options->chip_class >= GFX7) {
6075 /* addr += private_segment_buffer + sample_pos_offset */
6076 Temp tmp0 = bld.tmp(s1);
6077 Temp tmp1 = bld.tmp(s1);
6078 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
6079 Definition scc_tmp = bld.def(s1, scc);
6080 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
6081 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
6082 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6083 Temp pck0 = bld.tmp(v1);
6084 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
6085 tmp1 = as_vgpr(ctx, tmp1);
6086 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
6087 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
6088
6089 /* sample_pos = flat_load_dwordx2 addr */
6090 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
6091 } else {
6092 assert(ctx->options->chip_class == GFX6);
6093
6094 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6095 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6096 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
6097
6098 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6099 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
6100
6101 sample_pos = bld.tmp(v2);
6102
6103 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
6104 load->definitions[0] = Definition(sample_pos);
6105 load->operands[0] = Operand(addr);
6106 load->operands[1] = Operand(rsrc);
6107 load->operands[2] = Operand(0u);
6108 load->offset = sample_pos_offset;
6109 load->offen = 0;
6110 load->addr64 = true;
6111 load->glc = false;
6112 load->dlc = false;
6113 load->disable_wqm = false;
6114 load->barrier = barrier_none;
6115 load->can_reorder = true;
6116 ctx->block->instructions.emplace_back(std::move(load));
6117 }
6118
6119 /* sample_pos -= 0.5 */
6120 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
6121 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
6122 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
6123 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
6124 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
6125
6126 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6127 break;
6128 }
6129 case nir_intrinsic_load_barycentric_at_offset: {
6130 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
6131 RegClass rc = RegClass(offset.type(), 1);
6132 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
6133 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
6134 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6135 break;
6136 }
6137 case nir_intrinsic_load_front_face: {
6138 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6139 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
6140 break;
6141 }
6142 case nir_intrinsic_load_view_index:
6143 case nir_intrinsic_load_layer_id: {
6144 if (instr->intrinsic == nir_intrinsic_load_view_index && (ctx->stage & (sw_vs | sw_gs))) {
6145 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6146 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
6147 break;
6148 }
6149
6150 unsigned idx = nir_intrinsic_base(instr);
6151 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6152 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
6153 break;
6154 }
6155 case nir_intrinsic_load_frag_coord: {
6156 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
6157 break;
6158 }
6159 case nir_intrinsic_load_sample_pos: {
6160 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
6161 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
6162 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6163 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
6164 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
6165 break;
6166 }
6167 case nir_intrinsic_load_interpolated_input:
6168 visit_load_interpolated_input(ctx, instr);
6169 break;
6170 case nir_intrinsic_store_output:
6171 visit_store_output(ctx, instr);
6172 break;
6173 case nir_intrinsic_load_input:
6174 case nir_intrinsic_load_input_vertex:
6175 visit_load_input(ctx, instr);
6176 break;
6177 case nir_intrinsic_load_per_vertex_input:
6178 visit_load_per_vertex_input(ctx, instr);
6179 break;
6180 case nir_intrinsic_load_ubo:
6181 visit_load_ubo(ctx, instr);
6182 break;
6183 case nir_intrinsic_load_push_constant:
6184 visit_load_push_constant(ctx, instr);
6185 break;
6186 case nir_intrinsic_load_constant:
6187 visit_load_constant(ctx, instr);
6188 break;
6189 case nir_intrinsic_vulkan_resource_index:
6190 visit_load_resource(ctx, instr);
6191 break;
6192 case nir_intrinsic_discard:
6193 visit_discard(ctx, instr);
6194 break;
6195 case nir_intrinsic_discard_if:
6196 visit_discard_if(ctx, instr);
6197 break;
6198 case nir_intrinsic_load_shared:
6199 visit_load_shared(ctx, instr);
6200 break;
6201 case nir_intrinsic_store_shared:
6202 visit_store_shared(ctx, instr);
6203 break;
6204 case nir_intrinsic_shared_atomic_add:
6205 case nir_intrinsic_shared_atomic_imin:
6206 case nir_intrinsic_shared_atomic_umin:
6207 case nir_intrinsic_shared_atomic_imax:
6208 case nir_intrinsic_shared_atomic_umax:
6209 case nir_intrinsic_shared_atomic_and:
6210 case nir_intrinsic_shared_atomic_or:
6211 case nir_intrinsic_shared_atomic_xor:
6212 case nir_intrinsic_shared_atomic_exchange:
6213 case nir_intrinsic_shared_atomic_comp_swap:
6214 visit_shared_atomic(ctx, instr);
6215 break;
6216 case nir_intrinsic_image_deref_load:
6217 visit_image_load(ctx, instr);
6218 break;
6219 case nir_intrinsic_image_deref_store:
6220 visit_image_store(ctx, instr);
6221 break;
6222 case nir_intrinsic_image_deref_atomic_add:
6223 case nir_intrinsic_image_deref_atomic_umin:
6224 case nir_intrinsic_image_deref_atomic_imin:
6225 case nir_intrinsic_image_deref_atomic_umax:
6226 case nir_intrinsic_image_deref_atomic_imax:
6227 case nir_intrinsic_image_deref_atomic_and:
6228 case nir_intrinsic_image_deref_atomic_or:
6229 case nir_intrinsic_image_deref_atomic_xor:
6230 case nir_intrinsic_image_deref_atomic_exchange:
6231 case nir_intrinsic_image_deref_atomic_comp_swap:
6232 visit_image_atomic(ctx, instr);
6233 break;
6234 case nir_intrinsic_image_deref_size:
6235 visit_image_size(ctx, instr);
6236 break;
6237 case nir_intrinsic_load_ssbo:
6238 visit_load_ssbo(ctx, instr);
6239 break;
6240 case nir_intrinsic_store_ssbo:
6241 visit_store_ssbo(ctx, instr);
6242 break;
6243 case nir_intrinsic_load_global:
6244 visit_load_global(ctx, instr);
6245 break;
6246 case nir_intrinsic_store_global:
6247 visit_store_global(ctx, instr);
6248 break;
6249 case nir_intrinsic_global_atomic_add:
6250 case nir_intrinsic_global_atomic_imin:
6251 case nir_intrinsic_global_atomic_umin:
6252 case nir_intrinsic_global_atomic_imax:
6253 case nir_intrinsic_global_atomic_umax:
6254 case nir_intrinsic_global_atomic_and:
6255 case nir_intrinsic_global_atomic_or:
6256 case nir_intrinsic_global_atomic_xor:
6257 case nir_intrinsic_global_atomic_exchange:
6258 case nir_intrinsic_global_atomic_comp_swap:
6259 visit_global_atomic(ctx, instr);
6260 break;
6261 case nir_intrinsic_ssbo_atomic_add:
6262 case nir_intrinsic_ssbo_atomic_imin:
6263 case nir_intrinsic_ssbo_atomic_umin:
6264 case nir_intrinsic_ssbo_atomic_imax:
6265 case nir_intrinsic_ssbo_atomic_umax:
6266 case nir_intrinsic_ssbo_atomic_and:
6267 case nir_intrinsic_ssbo_atomic_or:
6268 case nir_intrinsic_ssbo_atomic_xor:
6269 case nir_intrinsic_ssbo_atomic_exchange:
6270 case nir_intrinsic_ssbo_atomic_comp_swap:
6271 visit_atomic_ssbo(ctx, instr);
6272 break;
6273 case nir_intrinsic_load_scratch:
6274 visit_load_scratch(ctx, instr);
6275 break;
6276 case nir_intrinsic_store_scratch:
6277 visit_store_scratch(ctx, instr);
6278 break;
6279 case nir_intrinsic_get_buffer_size:
6280 visit_get_buffer_size(ctx, instr);
6281 break;
6282 case nir_intrinsic_control_barrier: {
6283 unsigned* bsize = ctx->program->info->cs.block_size;
6284 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
6285 if (workgroup_size > ctx->program->wave_size)
6286 bld.sopp(aco_opcode::s_barrier);
6287 break;
6288 }
6289 case nir_intrinsic_group_memory_barrier:
6290 case nir_intrinsic_memory_barrier:
6291 case nir_intrinsic_memory_barrier_buffer:
6292 case nir_intrinsic_memory_barrier_image:
6293 case nir_intrinsic_memory_barrier_shared:
6294 emit_memory_barrier(ctx, instr);
6295 break;
6296 case nir_intrinsic_memory_barrier_tcs_patch:
6297 break;
6298 case nir_intrinsic_load_num_work_groups: {
6299 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6300 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
6301 emit_split_vector(ctx, dst, 3);
6302 break;
6303 }
6304 case nir_intrinsic_load_local_invocation_id: {
6305 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6306 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
6307 emit_split_vector(ctx, dst, 3);
6308 break;
6309 }
6310 case nir_intrinsic_load_work_group_id: {
6311 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6312 struct ac_arg *args = ctx->args->ac.workgroup_ids;
6313 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6314 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
6315 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
6316 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
6317 emit_split_vector(ctx, dst, 3);
6318 break;
6319 }
6320 case nir_intrinsic_load_local_invocation_index: {
6321 Temp id = emit_mbcnt(ctx, bld.def(v1));
6322
6323 /* The tg_size bits [6:11] contain the subgroup id,
6324 * we need this multiplied by the wave size, and then OR the thread id to it.
6325 */
6326 if (ctx->program->wave_size == 64) {
6327 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
6328 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
6329 get_arg(ctx, ctx->args->ac.tg_size));
6330 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
6331 } else {
6332 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
6333 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
6334 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6335 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
6336 }
6337 break;
6338 }
6339 case nir_intrinsic_load_subgroup_id: {
6340 if (ctx->stage == compute_cs) {
6341 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
6342 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6343 } else {
6344 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
6345 }
6346 break;
6347 }
6348 case nir_intrinsic_load_subgroup_invocation: {
6349 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
6350 break;
6351 }
6352 case nir_intrinsic_load_num_subgroups: {
6353 if (ctx->stage == compute_cs)
6354 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
6355 get_arg(ctx, ctx->args->ac.tg_size));
6356 else
6357 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
6358 break;
6359 }
6360 case nir_intrinsic_ballot: {
6361 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6362 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6363 Definition tmp = bld.def(dst.regClass());
6364 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
6365 if (instr->src[0].ssa->bit_size == 1) {
6366 assert(src.regClass() == bld.lm);
6367 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
6368 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
6369 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
6370 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
6371 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
6372 } else {
6373 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6374 nir_print_instr(&instr->instr, stderr);
6375 fprintf(stderr, "\n");
6376 }
6377 if (dst.size() != bld.lm.size()) {
6378 /* Wave32 with ballot size set to 64 */
6379 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
6380 }
6381 emit_wqm(ctx, tmp.getTemp(), dst);
6382 break;
6383 }
6384 case nir_intrinsic_shuffle:
6385 case nir_intrinsic_read_invocation: {
6386 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6387 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
6388 emit_uniform_subgroup(ctx, instr, src);
6389 } else {
6390 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
6391 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
6392 tid = bld.as_uniform(tid);
6393 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6394 if (src.regClass() == v1) {
6395 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
6396 } else if (src.regClass() == v2) {
6397 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6398 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6399 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
6400 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
6401 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6402 emit_split_vector(ctx, dst, 2);
6403 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
6404 assert(src.regClass() == bld.lm);
6405 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
6406 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6407 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
6408 assert(src.regClass() == bld.lm);
6409 Temp tmp;
6410 if (ctx->program->chip_class <= GFX7)
6411 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
6412 else if (ctx->program->wave_size == 64)
6413 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
6414 else
6415 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
6416 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6417 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
6418 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
6419 } else {
6420 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6421 nir_print_instr(&instr->instr, stderr);
6422 fprintf(stderr, "\n");
6423 }
6424 }
6425 break;
6426 }
6427 case nir_intrinsic_load_sample_id: {
6428 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6429 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6430 break;
6431 }
6432 case nir_intrinsic_load_sample_mask_in: {
6433 visit_load_sample_mask_in(ctx, instr);
6434 break;
6435 }
6436 case nir_intrinsic_read_first_invocation: {
6437 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6438 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6439 if (src.regClass() == v1) {
6440 emit_wqm(ctx,
6441 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
6442 dst);
6443 } else if (src.regClass() == v2) {
6444 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6445 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6446 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
6447 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
6448 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6449 emit_split_vector(ctx, dst, 2);
6450 } else if (instr->dest.ssa.bit_size == 1) {
6451 assert(src.regClass() == bld.lm);
6452 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
6453 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
6454 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6455 } else if (src.regClass() == s1) {
6456 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
6457 } else if (src.regClass() == s2) {
6458 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
6459 } else {
6460 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6461 nir_print_instr(&instr->instr, stderr);
6462 fprintf(stderr, "\n");
6463 }
6464 break;
6465 }
6466 case nir_intrinsic_vote_all: {
6467 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6468 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6469 assert(src.regClass() == bld.lm);
6470 assert(dst.regClass() == bld.lm);
6471
6472 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6473 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6474 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
6475 break;
6476 }
6477 case nir_intrinsic_vote_any: {
6478 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6479 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6480 assert(src.regClass() == bld.lm);
6481 assert(dst.regClass() == bld.lm);
6482
6483 Temp tmp = bool_to_scalar_condition(ctx, src);
6484 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6485 break;
6486 }
6487 case nir_intrinsic_reduce:
6488 case nir_intrinsic_inclusive_scan:
6489 case nir_intrinsic_exclusive_scan: {
6490 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6491 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6492 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
6493 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
6494 nir_intrinsic_cluster_size(instr) : 0;
6495 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
6496
6497 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
6498 emit_uniform_subgroup(ctx, instr, src);
6499 } else if (instr->dest.ssa.bit_size == 1) {
6500 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
6501 op = nir_op_iand;
6502 else if (op == nir_op_iadd)
6503 op = nir_op_ixor;
6504 else if (op == nir_op_umax || op == nir_op_imax)
6505 op = nir_op_ior;
6506 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
6507
6508 switch (instr->intrinsic) {
6509 case nir_intrinsic_reduce:
6510 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
6511 break;
6512 case nir_intrinsic_exclusive_scan:
6513 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
6514 break;
6515 case nir_intrinsic_inclusive_scan:
6516 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
6517 break;
6518 default:
6519 assert(false);
6520 }
6521 } else if (cluster_size == 1) {
6522 bld.copy(Definition(dst), src);
6523 } else {
6524 src = as_vgpr(ctx, src);
6525
6526 ReduceOp reduce_op;
6527 switch (op) {
6528 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
6529 CASE(iadd)
6530 CASE(imul)
6531 CASE(fadd)
6532 CASE(fmul)
6533 CASE(imin)
6534 CASE(umin)
6535 CASE(fmin)
6536 CASE(imax)
6537 CASE(umax)
6538 CASE(fmax)
6539 CASE(iand)
6540 CASE(ior)
6541 CASE(ixor)
6542 default:
6543 unreachable("unknown reduction op");
6544 #undef CASE
6545 }
6546
6547 aco_opcode aco_op;
6548 switch (instr->intrinsic) {
6549 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
6550 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
6551 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
6552 default:
6553 unreachable("unknown reduce intrinsic");
6554 }
6555
6556 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
6557 reduce->operands[0] = Operand(src);
6558 // filled in by aco_reduce_assign.cpp, used internally as part of the
6559 // reduce sequence
6560 assert(dst.size() == 1 || dst.size() == 2);
6561 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
6562 reduce->operands[2] = Operand(v1.as_linear());
6563
6564 Temp tmp_dst = bld.tmp(dst.regClass());
6565 reduce->definitions[0] = Definition(tmp_dst);
6566 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
6567 reduce->definitions[2] = Definition();
6568 reduce->definitions[3] = Definition(scc, s1);
6569 reduce->definitions[4] = Definition();
6570 reduce->reduce_op = reduce_op;
6571 reduce->cluster_size = cluster_size;
6572 ctx->block->instructions.emplace_back(std::move(reduce));
6573
6574 emit_wqm(ctx, tmp_dst, dst);
6575 }
6576 break;
6577 }
6578 case nir_intrinsic_quad_broadcast: {
6579 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6580 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6581 emit_uniform_subgroup(ctx, instr, src);
6582 } else {
6583 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6584 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
6585 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
6586
6587 if (instr->dest.ssa.bit_size == 1) {
6588 assert(src.regClass() == bld.lm);
6589 assert(dst.regClass() == bld.lm);
6590 uint32_t half_mask = 0x11111111u << lane;
6591 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
6592 Temp tmp = bld.tmp(bld.lm);
6593 bld.sop1(Builder::s_wqm, Definition(tmp),
6594 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
6595 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
6596 emit_wqm(ctx, tmp, dst);
6597 } else if (instr->dest.ssa.bit_size == 32) {
6598 if (ctx->program->chip_class >= GFX8)
6599 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
6600 else
6601 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
6602 } else if (instr->dest.ssa.bit_size == 64) {
6603 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6604 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6605 if (ctx->program->chip_class >= GFX8) {
6606 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6607 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6608 } else {
6609 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
6610 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
6611 }
6612 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6613 emit_split_vector(ctx, dst, 2);
6614 } else {
6615 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6616 nir_print_instr(&instr->instr, stderr);
6617 fprintf(stderr, "\n");
6618 }
6619 }
6620 break;
6621 }
6622 case nir_intrinsic_quad_swap_horizontal:
6623 case nir_intrinsic_quad_swap_vertical:
6624 case nir_intrinsic_quad_swap_diagonal:
6625 case nir_intrinsic_quad_swizzle_amd: {
6626 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6627 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6628 emit_uniform_subgroup(ctx, instr, src);
6629 break;
6630 }
6631 uint16_t dpp_ctrl = 0;
6632 switch (instr->intrinsic) {
6633 case nir_intrinsic_quad_swap_horizontal:
6634 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
6635 break;
6636 case nir_intrinsic_quad_swap_vertical:
6637 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
6638 break;
6639 case nir_intrinsic_quad_swap_diagonal:
6640 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
6641 break;
6642 case nir_intrinsic_quad_swizzle_amd:
6643 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
6644 break;
6645 default:
6646 break;
6647 }
6648 if (ctx->program->chip_class < GFX8)
6649 dpp_ctrl |= (1 << 15);
6650
6651 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6652 if (instr->dest.ssa.bit_size == 1) {
6653 assert(src.regClass() == bld.lm);
6654 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
6655 if (ctx->program->chip_class >= GFX8)
6656 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6657 else
6658 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6659 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
6660 emit_wqm(ctx, tmp, dst);
6661 } else if (instr->dest.ssa.bit_size == 32) {
6662 Temp tmp;
6663 if (ctx->program->chip_class >= GFX8)
6664 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6665 else
6666 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6667 emit_wqm(ctx, tmp, dst);
6668 } else if (instr->dest.ssa.bit_size == 64) {
6669 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6670 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6671 if (ctx->program->chip_class >= GFX8) {
6672 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6673 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6674 } else {
6675 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
6676 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
6677 }
6678 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6679 emit_split_vector(ctx, dst, 2);
6680 } else {
6681 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6682 nir_print_instr(&instr->instr, stderr);
6683 fprintf(stderr, "\n");
6684 }
6685 break;
6686 }
6687 case nir_intrinsic_masked_swizzle_amd: {
6688 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6689 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6690 emit_uniform_subgroup(ctx, instr, src);
6691 break;
6692 }
6693 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6694 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
6695 if (dst.regClass() == v1) {
6696 emit_wqm(ctx,
6697 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
6698 dst);
6699 } else if (dst.regClass() == v2) {
6700 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6701 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6702 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
6703 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
6704 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6705 emit_split_vector(ctx, dst, 2);
6706 } else {
6707 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6708 nir_print_instr(&instr->instr, stderr);
6709 fprintf(stderr, "\n");
6710 }
6711 break;
6712 }
6713 case nir_intrinsic_write_invocation_amd: {
6714 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6715 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
6716 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
6717 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6718 if (dst.regClass() == v1) {
6719 /* src2 is ignored for writelane. RA assigns the same reg for dst */
6720 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
6721 } else if (dst.regClass() == v2) {
6722 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
6723 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
6724 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
6725 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
6726 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
6727 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
6728 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6729 emit_split_vector(ctx, dst, 2);
6730 } else {
6731 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6732 nir_print_instr(&instr->instr, stderr);
6733 fprintf(stderr, "\n");
6734 }
6735 break;
6736 }
6737 case nir_intrinsic_mbcnt_amd: {
6738 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6739 RegClass rc = RegClass(src.type(), 1);
6740 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
6741 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
6742 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6743 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
6744 emit_wqm(ctx, wqm_tmp, dst);
6745 break;
6746 }
6747 case nir_intrinsic_load_helper_invocation: {
6748 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6749 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
6750 ctx->block->kind |= block_kind_needs_lowering;
6751 ctx->program->needs_exact = true;
6752 break;
6753 }
6754 case nir_intrinsic_is_helper_invocation: {
6755 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6756 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
6757 ctx->block->kind |= block_kind_needs_lowering;
6758 ctx->program->needs_exact = true;
6759 break;
6760 }
6761 case nir_intrinsic_demote:
6762 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
6763
6764 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
6765 ctx->cf_info.exec_potentially_empty = true;
6766 ctx->block->kind |= block_kind_uses_demote;
6767 ctx->program->needs_exact = true;
6768 break;
6769 case nir_intrinsic_demote_if: {
6770 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6771 assert(src.regClass() == bld.lm);
6772 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6773 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
6774
6775 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
6776 ctx->cf_info.exec_potentially_empty = true;
6777 ctx->block->kind |= block_kind_uses_demote;
6778 ctx->program->needs_exact = true;
6779 break;
6780 }
6781 case nir_intrinsic_first_invocation: {
6782 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
6783 get_ssa_temp(ctx, &instr->dest.ssa));
6784 break;
6785 }
6786 case nir_intrinsic_shader_clock:
6787 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
6788 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
6789 break;
6790 case nir_intrinsic_load_vertex_id_zero_base: {
6791 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6792 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
6793 break;
6794 }
6795 case nir_intrinsic_load_first_vertex: {
6796 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6797 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
6798 break;
6799 }
6800 case nir_intrinsic_load_base_instance: {
6801 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6802 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
6803 break;
6804 }
6805 case nir_intrinsic_load_instance_id: {
6806 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6807 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
6808 break;
6809 }
6810 case nir_intrinsic_load_draw_id: {
6811 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6812 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
6813 break;
6814 }
6815 case nir_intrinsic_load_invocation_id: {
6816 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
6817 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6818 if (ctx->options->chip_class >= GFX10)
6819 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
6820 else
6821 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
6822 break;
6823 }
6824 case nir_intrinsic_load_primitive_id: {
6825 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
6826 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6827 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
6828 break;
6829 }
6830 case nir_intrinsic_emit_vertex_with_counter: {
6831 visit_emit_vertex_with_counter(ctx, instr);
6832 break;
6833 }
6834 case nir_intrinsic_end_primitive_with_counter: {
6835 unsigned stream = nir_intrinsic_stream_id(instr);
6836 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
6837 break;
6838 }
6839 case nir_intrinsic_set_vertex_count: {
6840 /* unused, the HW keeps track of this for us */
6841 break;
6842 }
6843 default:
6844 fprintf(stderr, "Unimplemented intrinsic instr: ");
6845 nir_print_instr(&instr->instr, stderr);
6846 fprintf(stderr, "\n");
6847 abort();
6848
6849 break;
6850 }
6851 }
6852
6853
6854 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
6855 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
6856 enum glsl_base_type *stype)
6857 {
6858 nir_deref_instr *texture_deref_instr = NULL;
6859 nir_deref_instr *sampler_deref_instr = NULL;
6860 int plane = -1;
6861
6862 for (unsigned i = 0; i < instr->num_srcs; i++) {
6863 switch (instr->src[i].src_type) {
6864 case nir_tex_src_texture_deref:
6865 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
6866 break;
6867 case nir_tex_src_sampler_deref:
6868 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
6869 break;
6870 case nir_tex_src_plane:
6871 plane = nir_src_as_int(instr->src[i].src);
6872 break;
6873 default:
6874 break;
6875 }
6876 }
6877
6878 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
6879
6880 if (!sampler_deref_instr)
6881 sampler_deref_instr = texture_deref_instr;
6882
6883 if (plane >= 0) {
6884 assert(instr->op != nir_texop_txf_ms &&
6885 instr->op != nir_texop_samples_identical);
6886 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
6887 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
6888 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
6889 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
6890 } else if (instr->op == nir_texop_fragment_mask_fetch) {
6891 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
6892 } else {
6893 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
6894 }
6895 if (samp_ptr) {
6896 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
6897
6898 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
6899 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
6900 Builder bld(ctx->program, ctx->block);
6901
6902 /* to avoid unnecessary moves, we split and recombine sampler and image */
6903 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
6904 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6905 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6906 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
6907 Definition(img[2]), Definition(img[3]), Definition(img[4]),
6908 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
6909 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
6910 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
6911
6912 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
6913 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
6914 img[0], img[1], img[2], img[3],
6915 img[4], img[5], img[6], img[7]);
6916 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6917 samp[0], samp[1], samp[2], samp[3]);
6918 }
6919 }
6920 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
6921 instr->op == nir_texop_samples_identical))
6922 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
6923 }
6924
6925 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
6926 Temp *out_ma, Temp *out_sc, Temp *out_tc)
6927 {
6928 Builder bld(ctx->program, ctx->block);
6929
6930 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
6931 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
6932 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
6933
6934 Operand neg_one(0xbf800000u);
6935 Operand one(0x3f800000u);
6936 Operand two(0x40000000u);
6937 Operand four(0x40800000u);
6938
6939 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
6940 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
6941 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
6942
6943 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
6944 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
6945 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
6946 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
6947
6948 // select sc
6949 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
6950 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
6951 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
6952 one, is_ma_y);
6953 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
6954
6955 // select tc
6956 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
6957 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
6958 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
6959
6960 // select ma
6961 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
6962 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
6963 deriv_z, is_ma_z);
6964 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
6965 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
6966 }
6967
6968 void prepare_cube_coords(isel_context *ctx, Temp* coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
6969 {
6970 Builder bld(ctx->program, ctx->block);
6971 Temp coord_args[4], ma, tc, sc, id;
6972 for (unsigned i = 0; i < (is_array ? 4 : 3); i++)
6973 coord_args[i] = emit_extract_vector(ctx, *coords, i, v1);
6974
6975 if (is_array) {
6976 coord_args[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_args[3]);
6977
6978 // see comment in ac_prepare_cube_coords()
6979 if (ctx->options->chip_class <= GFX8)
6980 coord_args[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coord_args[3]);
6981 }
6982
6983 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6984
6985 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
6986 vop3a->operands[0] = Operand(ma);
6987 vop3a->abs[0] = true;
6988 Temp invma = bld.tmp(v1);
6989 vop3a->definitions[0] = Definition(invma);
6990 ctx->block->instructions.emplace_back(std::move(vop3a));
6991
6992 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6993 if (!is_deriv)
6994 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
6995
6996 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6997 if (!is_deriv)
6998 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
6999
7000 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
7001
7002 if (is_deriv) {
7003 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
7004 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
7005
7006 for (unsigned i = 0; i < 2; i++) {
7007 // see comment in ac_prepare_cube_coords()
7008 Temp deriv_ma;
7009 Temp deriv_sc, deriv_tc;
7010 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
7011 &deriv_ma, &deriv_sc, &deriv_tc);
7012
7013 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
7014
7015 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7016 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
7017 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
7018 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7019 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
7020 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
7021 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
7022 }
7023
7024 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
7025 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
7026 }
7027
7028 if (is_array)
7029 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coord_args[3], id, Operand(0x41000000u/*8.0*/));
7030 *coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), sc, tc, id);
7031
7032 }
7033
7034 Temp apply_round_slice(isel_context *ctx, Temp coords, unsigned idx)
7035 {
7036 Temp coord_vec[3];
7037 for (unsigned i = 0; i < coords.size(); i++)
7038 coord_vec[i] = emit_extract_vector(ctx, coords, i, v1);
7039
7040 Builder bld(ctx->program, ctx->block);
7041 coord_vec[idx] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_vec[idx]);
7042
7043 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
7044 for (unsigned i = 0; i < coords.size(); i++)
7045 vec->operands[i] = Operand(coord_vec[i]);
7046 Temp res = bld.tmp(RegType::vgpr, coords.size());
7047 vec->definitions[0] = Definition(res);
7048 ctx->block->instructions.emplace_back(std::move(vec));
7049 return res;
7050 }
7051
7052 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
7053 {
7054 if (vec->parent_instr->type != nir_instr_type_alu)
7055 return;
7056 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
7057 if (vec_instr->op != nir_op_vec(vec->num_components))
7058 return;
7059
7060 for (unsigned i = 0; i < vec->num_components; i++) {
7061 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
7062 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
7063 }
7064 }
7065
7066 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
7067 {
7068 Builder bld(ctx->program, ctx->block);
7069 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
7070 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
7071 Temp resource, sampler, fmask_ptr, bias = Temp(), coords, compare = Temp(), sample_index = Temp(),
7072 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(), derivs = Temp();
7073 nir_const_value *sample_index_cv = NULL;
7074 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
7075 enum glsl_base_type stype;
7076 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
7077
7078 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
7079 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
7080 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
7081 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
7082
7083 for (unsigned i = 0; i < instr->num_srcs; i++) {
7084 switch (instr->src[i].src_type) {
7085 case nir_tex_src_coord:
7086 coords = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[i].src.ssa));
7087 break;
7088 case nir_tex_src_bias:
7089 if (instr->op == nir_texop_txb) {
7090 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
7091 has_bias = true;
7092 }
7093 break;
7094 case nir_tex_src_lod: {
7095 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
7096
7097 if (val && val->f32 <= 0.0) {
7098 level_zero = true;
7099 } else {
7100 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
7101 has_lod = true;
7102 }
7103 break;
7104 }
7105 case nir_tex_src_comparator:
7106 if (instr->is_shadow) {
7107 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
7108 has_compare = true;
7109 }
7110 break;
7111 case nir_tex_src_offset:
7112 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
7113 get_const_vec(instr->src[i].src.ssa, const_offset);
7114 has_offset = true;
7115 break;
7116 case nir_tex_src_ddx:
7117 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
7118 has_ddx = true;
7119 break;
7120 case nir_tex_src_ddy:
7121 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
7122 has_ddy = true;
7123 break;
7124 case nir_tex_src_ms_index:
7125 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
7126 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
7127 has_sample_index = true;
7128 break;
7129 case nir_tex_src_texture_offset:
7130 case nir_tex_src_sampler_offset:
7131 default:
7132 break;
7133 }
7134 }
7135 // TODO: all other cases: structure taken from ac_nir_to_llvm.c
7136 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
7137 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
7138
7139 if (instr->op == nir_texop_texture_samples) {
7140 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
7141
7142 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
7143 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
7144 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
7145 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
7146
7147 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7148 samples, Operand(1u), bld.scc(is_msaa));
7149 return;
7150 }
7151
7152 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
7153 aco_ptr<Instruction> tmp_instr;
7154 Temp acc, pack = Temp();
7155
7156 uint32_t pack_const = 0;
7157 for (unsigned i = 0; i < offset.size(); i++) {
7158 if (!const_offset[i])
7159 continue;
7160 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
7161 }
7162
7163 if (offset.type() == RegType::sgpr) {
7164 for (unsigned i = 0; i < offset.size(); i++) {
7165 if (const_offset[i])
7166 continue;
7167
7168 acc = emit_extract_vector(ctx, offset, i, s1);
7169 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
7170
7171 if (i) {
7172 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
7173 }
7174
7175 if (pack == Temp()) {
7176 pack = acc;
7177 } else {
7178 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
7179 }
7180 }
7181
7182 if (pack_const && pack != Temp())
7183 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
7184 } else {
7185 for (unsigned i = 0; i < offset.size(); i++) {
7186 if (const_offset[i])
7187 continue;
7188
7189 acc = emit_extract_vector(ctx, offset, i, v1);
7190 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
7191
7192 if (i) {
7193 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
7194 }
7195
7196 if (pack == Temp()) {
7197 pack = acc;
7198 } else {
7199 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
7200 }
7201 }
7202
7203 if (pack_const && pack != Temp())
7204 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
7205 }
7206 if (pack_const && pack == Temp())
7207 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
7208 else if (pack == Temp())
7209 has_offset = false;
7210 else
7211 offset = pack;
7212 }
7213
7214 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
7215 prepare_cube_coords(ctx, &coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
7216
7217 /* pack derivatives */
7218 if (has_ddx || has_ddy) {
7219 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
7220 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(v4),
7221 ddx, Operand(0u), ddy, Operand(0u));
7222 } else {
7223 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, ddx.size() + ddy.size()), ddx, ddy);
7224 }
7225 has_derivs = true;
7226 }
7227
7228 if (instr->coord_components > 1 &&
7229 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7230 instr->is_array &&
7231 instr->op != nir_texop_txf)
7232 coords = apply_round_slice(ctx, coords, 1);
7233
7234 if (instr->coord_components > 2 &&
7235 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
7236 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7237 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
7238 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7239 instr->is_array &&
7240 instr->op != nir_texop_txf &&
7241 instr->op != nir_texop_txf_ms &&
7242 instr->op != nir_texop_fragment_fetch &&
7243 instr->op != nir_texop_fragment_mask_fetch)
7244 coords = apply_round_slice(ctx, coords, 2);
7245
7246 if (ctx->options->chip_class == GFX9 &&
7247 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7248 instr->op != nir_texop_lod && instr->coord_components) {
7249 assert(coords.size() > 0 && coords.size() < 3);
7250
7251 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size() + 1, 1)};
7252 vec->operands[0] = Operand(emit_extract_vector(ctx, coords, 0, v1));
7253 vec->operands[1] = instr->op == nir_texop_txf ? Operand((uint32_t) 0) : Operand((uint32_t) 0x3f000000);
7254 if (coords.size() > 1)
7255 vec->operands[2] = Operand(emit_extract_vector(ctx, coords, 1, v1));
7256 coords = bld.tmp(RegType::vgpr, coords.size() + 1);
7257 vec->definitions[0] = Definition(coords);
7258 ctx->block->instructions.emplace_back(std::move(vec));
7259 }
7260
7261 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
7262
7263 if (instr->op == nir_texop_samples_identical)
7264 resource = fmask_ptr;
7265
7266 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7267 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7268 instr->op != nir_texop_txs &&
7269 instr->op != nir_texop_fragment_fetch &&
7270 instr->op != nir_texop_fragment_mask_fetch) {
7271 assert(has_sample_index);
7272 Operand op(sample_index);
7273 if (sample_index_cv)
7274 op = Operand(sample_index_cv->u32);
7275 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
7276 }
7277
7278 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
7279 Temp split_coords[coords.size()];
7280 emit_split_vector(ctx, coords, coords.size());
7281 for (unsigned i = 0; i < coords.size(); i++)
7282 split_coords[i] = emit_extract_vector(ctx, coords, i, v1);
7283
7284 unsigned i = 0;
7285 for (; i < std::min(offset.size(), instr->coord_components); i++) {
7286 Temp off = emit_extract_vector(ctx, offset, i, v1);
7287 split_coords[i] = bld.vadd32(bld.def(v1), split_coords[i], off);
7288 }
7289
7290 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
7291 for (unsigned i = 0; i < coords.size(); i++)
7292 vec->operands[i] = Operand(split_coords[i]);
7293 coords = bld.tmp(coords.regClass());
7294 vec->definitions[0] = Definition(coords);
7295 ctx->block->instructions.emplace_back(std::move(vec));
7296
7297 has_offset = false;
7298 }
7299
7300 /* Build tex instruction */
7301 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
7302 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
7303 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
7304 : 0;
7305 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7306 Temp tmp_dst = dst;
7307
7308 /* gather4 selects the component by dmask and always returns vec4 */
7309 if (instr->op == nir_texop_tg4) {
7310 assert(instr->dest.ssa.num_components == 4);
7311 if (instr->is_shadow)
7312 dmask = 1;
7313 else
7314 dmask = 1 << instr->component;
7315 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
7316 tmp_dst = bld.tmp(v4);
7317 } else if (instr->op == nir_texop_samples_identical) {
7318 tmp_dst = bld.tmp(v1);
7319 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
7320 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
7321 }
7322
7323 aco_ptr<MIMG_instruction> tex;
7324 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
7325 if (!has_lod)
7326 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7327
7328 bool div_by_6 = instr->op == nir_texop_txs &&
7329 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
7330 instr->is_array &&
7331 (dmask & (1 << 2));
7332 if (tmp_dst.id() == dst.id() && div_by_6)
7333 tmp_dst = bld.tmp(tmp_dst.regClass());
7334
7335 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
7336 tex->operands[0] = Operand(as_vgpr(ctx,lod));
7337 tex->operands[1] = Operand(resource);
7338 if (ctx->options->chip_class == GFX9 &&
7339 instr->op == nir_texop_txs &&
7340 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7341 instr->is_array) {
7342 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
7343 } else if (instr->op == nir_texop_query_levels) {
7344 tex->dmask = 1 << 3;
7345 } else {
7346 tex->dmask = dmask;
7347 }
7348 tex->da = da;
7349 tex->definitions[0] = Definition(tmp_dst);
7350 tex->dim = dim;
7351 tex->can_reorder = true;
7352 ctx->block->instructions.emplace_back(std::move(tex));
7353
7354 if (div_by_6) {
7355 /* divide 3rd value by 6 by multiplying with magic number */
7356 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7357 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
7358 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
7359 assert(instr->dest.ssa.num_components == 3);
7360 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
7361 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7362 emit_extract_vector(ctx, tmp_dst, 0, v1),
7363 emit_extract_vector(ctx, tmp_dst, 1, v1),
7364 by_6);
7365
7366 }
7367
7368 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7369 return;
7370 }
7371
7372 Temp tg4_compare_cube_wa64 = Temp();
7373
7374 if (tg4_integer_workarounds) {
7375 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
7376 tex->operands[0] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7377 tex->operands[1] = Operand(resource);
7378 tex->dim = dim;
7379 tex->dmask = 0x3;
7380 tex->da = da;
7381 Temp size = bld.tmp(v2);
7382 tex->definitions[0] = Definition(size);
7383 tex->can_reorder = true;
7384 ctx->block->instructions.emplace_back(std::move(tex));
7385 emit_split_vector(ctx, size, size.size());
7386
7387 Temp half_texel[2];
7388 for (unsigned i = 0; i < 2; i++) {
7389 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
7390 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
7391 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
7392 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
7393 }
7394
7395 Temp orig_coords[2] = {
7396 emit_extract_vector(ctx, coords, 0, v1),
7397 emit_extract_vector(ctx, coords, 1, v1)};
7398 Temp new_coords[2] = {
7399 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[0], half_texel[0]),
7400 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[1], half_texel[1])
7401 };
7402
7403 if (tg4_integer_cube_workaround) {
7404 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
7405 Temp desc[resource.size()];
7406 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
7407 Format::PSEUDO, 1, resource.size())};
7408 split->operands[0] = Operand(resource);
7409 for (unsigned i = 0; i < resource.size(); i++) {
7410 desc[i] = bld.tmp(s1);
7411 split->definitions[i] = Definition(desc[i]);
7412 }
7413 ctx->block->instructions.emplace_back(std::move(split));
7414
7415 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
7416 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
7417 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
7418
7419 Temp nfmt;
7420 if (stype == GLSL_TYPE_UINT) {
7421 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7422 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
7423 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
7424 bld.scc(compare_cube_wa));
7425 } else {
7426 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7427 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
7428 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
7429 bld.scc(compare_cube_wa));
7430 }
7431 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
7432 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
7433
7434 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
7435
7436 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
7437 Operand((uint32_t)C_008F14_NUM_FORMAT));
7438 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
7439
7440 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
7441 Format::PSEUDO, resource.size(), 1)};
7442 for (unsigned i = 0; i < resource.size(); i++)
7443 vec->operands[i] = Operand(desc[i]);
7444 resource = bld.tmp(resource.regClass());
7445 vec->definitions[0] = Definition(resource);
7446 ctx->block->instructions.emplace_back(std::move(vec));
7447
7448 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7449 new_coords[0], orig_coords[0], tg4_compare_cube_wa64);
7450 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7451 new_coords[1], orig_coords[1], tg4_compare_cube_wa64);
7452 }
7453
7454 if (coords.size() == 3) {
7455 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3),
7456 new_coords[0], new_coords[1],
7457 emit_extract_vector(ctx, coords, 2, v1));
7458 } else {
7459 assert(coords.size() == 2);
7460 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2),
7461 new_coords[0], new_coords[1]);
7462 }
7463 }
7464
7465 std::vector<Operand> args;
7466 if (has_offset)
7467 args.emplace_back(Operand(offset));
7468 if (has_bias)
7469 args.emplace_back(Operand(bias));
7470 if (has_compare)
7471 args.emplace_back(Operand(compare));
7472 if (has_derivs)
7473 args.emplace_back(Operand(derivs));
7474 args.emplace_back(Operand(coords));
7475 if (has_sample_index)
7476 args.emplace_back(Operand(sample_index));
7477 if (has_lod)
7478 args.emplace_back(lod);
7479
7480 Temp arg;
7481 if (args.size() > 1) {
7482 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
7483 unsigned size = 0;
7484 for (unsigned i = 0; i < args.size(); i++) {
7485 size += args[i].size();
7486 vec->operands[i] = args[i];
7487 }
7488 RegClass rc = RegClass(RegType::vgpr, size);
7489 Temp tmp = bld.tmp(rc);
7490 vec->definitions[0] = Definition(tmp);
7491 ctx->block->instructions.emplace_back(std::move(vec));
7492 arg = tmp;
7493 } else {
7494 assert(args[0].isTemp());
7495 arg = as_vgpr(ctx, args[0].getTemp());
7496 }
7497
7498 /* we don't need the bias, sample index, compare value or offset to be
7499 * computed in WQM but if the p_create_vector copies the coordinates, then it
7500 * needs to be in WQM */
7501 if (!(has_ddx && has_ddy) && !has_lod && !level_zero &&
7502 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
7503 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
7504 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
7505
7506 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7507 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
7508
7509 assert(coords.size() == 1);
7510 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
7511 aco_opcode op;
7512 switch (last_bit) {
7513 case 1:
7514 op = aco_opcode::buffer_load_format_x; break;
7515 case 2:
7516 op = aco_opcode::buffer_load_format_xy; break;
7517 case 3:
7518 op = aco_opcode::buffer_load_format_xyz; break;
7519 case 4:
7520 op = aco_opcode::buffer_load_format_xyzw; break;
7521 default:
7522 unreachable("Tex instruction loads more than 4 components.");
7523 }
7524
7525 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
7526 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
7527 tmp_dst = dst;
7528 else
7529 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
7530
7531 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
7532 mubuf->operands[0] = Operand(coords);
7533 mubuf->operands[1] = Operand(resource);
7534 mubuf->operands[2] = Operand((uint32_t) 0);
7535 mubuf->definitions[0] = Definition(tmp_dst);
7536 mubuf->idxen = true;
7537 mubuf->can_reorder = true;
7538 ctx->block->instructions.emplace_back(std::move(mubuf));
7539
7540 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
7541 return;
7542 }
7543
7544
7545 if (instr->op == nir_texop_txf ||
7546 instr->op == nir_texop_txf_ms ||
7547 instr->op == nir_texop_samples_identical ||
7548 instr->op == nir_texop_fragment_fetch ||
7549 instr->op == nir_texop_fragment_mask_fetch) {
7550 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
7551 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 2, 1));
7552 tex->operands[0] = Operand(arg);
7553 tex->operands[1] = Operand(resource);
7554 tex->dim = dim;
7555 tex->dmask = dmask;
7556 tex->unrm = true;
7557 tex->da = da;
7558 tex->definitions[0] = Definition(tmp_dst);
7559 tex->can_reorder = true;
7560 ctx->block->instructions.emplace_back(std::move(tex));
7561
7562 if (instr->op == nir_texop_samples_identical) {
7563 assert(dmask == 1 && dst.regClass() == v1);
7564 assert(dst.id() != tmp_dst.id());
7565
7566 Temp tmp = bld.tmp(bld.lm);
7567 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
7568 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
7569
7570 } else {
7571 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7572 }
7573 return;
7574 }
7575
7576 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
7577 aco_opcode opcode = aco_opcode::image_sample;
7578 if (has_offset) { /* image_sample_*_o */
7579 if (has_compare) {
7580 opcode = aco_opcode::image_sample_c_o;
7581 if (has_derivs)
7582 opcode = aco_opcode::image_sample_c_d_o;
7583 if (has_bias)
7584 opcode = aco_opcode::image_sample_c_b_o;
7585 if (level_zero)
7586 opcode = aco_opcode::image_sample_c_lz_o;
7587 if (has_lod)
7588 opcode = aco_opcode::image_sample_c_l_o;
7589 } else {
7590 opcode = aco_opcode::image_sample_o;
7591 if (has_derivs)
7592 opcode = aco_opcode::image_sample_d_o;
7593 if (has_bias)
7594 opcode = aco_opcode::image_sample_b_o;
7595 if (level_zero)
7596 opcode = aco_opcode::image_sample_lz_o;
7597 if (has_lod)
7598 opcode = aco_opcode::image_sample_l_o;
7599 }
7600 } else { /* no offset */
7601 if (has_compare) {
7602 opcode = aco_opcode::image_sample_c;
7603 if (has_derivs)
7604 opcode = aco_opcode::image_sample_c_d;
7605 if (has_bias)
7606 opcode = aco_opcode::image_sample_c_b;
7607 if (level_zero)
7608 opcode = aco_opcode::image_sample_c_lz;
7609 if (has_lod)
7610 opcode = aco_opcode::image_sample_c_l;
7611 } else {
7612 opcode = aco_opcode::image_sample;
7613 if (has_derivs)
7614 opcode = aco_opcode::image_sample_d;
7615 if (has_bias)
7616 opcode = aco_opcode::image_sample_b;
7617 if (level_zero)
7618 opcode = aco_opcode::image_sample_lz;
7619 if (has_lod)
7620 opcode = aco_opcode::image_sample_l;
7621 }
7622 }
7623
7624 if (instr->op == nir_texop_tg4) {
7625 if (has_offset) {
7626 opcode = aco_opcode::image_gather4_lz_o;
7627 if (has_compare)
7628 opcode = aco_opcode::image_gather4_c_lz_o;
7629 } else {
7630 opcode = aco_opcode::image_gather4_lz;
7631 if (has_compare)
7632 opcode = aco_opcode::image_gather4_c_lz;
7633 }
7634 } else if (instr->op == nir_texop_lod) {
7635 opcode = aco_opcode::image_get_lod;
7636 }
7637
7638 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
7639 tex->operands[0] = Operand(arg);
7640 tex->operands[1] = Operand(resource);
7641 tex->operands[2] = Operand(sampler);
7642 tex->dim = dim;
7643 tex->dmask = dmask;
7644 tex->da = da;
7645 tex->definitions[0] = Definition(tmp_dst);
7646 tex->can_reorder = true;
7647 ctx->block->instructions.emplace_back(std::move(tex));
7648
7649 if (tg4_integer_cube_workaround) {
7650 assert(tmp_dst.id() != dst.id());
7651 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
7652
7653 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7654 Temp val[4];
7655 for (unsigned i = 0; i < dst.size(); i++) {
7656 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
7657 Temp cvt_val;
7658 if (stype == GLSL_TYPE_UINT)
7659 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
7660 else
7661 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
7662 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
7663 }
7664 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
7665 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7666 val[0], val[1], val[2], val[3]);
7667 }
7668 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
7669 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
7670
7671 }
7672
7673
7674 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
7675 {
7676 Temp tmp = get_ssa_temp(ctx, ssa);
7677 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
7678 return Operand(tmp.regClass());
7679 else
7680 return Operand(tmp);
7681 }
7682
7683 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
7684 {
7685 aco_ptr<Pseudo_instruction> phi;
7686 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7687 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
7688
7689 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
7690 logical |= ctx->block->kind & block_kind_merge;
7691 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
7692
7693 /* we want a sorted list of sources, since the predecessor list is also sorted */
7694 std::map<unsigned, nir_ssa_def*> phi_src;
7695 nir_foreach_phi_src(src, instr)
7696 phi_src[src->pred->index] = src->src.ssa;
7697
7698 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
7699 unsigned num_operands = 0;
7700 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size())];
7701 unsigned num_defined = 0;
7702 unsigned cur_pred_idx = 0;
7703 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
7704 if (cur_pred_idx < preds.size()) {
7705 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
7706 unsigned block = ctx->cf_info.nir_to_aco[src.first];
7707 unsigned skipped = 0;
7708 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
7709 skipped++;
7710 if (cur_pred_idx + skipped < preds.size()) {
7711 for (unsigned i = 0; i < skipped; i++)
7712 operands[num_operands++] = Operand(dst.regClass());
7713 cur_pred_idx += skipped;
7714 } else {
7715 continue;
7716 }
7717 }
7718 cur_pred_idx++;
7719 Operand op = get_phi_operand(ctx, src.second);
7720 operands[num_operands++] = op;
7721 num_defined += !op.isUndefined();
7722 }
7723 /* handle block_kind_continue_or_break at loop exit blocks */
7724 while (cur_pred_idx++ < preds.size())
7725 operands[num_operands++] = Operand(dst.regClass());
7726
7727 if (num_defined == 0) {
7728 Builder bld(ctx->program, ctx->block);
7729 if (dst.regClass() == s1) {
7730 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
7731 } else if (dst.regClass() == v1) {
7732 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
7733 } else {
7734 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7735 for (unsigned i = 0; i < dst.size(); i++)
7736 vec->operands[i] = Operand(0u);
7737 vec->definitions[0] = Definition(dst);
7738 ctx->block->instructions.emplace_back(std::move(vec));
7739 }
7740 return;
7741 }
7742
7743 /* we can use a linear phi in some cases if one src is undef */
7744 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
7745 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
7746
7747 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
7748 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
7749 assert(invert->kind & block_kind_invert);
7750
7751 unsigned then_block = invert->linear_preds[0];
7752
7753 Block* insert_block = NULL;
7754 for (unsigned i = 0; i < num_operands; i++) {
7755 Operand op = operands[i];
7756 if (op.isUndefined())
7757 continue;
7758 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
7759 phi->operands[0] = op;
7760 break;
7761 }
7762 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
7763 phi->operands[1] = Operand(dst.regClass());
7764 phi->definitions[0] = Definition(dst);
7765 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
7766 return;
7767 }
7768
7769 /* try to scalarize vector phis */
7770 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
7771 // TODO: scalarize linear phis on divergent ifs
7772 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
7773 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
7774 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
7775 Operand src = operands[i];
7776 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
7777 can_scalarize = false;
7778 }
7779 if (can_scalarize) {
7780 unsigned num_components = instr->dest.ssa.num_components;
7781 assert(dst.size() % num_components == 0);
7782 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
7783
7784 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
7785 for (unsigned k = 0; k < num_components; k++) {
7786 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7787 for (unsigned i = 0; i < num_operands; i++) {
7788 Operand src = operands[i];
7789 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
7790 }
7791 Temp phi_dst = {ctx->program->allocateId(), rc};
7792 phi->definitions[0] = Definition(phi_dst);
7793 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7794 new_vec[k] = phi_dst;
7795 vec->operands[k] = Operand(phi_dst);
7796 }
7797 vec->definitions[0] = Definition(dst);
7798 ctx->block->instructions.emplace_back(std::move(vec));
7799 ctx->allocated_vec.emplace(dst.id(), new_vec);
7800 return;
7801 }
7802 }
7803
7804 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7805 for (unsigned i = 0; i < num_operands; i++)
7806 phi->operands[i] = operands[i];
7807 phi->definitions[0] = Definition(dst);
7808 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7809 }
7810
7811
7812 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
7813 {
7814 Temp dst = get_ssa_temp(ctx, &instr->def);
7815
7816 assert(dst.type() == RegType::sgpr);
7817
7818 if (dst.size() == 1) {
7819 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
7820 } else {
7821 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7822 for (unsigned i = 0; i < dst.size(); i++)
7823 vec->operands[i] = Operand(0u);
7824 vec->definitions[0] = Definition(dst);
7825 ctx->block->instructions.emplace_back(std::move(vec));
7826 }
7827 }
7828
7829 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
7830 {
7831 Builder bld(ctx->program, ctx->block);
7832 Block *logical_target;
7833 append_logical_end(ctx->block);
7834 unsigned idx = ctx->block->index;
7835
7836 switch (instr->type) {
7837 case nir_jump_break:
7838 logical_target = ctx->cf_info.parent_loop.exit;
7839 add_logical_edge(idx, logical_target);
7840 ctx->block->kind |= block_kind_break;
7841
7842 if (!ctx->cf_info.parent_if.is_divergent &&
7843 !ctx->cf_info.parent_loop.has_divergent_continue) {
7844 /* uniform break - directly jump out of the loop */
7845 ctx->block->kind |= block_kind_uniform;
7846 ctx->cf_info.has_branch = true;
7847 bld.branch(aco_opcode::p_branch);
7848 add_linear_edge(idx, logical_target);
7849 return;
7850 }
7851 ctx->cf_info.parent_loop.has_divergent_branch = true;
7852 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7853 break;
7854 case nir_jump_continue:
7855 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7856 add_logical_edge(idx, logical_target);
7857 ctx->block->kind |= block_kind_continue;
7858
7859 if (ctx->cf_info.parent_if.is_divergent) {
7860 /* for potential uniform breaks after this continue,
7861 we must ensure that they are handled correctly */
7862 ctx->cf_info.parent_loop.has_divergent_continue = true;
7863 ctx->cf_info.parent_loop.has_divergent_branch = true;
7864 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7865 } else {
7866 /* uniform continue - directly jump to the loop header */
7867 ctx->block->kind |= block_kind_uniform;
7868 ctx->cf_info.has_branch = true;
7869 bld.branch(aco_opcode::p_branch);
7870 add_linear_edge(idx, logical_target);
7871 return;
7872 }
7873 break;
7874 default:
7875 fprintf(stderr, "Unknown NIR jump instr: ");
7876 nir_print_instr(&instr->instr, stderr);
7877 fprintf(stderr, "\n");
7878 abort();
7879 }
7880
7881 /* remove critical edges from linear CFG */
7882 bld.branch(aco_opcode::p_branch);
7883 Block* break_block = ctx->program->create_and_insert_block();
7884 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7885 break_block->kind |= block_kind_uniform;
7886 add_linear_edge(idx, break_block);
7887 /* the loop_header pointer might be invalidated by this point */
7888 if (instr->type == nir_jump_continue)
7889 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7890 add_linear_edge(break_block->index, logical_target);
7891 bld.reset(break_block);
7892 bld.branch(aco_opcode::p_branch);
7893
7894 Block* continue_block = ctx->program->create_and_insert_block();
7895 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7896 add_linear_edge(idx, continue_block);
7897 append_logical_start(continue_block);
7898 ctx->block = continue_block;
7899 return;
7900 }
7901
7902 void visit_block(isel_context *ctx, nir_block *block)
7903 {
7904 nir_foreach_instr(instr, block) {
7905 switch (instr->type) {
7906 case nir_instr_type_alu:
7907 visit_alu_instr(ctx, nir_instr_as_alu(instr));
7908 break;
7909 case nir_instr_type_load_const:
7910 visit_load_const(ctx, nir_instr_as_load_const(instr));
7911 break;
7912 case nir_instr_type_intrinsic:
7913 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
7914 break;
7915 case nir_instr_type_tex:
7916 visit_tex(ctx, nir_instr_as_tex(instr));
7917 break;
7918 case nir_instr_type_phi:
7919 visit_phi(ctx, nir_instr_as_phi(instr));
7920 break;
7921 case nir_instr_type_ssa_undef:
7922 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
7923 break;
7924 case nir_instr_type_deref:
7925 break;
7926 case nir_instr_type_jump:
7927 visit_jump(ctx, nir_instr_as_jump(instr));
7928 break;
7929 default:
7930 fprintf(stderr, "Unknown NIR instr type: ");
7931 nir_print_instr(instr, stderr);
7932 fprintf(stderr, "\n");
7933 //abort();
7934 }
7935 }
7936
7937 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7938 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
7939 }
7940
7941
7942
7943 static void visit_loop(isel_context *ctx, nir_loop *loop)
7944 {
7945 append_logical_end(ctx->block);
7946 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
7947 Builder bld(ctx->program, ctx->block);
7948 bld.branch(aco_opcode::p_branch);
7949 unsigned loop_preheader_idx = ctx->block->index;
7950
7951 Block loop_exit = Block();
7952 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7953 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
7954
7955 Block* loop_header = ctx->program->create_and_insert_block();
7956 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
7957 loop_header->kind |= block_kind_loop_header;
7958 add_edge(loop_preheader_idx, loop_header);
7959 ctx->block = loop_header;
7960
7961 /* emit loop body */
7962 unsigned loop_header_idx = loop_header->index;
7963 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
7964 append_logical_start(ctx->block);
7965 visit_cf_list(ctx, &loop->body);
7966
7967 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
7968 if (!ctx->cf_info.has_branch) {
7969 append_logical_end(ctx->block);
7970 if (ctx->cf_info.exec_potentially_empty) {
7971 /* Discards can result in code running with an empty exec mask.
7972 * This would result in divergent breaks not ever being taken. As a
7973 * workaround, break the loop when the loop mask is empty instead of
7974 * always continuing. */
7975 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
7976 unsigned block_idx = ctx->block->index;
7977
7978 /* create helper blocks to avoid critical edges */
7979 Block *break_block = ctx->program->create_and_insert_block();
7980 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7981 break_block->kind = block_kind_uniform;
7982 bld.reset(break_block);
7983 bld.branch(aco_opcode::p_branch);
7984 add_linear_edge(block_idx, break_block);
7985 add_linear_edge(break_block->index, &loop_exit);
7986
7987 Block *continue_block = ctx->program->create_and_insert_block();
7988 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7989 continue_block->kind = block_kind_uniform;
7990 bld.reset(continue_block);
7991 bld.branch(aco_opcode::p_branch);
7992 add_linear_edge(block_idx, continue_block);
7993 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
7994
7995 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
7996 ctx->block = &ctx->program->blocks[block_idx];
7997 } else {
7998 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
7999 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8000 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8001 else
8002 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8003 }
8004
8005 bld.reset(ctx->block);
8006 bld.branch(aco_opcode::p_branch);
8007 }
8008
8009 /* fixup phis in loop header from unreachable blocks */
8010 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
8011 bool linear = ctx->cf_info.has_branch;
8012 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
8013 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
8014 if ((logical && instr->opcode == aco_opcode::p_phi) ||
8015 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
8016 /* the last operand should be the one that needs to be removed */
8017 instr->operands.pop_back();
8018 } else if (!is_phi(instr)) {
8019 break;
8020 }
8021 }
8022 }
8023
8024 ctx->cf_info.has_branch = false;
8025
8026 // TODO: if the loop has not a single exit, we must add one °°
8027 /* emit loop successor block */
8028 ctx->block = ctx->program->insert_block(std::move(loop_exit));
8029 append_logical_start(ctx->block);
8030
8031 #if 0
8032 // TODO: check if it is beneficial to not branch on continues
8033 /* trim linear phis in loop header */
8034 for (auto&& instr : loop_entry->instructions) {
8035 if (instr->opcode == aco_opcode::p_linear_phi) {
8036 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
8037 new_phi->definitions[0] = instr->definitions[0];
8038 for (unsigned i = 0; i < new_phi->operands.size(); i++)
8039 new_phi->operands[i] = instr->operands[i];
8040 /* check that the remaining operands are all the same */
8041 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
8042 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
8043 instr.swap(new_phi);
8044 } else if (instr->opcode == aco_opcode::p_phi) {
8045 continue;
8046 } else {
8047 break;
8048 }
8049 }
8050 #endif
8051 }
8052
8053 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
8054 {
8055 ic->cond = cond;
8056
8057 append_logical_end(ctx->block);
8058 ctx->block->kind |= block_kind_branch;
8059
8060 /* branch to linear then block */
8061 assert(cond.regClass() == ctx->program->lane_mask);
8062 aco_ptr<Pseudo_branch_instruction> branch;
8063 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8064 branch->operands[0] = Operand(cond);
8065 ctx->block->instructions.push_back(std::move(branch));
8066
8067 ic->BB_if_idx = ctx->block->index;
8068 ic->BB_invert = Block();
8069 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8070 /* Invert blocks are intentionally not marked as top level because they
8071 * are not part of the logical cfg. */
8072 ic->BB_invert.kind |= block_kind_invert;
8073 ic->BB_endif = Block();
8074 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8075 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
8076
8077 ic->exec_potentially_empty_old = ctx->cf_info.exec_potentially_empty;
8078 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
8079 ctx->cf_info.parent_if.is_divergent = true;
8080 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
8081
8082 /** emit logical then block */
8083 Block* BB_then_logical = ctx->program->create_and_insert_block();
8084 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8085 add_edge(ic->BB_if_idx, BB_then_logical);
8086 ctx->block = BB_then_logical;
8087 append_logical_start(BB_then_logical);
8088 }
8089
8090 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
8091 {
8092 Block *BB_then_logical = ctx->block;
8093 append_logical_end(BB_then_logical);
8094 /* branch from logical then block to invert block */
8095 aco_ptr<Pseudo_branch_instruction> branch;
8096 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8097 BB_then_logical->instructions.emplace_back(std::move(branch));
8098 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
8099 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8100 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
8101 BB_then_logical->kind |= block_kind_uniform;
8102 assert(!ctx->cf_info.has_branch);
8103 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8104 ctx->cf_info.parent_loop.has_divergent_branch = false;
8105
8106 /** emit linear then block */
8107 Block* BB_then_linear = ctx->program->create_and_insert_block();
8108 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8109 BB_then_linear->kind |= block_kind_uniform;
8110 add_linear_edge(ic->BB_if_idx, BB_then_linear);
8111 /* branch from linear then block to invert block */
8112 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8113 BB_then_linear->instructions.emplace_back(std::move(branch));
8114 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
8115
8116 /** emit invert merge block */
8117 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
8118 ic->invert_idx = ctx->block->index;
8119
8120 /* branch to linear else block (skip else) */
8121 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
8122 branch->operands[0] = Operand(ic->cond);
8123 ctx->block->instructions.push_back(std::move(branch));
8124
8125 ic->exec_potentially_empty_old |= ctx->cf_info.exec_potentially_empty;
8126 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
8127
8128 /** emit logical else block */
8129 Block* BB_else_logical = ctx->program->create_and_insert_block();
8130 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8131 add_logical_edge(ic->BB_if_idx, BB_else_logical);
8132 add_linear_edge(ic->invert_idx, BB_else_logical);
8133 ctx->block = BB_else_logical;
8134 append_logical_start(BB_else_logical);
8135 }
8136
8137 static void end_divergent_if(isel_context *ctx, if_context *ic)
8138 {
8139 Block *BB_else_logical = ctx->block;
8140 append_logical_end(BB_else_logical);
8141
8142 /* branch from logical else block to endif block */
8143 aco_ptr<Pseudo_branch_instruction> branch;
8144 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8145 BB_else_logical->instructions.emplace_back(std::move(branch));
8146 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
8147 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8148 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
8149 BB_else_logical->kind |= block_kind_uniform;
8150
8151 assert(!ctx->cf_info.has_branch);
8152 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
8153
8154
8155 /** emit linear else block */
8156 Block* BB_else_linear = ctx->program->create_and_insert_block();
8157 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8158 BB_else_linear->kind |= block_kind_uniform;
8159 add_linear_edge(ic->invert_idx, BB_else_linear);
8160
8161 /* branch from linear else block to endif block */
8162 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8163 BB_else_linear->instructions.emplace_back(std::move(branch));
8164 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
8165
8166
8167 /** emit endif merge block */
8168 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
8169 append_logical_start(ctx->block);
8170
8171
8172 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
8173 ctx->cf_info.exec_potentially_empty |= ic->exec_potentially_empty_old;
8174 /* uniform control flow never has an empty exec-mask */
8175 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
8176 ctx->cf_info.exec_potentially_empty = false;
8177 }
8178
8179 static void visit_if(isel_context *ctx, nir_if *if_stmt)
8180 {
8181 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
8182 Builder bld(ctx->program, ctx->block);
8183 aco_ptr<Pseudo_branch_instruction> branch;
8184
8185 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
8186 /**
8187 * Uniform conditionals are represented in the following way*) :
8188 *
8189 * The linear and logical CFG:
8190 * BB_IF
8191 * / \
8192 * BB_THEN (logical) BB_ELSE (logical)
8193 * \ /
8194 * BB_ENDIF
8195 *
8196 * *) Exceptions may be due to break and continue statements within loops
8197 * If a break/continue happens within uniform control flow, it branches
8198 * to the loop exit/entry block. Otherwise, it branches to the next
8199 * merge block.
8200 **/
8201 append_logical_end(ctx->block);
8202 ctx->block->kind |= block_kind_uniform;
8203
8204 /* emit branch */
8205 assert(cond.regClass() == bld.lm);
8206 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
8207 cond = bool_to_scalar_condition(ctx, cond);
8208
8209 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8210 branch->operands[0] = Operand(cond);
8211 branch->operands[0].setFixed(scc);
8212 ctx->block->instructions.emplace_back(std::move(branch));
8213
8214 unsigned BB_if_idx = ctx->block->index;
8215 Block BB_endif = Block();
8216 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8217 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
8218
8219 /** emit then block */
8220 Block* BB_then = ctx->program->create_and_insert_block();
8221 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8222 add_edge(BB_if_idx, BB_then);
8223 append_logical_start(BB_then);
8224 ctx->block = BB_then;
8225 visit_cf_list(ctx, &if_stmt->then_list);
8226 BB_then = ctx->block;
8227 bool then_branch = ctx->cf_info.has_branch;
8228 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8229
8230 if (!then_branch) {
8231 append_logical_end(BB_then);
8232 /* branch from then block to endif block */
8233 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8234 BB_then->instructions.emplace_back(std::move(branch));
8235 add_linear_edge(BB_then->index, &BB_endif);
8236 if (!then_branch_divergent)
8237 add_logical_edge(BB_then->index, &BB_endif);
8238 BB_then->kind |= block_kind_uniform;
8239 }
8240
8241 ctx->cf_info.has_branch = false;
8242 ctx->cf_info.parent_loop.has_divergent_branch = false;
8243
8244 /** emit else block */
8245 Block* BB_else = ctx->program->create_and_insert_block();
8246 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8247 add_edge(BB_if_idx, BB_else);
8248 append_logical_start(BB_else);
8249 ctx->block = BB_else;
8250 visit_cf_list(ctx, &if_stmt->else_list);
8251 BB_else = ctx->block;
8252
8253 if (!ctx->cf_info.has_branch) {
8254 append_logical_end(BB_else);
8255 /* branch from then block to endif block */
8256 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8257 BB_else->instructions.emplace_back(std::move(branch));
8258 add_linear_edge(BB_else->index, &BB_endif);
8259 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8260 add_logical_edge(BB_else->index, &BB_endif);
8261 BB_else->kind |= block_kind_uniform;
8262 }
8263
8264 ctx->cf_info.has_branch &= then_branch;
8265 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
8266
8267 /** emit endif merge block */
8268 if (!ctx->cf_info.has_branch) {
8269 ctx->block = ctx->program->insert_block(std::move(BB_endif));
8270 append_logical_start(ctx->block);
8271 }
8272 } else { /* non-uniform condition */
8273 /**
8274 * To maintain a logical and linear CFG without critical edges,
8275 * non-uniform conditionals are represented in the following way*) :
8276 *
8277 * The linear CFG:
8278 * BB_IF
8279 * / \
8280 * BB_THEN (logical) BB_THEN (linear)
8281 * \ /
8282 * BB_INVERT (linear)
8283 * / \
8284 * BB_ELSE (logical) BB_ELSE (linear)
8285 * \ /
8286 * BB_ENDIF
8287 *
8288 * The logical CFG:
8289 * BB_IF
8290 * / \
8291 * BB_THEN (logical) BB_ELSE (logical)
8292 * \ /
8293 * BB_ENDIF
8294 *
8295 * *) Exceptions may be due to break and continue statements within loops
8296 **/
8297
8298 if_context ic;
8299
8300 begin_divergent_if_then(ctx, &ic, cond);
8301 visit_cf_list(ctx, &if_stmt->then_list);
8302
8303 begin_divergent_if_else(ctx, &ic);
8304 visit_cf_list(ctx, &if_stmt->else_list);
8305
8306 end_divergent_if(ctx, &ic);
8307 }
8308 }
8309
8310 static void visit_cf_list(isel_context *ctx,
8311 struct exec_list *list)
8312 {
8313 foreach_list_typed(nir_cf_node, node, node, list) {
8314 switch (node->type) {
8315 case nir_cf_node_block:
8316 visit_block(ctx, nir_cf_node_as_block(node));
8317 break;
8318 case nir_cf_node_if:
8319 visit_if(ctx, nir_cf_node_as_if(node));
8320 break;
8321 case nir_cf_node_loop:
8322 visit_loop(ctx, nir_cf_node_as_loop(node));
8323 break;
8324 default:
8325 unreachable("unimplemented cf list type");
8326 }
8327 }
8328 }
8329
8330 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
8331 {
8332 int offset = ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
8333 uint64_t mask = ctx->outputs.mask[slot];
8334 if (!is_pos && !mask)
8335 return;
8336 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
8337 return;
8338 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8339 exp->enabled_mask = mask;
8340 for (unsigned i = 0; i < 4; ++i) {
8341 if (mask & (1 << i))
8342 exp->operands[i] = Operand(ctx->outputs.outputs[slot][i]);
8343 else
8344 exp->operands[i] = Operand(v1);
8345 }
8346 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
8347 * Setting valid_mask=1 prevents it and has no other effect.
8348 */
8349 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
8350 exp->done = false;
8351 exp->compressed = false;
8352 if (is_pos)
8353 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8354 else
8355 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
8356 ctx->block->instructions.emplace_back(std::move(exp));
8357 }
8358
8359 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
8360 {
8361 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8362 exp->enabled_mask = 0;
8363 for (unsigned i = 0; i < 4; ++i)
8364 exp->operands[i] = Operand(v1);
8365 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
8366 exp->operands[0] = Operand(ctx->outputs.outputs[VARYING_SLOT_PSIZ][0]);
8367 exp->enabled_mask |= 0x1;
8368 }
8369 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
8370 exp->operands[2] = Operand(ctx->outputs.outputs[VARYING_SLOT_LAYER][0]);
8371 exp->enabled_mask |= 0x4;
8372 }
8373 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
8374 if (ctx->options->chip_class < GFX9) {
8375 exp->operands[3] = Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]);
8376 exp->enabled_mask |= 0x8;
8377 } else {
8378 Builder bld(ctx->program, ctx->block);
8379
8380 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
8381 Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]));
8382 if (exp->operands[2].isTemp())
8383 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
8384
8385 exp->operands[2] = Operand(out);
8386 exp->enabled_mask |= 0x4;
8387 }
8388 }
8389 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
8390 exp->done = false;
8391 exp->compressed = false;
8392 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8393 ctx->block->instructions.emplace_back(std::move(exp));
8394 }
8395
8396 static void create_vs_exports(isel_context *ctx)
8397 {
8398 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
8399
8400 if (outinfo->export_prim_id) {
8401 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
8402 ctx->outputs.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
8403 }
8404
8405 if (ctx->options->key.has_multiview_view_index) {
8406 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
8407 ctx->outputs.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
8408 }
8409
8410 /* the order these position exports are created is important */
8411 int next_pos = 0;
8412 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
8413 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
8414 export_vs_psiz_layer_viewport(ctx, &next_pos);
8415 }
8416 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8417 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
8418 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8419 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
8420
8421 if (ctx->export_clip_dists) {
8422 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8423 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
8424 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8425 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
8426 }
8427
8428 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
8429 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
8430 i != VARYING_SLOT_PRIMITIVE_ID)
8431 continue;
8432
8433 export_vs_varying(ctx, i, false, NULL);
8434 }
8435 }
8436
8437 static void export_fs_mrt_z(isel_context *ctx)
8438 {
8439 Builder bld(ctx->program, ctx->block);
8440 unsigned enabled_channels = 0;
8441 bool compr = false;
8442 Operand values[4];
8443
8444 for (unsigned i = 0; i < 4; ++i) {
8445 values[i] = Operand(v1);
8446 }
8447
8448 /* Both stencil and sample mask only need 16-bits. */
8449 if (!ctx->program->info->ps.writes_z &&
8450 (ctx->program->info->ps.writes_stencil ||
8451 ctx->program->info->ps.writes_sample_mask)) {
8452 compr = true; /* COMPR flag */
8453
8454 if (ctx->program->info->ps.writes_stencil) {
8455 /* Stencil should be in X[23:16]. */
8456 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8457 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
8458 enabled_channels |= 0x3;
8459 }
8460
8461 if (ctx->program->info->ps.writes_sample_mask) {
8462 /* SampleMask should be in Y[15:0]. */
8463 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8464 enabled_channels |= 0xc;
8465 }
8466 } else {
8467 if (ctx->program->info->ps.writes_z) {
8468 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_DEPTH][0]);
8469 enabled_channels |= 0x1;
8470 }
8471
8472 if (ctx->program->info->ps.writes_stencil) {
8473 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8474 enabled_channels |= 0x2;
8475 }
8476
8477 if (ctx->program->info->ps.writes_sample_mask) {
8478 values[2] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8479 enabled_channels |= 0x4;
8480 }
8481 }
8482
8483 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
8484 * writemask component.
8485 */
8486 if (ctx->options->chip_class == GFX6 &&
8487 ctx->options->family != CHIP_OLAND &&
8488 ctx->options->family != CHIP_HAINAN) {
8489 enabled_channels |= 0x1;
8490 }
8491
8492 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8493 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
8494 }
8495
8496 static void export_fs_mrt_color(isel_context *ctx, int slot)
8497 {
8498 Builder bld(ctx->program, ctx->block);
8499 unsigned write_mask = ctx->outputs.mask[slot];
8500 Operand values[4];
8501
8502 for (unsigned i = 0; i < 4; ++i) {
8503 if (write_mask & (1 << i)) {
8504 values[i] = Operand(ctx->outputs.outputs[slot][i]);
8505 } else {
8506 values[i] = Operand(v1);
8507 }
8508 }
8509
8510 unsigned target, col_format;
8511 unsigned enabled_channels = 0;
8512 aco_opcode compr_op = (aco_opcode)0;
8513
8514 slot -= FRAG_RESULT_DATA0;
8515 target = V_008DFC_SQ_EXP_MRT + slot;
8516 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
8517
8518 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
8519 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
8520
8521 switch (col_format)
8522 {
8523 case V_028714_SPI_SHADER_ZERO:
8524 enabled_channels = 0; /* writemask */
8525 target = V_008DFC_SQ_EXP_NULL;
8526 break;
8527
8528 case V_028714_SPI_SHADER_32_R:
8529 enabled_channels = 1;
8530 break;
8531
8532 case V_028714_SPI_SHADER_32_GR:
8533 enabled_channels = 0x3;
8534 break;
8535
8536 case V_028714_SPI_SHADER_32_AR:
8537 if (ctx->options->chip_class >= GFX10) {
8538 /* Special case: on GFX10, the outputs are different for 32_AR */
8539 enabled_channels = 0x3;
8540 values[1] = values[3];
8541 values[3] = Operand(v1);
8542 } else {
8543 enabled_channels = 0x9;
8544 }
8545 break;
8546
8547 case V_028714_SPI_SHADER_FP16_ABGR:
8548 enabled_channels = 0x5;
8549 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
8550 break;
8551
8552 case V_028714_SPI_SHADER_UNORM16_ABGR:
8553 enabled_channels = 0x5;
8554 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
8555 break;
8556
8557 case V_028714_SPI_SHADER_SNORM16_ABGR:
8558 enabled_channels = 0x5;
8559 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
8560 break;
8561
8562 case V_028714_SPI_SHADER_UINT16_ABGR: {
8563 enabled_channels = 0x5;
8564 compr_op = aco_opcode::v_cvt_pk_u16_u32;
8565 if (is_int8 || is_int10) {
8566 /* clamp */
8567 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
8568 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
8569
8570 for (unsigned i = 0; i < 4; i++) {
8571 if ((write_mask >> i) & 1) {
8572 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
8573 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
8574 values[i]);
8575 }
8576 }
8577 }
8578 break;
8579 }
8580
8581 case V_028714_SPI_SHADER_SINT16_ABGR:
8582 enabled_channels = 0x5;
8583 compr_op = aco_opcode::v_cvt_pk_i16_i32;
8584 if (is_int8 || is_int10) {
8585 /* clamp */
8586 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
8587 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
8588 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
8589 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
8590
8591 for (unsigned i = 0; i < 4; i++) {
8592 if ((write_mask >> i) & 1) {
8593 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
8594 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
8595 values[i]);
8596 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
8597 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
8598 values[i]);
8599 }
8600 }
8601 }
8602 break;
8603
8604 case V_028714_SPI_SHADER_32_ABGR:
8605 enabled_channels = 0xF;
8606 break;
8607
8608 default:
8609 break;
8610 }
8611
8612 if (target == V_008DFC_SQ_EXP_NULL)
8613 return;
8614
8615 if ((bool) compr_op) {
8616 for (int i = 0; i < 2; i++) {
8617 /* check if at least one of the values to be compressed is enabled */
8618 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
8619 if (enabled) {
8620 enabled_channels |= enabled << (i*2);
8621 values[i] = bld.vop3(compr_op, bld.def(v1),
8622 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
8623 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
8624 } else {
8625 values[i] = Operand(v1);
8626 }
8627 }
8628 values[2] = Operand(v1);
8629 values[3] = Operand(v1);
8630 } else {
8631 for (int i = 0; i < 4; i++)
8632 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
8633 }
8634
8635 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8636 enabled_channels, target, (bool) compr_op);
8637 }
8638
8639 static void create_fs_exports(isel_context *ctx)
8640 {
8641 /* Export depth, stencil and sample mask. */
8642 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
8643 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
8644 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) {
8645 export_fs_mrt_z(ctx);
8646 }
8647
8648 /* Export all color render targets. */
8649 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i) {
8650 if (ctx->outputs.mask[i])
8651 export_fs_mrt_color(ctx, i);
8652 }
8653 }
8654
8655 static void emit_stream_output(isel_context *ctx,
8656 Temp const *so_buffers,
8657 Temp const *so_write_offset,
8658 const struct radv_stream_output *output)
8659 {
8660 unsigned num_comps = util_bitcount(output->component_mask);
8661 unsigned writemask = (1 << num_comps) - 1;
8662 unsigned loc = output->location;
8663 unsigned buf = output->buffer;
8664
8665 assert(num_comps && num_comps <= 4);
8666 if (!num_comps || num_comps > 4)
8667 return;
8668
8669 unsigned start = ffs(output->component_mask) - 1;
8670
8671 Temp out[4];
8672 bool all_undef = true;
8673 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
8674 for (unsigned i = 0; i < num_comps; i++) {
8675 out[i] = ctx->outputs.outputs[loc][start + i];
8676 all_undef = all_undef && !out[i].id();
8677 }
8678 if (all_undef)
8679 return;
8680
8681 while (writemask) {
8682 int start, count;
8683 u_bit_scan_consecutive_range(&writemask, &start, &count);
8684 if (count == 3 && ctx->options->chip_class == GFX6) {
8685 /* GFX6 doesn't support storing vec3, split it. */
8686 writemask |= 1u << (start + 2);
8687 count = 2;
8688 }
8689
8690 unsigned offset = output->offset + start * 4;
8691
8692 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
8693 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
8694 for (int i = 0; i < count; ++i)
8695 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
8696 vec->definitions[0] = Definition(write_data);
8697 ctx->block->instructions.emplace_back(std::move(vec));
8698
8699 aco_opcode opcode;
8700 switch (count) {
8701 case 1:
8702 opcode = aco_opcode::buffer_store_dword;
8703 break;
8704 case 2:
8705 opcode = aco_opcode::buffer_store_dwordx2;
8706 break;
8707 case 3:
8708 opcode = aco_opcode::buffer_store_dwordx3;
8709 break;
8710 case 4:
8711 opcode = aco_opcode::buffer_store_dwordx4;
8712 break;
8713 default:
8714 unreachable("Unsupported dword count.");
8715 }
8716
8717 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
8718 store->operands[0] = Operand(so_write_offset[buf]);
8719 store->operands[1] = Operand(so_buffers[buf]);
8720 store->operands[2] = Operand((uint32_t) 0);
8721 store->operands[3] = Operand(write_data);
8722 if (offset > 4095) {
8723 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
8724 Builder bld(ctx->program, ctx->block);
8725 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
8726 } else {
8727 store->offset = offset;
8728 }
8729 store->offen = true;
8730 store->glc = true;
8731 store->dlc = false;
8732 store->slc = true;
8733 store->can_reorder = true;
8734 ctx->block->instructions.emplace_back(std::move(store));
8735 }
8736 }
8737
8738 static void emit_streamout(isel_context *ctx, unsigned stream)
8739 {
8740 Builder bld(ctx->program, ctx->block);
8741
8742 Temp so_buffers[4];
8743 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
8744 for (unsigned i = 0; i < 4; i++) {
8745 unsigned stride = ctx->program->info->so.strides[i];
8746 if (!stride)
8747 continue;
8748
8749 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
8750 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
8751 }
8752
8753 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
8754 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
8755
8756 Temp tid = emit_mbcnt(ctx, bld.def(v1));
8757
8758 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
8759
8760 if_context ic;
8761 begin_divergent_if_then(ctx, &ic, can_emit);
8762
8763 bld.reset(ctx->block);
8764
8765 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
8766
8767 Temp so_write_offset[4];
8768
8769 for (unsigned i = 0; i < 4; i++) {
8770 unsigned stride = ctx->program->info->so.strides[i];
8771 if (!stride)
8772 continue;
8773
8774 if (stride == 1) {
8775 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
8776 get_arg(ctx, ctx->args->streamout_write_idx),
8777 get_arg(ctx, ctx->args->streamout_offset[i]));
8778 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
8779
8780 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
8781 } else {
8782 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
8783 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
8784 get_arg(ctx, ctx->args->streamout_offset[i]));
8785 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
8786 }
8787 }
8788
8789 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
8790 struct radv_stream_output *output =
8791 &ctx->program->info->so.outputs[i];
8792 if (stream != output->stream)
8793 continue;
8794
8795 emit_stream_output(ctx, so_buffers, so_write_offset, output);
8796 }
8797
8798 begin_divergent_if_else(ctx, &ic);
8799 end_divergent_if(ctx, &ic);
8800 }
8801
8802 } /* end namespace */
8803
8804 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
8805 {
8806 /* Split all arguments except for the first (ring_offsets) and the last
8807 * (exec) so that the dead channels don't stay live throughout the program.
8808 */
8809 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
8810 if (startpgm->definitions[i].regClass().size() > 1) {
8811 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
8812 startpgm->definitions[i].regClass().size());
8813 }
8814 }
8815 }
8816
8817 void handle_bc_optimize(isel_context *ctx)
8818 {
8819 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
8820 Builder bld(ctx->program, ctx->block);
8821 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
8822 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
8823 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
8824 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
8825 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
8826 if (uses_center && uses_centroid) {
8827 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
8828 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
8829
8830 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
8831 Temp new_coord[2];
8832 for (unsigned i = 0; i < 2; i++) {
8833 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
8834 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
8835 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8836 persp_centroid, persp_center, sel);
8837 }
8838 ctx->persp_centroid = bld.tmp(v2);
8839 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
8840 Operand(new_coord[0]), Operand(new_coord[1]));
8841 emit_split_vector(ctx, ctx->persp_centroid, 2);
8842 }
8843
8844 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
8845 Temp new_coord[2];
8846 for (unsigned i = 0; i < 2; i++) {
8847 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
8848 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
8849 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8850 linear_centroid, linear_center, sel);
8851 }
8852 ctx->linear_centroid = bld.tmp(v2);
8853 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
8854 Operand(new_coord[0]), Operand(new_coord[1]));
8855 emit_split_vector(ctx, ctx->linear_centroid, 2);
8856 }
8857 }
8858 }
8859
8860 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
8861 {
8862 Program *program = ctx->program;
8863
8864 unsigned float_controls = shader->info.float_controls_execution_mode;
8865
8866 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
8867 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
8868 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
8869 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
8870 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
8871
8872 program->next_fp_mode.must_flush_denorms32 =
8873 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
8874 program->next_fp_mode.must_flush_denorms16_64 =
8875 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
8876 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
8877
8878 program->next_fp_mode.care_about_round32 =
8879 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
8880
8881 program->next_fp_mode.care_about_round16_64 =
8882 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
8883 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
8884
8885 /* default to preserving fp16 and fp64 denorms, since it's free */
8886 if (program->next_fp_mode.must_flush_denorms16_64)
8887 program->next_fp_mode.denorm16_64 = 0;
8888 else
8889 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
8890
8891 /* preserving fp32 denorms is expensive, so only do it if asked */
8892 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
8893 program->next_fp_mode.denorm32 = fp_denorm_keep;
8894 else
8895 program->next_fp_mode.denorm32 = 0;
8896
8897 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
8898 program->next_fp_mode.round32 = fp_round_tz;
8899 else
8900 program->next_fp_mode.round32 = fp_round_ne;
8901
8902 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
8903 program->next_fp_mode.round16_64 = fp_round_tz;
8904 else
8905 program->next_fp_mode.round16_64 = fp_round_ne;
8906
8907 ctx->block->fp_mode = program->next_fp_mode;
8908 }
8909
8910 void cleanup_cfg(Program *program)
8911 {
8912 /* create linear_succs/logical_succs */
8913 for (Block& BB : program->blocks) {
8914 for (unsigned idx : BB.linear_preds)
8915 program->blocks[idx].linear_succs.emplace_back(BB.index);
8916 for (unsigned idx : BB.logical_preds)
8917 program->blocks[idx].logical_succs.emplace_back(BB.index);
8918 }
8919 }
8920
8921 void select_program(Program *program,
8922 unsigned shader_count,
8923 struct nir_shader *const *shaders,
8924 ac_shader_config* config,
8925 struct radv_shader_args *args)
8926 {
8927 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
8928
8929 for (unsigned i = 0; i < shader_count; i++) {
8930 nir_shader *nir = shaders[i];
8931 init_context(&ctx, nir);
8932
8933 setup_fp_mode(&ctx, nir);
8934
8935 if (!i) {
8936 /* needs to be after init_context() for FS */
8937 Pseudo_instruction *startpgm = add_startpgm(&ctx);
8938 append_logical_start(ctx.block);
8939 split_arguments(&ctx, startpgm);
8940 }
8941
8942 if_context ic;
8943 if (shader_count >= 2) {
8944 Builder bld(ctx.program, ctx.block);
8945 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | (i * 8u)));
8946 Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
8947 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
8948
8949 begin_divergent_if_then(&ctx, &ic, cond);
8950 }
8951
8952 if (i) {
8953 Builder bld(ctx.program, ctx.block);
8954 assert(ctx.stage == vertex_geometry_gs);
8955 bld.barrier(aco_opcode::p_memory_barrier_shared);
8956 bld.sopp(aco_opcode::s_barrier);
8957
8958 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
8959 } else if (ctx.stage == geometry_gs)
8960 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
8961
8962 if (ctx.stage == fragment_fs)
8963 handle_bc_optimize(&ctx);
8964
8965 nir_function_impl *func = nir_shader_get_entrypoint(nir);
8966 visit_cf_list(&ctx, &func->body);
8967
8968 if (ctx.program->info->so.num_outputs && ctx.stage == vertex_vs)
8969 emit_streamout(&ctx, 0);
8970
8971 if (ctx.stage == vertex_vs) {
8972 create_vs_exports(&ctx);
8973 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
8974 Builder bld(ctx.program, ctx.block);
8975 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
8976 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
8977 }
8978
8979 if (ctx.stage == fragment_fs)
8980 create_fs_exports(&ctx);
8981
8982 if (shader_count >= 2) {
8983 begin_divergent_if_else(&ctx, &ic);
8984 end_divergent_if(&ctx, &ic);
8985 }
8986
8987 ralloc_free(ctx.divergent_vals);
8988 }
8989
8990 program->config->float_mode = program->blocks[0].fp_mode.val;
8991
8992 append_logical_end(ctx.block);
8993 ctx.block->kind |= block_kind_uniform | block_kind_export_end;
8994 Builder bld(ctx.program, ctx.block);
8995 if (ctx.program->wb_smem_l1_on_end)
8996 bld.smem(aco_opcode::s_dcache_wb, false);
8997 bld.sopp(aco_opcode::s_endpgm);
8998
8999 cleanup_cfg(program);
9000 }
9001
9002 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
9003 ac_shader_config* config,
9004 struct radv_shader_args *args)
9005 {
9006 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
9007
9008 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
9009 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
9010 program->next_fp_mode.must_flush_denorms32 = false;
9011 program->next_fp_mode.must_flush_denorms16_64 = false;
9012 program->next_fp_mode.care_about_round32 = false;
9013 program->next_fp_mode.care_about_round16_64 = false;
9014 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9015 program->next_fp_mode.denorm32 = 0;
9016 program->next_fp_mode.round32 = fp_round_ne;
9017 program->next_fp_mode.round16_64 = fp_round_ne;
9018 ctx.block->fp_mode = program->next_fp_mode;
9019
9020 add_startpgm(&ctx);
9021 append_logical_start(ctx.block);
9022
9023 Builder bld(ctx.program, ctx.block);
9024
9025 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
9026
9027 Operand stream_id(0u);
9028 if (args->shader_info->so.num_outputs)
9029 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9030 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
9031
9032 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
9033
9034 std::stack<Block> endif_blocks;
9035
9036 for (unsigned stream = 0; stream < 4; stream++) {
9037 if (stream_id.isConstant() && stream != stream_id.constantValue())
9038 continue;
9039
9040 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
9041 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
9042 continue;
9043
9044 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
9045
9046 unsigned BB_if_idx = ctx.block->index;
9047 Block BB_endif = Block();
9048 if (!stream_id.isConstant()) {
9049 /* begin IF */
9050 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
9051 append_logical_end(ctx.block);
9052 ctx.block->kind |= block_kind_uniform;
9053 bld.branch(aco_opcode::p_cbranch_z, cond);
9054
9055 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
9056
9057 ctx.block = ctx.program->create_and_insert_block();
9058 add_edge(BB_if_idx, ctx.block);
9059 bld.reset(ctx.block);
9060 append_logical_start(ctx.block);
9061 }
9062
9063 unsigned offset = 0;
9064 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9065 if (args->shader_info->gs.output_streams[i] != stream)
9066 continue;
9067
9068 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
9069 unsigned length = util_last_bit(output_usage_mask);
9070 for (unsigned j = 0; j < length; ++j) {
9071 if (!(output_usage_mask & (1 << j)))
9072 continue;
9073
9074 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
9075 Temp voffset = vtx_offset;
9076 if (const_offset >= 4096u) {
9077 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
9078 const_offset %= 4096u;
9079 }
9080
9081 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
9082 mubuf->definitions[0] = bld.def(v1);
9083 mubuf->operands[0] = Operand(voffset);
9084 mubuf->operands[1] = Operand(gsvs_ring);
9085 mubuf->operands[2] = Operand(0u);
9086 mubuf->offen = true;
9087 mubuf->offset = const_offset;
9088 mubuf->glc = true;
9089 mubuf->slc = true;
9090 mubuf->dlc = args->options->chip_class >= GFX10;
9091 mubuf->barrier = barrier_none;
9092 mubuf->can_reorder = true;
9093
9094 ctx.outputs.mask[i] |= 1 << j;
9095 ctx.outputs.outputs[i][j] = mubuf->definitions[0].getTemp();
9096
9097 bld.insert(std::move(mubuf));
9098
9099 offset++;
9100 }
9101 }
9102
9103 if (args->shader_info->so.num_outputs) {
9104 emit_streamout(&ctx, stream);
9105 bld.reset(ctx.block);
9106 }
9107
9108 if (stream == 0) {
9109 create_vs_exports(&ctx);
9110 ctx.block->kind |= block_kind_export_end;
9111 }
9112
9113 if (!stream_id.isConstant()) {
9114 append_logical_end(ctx.block);
9115
9116 /* branch from then block to endif block */
9117 bld.branch(aco_opcode::p_branch);
9118 add_edge(ctx.block->index, &BB_endif);
9119 ctx.block->kind |= block_kind_uniform;
9120
9121 /* emit else block */
9122 ctx.block = ctx.program->create_and_insert_block();
9123 add_edge(BB_if_idx, ctx.block);
9124 bld.reset(ctx.block);
9125 append_logical_start(ctx.block);
9126
9127 endif_blocks.push(std::move(BB_endif));
9128 }
9129 }
9130
9131 while (!endif_blocks.empty()) {
9132 Block BB_endif = std::move(endif_blocks.top());
9133 endif_blocks.pop();
9134
9135 Block *BB_else = ctx.block;
9136
9137 append_logical_end(BB_else);
9138 /* branch from else block to endif block */
9139 bld.branch(aco_opcode::p_branch);
9140 add_edge(BB_else->index, &BB_endif);
9141 BB_else->kind |= block_kind_uniform;
9142
9143 /** emit endif merge block */
9144 ctx.block = program->insert_block(std::move(BB_endif));
9145 bld.reset(ctx.block);
9146 append_logical_start(ctx.block);
9147 }
9148
9149 program->config->float_mode = program->blocks[0].fp_mode.val;
9150
9151 append_logical_end(ctx.block);
9152 ctx.block->kind |= block_kind_uniform;
9153 bld.sopp(aco_opcode::s_endpgm);
9154
9155 cleanup_cfg(program);
9156 }
9157 }