aco: add emit_load helper
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool uniform_has_then_branch;
89 bool then_branch_divergent;
90 Block BB_invert;
91 Block BB_endif;
92 };
93
94 static bool visit_cf_list(struct isel_context *ctx,
95 struct exec_list *list);
96
97 static void add_logical_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->logical_preds.emplace_back(pred_idx);
100 }
101
102
103 static void add_linear_edge(unsigned pred_idx, Block *succ)
104 {
105 succ->linear_preds.emplace_back(pred_idx);
106 }
107
108 static void add_edge(unsigned pred_idx, Block *succ)
109 {
110 add_logical_edge(pred_idx, succ);
111 add_linear_edge(pred_idx, succ);
112 }
113
114 static void append_logical_start(Block *b)
115 {
116 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
117 }
118
119 static void append_logical_end(Block *b)
120 {
121 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
122 }
123
124 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
125 {
126 assert(ctx->allocated[def->index].id());
127 return ctx->allocated[def->index];
128 }
129
130 Temp emit_mbcnt(isel_context *ctx, Definition dst,
131 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
132 {
133 Builder bld(ctx->program, ctx->block);
134 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
135 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
136
137 if (ctx->program->wave_size == 32) {
138 return thread_id_lo;
139 } else {
140 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
141 return thread_id_hi;
142 }
143 }
144
145 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
146 {
147 Builder bld(ctx->program, ctx->block);
148
149 if (!dst.id())
150 dst = bld.tmp(src.regClass());
151
152 assert(src.size() == dst.size());
153
154 if (ctx->stage != fragment_fs) {
155 if (!dst.id())
156 return src;
157
158 bld.copy(Definition(dst), src);
159 return dst;
160 }
161
162 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
163 ctx->program->needs_wqm |= program_needs_wqm;
164 return dst;
165 }
166
167 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
168 {
169 if (index.regClass() == s1)
170 return bld.readlane(bld.def(s1), data, index);
171
172 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
173
174 /* Currently not implemented on GFX6-7 */
175 assert(ctx->options->chip_class >= GFX8);
176
177 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
178 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
179 }
180
181 /* GFX10, wave64 mode:
182 * The bpermute instruction is limited to half-wave operation, which means that it can't
183 * properly support subgroup shuffle like older generations (or wave32 mode), so we
184 * emulate it here.
185 */
186 if (!ctx->has_gfx10_wave64_bpermute) {
187 ctx->has_gfx10_wave64_bpermute = true;
188 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
189 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
190 }
191
192 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
193 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
194 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
195 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
196
197 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
198 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
199 }
200
201 Temp as_vgpr(isel_context *ctx, Temp val)
202 {
203 if (val.type() == RegType::sgpr) {
204 Builder bld(ctx->program, ctx->block);
205 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
206 }
207 assert(val.type() == RegType::vgpr);
208 return val;
209 }
210
211 //assumes a != 0xffffffff
212 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
213 {
214 assert(b != 0);
215 Builder bld(ctx->program, ctx->block);
216
217 if (util_is_power_of_two_or_zero(b)) {
218 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
219 return;
220 }
221
222 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
223
224 assert(info.multiplier <= 0xffffffff);
225
226 bool pre_shift = info.pre_shift != 0;
227 bool increment = info.increment != 0;
228 bool multiply = true;
229 bool post_shift = info.post_shift != 0;
230
231 if (!pre_shift && !increment && !multiply && !post_shift) {
232 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
233 return;
234 }
235
236 Temp pre_shift_dst = a;
237 if (pre_shift) {
238 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
239 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
240 }
241
242 Temp increment_dst = pre_shift_dst;
243 if (increment) {
244 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
245 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
246 }
247
248 Temp multiply_dst = increment_dst;
249 if (multiply) {
250 multiply_dst = post_shift ? bld.tmp(v1) : dst;
251 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
252 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
253 }
254
255 if (post_shift) {
256 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
257 }
258 }
259
260 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
261 {
262 Builder bld(ctx->program, ctx->block);
263 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
264 }
265
266
267 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
268 {
269 /* no need to extract the whole vector */
270 if (src.regClass() == dst_rc) {
271 assert(idx == 0);
272 return src;
273 }
274
275 assert(src.bytes() > (idx * dst_rc.bytes()));
276 Builder bld(ctx->program, ctx->block);
277 auto it = ctx->allocated_vec.find(src.id());
278 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
279 if (it->second[idx].regClass() == dst_rc) {
280 return it->second[idx];
281 } else {
282 assert(!dst_rc.is_subdword());
283 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
284 return bld.copy(bld.def(dst_rc), it->second[idx]);
285 }
286 }
287
288 if (dst_rc.is_subdword())
289 src = as_vgpr(ctx, src);
290
291 if (src.bytes() == dst_rc.bytes()) {
292 assert(idx == 0);
293 return bld.copy(bld.def(dst_rc), src);
294 } else {
295 Temp dst = bld.tmp(dst_rc);
296 emit_extract_vector(ctx, src, idx, dst);
297 return dst;
298 }
299 }
300
301 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
302 {
303 if (num_components == 1)
304 return;
305 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
306 return;
307 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
308 split->operands[0] = Operand(vec_src);
309 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
310 RegClass rc;
311 if (num_components > vec_src.size()) {
312 if (vec_src.type() == RegType::sgpr)
313 return;
314
315 /* sub-dword split */
316 assert(vec_src.type() == RegType::vgpr);
317 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
318 } else {
319 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
320 }
321 for (unsigned i = 0; i < num_components; i++) {
322 elems[i] = {ctx->program->allocateId(), rc};
323 split->definitions[i] = Definition(elems[i]);
324 }
325 ctx->block->instructions.emplace_back(std::move(split));
326 ctx->allocated_vec.emplace(vec_src.id(), elems);
327 }
328
329 /* This vector expansion uses a mask to determine which elements in the new vector
330 * come from the original vector. The other elements are undefined. */
331 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
332 {
333 emit_split_vector(ctx, vec_src, util_bitcount(mask));
334
335 if (vec_src == dst)
336 return;
337
338 Builder bld(ctx->program, ctx->block);
339 if (num_components == 1) {
340 if (dst.type() == RegType::sgpr)
341 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
342 else
343 bld.copy(Definition(dst), vec_src);
344 return;
345 }
346
347 unsigned component_size = dst.size() / num_components;
348 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
349
350 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
351 vec->definitions[0] = Definition(dst);
352 unsigned k = 0;
353 for (unsigned i = 0; i < num_components; i++) {
354 if (mask & (1 << i)) {
355 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
356 if (dst.type() == RegType::sgpr)
357 src = bld.as_uniform(src);
358 vec->operands[i] = Operand(src);
359 } else {
360 vec->operands[i] = Operand(0u);
361 }
362 elems[i] = vec->operands[i].getTemp();
363 }
364 ctx->block->instructions.emplace_back(std::move(vec));
365 ctx->allocated_vec.emplace(dst.id(), elems);
366 }
367
368 /* adjust misaligned small bit size loads */
369 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
370 {
371 Builder bld(ctx->program, ctx->block);
372 Operand shift;
373 Temp select = Temp();
374 if (offset.isConstant()) {
375 assert(offset.constantValue() && offset.constantValue() < 4);
376 shift = Operand(offset.constantValue() * 8);
377 } else {
378 /* bit_offset = 8 * (offset & 0x3) */
379 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
380 select = bld.tmp(s1);
381 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
382 }
383
384 if (vec.size() == 1) {
385 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
386 } else if (vec.size() == 2) {
387 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
388 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
389 if (tmp == dst)
390 emit_split_vector(ctx, dst, 2);
391 else
392 emit_extract_vector(ctx, tmp, 0, dst);
393 } else if (vec.size() == 4) {
394 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
395 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
396 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
397 if (select != Temp())
398 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), select);
399 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
400 Temp mid = bld.tmp(s1);
401 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
402 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
403 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
405 emit_split_vector(ctx, dst, 2);
406 }
407 }
408
409 /* this function trims subdword vectors:
410 * if dst is vgpr - split the src and create a shrunk version according to the mask.
411 * if dst is sgpr - split the src, but move the original to sgpr. */
412 void trim_subdword_vector(isel_context *ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
413 {
414 assert(vec_src.type() == RegType::vgpr);
415 emit_split_vector(ctx, vec_src, num_components);
416
417 Builder bld(ctx->program, ctx->block);
418 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
419 unsigned component_size = vec_src.bytes() / num_components;
420 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
421
422 unsigned k = 0;
423 for (unsigned i = 0; i < num_components; i++) {
424 if (mask & (1 << i))
425 elems[k++] = emit_extract_vector(ctx, vec_src, i, rc);
426 }
427
428 if (dst.type() == RegType::vgpr) {
429 assert(dst.bytes() == k * component_size);
430 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, k, 1)};
431 for (unsigned i = 0; i < k; i++)
432 vec->operands[i] = Operand(elems[i]);
433 vec->definitions[0] = Definition(dst);
434 bld.insert(std::move(vec));
435 } else {
436 // TODO: alignbyte if mask doesn't start with 1?
437 assert(mask & 1);
438 assert(dst.size() == vec_src.size());
439 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
440 }
441 ctx->allocated_vec.emplace(dst.id(), elems);
442 }
443
444 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
445 {
446 Builder bld(ctx->program, ctx->block);
447 if (!dst.id())
448 dst = bld.tmp(bld.lm);
449
450 assert(val.regClass() == s1);
451 assert(dst.regClass() == bld.lm);
452
453 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
454 }
455
456 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
457 {
458 Builder bld(ctx->program, ctx->block);
459 if (!dst.id())
460 dst = bld.tmp(s1);
461
462 assert(val.regClass() == bld.lm);
463 assert(dst.regClass() == s1);
464
465 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
466 Temp tmp = bld.tmp(s1);
467 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
468 return emit_wqm(ctx, tmp, dst);
469 }
470
471 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
472 {
473 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
474 return get_ssa_temp(ctx, src.src.ssa);
475
476 if (src.src.ssa->num_components == size) {
477 bool identity_swizzle = true;
478 for (unsigned i = 0; identity_swizzle && i < size; i++) {
479 if (src.swizzle[i] != i)
480 identity_swizzle = false;
481 }
482 if (identity_swizzle)
483 return get_ssa_temp(ctx, src.src.ssa);
484 }
485
486 Temp vec = get_ssa_temp(ctx, src.src.ssa);
487 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
488 assert(elem_size > 0);
489 assert(vec.bytes() % elem_size == 0);
490
491 if (elem_size < 4 && vec.type() == RegType::sgpr) {
492 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
493 assert(size == 1);
494 unsigned swizzle = src.swizzle[0];
495 if (vec.size() > 1) {
496 assert(src.src.ssa->bit_size == 16);
497 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
498 swizzle = swizzle & 1;
499 }
500 if (swizzle == 0)
501 return vec;
502
503 Temp dst{ctx->program->allocateId(), s1};
504 aco_ptr<SOP2_instruction> bfe{create_instruction<SOP2_instruction>(aco_opcode::s_bfe_u32, Format::SOP2, 2, 1)};
505 bfe->operands[0] = Operand(vec);
506 bfe->operands[1] = Operand(uint32_t((src.src.ssa->bit_size << 16) | (src.src.ssa->bit_size * swizzle)));
507 bfe->definitions[0] = Definition(dst);
508 ctx->block->instructions.emplace_back(std::move(bfe));
509 return dst;
510 }
511
512 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
513 if (size == 1) {
514 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
515 } else {
516 assert(size <= 4);
517 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
518 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
519 for (unsigned i = 0; i < size; ++i) {
520 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
521 vec_instr->operands[i] = Operand{elems[i]};
522 }
523 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
524 vec_instr->definitions[0] = Definition(dst);
525 ctx->block->instructions.emplace_back(std::move(vec_instr));
526 ctx->allocated_vec.emplace(dst.id(), elems);
527 return dst;
528 }
529 }
530
531 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
532 {
533 if (ptr.size() == 2)
534 return ptr;
535 Builder bld(ctx->program, ctx->block);
536 if (ptr.type() == RegType::vgpr)
537 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
538 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
539 ptr, Operand((unsigned)ctx->options->address32_hi));
540 }
541
542 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
543 {
544 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
545 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
546 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
547 sop2->definitions[0] = Definition(dst);
548 if (writes_scc)
549 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
550 ctx->block->instructions.emplace_back(std::move(sop2));
551 }
552
553 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
554 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
555 {
556 Builder bld(ctx->program, ctx->block);
557 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
558 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
559 if (src1.type() == RegType::sgpr) {
560 if (commutative && src0.type() == RegType::vgpr) {
561 Temp t = src0;
562 src0 = src1;
563 src1 = t;
564 } else {
565 src1 = as_vgpr(ctx, src1);
566 }
567 }
568
569 if (flush_denorms && ctx->program->chip_class < GFX9) {
570 assert(dst.size() == 1);
571 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
572 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
573 } else {
574 bld.vop2(op, Definition(dst), src0, src1);
575 }
576 }
577
578 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
579 bool flush_denorms = false)
580 {
581 Temp src0 = get_alu_src(ctx, instr->src[0]);
582 Temp src1 = get_alu_src(ctx, instr->src[1]);
583 Temp src2 = get_alu_src(ctx, instr->src[2]);
584
585 /* ensure that the instruction has at most 1 sgpr operand
586 * The optimizer will inline constants for us */
587 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
588 src0 = as_vgpr(ctx, src0);
589 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
590 src1 = as_vgpr(ctx, src1);
591 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
592 src2 = as_vgpr(ctx, src2);
593
594 Builder bld(ctx->program, ctx->block);
595 if (flush_denorms && ctx->program->chip_class < GFX9) {
596 assert(dst.size() == 1);
597 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
598 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
599 } else {
600 bld.vop3(op, Definition(dst), src0, src1, src2);
601 }
602 }
603
604 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
605 {
606 Builder bld(ctx->program, ctx->block);
607 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
608 }
609
610 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
611 {
612 Temp src0 = get_alu_src(ctx, instr->src[0]);
613 Temp src1 = get_alu_src(ctx, instr->src[1]);
614 assert(src0.size() == src1.size());
615
616 aco_ptr<Instruction> vopc;
617 if (src1.type() == RegType::sgpr) {
618 if (src0.type() == RegType::vgpr) {
619 /* to swap the operands, we might also have to change the opcode */
620 switch (op) {
621 case aco_opcode::v_cmp_lt_f16:
622 op = aco_opcode::v_cmp_gt_f16;
623 break;
624 case aco_opcode::v_cmp_ge_f16:
625 op = aco_opcode::v_cmp_le_f16;
626 break;
627 case aco_opcode::v_cmp_lt_i16:
628 op = aco_opcode::v_cmp_gt_i16;
629 break;
630 case aco_opcode::v_cmp_ge_i16:
631 op = aco_opcode::v_cmp_le_i16;
632 break;
633 case aco_opcode::v_cmp_lt_u16:
634 op = aco_opcode::v_cmp_gt_u16;
635 break;
636 case aco_opcode::v_cmp_ge_u16:
637 op = aco_opcode::v_cmp_le_u16;
638 break;
639 case aco_opcode::v_cmp_lt_f32:
640 op = aco_opcode::v_cmp_gt_f32;
641 break;
642 case aco_opcode::v_cmp_ge_f32:
643 op = aco_opcode::v_cmp_le_f32;
644 break;
645 case aco_opcode::v_cmp_lt_i32:
646 op = aco_opcode::v_cmp_gt_i32;
647 break;
648 case aco_opcode::v_cmp_ge_i32:
649 op = aco_opcode::v_cmp_le_i32;
650 break;
651 case aco_opcode::v_cmp_lt_u32:
652 op = aco_opcode::v_cmp_gt_u32;
653 break;
654 case aco_opcode::v_cmp_ge_u32:
655 op = aco_opcode::v_cmp_le_u32;
656 break;
657 case aco_opcode::v_cmp_lt_f64:
658 op = aco_opcode::v_cmp_gt_f64;
659 break;
660 case aco_opcode::v_cmp_ge_f64:
661 op = aco_opcode::v_cmp_le_f64;
662 break;
663 case aco_opcode::v_cmp_lt_i64:
664 op = aco_opcode::v_cmp_gt_i64;
665 break;
666 case aco_opcode::v_cmp_ge_i64:
667 op = aco_opcode::v_cmp_le_i64;
668 break;
669 case aco_opcode::v_cmp_lt_u64:
670 op = aco_opcode::v_cmp_gt_u64;
671 break;
672 case aco_opcode::v_cmp_ge_u64:
673 op = aco_opcode::v_cmp_le_u64;
674 break;
675 default: /* eq and ne are commutative */
676 break;
677 }
678 Temp t = src0;
679 src0 = src1;
680 src1 = t;
681 } else {
682 src1 = as_vgpr(ctx, src1);
683 }
684 }
685
686 Builder bld(ctx->program, ctx->block);
687 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
688 }
689
690 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
691 {
692 Temp src0 = get_alu_src(ctx, instr->src[0]);
693 Temp src1 = get_alu_src(ctx, instr->src[1]);
694 Builder bld(ctx->program, ctx->block);
695
696 assert(dst.regClass() == bld.lm);
697 assert(src0.type() == RegType::sgpr);
698 assert(src1.type() == RegType::sgpr);
699 assert(src0.regClass() == src1.regClass());
700
701 /* Emit the SALU comparison instruction */
702 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
703 /* Turn the result into a per-lane bool */
704 bool_to_vector_condition(ctx, cmp, dst);
705 }
706
707 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
708 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
709 {
710 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
711 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
712 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
713 bool use_valu = s_op == aco_opcode::num_opcodes ||
714 divergent_vals ||
715 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
716 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
717 aco_opcode op = use_valu ? v_op : s_op;
718 assert(op != aco_opcode::num_opcodes);
719 assert(dst.regClass() == ctx->program->lane_mask);
720
721 if (use_valu)
722 emit_vopc_instruction(ctx, instr, op, dst);
723 else
724 emit_sopc_instruction(ctx, instr, op, dst);
725 }
726
727 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
728 {
729 Builder bld(ctx->program, ctx->block);
730 Temp src0 = get_alu_src(ctx, instr->src[0]);
731 Temp src1 = get_alu_src(ctx, instr->src[1]);
732
733 assert(dst.regClass() == bld.lm);
734 assert(src0.regClass() == bld.lm);
735 assert(src1.regClass() == bld.lm);
736
737 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
738 }
739
740 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
741 {
742 Builder bld(ctx->program, ctx->block);
743 Temp cond = get_alu_src(ctx, instr->src[0]);
744 Temp then = get_alu_src(ctx, instr->src[1]);
745 Temp els = get_alu_src(ctx, instr->src[2]);
746
747 assert(cond.regClass() == bld.lm);
748
749 if (dst.type() == RegType::vgpr) {
750 aco_ptr<Instruction> bcsel;
751 if (dst.regClass() == v2b) {
752 then = as_vgpr(ctx, then);
753 els = as_vgpr(ctx, els);
754
755 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), els, then, cond);
756 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
757 } else if (dst.regClass() == v1) {
758 then = as_vgpr(ctx, then);
759 els = as_vgpr(ctx, els);
760
761 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
762 } else if (dst.regClass() == v2) {
763 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
765 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
766 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
767
768 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
769 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
770
771 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
772 } else {
773 fprintf(stderr, "Unimplemented NIR instr bit size: ");
774 nir_print_instr(&instr->instr, stderr);
775 fprintf(stderr, "\n");
776 }
777 return;
778 }
779
780 if (instr->dest.dest.ssa.bit_size == 1) {
781 assert(dst.regClass() == bld.lm);
782 assert(then.regClass() == bld.lm);
783 assert(els.regClass() == bld.lm);
784 }
785
786 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
787 if (dst.regClass() == s1 || dst.regClass() == s2) {
788 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
789 assert(dst.size() == then.size());
790 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
791 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
792 } else {
793 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
794 nir_print_instr(&instr->instr, stderr);
795 fprintf(stderr, "\n");
796 }
797 return;
798 }
799
800 /* divergent boolean bcsel
801 * this implements bcsel on bools: dst = s0 ? s1 : s2
802 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
803 assert(instr->dest.dest.ssa.bit_size == 1);
804
805 if (cond.id() != then.id())
806 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
807
808 if (cond.id() == els.id())
809 bld.sop1(Builder::s_mov, Definition(dst), then);
810 else
811 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
812 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
813 }
814
815 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
816 aco_opcode op, uint32_t undo)
817 {
818 /* multiply by 16777216 to handle denormals */
819 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
820 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
821 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
822 scaled = bld.vop1(op, bld.def(v1), scaled);
823 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
824
825 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
826
827 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
828 }
829
830 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
831 {
832 if (ctx->block->fp_mode.denorm32 == 0) {
833 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
834 return;
835 }
836
837 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
838 }
839
840 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
841 {
842 if (ctx->block->fp_mode.denorm32 == 0) {
843 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
844 return;
845 }
846
847 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
848 }
849
850 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
851 {
852 if (ctx->block->fp_mode.denorm32 == 0) {
853 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
854 return;
855 }
856
857 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
858 }
859
860 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
861 {
862 if (ctx->block->fp_mode.denorm32 == 0) {
863 bld.vop1(aco_opcode::v_log_f32, dst, val);
864 return;
865 }
866
867 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
868 }
869
870 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
871 {
872 if (ctx->options->chip_class >= GFX7)
873 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
874
875 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
876 /* TODO: create more efficient code! */
877 if (val.type() == RegType::sgpr)
878 val = as_vgpr(ctx, val);
879
880 /* Split the input value. */
881 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
882 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
883
884 /* Extract the exponent and compute the unbiased value. */
885 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
886
887 /* Extract the fractional part. */
888 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
889 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
890
891 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
892 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
893
894 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
895 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
896 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
897 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
898 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
899
900 /* Get the sign bit. */
901 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
902
903 /* Decide the operation to apply depending on the unbiased exponent. */
904 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
905 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
906 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
907 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
908 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
909 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
910
911 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
912 }
913
914 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
915 {
916 if (ctx->options->chip_class >= GFX7)
917 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
918
919 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
920 Temp src0 = as_vgpr(ctx, val);
921
922 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
923 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
924
925 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
926 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
927 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
928
929 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
930 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
931 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
932 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
933
934 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
935 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
936
937 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
938
939 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
940 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
941
942 return add->definitions[0].getTemp();
943 }
944
945 Temp convert_int(Builder& bld, Temp src, unsigned src_bits, unsigned dst_bits, bool is_signed, Temp dst=Temp()) {
946 if (!dst.id()) {
947 if (dst_bits % 32 == 0 || src.type() == RegType::sgpr)
948 dst = bld.tmp(src.type(), DIV_ROUND_UP(dst_bits, 32u));
949 else
950 dst = bld.tmp(RegClass(RegType::vgpr, dst_bits / 8u).as_subdword());
951 }
952
953 if (dst.bytes() == src.bytes() && dst_bits < src_bits)
954 return bld.copy(Definition(dst), src);
955 else if (dst.bytes() < src.bytes())
956 return bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
957
958 Temp tmp = dst;
959 if (dst_bits == 64)
960 tmp = src_bits == 32 ? src : bld.tmp(src.type(), 1);
961
962 if (tmp == src) {
963 } else if (src.regClass() == s1) {
964 if (is_signed)
965 bld.sop1(src_bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16, Definition(tmp), src);
966 else
967 bld.sop2(aco_opcode::s_and_b32, Definition(tmp), bld.def(s1, scc), Operand(src_bits == 8 ? 0xFFu : 0xFFFFu), src);
968 } else {
969 assert(src_bits != 8 || src.regClass() == v1b);
970 assert(src_bits != 16 || src.regClass() == v2b);
971 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
972 sdwa->operands[0] = Operand(src);
973 sdwa->definitions[0] = Definition(tmp);
974 if (is_signed)
975 sdwa->sel[0] = src_bits == 8 ? sdwa_sbyte : sdwa_sword;
976 else
977 sdwa->sel[0] = src_bits == 8 ? sdwa_ubyte : sdwa_uword;
978 sdwa->dst_sel = tmp.bytes() == 2 ? sdwa_uword : sdwa_udword;
979 bld.insert(std::move(sdwa));
980 }
981
982 if (dst_bits == 64) {
983 if (is_signed && dst.regClass() == s2) {
984 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), tmp, Operand(31u));
985 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
986 } else if (is_signed && dst.regClass() == v2) {
987 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), tmp);
988 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, high);
989 } else {
990 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tmp, Operand(0u));
991 }
992 }
993
994 return dst;
995 }
996
997 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
998 {
999 if (!instr->dest.dest.is_ssa) {
1000 fprintf(stderr, "nir alu dst not in ssa: ");
1001 nir_print_instr(&instr->instr, stderr);
1002 fprintf(stderr, "\n");
1003 abort();
1004 }
1005 Builder bld(ctx->program, ctx->block);
1006 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
1007 switch(instr->op) {
1008 case nir_op_vec2:
1009 case nir_op_vec3:
1010 case nir_op_vec4: {
1011 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
1012 unsigned num = instr->dest.dest.ssa.num_components;
1013 for (unsigned i = 0; i < num; ++i)
1014 elems[i] = get_alu_src(ctx, instr->src[i]);
1015
1016 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
1017 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
1018 for (unsigned i = 0; i < num; ++i)
1019 vec->operands[i] = Operand{elems[i]};
1020 vec->definitions[0] = Definition(dst);
1021 ctx->block->instructions.emplace_back(std::move(vec));
1022 ctx->allocated_vec.emplace(dst.id(), elems);
1023 } else {
1024 // TODO: that is a bit suboptimal..
1025 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
1026 for (unsigned i = 0; i < num - 1; ++i)
1027 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
1028 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
1029 for (unsigned i = 0; i < num; ++i) {
1030 unsigned bit = i * instr->dest.dest.ssa.bit_size;
1031 if (bit % 32 == 0) {
1032 elems[bit / 32] = elems[i];
1033 } else {
1034 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
1035 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
1036 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
1037 }
1038 }
1039 if (dst.size() == 1)
1040 bld.copy(Definition(dst), elems[0]);
1041 else
1042 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
1043 }
1044 break;
1045 }
1046 case nir_op_mov: {
1047 Temp src = get_alu_src(ctx, instr->src[0]);
1048 aco_ptr<Instruction> mov;
1049 if (dst.type() == RegType::sgpr) {
1050 if (src.type() == RegType::vgpr)
1051 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1052 else if (src.regClass() == s1)
1053 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
1054 else if (src.regClass() == s2)
1055 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
1056 else
1057 unreachable("wrong src register class for nir_op_imov");
1058 } else if (dst.regClass() == v1) {
1059 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
1060 } else if (dst.regClass() == v2) {
1061 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
1062 } else {
1063 nir_print_instr(&instr->instr, stderr);
1064 unreachable("Should have been lowered to scalar.");
1065 }
1066 break;
1067 }
1068 case nir_op_inot: {
1069 Temp src = get_alu_src(ctx, instr->src[0]);
1070 if (instr->dest.dest.ssa.bit_size == 1) {
1071 assert(src.regClass() == bld.lm);
1072 assert(dst.regClass() == bld.lm);
1073 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1074 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1075 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1076 } else if (dst.regClass() == v1) {
1077 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1078 } else if (dst.type() == RegType::sgpr) {
1079 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1080 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1081 } else {
1082 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1083 nir_print_instr(&instr->instr, stderr);
1084 fprintf(stderr, "\n");
1085 }
1086 break;
1087 }
1088 case nir_op_ineg: {
1089 Temp src = get_alu_src(ctx, instr->src[0]);
1090 if (dst.regClass() == v1) {
1091 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1092 } else if (dst.regClass() == s1) {
1093 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1094 } else if (dst.size() == 2) {
1095 Temp src0 = bld.tmp(dst.type(), 1);
1096 Temp src1 = bld.tmp(dst.type(), 1);
1097 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1098
1099 if (dst.regClass() == s2) {
1100 Temp carry = bld.tmp(s1);
1101 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1102 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1103 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1104 } else {
1105 Temp lower = bld.tmp(v1);
1106 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1107 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1108 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1109 }
1110 } else {
1111 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1112 nir_print_instr(&instr->instr, stderr);
1113 fprintf(stderr, "\n");
1114 }
1115 break;
1116 }
1117 case nir_op_iabs: {
1118 if (dst.regClass() == s1) {
1119 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1120 } else if (dst.regClass() == v1) {
1121 Temp src = get_alu_src(ctx, instr->src[0]);
1122 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1123 } else {
1124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1125 nir_print_instr(&instr->instr, stderr);
1126 fprintf(stderr, "\n");
1127 }
1128 break;
1129 }
1130 case nir_op_isign: {
1131 Temp src = get_alu_src(ctx, instr->src[0]);
1132 if (dst.regClass() == s1) {
1133 Temp tmp = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), src, Operand((uint32_t)-1));
1134 bld.sop2(aco_opcode::s_min_i32, Definition(dst), bld.def(s1, scc), tmp, Operand(1u));
1135 } else if (dst.regClass() == s2) {
1136 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1137 Temp neqz;
1138 if (ctx->program->chip_class >= GFX8)
1139 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1140 else
1141 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1142 /* SCC gets zero-extended to 64 bit */
1143 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1144 } else if (dst.regClass() == v1) {
1145 bld.vop3(aco_opcode::v_med3_i32, Definition(dst), Operand((uint32_t)-1), src, Operand(1u));
1146 } else if (dst.regClass() == v2) {
1147 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1148 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1149 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1150 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1151 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1152 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1153 } else {
1154 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1155 nir_print_instr(&instr->instr, stderr);
1156 fprintf(stderr, "\n");
1157 }
1158 break;
1159 }
1160 case nir_op_imax: {
1161 if (dst.regClass() == v1) {
1162 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1163 } else if (dst.regClass() == s1) {
1164 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1165 } else {
1166 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1167 nir_print_instr(&instr->instr, stderr);
1168 fprintf(stderr, "\n");
1169 }
1170 break;
1171 }
1172 case nir_op_umax: {
1173 if (dst.regClass() == v1) {
1174 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1175 } else if (dst.regClass() == s1) {
1176 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1177 } else {
1178 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1179 nir_print_instr(&instr->instr, stderr);
1180 fprintf(stderr, "\n");
1181 }
1182 break;
1183 }
1184 case nir_op_imin: {
1185 if (dst.regClass() == v1) {
1186 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1187 } else if (dst.regClass() == s1) {
1188 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1189 } else {
1190 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1191 nir_print_instr(&instr->instr, stderr);
1192 fprintf(stderr, "\n");
1193 }
1194 break;
1195 }
1196 case nir_op_umin: {
1197 if (dst.regClass() == v1) {
1198 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1199 } else if (dst.regClass() == s1) {
1200 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1201 } else {
1202 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1203 nir_print_instr(&instr->instr, stderr);
1204 fprintf(stderr, "\n");
1205 }
1206 break;
1207 }
1208 case nir_op_ior: {
1209 if (instr->dest.dest.ssa.bit_size == 1) {
1210 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1211 } else if (dst.regClass() == v1) {
1212 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1213 } else if (dst.regClass() == s1) {
1214 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1215 } else if (dst.regClass() == s2) {
1216 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1217 } else {
1218 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1219 nir_print_instr(&instr->instr, stderr);
1220 fprintf(stderr, "\n");
1221 }
1222 break;
1223 }
1224 case nir_op_iand: {
1225 if (instr->dest.dest.ssa.bit_size == 1) {
1226 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1227 } else if (dst.regClass() == v1) {
1228 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1229 } else if (dst.regClass() == s1) {
1230 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1231 } else if (dst.regClass() == s2) {
1232 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1233 } else {
1234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1235 nir_print_instr(&instr->instr, stderr);
1236 fprintf(stderr, "\n");
1237 }
1238 break;
1239 }
1240 case nir_op_ixor: {
1241 if (instr->dest.dest.ssa.bit_size == 1) {
1242 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1243 } else if (dst.regClass() == v1) {
1244 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1245 } else if (dst.regClass() == s1) {
1246 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1247 } else if (dst.regClass() == s2) {
1248 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1249 } else {
1250 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1251 nir_print_instr(&instr->instr, stderr);
1252 fprintf(stderr, "\n");
1253 }
1254 break;
1255 }
1256 case nir_op_ushr: {
1257 if (dst.regClass() == v1) {
1258 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1259 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1260 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1261 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1262 } else if (dst.regClass() == v2) {
1263 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1264 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1265 } else if (dst.regClass() == s2) {
1266 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1267 } else if (dst.regClass() == s1) {
1268 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1269 } else {
1270 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1271 nir_print_instr(&instr->instr, stderr);
1272 fprintf(stderr, "\n");
1273 }
1274 break;
1275 }
1276 case nir_op_ishl: {
1277 if (dst.regClass() == v1) {
1278 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1279 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1280 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1281 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1282 } else if (dst.regClass() == v2) {
1283 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1284 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1285 } else if (dst.regClass() == s1) {
1286 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1287 } else if (dst.regClass() == s2) {
1288 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1289 } else {
1290 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1291 nir_print_instr(&instr->instr, stderr);
1292 fprintf(stderr, "\n");
1293 }
1294 break;
1295 }
1296 case nir_op_ishr: {
1297 if (dst.regClass() == v1) {
1298 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1299 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1300 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1301 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1302 } else if (dst.regClass() == v2) {
1303 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1304 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1305 } else if (dst.regClass() == s1) {
1306 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1307 } else if (dst.regClass() == s2) {
1308 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1309 } else {
1310 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1311 nir_print_instr(&instr->instr, stderr);
1312 fprintf(stderr, "\n");
1313 }
1314 break;
1315 }
1316 case nir_op_find_lsb: {
1317 Temp src = get_alu_src(ctx, instr->src[0]);
1318 if (src.regClass() == s1) {
1319 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1320 } else if (src.regClass() == v1) {
1321 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1322 } else if (src.regClass() == s2) {
1323 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1324 } else {
1325 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1326 nir_print_instr(&instr->instr, stderr);
1327 fprintf(stderr, "\n");
1328 }
1329 break;
1330 }
1331 case nir_op_ufind_msb:
1332 case nir_op_ifind_msb: {
1333 Temp src = get_alu_src(ctx, instr->src[0]);
1334 if (src.regClass() == s1 || src.regClass() == s2) {
1335 aco_opcode op = src.regClass() == s2 ?
1336 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1337 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1338 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1339
1340 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1341 Operand(src.size() * 32u - 1u), msb_rev);
1342 Temp msb = sub.def(0).getTemp();
1343 Temp carry = sub.def(1).getTemp();
1344
1345 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1346 } else if (src.regClass() == v1) {
1347 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1348 Temp msb_rev = bld.tmp(v1);
1349 emit_vop1_instruction(ctx, instr, op, msb_rev);
1350 Temp msb = bld.tmp(v1);
1351 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1352 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1353 } else {
1354 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1355 nir_print_instr(&instr->instr, stderr);
1356 fprintf(stderr, "\n");
1357 }
1358 break;
1359 }
1360 case nir_op_bitfield_reverse: {
1361 if (dst.regClass() == s1) {
1362 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1363 } else if (dst.regClass() == v1) {
1364 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1365 } else {
1366 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1367 nir_print_instr(&instr->instr, stderr);
1368 fprintf(stderr, "\n");
1369 }
1370 break;
1371 }
1372 case nir_op_iadd: {
1373 if (dst.regClass() == s1) {
1374 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1375 break;
1376 }
1377
1378 Temp src0 = get_alu_src(ctx, instr->src[0]);
1379 Temp src1 = get_alu_src(ctx, instr->src[1]);
1380 if (dst.regClass() == v1) {
1381 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1382 break;
1383 }
1384
1385 assert(src0.size() == 2 && src1.size() == 2);
1386 Temp src00 = bld.tmp(src0.type(), 1);
1387 Temp src01 = bld.tmp(dst.type(), 1);
1388 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1389 Temp src10 = bld.tmp(src1.type(), 1);
1390 Temp src11 = bld.tmp(dst.type(), 1);
1391 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1392
1393 if (dst.regClass() == s2) {
1394 Temp carry = bld.tmp(s1);
1395 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1396 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1397 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1398 } else if (dst.regClass() == v2) {
1399 Temp dst0 = bld.tmp(v1);
1400 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1401 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1402 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1403 } else {
1404 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1405 nir_print_instr(&instr->instr, stderr);
1406 fprintf(stderr, "\n");
1407 }
1408 break;
1409 }
1410 case nir_op_uadd_sat: {
1411 Temp src0 = get_alu_src(ctx, instr->src[0]);
1412 Temp src1 = get_alu_src(ctx, instr->src[1]);
1413 if (dst.regClass() == s1) {
1414 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1415 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1416 src0, src1);
1417 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1418 } else if (dst.regClass() == v1) {
1419 if (ctx->options->chip_class >= GFX9) {
1420 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1421 add->operands[0] = Operand(src0);
1422 add->operands[1] = Operand(src1);
1423 add->definitions[0] = Definition(dst);
1424 add->clamp = 1;
1425 ctx->block->instructions.emplace_back(std::move(add));
1426 } else {
1427 if (src1.regClass() != v1)
1428 std::swap(src0, src1);
1429 assert(src1.regClass() == v1);
1430 Temp tmp = bld.tmp(v1);
1431 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1432 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1433 }
1434 } else {
1435 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1436 nir_print_instr(&instr->instr, stderr);
1437 fprintf(stderr, "\n");
1438 }
1439 break;
1440 }
1441 case nir_op_uadd_carry: {
1442 Temp src0 = get_alu_src(ctx, instr->src[0]);
1443 Temp src1 = get_alu_src(ctx, instr->src[1]);
1444 if (dst.regClass() == s1) {
1445 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1446 break;
1447 }
1448 if (dst.regClass() == v1) {
1449 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1450 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1451 break;
1452 }
1453
1454 Temp src00 = bld.tmp(src0.type(), 1);
1455 Temp src01 = bld.tmp(dst.type(), 1);
1456 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1457 Temp src10 = bld.tmp(src1.type(), 1);
1458 Temp src11 = bld.tmp(dst.type(), 1);
1459 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1460 if (dst.regClass() == s2) {
1461 Temp carry = bld.tmp(s1);
1462 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1463 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1464 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1465 } else if (dst.regClass() == v2) {
1466 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1467 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1468 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1469 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1470 } else {
1471 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1472 nir_print_instr(&instr->instr, stderr);
1473 fprintf(stderr, "\n");
1474 }
1475 break;
1476 }
1477 case nir_op_isub: {
1478 if (dst.regClass() == s1) {
1479 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1480 break;
1481 }
1482
1483 Temp src0 = get_alu_src(ctx, instr->src[0]);
1484 Temp src1 = get_alu_src(ctx, instr->src[1]);
1485 if (dst.regClass() == v1) {
1486 bld.vsub32(Definition(dst), src0, src1);
1487 break;
1488 }
1489
1490 Temp src00 = bld.tmp(src0.type(), 1);
1491 Temp src01 = bld.tmp(dst.type(), 1);
1492 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1493 Temp src10 = bld.tmp(src1.type(), 1);
1494 Temp src11 = bld.tmp(dst.type(), 1);
1495 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1496 if (dst.regClass() == s2) {
1497 Temp carry = bld.tmp(s1);
1498 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1499 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1500 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1501 } else if (dst.regClass() == v2) {
1502 Temp lower = bld.tmp(v1);
1503 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1504 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1505 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1506 } else {
1507 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1508 nir_print_instr(&instr->instr, stderr);
1509 fprintf(stderr, "\n");
1510 }
1511 break;
1512 }
1513 case nir_op_usub_borrow: {
1514 Temp src0 = get_alu_src(ctx, instr->src[0]);
1515 Temp src1 = get_alu_src(ctx, instr->src[1]);
1516 if (dst.regClass() == s1) {
1517 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1518 break;
1519 } else if (dst.regClass() == v1) {
1520 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1521 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1522 break;
1523 }
1524
1525 Temp src00 = bld.tmp(src0.type(), 1);
1526 Temp src01 = bld.tmp(dst.type(), 1);
1527 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1528 Temp src10 = bld.tmp(src1.type(), 1);
1529 Temp src11 = bld.tmp(dst.type(), 1);
1530 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1531 if (dst.regClass() == s2) {
1532 Temp borrow = bld.tmp(s1);
1533 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1534 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1535 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1536 } else if (dst.regClass() == v2) {
1537 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1538 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1539 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1540 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1541 } else {
1542 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1543 nir_print_instr(&instr->instr, stderr);
1544 fprintf(stderr, "\n");
1545 }
1546 break;
1547 }
1548 case nir_op_imul: {
1549 if (dst.regClass() == v1) {
1550 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1551 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1552 } else if (dst.regClass() == s1) {
1553 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_umul_high: {
1562 if (dst.regClass() == v1) {
1563 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1564 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1565 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1566 } else if (dst.regClass() == s1) {
1567 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1568 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1569 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1570 } else {
1571 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1572 nir_print_instr(&instr->instr, stderr);
1573 fprintf(stderr, "\n");
1574 }
1575 break;
1576 }
1577 case nir_op_imul_high: {
1578 if (dst.regClass() == v1) {
1579 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1580 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1581 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1582 } else if (dst.regClass() == s1) {
1583 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1584 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1585 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1586 } else {
1587 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1588 nir_print_instr(&instr->instr, stderr);
1589 fprintf(stderr, "\n");
1590 }
1591 break;
1592 }
1593 case nir_op_fmul: {
1594 Temp src0 = get_alu_src(ctx, instr->src[0]);
1595 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1596 if (dst.regClass() == v2b) {
1597 Temp tmp = bld.tmp(v1);
1598 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, tmp, true);
1599 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1600 } else if (dst.regClass() == v1) {
1601 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1602 } else if (dst.regClass() == v2) {
1603 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
1604 } else {
1605 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1606 nir_print_instr(&instr->instr, stderr);
1607 fprintf(stderr, "\n");
1608 }
1609 break;
1610 }
1611 case nir_op_fadd: {
1612 Temp src0 = get_alu_src(ctx, instr->src[0]);
1613 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1614 if (dst.regClass() == v2b) {
1615 Temp tmp = bld.tmp(v1);
1616 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, tmp, true);
1617 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1618 } else if (dst.regClass() == v1) {
1619 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1620 } else if (dst.regClass() == v2) {
1621 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_fsub: {
1630 Temp src0 = get_alu_src(ctx, instr->src[0]);
1631 Temp src1 = get_alu_src(ctx, instr->src[1]);
1632 if (dst.regClass() == v2b) {
1633 Temp tmp = bld.tmp(v1);
1634 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1635 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, tmp, false);
1636 else
1637 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, tmp, true);
1638 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1639 } else if (dst.regClass() == v1) {
1640 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1641 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1642 else
1643 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1644 } else if (dst.regClass() == v2) {
1645 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1646 as_vgpr(ctx, src0), as_vgpr(ctx, src1));
1647 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1648 sub->neg[1] = true;
1649 } else {
1650 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1651 nir_print_instr(&instr->instr, stderr);
1652 fprintf(stderr, "\n");
1653 }
1654 break;
1655 }
1656 case nir_op_fmax: {
1657 Temp src0 = get_alu_src(ctx, instr->src[0]);
1658 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1659 if (dst.regClass() == v2b) {
1660 // TODO: check fp_mode.must_flush_denorms16_64
1661 Temp tmp = bld.tmp(v1);
1662 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, tmp, true);
1663 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1664 } else if (dst.regClass() == v1) {
1665 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1666 } else if (dst.regClass() == v2) {
1667 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1668 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1669 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1670 } else {
1671 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1672 }
1673 } else {
1674 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1675 nir_print_instr(&instr->instr, stderr);
1676 fprintf(stderr, "\n");
1677 }
1678 break;
1679 }
1680 case nir_op_fmin: {
1681 Temp src0 = get_alu_src(ctx, instr->src[0]);
1682 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1683 if (dst.regClass() == v2b) {
1684 // TODO: check fp_mode.must_flush_denorms16_64
1685 Temp tmp = bld.tmp(v1);
1686 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, tmp, true);
1687 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1688 } else if (dst.regClass() == v1) {
1689 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1690 } else if (dst.regClass() == v2) {
1691 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1692 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1693 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1694 } else {
1695 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1696 }
1697 } else {
1698 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1699 nir_print_instr(&instr->instr, stderr);
1700 fprintf(stderr, "\n");
1701 }
1702 break;
1703 }
1704 case nir_op_fmax3: {
1705 if (dst.regClass() == v2b) {
1706 Temp tmp = bld.tmp(v1);
1707 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f16, tmp, false);
1708 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1709 } else if (dst.regClass() == v1) {
1710 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1711 } else {
1712 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1713 nir_print_instr(&instr->instr, stderr);
1714 fprintf(stderr, "\n");
1715 }
1716 break;
1717 }
1718 case nir_op_fmin3: {
1719 if (dst.regClass() == v2b) {
1720 Temp tmp = bld.tmp(v1);
1721 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f16, tmp, false);
1722 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1723 } else if (dst.regClass() == v1) {
1724 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1725 } else {
1726 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1727 nir_print_instr(&instr->instr, stderr);
1728 fprintf(stderr, "\n");
1729 }
1730 break;
1731 }
1732 case nir_op_fmed3: {
1733 if (dst.regClass() == v2b) {
1734 Temp tmp = bld.tmp(v1);
1735 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f16, tmp, false);
1736 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1737 } else if (dst.regClass() == v1) {
1738 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1739 } else {
1740 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1741 nir_print_instr(&instr->instr, stderr);
1742 fprintf(stderr, "\n");
1743 }
1744 break;
1745 }
1746 case nir_op_umax3: {
1747 if (dst.size() == 1) {
1748 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1749 } else {
1750 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1751 nir_print_instr(&instr->instr, stderr);
1752 fprintf(stderr, "\n");
1753 }
1754 break;
1755 }
1756 case nir_op_umin3: {
1757 if (dst.size() == 1) {
1758 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1759 } else {
1760 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1761 nir_print_instr(&instr->instr, stderr);
1762 fprintf(stderr, "\n");
1763 }
1764 break;
1765 }
1766 case nir_op_umed3: {
1767 if (dst.size() == 1) {
1768 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1769 } else {
1770 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1771 nir_print_instr(&instr->instr, stderr);
1772 fprintf(stderr, "\n");
1773 }
1774 break;
1775 }
1776 case nir_op_imax3: {
1777 if (dst.size() == 1) {
1778 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1779 } else {
1780 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1781 nir_print_instr(&instr->instr, stderr);
1782 fprintf(stderr, "\n");
1783 }
1784 break;
1785 }
1786 case nir_op_imin3: {
1787 if (dst.size() == 1) {
1788 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1789 } else {
1790 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1791 nir_print_instr(&instr->instr, stderr);
1792 fprintf(stderr, "\n");
1793 }
1794 break;
1795 }
1796 case nir_op_imed3: {
1797 if (dst.size() == 1) {
1798 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1799 } else {
1800 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1801 nir_print_instr(&instr->instr, stderr);
1802 fprintf(stderr, "\n");
1803 }
1804 break;
1805 }
1806 case nir_op_cube_face_coord: {
1807 Temp in = get_alu_src(ctx, instr->src[0], 3);
1808 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1809 emit_extract_vector(ctx, in, 1, v1),
1810 emit_extract_vector(ctx, in, 2, v1) };
1811 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1812 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1813 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1814 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1815 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1816 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1817 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1818 break;
1819 }
1820 case nir_op_cube_face_index: {
1821 Temp in = get_alu_src(ctx, instr->src[0], 3);
1822 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1823 emit_extract_vector(ctx, in, 1, v1),
1824 emit_extract_vector(ctx, in, 2, v1) };
1825 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1826 break;
1827 }
1828 case nir_op_bcsel: {
1829 emit_bcsel(ctx, instr, dst);
1830 break;
1831 }
1832 case nir_op_frsq: {
1833 Temp src = get_alu_src(ctx, instr->src[0]);
1834 if (dst.regClass() == v2b) {
1835 Temp tmp = bld.vop1(aco_opcode::v_rsq_f16, bld.def(v1), src);
1836 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1837 } else if (dst.regClass() == v1) {
1838 emit_rsq(ctx, bld, Definition(dst), src);
1839 } else if (dst.regClass() == v2) {
1840 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1841 } else {
1842 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1843 nir_print_instr(&instr->instr, stderr);
1844 fprintf(stderr, "\n");
1845 }
1846 break;
1847 }
1848 case nir_op_fneg: {
1849 Temp src = get_alu_src(ctx, instr->src[0]);
1850 if (dst.regClass() == v2b) {
1851 Temp tmp = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x8000u), as_vgpr(ctx, src));
1852 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1853 } else if (dst.regClass() == v1) {
1854 if (ctx->block->fp_mode.must_flush_denorms32)
1855 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1856 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1857 } else if (dst.regClass() == v2) {
1858 if (ctx->block->fp_mode.must_flush_denorms16_64)
1859 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1860 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1861 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1862 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1863 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1864 } else {
1865 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1866 nir_print_instr(&instr->instr, stderr);
1867 fprintf(stderr, "\n");
1868 }
1869 break;
1870 }
1871 case nir_op_fabs: {
1872 Temp src = get_alu_src(ctx, instr->src[0]);
1873 if (dst.regClass() == v2b) {
1874 Temp tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFu), as_vgpr(ctx, src));
1875 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1876 } else if (dst.regClass() == v1) {
1877 if (ctx->block->fp_mode.must_flush_denorms32)
1878 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1879 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1880 } else if (dst.regClass() == v2) {
1881 if (ctx->block->fp_mode.must_flush_denorms16_64)
1882 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1883 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1884 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1885 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1886 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1887 } else {
1888 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1889 nir_print_instr(&instr->instr, stderr);
1890 fprintf(stderr, "\n");
1891 }
1892 break;
1893 }
1894 case nir_op_fsat: {
1895 Temp src = get_alu_src(ctx, instr->src[0]);
1896 if (dst.regClass() == v2b) {
1897 Temp tmp = bld.vop3(aco_opcode::v_med3_f16, bld.def(v1), Operand(0u), Operand(0x3f800000u), src);
1898 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1899 } else if (dst.regClass() == v1) {
1900 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1901 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1902 // TODO: confirm that this holds under any circumstances
1903 } else if (dst.regClass() == v2) {
1904 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1905 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1906 vop3->clamp = true;
1907 } else {
1908 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1909 nir_print_instr(&instr->instr, stderr);
1910 fprintf(stderr, "\n");
1911 }
1912 break;
1913 }
1914 case nir_op_flog2: {
1915 Temp src = get_alu_src(ctx, instr->src[0]);
1916 if (dst.regClass() == v2b) {
1917 Temp tmp = bld.vop1(aco_opcode::v_log_f16, bld.def(v1), src);
1918 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1919 } else if (dst.regClass() == v1) {
1920 emit_log2(ctx, bld, Definition(dst), src);
1921 } else {
1922 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1923 nir_print_instr(&instr->instr, stderr);
1924 fprintf(stderr, "\n");
1925 }
1926 break;
1927 }
1928 case nir_op_frcp: {
1929 Temp src = get_alu_src(ctx, instr->src[0]);
1930 if (dst.regClass() == v2b) {
1931 Temp tmp = bld.vop1(aco_opcode::v_rcp_f16, bld.def(v1), src);
1932 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1933 } else if (dst.regClass() == v1) {
1934 emit_rcp(ctx, bld, Definition(dst), src);
1935 } else if (dst.regClass() == v2) {
1936 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1937 } else {
1938 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1939 nir_print_instr(&instr->instr, stderr);
1940 fprintf(stderr, "\n");
1941 }
1942 break;
1943 }
1944 case nir_op_fexp2: {
1945 if (dst.regClass() == v2b) {
1946 Temp src = get_alu_src(ctx, instr->src[0]);
1947 Temp tmp = bld.vop1(aco_opcode::v_exp_f16, bld.def(v1), src);
1948 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1949 } else if (dst.regClass() == v1) {
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1951 } else {
1952 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1953 nir_print_instr(&instr->instr, stderr);
1954 fprintf(stderr, "\n");
1955 }
1956 break;
1957 }
1958 case nir_op_fsqrt: {
1959 Temp src = get_alu_src(ctx, instr->src[0]);
1960 if (dst.regClass() == v2b) {
1961 Temp tmp = bld.vop1(aco_opcode::v_sqrt_f16, bld.def(v1), src);
1962 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1963 } else if (dst.regClass() == v1) {
1964 emit_sqrt(ctx, bld, Definition(dst), src);
1965 } else if (dst.regClass() == v2) {
1966 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1967 } else {
1968 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1969 nir_print_instr(&instr->instr, stderr);
1970 fprintf(stderr, "\n");
1971 }
1972 break;
1973 }
1974 case nir_op_ffract: {
1975 if (dst.regClass() == v2b) {
1976 Temp src = get_alu_src(ctx, instr->src[0]);
1977 Temp tmp = bld.vop1(aco_opcode::v_fract_f16, bld.def(v1), src);
1978 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1979 } else if (dst.regClass() == v1) {
1980 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1981 } else if (dst.regClass() == v2) {
1982 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1983 } else {
1984 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1985 nir_print_instr(&instr->instr, stderr);
1986 fprintf(stderr, "\n");
1987 }
1988 break;
1989 }
1990 case nir_op_ffloor: {
1991 Temp src = get_alu_src(ctx, instr->src[0]);
1992 if (dst.regClass() == v2b) {
1993 Temp tmp = bld.vop1(aco_opcode::v_floor_f16, bld.def(v1), src);
1994 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1995 } else if (dst.regClass() == v1) {
1996 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1997 } else if (dst.regClass() == v2) {
1998 emit_floor_f64(ctx, bld, Definition(dst), src);
1999 } else {
2000 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2001 nir_print_instr(&instr->instr, stderr);
2002 fprintf(stderr, "\n");
2003 }
2004 break;
2005 }
2006 case nir_op_fceil: {
2007 Temp src0 = get_alu_src(ctx, instr->src[0]);
2008 if (dst.regClass() == v2b) {
2009 Temp tmp = bld.vop1(aco_opcode::v_ceil_f16, bld.def(v1), src0);
2010 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2011 } else if (dst.regClass() == v1) {
2012 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
2013 } else if (dst.regClass() == v2) {
2014 if (ctx->options->chip_class >= GFX7) {
2015 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
2016 } else {
2017 /* GFX6 doesn't support V_CEIL_F64, lower it. */
2018 /* trunc = trunc(src0)
2019 * if (src0 > 0.0 && src0 != trunc)
2020 * trunc += 1.0
2021 */
2022 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
2023 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
2024 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
2025 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
2026 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
2027 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
2028 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
2029 }
2030 } else {
2031 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2032 nir_print_instr(&instr->instr, stderr);
2033 fprintf(stderr, "\n");
2034 }
2035 break;
2036 }
2037 case nir_op_ftrunc: {
2038 Temp src = get_alu_src(ctx, instr->src[0]);
2039 if (dst.regClass() == v2b) {
2040 Temp tmp = bld.vop1(aco_opcode::v_trunc_f16, bld.def(v1), src);
2041 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2042 } else if (dst.regClass() == v1) {
2043 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2044 } else if (dst.regClass() == v2) {
2045 emit_trunc_f64(ctx, bld, Definition(dst), src);
2046 } else {
2047 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2048 nir_print_instr(&instr->instr, stderr);
2049 fprintf(stderr, "\n");
2050 }
2051 break;
2052 }
2053 case nir_op_fround_even: {
2054 Temp src0 = get_alu_src(ctx, instr->src[0]);
2055 if (dst.regClass() == v2b) {
2056 Temp tmp = bld.vop1(aco_opcode::v_rndne_f16, bld.def(v1), src0);
2057 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2058 } else if (dst.regClass() == v1) {
2059 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2060 } else if (dst.regClass() == v2) {
2061 if (ctx->options->chip_class >= GFX7) {
2062 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2063 } else {
2064 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2065 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2066 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2067
2068 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2069 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2070 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2071 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2072 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2073 tmp = sub->definitions[0].getTemp();
2074
2075 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2076 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2077 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2078 Temp cond = vop3->definitions[0].getTemp();
2079
2080 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2081 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2082 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2083 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2084
2085 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2086 }
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_fsin:
2095 case nir_op_fcos: {
2096 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2097 aco_ptr<Instruction> norm;
2098 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2099 if (dst.regClass() == v2b) {
2100 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2101 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2102 tmp = bld.vop1(opcode, bld.def(v1), tmp);
2103 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2104 } else if (dst.regClass() == v1) {
2105 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2106
2107 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2108 if (ctx->options->chip_class < GFX9)
2109 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2110
2111 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2112 bld.vop1(opcode, Definition(dst), tmp);
2113 } else {
2114 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2115 nir_print_instr(&instr->instr, stderr);
2116 fprintf(stderr, "\n");
2117 }
2118 break;
2119 }
2120 case nir_op_ldexp: {
2121 Temp src0 = get_alu_src(ctx, instr->src[0]);
2122 Temp src1 = get_alu_src(ctx, instr->src[1]);
2123 if (dst.regClass() == v2b) {
2124 Temp tmp = bld.tmp(v1);
2125 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, tmp, false);
2126 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2127 } else if (dst.regClass() == v1) {
2128 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
2129 } else if (dst.regClass() == v2) {
2130 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
2131 } else {
2132 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2133 nir_print_instr(&instr->instr, stderr);
2134 fprintf(stderr, "\n");
2135 }
2136 break;
2137 }
2138 case nir_op_frexp_sig: {
2139 Temp src = get_alu_src(ctx, instr->src[0]);
2140 if (dst.regClass() == v2b) {
2141 Temp tmp = bld.vop1(aco_opcode::v_frexp_mant_f16, bld.def(v1), src);
2142 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2143 } else if (dst.regClass() == v1) {
2144 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2145 } else if (dst.regClass() == v2) {
2146 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2147 } else {
2148 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2149 nir_print_instr(&instr->instr, stderr);
2150 fprintf(stderr, "\n");
2151 }
2152 break;
2153 }
2154 case nir_op_frexp_exp: {
2155 Temp src = get_alu_src(ctx, instr->src[0]);
2156 if (instr->src[0].src.ssa->bit_size == 16) {
2157 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2158 tmp = bld.pseudo(aco_opcode::p_extract_vector, bld.def(v1b), tmp, Operand(0u));
2159 convert_int(bld, tmp, 8, 32, true, dst);
2160 } else if (instr->src[0].src.ssa->bit_size == 32) {
2161 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2162 } else if (instr->src[0].src.ssa->bit_size == 64) {
2163 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2164 } else {
2165 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2166 nir_print_instr(&instr->instr, stderr);
2167 fprintf(stderr, "\n");
2168 }
2169 break;
2170 }
2171 case nir_op_fsign: {
2172 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2173 if (dst.regClass() == v2b) {
2174 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2175 Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
2176 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2177 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
2178 cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2179 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), minus_one, src, cond);
2180 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2181 } else if (dst.regClass() == v1) {
2182 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2183 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2184 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2185 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2186 } else if (dst.regClass() == v2) {
2187 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2188 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2189 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2190
2191 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2192 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2193 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2194
2195 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2196 } else {
2197 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2198 nir_print_instr(&instr->instr, stderr);
2199 fprintf(stderr, "\n");
2200 }
2201 break;
2202 }
2203 case nir_op_f2f16:
2204 case nir_op_f2f16_rtne: {
2205 Temp src = get_alu_src(ctx, instr->src[0]);
2206 if (instr->src[0].src.ssa->bit_size == 64)
2207 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2208 src = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2209 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2210 break;
2211 }
2212 case nir_op_f2f16_rtz: {
2213 Temp src = get_alu_src(ctx, instr->src[0]);
2214 if (instr->src[0].src.ssa->bit_size == 64)
2215 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2216 src = bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, bld.def(v1), src, Operand(0u));
2217 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2218 break;
2219 }
2220 case nir_op_f2f32: {
2221 if (instr->src[0].src.ssa->bit_size == 16) {
2222 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2223 } else if (instr->src[0].src.ssa->bit_size == 64) {
2224 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2225 } else {
2226 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2227 nir_print_instr(&instr->instr, stderr);
2228 fprintf(stderr, "\n");
2229 }
2230 break;
2231 }
2232 case nir_op_f2f64: {
2233 Temp src = get_alu_src(ctx, instr->src[0]);
2234 if (instr->src[0].src.ssa->bit_size == 16)
2235 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2236 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2237 break;
2238 }
2239 case nir_op_i2f16: {
2240 assert(dst.regClass() == v2b);
2241 Temp src = get_alu_src(ctx, instr->src[0]);
2242 if (instr->src[0].src.ssa->bit_size == 8)
2243 src = convert_int(bld, src, 8, 16, true);
2244 Temp tmp = bld.vop1(aco_opcode::v_cvt_f16_i16, bld.def(v1), src);
2245 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2246 break;
2247 }
2248 case nir_op_i2f32: {
2249 assert(dst.size() == 1);
2250 Temp src = get_alu_src(ctx, instr->src[0]);
2251 if (instr->src[0].src.ssa->bit_size <= 16)
2252 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2253 bld.vop1(aco_opcode::v_cvt_f32_i32, Definition(dst), src);
2254 break;
2255 }
2256 case nir_op_i2f64: {
2257 if (instr->src[0].src.ssa->bit_size <= 32) {
2258 Temp src = get_alu_src(ctx, instr->src[0]);
2259 if (instr->src[0].src.ssa->bit_size <= 16)
2260 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2261 bld.vop1(aco_opcode::v_cvt_f64_i32, Definition(dst), src);
2262 } else if (instr->src[0].src.ssa->bit_size == 64) {
2263 Temp src = get_alu_src(ctx, instr->src[0]);
2264 RegClass rc = RegClass(src.type(), 1);
2265 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2266 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2267 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2268 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2269 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2270 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2271
2272 } else {
2273 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2274 nir_print_instr(&instr->instr, stderr);
2275 fprintf(stderr, "\n");
2276 }
2277 break;
2278 }
2279 case nir_op_u2f16: {
2280 assert(dst.regClass() == v2b);
2281 Temp src = get_alu_src(ctx, instr->src[0]);
2282 if (instr->src[0].src.ssa->bit_size == 8)
2283 src = convert_int(bld, src, 8, 16, false);
2284 Temp tmp = bld.vop1(aco_opcode::v_cvt_f16_u16, bld.def(v1), src);
2285 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2286 break;
2287 }
2288 case nir_op_u2f32: {
2289 assert(dst.size() == 1);
2290 Temp src = get_alu_src(ctx, instr->src[0]);
2291 if (instr->src[0].src.ssa->bit_size == 8) {
2292 //TODO: we should use v_cvt_f32_ubyte1/v_cvt_f32_ubyte2/etc depending on the register assignment
2293 bld.vop1(aco_opcode::v_cvt_f32_ubyte0, Definition(dst), src);
2294 } else {
2295 if (instr->src[0].src.ssa->bit_size == 16)
2296 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, true);
2297 bld.vop1(aco_opcode::v_cvt_f32_u32, Definition(dst), src);
2298 }
2299 break;
2300 }
2301 case nir_op_u2f64: {
2302 if (instr->src[0].src.ssa->bit_size <= 32) {
2303 Temp src = get_alu_src(ctx, instr->src[0]);
2304 if (instr->src[0].src.ssa->bit_size <= 16)
2305 src = convert_int(bld, src, instr->src[0].src.ssa->bit_size, 32, false);
2306 bld.vop1(aco_opcode::v_cvt_f64_u32, Definition(dst), src);
2307 } else if (instr->src[0].src.ssa->bit_size == 64) {
2308 Temp src = get_alu_src(ctx, instr->src[0]);
2309 RegClass rc = RegClass(src.type(), 1);
2310 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2311 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2312 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2313 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2314 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2315 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2316 } else {
2317 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2318 nir_print_instr(&instr->instr, stderr);
2319 fprintf(stderr, "\n");
2320 }
2321 break;
2322 }
2323 case nir_op_f2i8:
2324 case nir_op_f2i16: {
2325 Temp src = get_alu_src(ctx, instr->src[0]);
2326 if (instr->src[0].src.ssa->bit_size == 16)
2327 src = bld.vop1(aco_opcode::v_cvt_i16_f16, bld.def(v1), src);
2328 else if (instr->src[0].src.ssa->bit_size == 32)
2329 src = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src);
2330 else
2331 src = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src);
2332
2333 if (dst.type() == RegType::vgpr)
2334 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
2335 else
2336 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2337 break;
2338 }
2339 case nir_op_f2u8:
2340 case nir_op_f2u16: {
2341 Temp src = get_alu_src(ctx, instr->src[0]);
2342 if (instr->src[0].src.ssa->bit_size == 16)
2343 src = bld.vop1(aco_opcode::v_cvt_u16_f16, bld.def(v1), src);
2344 else if (instr->src[0].src.ssa->bit_size == 32)
2345 src = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src);
2346 else
2347 src = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src);
2348
2349 if (dst.type() == RegType::vgpr)
2350 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(0u));
2351 else
2352 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2353 break;
2354 }
2355 case nir_op_f2i32: {
2356 Temp src = get_alu_src(ctx, instr->src[0]);
2357 if (instr->src[0].src.ssa->bit_size == 16) {
2358 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2359 if (dst.type() == RegType::vgpr) {
2360 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2361 } else {
2362 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2363 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2364 }
2365 } else if (instr->src[0].src.ssa->bit_size == 32) {
2366 if (dst.type() == RegType::vgpr)
2367 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
2368 else
2369 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2370 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
2371
2372 } else if (instr->src[0].src.ssa->bit_size == 64) {
2373 if (dst.type() == RegType::vgpr)
2374 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
2375 else
2376 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2377 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
2378
2379 } else {
2380 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2381 nir_print_instr(&instr->instr, stderr);
2382 fprintf(stderr, "\n");
2383 }
2384 break;
2385 }
2386 case nir_op_f2u32: {
2387 Temp src = get_alu_src(ctx, instr->src[0]);
2388 if (instr->src[0].src.ssa->bit_size == 16) {
2389 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2390 if (dst.type() == RegType::vgpr) {
2391 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2392 } else {
2393 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2394 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2395 }
2396 } else if (instr->src[0].src.ssa->bit_size == 32) {
2397 if (dst.type() == RegType::vgpr)
2398 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2399 else
2400 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2401 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2402
2403 } else if (instr->src[0].src.ssa->bit_size == 64) {
2404 if (dst.type() == RegType::vgpr)
2405 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2406 else
2407 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2408 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2409
2410 } else {
2411 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2412 nir_print_instr(&instr->instr, stderr);
2413 fprintf(stderr, "\n");
2414 }
2415 break;
2416 }
2417 case nir_op_f2i64: {
2418 Temp src = get_alu_src(ctx, instr->src[0]);
2419 if (instr->src[0].src.ssa->bit_size == 16)
2420 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2421
2422 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2423 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2424 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2425 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2426 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2427 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2428 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2429 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2430 Temp new_exponent = bld.tmp(v1);
2431 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2432 if (ctx->program->chip_class >= GFX8)
2433 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2434 else
2435 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2436 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2437 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2438 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2439 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2440 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2441 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2442 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2443 Temp new_lower = bld.tmp(v1);
2444 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2445 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2446 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2447
2448 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2449 if (src.type() == RegType::vgpr)
2450 src = bld.as_uniform(src);
2451 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2452 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2453 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2454 exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2455 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2456 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2457 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2458 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2459 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2460 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2461 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2462 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2463 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2464 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2465 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2466 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2467 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2468 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2469 Temp borrow = bld.tmp(s1);
2470 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2471 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2472 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2473
2474 } else if (instr->src[0].src.ssa->bit_size == 64) {
2475 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2476 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2477 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2478 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2479 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2480 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2481 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2482 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2483 if (dst.type() == RegType::sgpr) {
2484 lower = bld.as_uniform(lower);
2485 upper = bld.as_uniform(upper);
2486 }
2487 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2488
2489 } else {
2490 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2491 nir_print_instr(&instr->instr, stderr);
2492 fprintf(stderr, "\n");
2493 }
2494 break;
2495 }
2496 case nir_op_f2u64: {
2497 Temp src = get_alu_src(ctx, instr->src[0]);
2498 if (instr->src[0].src.ssa->bit_size == 16)
2499 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2500
2501 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2502 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2503 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2504 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2505 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2506 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2507 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2508 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2509 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2510 Temp new_exponent = bld.tmp(v1);
2511 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2512 if (ctx->program->chip_class >= GFX8)
2513 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2514 else
2515 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2516 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2517 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2518 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2519 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2520 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2521 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2522 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2523
2524 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2525 if (src.type() == RegType::vgpr)
2526 src = bld.as_uniform(src);
2527 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2528 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2529 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2530 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2531 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2532 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2533 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2534 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2535 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2536 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2537 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2538 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2539 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2540 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2541 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2542 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2543 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2544 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2545
2546 } else if (instr->src[0].src.ssa->bit_size == 64) {
2547 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2548 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2549 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2550 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2551 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2552 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2553 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2554 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2555 if (dst.type() == RegType::sgpr) {
2556 lower = bld.as_uniform(lower);
2557 upper = bld.as_uniform(upper);
2558 }
2559 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2560
2561 } else {
2562 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2563 nir_print_instr(&instr->instr, stderr);
2564 fprintf(stderr, "\n");
2565 }
2566 break;
2567 }
2568 case nir_op_b2f16: {
2569 Temp src = get_alu_src(ctx, instr->src[0]);
2570 assert(src.regClass() == bld.lm);
2571
2572 if (dst.regClass() == s1) {
2573 src = bool_to_scalar_condition(ctx, src);
2574 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2575 } else if (dst.regClass() == v2b) {
2576 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2577 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2578 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2579 } else {
2580 unreachable("Wrong destination register class for nir_op_b2f16.");
2581 }
2582 break;
2583 }
2584 case nir_op_b2f32: {
2585 Temp src = get_alu_src(ctx, instr->src[0]);
2586 assert(src.regClass() == bld.lm);
2587
2588 if (dst.regClass() == s1) {
2589 src = bool_to_scalar_condition(ctx, src);
2590 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2591 } else if (dst.regClass() == v1) {
2592 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2593 } else {
2594 unreachable("Wrong destination register class for nir_op_b2f32.");
2595 }
2596 break;
2597 }
2598 case nir_op_b2f64: {
2599 Temp src = get_alu_src(ctx, instr->src[0]);
2600 assert(src.regClass() == bld.lm);
2601
2602 if (dst.regClass() == s2) {
2603 src = bool_to_scalar_condition(ctx, src);
2604 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2605 } else if (dst.regClass() == v2) {
2606 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2607 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2608 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2609 } else {
2610 unreachable("Wrong destination register class for nir_op_b2f64.");
2611 }
2612 break;
2613 }
2614 case nir_op_i2i8:
2615 case nir_op_i2i16:
2616 case nir_op_i2i32:
2617 case nir_op_i2i64: {
2618 convert_int(bld, get_alu_src(ctx, instr->src[0]),
2619 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, true, dst);
2620 break;
2621 }
2622 case nir_op_u2u8:
2623 case nir_op_u2u16:
2624 case nir_op_u2u32:
2625 case nir_op_u2u64: {
2626 convert_int(bld, get_alu_src(ctx, instr->src[0]),
2627 instr->src[0].src.ssa->bit_size, instr->dest.dest.ssa.bit_size, false, dst);
2628 break;
2629 }
2630 case nir_op_b2b32:
2631 case nir_op_b2i32: {
2632 Temp src = get_alu_src(ctx, instr->src[0]);
2633 assert(src.regClass() == bld.lm);
2634
2635 if (dst.regClass() == s1) {
2636 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2637 bool_to_scalar_condition(ctx, src, dst);
2638 } else if (dst.regClass() == v1) {
2639 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2640 } else {
2641 unreachable("Invalid register class for b2i32");
2642 }
2643 break;
2644 }
2645 case nir_op_b2b1:
2646 case nir_op_i2b1: {
2647 Temp src = get_alu_src(ctx, instr->src[0]);
2648 assert(dst.regClass() == bld.lm);
2649
2650 if (src.type() == RegType::vgpr) {
2651 assert(src.regClass() == v1 || src.regClass() == v2);
2652 assert(dst.regClass() == bld.lm);
2653 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2654 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2655 } else {
2656 assert(src.regClass() == s1 || src.regClass() == s2);
2657 Temp tmp;
2658 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2659 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2660 } else {
2661 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2662 bld.scc(bld.def(s1)), Operand(0u), src);
2663 }
2664 bool_to_vector_condition(ctx, tmp, dst);
2665 }
2666 break;
2667 }
2668 case nir_op_pack_64_2x32_split: {
2669 Temp src0 = get_alu_src(ctx, instr->src[0]);
2670 Temp src1 = get_alu_src(ctx, instr->src[1]);
2671
2672 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2673 break;
2674 }
2675 case nir_op_unpack_64_2x32_split_x:
2676 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2677 break;
2678 case nir_op_unpack_64_2x32_split_y:
2679 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2680 break;
2681 case nir_op_unpack_32_2x16_split_x:
2682 if (dst.type() == RegType::vgpr) {
2683 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2684 } else {
2685 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2686 }
2687 break;
2688 case nir_op_unpack_32_2x16_split_y:
2689 if (dst.type() == RegType::vgpr) {
2690 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2691 } else {
2692 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2693 }
2694 break;
2695 case nir_op_pack_32_2x16_split: {
2696 Temp src0 = get_alu_src(ctx, instr->src[0]);
2697 Temp src1 = get_alu_src(ctx, instr->src[1]);
2698 if (dst.regClass() == v1) {
2699 src0 = emit_extract_vector(ctx, src0, 0, v2b);
2700 src1 = emit_extract_vector(ctx, src1, 0, v2b);
2701 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2702 } else {
2703 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2704 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2705 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2706 }
2707 break;
2708 }
2709 case nir_op_pack_half_2x16: {
2710 Temp src = get_alu_src(ctx, instr->src[0], 2);
2711
2712 if (dst.regClass() == v1) {
2713 Temp src0 = bld.tmp(v1);
2714 Temp src1 = bld.tmp(v1);
2715 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2716 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2717 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2718 else
2719 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2720 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2721 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2722 } else {
2723 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2724 nir_print_instr(&instr->instr, stderr);
2725 fprintf(stderr, "\n");
2726 }
2727 break;
2728 }
2729 case nir_op_unpack_half_2x16_split_x: {
2730 if (dst.regClass() == v1) {
2731 Builder bld(ctx->program, ctx->block);
2732 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2733 } else {
2734 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2735 nir_print_instr(&instr->instr, stderr);
2736 fprintf(stderr, "\n");
2737 }
2738 break;
2739 }
2740 case nir_op_unpack_half_2x16_split_y: {
2741 if (dst.regClass() == v1) {
2742 Builder bld(ctx->program, ctx->block);
2743 /* TODO: use SDWA here */
2744 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2745 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2746 } else {
2747 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2748 nir_print_instr(&instr->instr, stderr);
2749 fprintf(stderr, "\n");
2750 }
2751 break;
2752 }
2753 case nir_op_fquantize2f16: {
2754 Temp src = get_alu_src(ctx, instr->src[0]);
2755 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2756 Temp f32, cmp_res;
2757
2758 if (ctx->program->chip_class >= GFX8) {
2759 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2760 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2761 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2762 } else {
2763 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2764 * so compare the result and flush to 0 if it's smaller.
2765 */
2766 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2767 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2768 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2769 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2770 cmp_res = vop3->definitions[0].getTemp();
2771 }
2772
2773 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2774 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2775 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2776 } else {
2777 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2778 }
2779 break;
2780 }
2781 case nir_op_bfm: {
2782 Temp bits = get_alu_src(ctx, instr->src[0]);
2783 Temp offset = get_alu_src(ctx, instr->src[1]);
2784
2785 if (dst.regClass() == s1) {
2786 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2787 } else if (dst.regClass() == v1) {
2788 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2789 } else {
2790 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2791 nir_print_instr(&instr->instr, stderr);
2792 fprintf(stderr, "\n");
2793 }
2794 break;
2795 }
2796 case nir_op_bitfield_select: {
2797 /* (mask & insert) | (~mask & base) */
2798 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2799 Temp insert = get_alu_src(ctx, instr->src[1]);
2800 Temp base = get_alu_src(ctx, instr->src[2]);
2801
2802 /* dst = (insert & bitmask) | (base & ~bitmask) */
2803 if (dst.regClass() == s1) {
2804 aco_ptr<Instruction> sop2;
2805 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2806 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2807 Operand lhs;
2808 if (const_insert && const_bitmask) {
2809 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2810 } else {
2811 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2812 lhs = Operand(insert);
2813 }
2814
2815 Operand rhs;
2816 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2817 if (const_base && const_bitmask) {
2818 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2819 } else {
2820 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2821 rhs = Operand(base);
2822 }
2823
2824 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2825
2826 } else if (dst.regClass() == v1) {
2827 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2828 base = as_vgpr(ctx, base);
2829 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2830 insert = as_vgpr(ctx, insert);
2831
2832 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2833
2834 } else {
2835 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2836 nir_print_instr(&instr->instr, stderr);
2837 fprintf(stderr, "\n");
2838 }
2839 break;
2840 }
2841 case nir_op_ubfe:
2842 case nir_op_ibfe: {
2843 Temp base = get_alu_src(ctx, instr->src[0]);
2844 Temp offset = get_alu_src(ctx, instr->src[1]);
2845 Temp bits = get_alu_src(ctx, instr->src[2]);
2846
2847 if (dst.type() == RegType::sgpr) {
2848 Operand extract;
2849 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2850 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2851 if (const_offset && const_bits) {
2852 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2853 extract = Operand(const_extract);
2854 } else {
2855 Operand width;
2856 if (const_bits) {
2857 width = Operand(const_bits->u32 << 16);
2858 } else {
2859 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2860 }
2861 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2862 }
2863
2864 aco_opcode opcode;
2865 if (dst.regClass() == s1) {
2866 if (instr->op == nir_op_ubfe)
2867 opcode = aco_opcode::s_bfe_u32;
2868 else
2869 opcode = aco_opcode::s_bfe_i32;
2870 } else if (dst.regClass() == s2) {
2871 if (instr->op == nir_op_ubfe)
2872 opcode = aco_opcode::s_bfe_u64;
2873 else
2874 opcode = aco_opcode::s_bfe_i64;
2875 } else {
2876 unreachable("Unsupported BFE bit size");
2877 }
2878
2879 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2880
2881 } else {
2882 aco_opcode opcode;
2883 if (dst.regClass() == v1) {
2884 if (instr->op == nir_op_ubfe)
2885 opcode = aco_opcode::v_bfe_u32;
2886 else
2887 opcode = aco_opcode::v_bfe_i32;
2888 } else {
2889 unreachable("Unsupported BFE bit size");
2890 }
2891
2892 emit_vop3a_instruction(ctx, instr, opcode, dst);
2893 }
2894 break;
2895 }
2896 case nir_op_bit_count: {
2897 Temp src = get_alu_src(ctx, instr->src[0]);
2898 if (src.regClass() == s1) {
2899 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2900 } else if (src.regClass() == v1) {
2901 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2902 } else if (src.regClass() == v2) {
2903 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2904 emit_extract_vector(ctx, src, 1, v1),
2905 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2906 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2907 } else if (src.regClass() == s2) {
2908 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2909 } else {
2910 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2911 nir_print_instr(&instr->instr, stderr);
2912 fprintf(stderr, "\n");
2913 }
2914 break;
2915 }
2916 case nir_op_flt: {
2917 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2918 break;
2919 }
2920 case nir_op_fge: {
2921 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2922 break;
2923 }
2924 case nir_op_feq: {
2925 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2926 break;
2927 }
2928 case nir_op_fne: {
2929 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2930 break;
2931 }
2932 case nir_op_ilt: {
2933 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2934 break;
2935 }
2936 case nir_op_ige: {
2937 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2938 break;
2939 }
2940 case nir_op_ieq: {
2941 if (instr->src[0].src.ssa->bit_size == 1)
2942 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2943 else
2944 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2945 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2946 break;
2947 }
2948 case nir_op_ine: {
2949 if (instr->src[0].src.ssa->bit_size == 1)
2950 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2951 else
2952 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2953 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2954 break;
2955 }
2956 case nir_op_ult: {
2957 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2958 break;
2959 }
2960 case nir_op_uge: {
2961 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2962 break;
2963 }
2964 case nir_op_fddx:
2965 case nir_op_fddy:
2966 case nir_op_fddx_fine:
2967 case nir_op_fddy_fine:
2968 case nir_op_fddx_coarse:
2969 case nir_op_fddy_coarse: {
2970 Temp src = get_alu_src(ctx, instr->src[0]);
2971 uint16_t dpp_ctrl1, dpp_ctrl2;
2972 if (instr->op == nir_op_fddx_fine) {
2973 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2974 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2975 } else if (instr->op == nir_op_fddy_fine) {
2976 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2977 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2978 } else {
2979 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2980 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2981 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2982 else
2983 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2984 }
2985
2986 Temp tmp;
2987 if (ctx->program->chip_class >= GFX8) {
2988 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2989 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2990 } else {
2991 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2992 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2993 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2994 }
2995 emit_wqm(ctx, tmp, dst, true);
2996 break;
2997 }
2998 default:
2999 fprintf(stderr, "Unknown NIR ALU instr: ");
3000 nir_print_instr(&instr->instr, stderr);
3001 fprintf(stderr, "\n");
3002 }
3003 }
3004
3005 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
3006 {
3007 Temp dst = get_ssa_temp(ctx, &instr->def);
3008
3009 // TODO: we really want to have the resulting type as this would allow for 64bit literals
3010 // which get truncated the lsb if double and msb if int
3011 // for now, we only use s_mov_b64 with 64bit inline constants
3012 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
3013 assert(dst.type() == RegType::sgpr);
3014
3015 Builder bld(ctx->program, ctx->block);
3016
3017 if (instr->def.bit_size == 1) {
3018 assert(dst.regClass() == bld.lm);
3019 int val = instr->value[0].b ? -1 : 0;
3020 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
3021 bld.sop1(Builder::s_mov, Definition(dst), op);
3022 } else if (instr->def.bit_size == 8) {
3023 /* ensure that the value is correctly represented in the low byte of the register */
3024 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8);
3025 } else if (instr->def.bit_size == 16) {
3026 /* ensure that the value is correctly represented in the low half of the register */
3027 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16);
3028 } else if (dst.size() == 1) {
3029 bld.copy(Definition(dst), Operand(instr->value[0].u32));
3030 } else {
3031 assert(dst.size() != 1);
3032 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3033 if (instr->def.bit_size == 64)
3034 for (unsigned i = 0; i < dst.size(); i++)
3035 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
3036 else {
3037 for (unsigned i = 0; i < dst.size(); i++)
3038 vec->operands[i] = Operand{instr->value[i].u32};
3039 }
3040 vec->definitions[0] = Definition(dst);
3041 ctx->block->instructions.emplace_back(std::move(vec));
3042 }
3043 }
3044
3045 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
3046 {
3047 uint32_t new_mask = 0;
3048 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
3049 if (mask & (1u << i))
3050 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
3051 return new_mask;
3052 }
3053
3054 void byte_align_vector(isel_context *ctx, Temp vec, Operand offset, Temp dst)
3055 {
3056 Builder bld(ctx->program, ctx->block);
3057 if (offset.isTemp()) {
3058 Temp tmp[3] = {vec, vec, vec};
3059
3060 if (vec.size() == 3) {
3061 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
3062 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
3063 } else if (vec.size() == 2) {
3064 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
3065 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
3066 }
3067 for (unsigned i = 0; i < dst.size(); i++)
3068 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], offset);
3069
3070 vec = tmp[0];
3071 if (dst.size() == 2)
3072 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
3073
3074 offset = Operand(0u);
3075 }
3076
3077 if (vec.bytes() == dst.bytes() && offset.constantValue() == 0)
3078 bld.copy(Definition(dst), vec);
3079 else
3080 trim_subdword_vector(ctx, vec, dst, vec.bytes(), ((1 << dst.bytes()) - 1) << offset.constantValue());
3081 }
3082
3083 struct LoadEmitInfo {
3084 Operand offset;
3085 Temp dst;
3086 unsigned num_components;
3087 unsigned component_size;
3088 Temp resource = Temp(0, s1);
3089 unsigned component_stride = 0;
3090 unsigned const_offset = 0;
3091 unsigned align_mul = 0;
3092 unsigned align_offset = 0;
3093
3094 bool glc = false;
3095 unsigned swizzle_component_size = 0;
3096 barrier_interaction barrier = barrier_none;
3097 bool can_reorder = true;
3098 Temp soffset = Temp(0, s1);
3099 };
3100
3101 using LoadCallback = Temp(*)(
3102 Builder& bld, const LoadEmitInfo* info, Temp offset, unsigned bytes_needed,
3103 unsigned align, unsigned const_offset, Temp dst_hint);
3104
3105 template <LoadCallback callback, bool byte_align_loads, bool supports_8bit_16bit_loads, unsigned max_const_offset_plus_one>
3106 void emit_load(isel_context *ctx, Builder& bld, const LoadEmitInfo *info)
3107 {
3108 unsigned load_size = info->num_components * info->component_size;
3109 unsigned component_size = info->component_size;
3110
3111 unsigned num_vals = 0;
3112 Temp vals[info->dst.bytes()];
3113
3114 unsigned const_offset = info->const_offset;
3115
3116 unsigned align_mul = info->align_mul ? info->align_mul : component_size;
3117 unsigned align_offset = (info->align_offset + const_offset) % align_mul;
3118
3119 unsigned bytes_read = 0;
3120 while (bytes_read < load_size) {
3121 unsigned bytes_needed = load_size - bytes_read;
3122
3123 /* add buffer for unaligned loads */
3124 int byte_align = align_mul % 4 == 0 ? align_offset % 4 : -1;
3125
3126 if (byte_align) {
3127 if ((bytes_needed > 2 || !supports_8bit_16bit_loads) && byte_align_loads) {
3128 if (info->component_stride) {
3129 assert(supports_8bit_16bit_loads && "unimplemented");
3130 bytes_needed = 2;
3131 byte_align = 0;
3132 } else {
3133 bytes_needed += byte_align == -1 ? 4 - info->align_mul : byte_align;
3134 bytes_needed = align(bytes_needed, 4);
3135 }
3136 } else {
3137 byte_align = 0;
3138 }
3139 }
3140
3141 if (info->swizzle_component_size)
3142 bytes_needed = MIN2(bytes_needed, info->swizzle_component_size);
3143 if (info->component_stride)
3144 bytes_needed = MIN2(bytes_needed, info->component_size);
3145
3146 bool need_to_align_offset = byte_align && (align_mul % 4 || align_offset % 4);
3147
3148 /* reduce constant offset */
3149 Operand offset = info->offset;
3150 unsigned reduced_const_offset = const_offset;
3151 bool remove_const_offset_completely = need_to_align_offset;
3152 if (const_offset && (remove_const_offset_completely || const_offset >= max_const_offset_plus_one)) {
3153 unsigned to_add = const_offset;
3154 if (remove_const_offset_completely) {
3155 reduced_const_offset = 0;
3156 } else {
3157 to_add = const_offset / max_const_offset_plus_one * max_const_offset_plus_one;
3158 reduced_const_offset %= max_const_offset_plus_one;
3159 }
3160 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3161 if (offset.isConstant()) {
3162 offset = Operand(offset.constantValue() + to_add);
3163 } else if (offset_tmp.regClass() == s1) {
3164 offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3165 offset_tmp, Operand(to_add));
3166 } else if (offset_tmp.regClass() == v1) {
3167 offset = bld.vadd32(bld.def(v1), offset_tmp, Operand(to_add));
3168 } else {
3169 Temp lo = bld.tmp(offset_tmp.type(), 1);
3170 Temp hi = bld.tmp(offset_tmp.type(), 1);
3171 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3172
3173 if (offset_tmp.regClass() == s2) {
3174 Temp carry = bld.tmp(s1);
3175 lo = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), lo, Operand(to_add));
3176 hi = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), hi, carry);
3177 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), lo, hi);
3178 } else {
3179 Temp new_lo = bld.tmp(v1);
3180 Temp carry = bld.vadd32(Definition(new_lo), lo, Operand(to_add), true).def(1).getTemp();
3181 hi = bld.vadd32(bld.def(v1), hi, Operand(0u), false, carry);
3182 offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_lo, hi);
3183 }
3184 }
3185 }
3186
3187 /* align offset down if needed */
3188 Operand aligned_offset = offset;
3189 if (need_to_align_offset) {
3190 Temp offset_tmp = offset.isTemp() ? offset.getTemp() : Temp();
3191 if (offset.isConstant()) {
3192 aligned_offset = Operand(offset.constantValue() & 0xfffffffcu);
3193 } else if (offset_tmp.regClass() == s1) {
3194 aligned_offset = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfffffffcu), offset_tmp);
3195 } else if (offset_tmp.regClass() == s2) {
3196 aligned_offset = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand((uint64_t)0xfffffffffffffffcllu), offset_tmp);
3197 } else if (offset_tmp.regClass() == v1) {
3198 aligned_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), offset_tmp);
3199 } else if (offset_tmp.regClass() == v2) {
3200 Temp hi = bld.tmp(v1), lo = bld.tmp(v1);
3201 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), offset_tmp);
3202 lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xfffffffcu), lo);
3203 aligned_offset = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), lo, hi);
3204 }
3205 }
3206 Temp aligned_offset_tmp = aligned_offset.isTemp() ? aligned_offset.getTemp() :
3207 bld.copy(bld.def(s1), aligned_offset);
3208
3209 unsigned align = align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
3210 Temp val = callback(bld, info, aligned_offset_tmp, bytes_needed, align,
3211 reduced_const_offset, byte_align ? Temp() : info->dst);
3212
3213 /* shift result right if needed */
3214 if (byte_align) {
3215 Operand align((uint32_t)byte_align);
3216 if (byte_align == -1) {
3217 if (offset.isConstant())
3218 align = Operand(offset.constantValue() % 4u);
3219 else if (offset.size() == 2)
3220 align = Operand(emit_extract_vector(ctx, offset.getTemp(), 0, RegClass(offset.getTemp().type(), 1)));
3221 else
3222 align = offset;
3223 }
3224
3225 if (align.isTemp() || align.constantValue()) {
3226 assert(val.bytes() >= load_size && "unimplemented");
3227 Temp new_val = bld.tmp(RegClass::get(val.type(), load_size));
3228 if (val.type() == RegType::sgpr)
3229 byte_align_scalar(ctx, val, align, new_val);
3230 else
3231 byte_align_vector(ctx, val, align, new_val);
3232 val = new_val;
3233 }
3234 }
3235
3236 /* add result to list and advance */
3237 if (info->component_stride) {
3238 assert(val.bytes() == info->component_size && "unimplemented");
3239 const_offset += info->component_stride;
3240 align_offset = (align_offset + info->component_stride) % align_mul;
3241 } else {
3242 const_offset += val.bytes();
3243 align_offset = (align_offset + val.bytes()) % align_mul;
3244 }
3245 bytes_read += val.bytes();
3246 vals[num_vals++] = val;
3247 }
3248
3249 /* the callback wrote directly to dst */
3250 if (vals[0] == info->dst) {
3251 assert(num_vals == 1);
3252 emit_split_vector(ctx, info->dst, info->num_components);
3253 return;
3254 }
3255
3256 /* create array of components */
3257 unsigned components_split = 0;
3258 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3259 bool has_vgprs = false;
3260 for (unsigned i = 0; i < num_vals;) {
3261 Temp tmp[num_vals];
3262 unsigned num_tmps = 0;
3263 unsigned tmp_size = 0;
3264 RegType reg_type = RegType::sgpr;
3265 while ((!tmp_size || (tmp_size % component_size)) && i < num_vals) {
3266 if (vals[i].type() == RegType::vgpr)
3267 reg_type = RegType::vgpr;
3268 tmp_size += vals[i].bytes();
3269 tmp[num_tmps++] = vals[i++];
3270 }
3271 if (num_tmps > 1) {
3272 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3273 aco_opcode::p_create_vector, Format::PSEUDO, num_tmps, 1)};
3274 for (unsigned i = 0; i < num_vals; i++)
3275 vec->operands[i] = Operand(tmp[i]);
3276 tmp[0] = bld.tmp(RegClass::get(reg_type, tmp_size));
3277 vec->definitions[0] = Definition(tmp[0]);
3278 bld.insert(std::move(vec));
3279 }
3280
3281 if (tmp[0].bytes() % component_size) {
3282 /* trim tmp[0] */
3283 assert(i == num_vals);
3284 RegClass new_rc = RegClass::get(reg_type, tmp[0].bytes() / component_size * component_size);
3285 tmp[0] = bld.pseudo(aco_opcode::p_extract_vector, bld.def(new_rc), tmp[0], Operand(0u));
3286 }
3287
3288 RegClass elem_rc = RegClass::get(reg_type, component_size);
3289
3290 unsigned start = components_split;
3291
3292 if (tmp_size == elem_rc.bytes()) {
3293 allocated_vec[components_split++] = tmp[0];
3294 } else {
3295 assert(tmp_size % elem_rc.bytes() == 0);
3296 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(
3297 aco_opcode::p_split_vector, Format::PSEUDO, 1, tmp_size / elem_rc.bytes())};
3298 for (unsigned i = 0; i < split->definitions.size(); i++) {
3299 Temp component = bld.tmp(elem_rc);
3300 allocated_vec[components_split++] = component;
3301 split->definitions[i] = Definition(component);
3302 }
3303 split->operands[0] = Operand(tmp[0]);
3304 bld.insert(std::move(split));
3305 }
3306
3307 /* try to p_as_uniform early so we can create more optimizable code and
3308 * also update allocated_vec */
3309 for (unsigned j = start; j < components_split; j++) {
3310 if (allocated_vec[j].bytes() % 4 == 0 && info->dst.type() == RegType::sgpr)
3311 allocated_vec[j] = bld.as_uniform(allocated_vec[j]);
3312 has_vgprs |= allocated_vec[j].type() == RegType::vgpr;
3313 }
3314 }
3315
3316 /* concatenate components and p_as_uniform() result if needed */
3317 if (info->dst.type() == RegType::vgpr || !has_vgprs)
3318 ctx->allocated_vec.emplace(info->dst.id(), allocated_vec);
3319
3320 int padding_bytes = MAX2((int)info->dst.bytes() - int(allocated_vec[0].bytes() * info->num_components), 0);
3321
3322 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3323 aco_opcode::p_create_vector, Format::PSEUDO, info->num_components + !!padding_bytes, 1)};
3324 for (unsigned i = 0; i < info->num_components; i++)
3325 vec->operands[i] = Operand(allocated_vec[i]);
3326 if (padding_bytes)
3327 vec->operands[info->num_components] = Operand(RegClass::get(RegType::vgpr, padding_bytes));
3328 if (info->dst.type() == RegType::sgpr && has_vgprs) {
3329 Temp tmp = bld.tmp(RegType::vgpr, info->dst.size());
3330 vec->definitions[0] = Definition(tmp);
3331 bld.insert(std::move(vec));
3332 bld.pseudo(aco_opcode::p_as_uniform, Definition(info->dst), tmp);
3333 } else {
3334 vec->definitions[0] = Definition(info->dst);
3335 bld.insert(std::move(vec));
3336 }
3337 }
3338
3339 Operand load_lds_size_m0(isel_context *ctx)
3340 {
3341 /* TODO: m0 does not need to be initialized on GFX9+ */
3342 Builder bld(ctx->program, ctx->block);
3343 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3344 }
3345
3346 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3347 Temp address, unsigned base_offset, unsigned align)
3348 {
3349 assert(util_is_power_of_two_nonzero(align) && align >= 4);
3350
3351 Builder bld(ctx->program, ctx->block);
3352
3353 Operand m = load_lds_size_m0(ctx);
3354
3355 unsigned num_components = dst.size() * 4u / elem_size_bytes;
3356 unsigned bytes_read = 0;
3357 unsigned result_size = 0;
3358 unsigned total_bytes = num_components * elem_size_bytes;
3359 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
3360 bool large_ds_read = ctx->options->chip_class >= GFX7;
3361 bool usable_read2 = ctx->options->chip_class >= GFX7;
3362
3363 while (bytes_read < total_bytes) {
3364 unsigned todo = total_bytes - bytes_read;
3365 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
3366 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
3367
3368 aco_opcode op = aco_opcode::last_opcode;
3369 bool read2 = false;
3370 if (todo >= 16 && aligned16 && large_ds_read) {
3371 op = aco_opcode::ds_read_b128;
3372 todo = 16;
3373 } else if (todo >= 16 && aligned8 && usable_read2) {
3374 op = aco_opcode::ds_read2_b64;
3375 read2 = true;
3376 todo = 16;
3377 } else if (todo >= 12 && aligned16 && large_ds_read) {
3378 op = aco_opcode::ds_read_b96;
3379 todo = 12;
3380 } else if (todo >= 8 && aligned8) {
3381 op = aco_opcode::ds_read_b64;
3382 todo = 8;
3383 } else if (todo >= 8 && usable_read2) {
3384 op = aco_opcode::ds_read2_b32;
3385 read2 = true;
3386 todo = 8;
3387 } else if (todo >= 4) {
3388 op = aco_opcode::ds_read_b32;
3389 todo = 4;
3390 } else {
3391 assert(false);
3392 }
3393 assert(todo % elem_size_bytes == 0);
3394 unsigned num_elements = todo / elem_size_bytes;
3395 unsigned offset = base_offset + bytes_read;
3396 unsigned max_offset = read2 ? 1019 : 65535;
3397
3398 Temp address_offset = address;
3399 if (offset > max_offset) {
3400 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3401 offset = bytes_read;
3402 }
3403 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
3404
3405 Temp res;
3406 if (num_components == 1 && dst.type() == RegType::vgpr)
3407 res = dst;
3408 else
3409 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
3410
3411 if (read2)
3412 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
3413 else
3414 res = bld.ds(op, Definition(res), address_offset, m, offset);
3415
3416 if (num_components == 1) {
3417 assert(todo == total_bytes);
3418 if (dst.type() == RegType::sgpr)
3419 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
3420 return dst;
3421 }
3422
3423 if (dst.type() == RegType::sgpr) {
3424 Temp new_res = bld.tmp(RegType::sgpr, res.size());
3425 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
3426 res = new_res;
3427 }
3428
3429 if (num_elements == 1) {
3430 result[result_size++] = res;
3431 } else {
3432 assert(res != dst && res.size() % num_elements == 0);
3433 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
3434 split->operands[0] = Operand(res);
3435 for (unsigned i = 0; i < num_elements; i++)
3436 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
3437 ctx->block->instructions.emplace_back(std::move(split));
3438 }
3439
3440 bytes_read += todo;
3441 }
3442
3443 assert(result_size == num_components && result_size > 1);
3444 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
3445 for (unsigned i = 0; i < result_size; i++)
3446 vec->operands[i] = Operand(result[i]);
3447 vec->definitions[0] = Definition(dst);
3448 ctx->block->instructions.emplace_back(std::move(vec));
3449 ctx->allocated_vec.emplace(dst.id(), result);
3450
3451 return dst;
3452 }
3453
3454 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
3455 {
3456 if (start == 0 && size == data.size())
3457 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
3458
3459 unsigned size_hint = 1;
3460 auto it = ctx->allocated_vec.find(data.id());
3461 if (it != ctx->allocated_vec.end())
3462 size_hint = it->second[0].size();
3463 if (size % size_hint || start % size_hint)
3464 size_hint = 1;
3465
3466 start /= size_hint;
3467 size /= size_hint;
3468
3469 Temp elems[size];
3470 for (unsigned i = 0; i < size; i++)
3471 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
3472
3473 if (size == 1)
3474 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
3475
3476 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
3477 for (unsigned i = 0; i < size; i++)
3478 vec->operands[i] = Operand(elems[i]);
3479 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
3480 vec->definitions[0] = Definition(res);
3481 ctx->block->instructions.emplace_back(std::move(vec));
3482 return res;
3483 }
3484
3485 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
3486 {
3487 Builder bld(ctx->program, ctx->block);
3488 unsigned bytes_written = 0;
3489 bool large_ds_write = ctx->options->chip_class >= GFX7;
3490 bool usable_write2 = ctx->options->chip_class >= GFX7;
3491
3492 while (bytes_written < total_size * 4) {
3493 unsigned todo = total_size * 4 - bytes_written;
3494 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
3495 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
3496
3497 aco_opcode op = aco_opcode::last_opcode;
3498 bool write2 = false;
3499 unsigned size = 0;
3500 if (todo >= 16 && aligned16 && large_ds_write) {
3501 op = aco_opcode::ds_write_b128;
3502 size = 4;
3503 } else if (todo >= 16 && aligned8 && usable_write2) {
3504 op = aco_opcode::ds_write2_b64;
3505 write2 = true;
3506 size = 4;
3507 } else if (todo >= 12 && aligned16 && large_ds_write) {
3508 op = aco_opcode::ds_write_b96;
3509 size = 3;
3510 } else if (todo >= 8 && aligned8) {
3511 op = aco_opcode::ds_write_b64;
3512 size = 2;
3513 } else if (todo >= 8 && usable_write2) {
3514 op = aco_opcode::ds_write2_b32;
3515 write2 = true;
3516 size = 2;
3517 } else if (todo >= 4) {
3518 op = aco_opcode::ds_write_b32;
3519 size = 1;
3520 } else {
3521 assert(false);
3522 }
3523
3524 unsigned offset = offset0 + offset1 + bytes_written;
3525 unsigned max_offset = write2 ? 1020 : 65535;
3526 Temp address_offset = address;
3527 if (offset > max_offset) {
3528 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
3529 offset = offset1 + bytes_written;
3530 }
3531 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
3532
3533 if (write2) {
3534 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
3535 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
3536 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
3537 } else {
3538 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
3539 bld.ds(op, address_offset, val, m, offset);
3540 }
3541
3542 bytes_written += size * 4;
3543 }
3544 }
3545
3546 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3547 Temp address, unsigned base_offset, unsigned align)
3548 {
3549 assert(util_is_power_of_two_nonzero(align) && align >= 4);
3550 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3551
3552 Operand m = load_lds_size_m0(ctx);
3553
3554 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
3555 assert(wrmask <= 0x0f);
3556 int start[2], count[2];
3557 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
3558 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
3559 assert(wrmask == 0);
3560
3561 /* one combined store is sufficient */
3562 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
3563 Builder bld(ctx->program, ctx->block);
3564
3565 Temp address_offset = address;
3566 if ((base_offset / elem_size_bytes) + start[1] > 255) {
3567 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3568 base_offset = 0;
3569 }
3570
3571 assert(count[0] == 1);
3572 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
3573
3574 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
3575 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
3576 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3577 base_offset = base_offset / elem_size_bytes;
3578 bld.ds(op, address_offset, val0, val1, m,
3579 base_offset + start[0], base_offset + start[1]);
3580 return;
3581 }
3582
3583 for (unsigned i = 0; i < 2; i++) {
3584 if (count[i] == 0)
3585 continue;
3586
3587 unsigned elem_size_words = elem_size_bytes / 4;
3588 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
3589 base_offset, start[i] * elem_size_bytes, align);
3590 }
3591 return;
3592 }
3593
3594 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3595 {
3596 unsigned align = 16;
3597 if (const_offset)
3598 align = std::min(align, 1u << (ffs(const_offset) - 1));
3599
3600 return align;
3601 }
3602
3603
3604 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3605 unsigned split_cnt = 0u, Temp dst = Temp())
3606 {
3607 Builder bld(ctx->program, ctx->block);
3608 unsigned dword_size = elem_size_bytes / 4;
3609
3610 if (!dst.id())
3611 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3612
3613 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3614 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3615 instr->definitions[0] = Definition(dst);
3616
3617 for (unsigned i = 0; i < cnt; ++i) {
3618 if (arr[i].id()) {
3619 assert(arr[i].size() == dword_size);
3620 allocated_vec[i] = arr[i];
3621 instr->operands[i] = Operand(arr[i]);
3622 } else {
3623 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3624 allocated_vec[i] = zero;
3625 instr->operands[i] = Operand(zero);
3626 }
3627 }
3628
3629 bld.insert(std::move(instr));
3630
3631 if (split_cnt)
3632 emit_split_vector(ctx, dst, split_cnt);
3633 else
3634 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3635
3636 return dst;
3637 }
3638
3639 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3640 {
3641 if (const_offset >= 4096) {
3642 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3643 const_offset %= 4096u;
3644
3645 if (!voffset.id())
3646 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3647 else if (unlikely(voffset.regClass() == s1))
3648 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3649 else if (likely(voffset.regClass() == v1))
3650 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3651 else
3652 unreachable("Unsupported register class of voffset");
3653 }
3654
3655 return const_offset;
3656 }
3657
3658 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3659 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
3660 {
3661 assert(vdata.id());
3662 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3663 assert(vdata.size() >= 1 && vdata.size() <= 4);
3664
3665 Builder bld(ctx->program, ctx->block);
3666 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
3667 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3668
3669 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3670 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3671 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3672 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3673 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
3674
3675 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3676 }
3677
3678 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3679 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3680 bool allow_combining = true, bool reorder = true, bool slc = false)
3681 {
3682 Builder bld(ctx->program, ctx->block);
3683 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3684 assert(write_mask);
3685
3686 if (elem_size_bytes == 8) {
3687 elem_size_bytes = 4;
3688 write_mask = widen_mask(write_mask, 2);
3689 }
3690
3691 while (write_mask) {
3692 int start = 0;
3693 int count = 0;
3694 u_bit_scan_consecutive_range(&write_mask, &start, &count);
3695 assert(count > 0);
3696 assert(start >= 0);
3697
3698 while (count > 0) {
3699 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
3700 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
3701
3702 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
3703 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
3704 sub_count = 2;
3705
3706 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
3707 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
3708
3709 count -= sub_count;
3710 start += sub_count;
3711 }
3712
3713 assert(count == 0);
3714 }
3715 }
3716
3717 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3718 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3719 {
3720 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3721 assert(size_dwords >= 1 && size_dwords <= 4);
3722
3723 Builder bld(ctx->program, ctx->block);
3724 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3725 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3726 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3727
3728 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3729 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3730 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3731 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3732 /* disable_wqm */ false, /* glc */ true,
3733 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3734
3735 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3736
3737 return vdata;
3738 }
3739
3740 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3741 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3742 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3743 {
3744 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3745 assert((num_components * elem_size_bytes / 4) == dst.size());
3746 assert(!!stride != allow_combining);
3747
3748 Builder bld(ctx->program, ctx->block);
3749 unsigned split_cnt = num_components;
3750
3751 if (elem_size_bytes == 8) {
3752 elem_size_bytes = 4;
3753 num_components *= 2;
3754 }
3755
3756 if (!stride)
3757 stride = elem_size_bytes;
3758
3759 unsigned load_size = 1;
3760 if (allow_combining) {
3761 if ((num_components % 4) == 0)
3762 load_size = 4;
3763 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3764 load_size = 3;
3765 else if ((num_components % 2) == 0)
3766 load_size = 2;
3767 }
3768
3769 unsigned num_loads = num_components / load_size;
3770 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3771
3772 for (unsigned i = 0; i < num_loads; ++i) {
3773 unsigned const_offset = i * stride * load_size + base_const_offset;
3774 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3775 }
3776
3777 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, load_size * 4u, split_cnt, dst);
3778 }
3779
3780 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3781 {
3782 Builder bld(ctx->program, ctx->block);
3783 Temp offset = base_offset.first;
3784 unsigned const_offset = base_offset.second;
3785
3786 if (!nir_src_is_const(*off_src)) {
3787 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3788 Temp with_stride;
3789
3790 /* Calculate indirect offset with stride */
3791 if (likely(indirect_offset_arg.regClass() == v1))
3792 with_stride = bld.v_mul24_imm(bld.def(v1), indirect_offset_arg, stride);
3793 else if (indirect_offset_arg.regClass() == s1)
3794 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3795 else
3796 unreachable("Unsupported register class of indirect offset");
3797
3798 /* Add to the supplied base offset */
3799 if (offset.id() == 0)
3800 offset = with_stride;
3801 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3802 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3803 else if (offset.size() == 1 && with_stride.size() == 1)
3804 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3805 else
3806 unreachable("Unsupported register class of indirect offset");
3807 } else {
3808 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3809 const_offset += const_offset_arg * stride;
3810 }
3811
3812 return std::make_pair(offset, const_offset);
3813 }
3814
3815 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3816 {
3817 Builder bld(ctx->program, ctx->block);
3818 Temp offset;
3819
3820 if (off1.first.id() && off2.first.id()) {
3821 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3822 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3823 else if (off1.first.size() == 1 && off2.first.size() == 1)
3824 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3825 else
3826 unreachable("Unsupported register class of indirect offset");
3827 } else {
3828 offset = off1.first.id() ? off1.first : off2.first;
3829 }
3830
3831 return std::make_pair(offset, off1.second + off2.second);
3832 }
3833
3834 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3835 {
3836 Builder bld(ctx->program, ctx->block);
3837 unsigned const_offset = offs.second * multiplier;
3838
3839 if (!offs.first.id())
3840 return std::make_pair(offs.first, const_offset);
3841
3842 Temp offset = unlikely(offs.first.regClass() == s1)
3843 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3844 : bld.v_mul24_imm(bld.def(v1), offs.first, multiplier);
3845
3846 return std::make_pair(offset, const_offset);
3847 }
3848
3849 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3850 {
3851 Builder bld(ctx->program, ctx->block);
3852
3853 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3854 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3855 /* component is in bytes */
3856 const_offset += nir_intrinsic_component(instr) * component_stride;
3857
3858 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3859 nir_src *off_src = nir_get_io_offset_src(instr);
3860 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3861 }
3862
3863 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3864 {
3865 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3866 }
3867
3868 Temp get_tess_rel_patch_id(isel_context *ctx)
3869 {
3870 Builder bld(ctx->program, ctx->block);
3871
3872 switch (ctx->shader->info.stage) {
3873 case MESA_SHADER_TESS_CTRL:
3874 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3875 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3876 case MESA_SHADER_TESS_EVAL:
3877 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3878 default:
3879 unreachable("Unsupported stage in get_tess_rel_patch_id");
3880 }
3881 }
3882
3883 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3884 {
3885 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3886 Builder bld(ctx->program, ctx->block);
3887
3888 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3889 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3890
3891 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3892
3893 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3894 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3895
3896 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3897 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3898 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3899
3900 return offset_mul(ctx, offs, 4u);
3901 }
3902
3903 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3904 {
3905 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3906 Builder bld(ctx->program, ctx->block);
3907
3908 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3909 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3910 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3911 uint32_t output_vertex_size = num_tcs_outputs * 16;
3912 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3913 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3914
3915 std::pair<Temp, unsigned> offs = instr
3916 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3917 : std::make_pair(Temp(), 0u);
3918
3919 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3920 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3921
3922 if (per_vertex) {
3923 assert(instr);
3924
3925 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3926 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3927
3928 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3929 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3930 } else {
3931 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3932 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3933 }
3934
3935 return offs;
3936 }
3937
3938 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3939 {
3940 Builder bld(ctx->program, ctx->block);
3941
3942 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3943 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3944
3945 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3946
3947 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3948 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3949 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3950
3951 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3952 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3953
3954 return offs;
3955 }
3956
3957 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3958 {
3959 Builder bld(ctx->program, ctx->block);
3960
3961 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3962 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3963 : ctx->args->options->key.tes.tcs_num_outputs;
3964
3965 unsigned output_vertex_size = num_tcs_outputs * 16;
3966 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3967 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3968 unsigned attr_stride = ctx->tcs_num_patches;
3969
3970 std::pair<Temp, unsigned> offs = instr
3971 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3972 : std::make_pair(Temp(), 0u);
3973
3974 if (const_base_offset)
3975 offs.second += const_base_offset * attr_stride;
3976
3977 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3978 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, 16u);
3979 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3980
3981 return offs;
3982 }
3983
3984 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
3985 {
3986 if (mask == 0)
3987 return false;
3988
3989 unsigned off = nir_intrinsic_base(instr) * 4u;
3990 nir_src *off_src = nir_get_io_offset_src(instr);
3991
3992 if (!nir_src_is_const(*off_src)) {
3993 *indirect = true;
3994 return false;
3995 }
3996
3997 *indirect = false;
3998 off += nir_src_as_uint(*off_src) * 16u;
3999
4000 while (mask) {
4001 unsigned slot = u_bit_scan64(&mask) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
4002 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
4003 return true;
4004 }
4005
4006 return false;
4007 }
4008
4009 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
4010 {
4011 unsigned write_mask = nir_intrinsic_write_mask(instr);
4012 unsigned component = nir_intrinsic_component(instr);
4013 unsigned idx = nir_intrinsic_base(instr) + component;
4014
4015 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
4016 if (off_instr->type != nir_instr_type_load_const)
4017 return false;
4018
4019 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4020 idx += nir_src_as_uint(instr->src[1]) * 4u;
4021
4022 if (instr->src[0].ssa->bit_size == 64)
4023 write_mask = widen_mask(write_mask, 2);
4024
4025 for (unsigned i = 0; i < 8; ++i) {
4026 if (write_mask & (1 << i)) {
4027 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
4028 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, v1);
4029 }
4030 idx++;
4031 }
4032
4033 return true;
4034 }
4035
4036 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
4037 {
4038 /* Only TCS per-vertex inputs are supported by this function.
4039 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
4040 */
4041 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
4042 return false;
4043
4044 nir_src *off_src = nir_get_io_offset_src(instr);
4045 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
4046 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
4047 bool can_use_temps = nir_src_is_const(*off_src) &&
4048 vertex_index_instr->type == nir_instr_type_intrinsic &&
4049 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
4050
4051 if (!can_use_temps)
4052 return false;
4053
4054 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
4055 Temp *src = &ctx->inputs.temps[idx];
4056 create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u, 0, dst);
4057
4058 return true;
4059 }
4060
4061 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
4062 {
4063 Builder bld(ctx->program, ctx->block);
4064
4065 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
4066 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
4067 bool indirect_write;
4068 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
4069 if (temp_only_input && !indirect_write)
4070 return;
4071 }
4072
4073 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
4074 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4075 unsigned write_mask = nir_intrinsic_write_mask(instr);
4076 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
4077
4078 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
4079 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
4080 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
4081 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
4082 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
4083 } else {
4084 Temp lds_base;
4085
4086 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4087 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
4088 unsigned itemsize = ctx->stage == vertex_geometry_gs
4089 ? ctx->program->info->vs.es_info.esgs_itemsize
4090 : ctx->program->info->tes.es_info.esgs_itemsize;
4091 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
4092 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
4093 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
4094 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
4095 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
4096 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
4097 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
4098 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
4099 */
4100 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
4101 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
4102 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
4103 } else {
4104 unreachable("Invalid LS or ES stage");
4105 }
4106
4107 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
4108 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4109 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
4110 }
4111 }
4112
4113 bool tcs_output_is_tess_factor(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4114 {
4115 if (per_vertex)
4116 return false;
4117
4118 unsigned off = nir_intrinsic_base(instr) * 4u;
4119 return off == ctx->tcs_tess_lvl_out_loc ||
4120 off == ctx->tcs_tess_lvl_in_loc;
4121
4122 }
4123
4124 bool tcs_output_is_read_by_tes(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4125 {
4126 uint64_t mask = per_vertex
4127 ? ctx->program->info->tcs.tes_inputs_read
4128 : ctx->program->info->tcs.tes_patch_inputs_read;
4129
4130 bool indirect_write = false;
4131 bool output_read_by_tes = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4132 return indirect_write || output_read_by_tes;
4133 }
4134
4135 bool tcs_output_is_read_by_tcs(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4136 {
4137 uint64_t mask = per_vertex
4138 ? ctx->shader->info.outputs_read
4139 : ctx->shader->info.patch_outputs_read;
4140
4141 bool indirect_write = false;
4142 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
4143 return indirect_write || output_read;
4144 }
4145
4146 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4147 {
4148 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4149 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4150
4151 Builder bld(ctx->program, ctx->block);
4152
4153 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
4154 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4155 unsigned write_mask = nir_intrinsic_write_mask(instr);
4156
4157 bool is_tess_factor = tcs_output_is_tess_factor(ctx, instr, per_vertex);
4158 bool write_to_vmem = !is_tess_factor && tcs_output_is_read_by_tes(ctx, instr, per_vertex);
4159 bool write_to_lds = is_tess_factor || tcs_output_is_read_by_tcs(ctx, instr, per_vertex);
4160
4161 if (write_to_vmem) {
4162 std::pair<Temp, unsigned> vmem_offs = per_vertex
4163 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
4164 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
4165
4166 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4167 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4168 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
4169 }
4170
4171 if (write_to_lds) {
4172 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4173 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4174 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
4175 }
4176 }
4177
4178 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
4179 {
4180 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4181 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4182
4183 Builder bld(ctx->program, ctx->block);
4184
4185 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4186 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
4187 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
4188 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4189
4190 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
4191 }
4192
4193 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
4194 {
4195 if (ctx->stage == vertex_vs ||
4196 ctx->stage == tess_eval_vs ||
4197 ctx->stage == fragment_fs ||
4198 ctx->stage == ngg_vertex_gs ||
4199 ctx->stage == ngg_tess_eval_gs ||
4200 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
4201 bool stored_to_temps = store_output_to_temps(ctx, instr);
4202 if (!stored_to_temps) {
4203 fprintf(stderr, "Unimplemented output offset instruction:\n");
4204 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
4205 fprintf(stderr, "\n");
4206 abort();
4207 }
4208 } else if (ctx->stage == vertex_es ||
4209 ctx->stage == vertex_ls ||
4210 ctx->stage == tess_eval_es ||
4211 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4212 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
4213 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
4214 visit_store_ls_or_es_output(ctx, instr);
4215 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
4216 visit_store_tcs_output(ctx, instr, false);
4217 } else {
4218 unreachable("Shader stage not implemented");
4219 }
4220 }
4221
4222 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
4223 {
4224 visit_load_tcs_output(ctx, instr, false);
4225 }
4226
4227 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
4228 {
4229 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
4230 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
4231
4232 Builder bld(ctx->program, ctx->block);
4233 Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
4234 if (ctx->program->has_16bank_lds)
4235 interp_p1.instr->operands[0].setLateKill(true);
4236 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component);
4237 }
4238
4239 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
4240 {
4241 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
4242 for (unsigned i = 0; i < num_components; i++)
4243 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
4244 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
4245 assert(num_components == 4);
4246 Builder bld(ctx->program, ctx->block);
4247 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
4248 }
4249
4250 for (Operand& op : vec->operands)
4251 op = op.isUndefined() ? Operand(0u) : op;
4252
4253 vec->definitions[0] = Definition(dst);
4254 ctx->block->instructions.emplace_back(std::move(vec));
4255 emit_split_vector(ctx, dst, num_components);
4256 return;
4257 }
4258
4259 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
4260 {
4261 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4262 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
4263 unsigned idx = nir_intrinsic_base(instr);
4264 unsigned component = nir_intrinsic_component(instr);
4265 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4266
4267 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
4268 if (offset) {
4269 assert(offset->u32 == 0);
4270 } else {
4271 /* the lower 15bit of the prim_mask contain the offset into LDS
4272 * while the upper bits contain the number of prims */
4273 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
4274 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4275 Builder bld(ctx->program, ctx->block);
4276 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4277 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4278 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4279 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4280 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4281 }
4282
4283 if (instr->dest.ssa.num_components == 1) {
4284 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
4285 } else {
4286 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
4287 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
4288 {
4289 Temp tmp = {ctx->program->allocateId(), v1};
4290 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
4291 vec->operands[i] = Operand(tmp);
4292 }
4293 vec->definitions[0] = Definition(dst);
4294 ctx->block->instructions.emplace_back(std::move(vec));
4295 }
4296 }
4297
4298 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4299 unsigned offset, unsigned stride, unsigned channels)
4300 {
4301 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
4302 if (vtx_info->chan_byte_size != 4 && channels == 3)
4303 return false;
4304 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
4305 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
4306 }
4307
4308 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4309 unsigned offset, unsigned stride, unsigned *channels)
4310 {
4311 if (!vtx_info->chan_byte_size) {
4312 *channels = vtx_info->num_channels;
4313 return vtx_info->chan_format;
4314 }
4315
4316 unsigned num_channels = *channels;
4317 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4318 unsigned new_channels = num_channels + 1;
4319 /* first, assume more loads is worse and try using a larger data format */
4320 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4321 new_channels++;
4322 /* don't make the attribute potentially out-of-bounds */
4323 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4324 new_channels = 5;
4325 }
4326
4327 if (new_channels == 5) {
4328 /* then try decreasing load size (at the cost of more loads) */
4329 new_channels = *channels;
4330 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4331 new_channels--;
4332 }
4333
4334 if (new_channels < *channels)
4335 *channels = new_channels;
4336 num_channels = new_channels;
4337 }
4338
4339 switch (vtx_info->chan_format) {
4340 case V_008F0C_BUF_DATA_FORMAT_8:
4341 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4342 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4343 case V_008F0C_BUF_DATA_FORMAT_16:
4344 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4345 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4346 case V_008F0C_BUF_DATA_FORMAT_32:
4347 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4348 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4349 }
4350 unreachable("shouldn't reach here");
4351 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4352 }
4353
4354 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4355 * so we may need to fix it up. */
4356 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4357 {
4358 Builder bld(ctx->program, ctx->block);
4359
4360 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4361 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4362
4363 /* For the integer-like cases, do a natural sign extension.
4364 *
4365 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4366 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4367 * exponent.
4368 */
4369 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4370 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4371
4372 /* Convert back to the right type. */
4373 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4374 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4375 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4376 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4377 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4378 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4379 }
4380
4381 return alpha;
4382 }
4383
4384 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4385 {
4386 Builder bld(ctx->program, ctx->block);
4387 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4388 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4389
4390 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4391 if (off_instr->type != nir_instr_type_load_const) {
4392 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4393 nir_print_instr(off_instr, stderr);
4394 fprintf(stderr, "\n");
4395 }
4396 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4397
4398 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4399
4400 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4401 unsigned component = nir_intrinsic_component(instr);
4402 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4403 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4404 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4405 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4406
4407 unsigned dfmt = attrib_format & 0xf;
4408 unsigned nfmt = (attrib_format >> 4) & 0x7;
4409 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4410
4411 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4412 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4413 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4414 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4415 if (post_shuffle)
4416 num_channels = MAX2(num_channels, 3);
4417
4418 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4419 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4420
4421 Temp index;
4422 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4423 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4424 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4425 if (divisor) {
4426 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4427 if (divisor != 1) {
4428 Temp divided = bld.tmp(v1);
4429 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4430 index = bld.vadd32(bld.def(v1), start_instance, divided);
4431 } else {
4432 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4433 }
4434 } else {
4435 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4436 }
4437 } else {
4438 index = bld.vadd32(bld.def(v1),
4439 get_arg(ctx, ctx->args->ac.base_vertex),
4440 get_arg(ctx, ctx->args->ac.vertex_id));
4441 }
4442
4443 Temp channels[num_channels];
4444 unsigned channel_start = 0;
4445 bool direct_fetch = false;
4446
4447 /* skip unused channels at the start */
4448 if (vtx_info->chan_byte_size && !post_shuffle) {
4449 channel_start = ffs(mask) - 1;
4450 for (unsigned i = 0; i < channel_start; i++)
4451 channels[i] = Temp(0, s1);
4452 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4453 num_channels = 3 - (ffs(mask) - 1);
4454 }
4455
4456 /* load channels */
4457 while (channel_start < num_channels) {
4458 unsigned fetch_size = num_channels - channel_start;
4459 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4460 bool expanded = false;
4461
4462 /* use MUBUF when possible to avoid possible alignment issues */
4463 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4464 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4465 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4466 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4467 vtx_info->chan_byte_size == 4;
4468 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4469 if (!use_mubuf) {
4470 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
4471 } else {
4472 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
4473 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4474 fetch_size = 4;
4475 expanded = true;
4476 }
4477 }
4478
4479 Temp fetch_index = index;
4480 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4481 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4482 fetch_offset = fetch_offset % attrib_stride;
4483 }
4484
4485 Operand soffset(0u);
4486 if (fetch_offset >= 4096) {
4487 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4488 fetch_offset %= 4096;
4489 }
4490
4491 aco_opcode opcode;
4492 switch (fetch_size) {
4493 case 1:
4494 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4495 break;
4496 case 2:
4497 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4498 break;
4499 case 3:
4500 assert(ctx->options->chip_class >= GFX7 ||
4501 (!use_mubuf && ctx->options->chip_class == GFX6));
4502 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4503 break;
4504 case 4:
4505 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4506 break;
4507 default:
4508 unreachable("Unimplemented load_input vector size");
4509 }
4510
4511 Temp fetch_dst;
4512 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
4513 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4514 num_channels <= 3)) {
4515 direct_fetch = true;
4516 fetch_dst = dst;
4517 } else {
4518 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
4519 }
4520
4521 if (use_mubuf) {
4522 Instruction *mubuf = bld.mubuf(opcode,
4523 Definition(fetch_dst), list, fetch_index, soffset,
4524 fetch_offset, false, true).instr;
4525 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
4526 } else {
4527 Instruction *mtbuf = bld.mtbuf(opcode,
4528 Definition(fetch_dst), list, fetch_index, soffset,
4529 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4530 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
4531 }
4532
4533 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4534
4535 if (fetch_size == 1) {
4536 channels[channel_start] = fetch_dst;
4537 } else {
4538 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
4539 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
4540 }
4541
4542 channel_start += fetch_size;
4543 }
4544
4545 if (!direct_fetch) {
4546 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4547 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4548
4549 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4550 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4551 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4552
4553 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4554 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4555 unsigned num_temp = 0;
4556 for (unsigned i = 0; i < dst.size(); i++) {
4557 unsigned idx = i + component;
4558 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4559 Temp channel = channels[swizzle[idx]];
4560 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4561 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4562 vec->operands[i] = Operand(channel);
4563
4564 num_temp++;
4565 elems[i] = channel;
4566 } else if (is_float && idx == 3) {
4567 vec->operands[i] = Operand(0x3f800000u);
4568 } else if (!is_float && idx == 3) {
4569 vec->operands[i] = Operand(1u);
4570 } else {
4571 vec->operands[i] = Operand(0u);
4572 }
4573 }
4574 vec->definitions[0] = Definition(dst);
4575 ctx->block->instructions.emplace_back(std::move(vec));
4576 emit_split_vector(ctx, dst, dst.size());
4577
4578 if (num_temp == dst.size())
4579 ctx->allocated_vec.emplace(dst.id(), elems);
4580 }
4581 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4582 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4583 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4584 if (off_instr->type != nir_instr_type_load_const ||
4585 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4586 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4587 nir_print_instr(off_instr, stderr);
4588 fprintf(stderr, "\n");
4589 }
4590
4591 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4592 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4593 if (offset) {
4594 assert(offset->u32 == 0);
4595 } else {
4596 /* the lower 15bit of the prim_mask contain the offset into LDS
4597 * while the upper bits contain the number of prims */
4598 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4599 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4600 Builder bld(ctx->program, ctx->block);
4601 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4602 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4603 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4604 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4605 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4606 }
4607
4608 unsigned idx = nir_intrinsic_base(instr);
4609 unsigned component = nir_intrinsic_component(instr);
4610 unsigned vertex_id = 2; /* P0 */
4611
4612 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4613 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4614 switch (src0->u32) {
4615 case 0:
4616 vertex_id = 2; /* P0 */
4617 break;
4618 case 1:
4619 vertex_id = 0; /* P10 */
4620 break;
4621 case 2:
4622 vertex_id = 1; /* P20 */
4623 break;
4624 default:
4625 unreachable("invalid vertex index");
4626 }
4627 }
4628
4629 if (dst.size() == 1) {
4630 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4631 } else {
4632 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4633 for (unsigned i = 0; i < dst.size(); i++)
4634 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4635 vec->definitions[0] = Definition(dst);
4636 bld.insert(std::move(vec));
4637 }
4638
4639 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4640 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4641 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4642 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4643 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4644
4645 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4646 } else {
4647 unreachable("Shader stage not implemented");
4648 }
4649 }
4650
4651 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4652 {
4653 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4654
4655 Builder bld(ctx->program, ctx->block);
4656 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4657 Temp vertex_offset;
4658
4659 if (!nir_src_is_const(*vertex_src)) {
4660 /* better code could be created, but this case probably doesn't happen
4661 * much in practice */
4662 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4663 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4664 Temp elem;
4665
4666 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4667 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4668 if (i % 2u)
4669 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4670 } else {
4671 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4672 }
4673
4674 if (vertex_offset.id()) {
4675 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4676 Operand(i), indirect_vertex);
4677 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4678 } else {
4679 vertex_offset = elem;
4680 }
4681 }
4682
4683 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4684 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4685 } else {
4686 unsigned vertex = nir_src_as_uint(*vertex_src);
4687 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4688 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4689 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4690 Operand((vertex % 2u) * 16u), Operand(16u));
4691 else
4692 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4693 }
4694
4695 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4696 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4697 return offset_mul(ctx, offs, 4u);
4698 }
4699
4700 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4701 {
4702 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4703
4704 Builder bld(ctx->program, ctx->block);
4705 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4706 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4707
4708 if (ctx->stage == geometry_gs) {
4709 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4710 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4711 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4712 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4713 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4714 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4715 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4716 } else {
4717 unreachable("Unsupported GS stage.");
4718 }
4719 }
4720
4721 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4722 {
4723 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4724
4725 Builder bld(ctx->program, ctx->block);
4726 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4727
4728 if (load_input_from_temps(ctx, instr, dst))
4729 return;
4730
4731 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4732 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4733 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4734
4735 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4736 }
4737
4738 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4739 {
4740 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4741
4742 Builder bld(ctx->program, ctx->block);
4743
4744 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4745 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4746 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4747
4748 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4749 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
4750
4751 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
4752 }
4753
4754 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4755 {
4756 switch (ctx->shader->info.stage) {
4757 case MESA_SHADER_GEOMETRY:
4758 visit_load_gs_per_vertex_input(ctx, instr);
4759 break;
4760 case MESA_SHADER_TESS_CTRL:
4761 visit_load_tcs_per_vertex_input(ctx, instr);
4762 break;
4763 case MESA_SHADER_TESS_EVAL:
4764 visit_load_tes_per_vertex_input(ctx, instr);
4765 break;
4766 default:
4767 unreachable("Unimplemented shader stage");
4768 }
4769 }
4770
4771 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4772 {
4773 visit_load_tcs_output(ctx, instr, true);
4774 }
4775
4776 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4777 {
4778 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4779 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4780
4781 visit_store_tcs_output(ctx, instr, true);
4782 }
4783
4784 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4785 {
4786 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4787
4788 Builder bld(ctx->program, ctx->block);
4789 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4790
4791 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4792 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4793 Operand tes_w(0u);
4794
4795 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4796 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4797 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4798 tes_w = Operand(tmp);
4799 }
4800
4801 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4802 emit_split_vector(ctx, tess_coord, 3);
4803 }
4804
4805 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4806 {
4807 if (ctx->program->info->need_indirect_descriptor_sets) {
4808 Builder bld(ctx->program, ctx->block);
4809 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4810 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4811 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4812 }
4813
4814 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4815 }
4816
4817
4818 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4819 {
4820 Builder bld(ctx->program, ctx->block);
4821 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4822 if (!ctx->divergent_vals[instr->dest.ssa.index])
4823 index = bld.as_uniform(index);
4824 unsigned desc_set = nir_intrinsic_desc_set(instr);
4825 unsigned binding = nir_intrinsic_binding(instr);
4826
4827 Temp desc_ptr;
4828 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4829 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4830 unsigned offset = layout->binding[binding].offset;
4831 unsigned stride;
4832 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4833 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4834 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4835 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4836 offset = pipeline_layout->push_constant_size + 16 * idx;
4837 stride = 16;
4838 } else {
4839 desc_ptr = load_desc_ptr(ctx, desc_set);
4840 stride = layout->binding[binding].size;
4841 }
4842
4843 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4844 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4845 if (stride != 1) {
4846 if (nir_const_index) {
4847 const_index = const_index * stride;
4848 } else if (index.type() == RegType::vgpr) {
4849 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4850 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4851 } else {
4852 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4853 }
4854 }
4855 if (offset) {
4856 if (nir_const_index) {
4857 const_index = const_index + offset;
4858 } else if (index.type() == RegType::vgpr) {
4859 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4860 } else {
4861 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4862 }
4863 }
4864
4865 if (nir_const_index && const_index == 0) {
4866 index = desc_ptr;
4867 } else if (index.type() == RegType::vgpr) {
4868 index = bld.vadd32(bld.def(v1),
4869 nir_const_index ? Operand(const_index) : Operand(index),
4870 Operand(desc_ptr));
4871 } else {
4872 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4873 nir_const_index ? Operand(const_index) : Operand(index),
4874 Operand(desc_ptr));
4875 }
4876
4877 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4878 }
4879
4880 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
4881 Temp dst, Temp rsrc, Temp offset, int byte_align,
4882 bool glc=false, bool readonly=true)
4883 {
4884 Builder bld(ctx->program, ctx->block);
4885 bool dlc = glc && ctx->options->chip_class >= GFX10;
4886 unsigned num_bytes = num_components * component_size;
4887
4888 aco_opcode op;
4889 if (dst.type() == RegType::vgpr || ((ctx->options->chip_class < GFX8 || component_size < 4) && !readonly)) {
4890 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4891 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4892 unsigned const_offset = 0;
4893
4894 /* for small bit sizes add buffer for unaligned loads */
4895 if (byte_align) {
4896 if (num_bytes > 2)
4897 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4898 else
4899 byte_align = 0;
4900 }
4901
4902 Temp lower = Temp();
4903 if (num_bytes > 16) {
4904 assert(num_components == 3 || num_components == 4);
4905 op = aco_opcode::buffer_load_dwordx4;
4906 lower = bld.tmp(v4);
4907 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4908 mubuf->definitions[0] = Definition(lower);
4909 mubuf->operands[0] = Operand(rsrc);
4910 mubuf->operands[1] = vaddr;
4911 mubuf->operands[2] = soffset;
4912 mubuf->offen = (offset.type() == RegType::vgpr);
4913 mubuf->glc = glc;
4914 mubuf->dlc = dlc;
4915 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4916 mubuf->can_reorder = readonly;
4917 bld.insert(std::move(mubuf));
4918 emit_split_vector(ctx, lower, 2);
4919 num_bytes -= 16;
4920 const_offset = 16;
4921 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4922 /* GFX6 doesn't support loading vec3, expand to vec4. */
4923 num_bytes = 16;
4924 }
4925
4926 switch (num_bytes) {
4927 case 1:
4928 op = aco_opcode::buffer_load_ubyte;
4929 break;
4930 case 2:
4931 op = aco_opcode::buffer_load_ushort;
4932 break;
4933 case 3:
4934 case 4:
4935 op = aco_opcode::buffer_load_dword;
4936 break;
4937 case 5:
4938 case 6:
4939 case 7:
4940 case 8:
4941 op = aco_opcode::buffer_load_dwordx2;
4942 break;
4943 case 10:
4944 case 12:
4945 assert(ctx->options->chip_class > GFX6);
4946 op = aco_opcode::buffer_load_dwordx3;
4947 break;
4948 case 16:
4949 op = aco_opcode::buffer_load_dwordx4;
4950 break;
4951 default:
4952 unreachable("Load SSBO not implemented for this size.");
4953 }
4954 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4955 mubuf->operands[0] = Operand(rsrc);
4956 mubuf->operands[1] = vaddr;
4957 mubuf->operands[2] = soffset;
4958 mubuf->offen = (offset.type() == RegType::vgpr);
4959 mubuf->glc = glc;
4960 mubuf->dlc = dlc;
4961 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4962 mubuf->can_reorder = readonly;
4963 mubuf->offset = const_offset;
4964 aco_ptr<Instruction> instr = std::move(mubuf);
4965
4966 if (component_size < 4) {
4967 Temp vec = num_bytes <= 4 ? bld.tmp(v1) : num_bytes <= 8 ? bld.tmp(v2) : bld.tmp(v3);
4968 instr->definitions[0] = Definition(vec);
4969 bld.insert(std::move(instr));
4970
4971 if (byte_align == -1 || (byte_align && dst.type() == RegType::sgpr)) {
4972 Operand align = byte_align == -1 ? Operand(offset) : Operand((uint32_t)byte_align);
4973 Temp tmp[3] = {vec, vec, vec};
4974
4975 if (vec.size() == 3) {
4976 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
4977 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
4978 } else if (vec.size() == 2) {
4979 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
4980 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
4981 }
4982 for (unsigned i = 0; i < dst.size(); i++)
4983 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], align);
4984
4985 vec = tmp[0];
4986 if (dst.size() == 2)
4987 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
4988
4989 byte_align = 0;
4990 }
4991
4992 if (dst.type() == RegType::vgpr && num_components == 1) {
4993 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), vec, Operand(byte_align / component_size));
4994 } else {
4995 trim_subdword_vector(ctx, vec, dst, 4 * vec.size() / component_size, ((1 << num_components) - 1) << byte_align / component_size);
4996 }
4997
4998 return;
4999
5000 } else if (dst.size() > 4) {
5001 assert(lower != Temp());
5002 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
5003 instr->definitions[0] = Definition(upper);
5004 bld.insert(std::move(instr));
5005 if (dst.size() == 8)
5006 emit_split_vector(ctx, upper, 2);
5007 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
5008 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
5009 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
5010 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
5011 if (dst.size() == 8)
5012 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
5013 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
5014 Temp vec = bld.tmp(v4);
5015 instr->definitions[0] = Definition(vec);
5016 bld.insert(std::move(instr));
5017 emit_split_vector(ctx, vec, 4);
5018
5019 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
5020 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
5021 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
5022 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
5023 }
5024
5025 if (dst.type() == RegType::sgpr) {
5026 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5027 instr->definitions[0] = Definition(vec);
5028 bld.insert(std::move(instr));
5029 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
5030 } else {
5031 instr->definitions[0] = Definition(dst);
5032 bld.insert(std::move(instr));
5033 emit_split_vector(ctx, dst, num_components);
5034 }
5035 } else {
5036 /* for small bit sizes add buffer for unaligned loads */
5037 if (byte_align)
5038 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
5039
5040 switch (num_bytes) {
5041 case 1:
5042 case 2:
5043 case 3:
5044 case 4:
5045 op = aco_opcode::s_buffer_load_dword;
5046 break;
5047 case 5:
5048 case 6:
5049 case 7:
5050 case 8:
5051 op = aco_opcode::s_buffer_load_dwordx2;
5052 break;
5053 case 10:
5054 case 12:
5055 case 16:
5056 op = aco_opcode::s_buffer_load_dwordx4;
5057 break;
5058 case 24:
5059 case 32:
5060 op = aco_opcode::s_buffer_load_dwordx8;
5061 break;
5062 default:
5063 unreachable("Load SSBO not implemented for this size.");
5064 }
5065 offset = bld.as_uniform(offset);
5066 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
5067 load->operands[0] = Operand(rsrc);
5068 load->operands[1] = Operand(offset);
5069 assert(load->operands[1].getTemp().type() == RegType::sgpr);
5070 load->definitions[0] = Definition(dst);
5071 load->glc = glc;
5072 load->dlc = dlc;
5073 load->barrier = readonly ? barrier_none : barrier_buffer;
5074 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
5075 assert(ctx->options->chip_class >= GFX8 || !glc);
5076
5077 /* adjust misaligned small bit size loads */
5078 if (byte_align) {
5079 Temp vec = num_bytes <= 4 ? bld.tmp(s1) : num_bytes <= 8 ? bld.tmp(s2) : bld.tmp(s4);
5080 load->definitions[0] = Definition(vec);
5081 bld.insert(std::move(load));
5082 Operand byte_offset = byte_align > 0 ? Operand(uint32_t(byte_align)) : Operand(offset);
5083 byte_align_scalar(ctx, vec, byte_offset, dst);
5084
5085 /* trim vector */
5086 } else if (dst.size() == 3) {
5087 Temp vec = bld.tmp(s4);
5088 load->definitions[0] = Definition(vec);
5089 bld.insert(std::move(load));
5090 emit_split_vector(ctx, vec, 4);
5091
5092 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5093 emit_extract_vector(ctx, vec, 0, s1),
5094 emit_extract_vector(ctx, vec, 1, s1),
5095 emit_extract_vector(ctx, vec, 2, s1));
5096 } else if (dst.size() == 6) {
5097 Temp vec = bld.tmp(s8);
5098 load->definitions[0] = Definition(vec);
5099 bld.insert(std::move(load));
5100 emit_split_vector(ctx, vec, 4);
5101
5102 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5103 emit_extract_vector(ctx, vec, 0, s2),
5104 emit_extract_vector(ctx, vec, 1, s2),
5105 emit_extract_vector(ctx, vec, 2, s2));
5106 } else {
5107 bld.insert(std::move(load));
5108 }
5109 emit_split_vector(ctx, dst, num_components);
5110 }
5111 }
5112
5113 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
5114 {
5115 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5116 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
5117
5118 Builder bld(ctx->program, ctx->block);
5119
5120 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
5121 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
5122 unsigned binding = nir_intrinsic_binding(idx_instr);
5123 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
5124
5125 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
5126 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5127 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5128 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5129 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5130 if (ctx->options->chip_class >= GFX10) {
5131 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5132 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5133 S_008F0C_RESOURCE_LEVEL(1);
5134 } else {
5135 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5136 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5137 }
5138 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
5139 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
5140 Operand(0xFFFFFFFFu),
5141 Operand(desc_type));
5142 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5143 rsrc, upper_dwords);
5144 } else {
5145 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
5146 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5147 }
5148 unsigned size = instr->dest.ssa.bit_size / 8;
5149 int byte_align = 0;
5150 if (size < 4) {
5151 unsigned align_mul = nir_intrinsic_align_mul(instr);
5152 unsigned align_offset = nir_intrinsic_align_offset(instr);
5153 byte_align = align_mul % 4 == 0 ? align_offset : -1;
5154 }
5155 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align);
5156 }
5157
5158 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5159 {
5160 Builder bld(ctx->program, ctx->block);
5161 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5162 unsigned offset = nir_intrinsic_base(instr);
5163 unsigned count = instr->dest.ssa.num_components;
5164 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
5165
5166 if (index_cv && instr->dest.ssa.bit_size == 32) {
5167 unsigned start = (offset + index_cv->u32) / 4u;
5168 start -= ctx->args->ac.base_inline_push_consts;
5169 if (start + count <= ctx->args->ac.num_inline_push_consts) {
5170 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5171 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5172 for (unsigned i = 0; i < count; ++i) {
5173 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
5174 vec->operands[i] = Operand{elems[i]};
5175 }
5176 vec->definitions[0] = Definition(dst);
5177 ctx->block->instructions.emplace_back(std::move(vec));
5178 ctx->allocated_vec.emplace(dst.id(), elems);
5179 return;
5180 }
5181 }
5182
5183 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
5184 if (offset != 0) // TODO check if index != 0 as well
5185 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
5186 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
5187 Temp vec = dst;
5188 bool trim = false;
5189 bool aligned = true;
5190
5191 if (instr->dest.ssa.bit_size == 8) {
5192 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5193 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
5194 if (!aligned)
5195 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
5196 } else if (instr->dest.ssa.bit_size == 16) {
5197 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
5198 if (!aligned)
5199 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
5200 }
5201
5202 aco_opcode op;
5203
5204 switch (vec.size()) {
5205 case 1:
5206 op = aco_opcode::s_load_dword;
5207 break;
5208 case 2:
5209 op = aco_opcode::s_load_dwordx2;
5210 break;
5211 case 3:
5212 vec = bld.tmp(s4);
5213 trim = true;
5214 case 4:
5215 op = aco_opcode::s_load_dwordx4;
5216 break;
5217 case 6:
5218 vec = bld.tmp(s8);
5219 trim = true;
5220 case 8:
5221 op = aco_opcode::s_load_dwordx8;
5222 break;
5223 default:
5224 unreachable("unimplemented or forbidden load_push_constant.");
5225 }
5226
5227 bld.smem(op, Definition(vec), ptr, index);
5228
5229 if (!aligned) {
5230 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
5231 byte_align_scalar(ctx, vec, byte_offset, dst);
5232 return;
5233 }
5234
5235 if (trim) {
5236 emit_split_vector(ctx, vec, 4);
5237 RegClass rc = dst.size() == 3 ? s1 : s2;
5238 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5239 emit_extract_vector(ctx, vec, 0, rc),
5240 emit_extract_vector(ctx, vec, 1, rc),
5241 emit_extract_vector(ctx, vec, 2, rc));
5242
5243 }
5244 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5245 }
5246
5247 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5248 {
5249 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5250
5251 Builder bld(ctx->program, ctx->block);
5252
5253 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5254 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5255 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5256 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5257 if (ctx->options->chip_class >= GFX10) {
5258 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5259 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5260 S_008F0C_RESOURCE_LEVEL(1);
5261 } else {
5262 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5263 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5264 }
5265
5266 unsigned base = nir_intrinsic_base(instr);
5267 unsigned range = nir_intrinsic_range(instr);
5268
5269 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5270 if (base && offset.type() == RegType::sgpr)
5271 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
5272 else if (base && offset.type() == RegType::vgpr)
5273 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
5274
5275 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5276 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
5277 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
5278 Operand(desc_type));
5279 unsigned size = instr->dest.ssa.bit_size / 8;
5280 // TODO: get alignment information for subdword constants
5281 unsigned byte_align = size < 4 ? -1 : 0;
5282 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, byte_align);
5283 }
5284
5285 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
5286 {
5287 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5288 ctx->cf_info.exec_potentially_empty_discard = true;
5289
5290 ctx->program->needs_exact = true;
5291
5292 // TODO: optimize uniform conditions
5293 Builder bld(ctx->program, ctx->block);
5294 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5295 assert(src.regClass() == bld.lm);
5296 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5297 bld.pseudo(aco_opcode::p_discard_if, src);
5298 ctx->block->kind |= block_kind_uses_discard_if;
5299 return;
5300 }
5301
5302 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5303 {
5304 Builder bld(ctx->program, ctx->block);
5305
5306 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5307 ctx->cf_info.exec_potentially_empty_discard = true;
5308
5309 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5310 ctx->cf_info.parent_loop.has_divergent_continue;
5311
5312 if (ctx->block->loop_nest_depth &&
5313 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
5314 /* we handle discards the same way as jump instructions */
5315 append_logical_end(ctx->block);
5316
5317 /* in loops, discard behaves like break */
5318 Block *linear_target = ctx->cf_info.parent_loop.exit;
5319 ctx->block->kind |= block_kind_discard;
5320
5321 if (!divergent) {
5322 /* uniform discard - loop ends here */
5323 assert(nir_instr_is_last(&instr->instr));
5324 ctx->block->kind |= block_kind_uniform;
5325 ctx->cf_info.has_branch = true;
5326 bld.branch(aco_opcode::p_branch);
5327 add_linear_edge(ctx->block->index, linear_target);
5328 return;
5329 }
5330
5331 /* we add a break right behind the discard() instructions */
5332 ctx->block->kind |= block_kind_break;
5333 unsigned idx = ctx->block->index;
5334
5335 ctx->cf_info.parent_loop.has_divergent_branch = true;
5336 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5337
5338 /* remove critical edges from linear CFG */
5339 bld.branch(aco_opcode::p_branch);
5340 Block* break_block = ctx->program->create_and_insert_block();
5341 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5342 break_block->kind |= block_kind_uniform;
5343 add_linear_edge(idx, break_block);
5344 add_linear_edge(break_block->index, linear_target);
5345 bld.reset(break_block);
5346 bld.branch(aco_opcode::p_branch);
5347
5348 Block* continue_block = ctx->program->create_and_insert_block();
5349 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5350 add_linear_edge(idx, continue_block);
5351 append_logical_start(continue_block);
5352 ctx->block = continue_block;
5353
5354 return;
5355 }
5356
5357 /* it can currently happen that NIR doesn't remove the unreachable code */
5358 if (!nir_instr_is_last(&instr->instr)) {
5359 ctx->program->needs_exact = true;
5360 /* save exec somewhere temporarily so that it doesn't get
5361 * overwritten before the discard from outer exec masks */
5362 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5363 bld.pseudo(aco_opcode::p_discard_if, cond);
5364 ctx->block->kind |= block_kind_uses_discard_if;
5365 return;
5366 }
5367
5368 /* This condition is incorrect for uniformly branched discards in a loop
5369 * predicated by a divergent condition, but the above code catches that case
5370 * and the discard would end up turning into a discard_if.
5371 * For example:
5372 * if (divergent) {
5373 * while (...) {
5374 * if (uniform) {
5375 * discard;
5376 * }
5377 * }
5378 * }
5379 */
5380 if (!ctx->cf_info.parent_if.is_divergent) {
5381 /* program just ends here */
5382 ctx->block->kind |= block_kind_uniform;
5383 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5384 0 /* enabled mask */, 9 /* dest */,
5385 false /* compressed */, true/* done */, true /* valid mask */);
5386 bld.sopp(aco_opcode::s_endpgm);
5387 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5388 } else {
5389 ctx->block->kind |= block_kind_discard;
5390 /* branch and linear edge is added by visit_if() */
5391 }
5392 }
5393
5394 enum aco_descriptor_type {
5395 ACO_DESC_IMAGE,
5396 ACO_DESC_FMASK,
5397 ACO_DESC_SAMPLER,
5398 ACO_DESC_BUFFER,
5399 ACO_DESC_PLANE_0,
5400 ACO_DESC_PLANE_1,
5401 ACO_DESC_PLANE_2,
5402 };
5403
5404 static bool
5405 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5406 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5407 return false;
5408 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5409 return dim == ac_image_cube ||
5410 dim == ac_image_1darray ||
5411 dim == ac_image_2darray ||
5412 dim == ac_image_2darraymsaa;
5413 }
5414
5415 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5416 enum aco_descriptor_type desc_type,
5417 const nir_tex_instr *tex_instr, bool image, bool write)
5418 {
5419 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5420 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5421 if (it != ctx->tex_desc.end())
5422 return it->second;
5423 */
5424 Temp index = Temp();
5425 bool index_set = false;
5426 unsigned constant_index = 0;
5427 unsigned descriptor_set;
5428 unsigned base_index;
5429 Builder bld(ctx->program, ctx->block);
5430
5431 if (!deref_instr) {
5432 assert(tex_instr && !image);
5433 descriptor_set = 0;
5434 base_index = tex_instr->sampler_index;
5435 } else {
5436 while(deref_instr->deref_type != nir_deref_type_var) {
5437 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5438 if (!array_size)
5439 array_size = 1;
5440
5441 assert(deref_instr->deref_type == nir_deref_type_array);
5442 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5443 if (const_value) {
5444 constant_index += array_size * const_value->u32;
5445 } else {
5446 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5447 if (indirect.type() == RegType::vgpr)
5448 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5449
5450 if (array_size != 1)
5451 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5452
5453 if (!index_set) {
5454 index = indirect;
5455 index_set = true;
5456 } else {
5457 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5458 }
5459 }
5460
5461 deref_instr = nir_src_as_deref(deref_instr->parent);
5462 }
5463 descriptor_set = deref_instr->var->data.descriptor_set;
5464 base_index = deref_instr->var->data.binding;
5465 }
5466
5467 Temp list = load_desc_ptr(ctx, descriptor_set);
5468 list = convert_pointer_to_64_bit(ctx, list);
5469
5470 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5471 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5472 unsigned offset = binding->offset;
5473 unsigned stride = binding->size;
5474 aco_opcode opcode;
5475 RegClass type;
5476
5477 assert(base_index < layout->binding_count);
5478
5479 switch (desc_type) {
5480 case ACO_DESC_IMAGE:
5481 type = s8;
5482 opcode = aco_opcode::s_load_dwordx8;
5483 break;
5484 case ACO_DESC_FMASK:
5485 type = s8;
5486 opcode = aco_opcode::s_load_dwordx8;
5487 offset += 32;
5488 break;
5489 case ACO_DESC_SAMPLER:
5490 type = s4;
5491 opcode = aco_opcode::s_load_dwordx4;
5492 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5493 offset += radv_combined_image_descriptor_sampler_offset(binding);
5494 break;
5495 case ACO_DESC_BUFFER:
5496 type = s4;
5497 opcode = aco_opcode::s_load_dwordx4;
5498 break;
5499 case ACO_DESC_PLANE_0:
5500 case ACO_DESC_PLANE_1:
5501 type = s8;
5502 opcode = aco_opcode::s_load_dwordx8;
5503 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5504 break;
5505 case ACO_DESC_PLANE_2:
5506 type = s4;
5507 opcode = aco_opcode::s_load_dwordx4;
5508 offset += 64;
5509 break;
5510 default:
5511 unreachable("invalid desc_type\n");
5512 }
5513
5514 offset += constant_index * stride;
5515
5516 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5517 (!index_set || binding->immutable_samplers_equal)) {
5518 if (binding->immutable_samplers_equal)
5519 constant_index = 0;
5520
5521 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5522 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5523 Operand(samplers[constant_index * 4 + 0]),
5524 Operand(samplers[constant_index * 4 + 1]),
5525 Operand(samplers[constant_index * 4 + 2]),
5526 Operand(samplers[constant_index * 4 + 3]));
5527 }
5528
5529 Operand off;
5530 if (!index_set) {
5531 off = bld.copy(bld.def(s1), Operand(offset));
5532 } else {
5533 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5534 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5535 }
5536
5537 Temp res = bld.smem(opcode, bld.def(type), list, off);
5538
5539 if (desc_type == ACO_DESC_PLANE_2) {
5540 Temp components[8];
5541 for (unsigned i = 0; i < 8; i++)
5542 components[i] = bld.tmp(s1);
5543 bld.pseudo(aco_opcode::p_split_vector,
5544 Definition(components[0]),
5545 Definition(components[1]),
5546 Definition(components[2]),
5547 Definition(components[3]),
5548 res);
5549
5550 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5551 bld.pseudo(aco_opcode::p_split_vector,
5552 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5553 Definition(components[4]),
5554 Definition(components[5]),
5555 Definition(components[6]),
5556 Definition(components[7]),
5557 desc2);
5558
5559 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5560 components[0], components[1], components[2], components[3],
5561 components[4], components[5], components[6], components[7]);
5562 }
5563
5564 return res;
5565 }
5566
5567 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5568 {
5569 switch (dim) {
5570 case GLSL_SAMPLER_DIM_BUF:
5571 return 1;
5572 case GLSL_SAMPLER_DIM_1D:
5573 return array ? 2 : 1;
5574 case GLSL_SAMPLER_DIM_2D:
5575 return array ? 3 : 2;
5576 case GLSL_SAMPLER_DIM_MS:
5577 return array ? 4 : 3;
5578 case GLSL_SAMPLER_DIM_3D:
5579 case GLSL_SAMPLER_DIM_CUBE:
5580 return 3;
5581 case GLSL_SAMPLER_DIM_RECT:
5582 case GLSL_SAMPLER_DIM_SUBPASS:
5583 return 2;
5584 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5585 return 3;
5586 default:
5587 break;
5588 }
5589 return 0;
5590 }
5591
5592
5593 /* Adjust the sample index according to FMASK.
5594 *
5595 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5596 * which is the identity mapping. Each nibble says which physical sample
5597 * should be fetched to get that sample.
5598 *
5599 * For example, 0x11111100 means there are only 2 samples stored and
5600 * the second sample covers 3/4 of the pixel. When reading samples 0
5601 * and 1, return physical sample 0 (determined by the first two 0s
5602 * in FMASK), otherwise return physical sample 1.
5603 *
5604 * The sample index should be adjusted as follows:
5605 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5606 */
5607 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5608 {
5609 Builder bld(ctx->program, ctx->block);
5610 Temp fmask = bld.tmp(v1);
5611 unsigned dim = ctx->options->chip_class >= GFX10
5612 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5613 : 0;
5614
5615 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5616 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5617 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5618 load->operands[0] = Operand(fmask_desc_ptr);
5619 load->operands[1] = Operand(s4); /* no sampler */
5620 load->operands[2] = Operand(coord);
5621 load->definitions[0] = Definition(fmask);
5622 load->glc = false;
5623 load->dlc = false;
5624 load->dmask = 0x1;
5625 load->unrm = true;
5626 load->da = da;
5627 load->dim = dim;
5628 load->can_reorder = true; /* fmask images shouldn't be modified */
5629 ctx->block->instructions.emplace_back(std::move(load));
5630
5631 Operand sample_index4;
5632 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
5633 sample_index4 = Operand(sample_index.constantValue() << 2);
5634 } else if (sample_index.regClass() == s1) {
5635 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5636 } else {
5637 assert(sample_index.regClass() == v1);
5638 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5639 }
5640
5641 Temp final_sample;
5642 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5643 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5644 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5645 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5646 else
5647 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5648
5649 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5650 * resource descriptor is 0 (invalid),
5651 */
5652 Temp compare = bld.tmp(bld.lm);
5653 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5654 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5655
5656 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5657
5658 /* Replace the MSAA sample index. */
5659 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5660 }
5661
5662 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5663 {
5664
5665 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5666 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5667 bool is_array = glsl_sampler_type_is_array(type);
5668 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5669 assert(!add_frag_pos && "Input attachments should be lowered.");
5670 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5671 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5672 int count = image_type_to_components_count(dim, is_array);
5673 std::vector<Temp> coords(count);
5674 Builder bld(ctx->program, ctx->block);
5675
5676 if (is_ms) {
5677 count--;
5678 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5679 /* get sample index */
5680 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5681 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5682 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5683 std::vector<Temp> fmask_load_address;
5684 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5685 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5686
5687 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5688 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5689 } else {
5690 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5691 }
5692 }
5693
5694 if (gfx9_1d) {
5695 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5696 coords.resize(coords.size() + 1);
5697 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5698 if (is_array)
5699 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5700 } else {
5701 for (int i = 0; i < count; i++)
5702 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5703 }
5704
5705 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5706 instr->intrinsic == nir_intrinsic_image_deref_store) {
5707 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5708 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5709
5710 if (!level_zero)
5711 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5712 }
5713
5714 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5715 for (unsigned i = 0; i < coords.size(); i++)
5716 vec->operands[i] = Operand(coords[i]);
5717 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5718 vec->definitions[0] = Definition(res);
5719 ctx->block->instructions.emplace_back(std::move(vec));
5720 return res;
5721 }
5722
5723
5724 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5725 {
5726 Builder bld(ctx->program, ctx->block);
5727 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5728 const struct glsl_type *type = glsl_without_array(var->type);
5729 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5730 bool is_array = glsl_sampler_type_is_array(type);
5731 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5732
5733 if (dim == GLSL_SAMPLER_DIM_BUF) {
5734 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5735 unsigned num_channels = util_last_bit(mask);
5736 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5737 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5738
5739 aco_opcode opcode;
5740 switch (num_channels) {
5741 case 1:
5742 opcode = aco_opcode::buffer_load_format_x;
5743 break;
5744 case 2:
5745 opcode = aco_opcode::buffer_load_format_xy;
5746 break;
5747 case 3:
5748 opcode = aco_opcode::buffer_load_format_xyz;
5749 break;
5750 case 4:
5751 opcode = aco_opcode::buffer_load_format_xyzw;
5752 break;
5753 default:
5754 unreachable(">4 channel buffer image load");
5755 }
5756 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5757 load->operands[0] = Operand(rsrc);
5758 load->operands[1] = Operand(vindex);
5759 load->operands[2] = Operand((uint32_t) 0);
5760 Temp tmp;
5761 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5762 tmp = dst;
5763 else
5764 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5765 load->definitions[0] = Definition(tmp);
5766 load->idxen = true;
5767 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5768 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5769 load->barrier = barrier_image;
5770 ctx->block->instructions.emplace_back(std::move(load));
5771
5772 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5773 return;
5774 }
5775
5776 Temp coords = get_image_coords(ctx, instr, type);
5777 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5778
5779 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5780 unsigned num_components = util_bitcount(dmask);
5781 Temp tmp;
5782 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5783 tmp = dst;
5784 else
5785 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5786
5787 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5788 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5789
5790 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5791 load->operands[0] = Operand(resource);
5792 load->operands[1] = Operand(s4); /* no sampler */
5793 load->operands[2] = Operand(coords);
5794 load->definitions[0] = Definition(tmp);
5795 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5796 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5797 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5798 load->dmask = dmask;
5799 load->unrm = true;
5800 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5801 load->barrier = barrier_image;
5802 ctx->block->instructions.emplace_back(std::move(load));
5803
5804 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5805 return;
5806 }
5807
5808 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5809 {
5810 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5811 const struct glsl_type *type = glsl_without_array(var->type);
5812 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5813 bool is_array = glsl_sampler_type_is_array(type);
5814 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5815
5816 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5817
5818 if (dim == GLSL_SAMPLER_DIM_BUF) {
5819 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5820 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5821 aco_opcode opcode;
5822 switch (data.size()) {
5823 case 1:
5824 opcode = aco_opcode::buffer_store_format_x;
5825 break;
5826 case 2:
5827 opcode = aco_opcode::buffer_store_format_xy;
5828 break;
5829 case 3:
5830 opcode = aco_opcode::buffer_store_format_xyz;
5831 break;
5832 case 4:
5833 opcode = aco_opcode::buffer_store_format_xyzw;
5834 break;
5835 default:
5836 unreachable(">4 channel buffer image store");
5837 }
5838 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5839 store->operands[0] = Operand(rsrc);
5840 store->operands[1] = Operand(vindex);
5841 store->operands[2] = Operand((uint32_t) 0);
5842 store->operands[3] = Operand(data);
5843 store->idxen = true;
5844 store->glc = glc;
5845 store->dlc = false;
5846 store->disable_wqm = true;
5847 store->barrier = barrier_image;
5848 ctx->program->needs_exact = true;
5849 ctx->block->instructions.emplace_back(std::move(store));
5850 return;
5851 }
5852
5853 assert(data.type() == RegType::vgpr);
5854 Temp coords = get_image_coords(ctx, instr, type);
5855 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5856
5857 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5858 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5859
5860 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5861 store->operands[0] = Operand(resource);
5862 store->operands[1] = Operand(data);
5863 store->operands[2] = Operand(coords);
5864 store->glc = glc;
5865 store->dlc = false;
5866 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5867 store->dmask = (1 << data.size()) - 1;
5868 store->unrm = true;
5869 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5870 store->disable_wqm = true;
5871 store->barrier = barrier_image;
5872 ctx->program->needs_exact = true;
5873 ctx->block->instructions.emplace_back(std::move(store));
5874 return;
5875 }
5876
5877 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5878 {
5879 /* return the previous value if dest is ever used */
5880 bool return_previous = false;
5881 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5882 return_previous = true;
5883 break;
5884 }
5885 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5886 return_previous = true;
5887 break;
5888 }
5889
5890 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5891 const struct glsl_type *type = glsl_without_array(var->type);
5892 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5893 bool is_array = glsl_sampler_type_is_array(type);
5894 Builder bld(ctx->program, ctx->block);
5895
5896 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5897 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5898
5899 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5900 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5901
5902 aco_opcode buf_op, image_op;
5903 switch (instr->intrinsic) {
5904 case nir_intrinsic_image_deref_atomic_add:
5905 buf_op = aco_opcode::buffer_atomic_add;
5906 image_op = aco_opcode::image_atomic_add;
5907 break;
5908 case nir_intrinsic_image_deref_atomic_umin:
5909 buf_op = aco_opcode::buffer_atomic_umin;
5910 image_op = aco_opcode::image_atomic_umin;
5911 break;
5912 case nir_intrinsic_image_deref_atomic_imin:
5913 buf_op = aco_opcode::buffer_atomic_smin;
5914 image_op = aco_opcode::image_atomic_smin;
5915 break;
5916 case nir_intrinsic_image_deref_atomic_umax:
5917 buf_op = aco_opcode::buffer_atomic_umax;
5918 image_op = aco_opcode::image_atomic_umax;
5919 break;
5920 case nir_intrinsic_image_deref_atomic_imax:
5921 buf_op = aco_opcode::buffer_atomic_smax;
5922 image_op = aco_opcode::image_atomic_smax;
5923 break;
5924 case nir_intrinsic_image_deref_atomic_and:
5925 buf_op = aco_opcode::buffer_atomic_and;
5926 image_op = aco_opcode::image_atomic_and;
5927 break;
5928 case nir_intrinsic_image_deref_atomic_or:
5929 buf_op = aco_opcode::buffer_atomic_or;
5930 image_op = aco_opcode::image_atomic_or;
5931 break;
5932 case nir_intrinsic_image_deref_atomic_xor:
5933 buf_op = aco_opcode::buffer_atomic_xor;
5934 image_op = aco_opcode::image_atomic_xor;
5935 break;
5936 case nir_intrinsic_image_deref_atomic_exchange:
5937 buf_op = aco_opcode::buffer_atomic_swap;
5938 image_op = aco_opcode::image_atomic_swap;
5939 break;
5940 case nir_intrinsic_image_deref_atomic_comp_swap:
5941 buf_op = aco_opcode::buffer_atomic_cmpswap;
5942 image_op = aco_opcode::image_atomic_cmpswap;
5943 break;
5944 default:
5945 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5946 }
5947
5948 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5949
5950 if (dim == GLSL_SAMPLER_DIM_BUF) {
5951 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5952 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5953 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5954 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5955 mubuf->operands[0] = Operand(resource);
5956 mubuf->operands[1] = Operand(vindex);
5957 mubuf->operands[2] = Operand((uint32_t)0);
5958 mubuf->operands[3] = Operand(data);
5959 if (return_previous)
5960 mubuf->definitions[0] = Definition(dst);
5961 mubuf->offset = 0;
5962 mubuf->idxen = true;
5963 mubuf->glc = return_previous;
5964 mubuf->dlc = false; /* Not needed for atomics */
5965 mubuf->disable_wqm = true;
5966 mubuf->barrier = barrier_image;
5967 ctx->program->needs_exact = true;
5968 ctx->block->instructions.emplace_back(std::move(mubuf));
5969 return;
5970 }
5971
5972 Temp coords = get_image_coords(ctx, instr, type);
5973 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5974 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5975 mimg->operands[0] = Operand(resource);
5976 mimg->operands[1] = Operand(data);
5977 mimg->operands[2] = Operand(coords);
5978 if (return_previous)
5979 mimg->definitions[0] = Definition(dst);
5980 mimg->glc = return_previous;
5981 mimg->dlc = false; /* Not needed for atomics */
5982 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5983 mimg->dmask = (1 << data.size()) - 1;
5984 mimg->unrm = true;
5985 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5986 mimg->disable_wqm = true;
5987 mimg->barrier = barrier_image;
5988 ctx->program->needs_exact = true;
5989 ctx->block->instructions.emplace_back(std::move(mimg));
5990 return;
5991 }
5992
5993 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5994 {
5995 if (in_elements && ctx->options->chip_class == GFX8) {
5996 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5997 Builder bld(ctx->program, ctx->block);
5998
5999 Temp size = emit_extract_vector(ctx, desc, 2, s1);
6000
6001 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
6002 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
6003
6004 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
6005 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
6006
6007 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
6008 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
6009
6010 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
6011 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
6012 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
6013 if (dst.type() == RegType::vgpr)
6014 bld.copy(Definition(dst), shr_dst);
6015
6016 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
6017 } else {
6018 emit_extract_vector(ctx, desc, 2, dst);
6019 }
6020 }
6021
6022 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
6023 {
6024 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
6025 const struct glsl_type *type = glsl_without_array(var->type);
6026 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
6027 bool is_array = glsl_sampler_type_is_array(type);
6028 Builder bld(ctx->program, ctx->block);
6029
6030 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
6031 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
6032 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
6033 }
6034
6035 /* LOD */
6036 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6037
6038 /* Resource */
6039 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
6040
6041 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6042
6043 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
6044 mimg->operands[0] = Operand(resource);
6045 mimg->operands[1] = Operand(s4); /* no sampler */
6046 mimg->operands[2] = Operand(lod);
6047 uint8_t& dmask = mimg->dmask;
6048 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
6049 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
6050 mimg->da = glsl_sampler_type_is_array(type);
6051 mimg->can_reorder = true;
6052 Definition& def = mimg->definitions[0];
6053 ctx->block->instructions.emplace_back(std::move(mimg));
6054
6055 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
6056 glsl_sampler_type_is_array(type)) {
6057
6058 assert(instr->dest.ssa.num_components == 3);
6059 Temp tmp = {ctx->program->allocateId(), v3};
6060 def = Definition(tmp);
6061 emit_split_vector(ctx, tmp, 3);
6062
6063 /* divide 3rd value by 6 by multiplying with magic number */
6064 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6065 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
6066
6067 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6068 emit_extract_vector(ctx, tmp, 0, v1),
6069 emit_extract_vector(ctx, tmp, 1, v1),
6070 by_6);
6071
6072 } else if (ctx->options->chip_class == GFX9 &&
6073 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
6074 glsl_sampler_type_is_array(type)) {
6075 assert(instr->dest.ssa.num_components == 2);
6076 def = Definition(dst);
6077 dmask = 0x5;
6078 } else {
6079 def = Definition(dst);
6080 }
6081
6082 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
6083 }
6084
6085 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6086 {
6087 Builder bld(ctx->program, ctx->block);
6088 unsigned num_components = instr->num_components;
6089
6090 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6091 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6092 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6093
6094 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6095 unsigned size = instr->dest.ssa.bit_size / 8;
6096 int byte_align = 0;
6097 if (size < 4) {
6098 unsigned align_mul = nir_intrinsic_align_mul(instr);
6099 unsigned align_offset = nir_intrinsic_align_offset(instr);
6100 byte_align = align_mul % 4 == 0 ? align_offset : -1;
6101 }
6102 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align, glc, false);
6103 }
6104
6105 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6106 {
6107 Builder bld(ctx->program, ctx->block);
6108 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6109 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6110 unsigned writemask = nir_intrinsic_write_mask(instr);
6111 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
6112
6113 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6114 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6115
6116 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
6117 ctx->options->chip_class >= GFX8 &&
6118 elem_size_bytes >= 4;
6119 if (smem)
6120 offset = bld.as_uniform(offset);
6121 bool smem_nonfs = smem && ctx->stage != fragment_fs;
6122
6123 while (writemask) {
6124 int start, count;
6125 u_bit_scan_consecutive_range(&writemask, &start, &count);
6126 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
6127 /* GFX6 doesn't support storing vec3, split it. */
6128 writemask |= 1u << (start + 2);
6129 count = 2;
6130 }
6131 int num_bytes = count * elem_size_bytes;
6132
6133 /* dword or larger stores have to be dword-aligned */
6134 if (elem_size_bytes < 4 && num_bytes > 2) {
6135 // TODO: improve alignment check of sub-dword stores
6136 unsigned count_new = 2 / elem_size_bytes;
6137 writemask |= ((1 << (count - count_new)) - 1) << (start + count_new);
6138 count = count_new;
6139 num_bytes = 2;
6140 }
6141
6142 if (num_bytes > 16) {
6143 assert(elem_size_bytes == 8);
6144 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6145 count = 2;
6146 num_bytes = 16;
6147 }
6148
6149 Temp write_data;
6150 if (elem_size_bytes < 4) {
6151 if (data.type() == RegType::sgpr) {
6152 data = as_vgpr(ctx, data);
6153 emit_split_vector(ctx, data, 4 * data.size() / elem_size_bytes);
6154 }
6155 RegClass rc = RegClass(RegType::vgpr, elem_size_bytes).as_subdword();
6156 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6157 for (int i = 0; i < count; i++)
6158 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, rc));
6159 write_data = bld.tmp(RegClass(RegType::vgpr, num_bytes).as_subdword());
6160 vec->definitions[0] = Definition(write_data);
6161 bld.insert(std::move(vec));
6162 } else if (count != instr->num_components) {
6163 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6164 for (int i = 0; i < count; i++) {
6165 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
6166 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
6167 }
6168 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
6169 vec->definitions[0] = Definition(write_data);
6170 ctx->block->instructions.emplace_back(std::move(vec));
6171 } else if (!smem && data.type() != RegType::vgpr) {
6172 assert(num_bytes % 4 == 0);
6173 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
6174 } else if (smem_nonfs && data.type() == RegType::vgpr) {
6175 assert(num_bytes % 4 == 0);
6176 write_data = bld.as_uniform(data);
6177 } else {
6178 write_data = data;
6179 }
6180
6181 aco_opcode vmem_op, smem_op = aco_opcode::last_opcode;
6182 switch (num_bytes) {
6183 case 1:
6184 vmem_op = aco_opcode::buffer_store_byte;
6185 break;
6186 case 2:
6187 vmem_op = aco_opcode::buffer_store_short;
6188 break;
6189 case 4:
6190 vmem_op = aco_opcode::buffer_store_dword;
6191 smem_op = aco_opcode::s_buffer_store_dword;
6192 break;
6193 case 8:
6194 vmem_op = aco_opcode::buffer_store_dwordx2;
6195 smem_op = aco_opcode::s_buffer_store_dwordx2;
6196 break;
6197 case 12:
6198 vmem_op = aco_opcode::buffer_store_dwordx3;
6199 assert(!smem && ctx->options->chip_class > GFX6);
6200 break;
6201 case 16:
6202 vmem_op = aco_opcode::buffer_store_dwordx4;
6203 smem_op = aco_opcode::s_buffer_store_dwordx4;
6204 break;
6205 default:
6206 unreachable("Store SSBO not implemented for this size.");
6207 }
6208 if (ctx->stage == fragment_fs)
6209 smem_op = aco_opcode::p_fs_buffer_store_smem;
6210
6211 if (smem) {
6212 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
6213 store->operands[0] = Operand(rsrc);
6214 if (start) {
6215 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
6216 offset, Operand(start * elem_size_bytes));
6217 store->operands[1] = Operand(off);
6218 } else {
6219 store->operands[1] = Operand(offset);
6220 }
6221 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
6222 store->operands[1].setFixed(m0);
6223 store->operands[2] = Operand(write_data);
6224 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6225 store->dlc = false;
6226 store->disable_wqm = true;
6227 store->barrier = barrier_buffer;
6228 ctx->block->instructions.emplace_back(std::move(store));
6229 ctx->program->wb_smem_l1_on_end = true;
6230 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
6231 ctx->block->kind |= block_kind_needs_lowering;
6232 ctx->program->needs_exact = true;
6233 }
6234 } else {
6235 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
6236 store->operands[0] = Operand(rsrc);
6237 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6238 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6239 store->operands[3] = Operand(write_data);
6240 store->offset = start * elem_size_bytes;
6241 store->offen = (offset.type() == RegType::vgpr);
6242 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6243 store->dlc = false;
6244 store->disable_wqm = true;
6245 store->barrier = barrier_buffer;
6246 ctx->program->needs_exact = true;
6247 ctx->block->instructions.emplace_back(std::move(store));
6248 }
6249 }
6250 }
6251
6252 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6253 {
6254 /* return the previous value if dest is ever used */
6255 bool return_previous = false;
6256 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6257 return_previous = true;
6258 break;
6259 }
6260 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6261 return_previous = true;
6262 break;
6263 }
6264
6265 Builder bld(ctx->program, ctx->block);
6266 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
6267
6268 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
6269 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6270 get_ssa_temp(ctx, instr->src[3].ssa), data);
6271
6272 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
6273 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6274 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6275
6276 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6277
6278 aco_opcode op32, op64;
6279 switch (instr->intrinsic) {
6280 case nir_intrinsic_ssbo_atomic_add:
6281 op32 = aco_opcode::buffer_atomic_add;
6282 op64 = aco_opcode::buffer_atomic_add_x2;
6283 break;
6284 case nir_intrinsic_ssbo_atomic_imin:
6285 op32 = aco_opcode::buffer_atomic_smin;
6286 op64 = aco_opcode::buffer_atomic_smin_x2;
6287 break;
6288 case nir_intrinsic_ssbo_atomic_umin:
6289 op32 = aco_opcode::buffer_atomic_umin;
6290 op64 = aco_opcode::buffer_atomic_umin_x2;
6291 break;
6292 case nir_intrinsic_ssbo_atomic_imax:
6293 op32 = aco_opcode::buffer_atomic_smax;
6294 op64 = aco_opcode::buffer_atomic_smax_x2;
6295 break;
6296 case nir_intrinsic_ssbo_atomic_umax:
6297 op32 = aco_opcode::buffer_atomic_umax;
6298 op64 = aco_opcode::buffer_atomic_umax_x2;
6299 break;
6300 case nir_intrinsic_ssbo_atomic_and:
6301 op32 = aco_opcode::buffer_atomic_and;
6302 op64 = aco_opcode::buffer_atomic_and_x2;
6303 break;
6304 case nir_intrinsic_ssbo_atomic_or:
6305 op32 = aco_opcode::buffer_atomic_or;
6306 op64 = aco_opcode::buffer_atomic_or_x2;
6307 break;
6308 case nir_intrinsic_ssbo_atomic_xor:
6309 op32 = aco_opcode::buffer_atomic_xor;
6310 op64 = aco_opcode::buffer_atomic_xor_x2;
6311 break;
6312 case nir_intrinsic_ssbo_atomic_exchange:
6313 op32 = aco_opcode::buffer_atomic_swap;
6314 op64 = aco_opcode::buffer_atomic_swap_x2;
6315 break;
6316 case nir_intrinsic_ssbo_atomic_comp_swap:
6317 op32 = aco_opcode::buffer_atomic_cmpswap;
6318 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6319 break;
6320 default:
6321 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6322 }
6323 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6324 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6325 mubuf->operands[0] = Operand(rsrc);
6326 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6327 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6328 mubuf->operands[3] = Operand(data);
6329 if (return_previous)
6330 mubuf->definitions[0] = Definition(dst);
6331 mubuf->offset = 0;
6332 mubuf->offen = (offset.type() == RegType::vgpr);
6333 mubuf->glc = return_previous;
6334 mubuf->dlc = false; /* Not needed for atomics */
6335 mubuf->disable_wqm = true;
6336 mubuf->barrier = barrier_buffer;
6337 ctx->program->needs_exact = true;
6338 ctx->block->instructions.emplace_back(std::move(mubuf));
6339 }
6340
6341 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6342
6343 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6344 Builder bld(ctx->program, ctx->block);
6345 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6346 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6347 }
6348
6349 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
6350 {
6351 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6352 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6353
6354 if (addr.type() == RegType::vgpr)
6355 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
6356 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
6357 }
6358
6359 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6360 {
6361 Builder bld(ctx->program, ctx->block);
6362 unsigned num_components = instr->num_components;
6363 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
6364
6365 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6366 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6367
6368 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6369 bool dlc = glc && ctx->options->chip_class >= GFX10;
6370 /* VMEM stores don't update the SMEM cache and it's difficult to prove that
6371 * it's safe to use SMEM */
6372 bool can_use_smem = nir_intrinsic_access(instr) & ACCESS_NON_WRITEABLE;
6373 aco_opcode op;
6374 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8) || !can_use_smem) {
6375 bool global = ctx->options->chip_class >= GFX9;
6376
6377 if (ctx->options->chip_class >= GFX7) {
6378 switch (num_bytes) {
6379 case 4:
6380 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
6381 break;
6382 case 8:
6383 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
6384 break;
6385 case 12:
6386 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
6387 break;
6388 case 16:
6389 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
6390 break;
6391 default:
6392 unreachable("load_global not implemented for this size.");
6393 }
6394
6395 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
6396 flat->operands[0] = Operand(addr);
6397 flat->operands[1] = Operand(s1);
6398 flat->glc = glc;
6399 flat->dlc = dlc;
6400 flat->barrier = barrier_buffer;
6401
6402 if (dst.type() == RegType::sgpr) {
6403 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6404 flat->definitions[0] = Definition(vec);
6405 ctx->block->instructions.emplace_back(std::move(flat));
6406 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6407 } else {
6408 flat->definitions[0] = Definition(dst);
6409 ctx->block->instructions.emplace_back(std::move(flat));
6410 }
6411 emit_split_vector(ctx, dst, num_components);
6412 } else {
6413 assert(ctx->options->chip_class == GFX6);
6414
6415 /* GFX6 doesn't support loading vec3, expand to vec4. */
6416 num_bytes = num_bytes == 12 ? 16 : num_bytes;
6417
6418 switch (num_bytes) {
6419 case 4:
6420 op = aco_opcode::buffer_load_dword;
6421 break;
6422 case 8:
6423 op = aco_opcode::buffer_load_dwordx2;
6424 break;
6425 case 16:
6426 op = aco_opcode::buffer_load_dwordx4;
6427 break;
6428 default:
6429 unreachable("load_global not implemented for this size.");
6430 }
6431
6432 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6433
6434 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
6435 mubuf->operands[0] = Operand(rsrc);
6436 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6437 mubuf->operands[2] = Operand(0u);
6438 mubuf->glc = glc;
6439 mubuf->dlc = false;
6440 mubuf->offset = 0;
6441 mubuf->addr64 = addr.type() == RegType::vgpr;
6442 mubuf->disable_wqm = false;
6443 mubuf->barrier = barrier_buffer;
6444 aco_ptr<Instruction> instr = std::move(mubuf);
6445
6446 /* expand vector */
6447 if (dst.size() == 3) {
6448 Temp vec = bld.tmp(v4);
6449 instr->definitions[0] = Definition(vec);
6450 bld.insert(std::move(instr));
6451 emit_split_vector(ctx, vec, 4);
6452
6453 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
6454 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
6455 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
6456 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
6457 }
6458
6459 if (dst.type() == RegType::sgpr) {
6460 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6461 instr->definitions[0] = Definition(vec);
6462 bld.insert(std::move(instr));
6463 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
6464 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6465 } else {
6466 instr->definitions[0] = Definition(dst);
6467 bld.insert(std::move(instr));
6468 emit_split_vector(ctx, dst, num_components);
6469 }
6470 }
6471 } else {
6472 switch (num_bytes) {
6473 case 4:
6474 op = aco_opcode::s_load_dword;
6475 break;
6476 case 8:
6477 op = aco_opcode::s_load_dwordx2;
6478 break;
6479 case 12:
6480 case 16:
6481 op = aco_opcode::s_load_dwordx4;
6482 break;
6483 default:
6484 unreachable("load_global not implemented for this size.");
6485 }
6486 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
6487 load->operands[0] = Operand(addr);
6488 load->operands[1] = Operand(0u);
6489 load->definitions[0] = Definition(dst);
6490 load->glc = glc;
6491 load->dlc = dlc;
6492 load->barrier = barrier_buffer;
6493 assert(ctx->options->chip_class >= GFX8 || !glc);
6494
6495 if (dst.size() == 3) {
6496 /* trim vector */
6497 Temp vec = bld.tmp(s4);
6498 load->definitions[0] = Definition(vec);
6499 ctx->block->instructions.emplace_back(std::move(load));
6500 emit_split_vector(ctx, vec, 4);
6501
6502 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6503 emit_extract_vector(ctx, vec, 0, s1),
6504 emit_extract_vector(ctx, vec, 1, s1),
6505 emit_extract_vector(ctx, vec, 2, s1));
6506 } else {
6507 ctx->block->instructions.emplace_back(std::move(load));
6508 }
6509 }
6510 }
6511
6512 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6513 {
6514 Builder bld(ctx->program, ctx->block);
6515 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6516
6517 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6518 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6519
6520 if (ctx->options->chip_class >= GFX7)
6521 addr = as_vgpr(ctx, addr);
6522
6523 unsigned writemask = nir_intrinsic_write_mask(instr);
6524 while (writemask) {
6525 int start, count;
6526 u_bit_scan_consecutive_range(&writemask, &start, &count);
6527 if (count == 3 && ctx->options->chip_class == GFX6) {
6528 /* GFX6 doesn't support storing vec3, split it. */
6529 writemask |= 1u << (start + 2);
6530 count = 2;
6531 }
6532 unsigned num_bytes = count * elem_size_bytes;
6533
6534 Temp write_data = data;
6535 if (count != instr->num_components) {
6536 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6537 for (int i = 0; i < count; i++)
6538 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
6539 write_data = bld.tmp(RegType::vgpr, count);
6540 vec->definitions[0] = Definition(write_data);
6541 ctx->block->instructions.emplace_back(std::move(vec));
6542 }
6543
6544 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6545 unsigned offset = start * elem_size_bytes;
6546
6547 if (ctx->options->chip_class >= GFX7) {
6548 if (offset > 0 && ctx->options->chip_class < GFX9) {
6549 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6550 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6551 Temp carry = bld.tmp(bld.lm);
6552 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6553
6554 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6555 Operand(offset), addr0);
6556 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6557 Operand(0u), addr1,
6558 carry).def(1).setHint(vcc);
6559
6560 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6561
6562 offset = 0;
6563 }
6564
6565 bool global = ctx->options->chip_class >= GFX9;
6566 aco_opcode op;
6567 switch (num_bytes) {
6568 case 4:
6569 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6570 break;
6571 case 8:
6572 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6573 break;
6574 case 12:
6575 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6576 break;
6577 case 16:
6578 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6579 break;
6580 default:
6581 unreachable("store_global not implemented for this size.");
6582 }
6583
6584 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6585 flat->operands[0] = Operand(addr);
6586 flat->operands[1] = Operand(s1);
6587 flat->operands[2] = Operand(data);
6588 flat->glc = glc;
6589 flat->dlc = false;
6590 flat->offset = offset;
6591 flat->disable_wqm = true;
6592 flat->barrier = barrier_buffer;
6593 ctx->program->needs_exact = true;
6594 ctx->block->instructions.emplace_back(std::move(flat));
6595 } else {
6596 assert(ctx->options->chip_class == GFX6);
6597
6598 aco_opcode op;
6599 switch (num_bytes) {
6600 case 4:
6601 op = aco_opcode::buffer_store_dword;
6602 break;
6603 case 8:
6604 op = aco_opcode::buffer_store_dwordx2;
6605 break;
6606 case 16:
6607 op = aco_opcode::buffer_store_dwordx4;
6608 break;
6609 default:
6610 unreachable("store_global not implemented for this size.");
6611 }
6612
6613 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6614
6615 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6616 mubuf->operands[0] = Operand(rsrc);
6617 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6618 mubuf->operands[2] = Operand(0u);
6619 mubuf->operands[3] = Operand(write_data);
6620 mubuf->glc = glc;
6621 mubuf->dlc = false;
6622 mubuf->offset = offset;
6623 mubuf->addr64 = addr.type() == RegType::vgpr;
6624 mubuf->disable_wqm = true;
6625 mubuf->barrier = barrier_buffer;
6626 ctx->program->needs_exact = true;
6627 ctx->block->instructions.emplace_back(std::move(mubuf));
6628 }
6629 }
6630 }
6631
6632 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6633 {
6634 /* return the previous value if dest is ever used */
6635 bool return_previous = false;
6636 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6637 return_previous = true;
6638 break;
6639 }
6640 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6641 return_previous = true;
6642 break;
6643 }
6644
6645 Builder bld(ctx->program, ctx->block);
6646 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6647 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6648
6649 if (ctx->options->chip_class >= GFX7)
6650 addr = as_vgpr(ctx, addr);
6651
6652 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6653 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6654 get_ssa_temp(ctx, instr->src[2].ssa), data);
6655
6656 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6657
6658 aco_opcode op32, op64;
6659
6660 if (ctx->options->chip_class >= GFX7) {
6661 bool global = ctx->options->chip_class >= GFX9;
6662 switch (instr->intrinsic) {
6663 case nir_intrinsic_global_atomic_add:
6664 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6665 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6666 break;
6667 case nir_intrinsic_global_atomic_imin:
6668 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6669 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6670 break;
6671 case nir_intrinsic_global_atomic_umin:
6672 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6673 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6674 break;
6675 case nir_intrinsic_global_atomic_imax:
6676 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6677 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6678 break;
6679 case nir_intrinsic_global_atomic_umax:
6680 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6681 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6682 break;
6683 case nir_intrinsic_global_atomic_and:
6684 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6685 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6686 break;
6687 case nir_intrinsic_global_atomic_or:
6688 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6689 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6690 break;
6691 case nir_intrinsic_global_atomic_xor:
6692 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6693 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6694 break;
6695 case nir_intrinsic_global_atomic_exchange:
6696 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6697 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6698 break;
6699 case nir_intrinsic_global_atomic_comp_swap:
6700 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6701 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6702 break;
6703 default:
6704 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6705 }
6706
6707 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6708 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6709 flat->operands[0] = Operand(addr);
6710 flat->operands[1] = Operand(s1);
6711 flat->operands[2] = Operand(data);
6712 if (return_previous)
6713 flat->definitions[0] = Definition(dst);
6714 flat->glc = return_previous;
6715 flat->dlc = false; /* Not needed for atomics */
6716 flat->offset = 0;
6717 flat->disable_wqm = true;
6718 flat->barrier = barrier_buffer;
6719 ctx->program->needs_exact = true;
6720 ctx->block->instructions.emplace_back(std::move(flat));
6721 } else {
6722 assert(ctx->options->chip_class == GFX6);
6723
6724 switch (instr->intrinsic) {
6725 case nir_intrinsic_global_atomic_add:
6726 op32 = aco_opcode::buffer_atomic_add;
6727 op64 = aco_opcode::buffer_atomic_add_x2;
6728 break;
6729 case nir_intrinsic_global_atomic_imin:
6730 op32 = aco_opcode::buffer_atomic_smin;
6731 op64 = aco_opcode::buffer_atomic_smin_x2;
6732 break;
6733 case nir_intrinsic_global_atomic_umin:
6734 op32 = aco_opcode::buffer_atomic_umin;
6735 op64 = aco_opcode::buffer_atomic_umin_x2;
6736 break;
6737 case nir_intrinsic_global_atomic_imax:
6738 op32 = aco_opcode::buffer_atomic_smax;
6739 op64 = aco_opcode::buffer_atomic_smax_x2;
6740 break;
6741 case nir_intrinsic_global_atomic_umax:
6742 op32 = aco_opcode::buffer_atomic_umax;
6743 op64 = aco_opcode::buffer_atomic_umax_x2;
6744 break;
6745 case nir_intrinsic_global_atomic_and:
6746 op32 = aco_opcode::buffer_atomic_and;
6747 op64 = aco_opcode::buffer_atomic_and_x2;
6748 break;
6749 case nir_intrinsic_global_atomic_or:
6750 op32 = aco_opcode::buffer_atomic_or;
6751 op64 = aco_opcode::buffer_atomic_or_x2;
6752 break;
6753 case nir_intrinsic_global_atomic_xor:
6754 op32 = aco_opcode::buffer_atomic_xor;
6755 op64 = aco_opcode::buffer_atomic_xor_x2;
6756 break;
6757 case nir_intrinsic_global_atomic_exchange:
6758 op32 = aco_opcode::buffer_atomic_swap;
6759 op64 = aco_opcode::buffer_atomic_swap_x2;
6760 break;
6761 case nir_intrinsic_global_atomic_comp_swap:
6762 op32 = aco_opcode::buffer_atomic_cmpswap;
6763 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6764 break;
6765 default:
6766 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6767 }
6768
6769 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6770
6771 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6772
6773 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6774 mubuf->operands[0] = Operand(rsrc);
6775 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6776 mubuf->operands[2] = Operand(0u);
6777 mubuf->operands[3] = Operand(data);
6778 if (return_previous)
6779 mubuf->definitions[0] = Definition(dst);
6780 mubuf->glc = return_previous;
6781 mubuf->dlc = false;
6782 mubuf->offset = 0;
6783 mubuf->addr64 = addr.type() == RegType::vgpr;
6784 mubuf->disable_wqm = true;
6785 mubuf->barrier = barrier_buffer;
6786 ctx->program->needs_exact = true;
6787 ctx->block->instructions.emplace_back(std::move(mubuf));
6788 }
6789 }
6790
6791 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6792 Builder bld(ctx->program, ctx->block);
6793 switch(instr->intrinsic) {
6794 case nir_intrinsic_group_memory_barrier:
6795 case nir_intrinsic_memory_barrier:
6796 bld.barrier(aco_opcode::p_memory_barrier_common);
6797 break;
6798 case nir_intrinsic_memory_barrier_buffer:
6799 bld.barrier(aco_opcode::p_memory_barrier_buffer);
6800 break;
6801 case nir_intrinsic_memory_barrier_image:
6802 bld.barrier(aco_opcode::p_memory_barrier_image);
6803 break;
6804 case nir_intrinsic_memory_barrier_tcs_patch:
6805 case nir_intrinsic_memory_barrier_shared:
6806 bld.barrier(aco_opcode::p_memory_barrier_shared);
6807 break;
6808 default:
6809 unreachable("Unimplemented memory barrier intrinsic");
6810 break;
6811 }
6812 }
6813
6814 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6815 {
6816 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6817 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6818 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
6819 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6820 Builder bld(ctx->program, ctx->block);
6821
6822 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6823 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6824 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6825 }
6826
6827 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6828 {
6829 unsigned writemask = nir_intrinsic_write_mask(instr);
6830 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6831 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6832 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6833 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
6834
6835 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6836 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6837 }
6838
6839 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6840 {
6841 unsigned offset = nir_intrinsic_base(instr);
6842 Operand m = load_lds_size_m0(ctx);
6843 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6844 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6845
6846 unsigned num_operands = 3;
6847 aco_opcode op32, op64, op32_rtn, op64_rtn;
6848 switch(instr->intrinsic) {
6849 case nir_intrinsic_shared_atomic_add:
6850 op32 = aco_opcode::ds_add_u32;
6851 op64 = aco_opcode::ds_add_u64;
6852 op32_rtn = aco_opcode::ds_add_rtn_u32;
6853 op64_rtn = aco_opcode::ds_add_rtn_u64;
6854 break;
6855 case nir_intrinsic_shared_atomic_imin:
6856 op32 = aco_opcode::ds_min_i32;
6857 op64 = aco_opcode::ds_min_i64;
6858 op32_rtn = aco_opcode::ds_min_rtn_i32;
6859 op64_rtn = aco_opcode::ds_min_rtn_i64;
6860 break;
6861 case nir_intrinsic_shared_atomic_umin:
6862 op32 = aco_opcode::ds_min_u32;
6863 op64 = aco_opcode::ds_min_u64;
6864 op32_rtn = aco_opcode::ds_min_rtn_u32;
6865 op64_rtn = aco_opcode::ds_min_rtn_u64;
6866 break;
6867 case nir_intrinsic_shared_atomic_imax:
6868 op32 = aco_opcode::ds_max_i32;
6869 op64 = aco_opcode::ds_max_i64;
6870 op32_rtn = aco_opcode::ds_max_rtn_i32;
6871 op64_rtn = aco_opcode::ds_max_rtn_i64;
6872 break;
6873 case nir_intrinsic_shared_atomic_umax:
6874 op32 = aco_opcode::ds_max_u32;
6875 op64 = aco_opcode::ds_max_u64;
6876 op32_rtn = aco_opcode::ds_max_rtn_u32;
6877 op64_rtn = aco_opcode::ds_max_rtn_u64;
6878 break;
6879 case nir_intrinsic_shared_atomic_and:
6880 op32 = aco_opcode::ds_and_b32;
6881 op64 = aco_opcode::ds_and_b64;
6882 op32_rtn = aco_opcode::ds_and_rtn_b32;
6883 op64_rtn = aco_opcode::ds_and_rtn_b64;
6884 break;
6885 case nir_intrinsic_shared_atomic_or:
6886 op32 = aco_opcode::ds_or_b32;
6887 op64 = aco_opcode::ds_or_b64;
6888 op32_rtn = aco_opcode::ds_or_rtn_b32;
6889 op64_rtn = aco_opcode::ds_or_rtn_b64;
6890 break;
6891 case nir_intrinsic_shared_atomic_xor:
6892 op32 = aco_opcode::ds_xor_b32;
6893 op64 = aco_opcode::ds_xor_b64;
6894 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6895 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6896 break;
6897 case nir_intrinsic_shared_atomic_exchange:
6898 op32 = aco_opcode::ds_write_b32;
6899 op64 = aco_opcode::ds_write_b64;
6900 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6901 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
6902 break;
6903 case nir_intrinsic_shared_atomic_comp_swap:
6904 op32 = aco_opcode::ds_cmpst_b32;
6905 op64 = aco_opcode::ds_cmpst_b64;
6906 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6907 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6908 num_operands = 4;
6909 break;
6910 default:
6911 unreachable("Unhandled shared atomic intrinsic");
6912 }
6913
6914 /* return the previous value if dest is ever used */
6915 bool return_previous = false;
6916 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6917 return_previous = true;
6918 break;
6919 }
6920 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6921 return_previous = true;
6922 break;
6923 }
6924
6925 aco_opcode op;
6926 if (data.size() == 1) {
6927 assert(instr->dest.ssa.bit_size == 32);
6928 op = return_previous ? op32_rtn : op32;
6929 } else {
6930 assert(instr->dest.ssa.bit_size == 64);
6931 op = return_previous ? op64_rtn : op64;
6932 }
6933
6934 if (offset > 65535) {
6935 Builder bld(ctx->program, ctx->block);
6936 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6937 offset = 0;
6938 }
6939
6940 aco_ptr<DS_instruction> ds;
6941 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6942 ds->operands[0] = Operand(address);
6943 ds->operands[1] = Operand(data);
6944 if (num_operands == 4)
6945 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6946 ds->operands[num_operands - 1] = m;
6947 ds->offset0 = offset;
6948 if (return_previous)
6949 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6950 ctx->block->instructions.emplace_back(std::move(ds));
6951 }
6952
6953 Temp get_scratch_resource(isel_context *ctx)
6954 {
6955 Builder bld(ctx->program, ctx->block);
6956 Temp scratch_addr = ctx->program->private_segment_buffer;
6957 if (ctx->stage != compute_cs)
6958 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6959
6960 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6961 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6962
6963 if (ctx->program->chip_class >= GFX10) {
6964 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6965 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6966 S_008F0C_RESOURCE_LEVEL(1);
6967 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6968 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6969 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6970 }
6971
6972 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6973 if (ctx->program->chip_class <= GFX8)
6974 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6975
6976 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6977 }
6978
6979 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6980 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6981 Builder bld(ctx->program, ctx->block);
6982 Temp rsrc = get_scratch_resource(ctx);
6983 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6984 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6985
6986 aco_opcode op;
6987 switch (dst.size()) {
6988 case 1:
6989 op = aco_opcode::buffer_load_dword;
6990 break;
6991 case 2:
6992 op = aco_opcode::buffer_load_dwordx2;
6993 break;
6994 case 3:
6995 op = aco_opcode::buffer_load_dwordx3;
6996 break;
6997 case 4:
6998 op = aco_opcode::buffer_load_dwordx4;
6999 break;
7000 case 6:
7001 case 8: {
7002 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
7003 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
7004 bld.def(v4), rsrc, offset,
7005 ctx->program->scratch_offset, 0, true);
7006 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
7007 aco_opcode::buffer_load_dwordx4,
7008 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
7009 rsrc, offset, ctx->program->scratch_offset, 16, true);
7010 emit_split_vector(ctx, lower, 2);
7011 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
7012 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
7013 if (dst.size() == 8) {
7014 emit_split_vector(ctx, upper, 2);
7015 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
7016 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
7017 } else {
7018 elems[2] = upper;
7019 }
7020
7021 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
7022 Format::PSEUDO, dst.size() / 2, 1)};
7023 for (unsigned i = 0; i < dst.size() / 2; i++)
7024 vec->operands[i] = Operand(elems[i]);
7025 vec->definitions[0] = Definition(dst);
7026 bld.insert(std::move(vec));
7027 ctx->allocated_vec.emplace(dst.id(), elems);
7028 return;
7029 }
7030 default:
7031 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
7032 }
7033
7034 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
7035 emit_split_vector(ctx, dst, instr->num_components);
7036 }
7037
7038 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
7039 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
7040 Builder bld(ctx->program, ctx->block);
7041 Temp rsrc = get_scratch_resource(ctx);
7042 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7043 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
7044
7045 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
7046 unsigned writemask = nir_intrinsic_write_mask(instr);
7047
7048 while (writemask) {
7049 int start, count;
7050 u_bit_scan_consecutive_range(&writemask, &start, &count);
7051 int num_bytes = count * elem_size_bytes;
7052
7053 if (num_bytes > 16) {
7054 assert(elem_size_bytes == 8);
7055 writemask |= (((count - 2) << 1) - 1) << (start + 2);
7056 count = 2;
7057 num_bytes = 16;
7058 }
7059
7060 // TODO: check alignment of sub-dword stores
7061 // TODO: split 3 bytes. there is no store instruction for that
7062
7063 Temp write_data;
7064 if (count != instr->num_components) {
7065 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
7066 for (int i = 0; i < count; i++) {
7067 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
7068 vec->operands[i] = Operand(elem);
7069 }
7070 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
7071 vec->definitions[0] = Definition(write_data);
7072 ctx->block->instructions.emplace_back(std::move(vec));
7073 } else {
7074 write_data = data;
7075 }
7076
7077 aco_opcode op;
7078 switch (num_bytes) {
7079 case 4:
7080 op = aco_opcode::buffer_store_dword;
7081 break;
7082 case 8:
7083 op = aco_opcode::buffer_store_dwordx2;
7084 break;
7085 case 12:
7086 op = aco_opcode::buffer_store_dwordx3;
7087 break;
7088 case 16:
7089 op = aco_opcode::buffer_store_dwordx4;
7090 break;
7091 default:
7092 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
7093 }
7094
7095 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
7096 }
7097 }
7098
7099 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
7100 uint8_t log2_ps_iter_samples;
7101 if (ctx->program->info->ps.force_persample) {
7102 log2_ps_iter_samples =
7103 util_logbase2(ctx->options->key.fs.num_samples);
7104 } else {
7105 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
7106 }
7107
7108 /* The bit pattern matches that used by fixed function fragment
7109 * processing. */
7110 static const unsigned ps_iter_masks[] = {
7111 0xffff, /* not used */
7112 0x5555,
7113 0x1111,
7114 0x0101,
7115 0x0001,
7116 };
7117 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
7118
7119 Builder bld(ctx->program, ctx->block);
7120
7121 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
7122 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7123 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
7124 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
7125 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7126 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
7127 }
7128
7129 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
7130 Builder bld(ctx->program, ctx->block);
7131
7132 unsigned stream = nir_intrinsic_stream_id(instr);
7133 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7134 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
7135 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
7136
7137 /* get GSVS ring */
7138 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
7139
7140 unsigned num_components =
7141 ctx->program->info->gs.num_stream_output_components[stream];
7142 assert(num_components);
7143
7144 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
7145 unsigned stream_offset = 0;
7146 for (unsigned i = 0; i < stream; i++) {
7147 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
7148 stream_offset += prev_stride * ctx->program->wave_size;
7149 }
7150
7151 /* Limit on the stride field for <= GFX7. */
7152 assert(stride < (1 << 14));
7153
7154 Temp gsvs_dwords[4];
7155 for (unsigned i = 0; i < 4; i++)
7156 gsvs_dwords[i] = bld.tmp(s1);
7157 bld.pseudo(aco_opcode::p_split_vector,
7158 Definition(gsvs_dwords[0]),
7159 Definition(gsvs_dwords[1]),
7160 Definition(gsvs_dwords[2]),
7161 Definition(gsvs_dwords[3]),
7162 gsvs_ring);
7163
7164 if (stream_offset) {
7165 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
7166
7167 Temp carry = bld.tmp(s1);
7168 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
7169 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
7170 }
7171
7172 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
7173 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
7174
7175 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7176 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
7177
7178 unsigned offset = 0;
7179 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
7180 if (ctx->program->info->gs.output_streams[i] != stream)
7181 continue;
7182
7183 for (unsigned j = 0; j < 4; j++) {
7184 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
7185 continue;
7186
7187 if (ctx->outputs.mask[i] & (1 << j)) {
7188 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
7189 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
7190 if (const_offset >= 4096u) {
7191 if (vaddr_offset.isUndefined())
7192 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
7193 else
7194 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
7195 const_offset %= 4096u;
7196 }
7197
7198 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
7199 mtbuf->operands[0] = Operand(gsvs_ring);
7200 mtbuf->operands[1] = vaddr_offset;
7201 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
7202 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
7203 mtbuf->offen = !vaddr_offset.isUndefined();
7204 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
7205 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
7206 mtbuf->offset = const_offset;
7207 mtbuf->glc = true;
7208 mtbuf->slc = true;
7209 mtbuf->barrier = barrier_gs_data;
7210 mtbuf->can_reorder = true;
7211 bld.insert(std::move(mtbuf));
7212 }
7213
7214 offset += ctx->shader->info.gs.vertices_out;
7215 }
7216
7217 /* outputs for the next vertex are undefined and keeping them around can
7218 * create invalid IR with control flow */
7219 ctx->outputs.mask[i] = 0;
7220 }
7221
7222 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
7223 }
7224
7225 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
7226 {
7227 Builder bld(ctx->program, ctx->block);
7228
7229 if (cluster_size == 1) {
7230 return src;
7231 } if (op == nir_op_iand && cluster_size == 4) {
7232 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
7233 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7234 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
7235 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
7236 } else if (op == nir_op_ior && cluster_size == 4) {
7237 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
7238 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
7239 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
7240 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
7241 //subgroupAnd(val) -> (exec & ~val) == 0
7242 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7243 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7244 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
7245 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
7246 //subgroupOr(val) -> (val & exec) != 0
7247 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
7248 return bool_to_vector_condition(ctx, tmp);
7249 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
7250 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
7251 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7252 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
7253 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
7254 return bool_to_vector_condition(ctx, tmp);
7255 } else {
7256 //subgroupClustered{And,Or,Xor}(val, n) ->
7257 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
7258 //cluster_offset = ~(n - 1) & lane_id
7259 //cluster_mask = ((1 << n) - 1)
7260 //subgroupClusteredAnd():
7261 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
7262 //subgroupClusteredOr():
7263 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
7264 //subgroupClusteredXor():
7265 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
7266 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
7267 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
7268
7269 Temp tmp;
7270 if (op == nir_op_iand)
7271 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7272 else
7273 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7274
7275 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
7276
7277 if (ctx->program->chip_class <= GFX7)
7278 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
7279 else if (ctx->program->wave_size == 64)
7280 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
7281 else
7282 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
7283 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7284 if (cluster_mask != 0xffffffff)
7285 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
7286
7287 Definition cmp_def = Definition();
7288 if (op == nir_op_iand) {
7289 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
7290 } else if (op == nir_op_ior) {
7291 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7292 } else if (op == nir_op_ixor) {
7293 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
7294 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
7295 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7296 }
7297 cmp_def.setHint(vcc);
7298 return cmp_def.getTemp();
7299 }
7300 }
7301
7302 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
7303 {
7304 Builder bld(ctx->program, ctx->block);
7305
7306 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
7307 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
7308 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
7309 Temp tmp;
7310 if (op == nir_op_iand)
7311 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7312 else
7313 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
7314
7315 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
7316 Temp lo = lohi.def(0).getTemp();
7317 Temp hi = lohi.def(1).getTemp();
7318 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
7319
7320 Definition cmp_def = Definition();
7321 if (op == nir_op_iand)
7322 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7323 else if (op == nir_op_ior)
7324 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7325 else if (op == nir_op_ixor)
7326 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7327 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7328 cmp_def.setHint(vcc);
7329 return cmp_def.getTemp();
7330 }
7331
7332 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7333 {
7334 Builder bld(ctx->program, ctx->block);
7335
7336 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7337 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7338 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7339 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7340 if (op == nir_op_iand)
7341 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7342 else if (op == nir_op_ior)
7343 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7344 else if (op == nir_op_ixor)
7345 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7346
7347 assert(false);
7348 return Temp();
7349 }
7350
7351 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7352 {
7353 Builder bld(ctx->program, ctx->block);
7354 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7355 if (src.regClass().type() == RegType::vgpr) {
7356 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7357 } else if (src.regClass() == s1) {
7358 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7359 } else if (src.regClass() == s2) {
7360 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7361 } else {
7362 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7363 nir_print_instr(&instr->instr, stderr);
7364 fprintf(stderr, "\n");
7365 }
7366 }
7367
7368 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7369 {
7370 Builder bld(ctx->program, ctx->block);
7371 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7372 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7373 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7374
7375 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7376 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7377 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7378 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7379
7380 /* Build DD X/Y */
7381 if (ctx->program->chip_class >= GFX8) {
7382 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7383 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7384 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7385 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7386 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7387 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7388 } else {
7389 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7390 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7391 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7392 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7393 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7394 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7395 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7396 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7397 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7398 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7399 }
7400
7401 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7402 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
7403 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
7404 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
7405 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
7406 Temp wqm1 = bld.tmp(v1);
7407 emit_wqm(ctx, tmp1, wqm1, true);
7408 Temp wqm2 = bld.tmp(v1);
7409 emit_wqm(ctx, tmp2, wqm2, true);
7410 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7411 return;
7412 }
7413
7414 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7415 {
7416 Builder bld(ctx->program, ctx->block);
7417 switch(instr->intrinsic) {
7418 case nir_intrinsic_load_barycentric_sample:
7419 case nir_intrinsic_load_barycentric_pixel:
7420 case nir_intrinsic_load_barycentric_centroid: {
7421 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7422 Temp bary = Temp(0, s2);
7423 switch (mode) {
7424 case INTERP_MODE_SMOOTH:
7425 case INTERP_MODE_NONE:
7426 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7427 bary = get_arg(ctx, ctx->args->ac.persp_center);
7428 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7429 bary = ctx->persp_centroid;
7430 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7431 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7432 break;
7433 case INTERP_MODE_NOPERSPECTIVE:
7434 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7435 bary = get_arg(ctx, ctx->args->ac.linear_center);
7436 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7437 bary = ctx->linear_centroid;
7438 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7439 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7440 break;
7441 default:
7442 break;
7443 }
7444 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7445 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7446 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7447 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7448 Operand(p1), Operand(p2));
7449 emit_split_vector(ctx, dst, 2);
7450 break;
7451 }
7452 case nir_intrinsic_load_barycentric_model: {
7453 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7454
7455 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7456 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7457 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7458 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7459 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7460 Operand(p1), Operand(p2), Operand(p3));
7461 emit_split_vector(ctx, dst, 3);
7462 break;
7463 }
7464 case nir_intrinsic_load_barycentric_at_sample: {
7465 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7466 switch (ctx->options->key.fs.num_samples) {
7467 case 2: sample_pos_offset += 1 << 3; break;
7468 case 4: sample_pos_offset += 3 << 3; break;
7469 case 8: sample_pos_offset += 7 << 3; break;
7470 default: break;
7471 }
7472 Temp sample_pos;
7473 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7474 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7475 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7476 if (addr.type() == RegType::sgpr) {
7477 Operand offset;
7478 if (const_addr) {
7479 sample_pos_offset += const_addr->u32 << 3;
7480 offset = Operand(sample_pos_offset);
7481 } else if (ctx->options->chip_class >= GFX9) {
7482 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7483 } else {
7484 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7485 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7486 }
7487
7488 Operand off = bld.copy(bld.def(s1), Operand(offset));
7489 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7490
7491 } else if (ctx->options->chip_class >= GFX9) {
7492 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7493 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7494 } else if (ctx->options->chip_class >= GFX7) {
7495 /* addr += private_segment_buffer + sample_pos_offset */
7496 Temp tmp0 = bld.tmp(s1);
7497 Temp tmp1 = bld.tmp(s1);
7498 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7499 Definition scc_tmp = bld.def(s1, scc);
7500 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7501 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7502 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7503 Temp pck0 = bld.tmp(v1);
7504 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7505 tmp1 = as_vgpr(ctx, tmp1);
7506 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7507 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7508
7509 /* sample_pos = flat_load_dwordx2 addr */
7510 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7511 } else {
7512 assert(ctx->options->chip_class == GFX6);
7513
7514 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7515 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7516 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7517
7518 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7519 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7520
7521 sample_pos = bld.tmp(v2);
7522
7523 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7524 load->definitions[0] = Definition(sample_pos);
7525 load->operands[0] = Operand(rsrc);
7526 load->operands[1] = Operand(addr);
7527 load->operands[2] = Operand(0u);
7528 load->offset = sample_pos_offset;
7529 load->offen = 0;
7530 load->addr64 = true;
7531 load->glc = false;
7532 load->dlc = false;
7533 load->disable_wqm = false;
7534 load->barrier = barrier_none;
7535 load->can_reorder = true;
7536 ctx->block->instructions.emplace_back(std::move(load));
7537 }
7538
7539 /* sample_pos -= 0.5 */
7540 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7541 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7542 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7543 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7544 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7545
7546 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7547 break;
7548 }
7549 case nir_intrinsic_load_barycentric_at_offset: {
7550 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7551 RegClass rc = RegClass(offset.type(), 1);
7552 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7553 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7554 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7555 break;
7556 }
7557 case nir_intrinsic_load_front_face: {
7558 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7559 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7560 break;
7561 }
7562 case nir_intrinsic_load_view_index: {
7563 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7564 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7565 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7566 break;
7567 }
7568
7569 /* fallthrough */
7570 }
7571 case nir_intrinsic_load_layer_id: {
7572 unsigned idx = nir_intrinsic_base(instr);
7573 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7574 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7575 break;
7576 }
7577 case nir_intrinsic_load_frag_coord: {
7578 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7579 break;
7580 }
7581 case nir_intrinsic_load_sample_pos: {
7582 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7583 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7584 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7585 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7586 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7587 break;
7588 }
7589 case nir_intrinsic_load_tess_coord:
7590 visit_load_tess_coord(ctx, instr);
7591 break;
7592 case nir_intrinsic_load_interpolated_input:
7593 visit_load_interpolated_input(ctx, instr);
7594 break;
7595 case nir_intrinsic_store_output:
7596 visit_store_output(ctx, instr);
7597 break;
7598 case nir_intrinsic_load_input:
7599 case nir_intrinsic_load_input_vertex:
7600 visit_load_input(ctx, instr);
7601 break;
7602 case nir_intrinsic_load_output:
7603 visit_load_output(ctx, instr);
7604 break;
7605 case nir_intrinsic_load_per_vertex_input:
7606 visit_load_per_vertex_input(ctx, instr);
7607 break;
7608 case nir_intrinsic_load_per_vertex_output:
7609 visit_load_per_vertex_output(ctx, instr);
7610 break;
7611 case nir_intrinsic_store_per_vertex_output:
7612 visit_store_per_vertex_output(ctx, instr);
7613 break;
7614 case nir_intrinsic_load_ubo:
7615 visit_load_ubo(ctx, instr);
7616 break;
7617 case nir_intrinsic_load_push_constant:
7618 visit_load_push_constant(ctx, instr);
7619 break;
7620 case nir_intrinsic_load_constant:
7621 visit_load_constant(ctx, instr);
7622 break;
7623 case nir_intrinsic_vulkan_resource_index:
7624 visit_load_resource(ctx, instr);
7625 break;
7626 case nir_intrinsic_discard:
7627 visit_discard(ctx, instr);
7628 break;
7629 case nir_intrinsic_discard_if:
7630 visit_discard_if(ctx, instr);
7631 break;
7632 case nir_intrinsic_load_shared:
7633 visit_load_shared(ctx, instr);
7634 break;
7635 case nir_intrinsic_store_shared:
7636 visit_store_shared(ctx, instr);
7637 break;
7638 case nir_intrinsic_shared_atomic_add:
7639 case nir_intrinsic_shared_atomic_imin:
7640 case nir_intrinsic_shared_atomic_umin:
7641 case nir_intrinsic_shared_atomic_imax:
7642 case nir_intrinsic_shared_atomic_umax:
7643 case nir_intrinsic_shared_atomic_and:
7644 case nir_intrinsic_shared_atomic_or:
7645 case nir_intrinsic_shared_atomic_xor:
7646 case nir_intrinsic_shared_atomic_exchange:
7647 case nir_intrinsic_shared_atomic_comp_swap:
7648 visit_shared_atomic(ctx, instr);
7649 break;
7650 case nir_intrinsic_image_deref_load:
7651 visit_image_load(ctx, instr);
7652 break;
7653 case nir_intrinsic_image_deref_store:
7654 visit_image_store(ctx, instr);
7655 break;
7656 case nir_intrinsic_image_deref_atomic_add:
7657 case nir_intrinsic_image_deref_atomic_umin:
7658 case nir_intrinsic_image_deref_atomic_imin:
7659 case nir_intrinsic_image_deref_atomic_umax:
7660 case nir_intrinsic_image_deref_atomic_imax:
7661 case nir_intrinsic_image_deref_atomic_and:
7662 case nir_intrinsic_image_deref_atomic_or:
7663 case nir_intrinsic_image_deref_atomic_xor:
7664 case nir_intrinsic_image_deref_atomic_exchange:
7665 case nir_intrinsic_image_deref_atomic_comp_swap:
7666 visit_image_atomic(ctx, instr);
7667 break;
7668 case nir_intrinsic_image_deref_size:
7669 visit_image_size(ctx, instr);
7670 break;
7671 case nir_intrinsic_load_ssbo:
7672 visit_load_ssbo(ctx, instr);
7673 break;
7674 case nir_intrinsic_store_ssbo:
7675 visit_store_ssbo(ctx, instr);
7676 break;
7677 case nir_intrinsic_load_global:
7678 visit_load_global(ctx, instr);
7679 break;
7680 case nir_intrinsic_store_global:
7681 visit_store_global(ctx, instr);
7682 break;
7683 case nir_intrinsic_global_atomic_add:
7684 case nir_intrinsic_global_atomic_imin:
7685 case nir_intrinsic_global_atomic_umin:
7686 case nir_intrinsic_global_atomic_imax:
7687 case nir_intrinsic_global_atomic_umax:
7688 case nir_intrinsic_global_atomic_and:
7689 case nir_intrinsic_global_atomic_or:
7690 case nir_intrinsic_global_atomic_xor:
7691 case nir_intrinsic_global_atomic_exchange:
7692 case nir_intrinsic_global_atomic_comp_swap:
7693 visit_global_atomic(ctx, instr);
7694 break;
7695 case nir_intrinsic_ssbo_atomic_add:
7696 case nir_intrinsic_ssbo_atomic_imin:
7697 case nir_intrinsic_ssbo_atomic_umin:
7698 case nir_intrinsic_ssbo_atomic_imax:
7699 case nir_intrinsic_ssbo_atomic_umax:
7700 case nir_intrinsic_ssbo_atomic_and:
7701 case nir_intrinsic_ssbo_atomic_or:
7702 case nir_intrinsic_ssbo_atomic_xor:
7703 case nir_intrinsic_ssbo_atomic_exchange:
7704 case nir_intrinsic_ssbo_atomic_comp_swap:
7705 visit_atomic_ssbo(ctx, instr);
7706 break;
7707 case nir_intrinsic_load_scratch:
7708 visit_load_scratch(ctx, instr);
7709 break;
7710 case nir_intrinsic_store_scratch:
7711 visit_store_scratch(ctx, instr);
7712 break;
7713 case nir_intrinsic_get_buffer_size:
7714 visit_get_buffer_size(ctx, instr);
7715 break;
7716 case nir_intrinsic_control_barrier: {
7717 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7718 /* GFX6 only (thanks to a hw bug workaround):
7719 * The real barrier instruction isn’t needed, because an entire patch
7720 * always fits into a single wave.
7721 */
7722 break;
7723 }
7724
7725 if (ctx->program->workgroup_size > ctx->program->wave_size)
7726 bld.sopp(aco_opcode::s_barrier);
7727
7728 break;
7729 }
7730 case nir_intrinsic_memory_barrier_tcs_patch:
7731 case nir_intrinsic_group_memory_barrier:
7732 case nir_intrinsic_memory_barrier:
7733 case nir_intrinsic_memory_barrier_buffer:
7734 case nir_intrinsic_memory_barrier_image:
7735 case nir_intrinsic_memory_barrier_shared:
7736 emit_memory_barrier(ctx, instr);
7737 break;
7738 case nir_intrinsic_load_num_work_groups: {
7739 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7740 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7741 emit_split_vector(ctx, dst, 3);
7742 break;
7743 }
7744 case nir_intrinsic_load_local_invocation_id: {
7745 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7746 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7747 emit_split_vector(ctx, dst, 3);
7748 break;
7749 }
7750 case nir_intrinsic_load_work_group_id: {
7751 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7752 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7753 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7754 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7755 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7756 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7757 emit_split_vector(ctx, dst, 3);
7758 break;
7759 }
7760 case nir_intrinsic_load_local_invocation_index: {
7761 Temp id = emit_mbcnt(ctx, bld.def(v1));
7762
7763 /* The tg_size bits [6:11] contain the subgroup id,
7764 * we need this multiplied by the wave size, and then OR the thread id to it.
7765 */
7766 if (ctx->program->wave_size == 64) {
7767 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7768 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7769 get_arg(ctx, ctx->args->ac.tg_size));
7770 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7771 } else {
7772 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7773 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7774 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7775 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7776 }
7777 break;
7778 }
7779 case nir_intrinsic_load_subgroup_id: {
7780 if (ctx->stage == compute_cs) {
7781 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7782 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7783 } else {
7784 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7785 }
7786 break;
7787 }
7788 case nir_intrinsic_load_subgroup_invocation: {
7789 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7790 break;
7791 }
7792 case nir_intrinsic_load_num_subgroups: {
7793 if (ctx->stage == compute_cs)
7794 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7795 get_arg(ctx, ctx->args->ac.tg_size));
7796 else
7797 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7798 break;
7799 }
7800 case nir_intrinsic_ballot: {
7801 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7802 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7803 Definition tmp = bld.def(dst.regClass());
7804 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7805 if (instr->src[0].ssa->bit_size == 1) {
7806 assert(src.regClass() == bld.lm);
7807 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7808 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7809 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7810 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7811 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7812 } else {
7813 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7814 nir_print_instr(&instr->instr, stderr);
7815 fprintf(stderr, "\n");
7816 }
7817 if (dst.size() != bld.lm.size()) {
7818 /* Wave32 with ballot size set to 64 */
7819 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7820 }
7821 emit_wqm(ctx, tmp.getTemp(), dst);
7822 break;
7823 }
7824 case nir_intrinsic_shuffle:
7825 case nir_intrinsic_read_invocation: {
7826 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7827 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
7828 emit_uniform_subgroup(ctx, instr, src);
7829 } else {
7830 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7831 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
7832 tid = bld.as_uniform(tid);
7833 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7834 if (src.regClass() == v1) {
7835 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7836 } else if (src.regClass() == v2) {
7837 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7838 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7839 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7840 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7841 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7842 emit_split_vector(ctx, dst, 2);
7843 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7844 assert(src.regClass() == bld.lm);
7845 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7846 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7847 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7848 assert(src.regClass() == bld.lm);
7849 Temp tmp;
7850 if (ctx->program->chip_class <= GFX7)
7851 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7852 else if (ctx->program->wave_size == 64)
7853 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7854 else
7855 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7856 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7857 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7858 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7859 } else {
7860 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7861 nir_print_instr(&instr->instr, stderr);
7862 fprintf(stderr, "\n");
7863 }
7864 }
7865 break;
7866 }
7867 case nir_intrinsic_load_sample_id: {
7868 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7869 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7870 break;
7871 }
7872 case nir_intrinsic_load_sample_mask_in: {
7873 visit_load_sample_mask_in(ctx, instr);
7874 break;
7875 }
7876 case nir_intrinsic_read_first_invocation: {
7877 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7878 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7879 if (src.regClass() == v1) {
7880 emit_wqm(ctx,
7881 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7882 dst);
7883 } else if (src.regClass() == v2) {
7884 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7885 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7886 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7887 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7888 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7889 emit_split_vector(ctx, dst, 2);
7890 } else if (instr->dest.ssa.bit_size == 1) {
7891 assert(src.regClass() == bld.lm);
7892 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7893 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7894 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7895 } else if (src.regClass() == s1) {
7896 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7897 } else if (src.regClass() == s2) {
7898 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7899 } else {
7900 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7901 nir_print_instr(&instr->instr, stderr);
7902 fprintf(stderr, "\n");
7903 }
7904 break;
7905 }
7906 case nir_intrinsic_vote_all: {
7907 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7908 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7909 assert(src.regClass() == bld.lm);
7910 assert(dst.regClass() == bld.lm);
7911
7912 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7913 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7914 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7915 break;
7916 }
7917 case nir_intrinsic_vote_any: {
7918 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7919 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7920 assert(src.regClass() == bld.lm);
7921 assert(dst.regClass() == bld.lm);
7922
7923 Temp tmp = bool_to_scalar_condition(ctx, src);
7924 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7925 break;
7926 }
7927 case nir_intrinsic_reduce:
7928 case nir_intrinsic_inclusive_scan:
7929 case nir_intrinsic_exclusive_scan: {
7930 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7931 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7932 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7933 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7934 nir_intrinsic_cluster_size(instr) : 0;
7935 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7936
7937 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7938 emit_uniform_subgroup(ctx, instr, src);
7939 } else if (instr->dest.ssa.bit_size == 1) {
7940 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7941 op = nir_op_iand;
7942 else if (op == nir_op_iadd)
7943 op = nir_op_ixor;
7944 else if (op == nir_op_umax || op == nir_op_imax)
7945 op = nir_op_ior;
7946 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7947
7948 switch (instr->intrinsic) {
7949 case nir_intrinsic_reduce:
7950 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7951 break;
7952 case nir_intrinsic_exclusive_scan:
7953 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7954 break;
7955 case nir_intrinsic_inclusive_scan:
7956 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7957 break;
7958 default:
7959 assert(false);
7960 }
7961 } else if (cluster_size == 1) {
7962 bld.copy(Definition(dst), src);
7963 } else {
7964 src = as_vgpr(ctx, src);
7965
7966 ReduceOp reduce_op;
7967 switch (op) {
7968 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7969 CASE(iadd)
7970 CASE(imul)
7971 CASE(fadd)
7972 CASE(fmul)
7973 CASE(imin)
7974 CASE(umin)
7975 CASE(fmin)
7976 CASE(imax)
7977 CASE(umax)
7978 CASE(fmax)
7979 CASE(iand)
7980 CASE(ior)
7981 CASE(ixor)
7982 default:
7983 unreachable("unknown reduction op");
7984 #undef CASE
7985 }
7986
7987 aco_opcode aco_op;
7988 switch (instr->intrinsic) {
7989 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7990 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7991 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7992 default:
7993 unreachable("unknown reduce intrinsic");
7994 }
7995
7996 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7997 reduce->operands[0] = Operand(src);
7998 // filled in by aco_reduce_assign.cpp, used internally as part of the
7999 // reduce sequence
8000 assert(dst.size() == 1 || dst.size() == 2);
8001 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
8002 reduce->operands[2] = Operand(v1.as_linear());
8003
8004 Temp tmp_dst = bld.tmp(dst.regClass());
8005 reduce->definitions[0] = Definition(tmp_dst);
8006 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
8007 reduce->definitions[2] = Definition();
8008 reduce->definitions[3] = Definition(scc, s1);
8009 reduce->definitions[4] = Definition();
8010 reduce->reduce_op = reduce_op;
8011 reduce->cluster_size = cluster_size;
8012 ctx->block->instructions.emplace_back(std::move(reduce));
8013
8014 emit_wqm(ctx, tmp_dst, dst);
8015 }
8016 break;
8017 }
8018 case nir_intrinsic_quad_broadcast: {
8019 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8020 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
8021 emit_uniform_subgroup(ctx, instr, src);
8022 } else {
8023 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8024 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
8025 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
8026
8027 if (instr->dest.ssa.bit_size == 1) {
8028 assert(src.regClass() == bld.lm);
8029 assert(dst.regClass() == bld.lm);
8030 uint32_t half_mask = 0x11111111u << lane;
8031 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
8032 Temp tmp = bld.tmp(bld.lm);
8033 bld.sop1(Builder::s_wqm, Definition(tmp),
8034 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
8035 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
8036 emit_wqm(ctx, tmp, dst);
8037 } else if (instr->dest.ssa.bit_size == 32) {
8038 if (ctx->program->chip_class >= GFX8)
8039 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
8040 else
8041 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
8042 } else if (instr->dest.ssa.bit_size == 64) {
8043 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
8044 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
8045 if (ctx->program->chip_class >= GFX8) {
8046 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
8047 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
8048 } else {
8049 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
8050 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
8051 }
8052 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8053 emit_split_vector(ctx, dst, 2);
8054 } else {
8055 fprintf(stderr, "Unimplemented NIR instr bit size: ");
8056 nir_print_instr(&instr->instr, stderr);
8057 fprintf(stderr, "\n");
8058 }
8059 }
8060 break;
8061 }
8062 case nir_intrinsic_quad_swap_horizontal:
8063 case nir_intrinsic_quad_swap_vertical:
8064 case nir_intrinsic_quad_swap_diagonal:
8065 case nir_intrinsic_quad_swizzle_amd: {
8066 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8067 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
8068 emit_uniform_subgroup(ctx, instr, src);
8069 break;
8070 }
8071 uint16_t dpp_ctrl = 0;
8072 switch (instr->intrinsic) {
8073 case nir_intrinsic_quad_swap_horizontal:
8074 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
8075 break;
8076 case nir_intrinsic_quad_swap_vertical:
8077 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
8078 break;
8079 case nir_intrinsic_quad_swap_diagonal:
8080 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
8081 break;
8082 case nir_intrinsic_quad_swizzle_amd:
8083 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
8084 break;
8085 default:
8086 break;
8087 }
8088 if (ctx->program->chip_class < GFX8)
8089 dpp_ctrl |= (1 << 15);
8090
8091 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8092 if (instr->dest.ssa.bit_size == 1) {
8093 assert(src.regClass() == bld.lm);
8094 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
8095 if (ctx->program->chip_class >= GFX8)
8096 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
8097 else
8098 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
8099 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
8100 emit_wqm(ctx, tmp, dst);
8101 } else if (instr->dest.ssa.bit_size == 32) {
8102 Temp tmp;
8103 if (ctx->program->chip_class >= GFX8)
8104 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
8105 else
8106 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
8107 emit_wqm(ctx, tmp, dst);
8108 } else if (instr->dest.ssa.bit_size == 64) {
8109 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
8110 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
8111 if (ctx->program->chip_class >= GFX8) {
8112 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
8113 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
8114 } else {
8115 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
8116 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
8117 }
8118 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8119 emit_split_vector(ctx, dst, 2);
8120 } else {
8121 fprintf(stderr, "Unimplemented NIR instr bit size: ");
8122 nir_print_instr(&instr->instr, stderr);
8123 fprintf(stderr, "\n");
8124 }
8125 break;
8126 }
8127 case nir_intrinsic_masked_swizzle_amd: {
8128 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8129 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
8130 emit_uniform_subgroup(ctx, instr, src);
8131 break;
8132 }
8133 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8134 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
8135 if (dst.regClass() == v1) {
8136 emit_wqm(ctx,
8137 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
8138 dst);
8139 } else if (dst.regClass() == v2) {
8140 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
8141 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
8142 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
8143 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
8144 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8145 emit_split_vector(ctx, dst, 2);
8146 } else {
8147 fprintf(stderr, "Unimplemented NIR instr bit size: ");
8148 nir_print_instr(&instr->instr, stderr);
8149 fprintf(stderr, "\n");
8150 }
8151 break;
8152 }
8153 case nir_intrinsic_write_invocation_amd: {
8154 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
8155 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
8156 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
8157 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8158 if (dst.regClass() == v1) {
8159 /* src2 is ignored for writelane. RA assigns the same reg for dst */
8160 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
8161 } else if (dst.regClass() == v2) {
8162 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
8163 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
8164 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
8165 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
8166 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
8167 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
8168 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
8169 emit_split_vector(ctx, dst, 2);
8170 } else {
8171 fprintf(stderr, "Unimplemented NIR instr bit size: ");
8172 nir_print_instr(&instr->instr, stderr);
8173 fprintf(stderr, "\n");
8174 }
8175 break;
8176 }
8177 case nir_intrinsic_mbcnt_amd: {
8178 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8179 RegClass rc = RegClass(src.type(), 1);
8180 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
8181 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
8182 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8183 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
8184 emit_wqm(ctx, wqm_tmp, dst);
8185 break;
8186 }
8187 case nir_intrinsic_load_helper_invocation: {
8188 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8189 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
8190 ctx->block->kind |= block_kind_needs_lowering;
8191 ctx->program->needs_exact = true;
8192 break;
8193 }
8194 case nir_intrinsic_is_helper_invocation: {
8195 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8196 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
8197 ctx->block->kind |= block_kind_needs_lowering;
8198 ctx->program->needs_exact = true;
8199 break;
8200 }
8201 case nir_intrinsic_demote:
8202 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
8203
8204 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
8205 ctx->cf_info.exec_potentially_empty_discard = true;
8206 ctx->block->kind |= block_kind_uses_demote;
8207 ctx->program->needs_exact = true;
8208 break;
8209 case nir_intrinsic_demote_if: {
8210 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
8211 assert(src.regClass() == bld.lm);
8212 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
8213 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
8214
8215 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
8216 ctx->cf_info.exec_potentially_empty_discard = true;
8217 ctx->block->kind |= block_kind_uses_demote;
8218 ctx->program->needs_exact = true;
8219 break;
8220 }
8221 case nir_intrinsic_first_invocation: {
8222 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
8223 get_ssa_temp(ctx, &instr->dest.ssa));
8224 break;
8225 }
8226 case nir_intrinsic_shader_clock:
8227 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
8228 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
8229 break;
8230 case nir_intrinsic_load_vertex_id_zero_base: {
8231 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8232 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
8233 break;
8234 }
8235 case nir_intrinsic_load_first_vertex: {
8236 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8237 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
8238 break;
8239 }
8240 case nir_intrinsic_load_base_instance: {
8241 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8242 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
8243 break;
8244 }
8245 case nir_intrinsic_load_instance_id: {
8246 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8247 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
8248 break;
8249 }
8250 case nir_intrinsic_load_draw_id: {
8251 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8252 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
8253 break;
8254 }
8255 case nir_intrinsic_load_invocation_id: {
8256 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8257
8258 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
8259 if (ctx->options->chip_class >= GFX10)
8260 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8261 else
8262 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8263 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
8264 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
8265 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
8266 } else {
8267 unreachable("Unsupported stage for load_invocation_id");
8268 }
8269
8270 break;
8271 }
8272 case nir_intrinsic_load_primitive_id: {
8273 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8274
8275 switch (ctx->shader->info.stage) {
8276 case MESA_SHADER_GEOMETRY:
8277 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
8278 break;
8279 case MESA_SHADER_TESS_CTRL:
8280 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
8281 break;
8282 case MESA_SHADER_TESS_EVAL:
8283 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
8284 break;
8285 default:
8286 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
8287 }
8288
8289 break;
8290 }
8291 case nir_intrinsic_load_patch_vertices_in: {
8292 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
8293 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
8294
8295 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8296 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
8297 break;
8298 }
8299 case nir_intrinsic_emit_vertex_with_counter: {
8300 visit_emit_vertex_with_counter(ctx, instr);
8301 break;
8302 }
8303 case nir_intrinsic_end_primitive_with_counter: {
8304 unsigned stream = nir_intrinsic_stream_id(instr);
8305 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8306 break;
8307 }
8308 case nir_intrinsic_set_vertex_count: {
8309 /* unused, the HW keeps track of this for us */
8310 break;
8311 }
8312 default:
8313 fprintf(stderr, "Unimplemented intrinsic instr: ");
8314 nir_print_instr(&instr->instr, stderr);
8315 fprintf(stderr, "\n");
8316 abort();
8317
8318 break;
8319 }
8320 }
8321
8322
8323 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8324 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8325 enum glsl_base_type *stype)
8326 {
8327 nir_deref_instr *texture_deref_instr = NULL;
8328 nir_deref_instr *sampler_deref_instr = NULL;
8329 int plane = -1;
8330
8331 for (unsigned i = 0; i < instr->num_srcs; i++) {
8332 switch (instr->src[i].src_type) {
8333 case nir_tex_src_texture_deref:
8334 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8335 break;
8336 case nir_tex_src_sampler_deref:
8337 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8338 break;
8339 case nir_tex_src_plane:
8340 plane = nir_src_as_int(instr->src[i].src);
8341 break;
8342 default:
8343 break;
8344 }
8345 }
8346
8347 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8348
8349 if (!sampler_deref_instr)
8350 sampler_deref_instr = texture_deref_instr;
8351
8352 if (plane >= 0) {
8353 assert(instr->op != nir_texop_txf_ms &&
8354 instr->op != nir_texop_samples_identical);
8355 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8356 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8357 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8358 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8359 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8360 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8361 } else {
8362 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8363 }
8364 if (samp_ptr) {
8365 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8366
8367 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8368 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8369 Builder bld(ctx->program, ctx->block);
8370
8371 /* to avoid unnecessary moves, we split and recombine sampler and image */
8372 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8373 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8374 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8375 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8376 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8377 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8378 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8379 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8380
8381 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8382 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8383 img[0], img[1], img[2], img[3],
8384 img[4], img[5], img[6], img[7]);
8385 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8386 samp[0], samp[1], samp[2], samp[3]);
8387 }
8388 }
8389 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8390 instr->op == nir_texop_samples_identical))
8391 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8392 }
8393
8394 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8395 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8396 {
8397 Builder bld(ctx->program, ctx->block);
8398
8399 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8400 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8401 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8402
8403 Operand neg_one(0xbf800000u);
8404 Operand one(0x3f800000u);
8405 Operand two(0x40000000u);
8406 Operand four(0x40800000u);
8407
8408 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8409 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8410 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8411
8412 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8413 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8414 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8415 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8416
8417 // select sc
8418 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8419 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8420 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8421 one, is_ma_y);
8422 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8423
8424 // select tc
8425 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8426 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8427 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8428
8429 // select ma
8430 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8431 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8432 deriv_z, is_ma_z);
8433 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8434 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8435 }
8436
8437 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8438 {
8439 Builder bld(ctx->program, ctx->block);
8440 Temp ma, tc, sc, id;
8441
8442 if (is_array) {
8443 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8444
8445 // see comment in ac_prepare_cube_coords()
8446 if (ctx->options->chip_class <= GFX8)
8447 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8448 }
8449
8450 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8451
8452 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8453 vop3a->operands[0] = Operand(ma);
8454 vop3a->abs[0] = true;
8455 Temp invma = bld.tmp(v1);
8456 vop3a->definitions[0] = Definition(invma);
8457 ctx->block->instructions.emplace_back(std::move(vop3a));
8458
8459 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8460 if (!is_deriv)
8461 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8462
8463 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8464 if (!is_deriv)
8465 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8466
8467 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8468
8469 if (is_deriv) {
8470 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8471 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8472
8473 for (unsigned i = 0; i < 2; i++) {
8474 // see comment in ac_prepare_cube_coords()
8475 Temp deriv_ma;
8476 Temp deriv_sc, deriv_tc;
8477 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8478 &deriv_ma, &deriv_sc, &deriv_tc);
8479
8480 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8481
8482 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8483 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8484 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8485 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8486 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8487 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8488 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8489 }
8490
8491 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8492 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8493 }
8494
8495 if (is_array)
8496 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8497 coords.resize(3);
8498 coords[0] = sc;
8499 coords[1] = tc;
8500 coords[2] = id;
8501 }
8502
8503 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8504 {
8505 if (vec->parent_instr->type != nir_instr_type_alu)
8506 return;
8507 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8508 if (vec_instr->op != nir_op_vec(vec->num_components))
8509 return;
8510
8511 for (unsigned i = 0; i < vec->num_components; i++) {
8512 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8513 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8514 }
8515 }
8516
8517 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8518 {
8519 Builder bld(ctx->program, ctx->block);
8520 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8521 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
8522 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8523 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
8524 std::vector<Temp> coords;
8525 std::vector<Temp> derivs;
8526 nir_const_value *sample_index_cv = NULL;
8527 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8528 enum glsl_base_type stype;
8529 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8530
8531 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8532 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8533 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8534 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8535
8536 for (unsigned i = 0; i < instr->num_srcs; i++) {
8537 switch (instr->src[i].src_type) {
8538 case nir_tex_src_coord: {
8539 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8540 for (unsigned i = 0; i < coord.size(); i++)
8541 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8542 break;
8543 }
8544 case nir_tex_src_bias:
8545 if (instr->op == nir_texop_txb) {
8546 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8547 has_bias = true;
8548 }
8549 break;
8550 case nir_tex_src_lod: {
8551 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8552
8553 if (val && val->f32 <= 0.0) {
8554 level_zero = true;
8555 } else {
8556 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8557 has_lod = true;
8558 }
8559 break;
8560 }
8561 case nir_tex_src_comparator:
8562 if (instr->is_shadow) {
8563 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8564 has_compare = true;
8565 }
8566 break;
8567 case nir_tex_src_offset:
8568 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8569 get_const_vec(instr->src[i].src.ssa, const_offset);
8570 has_offset = true;
8571 break;
8572 case nir_tex_src_ddx:
8573 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8574 has_ddx = true;
8575 break;
8576 case nir_tex_src_ddy:
8577 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8578 has_ddy = true;
8579 break;
8580 case nir_tex_src_ms_index:
8581 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8582 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8583 has_sample_index = true;
8584 break;
8585 case nir_tex_src_texture_offset:
8586 case nir_tex_src_sampler_offset:
8587 default:
8588 break;
8589 }
8590 }
8591
8592 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8593 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8594
8595 if (instr->op == nir_texop_texture_samples) {
8596 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8597
8598 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8599 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8600 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8601 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8602
8603 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8604 samples, Operand(1u), bld.scc(is_msaa));
8605 return;
8606 }
8607
8608 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8609 aco_ptr<Instruction> tmp_instr;
8610 Temp acc, pack = Temp();
8611
8612 uint32_t pack_const = 0;
8613 for (unsigned i = 0; i < offset.size(); i++) {
8614 if (!const_offset[i])
8615 continue;
8616 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8617 }
8618
8619 if (offset.type() == RegType::sgpr) {
8620 for (unsigned i = 0; i < offset.size(); i++) {
8621 if (const_offset[i])
8622 continue;
8623
8624 acc = emit_extract_vector(ctx, offset, i, s1);
8625 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8626
8627 if (i) {
8628 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8629 }
8630
8631 if (pack == Temp()) {
8632 pack = acc;
8633 } else {
8634 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8635 }
8636 }
8637
8638 if (pack_const && pack != Temp())
8639 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8640 } else {
8641 for (unsigned i = 0; i < offset.size(); i++) {
8642 if (const_offset[i])
8643 continue;
8644
8645 acc = emit_extract_vector(ctx, offset, i, v1);
8646 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8647
8648 if (i) {
8649 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8650 }
8651
8652 if (pack == Temp()) {
8653 pack = acc;
8654 } else {
8655 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8656 }
8657 }
8658
8659 if (pack_const && pack != Temp())
8660 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8661 }
8662 if (pack_const && pack == Temp())
8663 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8664 else if (pack == Temp())
8665 has_offset = false;
8666 else
8667 offset = pack;
8668 }
8669
8670 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8671 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8672
8673 /* pack derivatives */
8674 if (has_ddx || has_ddy) {
8675 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8676 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8677 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8678 derivs = {ddx, zero, ddy, zero};
8679 } else {
8680 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8681 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8682 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8683 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8684 }
8685 has_derivs = true;
8686 }
8687
8688 if (instr->coord_components > 1 &&
8689 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8690 instr->is_array &&
8691 instr->op != nir_texop_txf)
8692 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8693
8694 if (instr->coord_components > 2 &&
8695 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8696 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8697 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8698 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8699 instr->is_array &&
8700 instr->op != nir_texop_txf &&
8701 instr->op != nir_texop_txf_ms &&
8702 instr->op != nir_texop_fragment_fetch &&
8703 instr->op != nir_texop_fragment_mask_fetch)
8704 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8705
8706 if (ctx->options->chip_class == GFX9 &&
8707 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8708 instr->op != nir_texop_lod && instr->coord_components) {
8709 assert(coords.size() > 0 && coords.size() < 3);
8710
8711 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8712 Operand((uint32_t) 0) :
8713 Operand((uint32_t) 0x3f000000)));
8714 }
8715
8716 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8717
8718 if (instr->op == nir_texop_samples_identical)
8719 resource = fmask_ptr;
8720
8721 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8722 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8723 instr->op != nir_texop_txs &&
8724 instr->op != nir_texop_fragment_fetch &&
8725 instr->op != nir_texop_fragment_mask_fetch) {
8726 assert(has_sample_index);
8727 Operand op(sample_index);
8728 if (sample_index_cv)
8729 op = Operand(sample_index_cv->u32);
8730 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8731 }
8732
8733 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8734 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8735 Temp off = emit_extract_vector(ctx, offset, i, v1);
8736 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8737 }
8738 has_offset = false;
8739 }
8740
8741 /* Build tex instruction */
8742 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8743 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8744 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8745 : 0;
8746 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8747 Temp tmp_dst = dst;
8748
8749 /* gather4 selects the component by dmask and always returns vec4 */
8750 if (instr->op == nir_texop_tg4) {
8751 assert(instr->dest.ssa.num_components == 4);
8752 if (instr->is_shadow)
8753 dmask = 1;
8754 else
8755 dmask = 1 << instr->component;
8756 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8757 tmp_dst = bld.tmp(v4);
8758 } else if (instr->op == nir_texop_samples_identical) {
8759 tmp_dst = bld.tmp(v1);
8760 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8761 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8762 }
8763
8764 aco_ptr<MIMG_instruction> tex;
8765 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8766 if (!has_lod)
8767 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8768
8769 bool div_by_6 = instr->op == nir_texop_txs &&
8770 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8771 instr->is_array &&
8772 (dmask & (1 << 2));
8773 if (tmp_dst.id() == dst.id() && div_by_6)
8774 tmp_dst = bld.tmp(tmp_dst.regClass());
8775
8776 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8777 tex->operands[0] = Operand(resource);
8778 tex->operands[1] = Operand(s4); /* no sampler */
8779 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8780 if (ctx->options->chip_class == GFX9 &&
8781 instr->op == nir_texop_txs &&
8782 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8783 instr->is_array) {
8784 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8785 } else if (instr->op == nir_texop_query_levels) {
8786 tex->dmask = 1 << 3;
8787 } else {
8788 tex->dmask = dmask;
8789 }
8790 tex->da = da;
8791 tex->definitions[0] = Definition(tmp_dst);
8792 tex->dim = dim;
8793 tex->can_reorder = true;
8794 ctx->block->instructions.emplace_back(std::move(tex));
8795
8796 if (div_by_6) {
8797 /* divide 3rd value by 6 by multiplying with magic number */
8798 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8799 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8800 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8801 assert(instr->dest.ssa.num_components == 3);
8802 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8803 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8804 emit_extract_vector(ctx, tmp_dst, 0, v1),
8805 emit_extract_vector(ctx, tmp_dst, 1, v1),
8806 by_6);
8807
8808 }
8809
8810 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8811 return;
8812 }
8813
8814 Temp tg4_compare_cube_wa64 = Temp();
8815
8816 if (tg4_integer_workarounds) {
8817 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8818 tex->operands[0] = Operand(resource);
8819 tex->operands[1] = Operand(s4); /* no sampler */
8820 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8821 tex->dim = dim;
8822 tex->dmask = 0x3;
8823 tex->da = da;
8824 Temp size = bld.tmp(v2);
8825 tex->definitions[0] = Definition(size);
8826 tex->can_reorder = true;
8827 ctx->block->instructions.emplace_back(std::move(tex));
8828 emit_split_vector(ctx, size, size.size());
8829
8830 Temp half_texel[2];
8831 for (unsigned i = 0; i < 2; i++) {
8832 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8833 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8834 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8835 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8836 }
8837
8838 Temp new_coords[2] = {
8839 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8840 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8841 };
8842
8843 if (tg4_integer_cube_workaround) {
8844 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8845 Temp desc[resource.size()];
8846 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8847 Format::PSEUDO, 1, resource.size())};
8848 split->operands[0] = Operand(resource);
8849 for (unsigned i = 0; i < resource.size(); i++) {
8850 desc[i] = bld.tmp(s1);
8851 split->definitions[i] = Definition(desc[i]);
8852 }
8853 ctx->block->instructions.emplace_back(std::move(split));
8854
8855 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8856 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8857 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8858
8859 Temp nfmt;
8860 if (stype == GLSL_TYPE_UINT) {
8861 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8862 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8863 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8864 bld.scc(compare_cube_wa));
8865 } else {
8866 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8867 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8868 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8869 bld.scc(compare_cube_wa));
8870 }
8871 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8872 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8873
8874 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8875
8876 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8877 Operand((uint32_t)C_008F14_NUM_FORMAT));
8878 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8879
8880 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8881 Format::PSEUDO, resource.size(), 1)};
8882 for (unsigned i = 0; i < resource.size(); i++)
8883 vec->operands[i] = Operand(desc[i]);
8884 resource = bld.tmp(resource.regClass());
8885 vec->definitions[0] = Definition(resource);
8886 ctx->block->instructions.emplace_back(std::move(vec));
8887
8888 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8889 new_coords[0], coords[0], tg4_compare_cube_wa64);
8890 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8891 new_coords[1], coords[1], tg4_compare_cube_wa64);
8892 }
8893 coords[0] = new_coords[0];
8894 coords[1] = new_coords[1];
8895 }
8896
8897 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8898 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8899
8900 assert(coords.size() == 1);
8901 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8902 aco_opcode op;
8903 switch (last_bit) {
8904 case 1:
8905 op = aco_opcode::buffer_load_format_x; break;
8906 case 2:
8907 op = aco_opcode::buffer_load_format_xy; break;
8908 case 3:
8909 op = aco_opcode::buffer_load_format_xyz; break;
8910 case 4:
8911 op = aco_opcode::buffer_load_format_xyzw; break;
8912 default:
8913 unreachable("Tex instruction loads more than 4 components.");
8914 }
8915
8916 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8917 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8918 tmp_dst = dst;
8919 else
8920 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8921
8922 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8923 mubuf->operands[0] = Operand(resource);
8924 mubuf->operands[1] = Operand(coords[0]);
8925 mubuf->operands[2] = Operand((uint32_t) 0);
8926 mubuf->definitions[0] = Definition(tmp_dst);
8927 mubuf->idxen = true;
8928 mubuf->can_reorder = true;
8929 ctx->block->instructions.emplace_back(std::move(mubuf));
8930
8931 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8932 return;
8933 }
8934
8935 /* gather MIMG address components */
8936 std::vector<Temp> args;
8937 if (has_offset)
8938 args.emplace_back(offset);
8939 if (has_bias)
8940 args.emplace_back(bias);
8941 if (has_compare)
8942 args.emplace_back(compare);
8943 if (has_derivs)
8944 args.insert(args.end(), derivs.begin(), derivs.end());
8945
8946 args.insert(args.end(), coords.begin(), coords.end());
8947 if (has_sample_index)
8948 args.emplace_back(sample_index);
8949 if (has_lod)
8950 args.emplace_back(lod);
8951
8952 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8953 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8954 vec->definitions[0] = Definition(arg);
8955 for (unsigned i = 0; i < args.size(); i++)
8956 vec->operands[i] = Operand(args[i]);
8957 ctx->block->instructions.emplace_back(std::move(vec));
8958
8959
8960 if (instr->op == nir_texop_txf ||
8961 instr->op == nir_texop_txf_ms ||
8962 instr->op == nir_texop_samples_identical ||
8963 instr->op == nir_texop_fragment_fetch ||
8964 instr->op == nir_texop_fragment_mask_fetch) {
8965 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8966 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8967 tex->operands[0] = Operand(resource);
8968 tex->operands[1] = Operand(s4); /* no sampler */
8969 tex->operands[2] = Operand(arg);
8970 tex->dim = dim;
8971 tex->dmask = dmask;
8972 tex->unrm = true;
8973 tex->da = da;
8974 tex->definitions[0] = Definition(tmp_dst);
8975 tex->can_reorder = true;
8976 ctx->block->instructions.emplace_back(std::move(tex));
8977
8978 if (instr->op == nir_texop_samples_identical) {
8979 assert(dmask == 1 && dst.regClass() == v1);
8980 assert(dst.id() != tmp_dst.id());
8981
8982 Temp tmp = bld.tmp(bld.lm);
8983 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8984 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8985
8986 } else {
8987 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8988 }
8989 return;
8990 }
8991
8992 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8993 aco_opcode opcode = aco_opcode::image_sample;
8994 if (has_offset) { /* image_sample_*_o */
8995 if (has_compare) {
8996 opcode = aco_opcode::image_sample_c_o;
8997 if (has_derivs)
8998 opcode = aco_opcode::image_sample_c_d_o;
8999 if (has_bias)
9000 opcode = aco_opcode::image_sample_c_b_o;
9001 if (level_zero)
9002 opcode = aco_opcode::image_sample_c_lz_o;
9003 if (has_lod)
9004 opcode = aco_opcode::image_sample_c_l_o;
9005 } else {
9006 opcode = aco_opcode::image_sample_o;
9007 if (has_derivs)
9008 opcode = aco_opcode::image_sample_d_o;
9009 if (has_bias)
9010 opcode = aco_opcode::image_sample_b_o;
9011 if (level_zero)
9012 opcode = aco_opcode::image_sample_lz_o;
9013 if (has_lod)
9014 opcode = aco_opcode::image_sample_l_o;
9015 }
9016 } else { /* no offset */
9017 if (has_compare) {
9018 opcode = aco_opcode::image_sample_c;
9019 if (has_derivs)
9020 opcode = aco_opcode::image_sample_c_d;
9021 if (has_bias)
9022 opcode = aco_opcode::image_sample_c_b;
9023 if (level_zero)
9024 opcode = aco_opcode::image_sample_c_lz;
9025 if (has_lod)
9026 opcode = aco_opcode::image_sample_c_l;
9027 } else {
9028 opcode = aco_opcode::image_sample;
9029 if (has_derivs)
9030 opcode = aco_opcode::image_sample_d;
9031 if (has_bias)
9032 opcode = aco_opcode::image_sample_b;
9033 if (level_zero)
9034 opcode = aco_opcode::image_sample_lz;
9035 if (has_lod)
9036 opcode = aco_opcode::image_sample_l;
9037 }
9038 }
9039
9040 if (instr->op == nir_texop_tg4) {
9041 if (has_offset) {
9042 opcode = aco_opcode::image_gather4_lz_o;
9043 if (has_compare)
9044 opcode = aco_opcode::image_gather4_c_lz_o;
9045 } else {
9046 opcode = aco_opcode::image_gather4_lz;
9047 if (has_compare)
9048 opcode = aco_opcode::image_gather4_c_lz;
9049 }
9050 } else if (instr->op == nir_texop_lod) {
9051 opcode = aco_opcode::image_get_lod;
9052 }
9053
9054 /* we don't need the bias, sample index, compare value or offset to be
9055 * computed in WQM but if the p_create_vector copies the coordinates, then it
9056 * needs to be in WQM */
9057 if (ctx->stage == fragment_fs &&
9058 !has_derivs && !has_lod && !level_zero &&
9059 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
9060 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
9061 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
9062
9063 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
9064 tex->operands[0] = Operand(resource);
9065 tex->operands[1] = Operand(sampler);
9066 tex->operands[2] = Operand(arg);
9067 tex->dim = dim;
9068 tex->dmask = dmask;
9069 tex->da = da;
9070 tex->definitions[0] = Definition(tmp_dst);
9071 tex->can_reorder = true;
9072 ctx->block->instructions.emplace_back(std::move(tex));
9073
9074 if (tg4_integer_cube_workaround) {
9075 assert(tmp_dst.id() != dst.id());
9076 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
9077
9078 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
9079 Temp val[4];
9080 for (unsigned i = 0; i < dst.size(); i++) {
9081 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
9082 Temp cvt_val;
9083 if (stype == GLSL_TYPE_UINT)
9084 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
9085 else
9086 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
9087 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
9088 }
9089 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
9090 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
9091 val[0], val[1], val[2], val[3]);
9092 }
9093 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
9094 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
9095
9096 }
9097
9098
9099 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
9100 {
9101 Temp tmp = get_ssa_temp(ctx, ssa);
9102 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
9103 return Operand(tmp.regClass());
9104 else
9105 return Operand(tmp);
9106 }
9107
9108 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
9109 {
9110 aco_ptr<Pseudo_instruction> phi;
9111 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
9112 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
9113
9114 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
9115 logical |= ctx->block->kind & block_kind_merge;
9116 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
9117
9118 /* we want a sorted list of sources, since the predecessor list is also sorted */
9119 std::map<unsigned, nir_ssa_def*> phi_src;
9120 nir_foreach_phi_src(src, instr)
9121 phi_src[src->pred->index] = src->src.ssa;
9122
9123 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
9124 unsigned num_operands = 0;
9125 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
9126 unsigned num_defined = 0;
9127 unsigned cur_pred_idx = 0;
9128 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
9129 if (cur_pred_idx < preds.size()) {
9130 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
9131 unsigned block = ctx->cf_info.nir_to_aco[src.first];
9132 unsigned skipped = 0;
9133 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
9134 skipped++;
9135 if (cur_pred_idx + skipped < preds.size()) {
9136 for (unsigned i = 0; i < skipped; i++)
9137 operands[num_operands++] = Operand(dst.regClass());
9138 cur_pred_idx += skipped;
9139 } else {
9140 continue;
9141 }
9142 }
9143 /* Handle missing predecessors at the end. This shouldn't happen with loop
9144 * headers and we can't ignore these sources for loop header phis. */
9145 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
9146 continue;
9147 cur_pred_idx++;
9148 Operand op = get_phi_operand(ctx, src.second);
9149 operands[num_operands++] = op;
9150 num_defined += !op.isUndefined();
9151 }
9152 /* handle block_kind_continue_or_break at loop exit blocks */
9153 while (cur_pred_idx++ < preds.size())
9154 operands[num_operands++] = Operand(dst.regClass());
9155
9156 /* If the loop ends with a break, still add a linear continue edge in case
9157 * that break is divergent or continue_or_break is used. We'll either remove
9158 * this operand later in visit_loop() if it's not necessary or replace the
9159 * undef with something correct. */
9160 if (!logical && ctx->block->kind & block_kind_loop_header) {
9161 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
9162 nir_block *last = nir_loop_last_block(loop);
9163 if (last->successors[0] != instr->instr.block)
9164 operands[num_operands++] = Operand(RegClass());
9165 }
9166
9167 if (num_defined == 0) {
9168 Builder bld(ctx->program, ctx->block);
9169 if (dst.regClass() == s1) {
9170 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
9171 } else if (dst.regClass() == v1) {
9172 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
9173 } else {
9174 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9175 for (unsigned i = 0; i < dst.size(); i++)
9176 vec->operands[i] = Operand(0u);
9177 vec->definitions[0] = Definition(dst);
9178 ctx->block->instructions.emplace_back(std::move(vec));
9179 }
9180 return;
9181 }
9182
9183 /* we can use a linear phi in some cases if one src is undef */
9184 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
9185 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
9186
9187 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
9188 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
9189 assert(invert->kind & block_kind_invert);
9190
9191 unsigned then_block = invert->linear_preds[0];
9192
9193 Block* insert_block = NULL;
9194 for (unsigned i = 0; i < num_operands; i++) {
9195 Operand op = operands[i];
9196 if (op.isUndefined())
9197 continue;
9198 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
9199 phi->operands[0] = op;
9200 break;
9201 }
9202 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
9203 phi->operands[1] = Operand(dst.regClass());
9204 phi->definitions[0] = Definition(dst);
9205 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
9206 return;
9207 }
9208
9209 /* try to scalarize vector phis */
9210 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
9211 // TODO: scalarize linear phis on divergent ifs
9212 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
9213 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
9214 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
9215 Operand src = operands[i];
9216 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
9217 can_scalarize = false;
9218 }
9219 if (can_scalarize) {
9220 unsigned num_components = instr->dest.ssa.num_components;
9221 assert(dst.size() % num_components == 0);
9222 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
9223
9224 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
9225 for (unsigned k = 0; k < num_components; k++) {
9226 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9227 for (unsigned i = 0; i < num_operands; i++) {
9228 Operand src = operands[i];
9229 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
9230 }
9231 Temp phi_dst = {ctx->program->allocateId(), rc};
9232 phi->definitions[0] = Definition(phi_dst);
9233 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9234 new_vec[k] = phi_dst;
9235 vec->operands[k] = Operand(phi_dst);
9236 }
9237 vec->definitions[0] = Definition(dst);
9238 ctx->block->instructions.emplace_back(std::move(vec));
9239 ctx->allocated_vec.emplace(dst.id(), new_vec);
9240 return;
9241 }
9242 }
9243
9244 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9245 for (unsigned i = 0; i < num_operands; i++)
9246 phi->operands[i] = operands[i];
9247 phi->definitions[0] = Definition(dst);
9248 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9249 }
9250
9251
9252 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
9253 {
9254 Temp dst = get_ssa_temp(ctx, &instr->def);
9255
9256 assert(dst.type() == RegType::sgpr);
9257
9258 if (dst.size() == 1) {
9259 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
9260 } else {
9261 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9262 for (unsigned i = 0; i < dst.size(); i++)
9263 vec->operands[i] = Operand(0u);
9264 vec->definitions[0] = Definition(dst);
9265 ctx->block->instructions.emplace_back(std::move(vec));
9266 }
9267 }
9268
9269 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
9270 {
9271 Builder bld(ctx->program, ctx->block);
9272 Block *logical_target;
9273 append_logical_end(ctx->block);
9274 unsigned idx = ctx->block->index;
9275
9276 switch (instr->type) {
9277 case nir_jump_break:
9278 logical_target = ctx->cf_info.parent_loop.exit;
9279 add_logical_edge(idx, logical_target);
9280 ctx->block->kind |= block_kind_break;
9281
9282 if (!ctx->cf_info.parent_if.is_divergent &&
9283 !ctx->cf_info.parent_loop.has_divergent_continue) {
9284 /* uniform break - directly jump out of the loop */
9285 ctx->block->kind |= block_kind_uniform;
9286 ctx->cf_info.has_branch = true;
9287 bld.branch(aco_opcode::p_branch);
9288 add_linear_edge(idx, logical_target);
9289 return;
9290 }
9291 ctx->cf_info.parent_loop.has_divergent_branch = true;
9292 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9293 break;
9294 case nir_jump_continue:
9295 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9296 add_logical_edge(idx, logical_target);
9297 ctx->block->kind |= block_kind_continue;
9298
9299 if (ctx->cf_info.parent_if.is_divergent) {
9300 /* for potential uniform breaks after this continue,
9301 we must ensure that they are handled correctly */
9302 ctx->cf_info.parent_loop.has_divergent_continue = true;
9303 ctx->cf_info.parent_loop.has_divergent_branch = true;
9304 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9305 } else {
9306 /* uniform continue - directly jump to the loop header */
9307 ctx->block->kind |= block_kind_uniform;
9308 ctx->cf_info.has_branch = true;
9309 bld.branch(aco_opcode::p_branch);
9310 add_linear_edge(idx, logical_target);
9311 return;
9312 }
9313 break;
9314 default:
9315 fprintf(stderr, "Unknown NIR jump instr: ");
9316 nir_print_instr(&instr->instr, stderr);
9317 fprintf(stderr, "\n");
9318 abort();
9319 }
9320
9321 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9322 ctx->cf_info.exec_potentially_empty_break = true;
9323 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9324 }
9325
9326 /* remove critical edges from linear CFG */
9327 bld.branch(aco_opcode::p_branch);
9328 Block* break_block = ctx->program->create_and_insert_block();
9329 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9330 break_block->kind |= block_kind_uniform;
9331 add_linear_edge(idx, break_block);
9332 /* the loop_header pointer might be invalidated by this point */
9333 if (instr->type == nir_jump_continue)
9334 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9335 add_linear_edge(break_block->index, logical_target);
9336 bld.reset(break_block);
9337 bld.branch(aco_opcode::p_branch);
9338
9339 Block* continue_block = ctx->program->create_and_insert_block();
9340 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9341 add_linear_edge(idx, continue_block);
9342 append_logical_start(continue_block);
9343 ctx->block = continue_block;
9344 return;
9345 }
9346
9347 void visit_block(isel_context *ctx, nir_block *block)
9348 {
9349 nir_foreach_instr(instr, block) {
9350 switch (instr->type) {
9351 case nir_instr_type_alu:
9352 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9353 break;
9354 case nir_instr_type_load_const:
9355 visit_load_const(ctx, nir_instr_as_load_const(instr));
9356 break;
9357 case nir_instr_type_intrinsic:
9358 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9359 break;
9360 case nir_instr_type_tex:
9361 visit_tex(ctx, nir_instr_as_tex(instr));
9362 break;
9363 case nir_instr_type_phi:
9364 visit_phi(ctx, nir_instr_as_phi(instr));
9365 break;
9366 case nir_instr_type_ssa_undef:
9367 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9368 break;
9369 case nir_instr_type_deref:
9370 break;
9371 case nir_instr_type_jump:
9372 visit_jump(ctx, nir_instr_as_jump(instr));
9373 break;
9374 default:
9375 fprintf(stderr, "Unknown NIR instr type: ");
9376 nir_print_instr(instr, stderr);
9377 fprintf(stderr, "\n");
9378 //abort();
9379 }
9380 }
9381
9382 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9383 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9384 }
9385
9386
9387
9388 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9389 aco_ptr<Instruction>& header_phi, Operand *vals)
9390 {
9391 vals[0] = Operand(header_phi->definitions[0].getTemp());
9392 RegClass rc = vals[0].regClass();
9393
9394 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9395
9396 unsigned next_pred = 1;
9397
9398 for (unsigned idx = first + 1; idx <= last; idx++) {
9399 Block& block = ctx->program->blocks[idx];
9400 if (block.loop_nest_depth != loop_nest_depth) {
9401 vals[idx - first] = vals[idx - 1 - first];
9402 continue;
9403 }
9404
9405 if (block.kind & block_kind_continue) {
9406 vals[idx - first] = header_phi->operands[next_pred];
9407 next_pred++;
9408 continue;
9409 }
9410
9411 bool all_same = true;
9412 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9413 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9414
9415 Operand val;
9416 if (all_same) {
9417 val = vals[block.linear_preds[0] - first];
9418 } else {
9419 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9420 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9421 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9422 phi->operands[i] = vals[block.linear_preds[i] - first];
9423 val = Operand(Temp(ctx->program->allocateId(), rc));
9424 phi->definitions[0] = Definition(val.getTemp());
9425 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9426 }
9427 vals[idx - first] = val;
9428 }
9429
9430 return vals[last - first];
9431 }
9432
9433 static void visit_loop(isel_context *ctx, nir_loop *loop)
9434 {
9435 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9436 append_logical_end(ctx->block);
9437 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9438 Builder bld(ctx->program, ctx->block);
9439 bld.branch(aco_opcode::p_branch);
9440 unsigned loop_preheader_idx = ctx->block->index;
9441
9442 Block loop_exit = Block();
9443 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9444 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9445
9446 Block* loop_header = ctx->program->create_and_insert_block();
9447 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9448 loop_header->kind |= block_kind_loop_header;
9449 add_edge(loop_preheader_idx, loop_header);
9450 ctx->block = loop_header;
9451
9452 /* emit loop body */
9453 unsigned loop_header_idx = loop_header->index;
9454 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9455 append_logical_start(ctx->block);
9456 bool unreachable = visit_cf_list(ctx, &loop->body);
9457
9458 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9459 if (!ctx->cf_info.has_branch) {
9460 append_logical_end(ctx->block);
9461 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9462 /* Discards can result in code running with an empty exec mask.
9463 * This would result in divergent breaks not ever being taken. As a
9464 * workaround, break the loop when the loop mask is empty instead of
9465 * always continuing. */
9466 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9467 unsigned block_idx = ctx->block->index;
9468
9469 /* create helper blocks to avoid critical edges */
9470 Block *break_block = ctx->program->create_and_insert_block();
9471 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9472 break_block->kind = block_kind_uniform;
9473 bld.reset(break_block);
9474 bld.branch(aco_opcode::p_branch);
9475 add_linear_edge(block_idx, break_block);
9476 add_linear_edge(break_block->index, &loop_exit);
9477
9478 Block *continue_block = ctx->program->create_and_insert_block();
9479 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9480 continue_block->kind = block_kind_uniform;
9481 bld.reset(continue_block);
9482 bld.branch(aco_opcode::p_branch);
9483 add_linear_edge(block_idx, continue_block);
9484 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9485
9486 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9487 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9488 ctx->block = &ctx->program->blocks[block_idx];
9489 } else {
9490 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9491 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9492 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9493 else
9494 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9495 }
9496
9497 bld.reset(ctx->block);
9498 bld.branch(aco_opcode::p_branch);
9499 }
9500
9501 /* Fixup phis in loop header from unreachable blocks.
9502 * has_branch/has_divergent_branch also indicates if the loop ends with a
9503 * break/continue instruction, but we don't emit those if unreachable=true */
9504 if (unreachable) {
9505 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9506 bool linear = ctx->cf_info.has_branch;
9507 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9508 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9509 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9510 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9511 /* the last operand should be the one that needs to be removed */
9512 instr->operands.pop_back();
9513 } else if (!is_phi(instr)) {
9514 break;
9515 }
9516 }
9517 }
9518
9519 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9520 * and the previous one shouldn't both happen at once because a break in the
9521 * merge block would get CSE'd */
9522 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9523 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9524 Operand vals[num_vals];
9525 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9526 if (instr->opcode == aco_opcode::p_linear_phi) {
9527 if (ctx->cf_info.has_branch)
9528 instr->operands.pop_back();
9529 else
9530 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9531 } else if (!is_phi(instr)) {
9532 break;
9533 }
9534 }
9535 }
9536
9537 ctx->cf_info.has_branch = false;
9538
9539 // TODO: if the loop has not a single exit, we must add one °°
9540 /* emit loop successor block */
9541 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9542 append_logical_start(ctx->block);
9543
9544 #if 0
9545 // TODO: check if it is beneficial to not branch on continues
9546 /* trim linear phis in loop header */
9547 for (auto&& instr : loop_entry->instructions) {
9548 if (instr->opcode == aco_opcode::p_linear_phi) {
9549 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9550 new_phi->definitions[0] = instr->definitions[0];
9551 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9552 new_phi->operands[i] = instr->operands[i];
9553 /* check that the remaining operands are all the same */
9554 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9555 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9556 instr.swap(new_phi);
9557 } else if (instr->opcode == aco_opcode::p_phi) {
9558 continue;
9559 } else {
9560 break;
9561 }
9562 }
9563 #endif
9564 }
9565
9566 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9567 {
9568 ic->cond = cond;
9569
9570 append_logical_end(ctx->block);
9571 ctx->block->kind |= block_kind_branch;
9572
9573 /* branch to linear then block */
9574 assert(cond.regClass() == ctx->program->lane_mask);
9575 aco_ptr<Pseudo_branch_instruction> branch;
9576 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9577 branch->operands[0] = Operand(cond);
9578 ctx->block->instructions.push_back(std::move(branch));
9579
9580 ic->BB_if_idx = ctx->block->index;
9581 ic->BB_invert = Block();
9582 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9583 /* Invert blocks are intentionally not marked as top level because they
9584 * are not part of the logical cfg. */
9585 ic->BB_invert.kind |= block_kind_invert;
9586 ic->BB_endif = Block();
9587 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9588 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9589
9590 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9591 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9592 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9593 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9594 ctx->cf_info.parent_if.is_divergent = true;
9595
9596 /* divergent branches use cbranch_execz */
9597 ctx->cf_info.exec_potentially_empty_discard = false;
9598 ctx->cf_info.exec_potentially_empty_break = false;
9599 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9600
9601 /** emit logical then block */
9602 Block* BB_then_logical = ctx->program->create_and_insert_block();
9603 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9604 add_edge(ic->BB_if_idx, BB_then_logical);
9605 ctx->block = BB_then_logical;
9606 append_logical_start(BB_then_logical);
9607 }
9608
9609 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9610 {
9611 Block *BB_then_logical = ctx->block;
9612 append_logical_end(BB_then_logical);
9613 /* branch from logical then block to invert block */
9614 aco_ptr<Pseudo_branch_instruction> branch;
9615 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9616 BB_then_logical->instructions.emplace_back(std::move(branch));
9617 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9618 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9619 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9620 BB_then_logical->kind |= block_kind_uniform;
9621 assert(!ctx->cf_info.has_branch);
9622 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9623 ctx->cf_info.parent_loop.has_divergent_branch = false;
9624
9625 /** emit linear then block */
9626 Block* BB_then_linear = ctx->program->create_and_insert_block();
9627 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9628 BB_then_linear->kind |= block_kind_uniform;
9629 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9630 /* branch from linear then block to invert block */
9631 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9632 BB_then_linear->instructions.emplace_back(std::move(branch));
9633 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9634
9635 /** emit invert merge block */
9636 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9637 ic->invert_idx = ctx->block->index;
9638
9639 /* branch to linear else block (skip else) */
9640 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9641 branch->operands[0] = Operand(ic->cond);
9642 ctx->block->instructions.push_back(std::move(branch));
9643
9644 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9645 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9646 ic->exec_potentially_empty_break_depth_old =
9647 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9648 /* divergent branches use cbranch_execz */
9649 ctx->cf_info.exec_potentially_empty_discard = false;
9650 ctx->cf_info.exec_potentially_empty_break = false;
9651 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9652
9653 /** emit logical else block */
9654 Block* BB_else_logical = ctx->program->create_and_insert_block();
9655 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9656 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9657 add_linear_edge(ic->invert_idx, BB_else_logical);
9658 ctx->block = BB_else_logical;
9659 append_logical_start(BB_else_logical);
9660 }
9661
9662 static void end_divergent_if(isel_context *ctx, if_context *ic)
9663 {
9664 Block *BB_else_logical = ctx->block;
9665 append_logical_end(BB_else_logical);
9666
9667 /* branch from logical else block to endif block */
9668 aco_ptr<Pseudo_branch_instruction> branch;
9669 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9670 BB_else_logical->instructions.emplace_back(std::move(branch));
9671 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9672 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9673 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9674 BB_else_logical->kind |= block_kind_uniform;
9675
9676 assert(!ctx->cf_info.has_branch);
9677 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9678
9679
9680 /** emit linear else block */
9681 Block* BB_else_linear = ctx->program->create_and_insert_block();
9682 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9683 BB_else_linear->kind |= block_kind_uniform;
9684 add_linear_edge(ic->invert_idx, BB_else_linear);
9685
9686 /* branch from linear else block to endif block */
9687 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9688 BB_else_linear->instructions.emplace_back(std::move(branch));
9689 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9690
9691
9692 /** emit endif merge block */
9693 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9694 append_logical_start(ctx->block);
9695
9696
9697 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9698 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9699 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9700 ctx->cf_info.exec_potentially_empty_break_depth =
9701 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9702 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9703 !ctx->cf_info.parent_if.is_divergent) {
9704 ctx->cf_info.exec_potentially_empty_break = false;
9705 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9706 }
9707 /* uniform control flow never has an empty exec-mask */
9708 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9709 ctx->cf_info.exec_potentially_empty_discard = false;
9710 ctx->cf_info.exec_potentially_empty_break = false;
9711 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9712 }
9713 }
9714
9715 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9716 {
9717 assert(cond.regClass() == s1);
9718
9719 append_logical_end(ctx->block);
9720 ctx->block->kind |= block_kind_uniform;
9721
9722 aco_ptr<Pseudo_branch_instruction> branch;
9723 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9724 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9725 branch->operands[0] = Operand(cond);
9726 branch->operands[0].setFixed(scc);
9727 ctx->block->instructions.emplace_back(std::move(branch));
9728
9729 ic->BB_if_idx = ctx->block->index;
9730 ic->BB_endif = Block();
9731 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9732 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9733
9734 ctx->cf_info.has_branch = false;
9735 ctx->cf_info.parent_loop.has_divergent_branch = false;
9736
9737 /** emit then block */
9738 Block* BB_then = ctx->program->create_and_insert_block();
9739 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9740 add_edge(ic->BB_if_idx, BB_then);
9741 append_logical_start(BB_then);
9742 ctx->block = BB_then;
9743 }
9744
9745 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9746 {
9747 Block *BB_then = ctx->block;
9748
9749 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9750 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9751
9752 if (!ic->uniform_has_then_branch) {
9753 append_logical_end(BB_then);
9754 /* branch from then block to endif block */
9755 aco_ptr<Pseudo_branch_instruction> branch;
9756 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9757 BB_then->instructions.emplace_back(std::move(branch));
9758 add_linear_edge(BB_then->index, &ic->BB_endif);
9759 if (!ic->then_branch_divergent)
9760 add_logical_edge(BB_then->index, &ic->BB_endif);
9761 BB_then->kind |= block_kind_uniform;
9762 }
9763
9764 ctx->cf_info.has_branch = false;
9765 ctx->cf_info.parent_loop.has_divergent_branch = false;
9766
9767 /** emit else block */
9768 Block* BB_else = ctx->program->create_and_insert_block();
9769 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9770 add_edge(ic->BB_if_idx, BB_else);
9771 append_logical_start(BB_else);
9772 ctx->block = BB_else;
9773 }
9774
9775 static void end_uniform_if(isel_context *ctx, if_context *ic)
9776 {
9777 Block *BB_else = ctx->block;
9778
9779 if (!ctx->cf_info.has_branch) {
9780 append_logical_end(BB_else);
9781 /* branch from then block to endif block */
9782 aco_ptr<Pseudo_branch_instruction> branch;
9783 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9784 BB_else->instructions.emplace_back(std::move(branch));
9785 add_linear_edge(BB_else->index, &ic->BB_endif);
9786 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9787 add_logical_edge(BB_else->index, &ic->BB_endif);
9788 BB_else->kind |= block_kind_uniform;
9789 }
9790
9791 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9792 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9793
9794 /** emit endif merge block */
9795 if (!ctx->cf_info.has_branch) {
9796 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9797 append_logical_start(ctx->block);
9798 }
9799 }
9800
9801 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9802 {
9803 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9804 Builder bld(ctx->program, ctx->block);
9805 aco_ptr<Pseudo_branch_instruction> branch;
9806 if_context ic;
9807
9808 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
9809 /**
9810 * Uniform conditionals are represented in the following way*) :
9811 *
9812 * The linear and logical CFG:
9813 * BB_IF
9814 * / \
9815 * BB_THEN (logical) BB_ELSE (logical)
9816 * \ /
9817 * BB_ENDIF
9818 *
9819 * *) Exceptions may be due to break and continue statements within loops
9820 * If a break/continue happens within uniform control flow, it branches
9821 * to the loop exit/entry block. Otherwise, it branches to the next
9822 * merge block.
9823 **/
9824
9825 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9826 assert(cond.regClass() == ctx->program->lane_mask);
9827 cond = bool_to_scalar_condition(ctx, cond);
9828
9829 begin_uniform_if_then(ctx, &ic, cond);
9830 visit_cf_list(ctx, &if_stmt->then_list);
9831
9832 begin_uniform_if_else(ctx, &ic);
9833 visit_cf_list(ctx, &if_stmt->else_list);
9834
9835 end_uniform_if(ctx, &ic);
9836
9837 return !ctx->cf_info.has_branch;
9838 } else { /* non-uniform condition */
9839 /**
9840 * To maintain a logical and linear CFG without critical edges,
9841 * non-uniform conditionals are represented in the following way*) :
9842 *
9843 * The linear CFG:
9844 * BB_IF
9845 * / \
9846 * BB_THEN (logical) BB_THEN (linear)
9847 * \ /
9848 * BB_INVERT (linear)
9849 * / \
9850 * BB_ELSE (logical) BB_ELSE (linear)
9851 * \ /
9852 * BB_ENDIF
9853 *
9854 * The logical CFG:
9855 * BB_IF
9856 * / \
9857 * BB_THEN (logical) BB_ELSE (logical)
9858 * \ /
9859 * BB_ENDIF
9860 *
9861 * *) Exceptions may be due to break and continue statements within loops
9862 **/
9863
9864 begin_divergent_if_then(ctx, &ic, cond);
9865 visit_cf_list(ctx, &if_stmt->then_list);
9866
9867 begin_divergent_if_else(ctx, &ic);
9868 visit_cf_list(ctx, &if_stmt->else_list);
9869
9870 end_divergent_if(ctx, &ic);
9871
9872 return true;
9873 }
9874 }
9875
9876 static bool visit_cf_list(isel_context *ctx,
9877 struct exec_list *list)
9878 {
9879 foreach_list_typed(nir_cf_node, node, node, list) {
9880 switch (node->type) {
9881 case nir_cf_node_block:
9882 visit_block(ctx, nir_cf_node_as_block(node));
9883 break;
9884 case nir_cf_node_if:
9885 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9886 return true;
9887 break;
9888 case nir_cf_node_loop:
9889 visit_loop(ctx, nir_cf_node_as_loop(node));
9890 break;
9891 default:
9892 unreachable("unimplemented cf list type");
9893 }
9894 }
9895 return false;
9896 }
9897
9898 static void create_null_export(isel_context *ctx)
9899 {
9900 /* Some shader stages always need to have exports.
9901 * So when there is none, we need to add a null export.
9902 */
9903
9904 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9905 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9906 Builder bld(ctx->program, ctx->block);
9907 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9908 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9909 }
9910
9911 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9912 {
9913 assert(ctx->stage == vertex_vs ||
9914 ctx->stage == tess_eval_vs ||
9915 ctx->stage == gs_copy_vs ||
9916 ctx->stage == ngg_vertex_gs ||
9917 ctx->stage == ngg_tess_eval_gs);
9918
9919 int offset = (ctx->stage & sw_tes)
9920 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9921 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9922 uint64_t mask = ctx->outputs.mask[slot];
9923 if (!is_pos && !mask)
9924 return false;
9925 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9926 return false;
9927 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9928 exp->enabled_mask = mask;
9929 for (unsigned i = 0; i < 4; ++i) {
9930 if (mask & (1 << i))
9931 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9932 else
9933 exp->operands[i] = Operand(v1);
9934 }
9935 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9936 * Setting valid_mask=1 prevents it and has no other effect.
9937 */
9938 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9939 exp->done = false;
9940 exp->compressed = false;
9941 if (is_pos)
9942 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9943 else
9944 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9945 ctx->block->instructions.emplace_back(std::move(exp));
9946
9947 return true;
9948 }
9949
9950 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9951 {
9952 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9953 exp->enabled_mask = 0;
9954 for (unsigned i = 0; i < 4; ++i)
9955 exp->operands[i] = Operand(v1);
9956 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9957 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9958 exp->enabled_mask |= 0x1;
9959 }
9960 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9961 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9962 exp->enabled_mask |= 0x4;
9963 }
9964 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9965 if (ctx->options->chip_class < GFX9) {
9966 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9967 exp->enabled_mask |= 0x8;
9968 } else {
9969 Builder bld(ctx->program, ctx->block);
9970
9971 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9972 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9973 if (exp->operands[2].isTemp())
9974 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9975
9976 exp->operands[2] = Operand(out);
9977 exp->enabled_mask |= 0x4;
9978 }
9979 }
9980 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9981 exp->done = false;
9982 exp->compressed = false;
9983 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9984 ctx->block->instructions.emplace_back(std::move(exp));
9985 }
9986
9987 static void create_export_phis(isel_context *ctx)
9988 {
9989 /* Used when exports are needed, but the output temps are defined in a preceding block.
9990 * This function will set up phis in order to access the outputs in the next block.
9991 */
9992
9993 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9994 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9995 ctx->block->instructions.pop_back();
9996
9997 Builder bld(ctx->program, ctx->block);
9998
9999 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
10000 uint64_t mask = ctx->outputs.mask[slot];
10001 for (unsigned i = 0; i < 4; ++i) {
10002 if (!(mask & (1 << i)))
10003 continue;
10004
10005 Temp old = ctx->outputs.temps[slot * 4 + i];
10006 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
10007 ctx->outputs.temps[slot * 4 + i] = phi;
10008 }
10009 }
10010
10011 bld.insert(std::move(logical_start));
10012 }
10013
10014 static void create_vs_exports(isel_context *ctx)
10015 {
10016 assert(ctx->stage == vertex_vs ||
10017 ctx->stage == tess_eval_vs ||
10018 ctx->stage == gs_copy_vs ||
10019 ctx->stage == ngg_vertex_gs ||
10020 ctx->stage == ngg_tess_eval_gs);
10021
10022 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
10023 ? &ctx->program->info->tes.outinfo
10024 : &ctx->program->info->vs.outinfo;
10025
10026 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
10027 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10028 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
10029 }
10030
10031 if (ctx->options->key.has_multiview_view_index) {
10032 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
10033 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
10034 }
10035
10036 /* the order these position exports are created is important */
10037 int next_pos = 0;
10038 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
10039 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
10040 export_vs_psiz_layer_viewport(ctx, &next_pos);
10041 exported_pos = true;
10042 }
10043 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
10044 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
10045 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
10046 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
10047
10048 if (ctx->export_clip_dists) {
10049 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
10050 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
10051 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
10052 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
10053 }
10054
10055 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10056 if (i < VARYING_SLOT_VAR0 &&
10057 i != VARYING_SLOT_LAYER &&
10058 i != VARYING_SLOT_PRIMITIVE_ID &&
10059 i != VARYING_SLOT_VIEWPORT)
10060 continue;
10061
10062 export_vs_varying(ctx, i, false, NULL);
10063 }
10064
10065 if (!exported_pos)
10066 create_null_export(ctx);
10067 }
10068
10069 static bool export_fs_mrt_z(isel_context *ctx)
10070 {
10071 Builder bld(ctx->program, ctx->block);
10072 unsigned enabled_channels = 0;
10073 bool compr = false;
10074 Operand values[4];
10075
10076 for (unsigned i = 0; i < 4; ++i) {
10077 values[i] = Operand(v1);
10078 }
10079
10080 /* Both stencil and sample mask only need 16-bits. */
10081 if (!ctx->program->info->ps.writes_z &&
10082 (ctx->program->info->ps.writes_stencil ||
10083 ctx->program->info->ps.writes_sample_mask)) {
10084 compr = true; /* COMPR flag */
10085
10086 if (ctx->program->info->ps.writes_stencil) {
10087 /* Stencil should be in X[23:16]. */
10088 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
10089 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
10090 enabled_channels |= 0x3;
10091 }
10092
10093 if (ctx->program->info->ps.writes_sample_mask) {
10094 /* SampleMask should be in Y[15:0]. */
10095 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
10096 enabled_channels |= 0xc;
10097 }
10098 } else {
10099 if (ctx->program->info->ps.writes_z) {
10100 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
10101 enabled_channels |= 0x1;
10102 }
10103
10104 if (ctx->program->info->ps.writes_stencil) {
10105 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
10106 enabled_channels |= 0x2;
10107 }
10108
10109 if (ctx->program->info->ps.writes_sample_mask) {
10110 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
10111 enabled_channels |= 0x4;
10112 }
10113 }
10114
10115 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
10116 * writemask component.
10117 */
10118 if (ctx->options->chip_class == GFX6 &&
10119 ctx->options->family != CHIP_OLAND &&
10120 ctx->options->family != CHIP_HAINAN) {
10121 enabled_channels |= 0x1;
10122 }
10123
10124 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10125 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
10126
10127 return true;
10128 }
10129
10130 static bool export_fs_mrt_color(isel_context *ctx, int slot)
10131 {
10132 Builder bld(ctx->program, ctx->block);
10133 unsigned write_mask = ctx->outputs.mask[slot];
10134 Operand values[4];
10135
10136 for (unsigned i = 0; i < 4; ++i) {
10137 if (write_mask & (1 << i)) {
10138 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
10139 } else {
10140 values[i] = Operand(v1);
10141 }
10142 }
10143
10144 unsigned target, col_format;
10145 unsigned enabled_channels = 0;
10146 aco_opcode compr_op = (aco_opcode)0;
10147
10148 slot -= FRAG_RESULT_DATA0;
10149 target = V_008DFC_SQ_EXP_MRT + slot;
10150 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
10151
10152 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
10153 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
10154
10155 switch (col_format)
10156 {
10157 case V_028714_SPI_SHADER_ZERO:
10158 enabled_channels = 0; /* writemask */
10159 target = V_008DFC_SQ_EXP_NULL;
10160 break;
10161
10162 case V_028714_SPI_SHADER_32_R:
10163 enabled_channels = 1;
10164 break;
10165
10166 case V_028714_SPI_SHADER_32_GR:
10167 enabled_channels = 0x3;
10168 break;
10169
10170 case V_028714_SPI_SHADER_32_AR:
10171 if (ctx->options->chip_class >= GFX10) {
10172 /* Special case: on GFX10, the outputs are different for 32_AR */
10173 enabled_channels = 0x3;
10174 values[1] = values[3];
10175 values[3] = Operand(v1);
10176 } else {
10177 enabled_channels = 0x9;
10178 }
10179 break;
10180
10181 case V_028714_SPI_SHADER_FP16_ABGR:
10182 enabled_channels = 0x5;
10183 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
10184 break;
10185
10186 case V_028714_SPI_SHADER_UNORM16_ABGR:
10187 enabled_channels = 0x5;
10188 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
10189 break;
10190
10191 case V_028714_SPI_SHADER_SNORM16_ABGR:
10192 enabled_channels = 0x5;
10193 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
10194 break;
10195
10196 case V_028714_SPI_SHADER_UINT16_ABGR: {
10197 enabled_channels = 0x5;
10198 compr_op = aco_opcode::v_cvt_pk_u16_u32;
10199 if (is_int8 || is_int10) {
10200 /* clamp */
10201 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
10202 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10203
10204 for (unsigned i = 0; i < 4; i++) {
10205 if ((write_mask >> i) & 1) {
10206 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
10207 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
10208 values[i]);
10209 }
10210 }
10211 }
10212 break;
10213 }
10214
10215 case V_028714_SPI_SHADER_SINT16_ABGR:
10216 enabled_channels = 0x5;
10217 compr_op = aco_opcode::v_cvt_pk_i16_i32;
10218 if (is_int8 || is_int10) {
10219 /* clamp */
10220 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
10221 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
10222 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
10223 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
10224
10225 for (unsigned i = 0; i < 4; i++) {
10226 if ((write_mask >> i) & 1) {
10227 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
10228 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
10229 values[i]);
10230 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
10231 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
10232 values[i]);
10233 }
10234 }
10235 }
10236 break;
10237
10238 case V_028714_SPI_SHADER_32_ABGR:
10239 enabled_channels = 0xF;
10240 break;
10241
10242 default:
10243 break;
10244 }
10245
10246 if (target == V_008DFC_SQ_EXP_NULL)
10247 return false;
10248
10249 if ((bool) compr_op) {
10250 for (int i = 0; i < 2; i++) {
10251 /* check if at least one of the values to be compressed is enabled */
10252 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
10253 if (enabled) {
10254 enabled_channels |= enabled << (i*2);
10255 values[i] = bld.vop3(compr_op, bld.def(v1),
10256 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
10257 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
10258 } else {
10259 values[i] = Operand(v1);
10260 }
10261 }
10262 values[2] = Operand(v1);
10263 values[3] = Operand(v1);
10264 } else {
10265 for (int i = 0; i < 4; i++)
10266 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
10267 }
10268
10269 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10270 enabled_channels, target, (bool) compr_op);
10271 return true;
10272 }
10273
10274 static void create_fs_exports(isel_context *ctx)
10275 {
10276 bool exported = false;
10277
10278 /* Export depth, stencil and sample mask. */
10279 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
10280 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
10281 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
10282 exported |= export_fs_mrt_z(ctx);
10283
10284 /* Export all color render targets. */
10285 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
10286 if (ctx->outputs.mask[i])
10287 exported |= export_fs_mrt_color(ctx, i);
10288
10289 if (!exported)
10290 create_null_export(ctx);
10291 }
10292
10293 static void write_tcs_tess_factors(isel_context *ctx)
10294 {
10295 unsigned outer_comps;
10296 unsigned inner_comps;
10297
10298 switch (ctx->args->options->key.tcs.primitive_mode) {
10299 case GL_ISOLINES:
10300 outer_comps = 2;
10301 inner_comps = 0;
10302 break;
10303 case GL_TRIANGLES:
10304 outer_comps = 3;
10305 inner_comps = 1;
10306 break;
10307 case GL_QUADS:
10308 outer_comps = 4;
10309 inner_comps = 2;
10310 break;
10311 default:
10312 return;
10313 }
10314
10315 Builder bld(ctx->program, ctx->block);
10316
10317 bld.barrier(aco_opcode::p_memory_barrier_shared);
10318 if (unlikely(ctx->program->chip_class != GFX6 && ctx->program->workgroup_size > ctx->program->wave_size))
10319 bld.sopp(aco_opcode::s_barrier);
10320
10321 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10322 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10323
10324 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10325 if_context ic_invocation_id_is_zero;
10326 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10327 bld.reset(ctx->block);
10328
10329 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10330
10331 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10332 unsigned stride = inner_comps + outer_comps;
10333 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10334 Temp tf_inner_vec;
10335 Temp tf_outer_vec;
10336 Temp out[6];
10337 assert(stride <= (sizeof(out) / sizeof(Temp)));
10338
10339 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10340 // LINES reversal
10341 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10342 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10343 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10344 } else {
10345 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10346 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10347
10348 for (unsigned i = 0; i < outer_comps; ++i)
10349 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10350 for (unsigned i = 0; i < inner_comps; ++i)
10351 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10352 }
10353
10354 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10355 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10356 Temp byte_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, stride * 4u);
10357 unsigned tf_const_offset = 0;
10358
10359 if (ctx->program->chip_class <= GFX8) {
10360 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10361 if_context ic_rel_patch_id_is_zero;
10362 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10363 bld.reset(ctx->block);
10364
10365 /* Store the dynamic HS control word. */
10366 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10367 bld.mubuf(aco_opcode::buffer_store_dword,
10368 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10369 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
10370 /* disable_wqm */ false, /* glc */ true);
10371 tf_const_offset += 4;
10372
10373 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10374 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10375 bld.reset(ctx->block);
10376 }
10377
10378 assert(stride == 2 || stride == 4 || stride == 6);
10379 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10380 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
10381
10382 /* Store to offchip for TES to read - only if TES reads them */
10383 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10384 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10385 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10386
10387 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10388 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
10389
10390 if (likely(inner_comps)) {
10391 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10392 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
10393 }
10394 }
10395
10396 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10397 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10398 }
10399
10400 static void emit_stream_output(isel_context *ctx,
10401 Temp const *so_buffers,
10402 Temp const *so_write_offset,
10403 const struct radv_stream_output *output)
10404 {
10405 unsigned num_comps = util_bitcount(output->component_mask);
10406 unsigned writemask = (1 << num_comps) - 1;
10407 unsigned loc = output->location;
10408 unsigned buf = output->buffer;
10409
10410 assert(num_comps && num_comps <= 4);
10411 if (!num_comps || num_comps > 4)
10412 return;
10413
10414 unsigned start = ffs(output->component_mask) - 1;
10415
10416 Temp out[4];
10417 bool all_undef = true;
10418 assert(ctx->stage & hw_vs);
10419 for (unsigned i = 0; i < num_comps; i++) {
10420 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10421 all_undef = all_undef && !out[i].id();
10422 }
10423 if (all_undef)
10424 return;
10425
10426 while (writemask) {
10427 int start, count;
10428 u_bit_scan_consecutive_range(&writemask, &start, &count);
10429 if (count == 3 && ctx->options->chip_class == GFX6) {
10430 /* GFX6 doesn't support storing vec3, split it. */
10431 writemask |= 1u << (start + 2);
10432 count = 2;
10433 }
10434
10435 unsigned offset = output->offset + start * 4;
10436
10437 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10438 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10439 for (int i = 0; i < count; ++i)
10440 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10441 vec->definitions[0] = Definition(write_data);
10442 ctx->block->instructions.emplace_back(std::move(vec));
10443
10444 aco_opcode opcode;
10445 switch (count) {
10446 case 1:
10447 opcode = aco_opcode::buffer_store_dword;
10448 break;
10449 case 2:
10450 opcode = aco_opcode::buffer_store_dwordx2;
10451 break;
10452 case 3:
10453 opcode = aco_opcode::buffer_store_dwordx3;
10454 break;
10455 case 4:
10456 opcode = aco_opcode::buffer_store_dwordx4;
10457 break;
10458 default:
10459 unreachable("Unsupported dword count.");
10460 }
10461
10462 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10463 store->operands[0] = Operand(so_buffers[buf]);
10464 store->operands[1] = Operand(so_write_offset[buf]);
10465 store->operands[2] = Operand((uint32_t) 0);
10466 store->operands[3] = Operand(write_data);
10467 if (offset > 4095) {
10468 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10469 Builder bld(ctx->program, ctx->block);
10470 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10471 } else {
10472 store->offset = offset;
10473 }
10474 store->offen = true;
10475 store->glc = true;
10476 store->dlc = false;
10477 store->slc = true;
10478 store->can_reorder = true;
10479 ctx->block->instructions.emplace_back(std::move(store));
10480 }
10481 }
10482
10483 static void emit_streamout(isel_context *ctx, unsigned stream)
10484 {
10485 Builder bld(ctx->program, ctx->block);
10486
10487 Temp so_buffers[4];
10488 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10489 for (unsigned i = 0; i < 4; i++) {
10490 unsigned stride = ctx->program->info->so.strides[i];
10491 if (!stride)
10492 continue;
10493
10494 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10495 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10496 }
10497
10498 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10499 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10500
10501 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10502
10503 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10504
10505 if_context ic;
10506 begin_divergent_if_then(ctx, &ic, can_emit);
10507
10508 bld.reset(ctx->block);
10509
10510 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10511
10512 Temp so_write_offset[4];
10513
10514 for (unsigned i = 0; i < 4; i++) {
10515 unsigned stride = ctx->program->info->so.strides[i];
10516 if (!stride)
10517 continue;
10518
10519 if (stride == 1) {
10520 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10521 get_arg(ctx, ctx->args->streamout_write_idx),
10522 get_arg(ctx, ctx->args->streamout_offset[i]));
10523 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10524
10525 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10526 } else {
10527 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10528 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10529 get_arg(ctx, ctx->args->streamout_offset[i]));
10530 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10531 }
10532 }
10533
10534 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10535 struct radv_stream_output *output =
10536 &ctx->program->info->so.outputs[i];
10537 if (stream != output->stream)
10538 continue;
10539
10540 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10541 }
10542
10543 begin_divergent_if_else(ctx, &ic);
10544 end_divergent_if(ctx, &ic);
10545 }
10546
10547 } /* end namespace */
10548
10549 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10550 {
10551 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10552 Builder bld(ctx->program, ctx->block);
10553 constexpr unsigned hs_idx = 1u;
10554 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10555 get_arg(ctx, ctx->args->merged_wave_info),
10556 Operand((8u << 16) | (hs_idx * 8u)));
10557 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10558
10559 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10560
10561 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10562 get_arg(ctx, ctx->args->rel_auto_id),
10563 get_arg(ctx, ctx->args->ac.instance_id),
10564 ls_has_nonzero_hs_threads);
10565 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10566 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10567 get_arg(ctx, ctx->args->rel_auto_id),
10568 ls_has_nonzero_hs_threads);
10569 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10570 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10571 get_arg(ctx, ctx->args->ac.vertex_id),
10572 ls_has_nonzero_hs_threads);
10573
10574 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10575 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10576 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10577 }
10578
10579 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10580 {
10581 /* Split all arguments except for the first (ring_offsets) and the last
10582 * (exec) so that the dead channels don't stay live throughout the program.
10583 */
10584 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10585 if (startpgm->definitions[i].regClass().size() > 1) {
10586 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10587 startpgm->definitions[i].regClass().size());
10588 }
10589 }
10590 }
10591
10592 void handle_bc_optimize(isel_context *ctx)
10593 {
10594 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10595 Builder bld(ctx->program, ctx->block);
10596 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10597 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10598 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10599 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10600 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10601 if (uses_center && uses_centroid) {
10602 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10603 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10604
10605 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10606 Temp new_coord[2];
10607 for (unsigned i = 0; i < 2; i++) {
10608 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10609 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10610 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10611 persp_centroid, persp_center, sel);
10612 }
10613 ctx->persp_centroid = bld.tmp(v2);
10614 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10615 Operand(new_coord[0]), Operand(new_coord[1]));
10616 emit_split_vector(ctx, ctx->persp_centroid, 2);
10617 }
10618
10619 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10620 Temp new_coord[2];
10621 for (unsigned i = 0; i < 2; i++) {
10622 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10623 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10624 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10625 linear_centroid, linear_center, sel);
10626 }
10627 ctx->linear_centroid = bld.tmp(v2);
10628 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10629 Operand(new_coord[0]), Operand(new_coord[1]));
10630 emit_split_vector(ctx, ctx->linear_centroid, 2);
10631 }
10632 }
10633 }
10634
10635 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10636 {
10637 Program *program = ctx->program;
10638
10639 unsigned float_controls = shader->info.float_controls_execution_mode;
10640
10641 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10642 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10643 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10644 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10645 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10646
10647 program->next_fp_mode.must_flush_denorms32 =
10648 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10649 program->next_fp_mode.must_flush_denorms16_64 =
10650 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10651 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10652
10653 program->next_fp_mode.care_about_round32 =
10654 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10655
10656 program->next_fp_mode.care_about_round16_64 =
10657 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10658 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10659
10660 /* default to preserving fp16 and fp64 denorms, since it's free */
10661 if (program->next_fp_mode.must_flush_denorms16_64)
10662 program->next_fp_mode.denorm16_64 = 0;
10663 else
10664 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10665
10666 /* preserving fp32 denorms is expensive, so only do it if asked */
10667 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10668 program->next_fp_mode.denorm32 = fp_denorm_keep;
10669 else
10670 program->next_fp_mode.denorm32 = 0;
10671
10672 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10673 program->next_fp_mode.round32 = fp_round_tz;
10674 else
10675 program->next_fp_mode.round32 = fp_round_ne;
10676
10677 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10678 program->next_fp_mode.round16_64 = fp_round_tz;
10679 else
10680 program->next_fp_mode.round16_64 = fp_round_ne;
10681
10682 ctx->block->fp_mode = program->next_fp_mode;
10683 }
10684
10685 void cleanup_cfg(Program *program)
10686 {
10687 /* create linear_succs/logical_succs */
10688 for (Block& BB : program->blocks) {
10689 for (unsigned idx : BB.linear_preds)
10690 program->blocks[idx].linear_succs.emplace_back(BB.index);
10691 for (unsigned idx : BB.logical_preds)
10692 program->blocks[idx].logical_succs.emplace_back(BB.index);
10693 }
10694 }
10695
10696 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10697 {
10698 Builder bld(ctx->program, ctx->block);
10699
10700 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10701 Temp count = i == 0
10702 ? get_arg(ctx, ctx->args->merged_wave_info)
10703 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10704 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10705
10706 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10707 Temp cond;
10708
10709 if (ctx->program->wave_size == 64) {
10710 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10711 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10712 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10713 } else {
10714 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10715 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10716 }
10717
10718 return cond;
10719 }
10720
10721 bool ngg_early_prim_export(isel_context *ctx)
10722 {
10723 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10724 return true;
10725 }
10726
10727 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10728 {
10729 Builder bld(ctx->program, ctx->block);
10730
10731 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10732 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10733
10734 /* Get the id of the current wave within the threadgroup (workgroup) */
10735 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10736 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10737
10738 /* Execute the following code only on the first wave (wave id 0),
10739 * use the SCC def to tell if the wave id is zero or not.
10740 */
10741 Temp cond = wave_id_in_tg.def(1).getTemp();
10742 if_context ic;
10743 begin_uniform_if_then(ctx, &ic, cond);
10744 begin_uniform_if_else(ctx, &ic);
10745 bld.reset(ctx->block);
10746
10747 /* Number of vertices output by VS/TES */
10748 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10749 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10750 /* Number of primitives output by VS/TES */
10751 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10752 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10753
10754 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10755 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10756 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10757
10758 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10759 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10760
10761 end_uniform_if(ctx, &ic);
10762
10763 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10764 bld.reset(ctx->block);
10765 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10766 }
10767
10768 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10769 {
10770 Builder bld(ctx->program, ctx->block);
10771
10772 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10773 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10774 }
10775
10776 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10777 Temp tmp;
10778
10779 for (unsigned i = 0; i < num_vertices; ++i) {
10780 assert(vtxindex[i].id());
10781
10782 if (i)
10783 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10784 else
10785 tmp = vtxindex[i];
10786
10787 /* The initial edge flag is always false in tess eval shaders. */
10788 if (ctx->stage == ngg_vertex_gs) {
10789 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10790 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10791 }
10792 }
10793
10794 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10795
10796 return tmp;
10797 }
10798
10799 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10800 {
10801 Builder bld(ctx->program, ctx->block);
10802 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10803
10804 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10805 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10806 false /* compressed */, true/* done */, false /* valid mask */);
10807 }
10808
10809 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10810 {
10811 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10812 * These must always come before VS exports.
10813 *
10814 * It is recommended to do these as early as possible. They can be at the beginning when
10815 * there is no SW GS and the shader doesn't write edge flags.
10816 */
10817
10818 if_context ic;
10819 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10820 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10821
10822 Builder bld(ctx->program, ctx->block);
10823 constexpr unsigned max_vertices_per_primitive = 3;
10824 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10825
10826 if (ctx->stage == ngg_vertex_gs) {
10827 /* TODO: optimize for points & lines */
10828 } else if (ctx->stage == ngg_tess_eval_gs) {
10829 if (ctx->shader->info.tess.point_mode)
10830 num_vertices_per_primitive = 1;
10831 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10832 num_vertices_per_primitive = 2;
10833 } else {
10834 unreachable("Unsupported NGG shader stage");
10835 }
10836
10837 Temp vtxindex[max_vertices_per_primitive];
10838 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10839 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10840 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10841 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10842 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10843 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10844 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10845 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10846
10847 /* Export primitive data to the index buffer. */
10848 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10849
10850 /* Export primitive ID. */
10851 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10852 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10853 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10854 Temp provoking_vtx_index = vtxindex[0];
10855 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10856
10857 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10858 }
10859
10860 begin_divergent_if_else(ctx, &ic);
10861 end_divergent_if(ctx, &ic);
10862 }
10863
10864 void ngg_emit_nogs_output(isel_context *ctx)
10865 {
10866 /* Emits NGG GS output, for stages that don't have SW GS. */
10867
10868 if_context ic;
10869 Builder bld(ctx->program, ctx->block);
10870 bool late_prim_export = !ngg_early_prim_export(ctx);
10871
10872 /* NGG streamout is currently disabled by default. */
10873 assert(!ctx->args->shader_info->so.num_outputs);
10874
10875 if (late_prim_export) {
10876 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10877 create_export_phis(ctx);
10878 /* Do what we need to do in the GS threads. */
10879 ngg_emit_nogs_gsthreads(ctx);
10880
10881 /* What comes next should be executed on ES threads. */
10882 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10883 begin_divergent_if_then(ctx, &ic, is_es_thread);
10884 bld.reset(ctx->block);
10885 }
10886
10887 /* Export VS outputs */
10888 ctx->block->kind |= block_kind_export_end;
10889 create_vs_exports(ctx);
10890
10891 /* Export primitive ID */
10892 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10893 Temp prim_id;
10894
10895 if (ctx->stage == ngg_vertex_gs) {
10896 /* Wait for GS threads to store primitive ID in LDS. */
10897 bld.barrier(aco_opcode::p_memory_barrier_shared);
10898 bld.sopp(aco_opcode::s_barrier);
10899
10900 /* Calculate LDS address where the GS threads stored the primitive ID. */
10901 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10902 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10903 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10904 Temp wave_id_mul = bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10905 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10906 Temp addr = bld.v_mul24_imm(bld.def(v1), thread_id_in_tg, 4u);
10907
10908 /* Load primitive ID from LDS. */
10909 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10910 } else if (ctx->stage == ngg_tess_eval_gs) {
10911 /* TES: Just use the patch ID as the primitive ID. */
10912 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10913 } else {
10914 unreachable("unsupported NGG shader stage.");
10915 }
10916
10917 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10918 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10919
10920 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10921 }
10922
10923 if (late_prim_export) {
10924 begin_divergent_if_else(ctx, &ic);
10925 end_divergent_if(ctx, &ic);
10926 bld.reset(ctx->block);
10927 }
10928 }
10929
10930 void select_program(Program *program,
10931 unsigned shader_count,
10932 struct nir_shader *const *shaders,
10933 ac_shader_config* config,
10934 struct radv_shader_args *args)
10935 {
10936 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10937 if_context ic_merged_wave_info;
10938 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10939
10940 for (unsigned i = 0; i < shader_count; i++) {
10941 nir_shader *nir = shaders[i];
10942 init_context(&ctx, nir);
10943
10944 setup_fp_mode(&ctx, nir);
10945
10946 if (!i) {
10947 /* needs to be after init_context() for FS */
10948 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10949 append_logical_start(ctx.block);
10950
10951 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10952 fix_ls_vgpr_init_bug(&ctx, startpgm);
10953
10954 split_arguments(&ctx, startpgm);
10955 }
10956
10957 if (ngg_no_gs) {
10958 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10959
10960 if (ngg_early_prim_export(&ctx))
10961 ngg_emit_nogs_gsthreads(&ctx);
10962 }
10963
10964 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10965 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10966 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10967 ((nir->info.stage == MESA_SHADER_VERTEX &&
10968 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10969 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10970 ctx.stage == tess_eval_geometry_gs));
10971
10972 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10973 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10974 if (check_merged_wave_info) {
10975 Temp cond = merged_wave_info_to_mask(&ctx, i);
10976 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10977 }
10978
10979 if (i) {
10980 Builder bld(ctx.program, ctx.block);
10981
10982 bld.barrier(aco_opcode::p_memory_barrier_shared);
10983 bld.sopp(aco_opcode::s_barrier);
10984
10985 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10986 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10987 }
10988 } else if (ctx.stage == geometry_gs)
10989 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10990
10991 if (ctx.stage == fragment_fs)
10992 handle_bc_optimize(&ctx);
10993
10994 visit_cf_list(&ctx, &func->body);
10995
10996 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10997 emit_streamout(&ctx, 0);
10998
10999 if (ctx.stage & hw_vs) {
11000 create_vs_exports(&ctx);
11001 ctx.block->kind |= block_kind_export_end;
11002 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
11003 ngg_emit_nogs_output(&ctx);
11004 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
11005 Builder bld(ctx.program, ctx.block);
11006 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
11007 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
11008 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
11009 write_tcs_tess_factors(&ctx);
11010 }
11011
11012 if (ctx.stage == fragment_fs) {
11013 create_fs_exports(&ctx);
11014 ctx.block->kind |= block_kind_export_end;
11015 }
11016
11017 if (endif_merged_wave_info) {
11018 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
11019 end_divergent_if(&ctx, &ic_merged_wave_info);
11020 }
11021
11022 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
11023 ngg_emit_nogs_output(&ctx);
11024
11025 ralloc_free(ctx.divergent_vals);
11026
11027 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
11028 /* Outputs of the previous stage are inputs to the next stage */
11029 ctx.inputs = ctx.outputs;
11030 ctx.outputs = shader_io_state();
11031 }
11032 }
11033
11034 program->config->float_mode = program->blocks[0].fp_mode.val;
11035
11036 append_logical_end(ctx.block);
11037 ctx.block->kind |= block_kind_uniform;
11038 Builder bld(ctx.program, ctx.block);
11039 if (ctx.program->wb_smem_l1_on_end)
11040 bld.smem(aco_opcode::s_dcache_wb, false);
11041 bld.sopp(aco_opcode::s_endpgm);
11042
11043 cleanup_cfg(program);
11044 }
11045
11046 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
11047 ac_shader_config* config,
11048 struct radv_shader_args *args)
11049 {
11050 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
11051
11052 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
11053 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
11054 program->next_fp_mode.must_flush_denorms32 = false;
11055 program->next_fp_mode.must_flush_denorms16_64 = false;
11056 program->next_fp_mode.care_about_round32 = false;
11057 program->next_fp_mode.care_about_round16_64 = false;
11058 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
11059 program->next_fp_mode.denorm32 = 0;
11060 program->next_fp_mode.round32 = fp_round_ne;
11061 program->next_fp_mode.round16_64 = fp_round_ne;
11062 ctx.block->fp_mode = program->next_fp_mode;
11063
11064 add_startpgm(&ctx);
11065 append_logical_start(ctx.block);
11066
11067 Builder bld(ctx.program, ctx.block);
11068
11069 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
11070
11071 Operand stream_id(0u);
11072 if (args->shader_info->so.num_outputs)
11073 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
11074 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
11075
11076 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
11077
11078 std::stack<Block> endif_blocks;
11079
11080 for (unsigned stream = 0; stream < 4; stream++) {
11081 if (stream_id.isConstant() && stream != stream_id.constantValue())
11082 continue;
11083
11084 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
11085 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
11086 continue;
11087
11088 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
11089
11090 unsigned BB_if_idx = ctx.block->index;
11091 Block BB_endif = Block();
11092 if (!stream_id.isConstant()) {
11093 /* begin IF */
11094 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
11095 append_logical_end(ctx.block);
11096 ctx.block->kind |= block_kind_uniform;
11097 bld.branch(aco_opcode::p_cbranch_z, cond);
11098
11099 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
11100
11101 ctx.block = ctx.program->create_and_insert_block();
11102 add_edge(BB_if_idx, ctx.block);
11103 bld.reset(ctx.block);
11104 append_logical_start(ctx.block);
11105 }
11106
11107 unsigned offset = 0;
11108 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
11109 if (args->shader_info->gs.output_streams[i] != stream)
11110 continue;
11111
11112 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
11113 unsigned length = util_last_bit(output_usage_mask);
11114 for (unsigned j = 0; j < length; ++j) {
11115 if (!(output_usage_mask & (1 << j)))
11116 continue;
11117
11118 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
11119 Temp voffset = vtx_offset;
11120 if (const_offset >= 4096u) {
11121 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
11122 const_offset %= 4096u;
11123 }
11124
11125 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
11126 mubuf->definitions[0] = bld.def(v1);
11127 mubuf->operands[0] = Operand(gsvs_ring);
11128 mubuf->operands[1] = Operand(voffset);
11129 mubuf->operands[2] = Operand(0u);
11130 mubuf->offen = true;
11131 mubuf->offset = const_offset;
11132 mubuf->glc = true;
11133 mubuf->slc = true;
11134 mubuf->dlc = args->options->chip_class >= GFX10;
11135 mubuf->barrier = barrier_none;
11136 mubuf->can_reorder = true;
11137
11138 ctx.outputs.mask[i] |= 1 << j;
11139 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
11140
11141 bld.insert(std::move(mubuf));
11142
11143 offset++;
11144 }
11145 }
11146
11147 if (args->shader_info->so.num_outputs) {
11148 emit_streamout(&ctx, stream);
11149 bld.reset(ctx.block);
11150 }
11151
11152 if (stream == 0) {
11153 create_vs_exports(&ctx);
11154 ctx.block->kind |= block_kind_export_end;
11155 }
11156
11157 if (!stream_id.isConstant()) {
11158 append_logical_end(ctx.block);
11159
11160 /* branch from then block to endif block */
11161 bld.branch(aco_opcode::p_branch);
11162 add_edge(ctx.block->index, &BB_endif);
11163 ctx.block->kind |= block_kind_uniform;
11164
11165 /* emit else block */
11166 ctx.block = ctx.program->create_and_insert_block();
11167 add_edge(BB_if_idx, ctx.block);
11168 bld.reset(ctx.block);
11169 append_logical_start(ctx.block);
11170
11171 endif_blocks.push(std::move(BB_endif));
11172 }
11173 }
11174
11175 while (!endif_blocks.empty()) {
11176 Block BB_endif = std::move(endif_blocks.top());
11177 endif_blocks.pop();
11178
11179 Block *BB_else = ctx.block;
11180
11181 append_logical_end(BB_else);
11182 /* branch from else block to endif block */
11183 bld.branch(aco_opcode::p_branch);
11184 add_edge(BB_else->index, &BB_endif);
11185 BB_else->kind |= block_kind_uniform;
11186
11187 /** emit endif merge block */
11188 ctx.block = program->insert_block(std::move(BB_endif));
11189 bld.reset(ctx.block);
11190 append_logical_start(ctx.block);
11191 }
11192
11193 program->config->float_mode = program->blocks[0].fp_mode.val;
11194
11195 append_logical_end(ctx.block);
11196 ctx.block->kind |= block_kind_uniform;
11197 bld.sopp(aco_opcode::s_endpgm);
11198
11199 cleanup_cfg(program);
11200 }
11201 }