aco: implement 64-bit ineg
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <map>
28
29 #include "aco_ir.h"
30 #include "aco_builder.h"
31 #include "aco_interface.h"
32 #include "aco_instruction_selection_setup.cpp"
33 #include "util/fast_idiv_by_const.h"
34
35 namespace aco {
36 namespace {
37
38 class loop_info_RAII {
39 isel_context* ctx;
40 unsigned header_idx_old;
41 Block* exit_old;
42 bool divergent_cont_old;
43 bool divergent_branch_old;
44 bool divergent_if_old;
45
46 public:
47 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
48 : ctx(ctx),
49 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
50 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
51 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
52 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
53 {
54 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
55 ctx->cf_info.parent_loop.exit = loop_exit;
56 ctx->cf_info.parent_loop.has_divergent_continue = false;
57 ctx->cf_info.parent_loop.has_divergent_branch = false;
58 ctx->cf_info.parent_if.is_divergent = false;
59 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
60 }
61
62 ~loop_info_RAII()
63 {
64 ctx->cf_info.parent_loop.header_idx = header_idx_old;
65 ctx->cf_info.parent_loop.exit = exit_old;
66 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
67 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
68 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
69 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
70 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
71 ctx->cf_info.exec_potentially_empty = false;
72 }
73 };
74
75 struct if_context {
76 Temp cond;
77
78 bool divergent_old;
79 bool exec_potentially_empty_old;
80
81 unsigned BB_if_idx;
82 unsigned invert_idx;
83 bool then_branch_divergent;
84 Block BB_invert;
85 Block BB_endif;
86 };
87
88 static void visit_cf_list(struct isel_context *ctx,
89 struct exec_list *list);
90
91 static void add_logical_edge(unsigned pred_idx, Block *succ)
92 {
93 succ->logical_preds.emplace_back(pred_idx);
94 }
95
96
97 static void add_linear_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->linear_preds.emplace_back(pred_idx);
100 }
101
102 static void add_edge(unsigned pred_idx, Block *succ)
103 {
104 add_logical_edge(pred_idx, succ);
105 add_linear_edge(pred_idx, succ);
106 }
107
108 static void append_logical_start(Block *b)
109 {
110 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
111 }
112
113 static void append_logical_end(Block *b)
114 {
115 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
116 }
117
118 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
119 {
120 assert(ctx->allocated[def->index].id());
121 return ctx->allocated[def->index];
122 }
123
124 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
125 {
126 Builder bld(ctx->program, ctx->block);
127
128 if (!dst.id())
129 dst = bld.tmp(src.regClass());
130
131 if (ctx->stage != fragment_fs) {
132 if (!dst.id())
133 return src;
134
135 if (src.type() == RegType::vgpr || src.size() > 1)
136 bld.copy(Definition(dst), src);
137 else
138 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
139 return dst;
140 }
141
142 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
143 ctx->program->needs_wqm |= program_needs_wqm;
144 return dst;
145 }
146
147 Temp as_vgpr(isel_context *ctx, Temp val)
148 {
149 if (val.type() == RegType::sgpr) {
150 Builder bld(ctx->program, ctx->block);
151 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
152 }
153 assert(val.type() == RegType::vgpr);
154 return val;
155 }
156
157 //assumes a != 0xffffffff
158 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
159 {
160 assert(b != 0);
161 Builder bld(ctx->program, ctx->block);
162
163 if (util_is_power_of_two_or_zero(b)) {
164 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
165 return;
166 }
167
168 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
169
170 assert(info.multiplier <= 0xffffffff);
171
172 bool pre_shift = info.pre_shift != 0;
173 bool increment = info.increment != 0;
174 bool multiply = true;
175 bool post_shift = info.post_shift != 0;
176
177 if (!pre_shift && !increment && !multiply && !post_shift) {
178 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
179 return;
180 }
181
182 Temp pre_shift_dst = a;
183 if (pre_shift) {
184 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
185 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
186 }
187
188 Temp increment_dst = pre_shift_dst;
189 if (increment) {
190 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
191 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
192 }
193
194 Temp multiply_dst = increment_dst;
195 if (multiply) {
196 multiply_dst = post_shift ? bld.tmp(v1) : dst;
197 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
198 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
199 }
200
201 if (post_shift) {
202 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
203 }
204 }
205
206 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
207 {
208 Builder bld(ctx->program, ctx->block);
209 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
210 }
211
212
213 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
214 {
215 /* no need to extract the whole vector */
216 if (src.regClass() == dst_rc) {
217 assert(idx == 0);
218 return src;
219 }
220 assert(src.size() > idx);
221 Builder bld(ctx->program, ctx->block);
222 auto it = ctx->allocated_vec.find(src.id());
223 /* the size check needs to be early because elements other than 0 may be garbage */
224 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
225 if (it->second[idx].regClass() == dst_rc) {
226 return it->second[idx];
227 } else {
228 assert(dst_rc.size() == it->second[idx].regClass().size());
229 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
230 return bld.copy(bld.def(dst_rc), it->second[idx]);
231 }
232 }
233
234 if (src.size() == dst_rc.size()) {
235 assert(idx == 0);
236 return bld.copy(bld.def(dst_rc), src);
237 } else {
238 Temp dst = bld.tmp(dst_rc);
239 emit_extract_vector(ctx, src, idx, dst);
240 return dst;
241 }
242 }
243
244 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
245 {
246 if (num_components == 1)
247 return;
248 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
249 return;
250 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
251 split->operands[0] = Operand(vec_src);
252 std::array<Temp,4> elems;
253 for (unsigned i = 0; i < num_components; i++) {
254 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
255 split->definitions[i] = Definition(elems[i]);
256 }
257 ctx->block->instructions.emplace_back(std::move(split));
258 ctx->allocated_vec.emplace(vec_src.id(), elems);
259 }
260
261 /* This vector expansion uses a mask to determine which elements in the new vector
262 * come from the original vector. The other elements are undefined. */
263 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
264 {
265 emit_split_vector(ctx, vec_src, util_bitcount(mask));
266
267 if (vec_src == dst)
268 return;
269
270 Builder bld(ctx->program, ctx->block);
271 if (num_components == 1) {
272 if (dst.type() == RegType::sgpr)
273 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
274 else
275 bld.copy(Definition(dst), vec_src);
276 return;
277 }
278
279 unsigned component_size = dst.size() / num_components;
280 std::array<Temp,4> elems;
281
282 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
283 vec->definitions[0] = Definition(dst);
284 unsigned k = 0;
285 for (unsigned i = 0; i < num_components; i++) {
286 if (mask & (1 << i)) {
287 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
288 if (dst.type() == RegType::sgpr)
289 src = bld.as_uniform(src);
290 vec->operands[i] = Operand(src);
291 } else {
292 vec->operands[i] = Operand(0u);
293 }
294 elems[i] = vec->operands[i].getTemp();
295 }
296 ctx->block->instructions.emplace_back(std::move(vec));
297 ctx->allocated_vec.emplace(dst.id(), elems);
298 }
299
300 Temp as_divergent_bool(isel_context *ctx, Temp val, bool vcc_hint)
301 {
302 if (val.regClass() == s2) {
303 return val;
304 } else {
305 assert(val.regClass() == s1);
306 Builder bld(ctx->program, ctx->block);
307 Definition& def = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2),
308 Operand((uint32_t) -1), Operand(0u), bld.scc(val)).def(0);
309 if (vcc_hint)
310 def.setHint(vcc);
311 return def.getTemp();
312 }
313 }
314
315 Temp as_uniform_bool(isel_context *ctx, Temp val)
316 {
317 if (val.regClass() == s1) {
318 return val;
319 } else {
320 assert(val.regClass() == s2);
321 Builder bld(ctx->program, ctx->block);
322 return bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), Operand(0u), Operand(val));
323 }
324 }
325
326 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
327 {
328 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
329 return get_ssa_temp(ctx, src.src.ssa);
330
331 if (src.src.ssa->num_components == size) {
332 bool identity_swizzle = true;
333 for (unsigned i = 0; identity_swizzle && i < size; i++) {
334 if (src.swizzle[i] != i)
335 identity_swizzle = false;
336 }
337 if (identity_swizzle)
338 return get_ssa_temp(ctx, src.src.ssa);
339 }
340
341 Temp vec = get_ssa_temp(ctx, src.src.ssa);
342 unsigned elem_size = vec.size() / src.src.ssa->num_components;
343 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
344 assert(vec.size() % elem_size == 0);
345
346 RegClass elem_rc = RegClass(vec.type(), elem_size);
347 if (size == 1) {
348 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
349 } else {
350 assert(size <= 4);
351 std::array<Temp,4> elems;
352 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
353 for (unsigned i = 0; i < size; ++i) {
354 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
355 vec_instr->operands[i] = Operand{elems[i]};
356 }
357 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
358 vec_instr->definitions[0] = Definition(dst);
359 ctx->block->instructions.emplace_back(std::move(vec_instr));
360 ctx->allocated_vec.emplace(dst.id(), elems);
361 return dst;
362 }
363 }
364
365 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
366 {
367 if (ptr.size() == 2)
368 return ptr;
369 Builder bld(ctx->program, ctx->block);
370 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
371 ptr, Operand((unsigned)ctx->options->address32_hi));
372 }
373
374 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
375 {
376 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
377 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
378 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
379 sop2->definitions[0] = Definition(dst);
380 if (writes_scc)
381 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
382 ctx->block->instructions.emplace_back(std::move(sop2));
383 }
384
385 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool commutative, bool swap_srcs=false)
386 {
387 Builder bld(ctx->program, ctx->block);
388 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
389 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
390 if (src1.type() == RegType::sgpr) {
391 if (commutative && src0.type() == RegType::vgpr) {
392 Temp t = src0;
393 src0 = src1;
394 src1 = t;
395 } else if (src0.type() == RegType::vgpr &&
396 op != aco_opcode::v_madmk_f32 &&
397 op != aco_opcode::v_madak_f32 &&
398 op != aco_opcode::v_madmk_f16 &&
399 op != aco_opcode::v_madak_f16) {
400 /* If the instruction is not commutative, we emit a VOP3A instruction */
401 bld.vop2_e64(op, Definition(dst), src0, src1);
402 return;
403 } else {
404 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
405 }
406 }
407 bld.vop2(op, Definition(dst), src0, src1);
408 }
409
410 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
411 {
412 Temp src0 = get_alu_src(ctx, instr->src[0]);
413 Temp src1 = get_alu_src(ctx, instr->src[1]);
414 Temp src2 = get_alu_src(ctx, instr->src[2]);
415
416 /* ensure that the instruction has at most 1 sgpr operand
417 * The optimizer will inline constants for us */
418 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
419 src0 = as_vgpr(ctx, src0);
420 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
421 src1 = as_vgpr(ctx, src1);
422 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
423 src2 = as_vgpr(ctx, src2);
424
425 Builder bld(ctx->program, ctx->block);
426 bld.vop3(op, Definition(dst), src0, src1, src2);
427 }
428
429 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
430 {
431 Builder bld(ctx->program, ctx->block);
432 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
433 }
434
435 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
436 {
437 Temp src0 = get_alu_src(ctx, instr->src[0]);
438 Temp src1 = get_alu_src(ctx, instr->src[1]);
439 aco_ptr<Instruction> vopc;
440 if (src1.type() == RegType::sgpr) {
441 if (src0.type() == RegType::vgpr) {
442 /* to swap the operands, we might also have to change the opcode */
443 switch (op) {
444 case aco_opcode::v_cmp_lt_f32:
445 op = aco_opcode::v_cmp_gt_f32;
446 break;
447 case aco_opcode::v_cmp_ge_f32:
448 op = aco_opcode::v_cmp_le_f32;
449 break;
450 case aco_opcode::v_cmp_lt_i32:
451 op = aco_opcode::v_cmp_gt_i32;
452 break;
453 case aco_opcode::v_cmp_ge_i32:
454 op = aco_opcode::v_cmp_le_i32;
455 break;
456 case aco_opcode::v_cmp_lt_u32:
457 op = aco_opcode::v_cmp_gt_u32;
458 break;
459 case aco_opcode::v_cmp_ge_u32:
460 op = aco_opcode::v_cmp_le_u32;
461 break;
462 case aco_opcode::v_cmp_lt_f64:
463 op = aco_opcode::v_cmp_gt_f64;
464 break;
465 case aco_opcode::v_cmp_ge_f64:
466 op = aco_opcode::v_cmp_le_f64;
467 break;
468 case aco_opcode::v_cmp_lt_i64:
469 op = aco_opcode::v_cmp_gt_i64;
470 break;
471 case aco_opcode::v_cmp_ge_i64:
472 op = aco_opcode::v_cmp_le_i64;
473 break;
474 case aco_opcode::v_cmp_lt_u64:
475 op = aco_opcode::v_cmp_gt_u64;
476 break;
477 case aco_opcode::v_cmp_ge_u64:
478 op = aco_opcode::v_cmp_le_u64;
479 break;
480 default: /* eq and ne are commutative */
481 break;
482 }
483 Temp t = src0;
484 src0 = src1;
485 src1 = t;
486 } else {
487 src1 = as_vgpr(ctx, src1);
488 }
489 }
490 Builder bld(ctx->program, ctx->block);
491 bld.vopc(op, Definition(dst), src0, src1).def(0).setHint(vcc);
492 }
493
494 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
495 {
496 if (dst.regClass() == s2) {
497 emit_vopc_instruction(ctx, instr, op, dst);
498 if (!ctx->divergent_vals[instr->dest.dest.ssa.index])
499 emit_split_vector(ctx, dst, 2);
500 } else if (dst.regClass() == s1) {
501 Temp src0 = get_alu_src(ctx, instr->src[0]);
502 Temp src1 = get_alu_src(ctx, instr->src[1]);
503 assert(src0.type() == RegType::sgpr && src1.type() == RegType::sgpr);
504
505 Builder bld(ctx->program, ctx->block);
506 bld.sopc(op, bld.scc(Definition(dst)), src0, src1);
507
508 } else {
509 assert(false);
510 }
511 }
512
513 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, aco_opcode op32, aco_opcode op64, Temp dst)
514 {
515 Builder bld(ctx->program, ctx->block);
516 Temp src0 = get_alu_src(ctx, instr->src[0]);
517 Temp src1 = get_alu_src(ctx, instr->src[1]);
518 if (dst.regClass() == s2) {
519 bld.sop2(op64, Definition(dst), bld.def(s1, scc),
520 as_divergent_bool(ctx, src0, false), as_divergent_bool(ctx, src1, false));
521 } else {
522 assert(dst.regClass() == s1);
523 bld.sop2(op32, bld.def(s1), bld.scc(Definition(dst)),
524 as_uniform_bool(ctx, src0), as_uniform_bool(ctx, src1));
525 }
526 }
527
528
529 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
530 {
531 Builder bld(ctx->program, ctx->block);
532 Temp cond = get_alu_src(ctx, instr->src[0]);
533 Temp then = get_alu_src(ctx, instr->src[1]);
534 Temp els = get_alu_src(ctx, instr->src[2]);
535
536 if (dst.type() == RegType::vgpr) {
537 cond = as_divergent_bool(ctx, cond, true);
538
539 aco_ptr<Instruction> bcsel;
540 if (dst.size() == 1) {
541 then = as_vgpr(ctx, then);
542 els = as_vgpr(ctx, els);
543
544 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
545 } else if (dst.size() == 2) {
546 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
547 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
548 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
549 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
550
551 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
552 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
553
554 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
555 } else {
556 fprintf(stderr, "Unimplemented NIR instr bit size: ");
557 nir_print_instr(&instr->instr, stderr);
558 fprintf(stderr, "\n");
559 }
560 return;
561 }
562
563 if (instr->dest.dest.ssa.bit_size != 1) { /* uniform condition and values in sgpr */
564 if (dst.regClass() == s1 || dst.regClass() == s2) {
565 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
566 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
567 bld.sop2(op, Definition(dst), then, els, bld.scc(as_uniform_bool(ctx, cond)));
568 } else {
569 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
570 nir_print_instr(&instr->instr, stderr);
571 fprintf(stderr, "\n");
572 }
573 return;
574 }
575
576 /* boolean bcsel */
577 assert(instr->dest.dest.ssa.bit_size == 1);
578
579 if (dst.regClass() == s1)
580 cond = as_uniform_bool(ctx, cond);
581
582 if (cond.regClass() == s1) { /* uniform selection */
583 aco_opcode op;
584 if (dst.regClass() == s2) {
585 op = aco_opcode::s_cselect_b64;
586 then = as_divergent_bool(ctx, then, false);
587 els = as_divergent_bool(ctx, els, false);
588 } else {
589 assert(dst.regClass() == s1);
590 op = aco_opcode::s_cselect_b32;
591 then = as_uniform_bool(ctx, then);
592 els = as_uniform_bool(ctx, els);
593 }
594 bld.sop2(op, Definition(dst), then, els, bld.scc(cond));
595 return;
596 }
597
598 /* divergent boolean bcsel
599 * this implements bcsel on bools: dst = s0 ? s1 : s2
600 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
601 assert (dst.regClass() == s2);
602 then = as_divergent_bool(ctx, then, false);
603 els = as_divergent_bool(ctx, els, false);
604
605 if (cond.id() != then.id())
606 then = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), cond, then);
607
608 if (cond.id() == els.id())
609 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), then);
610 else
611 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), then,
612 bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc), els, cond));
613 }
614
615 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
616 {
617 if (!instr->dest.dest.is_ssa) {
618 fprintf(stderr, "nir alu dst not in ssa: ");
619 nir_print_instr(&instr->instr, stderr);
620 fprintf(stderr, "\n");
621 abort();
622 }
623 Builder bld(ctx->program, ctx->block);
624 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
625 switch(instr->op) {
626 case nir_op_vec2:
627 case nir_op_vec3:
628 case nir_op_vec4: {
629 std::array<Temp,4> elems;
630 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
631 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
632 elems[i] = get_alu_src(ctx, instr->src[i]);
633 vec->operands[i] = Operand{elems[i]};
634 }
635 vec->definitions[0] = Definition(dst);
636 ctx->block->instructions.emplace_back(std::move(vec));
637 ctx->allocated_vec.emplace(dst.id(), elems);
638 break;
639 }
640 case nir_op_mov: {
641 Temp src = get_alu_src(ctx, instr->src[0]);
642 aco_ptr<Instruction> mov;
643 if (dst.type() == RegType::sgpr) {
644 if (src.type() == RegType::vgpr)
645 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
646 else if (src.regClass() == s1)
647 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
648 else if (src.regClass() == s2)
649 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
650 else
651 unreachable("wrong src register class for nir_op_imov");
652 } else if (dst.regClass() == v1) {
653 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
654 } else if (dst.regClass() == v2) {
655 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
656 } else {
657 nir_print_instr(&instr->instr, stderr);
658 unreachable("Should have been lowered to scalar.");
659 }
660 break;
661 }
662 case nir_op_inot: {
663 Temp src = get_alu_src(ctx, instr->src[0]);
664 /* uniform booleans */
665 if (instr->dest.dest.ssa.bit_size == 1 && dst.regClass() == s1) {
666 if (src.regClass() == s1) {
667 /* in this case, src is either 1 or 0 */
668 bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.scc(Definition(dst)), Operand(1u), src);
669 } else {
670 /* src is either exec_mask or 0 */
671 assert(src.regClass() == s2);
672 bld.sopc(aco_opcode::s_cmp_eq_u64, bld.scc(Definition(dst)), Operand(0u), src);
673 }
674 } else if (dst.regClass() == v1) {
675 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
676 } else if (dst.type() == RegType::sgpr) {
677 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
678 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
679 } else {
680 fprintf(stderr, "Unimplemented NIR instr bit size: ");
681 nir_print_instr(&instr->instr, stderr);
682 fprintf(stderr, "\n");
683 }
684 break;
685 }
686 case nir_op_ineg: {
687 Temp src = get_alu_src(ctx, instr->src[0]);
688 if (dst.regClass() == v1) {
689 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
690 } else if (dst.regClass() == s1) {
691 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
692 } else if (dst.size() == 2) {
693 Temp src0 = bld.tmp(dst.type(), 1);
694 Temp src1 = bld.tmp(dst.type(), 1);
695 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
696
697 if (dst.regClass() == s2) {
698 Temp carry = bld.tmp(s1);
699 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
700 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
701 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
702 } else {
703 Temp lower = bld.tmp(v1);
704 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
705 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
706 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
707 }
708 } else {
709 fprintf(stderr, "Unimplemented NIR instr bit size: ");
710 nir_print_instr(&instr->instr, stderr);
711 fprintf(stderr, "\n");
712 }
713 break;
714 }
715 case nir_op_iabs: {
716 if (dst.regClass() == s1) {
717 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
718 } else if (dst.regClass() == v1) {
719 Temp src = get_alu_src(ctx, instr->src[0]);
720 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
721 } else {
722 fprintf(stderr, "Unimplemented NIR instr bit size: ");
723 nir_print_instr(&instr->instr, stderr);
724 fprintf(stderr, "\n");
725 }
726 break;
727 }
728 case nir_op_isign: {
729 Temp src = get_alu_src(ctx, instr->src[0]);
730 if (dst.regClass() == s1) {
731 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
732 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
733 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
734 } else if (dst.regClass() == s2) {
735 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
736 Temp neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
737 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, neqz);
738 } else if (dst.regClass() == v1) {
739 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
740 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
741 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
742 } else if (dst.regClass() == v2) {
743 Temp upper = emit_extract_vector(ctx, src, 1, v1);
744 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
745 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
746 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
747 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
748 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
749 } else {
750 fprintf(stderr, "Unimplemented NIR instr bit size: ");
751 nir_print_instr(&instr->instr, stderr);
752 fprintf(stderr, "\n");
753 }
754 break;
755 }
756 case nir_op_imax: {
757 if (dst.regClass() == v1) {
758 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
759 } else if (dst.regClass() == s1) {
760 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
761 } else {
762 fprintf(stderr, "Unimplemented NIR instr bit size: ");
763 nir_print_instr(&instr->instr, stderr);
764 fprintf(stderr, "\n");
765 }
766 break;
767 }
768 case nir_op_umax: {
769 if (dst.regClass() == v1) {
770 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
771 } else if (dst.regClass() == s1) {
772 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
773 } else {
774 fprintf(stderr, "Unimplemented NIR instr bit size: ");
775 nir_print_instr(&instr->instr, stderr);
776 fprintf(stderr, "\n");
777 }
778 break;
779 }
780 case nir_op_imin: {
781 if (dst.regClass() == v1) {
782 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
783 } else if (dst.regClass() == s1) {
784 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
785 } else {
786 fprintf(stderr, "Unimplemented NIR instr bit size: ");
787 nir_print_instr(&instr->instr, stderr);
788 fprintf(stderr, "\n");
789 }
790 break;
791 }
792 case nir_op_umin: {
793 if (dst.regClass() == v1) {
794 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
795 } else if (dst.regClass() == s1) {
796 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
797 } else {
798 fprintf(stderr, "Unimplemented NIR instr bit size: ");
799 nir_print_instr(&instr->instr, stderr);
800 fprintf(stderr, "\n");
801 }
802 break;
803 }
804 case nir_op_ior: {
805 if (instr->dest.dest.ssa.bit_size == 1) {
806 emit_boolean_logic(ctx, instr, aco_opcode::s_or_b32, aco_opcode::s_or_b64, dst);
807 } else if (dst.regClass() == v1) {
808 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
809 } else if (dst.regClass() == s1) {
810 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
811 } else if (dst.regClass() == s2) {
812 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
813 } else {
814 fprintf(stderr, "Unimplemented NIR instr bit size: ");
815 nir_print_instr(&instr->instr, stderr);
816 fprintf(stderr, "\n");
817 }
818 break;
819 }
820 case nir_op_iand: {
821 if (instr->dest.dest.ssa.bit_size == 1) {
822 emit_boolean_logic(ctx, instr, aco_opcode::s_and_b32, aco_opcode::s_and_b64, dst);
823 } else if (dst.regClass() == v1) {
824 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
825 } else if (dst.regClass() == s1) {
826 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
827 } else if (dst.regClass() == s2) {
828 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
829 } else {
830 fprintf(stderr, "Unimplemented NIR instr bit size: ");
831 nir_print_instr(&instr->instr, stderr);
832 fprintf(stderr, "\n");
833 }
834 break;
835 }
836 case nir_op_ixor: {
837 if (instr->dest.dest.ssa.bit_size == 1) {
838 emit_boolean_logic(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::s_xor_b64, dst);
839 } else if (dst.regClass() == v1) {
840 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
841 } else if (dst.regClass() == s1) {
842 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
843 } else if (dst.regClass() == s2) {
844 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
845 } else {
846 fprintf(stderr, "Unimplemented NIR instr bit size: ");
847 nir_print_instr(&instr->instr, stderr);
848 fprintf(stderr, "\n");
849 }
850 break;
851 }
852 case nir_op_ushr: {
853 if (dst.regClass() == v1) {
854 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
855 } else if (dst.regClass() == v2) {
856 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
857 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
858 } else if (dst.regClass() == s2) {
859 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
860 } else if (dst.regClass() == s1) {
861 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
862 } else {
863 fprintf(stderr, "Unimplemented NIR instr bit size: ");
864 nir_print_instr(&instr->instr, stderr);
865 fprintf(stderr, "\n");
866 }
867 break;
868 }
869 case nir_op_ishl: {
870 if (dst.regClass() == v1) {
871 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
872 } else if (dst.regClass() == v2) {
873 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
874 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
875 } else if (dst.regClass() == s1) {
876 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
877 } else if (dst.regClass() == s2) {
878 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
879 } else {
880 fprintf(stderr, "Unimplemented NIR instr bit size: ");
881 nir_print_instr(&instr->instr, stderr);
882 fprintf(stderr, "\n");
883 }
884 break;
885 }
886 case nir_op_ishr: {
887 if (dst.regClass() == v1) {
888 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
889 } else if (dst.regClass() == v2) {
890 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
891 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
892 } else if (dst.regClass() == s1) {
893 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
894 } else if (dst.regClass() == s2) {
895 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
896 } else {
897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
898 nir_print_instr(&instr->instr, stderr);
899 fprintf(stderr, "\n");
900 }
901 break;
902 }
903 case nir_op_find_lsb: {
904 Temp src = get_alu_src(ctx, instr->src[0]);
905 if (src.regClass() == s1) {
906 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
907 } else if (src.regClass() == v1) {
908 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
909 } else if (src.regClass() == s2) {
910 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
911 } else {
912 fprintf(stderr, "Unimplemented NIR instr bit size: ");
913 nir_print_instr(&instr->instr, stderr);
914 fprintf(stderr, "\n");
915 }
916 break;
917 }
918 case nir_op_ufind_msb:
919 case nir_op_ifind_msb: {
920 Temp src = get_alu_src(ctx, instr->src[0]);
921 if (src.regClass() == s1 || src.regClass() == s2) {
922 aco_opcode op = src.regClass() == s2 ?
923 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
924 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
925 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
926
927 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
928 Operand(src.size() * 32u - 1u), msb_rev);
929 Temp msb = sub.def(0).getTemp();
930 Temp carry = sub.def(1).getTemp();
931
932 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, carry);
933 } else if (src.regClass() == v1) {
934 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
935 Temp msb_rev = bld.tmp(v1);
936 emit_vop1_instruction(ctx, instr, op, msb_rev);
937 Temp msb = bld.tmp(v1);
938 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
939 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
940 } else {
941 fprintf(stderr, "Unimplemented NIR instr bit size: ");
942 nir_print_instr(&instr->instr, stderr);
943 fprintf(stderr, "\n");
944 }
945 break;
946 }
947 case nir_op_bitfield_reverse: {
948 if (dst.regClass() == s1) {
949 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
950 } else if (dst.regClass() == v1) {
951 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
952 } else {
953 fprintf(stderr, "Unimplemented NIR instr bit size: ");
954 nir_print_instr(&instr->instr, stderr);
955 fprintf(stderr, "\n");
956 }
957 break;
958 }
959 case nir_op_iadd: {
960 if (dst.regClass() == s1) {
961 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
962 break;
963 }
964
965 Temp src0 = get_alu_src(ctx, instr->src[0]);
966 Temp src1 = get_alu_src(ctx, instr->src[1]);
967 if (dst.regClass() == v1) {
968 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
969 break;
970 }
971
972 assert(src0.size() == 2 && src1.size() == 2);
973 Temp src00 = bld.tmp(src0.type(), 1);
974 Temp src01 = bld.tmp(dst.type(), 1);
975 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
976 Temp src10 = bld.tmp(src1.type(), 1);
977 Temp src11 = bld.tmp(dst.type(), 1);
978 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
979
980 if (dst.regClass() == s2) {
981 Temp carry = bld.tmp(s1);
982 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
983 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
984 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
985 } else if (dst.regClass() == v2) {
986 Temp dst0 = bld.tmp(v1);
987 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
988 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
989 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
990 } else {
991 fprintf(stderr, "Unimplemented NIR instr bit size: ");
992 nir_print_instr(&instr->instr, stderr);
993 fprintf(stderr, "\n");
994 }
995 break;
996 }
997 case nir_op_uadd_sat: {
998 Temp src0 = get_alu_src(ctx, instr->src[0]);
999 Temp src1 = get_alu_src(ctx, instr->src[1]);
1000 if (dst.regClass() == s1) {
1001 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1002 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1003 src0, src1);
1004 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1005 } else if (dst.regClass() == v1) {
1006 if (ctx->options->chip_class >= GFX9) {
1007 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1008 add->operands[0] = Operand(src0);
1009 add->operands[1] = Operand(src1);
1010 add->definitions[0] = Definition(dst);
1011 add->clamp = 1;
1012 ctx->block->instructions.emplace_back(std::move(add));
1013 } else {
1014 if (src1.regClass() != v1)
1015 std::swap(src0, src1);
1016 assert(src1.regClass() == v1);
1017 Temp tmp = bld.tmp(v1);
1018 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1019 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1020 }
1021 } else {
1022 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1023 nir_print_instr(&instr->instr, stderr);
1024 fprintf(stderr, "\n");
1025 }
1026 break;
1027 }
1028 case nir_op_uadd_carry: {
1029 Temp src0 = get_alu_src(ctx, instr->src[0]);
1030 Temp src1 = get_alu_src(ctx, instr->src[1]);
1031 if (dst.regClass() == s1) {
1032 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1033 break;
1034 }
1035 if (dst.regClass() == v1) {
1036 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1037 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1038 break;
1039 }
1040
1041 Temp src00 = bld.tmp(src0.type(), 1);
1042 Temp src01 = bld.tmp(dst.type(), 1);
1043 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1044 Temp src10 = bld.tmp(src1.type(), 1);
1045 Temp src11 = bld.tmp(dst.type(), 1);
1046 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1047 if (dst.regClass() == s2) {
1048 Temp carry = bld.tmp(s1);
1049 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1050 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1051 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1052 } else if (dst.regClass() == v2) {
1053 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1054 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1055 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1056 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1057 } else {
1058 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1059 nir_print_instr(&instr->instr, stderr);
1060 fprintf(stderr, "\n");
1061 }
1062 break;
1063 }
1064 case nir_op_isub: {
1065 if (dst.regClass() == s1) {
1066 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1067 break;
1068 }
1069
1070 Temp src0 = get_alu_src(ctx, instr->src[0]);
1071 Temp src1 = get_alu_src(ctx, instr->src[1]);
1072 if (dst.regClass() == v1) {
1073 bld.vsub32(Definition(dst), src0, src1);
1074 break;
1075 }
1076
1077 Temp src00 = bld.tmp(src0.type(), 1);
1078 Temp src01 = bld.tmp(dst.type(), 1);
1079 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1080 Temp src10 = bld.tmp(src1.type(), 1);
1081 Temp src11 = bld.tmp(dst.type(), 1);
1082 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1083 if (dst.regClass() == s2) {
1084 Temp carry = bld.tmp(s1);
1085 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1086 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1087 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1088 } else if (dst.regClass() == v2) {
1089 Temp lower = bld.tmp(v1);
1090 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1091 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1092 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1093 } else {
1094 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1095 nir_print_instr(&instr->instr, stderr);
1096 fprintf(stderr, "\n");
1097 }
1098 break;
1099 }
1100 case nir_op_usub_borrow: {
1101 Temp src0 = get_alu_src(ctx, instr->src[0]);
1102 Temp src1 = get_alu_src(ctx, instr->src[1]);
1103 if (dst.regClass() == s1) {
1104 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1105 break;
1106 } else if (dst.regClass() == v1) {
1107 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1108 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1109 break;
1110 }
1111
1112 Temp src00 = bld.tmp(src0.type(), 1);
1113 Temp src01 = bld.tmp(dst.type(), 1);
1114 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1115 Temp src10 = bld.tmp(src1.type(), 1);
1116 Temp src11 = bld.tmp(dst.type(), 1);
1117 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1118 if (dst.regClass() == s2) {
1119 Temp borrow = bld.tmp(s1);
1120 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1121 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1122 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1123 } else if (dst.regClass() == v2) {
1124 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1125 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1126 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1127 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1128 } else {
1129 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1130 nir_print_instr(&instr->instr, stderr);
1131 fprintf(stderr, "\n");
1132 }
1133 break;
1134 }
1135 case nir_op_imul: {
1136 if (dst.regClass() == v1) {
1137 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1138 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1139 } else if (dst.regClass() == s1) {
1140 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1141 } else {
1142 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1143 nir_print_instr(&instr->instr, stderr);
1144 fprintf(stderr, "\n");
1145 }
1146 break;
1147 }
1148 case nir_op_umul_high: {
1149 if (dst.regClass() == v1) {
1150 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1151 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1152 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1153 } else if (dst.regClass() == s1) {
1154 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1155 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1156 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1157 } else {
1158 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1159 nir_print_instr(&instr->instr, stderr);
1160 fprintf(stderr, "\n");
1161 }
1162 break;
1163 }
1164 case nir_op_imul_high: {
1165 if (dst.regClass() == v1) {
1166 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1167 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1168 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1169 } else if (dst.regClass() == s1) {
1170 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1171 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1172 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1173 } else {
1174 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1175 nir_print_instr(&instr->instr, stderr);
1176 fprintf(stderr, "\n");
1177 }
1178 break;
1179 }
1180 case nir_op_fmul: {
1181 if (dst.size() == 1) {
1182 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1183 } else if (dst.size() == 2) {
1184 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1185 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1186 } else {
1187 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1188 nir_print_instr(&instr->instr, stderr);
1189 fprintf(stderr, "\n");
1190 }
1191 break;
1192 }
1193 case nir_op_fadd: {
1194 if (dst.size() == 1) {
1195 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1196 } else if (dst.size() == 2) {
1197 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1198 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1199 } else {
1200 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1201 nir_print_instr(&instr->instr, stderr);
1202 fprintf(stderr, "\n");
1203 }
1204 break;
1205 }
1206 case nir_op_fsub: {
1207 Temp src0 = get_alu_src(ctx, instr->src[0]);
1208 Temp src1 = get_alu_src(ctx, instr->src[1]);
1209 if (dst.size() == 1) {
1210 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1211 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1212 else
1213 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1214 } else if (dst.size() == 2) {
1215 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1216 get_alu_src(ctx, instr->src[0]),
1217 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1218 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1219 sub->neg[1] = true;
1220 } else {
1221 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1222 nir_print_instr(&instr->instr, stderr);
1223 fprintf(stderr, "\n");
1224 }
1225 break;
1226 }
1227 case nir_op_fmod:
1228 case nir_op_frem: {
1229 if (dst.size() == 1) {
1230 Temp rcp = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_alu_src(ctx, instr->src[1]));
1231 Temp mul = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), get_alu_src(ctx, instr->src[0]), rcp);
1232
1233 aco_opcode op = instr->op == nir_op_fmod ? aco_opcode::v_floor_f32 : aco_opcode::v_trunc_f32;
1234 Temp floor = bld.vop1(op, bld.def(v1), mul);
1235
1236 mul = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), get_alu_src(ctx, instr->src[1]), floor);
1237 bld.vop2(aco_opcode::v_sub_f32, Definition(dst), get_alu_src(ctx, instr->src[0]), mul);
1238 } else if (dst.size() == 2) {
1239 Temp rcp = bld.vop1(aco_opcode::v_rcp_f64, bld.def(v2), get_alu_src(ctx, instr->src[1]));
1240 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), get_alu_src(ctx, instr->src[0]), rcp);
1241
1242 aco_opcode op = instr->op == nir_op_fmod ? aco_opcode::v_floor_f64 : aco_opcode::v_trunc_f64;
1243 Temp floor = bld.vop1(op, bld.def(v1), mul);
1244
1245 mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), get_alu_src(ctx, instr->src[1]), floor);
1246 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]), mul);
1247 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1248 sub->neg[1] = true;
1249 } else {
1250 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1251 nir_print_instr(&instr->instr, stderr);
1252 fprintf(stderr, "\n");
1253 }
1254 break;
1255 }
1256 case nir_op_fmax: {
1257 if (dst.size() == 1) {
1258 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true);
1259 } else if (dst.size() == 2) {
1260 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1261 get_alu_src(ctx, instr->src[0]),
1262 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1263 } else {
1264 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1265 nir_print_instr(&instr->instr, stderr);
1266 fprintf(stderr, "\n");
1267 }
1268 break;
1269 }
1270 case nir_op_fmin: {
1271 if (dst.size() == 1) {
1272 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true);
1273 } else if (dst.size() == 2) {
1274 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1275 get_alu_src(ctx, instr->src[0]),
1276 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1277 } else {
1278 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1279 nir_print_instr(&instr->instr, stderr);
1280 fprintf(stderr, "\n");
1281 }
1282 break;
1283 }
1284 case nir_op_fmax3: {
1285 if (dst.size() == 1) {
1286 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst);
1287 } else {
1288 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1289 nir_print_instr(&instr->instr, stderr);
1290 fprintf(stderr, "\n");
1291 }
1292 break;
1293 }
1294 case nir_op_fmin3: {
1295 if (dst.size() == 1) {
1296 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst);
1297 } else {
1298 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1299 nir_print_instr(&instr->instr, stderr);
1300 fprintf(stderr, "\n");
1301 }
1302 break;
1303 }
1304 case nir_op_fmed3: {
1305 if (dst.size() == 1) {
1306 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst);
1307 } else {
1308 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1309 nir_print_instr(&instr->instr, stderr);
1310 fprintf(stderr, "\n");
1311 }
1312 break;
1313 }
1314 case nir_op_umax3: {
1315 if (dst.size() == 1) {
1316 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1317 } else {
1318 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1319 nir_print_instr(&instr->instr, stderr);
1320 fprintf(stderr, "\n");
1321 }
1322 break;
1323 }
1324 case nir_op_umin3: {
1325 if (dst.size() == 1) {
1326 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1327 } else {
1328 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1329 nir_print_instr(&instr->instr, stderr);
1330 fprintf(stderr, "\n");
1331 }
1332 break;
1333 }
1334 case nir_op_umed3: {
1335 if (dst.size() == 1) {
1336 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1337 } else {
1338 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1339 nir_print_instr(&instr->instr, stderr);
1340 fprintf(stderr, "\n");
1341 }
1342 break;
1343 }
1344 case nir_op_imax3: {
1345 if (dst.size() == 1) {
1346 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1347 } else {
1348 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1349 nir_print_instr(&instr->instr, stderr);
1350 fprintf(stderr, "\n");
1351 }
1352 break;
1353 }
1354 case nir_op_imin3: {
1355 if (dst.size() == 1) {
1356 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1357 } else {
1358 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1359 nir_print_instr(&instr->instr, stderr);
1360 fprintf(stderr, "\n");
1361 }
1362 break;
1363 }
1364 case nir_op_imed3: {
1365 if (dst.size() == 1) {
1366 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1367 } else {
1368 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1369 nir_print_instr(&instr->instr, stderr);
1370 fprintf(stderr, "\n");
1371 }
1372 break;
1373 }
1374 case nir_op_cube_face_coord: {
1375 Temp in = get_alu_src(ctx, instr->src[0], 3);
1376 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1377 emit_extract_vector(ctx, in, 1, v1),
1378 emit_extract_vector(ctx, in, 2, v1) };
1379 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1380 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1381 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1382 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1383 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1384 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1385 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1386 break;
1387 }
1388 case nir_op_cube_face_index: {
1389 Temp in = get_alu_src(ctx, instr->src[0], 3);
1390 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1391 emit_extract_vector(ctx, in, 1, v1),
1392 emit_extract_vector(ctx, in, 2, v1) };
1393 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1394 break;
1395 }
1396 case nir_op_bcsel: {
1397 emit_bcsel(ctx, instr, dst);
1398 break;
1399 }
1400 case nir_op_frsq: {
1401 if (dst.size() == 1) {
1402 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f32, dst);
1403 } else if (dst.size() == 2) {
1404 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1405 } else {
1406 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1407 nir_print_instr(&instr->instr, stderr);
1408 fprintf(stderr, "\n");
1409 }
1410 break;
1411 }
1412 case nir_op_fneg: {
1413 Temp src = get_alu_src(ctx, instr->src[0]);
1414 if (dst.size() == 1) {
1415 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1416 } else if (dst.size() == 2) {
1417 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1418 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1419 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1420 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1421 } else {
1422 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1423 nir_print_instr(&instr->instr, stderr);
1424 fprintf(stderr, "\n");
1425 }
1426 break;
1427 }
1428 case nir_op_fabs: {
1429 Temp src = get_alu_src(ctx, instr->src[0]);
1430 if (dst.size() == 1) {
1431 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1432 } else if (dst.size() == 2) {
1433 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1434 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1435 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1436 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1437 } else {
1438 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1439 nir_print_instr(&instr->instr, stderr);
1440 fprintf(stderr, "\n");
1441 }
1442 break;
1443 }
1444 case nir_op_fsat: {
1445 Temp src = get_alu_src(ctx, instr->src[0]);
1446 if (dst.size() == 1) {
1447 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1448 } else if (dst.size() == 2) {
1449 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1450 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1451 vop3->clamp = true;
1452 } else {
1453 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1454 nir_print_instr(&instr->instr, stderr);
1455 fprintf(stderr, "\n");
1456 }
1457 break;
1458 }
1459 case nir_op_flog2: {
1460 if (dst.size() == 1) {
1461 emit_vop1_instruction(ctx, instr, aco_opcode::v_log_f32, dst);
1462 } else {
1463 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1464 nir_print_instr(&instr->instr, stderr);
1465 fprintf(stderr, "\n");
1466 }
1467 break;
1468 }
1469 case nir_op_frcp: {
1470 if (dst.size() == 1) {
1471 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f32, dst);
1472 } else if (dst.size() == 2) {
1473 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1474 } else {
1475 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1476 nir_print_instr(&instr->instr, stderr);
1477 fprintf(stderr, "\n");
1478 }
1479 break;
1480 }
1481 case nir_op_fexp2: {
1482 if (dst.size() == 1) {
1483 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1484 } else {
1485 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1486 nir_print_instr(&instr->instr, stderr);
1487 fprintf(stderr, "\n");
1488 }
1489 break;
1490 }
1491 case nir_op_fsqrt: {
1492 if (dst.size() == 1) {
1493 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f32, dst);
1494 } else if (dst.size() == 2) {
1495 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1496 } else {
1497 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1498 nir_print_instr(&instr->instr, stderr);
1499 fprintf(stderr, "\n");
1500 }
1501 break;
1502 }
1503 case nir_op_ffract: {
1504 if (dst.size() == 1) {
1505 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1506 } else if (dst.size() == 2) {
1507 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1508 } else {
1509 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1510 nir_print_instr(&instr->instr, stderr);
1511 fprintf(stderr, "\n");
1512 }
1513 break;
1514 }
1515 case nir_op_ffloor: {
1516 if (dst.size() == 1) {
1517 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1518 } else if (dst.size() == 2) {
1519 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f64, dst);
1520 } else {
1521 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1522 nir_print_instr(&instr->instr, stderr);
1523 fprintf(stderr, "\n");
1524 }
1525 break;
1526 }
1527 case nir_op_fceil: {
1528 if (dst.size() == 1) {
1529 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1530 } else if (dst.size() == 2) {
1531 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1532 } else {
1533 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1534 nir_print_instr(&instr->instr, stderr);
1535 fprintf(stderr, "\n");
1536 }
1537 break;
1538 }
1539 case nir_op_ftrunc: {
1540 if (dst.size() == 1) {
1541 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1542 } else if (dst.size() == 2) {
1543 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f64, dst);
1544 } else {
1545 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1546 nir_print_instr(&instr->instr, stderr);
1547 fprintf(stderr, "\n");
1548 }
1549 break;
1550 }
1551 case nir_op_fround_even: {
1552 if (dst.size() == 1) {
1553 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1554 } else if (dst.size() == 2) {
1555 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1556 } else {
1557 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1558 nir_print_instr(&instr->instr, stderr);
1559 fprintf(stderr, "\n");
1560 }
1561 break;
1562 }
1563 case nir_op_fsin:
1564 case nir_op_fcos: {
1565 Temp src = get_alu_src(ctx, instr->src[0]);
1566 aco_ptr<Instruction> norm;
1567 if (dst.size() == 1) {
1568 Temp tmp;
1569 Operand half_pi(0x3e22f983u);
1570 if (src.type() == RegType::sgpr)
1571 tmp = bld.vop2_e64(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
1572 else
1573 tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
1574
1575 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1576 if (ctx->options->chip_class < GFX9)
1577 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1578
1579 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1580 bld.vop1(opcode, Definition(dst), tmp);
1581 } else {
1582 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1583 nir_print_instr(&instr->instr, stderr);
1584 fprintf(stderr, "\n");
1585 }
1586 break;
1587 }
1588 case nir_op_ldexp: {
1589 if (dst.size() == 1) {
1590 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1591 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1592 get_alu_src(ctx, instr->src[1]));
1593 } else if (dst.size() == 2) {
1594 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1595 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1596 get_alu_src(ctx, instr->src[1]));
1597 } else {
1598 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1599 nir_print_instr(&instr->instr, stderr);
1600 fprintf(stderr, "\n");
1601 }
1602 break;
1603 }
1604 case nir_op_frexp_sig: {
1605 if (dst.size() == 1) {
1606 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1607 get_alu_src(ctx, instr->src[0]));
1608 } else if (dst.size() == 2) {
1609 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1610 get_alu_src(ctx, instr->src[0]));
1611 } else {
1612 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1613 nir_print_instr(&instr->instr, stderr);
1614 fprintf(stderr, "\n");
1615 }
1616 break;
1617 }
1618 case nir_op_frexp_exp: {
1619 if (instr->src[0].src.ssa->bit_size == 32) {
1620 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1621 get_alu_src(ctx, instr->src[0]));
1622 } else if (instr->src[0].src.ssa->bit_size == 64) {
1623 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1624 get_alu_src(ctx, instr->src[0]));
1625 } else {
1626 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1627 nir_print_instr(&instr->instr, stderr);
1628 fprintf(stderr, "\n");
1629 }
1630 break;
1631 }
1632 case nir_op_fsign: {
1633 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1634 if (dst.size() == 1) {
1635 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
1636 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1637 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
1638 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1639 } else if (dst.size() == 2) {
1640 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
1641 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1642 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, src, cond);
1643
1644 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(s2)), Operand(0u), src);
1645 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1646 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1647
1648 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1649 } else {
1650 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1651 nir_print_instr(&instr->instr, stderr);
1652 fprintf(stderr, "\n");
1653 }
1654 break;
1655 }
1656 case nir_op_f2f32: {
1657 if (instr->src[0].src.ssa->bit_size == 64) {
1658 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1659 } else {
1660 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1661 nir_print_instr(&instr->instr, stderr);
1662 fprintf(stderr, "\n");
1663 }
1664 break;
1665 }
1666 case nir_op_f2f64: {
1667 if (instr->src[0].src.ssa->bit_size == 32) {
1668 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1669 } else {
1670 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1671 nir_print_instr(&instr->instr, stderr);
1672 fprintf(stderr, "\n");
1673 }
1674 break;
1675 }
1676 case nir_op_i2f32: {
1677 assert(dst.size() == 1);
1678 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1679 break;
1680 }
1681 case nir_op_i2f64: {
1682 if (instr->src[0].src.ssa->bit_size == 32) {
1683 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1684 } else if (instr->src[0].src.ssa->bit_size == 64) {
1685 Temp src = get_alu_src(ctx, instr->src[0]);
1686 RegClass rc = RegClass(src.type(), 1);
1687 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1688 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1689 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1690 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1691 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1692 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1693
1694 } else {
1695 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1696 nir_print_instr(&instr->instr, stderr);
1697 fprintf(stderr, "\n");
1698 }
1699 break;
1700 }
1701 case nir_op_u2f32: {
1702 assert(dst.size() == 1);
1703 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1704 break;
1705 }
1706 case nir_op_u2f64: {
1707 if (instr->src[0].src.ssa->bit_size == 32) {
1708 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1709 } else if (instr->src[0].src.ssa->bit_size == 64) {
1710 Temp src = get_alu_src(ctx, instr->src[0]);
1711 RegClass rc = RegClass(src.type(), 1);
1712 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1713 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1714 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1715 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1716 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1717 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1718 } else {
1719 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1720 nir_print_instr(&instr->instr, stderr);
1721 fprintf(stderr, "\n");
1722 }
1723 break;
1724 }
1725 case nir_op_f2i32: {
1726 Temp src = get_alu_src(ctx, instr->src[0]);
1727 if (instr->src[0].src.ssa->bit_size == 32) {
1728 if (dst.type() == RegType::vgpr)
1729 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1730 else
1731 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1732 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1733
1734 } else if (instr->src[0].src.ssa->bit_size == 64) {
1735 if (dst.type() == RegType::vgpr)
1736 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1737 else
1738 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1739 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1740
1741 } else {
1742 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1743 nir_print_instr(&instr->instr, stderr);
1744 fprintf(stderr, "\n");
1745 }
1746 break;
1747 }
1748 case nir_op_f2u32: {
1749 Temp src = get_alu_src(ctx, instr->src[0]);
1750 if (instr->src[0].src.ssa->bit_size == 32) {
1751 if (dst.type() == RegType::vgpr)
1752 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
1753 else
1754 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1755 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
1756
1757 } else if (instr->src[0].src.ssa->bit_size == 64) {
1758 if (dst.type() == RegType::vgpr)
1759 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
1760 else
1761 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1762 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
1763
1764 } else {
1765 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1766 nir_print_instr(&instr->instr, stderr);
1767 fprintf(stderr, "\n");
1768 }
1769 break;
1770 }
1771 case nir_op_f2i64: {
1772 Temp src = get_alu_src(ctx, instr->src[0]);
1773 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
1774 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
1775 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
1776 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
1777 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
1778 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
1779 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
1780 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
1781 Temp new_exponent = bld.tmp(v1);
1782 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
1783 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
1784 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
1785 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
1786 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1787 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
1788 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
1789 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
1790 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
1791 Temp new_lower = bld.tmp(v1);
1792 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
1793 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
1794 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
1795
1796 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
1797 if (src.type() == RegType::vgpr)
1798 src = bld.as_uniform(src);
1799 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
1800 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
1801 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
1802 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
1803 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
1804 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
1805 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
1806 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
1807 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
1808 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
1809 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
1810 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
1811 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
1812 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
1813 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
1814 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1815 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
1816 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
1817 Temp borrow = bld.tmp(s1);
1818 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
1819 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
1820 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1821
1822 } else if (instr->src[0].src.ssa->bit_size == 64) {
1823 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
1824 Temp trunc = bld.vop1(aco_opcode::v_trunc_f64, bld.def(v2), src);
1825 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
1826 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
1827 Temp floor = bld.vop1(aco_opcode::v_floor_f64, bld.def(v2), mul);
1828 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
1829 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
1830 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
1831 if (dst.type() == RegType::sgpr) {
1832 lower = bld.as_uniform(lower);
1833 upper = bld.as_uniform(upper);
1834 }
1835 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1836
1837 } else {
1838 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1839 nir_print_instr(&instr->instr, stderr);
1840 fprintf(stderr, "\n");
1841 }
1842 break;
1843 }
1844 case nir_op_f2u64: {
1845 Temp src = get_alu_src(ctx, instr->src[0]);
1846 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
1847 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
1848 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(s2)), Operand(64u), exponent);
1849 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
1850 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
1851 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
1852 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
1853 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
1854 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
1855 Temp new_exponent = bld.tmp(v1);
1856 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
1857 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
1858 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
1859 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1860 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
1861 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
1862 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
1863 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
1864 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1865
1866 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
1867 if (src.type() == RegType::vgpr)
1868 src = bld.as_uniform(src);
1869 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
1870 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
1871 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
1872 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
1873 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
1874 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
1875 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
1876 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
1877 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
1878 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
1879 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
1880 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
1881 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
1882 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1883 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
1884 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
1885 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
1886 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1887
1888 } else if (instr->src[0].src.ssa->bit_size == 64) {
1889 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
1890 Temp trunc = bld.vop1(aco_opcode::v_trunc_f64, bld.def(v2), src);
1891 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
1892 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
1893 Temp floor = bld.vop1(aco_opcode::v_floor_f64, bld.def(v2), mul);
1894 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
1895 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
1896 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
1897 if (dst.type() == RegType::sgpr) {
1898 lower = bld.as_uniform(lower);
1899 upper = bld.as_uniform(upper);
1900 }
1901 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1902
1903 } else {
1904 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1905 nir_print_instr(&instr->instr, stderr);
1906 fprintf(stderr, "\n");
1907 }
1908 break;
1909 }
1910 case nir_op_b2f32: {
1911 Temp src = get_alu_src(ctx, instr->src[0]);
1912 if (dst.regClass() == s1) {
1913 src = as_uniform_bool(ctx, src);
1914 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
1915 } else if (dst.regClass() == v1) {
1916 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u),
1917 as_divergent_bool(ctx, src, true));
1918 } else {
1919 unreachable("Wrong destination register class for nir_op_b2f32.");
1920 }
1921 break;
1922 }
1923 case nir_op_b2f64: {
1924 Temp src = get_alu_src(ctx, instr->src[0]);
1925 if (dst.regClass() == s2) {
1926 src = as_uniform_bool(ctx, src);
1927 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
1928 } else if (dst.regClass() == v2) {
1929 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
1930 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one,
1931 as_divergent_bool(ctx, src, true));
1932 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1933 } else {
1934 unreachable("Wrong destination register class for nir_op_b2f64.");
1935 }
1936 break;
1937 }
1938 case nir_op_i2i32: {
1939 Temp src = get_alu_src(ctx, instr->src[0]);
1940 if (instr->src[0].src.ssa->bit_size == 64) {
1941 /* we can actually just say dst = src, as it would map the lower register */
1942 emit_extract_vector(ctx, src, 0, dst);
1943 } else {
1944 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1945 nir_print_instr(&instr->instr, stderr);
1946 fprintf(stderr, "\n");
1947 }
1948 break;
1949 }
1950 case nir_op_u2u32: {
1951 Temp src = get_alu_src(ctx, instr->src[0]);
1952 if (instr->src[0].src.ssa->bit_size == 16) {
1953 if (dst.regClass() == s1) {
1954 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
1955 } else {
1956 // TODO: do better with SDWA
1957 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
1958 }
1959 } else if (instr->src[0].src.ssa->bit_size == 64) {
1960 /* we can actually just say dst = src, as it would map the lower register */
1961 emit_extract_vector(ctx, src, 0, dst);
1962 } else {
1963 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1964 nir_print_instr(&instr->instr, stderr);
1965 fprintf(stderr, "\n");
1966 }
1967 break;
1968 }
1969 case nir_op_i2i64: {
1970 Temp src = get_alu_src(ctx, instr->src[0]);
1971 if (instr->src[0].src.ssa->bit_size == 32) {
1972 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
1973 } else {
1974 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1975 nir_print_instr(&instr->instr, stderr);
1976 fprintf(stderr, "\n");
1977 }
1978 break;
1979 }
1980 case nir_op_u2u64: {
1981 Temp src = get_alu_src(ctx, instr->src[0]);
1982 if (instr->src[0].src.ssa->bit_size == 32) {
1983 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
1984 } else {
1985 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1986 nir_print_instr(&instr->instr, stderr);
1987 fprintf(stderr, "\n");
1988 }
1989 break;
1990 }
1991 case nir_op_b2i32: {
1992 Temp src = get_alu_src(ctx, instr->src[0]);
1993 if (dst.regClass() == s1) {
1994 if (src.regClass() == s1) {
1995 bld.copy(Definition(dst), src);
1996 } else {
1997 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
1998 assert(src.regClass() == s2);
1999 bld.sopc(aco_opcode::s_cmp_lg_u64, bld.scc(Definition(dst)), Operand(0u), src);
2000 }
2001 } else {
2002 assert(dst.regClass() == v1 && src.regClass() == s2);
2003 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2004 }
2005 break;
2006 }
2007 case nir_op_i2b1: {
2008 Temp src = get_alu_src(ctx, instr->src[0]);
2009 if (dst.regClass() == s2) {
2010 assert(src.regClass() == v1 || src.regClass() == v2);
2011 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2012 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2013 } else {
2014 assert(src.regClass() == s1 && dst.regClass() == s1);
2015 bld.sopc(aco_opcode::s_cmp_lg_u32, bld.scc(Definition(dst)), Operand(0u), src);
2016 }
2017 break;
2018 }
2019 case nir_op_pack_64_2x32_split: {
2020 Temp src0 = get_alu_src(ctx, instr->src[0]);
2021 Temp src1 = get_alu_src(ctx, instr->src[1]);
2022
2023 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2024 break;
2025 }
2026 case nir_op_unpack_64_2x32_split_x:
2027 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2028 break;
2029 case nir_op_unpack_64_2x32_split_y:
2030 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2031 break;
2032 case nir_op_pack_half_2x16: {
2033 Temp src = get_alu_src(ctx, instr->src[0], 2);
2034
2035 if (dst.regClass() == v1) {
2036 Temp src0 = bld.tmp(v1);
2037 Temp src1 = bld.tmp(v1);
2038 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2039 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2040
2041 } else {
2042 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2043 nir_print_instr(&instr->instr, stderr);
2044 fprintf(stderr, "\n");
2045 }
2046 break;
2047 }
2048 case nir_op_unpack_half_2x16_split_x: {
2049 if (dst.regClass() == v1) {
2050 Builder bld(ctx->program, ctx->block);
2051 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2052 } else {
2053 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2054 nir_print_instr(&instr->instr, stderr);
2055 fprintf(stderr, "\n");
2056 }
2057 break;
2058 }
2059 case nir_op_unpack_half_2x16_split_y: {
2060 if (dst.regClass() == v1) {
2061 Builder bld(ctx->program, ctx->block);
2062 /* TODO: use SDWA here */
2063 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2064 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2065 } else {
2066 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2067 nir_print_instr(&instr->instr, stderr);
2068 fprintf(stderr, "\n");
2069 }
2070 break;
2071 }
2072 case nir_op_fquantize2f16: {
2073 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), get_alu_src(ctx, instr->src[0]));
2074
2075 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2076
2077 Temp cmp_res = bld.tmp(s2);
2078 bld.vopc_e64(aco_opcode::v_cmp_class_f16, Definition(cmp_res), f16, mask).def(0).setHint(vcc);
2079
2080 Temp f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2081
2082 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2083 break;
2084 }
2085 case nir_op_bfm: {
2086 Temp bits = get_alu_src(ctx, instr->src[0]);
2087 Temp offset = get_alu_src(ctx, instr->src[1]);
2088
2089 if (dst.regClass() == s1) {
2090 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2091 } else if (dst.regClass() == v1) {
2092 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2093 } else {
2094 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2095 nir_print_instr(&instr->instr, stderr);
2096 fprintf(stderr, "\n");
2097 }
2098 break;
2099 }
2100 case nir_op_bitfield_select: {
2101 /* (mask & insert) | (~mask & base) */
2102 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2103 Temp insert = get_alu_src(ctx, instr->src[1]);
2104 Temp base = get_alu_src(ctx, instr->src[2]);
2105
2106 /* dst = (insert & bitmask) | (base & ~bitmask) */
2107 if (dst.regClass() == s1) {
2108 aco_ptr<Instruction> sop2;
2109 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2110 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2111 Operand lhs;
2112 if (const_insert && const_bitmask) {
2113 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2114 } else {
2115 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2116 lhs = Operand(insert);
2117 }
2118
2119 Operand rhs;
2120 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2121 if (const_base && const_bitmask) {
2122 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2123 } else {
2124 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2125 rhs = Operand(base);
2126 }
2127
2128 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2129
2130 } else if (dst.regClass() == v1) {
2131 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2132 base = as_vgpr(ctx, base);
2133 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2134 insert = as_vgpr(ctx, insert);
2135
2136 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2137
2138 } else {
2139 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2140 nir_print_instr(&instr->instr, stderr);
2141 fprintf(stderr, "\n");
2142 }
2143 break;
2144 }
2145 case nir_op_ubfe:
2146 case nir_op_ibfe: {
2147 Temp base = get_alu_src(ctx, instr->src[0]);
2148 Temp offset = get_alu_src(ctx, instr->src[1]);
2149 Temp bits = get_alu_src(ctx, instr->src[2]);
2150
2151 if (dst.type() == RegType::sgpr) {
2152 Operand extract;
2153 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2154 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2155 if (const_offset && const_bits) {
2156 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2157 extract = Operand(const_extract);
2158 } else {
2159 Operand width;
2160 if (const_bits) {
2161 width = Operand(const_bits->u32 << 16);
2162 } else {
2163 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2164 }
2165 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2166 }
2167
2168 aco_opcode opcode;
2169 if (dst.regClass() == s1) {
2170 if (instr->op == nir_op_ubfe)
2171 opcode = aco_opcode::s_bfe_u32;
2172 else
2173 opcode = aco_opcode::s_bfe_i32;
2174 } else if (dst.regClass() == s2) {
2175 if (instr->op == nir_op_ubfe)
2176 opcode = aco_opcode::s_bfe_u64;
2177 else
2178 opcode = aco_opcode::s_bfe_i64;
2179 } else {
2180 unreachable("Unsupported BFE bit size");
2181 }
2182
2183 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2184
2185 } else {
2186 aco_opcode opcode;
2187 if (dst.regClass() == v1) {
2188 if (instr->op == nir_op_ubfe)
2189 opcode = aco_opcode::v_bfe_u32;
2190 else
2191 opcode = aco_opcode::v_bfe_i32;
2192 } else {
2193 unreachable("Unsupported BFE bit size");
2194 }
2195
2196 emit_vop3a_instruction(ctx, instr, opcode, dst);
2197 }
2198 break;
2199 }
2200 case nir_op_bit_count: {
2201 Temp src = get_alu_src(ctx, instr->src[0]);
2202 if (src.regClass() == s1) {
2203 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2204 } else if (src.regClass() == v1) {
2205 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2206 } else if (src.regClass() == v2) {
2207 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2208 emit_extract_vector(ctx, src, 1, v1),
2209 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2210 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2211 } else if (src.regClass() == s2) {
2212 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2213 } else {
2214 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2215 nir_print_instr(&instr->instr, stderr);
2216 fprintf(stderr, "\n");
2217 }
2218 break;
2219 }
2220 case nir_op_flt: {
2221 if (instr->src[0].src.ssa->bit_size == 32)
2222 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_f32, dst);
2223 else if (instr->src[0].src.ssa->bit_size == 64)
2224 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_f64, dst);
2225 break;
2226 }
2227 case nir_op_fge: {
2228 if (instr->src[0].src.ssa->bit_size == 32)
2229 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_f32, dst);
2230 else if (instr->src[0].src.ssa->bit_size == 64)
2231 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_f64, dst);
2232 break;
2233 }
2234 case nir_op_feq: {
2235 if (instr->src[0].src.ssa->bit_size == 32)
2236 emit_comparison(ctx, instr, aco_opcode::v_cmp_eq_f32, dst);
2237 else if (instr->src[0].src.ssa->bit_size == 64)
2238 emit_comparison(ctx, instr, aco_opcode::v_cmp_eq_f64, dst);
2239 break;
2240 }
2241 case nir_op_fne: {
2242 if (instr->src[0].src.ssa->bit_size == 32)
2243 emit_comparison(ctx, instr, aco_opcode::v_cmp_neq_f32, dst);
2244 else if (instr->src[0].src.ssa->bit_size == 64)
2245 emit_comparison(ctx, instr, aco_opcode::v_cmp_neq_f64, dst);
2246 break;
2247 }
2248 case nir_op_ilt: {
2249 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32)
2250 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_i32, dst);
2251 else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32)
2252 emit_comparison(ctx, instr, aco_opcode::s_cmp_lt_i32, dst);
2253 else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64)
2254 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_i64, dst);
2255 break;
2256 }
2257 case nir_op_ige: {
2258 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32)
2259 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_i32, dst);
2260 else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32)
2261 emit_comparison(ctx, instr, aco_opcode::s_cmp_ge_i32, dst);
2262 else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64)
2263 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_i64, dst);
2264 break;
2265 }
2266 case nir_op_ieq: {
2267 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32) {
2268 emit_comparison(ctx, instr, aco_opcode::v_cmp_eq_i32, dst);
2269 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32) {
2270 emit_comparison(ctx, instr, aco_opcode::s_cmp_eq_i32, dst);
2271 } else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64) {
2272 emit_comparison(ctx, instr, aco_opcode::v_cmp_eq_i64, dst);
2273 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 64) {
2274 emit_comparison(ctx, instr, aco_opcode::s_cmp_eq_u64, dst);
2275 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 1) {
2276 Temp src0 = get_alu_src(ctx, instr->src[0]);
2277 Temp src1 = get_alu_src(ctx, instr->src[1]);
2278 bld.sopc(aco_opcode::s_cmp_eq_i32, bld.scc(Definition(dst)),
2279 as_uniform_bool(ctx, src0), as_uniform_bool(ctx, src1));
2280 } else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 1) {
2281 Temp src0 = get_alu_src(ctx, instr->src[0]);
2282 Temp src1 = get_alu_src(ctx, instr->src[1]);
2283 bld.sop2(aco_opcode::s_xnor_b64, Definition(dst), bld.def(s1, scc),
2284 as_divergent_bool(ctx, src0, false), as_divergent_bool(ctx, src1, false));
2285 } else {
2286 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2287 nir_print_instr(&instr->instr, stderr);
2288 fprintf(stderr, "\n");
2289 }
2290 break;
2291 }
2292 case nir_op_ine: {
2293 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32) {
2294 emit_comparison(ctx, instr, aco_opcode::v_cmp_lg_i32, dst);
2295 } else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64) {
2296 emit_comparison(ctx, instr, aco_opcode::v_cmp_lg_i64, dst);
2297 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32) {
2298 emit_comparison(ctx, instr, aco_opcode::s_cmp_lg_i32, dst);
2299 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 64) {
2300 emit_comparison(ctx, instr, aco_opcode::s_cmp_lg_u64, dst);
2301 } else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 1) {
2302 Temp src0 = get_alu_src(ctx, instr->src[0]);
2303 Temp src1 = get_alu_src(ctx, instr->src[1]);
2304 bld.sopc(aco_opcode::s_cmp_lg_i32, bld.scc(Definition(dst)),
2305 as_uniform_bool(ctx, src0), as_uniform_bool(ctx, src1));
2306 } else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 1) {
2307 Temp src0 = get_alu_src(ctx, instr->src[0]);
2308 Temp src1 = get_alu_src(ctx, instr->src[1]);
2309 bld.sop2(aco_opcode::s_xor_b64, Definition(dst), bld.def(s1, scc),
2310 as_divergent_bool(ctx, src0, false), as_divergent_bool(ctx, src1, false));
2311 } else {
2312 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2313 nir_print_instr(&instr->instr, stderr);
2314 fprintf(stderr, "\n");
2315 }
2316 break;
2317 }
2318 case nir_op_ult: {
2319 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32)
2320 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_u32, dst);
2321 else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32)
2322 emit_comparison(ctx, instr, aco_opcode::s_cmp_lt_u32, dst);
2323 else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64)
2324 emit_comparison(ctx, instr, aco_opcode::v_cmp_lt_u64, dst);
2325 break;
2326 }
2327 case nir_op_uge: {
2328 if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 32)
2329 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_u32, dst);
2330 else if (dst.regClass() == s1 && instr->src[0].src.ssa->bit_size == 32)
2331 emit_comparison(ctx, instr, aco_opcode::s_cmp_ge_u32, dst);
2332 else if (dst.regClass() == s2 && instr->src[0].src.ssa->bit_size == 64)
2333 emit_comparison(ctx, instr, aco_opcode::v_cmp_ge_u64, dst);
2334 break;
2335 }
2336 case nir_op_fddx:
2337 case nir_op_fddy:
2338 case nir_op_fddx_fine:
2339 case nir_op_fddy_fine:
2340 case nir_op_fddx_coarse:
2341 case nir_op_fddy_coarse: {
2342 Definition tl = bld.def(v1);
2343 uint16_t dpp_ctrl;
2344 if (instr->op == nir_op_fddx_fine) {
2345 bld.vop1_dpp(aco_opcode::v_mov_b32, tl, get_alu_src(ctx, instr->src[0]), dpp_quad_perm(0, 0, 2, 2));
2346 dpp_ctrl = dpp_quad_perm(1, 1, 3, 3);
2347 } else if (instr->op == nir_op_fddy_fine) {
2348 bld.vop1_dpp(aco_opcode::v_mov_b32, tl, get_alu_src(ctx, instr->src[0]), dpp_quad_perm(0, 1, 0, 1));
2349 dpp_ctrl = dpp_quad_perm(2, 3, 2, 3);
2350 } else {
2351 bld.vop1_dpp(aco_opcode::v_mov_b32, tl, get_alu_src(ctx, instr->src[0]), dpp_quad_perm(0, 0, 0, 0));
2352 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2353 dpp_ctrl = dpp_quad_perm(1, 1, 1, 1);
2354 else
2355 dpp_ctrl = dpp_quad_perm(2, 2, 2, 2);
2356 }
2357
2358 Definition tmp = bld.def(v1);
2359 bld.vop2_dpp(aco_opcode::v_sub_f32, tmp, get_alu_src(ctx, instr->src[0]), tl.getTemp(), dpp_ctrl);
2360 emit_wqm(ctx, tmp.getTemp(), dst, true);
2361 break;
2362 }
2363 default:
2364 fprintf(stderr, "Unknown NIR ALU instr: ");
2365 nir_print_instr(&instr->instr, stderr);
2366 fprintf(stderr, "\n");
2367 }
2368 }
2369
2370 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2371 {
2372 Temp dst = get_ssa_temp(ctx, &instr->def);
2373
2374 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2375 // which get truncated the lsb if double and msb if int
2376 // for now, we only use s_mov_b64 with 64bit inline constants
2377 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2378 assert(dst.type() == RegType::sgpr);
2379
2380 if (dst.size() == 1)
2381 {
2382 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(instr->value[0].u32));
2383 } else {
2384 assert(dst.size() != 1);
2385 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2386 if (instr->def.bit_size == 64)
2387 for (unsigned i = 0; i < dst.size(); i++)
2388 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2389 else {
2390 for (unsigned i = 0; i < dst.size(); i++)
2391 vec->operands[i] = Operand{instr->value[i].u32};
2392 }
2393 vec->definitions[0] = Definition(dst);
2394 ctx->block->instructions.emplace_back(std::move(vec));
2395 }
2396 }
2397
2398 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2399 {
2400 uint32_t new_mask = 0;
2401 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2402 if (mask & (1u << i))
2403 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2404 return new_mask;
2405 }
2406
2407 void visit_store_vs_output(isel_context *ctx, nir_intrinsic_instr *instr)
2408 {
2409 /* This wouldn't work inside control flow or with indirect offsets but
2410 * that doesn't happen because of nir_lower_io_to_temporaries(). */
2411
2412 unsigned write_mask = nir_intrinsic_write_mask(instr);
2413 unsigned component = nir_intrinsic_component(instr);
2414 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2415 unsigned idx = nir_intrinsic_base(instr) + component;
2416
2417 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2418 if (off_instr->type != nir_instr_type_load_const) {
2419 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2420 nir_print_instr(off_instr, stderr);
2421 fprintf(stderr, "\n");
2422 }
2423 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
2424
2425 if (instr->src[0].ssa->bit_size == 64)
2426 write_mask = widen_mask(write_mask, 2);
2427
2428 for (unsigned i = 0; i < 8; ++i) {
2429 if (write_mask & (1 << i)) {
2430 ctx->vs_output.mask[idx / 4u] |= 1 << (idx % 4u);
2431 ctx->vs_output.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
2432 }
2433 idx++;
2434 }
2435 }
2436
2437 void visit_store_fs_output(isel_context *ctx, nir_intrinsic_instr *instr)
2438 {
2439 unsigned write_mask = nir_intrinsic_write_mask(instr);
2440 Operand values[4];
2441 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2442 for (unsigned i = 0; i < 4; ++i) {
2443 if (write_mask & (1 << i)) {
2444 Temp tmp = emit_extract_vector(ctx, src, i, v1);
2445 values[i] = Operand(tmp);
2446 } else {
2447 values[i] = Operand(v1);
2448 }
2449 }
2450
2451 unsigned index = nir_intrinsic_base(instr) / 4;
2452 unsigned target, col_format;
2453 unsigned enabled_channels = 0xF;
2454 aco_opcode compr_op = (aco_opcode)0;
2455
2456 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
2457 assert(offset && "Non-const offsets on exports not yet supported");
2458 index += offset->u32;
2459
2460 assert(index != FRAG_RESULT_COLOR);
2461
2462 /* Unlike vertex shader exports, it's fine to use multiple exports to
2463 * export separate channels of one target. So shaders which export both
2464 * FRAG_RESULT_SAMPLE_MASK and FRAG_RESULT_DEPTH should work fine.
2465 * TODO: combine the exports in those cases and create better code
2466 */
2467
2468 if (index == FRAG_RESULT_SAMPLE_MASK) {
2469
2470 if (ctx->program->info->ps.writes_z) {
2471 target = V_008DFC_SQ_EXP_MRTZ;
2472 enabled_channels = 0x4;
2473 col_format = (unsigned) -1;
2474
2475 values[2] = values[0];
2476 values[0] = Operand(v1);
2477 } else {
2478 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
2479 exp->valid_mask = false;
2480 exp->done = false;
2481 exp->compressed = true;
2482 exp->dest = V_008DFC_SQ_EXP_MRTZ;
2483 exp->enabled_mask = 0xc;
2484 for (int i = 0; i < 4; i++)
2485 exp->operands[i] = Operand(v1);
2486 exp->operands[1] = Operand(values[0]);
2487 ctx->block->instructions.emplace_back(std::move(exp));
2488 return;
2489 }
2490
2491 } else if (index == FRAG_RESULT_DEPTH) {
2492
2493 target = V_008DFC_SQ_EXP_MRTZ;
2494 enabled_channels = 0x1;
2495 col_format = (unsigned) -1;
2496
2497 } else if (index == FRAG_RESULT_STENCIL) {
2498
2499 if (ctx->program->info->ps.writes_z) {
2500 target = V_008DFC_SQ_EXP_MRTZ;
2501 enabled_channels = 0x2;
2502 col_format = (unsigned) -1;
2503
2504 values[1] = values[0];
2505 values[0] = Operand(v1);
2506 } else {
2507 aco_ptr<Instruction> shift{create_instruction<VOP2_instruction>(aco_opcode::v_lshlrev_b32, Format::VOP2, 2, 1)};
2508 shift->operands[0] = Operand((uint32_t) 16);
2509 shift->operands[1] = values[0];
2510 Temp tmp = {ctx->program->allocateId(), v1};
2511 shift->definitions[0] = Definition(tmp);
2512 ctx->block->instructions.emplace_back(std::move(shift));
2513
2514 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
2515 exp->valid_mask = false;
2516 exp->done = false;
2517 exp->compressed = true;
2518 exp->dest = V_008DFC_SQ_EXP_MRTZ;
2519 exp->enabled_mask = 0x3;
2520 exp->operands[0] = Operand(tmp);
2521 for (int i = 1; i < 4; i++)
2522 exp->operands[i] = Operand(v1);
2523 ctx->block->instructions.emplace_back(std::move(exp));
2524 return;
2525 }
2526
2527 } else {
2528 index -= FRAG_RESULT_DATA0;
2529 target = V_008DFC_SQ_EXP_MRT + index;
2530 col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
2531 }
2532 ASSERTED bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
2533 ASSERTED bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
2534 assert(!is_int8 && !is_int10);
2535
2536 switch (col_format)
2537 {
2538 case V_028714_SPI_SHADER_ZERO:
2539 enabled_channels = 0; /* writemask */
2540 target = V_008DFC_SQ_EXP_NULL;
2541 break;
2542
2543 case V_028714_SPI_SHADER_32_R:
2544 enabled_channels = 1;
2545 break;
2546
2547 case V_028714_SPI_SHADER_32_GR:
2548 enabled_channels = 0x3;
2549 break;
2550
2551 case V_028714_SPI_SHADER_32_AR:
2552 enabled_channels = 0x9;
2553 break;
2554
2555 case V_028714_SPI_SHADER_FP16_ABGR:
2556 enabled_channels = 0x5;
2557 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
2558 break;
2559
2560 case V_028714_SPI_SHADER_UNORM16_ABGR:
2561 enabled_channels = 0x5;
2562 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
2563 break;
2564
2565 case V_028714_SPI_SHADER_SNORM16_ABGR:
2566 enabled_channels = 0x5;
2567 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
2568 break;
2569
2570 case V_028714_SPI_SHADER_UINT16_ABGR:
2571 enabled_channels = 0x5;
2572 compr_op = aco_opcode::v_cvt_pk_u16_u32;
2573 break;
2574
2575 case V_028714_SPI_SHADER_SINT16_ABGR:
2576 enabled_channels = 0x5;
2577 compr_op = aco_opcode::v_cvt_pk_i16_i32;
2578 break;
2579
2580 case V_028714_SPI_SHADER_32_ABGR:
2581 enabled_channels = 0xF;
2582 break;
2583
2584 default:
2585 break;
2586 }
2587
2588 if (target == V_008DFC_SQ_EXP_NULL)
2589 return;
2590
2591 if ((bool)compr_op)
2592 {
2593 for (int i = 0; i < 2; i++)
2594 {
2595 /* check if at least one of the values to be compressed is enabled */
2596 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
2597 if (enabled) {
2598 enabled_channels |= enabled << (i*2);
2599 aco_ptr<VOP3A_instruction> compr{create_instruction<VOP3A_instruction>(compr_op, Format::VOP3A, 2, 1)};
2600 Temp tmp{ctx->program->allocateId(), v1};
2601 compr->operands[0] = values[i*2].isUndefined() ? Operand(0u) : values[i*2];
2602 compr->operands[1] = values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1];
2603 compr->definitions[0] = Definition(tmp);
2604 values[i] = Operand(tmp);
2605 ctx->block->instructions.emplace_back(std::move(compr));
2606 } else {
2607 values[i] = Operand(v1);
2608 }
2609 }
2610 }
2611
2612 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
2613 exp->valid_mask = false;
2614 exp->done = false;
2615 exp->compressed = (bool) compr_op;
2616 exp->dest = target;
2617 exp->enabled_mask = enabled_channels;
2618 if ((bool) compr_op) {
2619 for (int i = 0; i < 2; i++)
2620 exp->operands[i] = enabled_channels & (3 << (i * 2)) ? values[i] : Operand(v1);
2621 exp->operands[2] = Operand(v1);
2622 exp->operands[3] = Operand(v1);
2623 } else {
2624 for (int i = 0; i < 4; i++)
2625 exp->operands[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
2626 }
2627
2628 ctx->block->instructions.emplace_back(std::move(exp));
2629 }
2630
2631 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
2632 {
2633 if (ctx->stage == vertex_vs) {
2634 visit_store_vs_output(ctx, instr);
2635 } else if (ctx->stage == fragment_fs) {
2636 visit_store_fs_output(ctx, instr);
2637 } else {
2638 unreachable("Shader stage not implemented");
2639 }
2640 }
2641
2642 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
2643 {
2644 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
2645 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
2646
2647 Builder bld(ctx->program, ctx->block);
2648 Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
2649 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
2650 }
2651
2652 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
2653 {
2654 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
2655 for (unsigned i = 0; i < num_components; i++)
2656 vec->operands[i] = Operand(ctx->fs_inputs[fs_input::frag_pos_0 + i]);
2657
2658 if (ctx->fs_vgpr_args[fs_input::frag_pos_3]) {
2659 assert(num_components == 4);
2660 Builder bld(ctx->program, ctx->block);
2661 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ctx->fs_inputs[fs_input::frag_pos_3]);
2662 }
2663
2664 for (Operand& op : vec->operands)
2665 op = op.isUndefined() ? Operand(0u) : op;
2666
2667 vec->definitions[0] = Definition(dst);
2668 ctx->block->instructions.emplace_back(std::move(vec));
2669 emit_split_vector(ctx, dst, num_components);
2670 return;
2671 }
2672
2673 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
2674 {
2675 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
2676 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
2677 unsigned idx = nir_intrinsic_base(instr);
2678 unsigned component = nir_intrinsic_component(instr);
2679 Temp prim_mask = ctx->prim_mask;
2680
2681 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
2682 if (offset) {
2683 assert(offset->u32 == 0);
2684 } else {
2685 /* the lower 15bit of the prim_mask contain the offset into LDS
2686 * while the upper bits contain the number of prims */
2687 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
2688 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
2689 Builder bld(ctx->program, ctx->block);
2690 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
2691 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
2692 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
2693 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
2694 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
2695 }
2696
2697 if (instr->dest.ssa.num_components == 1) {
2698 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
2699 } else {
2700 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
2701 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
2702 {
2703 Temp tmp = {ctx->program->allocateId(), v1};
2704 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
2705 vec->operands[i] = Operand(tmp);
2706 }
2707 vec->definitions[0] = Definition(dst);
2708 ctx->block->instructions.emplace_back(std::move(vec));
2709 }
2710 }
2711
2712 unsigned get_num_channels_from_data_format(unsigned data_format)
2713 {
2714 switch (data_format) {
2715 case V_008F0C_BUF_DATA_FORMAT_8:
2716 case V_008F0C_BUF_DATA_FORMAT_16:
2717 case V_008F0C_BUF_DATA_FORMAT_32:
2718 return 1;
2719 case V_008F0C_BUF_DATA_FORMAT_8_8:
2720 case V_008F0C_BUF_DATA_FORMAT_16_16:
2721 case V_008F0C_BUF_DATA_FORMAT_32_32:
2722 return 2;
2723 case V_008F0C_BUF_DATA_FORMAT_10_11_11:
2724 case V_008F0C_BUF_DATA_FORMAT_11_11_10:
2725 case V_008F0C_BUF_DATA_FORMAT_32_32_32:
2726 return 3;
2727 case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
2728 case V_008F0C_BUF_DATA_FORMAT_10_10_10_2:
2729 case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
2730 case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
2731 case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
2732 return 4;
2733 default:
2734 break;
2735 }
2736
2737 return 4;
2738 }
2739
2740 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
2741 * so we may need to fix it up. */
2742 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
2743 {
2744 Builder bld(ctx->program, ctx->block);
2745
2746 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
2747 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
2748
2749 /* For the integer-like cases, do a natural sign extension.
2750 *
2751 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
2752 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
2753 * exponent.
2754 */
2755 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
2756 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
2757
2758 /* Convert back to the right type. */
2759 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
2760 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
2761 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(s2)), Operand(0xbf800000u), alpha);
2762 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
2763 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
2764 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
2765 }
2766
2767 return alpha;
2768 }
2769
2770 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
2771 {
2772 Builder bld(ctx->program, ctx->block);
2773 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
2774 if (ctx->stage & sw_vs) {
2775
2776 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
2777 if (off_instr->type != nir_instr_type_load_const) {
2778 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2779 nir_print_instr(off_instr, stderr);
2780 fprintf(stderr, "\n");
2781 }
2782 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
2783
2784 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, ctx->vertex_buffers);
2785
2786 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
2787 unsigned component = nir_intrinsic_component(instr);
2788 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
2789 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
2790 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
2791 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
2792
2793 unsigned dfmt = attrib_format & 0xf;
2794
2795 unsigned nfmt = (attrib_format >> 4) & 0x7;
2796 unsigned num_dfmt_channels = get_num_channels_from_data_format(dfmt);
2797 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
2798 unsigned num_channels = MIN2(util_last_bit(mask), num_dfmt_channels);
2799 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
2800 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
2801 if (post_shuffle)
2802 num_channels = MAX2(num_channels, 3);
2803
2804 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, Operand(attrib_binding * 16u));
2805
2806 Temp index;
2807 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
2808 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
2809 if (divisor) {
2810 ctx->needs_instance_id = true;
2811
2812 if (divisor != 1) {
2813 Temp divided = bld.tmp(v1);
2814 emit_v_div_u32(ctx, divided, as_vgpr(ctx, ctx->instance_id), divisor);
2815 index = bld.vadd32(bld.def(v1), ctx->start_instance, divided);
2816 } else {
2817 index = bld.vadd32(bld.def(v1), ctx->start_instance, ctx->instance_id);
2818 }
2819 } else {
2820 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), ctx->start_instance);
2821 }
2822 } else {
2823 index = bld.vadd32(bld.def(v1), ctx->base_vertex, ctx->vertex_id);
2824 }
2825
2826 if (attrib_stride != 0 && attrib_offset > attrib_stride) {
2827 index = bld.vadd32(bld.def(v1), Operand(attrib_offset / attrib_stride), index);
2828 attrib_offset = attrib_offset % attrib_stride;
2829 }
2830
2831 Operand soffset(0u);
2832 if (attrib_offset >= 4096) {
2833 soffset = bld.copy(bld.def(s1), Operand(attrib_offset));
2834 attrib_offset = 0;
2835 }
2836
2837 aco_opcode opcode;
2838 switch (num_channels) {
2839 case 1:
2840 opcode = aco_opcode::tbuffer_load_format_x;
2841 break;
2842 case 2:
2843 opcode = aco_opcode::tbuffer_load_format_xy;
2844 break;
2845 case 3:
2846 opcode = aco_opcode::tbuffer_load_format_xyz;
2847 break;
2848 case 4:
2849 opcode = aco_opcode::tbuffer_load_format_xyzw;
2850 break;
2851 default:
2852 unreachable("Unimplemented load_input vector size");
2853 }
2854
2855 Temp tmp = post_shuffle || num_channels != dst.size() || alpha_adjust != RADV_ALPHA_ADJUST_NONE || component ? bld.tmp(RegType::vgpr, num_channels) : dst;
2856
2857 aco_ptr<MTBUF_instruction> mubuf{create_instruction<MTBUF_instruction>(opcode, Format::MTBUF, 3, 1)};
2858 mubuf->operands[0] = Operand(index);
2859 mubuf->operands[1] = Operand(list);
2860 mubuf->operands[2] = soffset;
2861 mubuf->definitions[0] = Definition(tmp);
2862 mubuf->idxen = true;
2863 mubuf->can_reorder = true;
2864 mubuf->dfmt = dfmt;
2865 mubuf->nfmt = nfmt;
2866 assert(attrib_offset < 4096);
2867 mubuf->offset = attrib_offset;
2868 ctx->block->instructions.emplace_back(std::move(mubuf));
2869
2870 emit_split_vector(ctx, tmp, tmp.size());
2871
2872 if (tmp.id() != dst.id()) {
2873 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
2874 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
2875
2876 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
2877 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
2878 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
2879
2880 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2881 for (unsigned i = 0; i < dst.size(); i++) {
2882 unsigned idx = i + component;
2883 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE && num_channels >= 4) {
2884 Temp alpha = emit_extract_vector(ctx, tmp, swizzle[3], v1);
2885 vec->operands[3] = Operand(adjust_vertex_fetch_alpha(ctx, alpha_adjust, alpha));
2886 } else if (idx < num_channels) {
2887 vec->operands[i] = Operand(emit_extract_vector(ctx, tmp, swizzle[idx], v1));
2888 } else if (is_float && idx == 3) {
2889 vec->operands[i] = Operand(0x3f800000u);
2890 } else if (!is_float && idx == 3) {
2891 vec->operands[i] = Operand(1u);
2892 } else {
2893 vec->operands[i] = Operand(0u);
2894 }
2895 }
2896 vec->definitions[0] = Definition(dst);
2897 ctx->block->instructions.emplace_back(std::move(vec));
2898 emit_split_vector(ctx, dst, dst.size());
2899 }
2900
2901 } else if (ctx->stage == fragment_fs) {
2902 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
2903 if (off_instr->type != nir_instr_type_load_const ||
2904 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
2905 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2906 nir_print_instr(off_instr, stderr);
2907 fprintf(stderr, "\n");
2908 }
2909
2910 Temp prim_mask = ctx->prim_mask;
2911 nir_const_value* offset = nir_src_as_const_value(instr->src[0]);
2912 if (offset) {
2913 assert(offset->u32 == 0);
2914 } else {
2915 /* the lower 15bit of the prim_mask contain the offset into LDS
2916 * while the upper bits contain the number of prims */
2917 Temp offset_src = get_ssa_temp(ctx, instr->src[0].ssa);
2918 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
2919 Builder bld(ctx->program, ctx->block);
2920 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
2921 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
2922 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
2923 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
2924 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
2925 }
2926
2927 unsigned idx = nir_intrinsic_base(instr);
2928 unsigned component = nir_intrinsic_component(instr);
2929
2930 if (dst.size() == 1) {
2931 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(2u), bld.m0(prim_mask), idx, component);
2932 } else {
2933 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2934 for (unsigned i = 0; i < dst.size(); i++)
2935 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(2u), bld.m0(prim_mask), idx, component + i);
2936 vec->definitions[0] = Definition(dst);
2937 bld.insert(std::move(vec));
2938 }
2939
2940 } else {
2941 unreachable("Shader stage not implemented");
2942 }
2943 }
2944
2945 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
2946 {
2947 if (ctx->program->info->need_indirect_descriptor_sets) {
2948 Builder bld(ctx->program, ctx->block);
2949 Temp ptr64 = convert_pointer_to_64_bit(ctx, ctx->descriptor_sets[0]);
2950 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, Operand(desc_set << 2));//, false, false, false);
2951 }
2952
2953 return ctx->descriptor_sets[desc_set];
2954 }
2955
2956
2957 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
2958 {
2959 Builder bld(ctx->program, ctx->block);
2960 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
2961 unsigned desc_set = nir_intrinsic_desc_set(instr);
2962 unsigned binding = nir_intrinsic_binding(instr);
2963
2964 Temp desc_ptr;
2965 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
2966 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
2967 unsigned offset = layout->binding[binding].offset;
2968 unsigned stride;
2969 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
2970 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
2971 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
2972 desc_ptr = ctx->push_constants;
2973 offset = pipeline_layout->push_constant_size + 16 * idx;
2974 stride = 16;
2975 } else {
2976 desc_ptr = load_desc_ptr(ctx, desc_set);
2977 stride = layout->binding[binding].size;
2978 }
2979
2980 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
2981 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
2982 if (stride != 1) {
2983 if (nir_const_index) {
2984 const_index = const_index * stride;
2985 } else {
2986 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
2987 }
2988 }
2989 if (offset) {
2990 if (nir_const_index) {
2991 const_index = const_index + offset;
2992 } else {
2993 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
2994 }
2995 }
2996
2997 if (nir_const_index && const_index == 0) {
2998 index = desc_ptr;
2999 } else {
3000 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3001 nir_const_index ? Operand(const_index) : Operand(index),
3002 Operand(desc_ptr));
3003 }
3004
3005 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3006 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), index);
3007 }
3008
3009 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst, Temp rsrc, Temp offset, bool glc=false)
3010 {
3011 Builder bld(ctx->program, ctx->block);
3012
3013 unsigned num_bytes = dst.size() * 4;
3014
3015 aco_opcode op;
3016 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
3017 if (ctx->options->chip_class < GFX8)
3018 offset = as_vgpr(ctx, offset);
3019
3020 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3021 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3022 unsigned const_offset = 0;
3023
3024 Temp lower = Temp();
3025 if (num_bytes > 16) {
3026 assert(num_components == 3 || num_components == 4);
3027 op = aco_opcode::buffer_load_dwordx4;
3028 lower = bld.tmp(v4);
3029 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3030 mubuf->definitions[0] = Definition(lower);
3031 mubuf->operands[0] = vaddr;
3032 mubuf->operands[1] = Operand(rsrc);
3033 mubuf->operands[2] = soffset;
3034 mubuf->offen = (offset.type() == RegType::vgpr);
3035 mubuf->glc = glc;
3036 mubuf->barrier = barrier_buffer;
3037 bld.insert(std::move(mubuf));
3038 emit_split_vector(ctx, lower, 2);
3039 num_bytes -= 16;
3040 const_offset = 16;
3041 }
3042
3043 switch (num_bytes) {
3044 case 4:
3045 op = aco_opcode::buffer_load_dword;
3046 break;
3047 case 8:
3048 op = aco_opcode::buffer_load_dwordx2;
3049 break;
3050 case 12:
3051 op = aco_opcode::buffer_load_dwordx3;
3052 break;
3053 case 16:
3054 op = aco_opcode::buffer_load_dwordx4;
3055 break;
3056 default:
3057 unreachable("Load SSBO not implemented for this size.");
3058 }
3059 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3060 mubuf->operands[0] = vaddr;
3061 mubuf->operands[1] = Operand(rsrc);
3062 mubuf->operands[2] = soffset;
3063 mubuf->offen = (offset.type() == RegType::vgpr);
3064 mubuf->glc = glc;
3065 mubuf->barrier = barrier_buffer;
3066 mubuf->offset = const_offset;
3067 aco_ptr<Instruction> instr = std::move(mubuf);
3068
3069 if (dst.size() > 4) {
3070 assert(lower != Temp());
3071 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
3072 instr->definitions[0] = Definition(upper);
3073 bld.insert(std::move(instr));
3074 if (dst.size() == 8)
3075 emit_split_vector(ctx, upper, 2);
3076 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
3077 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
3078 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
3079 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
3080 if (dst.size() == 8)
3081 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
3082 }
3083
3084 if (dst.type() == RegType::sgpr) {
3085 Temp vec = bld.tmp(RegType::vgpr, dst.size());
3086 instr->definitions[0] = Definition(vec);
3087 bld.insert(std::move(instr));
3088 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
3089 } else {
3090 instr->definitions[0] = Definition(dst);
3091 bld.insert(std::move(instr));
3092 }
3093 } else {
3094 switch (num_bytes) {
3095 case 4:
3096 op = aco_opcode::s_buffer_load_dword;
3097 break;
3098 case 8:
3099 op = aco_opcode::s_buffer_load_dwordx2;
3100 break;
3101 case 12:
3102 case 16:
3103 op = aco_opcode::s_buffer_load_dwordx4;
3104 break;
3105 case 24:
3106 case 32:
3107 op = aco_opcode::s_buffer_load_dwordx8;
3108 break;
3109 default:
3110 unreachable("Load SSBO not implemented for this size.");
3111 }
3112 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3113 load->operands[0] = Operand(rsrc);
3114 load->operands[1] = Operand(bld.as_uniform(offset));
3115 assert(load->operands[1].getTemp().type() == RegType::sgpr);
3116 load->definitions[0] = Definition(dst);
3117 load->glc = glc;
3118 load->barrier = barrier_buffer;
3119 assert(ctx->options->chip_class >= GFX8 || !glc);
3120
3121 /* trim vector */
3122 if (dst.size() == 3) {
3123 Temp vec = bld.tmp(s4);
3124 load->definitions[0] = Definition(vec);
3125 bld.insert(std::move(load));
3126 emit_split_vector(ctx, vec, 4);
3127
3128 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3129 emit_extract_vector(ctx, vec, 0, s1),
3130 emit_extract_vector(ctx, vec, 1, s1),
3131 emit_extract_vector(ctx, vec, 2, s1));
3132 } else if (dst.size() == 6) {
3133 Temp vec = bld.tmp(s8);
3134 load->definitions[0] = Definition(vec);
3135 bld.insert(std::move(load));
3136 emit_split_vector(ctx, vec, 4);
3137
3138 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3139 emit_extract_vector(ctx, vec, 0, s2),
3140 emit_extract_vector(ctx, vec, 1, s2),
3141 emit_extract_vector(ctx, vec, 2, s2));
3142 } else {
3143 bld.insert(std::move(load));
3144 }
3145
3146 }
3147 emit_split_vector(ctx, dst, num_components);
3148 }
3149
3150 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
3151 {
3152 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3153 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
3154
3155 Builder bld(ctx->program, ctx->block);
3156
3157 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3158 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
3159 unsigned binding = nir_intrinsic_binding(idx_instr);
3160 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
3161
3162 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
3163 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3164 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3165 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3166 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
3167 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3168 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3169 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
3170 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
3171 Operand(0xFFFFFFFFu),
3172 Operand(desc_type));
3173 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3174 rsrc, upper_dwords);
3175 } else {
3176 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
3177 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
3178 }
3179
3180 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
3181 }
3182
3183 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3184 {
3185 Builder bld(ctx->program, ctx->block);
3186 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3187
3188 unsigned offset = nir_intrinsic_base(instr);
3189 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
3190 if (index_cv && instr->dest.ssa.bit_size == 32) {
3191
3192 unsigned count = instr->dest.ssa.num_components;
3193 unsigned start = (offset + index_cv->u32) / 4u;
3194 start -= ctx->base_inline_push_consts;
3195 if (start + count <= ctx->num_inline_push_consts) {
3196 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3197 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
3198 for (unsigned i = 0; i < count; ++i) {
3199 elems[i] = ctx->inline_push_consts[start + i];
3200 vec->operands[i] = Operand{elems[i]};
3201 }
3202 vec->definitions[0] = Definition(dst);
3203 ctx->block->instructions.emplace_back(std::move(vec));
3204 ctx->allocated_vec.emplace(dst.id(), elems);
3205 return;
3206 }
3207 }
3208
3209 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
3210 if (offset != 0) // TODO check if index != 0 as well
3211 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
3212 Temp ptr = convert_pointer_to_64_bit(ctx, ctx->push_constants);
3213 Temp vec = dst;
3214 bool trim = false;
3215 aco_opcode op;
3216
3217 switch (dst.size()) {
3218 case 1:
3219 op = aco_opcode::s_load_dword;
3220 break;
3221 case 2:
3222 op = aco_opcode::s_load_dwordx2;
3223 break;
3224 case 3:
3225 vec = bld.tmp(s4);
3226 trim = true;
3227 case 4:
3228 op = aco_opcode::s_load_dwordx4;
3229 break;
3230 case 6:
3231 vec = bld.tmp(s8);
3232 trim = true;
3233 case 8:
3234 op = aco_opcode::s_load_dwordx8;
3235 break;
3236 default:
3237 unreachable("unimplemented or forbidden load_push_constant.");
3238 }
3239
3240 bld.smem(op, Definition(vec), ptr, index);
3241
3242 if (trim) {
3243 emit_split_vector(ctx, vec, 4);
3244 RegClass rc = dst.size() == 3 ? s1 : s2;
3245 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3246 emit_extract_vector(ctx, vec, 0, rc),
3247 emit_extract_vector(ctx, vec, 1, rc),
3248 emit_extract_vector(ctx, vec, 2, rc));
3249
3250 }
3251 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
3252 }
3253
3254 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3255 {
3256 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3257
3258 Builder bld(ctx->program, ctx->block);
3259
3260 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3261 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3262 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3263 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3264 if (ctx->options->chip_class >= GFX10) {
3265 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3266 S_008F0C_OOB_SELECT(3) |
3267 S_008F0C_RESOURCE_LEVEL(1);
3268 } else {
3269 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3270 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3271 }
3272
3273 unsigned base = nir_intrinsic_base(instr) + ctx->constant_data_offset;
3274 unsigned range = nir_intrinsic_range(instr);
3275
3276 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
3277 if (base && offset.type() == RegType::sgpr)
3278 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
3279 else if (base && offset.type() == RegType::vgpr)
3280 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
3281
3282 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3283 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(0u)),
3284 Operand(MIN2(range, ctx->shader->constant_data_size - nir_intrinsic_base(instr))),
3285 Operand(desc_type));
3286
3287 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
3288 }
3289
3290 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
3291 {
3292 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3293 ctx->cf_info.exec_potentially_empty = true;
3294
3295 ctx->program->needs_exact = true;
3296
3297 Builder bld(ctx->program, ctx->block);
3298 Temp src = as_divergent_bool(ctx, get_ssa_temp(ctx, instr->src[0].ssa), false);
3299 src = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
3300 bld.pseudo(aco_opcode::p_discard_if, src);
3301 ctx->block->kind |= block_kind_uses_discard_if;
3302 return;
3303 }
3304
3305 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
3306 {
3307 Builder bld(ctx->program, ctx->block);
3308
3309 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3310 ctx->cf_info.exec_potentially_empty = true;
3311
3312 bool divergent = ctx->cf_info.parent_if.is_divergent ||
3313 ctx->cf_info.parent_loop.has_divergent_continue;
3314
3315 if (ctx->block->loop_nest_depth &&
3316 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
3317 /* we handle discards the same way as jump instructions */
3318 append_logical_end(ctx->block);
3319
3320 /* in loops, discard behaves like break */
3321 Block *linear_target = ctx->cf_info.parent_loop.exit;
3322 ctx->block->kind |= block_kind_discard;
3323
3324 if (!divergent) {
3325 /* uniform discard - loop ends here */
3326 assert(nir_instr_is_last(&instr->instr));
3327 ctx->block->kind |= block_kind_uniform;
3328 ctx->cf_info.has_branch = true;
3329 bld.branch(aco_opcode::p_branch);
3330 add_linear_edge(ctx->block->index, linear_target);
3331 return;
3332 }
3333
3334 /* we add a break right behind the discard() instructions */
3335 ctx->block->kind |= block_kind_break;
3336 unsigned idx = ctx->block->index;
3337
3338 /* remove critical edges from linear CFG */
3339 bld.branch(aco_opcode::p_branch);
3340 Block* break_block = ctx->program->create_and_insert_block();
3341 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3342 break_block->kind |= block_kind_uniform;
3343 add_linear_edge(idx, break_block);
3344 add_linear_edge(break_block->index, linear_target);
3345 bld.reset(break_block);
3346 bld.branch(aco_opcode::p_branch);
3347
3348 Block* continue_block = ctx->program->create_and_insert_block();
3349 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3350 add_linear_edge(idx, continue_block);
3351 append_logical_start(continue_block);
3352 ctx->block = continue_block;
3353
3354 return;
3355 }
3356
3357 /* it can currently happen that NIR doesn't remove the unreachable code */
3358 if (!nir_instr_is_last(&instr->instr)) {
3359 ctx->program->needs_exact = true;
3360 /* save exec somewhere temporarily so that it doesn't get
3361 * overwritten before the discard from outer exec masks */
3362 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, s2));
3363 bld.pseudo(aco_opcode::p_discard_if, cond);
3364 ctx->block->kind |= block_kind_uses_discard_if;
3365 return;
3366 }
3367
3368 /* This condition is incorrect for uniformly branched discards in a loop
3369 * predicated by a divergent condition, but the above code catches that case
3370 * and the discard would end up turning into a discard_if.
3371 * For example:
3372 * if (divergent) {
3373 * while (...) {
3374 * if (uniform) {
3375 * discard;
3376 * }
3377 * }
3378 * }
3379 */
3380 if (!ctx->cf_info.parent_if.is_divergent) {
3381 /* program just ends here */
3382 ctx->block->kind |= block_kind_uniform;
3383 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
3384 0 /* enabled mask */, 9 /* dest */,
3385 false /* compressed */, true/* done */, true /* valid mask */);
3386 bld.sopp(aco_opcode::s_endpgm);
3387 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
3388 } else {
3389 ctx->block->kind |= block_kind_discard;
3390 /* branch and linear edge is added by visit_if() */
3391 }
3392 }
3393
3394 enum aco_descriptor_type {
3395 ACO_DESC_IMAGE,
3396 ACO_DESC_FMASK,
3397 ACO_DESC_SAMPLER,
3398 ACO_DESC_BUFFER,
3399 ACO_DESC_PLANE_0,
3400 ACO_DESC_PLANE_1,
3401 ACO_DESC_PLANE_2,
3402 };
3403
3404 enum aco_image_dim {
3405 aco_image_1d,
3406 aco_image_2d,
3407 aco_image_3d,
3408 aco_image_cube, // includes cube arrays
3409 aco_image_1darray,
3410 aco_image_2darray,
3411 aco_image_2dmsaa,
3412 aco_image_2darraymsaa,
3413 };
3414
3415 static enum aco_image_dim
3416 get_sampler_dim(isel_context *ctx, enum glsl_sampler_dim dim, bool is_array)
3417 {
3418 switch (dim) {
3419 case GLSL_SAMPLER_DIM_1D:
3420 if (ctx->options->chip_class >= GFX9)
3421 return is_array ? aco_image_2darray : aco_image_2d;
3422 return is_array ? aco_image_1darray : aco_image_1d;
3423 case GLSL_SAMPLER_DIM_2D:
3424 case GLSL_SAMPLER_DIM_RECT:
3425 case GLSL_SAMPLER_DIM_EXTERNAL:
3426 return is_array ? aco_image_2darray : aco_image_2d;
3427 case GLSL_SAMPLER_DIM_3D:
3428 return aco_image_3d;
3429 case GLSL_SAMPLER_DIM_CUBE:
3430 return aco_image_cube;
3431 case GLSL_SAMPLER_DIM_MS:
3432 return is_array ? aco_image_2darraymsaa : aco_image_2dmsaa;
3433 case GLSL_SAMPLER_DIM_SUBPASS:
3434 return aco_image_2darray;
3435 case GLSL_SAMPLER_DIM_SUBPASS_MS:
3436 return aco_image_2darraymsaa;
3437 default:
3438 unreachable("bad sampler dim");
3439 }
3440 }
3441
3442 static bool
3443 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
3444 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
3445 return false;
3446 aco_image_dim dim = get_sampler_dim(ctx, sampler_dim, is_array);
3447 return dim == aco_image_cube ||
3448 dim == aco_image_1darray ||
3449 dim == aco_image_2darray ||
3450 dim == aco_image_2darraymsaa;
3451 }
3452
3453 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
3454 enum aco_descriptor_type desc_type,
3455 const nir_tex_instr *tex_instr, bool image, bool write)
3456 {
3457 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
3458 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
3459 if (it != ctx->tex_desc.end())
3460 return it->second;
3461 */
3462 Temp index = Temp();
3463 bool index_set = false;
3464 unsigned constant_index = 0;
3465 unsigned descriptor_set;
3466 unsigned base_index;
3467 Builder bld(ctx->program, ctx->block);
3468
3469 if (!deref_instr) {
3470 assert(tex_instr && !image);
3471 descriptor_set = 0;
3472 base_index = tex_instr->sampler_index;
3473 } else {
3474 while(deref_instr->deref_type != nir_deref_type_var) {
3475 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
3476 if (!array_size)
3477 array_size = 1;
3478
3479 assert(deref_instr->deref_type == nir_deref_type_array);
3480 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
3481 if (const_value) {
3482 constant_index += array_size * const_value->u32;
3483 } else {
3484 Temp indirect = bld.as_uniform(get_ssa_temp(ctx, deref_instr->arr.index.ssa));
3485
3486 if (array_size != 1)
3487 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
3488
3489 if (!index_set) {
3490 index = indirect;
3491 index_set = true;
3492 } else {
3493 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
3494 }
3495 }
3496
3497 deref_instr = nir_src_as_deref(deref_instr->parent);
3498 }
3499 descriptor_set = deref_instr->var->data.descriptor_set;
3500 base_index = deref_instr->var->data.binding;
3501 }
3502
3503 Temp list = load_desc_ptr(ctx, descriptor_set);
3504 list = convert_pointer_to_64_bit(ctx, list);
3505
3506 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
3507 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
3508 unsigned offset = binding->offset;
3509 unsigned stride = binding->size;
3510 aco_opcode opcode;
3511 RegClass type;
3512
3513 assert(base_index < layout->binding_count);
3514
3515 switch (desc_type) {
3516 case ACO_DESC_IMAGE:
3517 type = s8;
3518 opcode = aco_opcode::s_load_dwordx8;
3519 break;
3520 case ACO_DESC_FMASK:
3521 type = s8;
3522 opcode = aco_opcode::s_load_dwordx8;
3523 offset += 32;
3524 break;
3525 case ACO_DESC_SAMPLER:
3526 type = s4;
3527 opcode = aco_opcode::s_load_dwordx4;
3528 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
3529 offset += radv_combined_image_descriptor_sampler_offset(binding);
3530 break;
3531 case ACO_DESC_BUFFER:
3532 type = s4;
3533 opcode = aco_opcode::s_load_dwordx4;
3534 break;
3535 case ACO_DESC_PLANE_0:
3536 case ACO_DESC_PLANE_1:
3537 type = s8;
3538 opcode = aco_opcode::s_load_dwordx8;
3539 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
3540 break;
3541 case ACO_DESC_PLANE_2:
3542 type = s4;
3543 opcode = aco_opcode::s_load_dwordx4;
3544 offset += 64;
3545 break;
3546 default:
3547 unreachable("invalid desc_type\n");
3548 }
3549
3550 offset += constant_index * stride;
3551
3552 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
3553 (!index_set || binding->immutable_samplers_equal)) {
3554 if (binding->immutable_samplers_equal)
3555 constant_index = 0;
3556
3557 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
3558 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3559 Operand(samplers[constant_index * 4 + 0]),
3560 Operand(samplers[constant_index * 4 + 1]),
3561 Operand(samplers[constant_index * 4 + 2]),
3562 Operand(samplers[constant_index * 4 + 3]));
3563 }
3564
3565 Operand off;
3566 if (!index_set) {
3567 off = Operand(offset);
3568 } else {
3569 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
3570 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
3571 }
3572
3573 Temp res = bld.smem(opcode, bld.def(type), list, off);
3574
3575 if (desc_type == ACO_DESC_PLANE_2) {
3576 Temp components[8];
3577 for (unsigned i = 0; i < 8; i++)
3578 components[i] = bld.tmp(s1);
3579 bld.pseudo(aco_opcode::p_split_vector,
3580 Definition(components[0]),
3581 Definition(components[1]),
3582 Definition(components[2]),
3583 Definition(components[3]),
3584 res);
3585
3586 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
3587 bld.pseudo(aco_opcode::p_split_vector,
3588 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
3589 Definition(components[4]),
3590 Definition(components[5]),
3591 Definition(components[6]),
3592 Definition(components[7]),
3593 desc2);
3594
3595 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
3596 components[0], components[1], components[2], components[3],
3597 components[4], components[5], components[6], components[7]);
3598 }
3599
3600 return res;
3601 }
3602
3603 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
3604 {
3605 switch (dim) {
3606 case GLSL_SAMPLER_DIM_BUF:
3607 return 1;
3608 case GLSL_SAMPLER_DIM_1D:
3609 return array ? 2 : 1;
3610 case GLSL_SAMPLER_DIM_2D:
3611 return array ? 3 : 2;
3612 case GLSL_SAMPLER_DIM_MS:
3613 return array ? 4 : 3;
3614 case GLSL_SAMPLER_DIM_3D:
3615 case GLSL_SAMPLER_DIM_CUBE:
3616 return 3;
3617 case GLSL_SAMPLER_DIM_RECT:
3618 case GLSL_SAMPLER_DIM_SUBPASS:
3619 return 2;
3620 case GLSL_SAMPLER_DIM_SUBPASS_MS:
3621 return 3;
3622 default:
3623 break;
3624 }
3625 return 0;
3626 }
3627
3628
3629 /* Adjust the sample index according to FMASK.
3630 *
3631 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
3632 * which is the identity mapping. Each nibble says which physical sample
3633 * should be fetched to get that sample.
3634 *
3635 * For example, 0x11111100 means there are only 2 samples stored and
3636 * the second sample covers 3/4 of the pixel. When reading samples 0
3637 * and 1, return physical sample 0 (determined by the first two 0s
3638 * in FMASK), otherwise return physical sample 1.
3639 *
3640 * The sample index should be adjusted as follows:
3641 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
3642 */
3643 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, Temp coords, Operand sample_index, Temp fmask_desc_ptr)
3644 {
3645 Builder bld(ctx->program, ctx->block);
3646 Temp fmask = bld.tmp(v1);
3647
3648 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 2, 1)};
3649 load->operands[0] = Operand(coords);
3650 load->operands[1] = Operand(fmask_desc_ptr);
3651 load->definitions[0] = Definition(fmask);
3652 load->glc = false;
3653 load->dmask = 0x1;
3654 load->unrm = true;
3655 load->da = da;
3656 load->can_reorder = true; /* fmask images shouldn't be modified */
3657 ctx->block->instructions.emplace_back(std::move(load));
3658
3659 Operand sample_index4;
3660 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
3661 sample_index4 = Operand(sample_index.constantValue() << 2);
3662 } else if (sample_index.regClass() == s1) {
3663 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
3664 } else {
3665 assert(sample_index.regClass() == v1);
3666 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
3667 }
3668
3669 Temp final_sample;
3670 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
3671 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
3672 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
3673 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
3674 else
3675 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
3676
3677 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
3678 * resource descriptor is 0 (invalid),
3679 */
3680 Temp compare = bld.tmp(s2);
3681 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
3682 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
3683
3684 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
3685
3686 /* Replace the MSAA sample index. */
3687 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
3688 }
3689
3690 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
3691 {
3692
3693 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
3694 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3695 bool is_array = glsl_sampler_type_is_array(type);
3696 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
3697 assert(!add_frag_pos && "Input attachments should be lowered.");
3698 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
3699 bool gfx9_1d = ctx->options->chip_class >= GFX9 && dim == GLSL_SAMPLER_DIM_1D;
3700 int count = image_type_to_components_count(dim, is_array);
3701 std::vector<Operand> coords(count);
3702
3703 if (is_ms) {
3704 Operand sample_index;
3705 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
3706 if (sample_cv)
3707 sample_index = Operand(sample_cv->u32);
3708 else
3709 sample_index = Operand(emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[2].ssa), 0, v1));
3710
3711 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
3712 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, is_array ? 3 : 2, 1)};
3713 for (unsigned i = 0; i < vec->operands.size(); i++)
3714 vec->operands[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
3715 Temp fmask_load_address = {ctx->program->allocateId(), is_array ? v3 : v2};
3716 vec->definitions[0] = Definition(fmask_load_address);
3717 ctx->block->instructions.emplace_back(std::move(vec));
3718
3719 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
3720 sample_index = Operand(adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr));
3721 }
3722 count--;
3723 coords[count] = sample_index;
3724 }
3725
3726 if (count == 1 && !gfx9_1d)
3727 return emit_extract_vector(ctx, src0, 0, v1);
3728
3729 if (gfx9_1d) {
3730 coords[0] = Operand(emit_extract_vector(ctx, src0, 0, v1));
3731 coords.resize(coords.size() + 1);
3732 coords[1] = Operand((uint32_t) 0);
3733 if (is_array)
3734 coords[2] = Operand(emit_extract_vector(ctx, src0, 1, v1));
3735 } else {
3736 for (int i = 0; i < count; i++)
3737 coords[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
3738 }
3739
3740 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
3741 for (unsigned i = 0; i < coords.size(); i++)
3742 vec->operands[i] = coords[i];
3743 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
3744 vec->definitions[0] = Definition(res);
3745 ctx->block->instructions.emplace_back(std::move(vec));
3746 return res;
3747 }
3748
3749
3750 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
3751 {
3752 Builder bld(ctx->program, ctx->block);
3753 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
3754 const struct glsl_type *type = glsl_without_array(var->type);
3755 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3756 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3757
3758 if (dim == GLSL_SAMPLER_DIM_BUF) {
3759 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
3760 unsigned num_channels = util_last_bit(mask);
3761 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
3762 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
3763
3764 aco_opcode opcode;
3765 switch (num_channels) {
3766 case 1:
3767 opcode = aco_opcode::buffer_load_format_x;
3768 break;
3769 case 2:
3770 opcode = aco_opcode::buffer_load_format_xy;
3771 break;
3772 case 3:
3773 opcode = aco_opcode::buffer_load_format_xyz;
3774 break;
3775 case 4:
3776 opcode = aco_opcode::buffer_load_format_xyzw;
3777 break;
3778 default:
3779 unreachable(">4 channel buffer image load");
3780 }
3781 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
3782 load->operands[0] = Operand(vindex);
3783 load->operands[1] = Operand(rsrc);
3784 load->operands[2] = Operand((uint32_t) 0);
3785 Temp tmp;
3786 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
3787 tmp = dst;
3788 else
3789 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
3790 load->definitions[0] = Definition(tmp);
3791 load->idxen = true;
3792 load->barrier = barrier_image;
3793 ctx->block->instructions.emplace_back(std::move(load));
3794
3795 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
3796 return;
3797 }
3798
3799 Temp coords = get_image_coords(ctx, instr, type);
3800 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
3801 //aco_image_dim img_dim = get_image_dim(ctx, glsl_get_sampler_dim(type), glsl_sampler_type_is_array(type));
3802
3803 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
3804 unsigned num_components = util_bitcount(dmask);
3805 Temp tmp;
3806 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
3807 tmp = dst;
3808 else
3809 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
3810
3811 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 2, 1)};
3812 load->operands[0] = Operand(coords);
3813 load->operands[1] = Operand(resource);
3814 load->definitions[0] = Definition(tmp);
3815 load->glc = var->data.image.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
3816 load->dmask = dmask;
3817 load->unrm = true;
3818 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
3819 load->barrier = barrier_image;
3820 ctx->block->instructions.emplace_back(std::move(load));
3821
3822 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
3823 return;
3824 }
3825
3826 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
3827 {
3828 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
3829 const struct glsl_type *type = glsl_without_array(var->type);
3830 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3831 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
3832
3833 bool glc = ctx->options->chip_class == GFX6 || var->data.image.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
3834
3835 if (dim == GLSL_SAMPLER_DIM_BUF) {
3836 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
3837 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
3838 aco_opcode opcode;
3839 switch (data.size()) {
3840 case 1:
3841 opcode = aco_opcode::buffer_store_format_x;
3842 break;
3843 case 2:
3844 opcode = aco_opcode::buffer_store_format_xy;
3845 break;
3846 case 3:
3847 opcode = aco_opcode::buffer_store_format_xyz;
3848 break;
3849 case 4:
3850 opcode = aco_opcode::buffer_store_format_xyzw;
3851 break;
3852 default:
3853 unreachable(">4 channel buffer image store");
3854 }
3855 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
3856 store->operands[0] = Operand(vindex);
3857 store->operands[1] = Operand(rsrc);
3858 store->operands[2] = Operand((uint32_t) 0);
3859 store->operands[3] = Operand(data);
3860 store->idxen = true;
3861 store->glc = glc;
3862 store->disable_wqm = true;
3863 store->barrier = barrier_image;
3864 ctx->program->needs_exact = true;
3865 ctx->block->instructions.emplace_back(std::move(store));
3866 return;
3867 }
3868
3869 assert(data.type() == RegType::vgpr);
3870 Temp coords = get_image_coords(ctx, instr, type);
3871 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
3872
3873 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(aco_opcode::image_store, Format::MIMG, 4, 0)};
3874 store->operands[0] = Operand(coords);
3875 store->operands[1] = Operand(resource);
3876 store->operands[2] = Operand(s4);
3877 store->operands[3] = Operand(data);
3878 store->glc = glc;
3879 store->dmask = (1 << data.size()) - 1;
3880 store->unrm = true;
3881 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
3882 store->disable_wqm = true;
3883 store->barrier = barrier_image;
3884 ctx->program->needs_exact = true;
3885 ctx->block->instructions.emplace_back(std::move(store));
3886 return;
3887 }
3888
3889 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
3890 {
3891 /* return the previous value if dest is ever used */
3892 bool return_previous = false;
3893 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
3894 return_previous = true;
3895 break;
3896 }
3897 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
3898 return_previous = true;
3899 break;
3900 }
3901
3902 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
3903 const struct glsl_type *type = glsl_without_array(var->type);
3904 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
3905 Builder bld(ctx->program, ctx->block);
3906
3907 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
3908 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
3909
3910 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
3911 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
3912
3913 aco_opcode buf_op, image_op;
3914 switch (instr->intrinsic) {
3915 case nir_intrinsic_image_deref_atomic_add:
3916 buf_op = aco_opcode::buffer_atomic_add;
3917 image_op = aco_opcode::image_atomic_add;
3918 break;
3919 case nir_intrinsic_image_deref_atomic_umin:
3920 buf_op = aco_opcode::buffer_atomic_umin;
3921 image_op = aco_opcode::image_atomic_umin;
3922 break;
3923 case nir_intrinsic_image_deref_atomic_imin:
3924 buf_op = aco_opcode::buffer_atomic_smin;
3925 image_op = aco_opcode::image_atomic_smin;
3926 break;
3927 case nir_intrinsic_image_deref_atomic_umax:
3928 buf_op = aco_opcode::buffer_atomic_umax;
3929 image_op = aco_opcode::image_atomic_umax;
3930 break;
3931 case nir_intrinsic_image_deref_atomic_imax:
3932 buf_op = aco_opcode::buffer_atomic_smax;
3933 image_op = aco_opcode::image_atomic_smax;
3934 break;
3935 case nir_intrinsic_image_deref_atomic_and:
3936 buf_op = aco_opcode::buffer_atomic_and;
3937 image_op = aco_opcode::image_atomic_and;
3938 break;
3939 case nir_intrinsic_image_deref_atomic_or:
3940 buf_op = aco_opcode::buffer_atomic_or;
3941 image_op = aco_opcode::image_atomic_or;
3942 break;
3943 case nir_intrinsic_image_deref_atomic_xor:
3944 buf_op = aco_opcode::buffer_atomic_xor;
3945 image_op = aco_opcode::image_atomic_xor;
3946 break;
3947 case nir_intrinsic_image_deref_atomic_exchange:
3948 buf_op = aco_opcode::buffer_atomic_swap;
3949 image_op = aco_opcode::image_atomic_swap;
3950 break;
3951 case nir_intrinsic_image_deref_atomic_comp_swap:
3952 buf_op = aco_opcode::buffer_atomic_cmpswap;
3953 image_op = aco_opcode::image_atomic_cmpswap;
3954 break;
3955 default:
3956 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
3957 }
3958
3959 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3960
3961 if (dim == GLSL_SAMPLER_DIM_BUF) {
3962 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
3963 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
3964 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
3965 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
3966 mubuf->operands[0] = Operand(vindex);
3967 mubuf->operands[1] = Operand(resource);
3968 mubuf->operands[2] = Operand((uint32_t)0);
3969 mubuf->operands[3] = Operand(data);
3970 if (return_previous)
3971 mubuf->definitions[0] = Definition(dst);
3972 mubuf->offset = 0;
3973 mubuf->idxen = true;
3974 mubuf->glc = return_previous;
3975 mubuf->disable_wqm = true;
3976 mubuf->barrier = barrier_image;
3977 ctx->program->needs_exact = true;
3978 ctx->block->instructions.emplace_back(std::move(mubuf));
3979 return;
3980 }
3981
3982 Temp coords = get_image_coords(ctx, instr, type);
3983 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
3984 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 4, return_previous ? 1 : 0)};
3985 mimg->operands[0] = Operand(coords);
3986 mimg->operands[1] = Operand(resource);
3987 mimg->operands[2] = Operand(s4); /* no sampler */
3988 mimg->operands[3] = Operand(data);
3989 if (return_previous)
3990 mimg->definitions[0] = Definition(dst);
3991 mimg->glc = return_previous;
3992 mimg->dmask = (1 << data.size()) - 1;
3993 mimg->unrm = true;
3994 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
3995 mimg->disable_wqm = true;
3996 mimg->barrier = barrier_image;
3997 ctx->program->needs_exact = true;
3998 ctx->block->instructions.emplace_back(std::move(mimg));
3999 return;
4000 }
4001
4002 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
4003 {
4004 if (in_elements && ctx->options->chip_class == GFX8) {
4005 Builder bld(ctx->program, ctx->block);
4006
4007 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
4008 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
4009 stride = bld.vop1(aco_opcode::v_cvt_f32_ubyte0, bld.def(v1), stride);
4010 stride = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), stride);
4011
4012 Temp size = emit_extract_vector(ctx, desc, 2, s1);
4013 size = bld.vop1(aco_opcode::v_cvt_f32_u32, bld.def(v1), size);
4014
4015 Temp res = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), size, stride);
4016 res = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), res);
4017 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
4018
4019 // TODO: we can probably calculate this faster on the scalar unit to do: size / stride{1,2,4,8,12,16}
4020 /* idea
4021 * for 1,2,4,8,16, the result is just (stride >> S_FF1_I32_B32)
4022 * in case 12 (or 3?), we have to divide by 3:
4023 * set v_skip in case it's 12 (if we also have to take care of 3, shift first)
4024 * use v_mul_hi_u32 with magic number to divide
4025 * we need some pseudo merge opcode to overwrite the original SALU result with readfirstlane
4026 * disable v_skip
4027 * total: 6 SALU + 2 VALU instructions vs 1 SALU + 6 VALU instructions
4028 */
4029
4030 } else {
4031 emit_extract_vector(ctx, desc, 2, dst);
4032 }
4033 }
4034
4035 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
4036 {
4037 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4038 const struct glsl_type *type = glsl_without_array(var->type);
4039 Builder bld(ctx->program, ctx->block);
4040
4041 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
4042 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
4043 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
4044 }
4045
4046 /* LOD */
4047 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
4048
4049 /* Resource */
4050 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
4051
4052 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4053
4054 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1)};
4055 mimg->operands[0] = Operand(lod);
4056 mimg->operands[1] = Operand(resource);
4057 unsigned& dmask = mimg->dmask;
4058 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
4059 mimg->da = glsl_sampler_type_is_array(type);
4060 mimg->can_reorder = true;
4061 Definition& def = mimg->definitions[0];
4062 ctx->block->instructions.emplace_back(std::move(mimg));
4063
4064 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
4065 glsl_sampler_type_is_array(type)) {
4066
4067 assert(instr->dest.ssa.num_components == 3);
4068 Temp tmp = {ctx->program->allocateId(), v3};
4069 def = Definition(tmp);
4070 emit_split_vector(ctx, tmp, 3);
4071
4072 /* divide 3rd value by 6 by multiplying with magic number */
4073 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
4074 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
4075
4076 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4077 emit_extract_vector(ctx, tmp, 0, v1),
4078 emit_extract_vector(ctx, tmp, 1, v1),
4079 by_6);
4080
4081 } else if (ctx->options->chip_class >= GFX9 &&
4082 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
4083 glsl_sampler_type_is_array(type)) {
4084 assert(instr->dest.ssa.num_components == 2);
4085 def = Definition(dst);
4086 dmask = 0x5;
4087 } else {
4088 def = Definition(dst);
4089 }
4090
4091 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4092 }
4093
4094 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4095 {
4096 Builder bld(ctx->program, ctx->block);
4097 unsigned num_components = instr->num_components;
4098
4099 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4100 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4101 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4102
4103 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4104 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc);
4105 }
4106
4107 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4108 {
4109 Builder bld(ctx->program, ctx->block);
4110 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
4111 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4112 unsigned writemask = nir_intrinsic_write_mask(instr);
4113
4114 Temp offset;
4115 if (ctx->options->chip_class < GFX8)
4116 offset = as_vgpr(ctx,get_ssa_temp(ctx, instr->src[2].ssa));
4117 else
4118 offset = get_ssa_temp(ctx, instr->src[2].ssa);
4119
4120 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4121 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4122
4123 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
4124 ctx->options->chip_class >= GFX8;
4125 if (smem)
4126 offset = bld.as_uniform(offset);
4127 bool smem_nonfs = smem && ctx->stage != fragment_fs;
4128
4129 while (writemask) {
4130 int start, count;
4131 u_bit_scan_consecutive_range(&writemask, &start, &count);
4132 if (count == 3 && smem) {
4133 writemask |= 1u << (start + 2);
4134 count = 2;
4135 }
4136 int num_bytes = count * elem_size_bytes;
4137
4138 if (num_bytes > 16) {
4139 assert(elem_size_bytes == 8);
4140 writemask |= (((count - 2) << 1) - 1) << (start + 2);
4141 count = 2;
4142 num_bytes = 16;
4143 }
4144
4145 // TODO: check alignment of sub-dword stores
4146 // TODO: split 3 bytes. there is no store instruction for that
4147
4148 Temp write_data;
4149 if (count != instr->num_components) {
4150 emit_split_vector(ctx, data, instr->num_components);
4151 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4152 for (int i = 0; i < count; i++) {
4153 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
4154 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
4155 }
4156 write_data = bld.tmp(smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
4157 vec->definitions[0] = Definition(write_data);
4158 ctx->block->instructions.emplace_back(std::move(vec));
4159 } else if (!smem && data.type() != RegType::vgpr) {
4160 assert(num_bytes % 4 == 0);
4161 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
4162 } else if (smem_nonfs && data.type() == RegType::vgpr) {
4163 assert(num_bytes % 4 == 0);
4164 write_data = bld.as_uniform(data);
4165 } else {
4166 write_data = data;
4167 }
4168
4169 aco_opcode vmem_op, smem_op;
4170 switch (num_bytes) {
4171 case 4:
4172 vmem_op = aco_opcode::buffer_store_dword;
4173 smem_op = aco_opcode::s_buffer_store_dword;
4174 break;
4175 case 8:
4176 vmem_op = aco_opcode::buffer_store_dwordx2;
4177 smem_op = aco_opcode::s_buffer_store_dwordx2;
4178 break;
4179 case 12:
4180 vmem_op = aco_opcode::buffer_store_dwordx3;
4181 smem_op = aco_opcode::last_opcode;
4182 assert(!smem);
4183 break;
4184 case 16:
4185 vmem_op = aco_opcode::buffer_store_dwordx4;
4186 smem_op = aco_opcode::s_buffer_store_dwordx4;
4187 break;
4188 default:
4189 unreachable("Store SSBO not implemented for this size.");
4190 }
4191 if (ctx->stage == fragment_fs)
4192 smem_op = aco_opcode::p_fs_buffer_store_smem;
4193
4194 if (smem) {
4195 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
4196 store->operands[0] = Operand(rsrc);
4197 if (start) {
4198 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4199 offset, Operand(start * elem_size_bytes));
4200 store->operands[1] = Operand(off);
4201 } else {
4202 store->operands[1] = Operand(offset);
4203 }
4204 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
4205 store->operands[1].setFixed(m0);
4206 store->operands[2] = Operand(write_data);
4207 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4208 store->disable_wqm = true;
4209 store->barrier = barrier_buffer;
4210 ctx->block->instructions.emplace_back(std::move(store));
4211 ctx->program->wb_smem_l1_on_end = true;
4212 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
4213 ctx->block->kind |= block_kind_needs_lowering;
4214 ctx->program->needs_exact = true;
4215 }
4216 } else {
4217 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
4218 store->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4219 store->operands[1] = Operand(rsrc);
4220 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4221 store->operands[3] = Operand(write_data);
4222 store->offset = start * elem_size_bytes;
4223 store->offen = (offset.type() == RegType::vgpr);
4224 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4225 store->disable_wqm = true;
4226 store->barrier = barrier_buffer;
4227 ctx->program->needs_exact = true;
4228 ctx->block->instructions.emplace_back(std::move(store));
4229 }
4230 }
4231 }
4232
4233 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4234 {
4235 /* return the previous value if dest is ever used */
4236 bool return_previous = false;
4237 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4238 return_previous = true;
4239 break;
4240 }
4241 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4242 return_previous = true;
4243 break;
4244 }
4245
4246 Builder bld(ctx->program, ctx->block);
4247 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
4248
4249 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
4250 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
4251 get_ssa_temp(ctx, instr->src[3].ssa), data);
4252
4253 Temp offset;
4254 if (ctx->options->chip_class < GFX8)
4255 offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4256 else
4257 offset = get_ssa_temp(ctx, instr->src[1].ssa);
4258
4259 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4260 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4261
4262 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4263
4264 aco_opcode op32, op64;
4265 switch (instr->intrinsic) {
4266 case nir_intrinsic_ssbo_atomic_add:
4267 op32 = aco_opcode::buffer_atomic_add;
4268 op64 = aco_opcode::buffer_atomic_add_x2;
4269 break;
4270 case nir_intrinsic_ssbo_atomic_imin:
4271 op32 = aco_opcode::buffer_atomic_smin;
4272 op64 = aco_opcode::buffer_atomic_smin_x2;
4273 break;
4274 case nir_intrinsic_ssbo_atomic_umin:
4275 op32 = aco_opcode::buffer_atomic_umin;
4276 op64 = aco_opcode::buffer_atomic_umin_x2;
4277 break;
4278 case nir_intrinsic_ssbo_atomic_imax:
4279 op32 = aco_opcode::buffer_atomic_smax;
4280 op64 = aco_opcode::buffer_atomic_smax_x2;
4281 break;
4282 case nir_intrinsic_ssbo_atomic_umax:
4283 op32 = aco_opcode::buffer_atomic_umax;
4284 op64 = aco_opcode::buffer_atomic_umax_x2;
4285 break;
4286 case nir_intrinsic_ssbo_atomic_and:
4287 op32 = aco_opcode::buffer_atomic_and;
4288 op64 = aco_opcode::buffer_atomic_and_x2;
4289 break;
4290 case nir_intrinsic_ssbo_atomic_or:
4291 op32 = aco_opcode::buffer_atomic_or;
4292 op64 = aco_opcode::buffer_atomic_or_x2;
4293 break;
4294 case nir_intrinsic_ssbo_atomic_xor:
4295 op32 = aco_opcode::buffer_atomic_xor;
4296 op64 = aco_opcode::buffer_atomic_xor_x2;
4297 break;
4298 case nir_intrinsic_ssbo_atomic_exchange:
4299 op32 = aco_opcode::buffer_atomic_swap;
4300 op64 = aco_opcode::buffer_atomic_swap_x2;
4301 break;
4302 case nir_intrinsic_ssbo_atomic_comp_swap:
4303 op32 = aco_opcode::buffer_atomic_cmpswap;
4304 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
4305 break;
4306 default:
4307 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
4308 }
4309 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
4310 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4311 mubuf->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4312 mubuf->operands[1] = Operand(rsrc);
4313 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4314 mubuf->operands[3] = Operand(data);
4315 if (return_previous)
4316 mubuf->definitions[0] = Definition(dst);
4317 mubuf->offset = 0;
4318 mubuf->offen = (offset.type() == RegType::vgpr);
4319 mubuf->glc = return_previous;
4320 mubuf->disable_wqm = true;
4321 mubuf->barrier = barrier_buffer;
4322 ctx->program->needs_exact = true;
4323 ctx->block->instructions.emplace_back(std::move(mubuf));
4324 }
4325
4326 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
4327
4328 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4329 Builder bld(ctx->program, ctx->block);
4330 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
4331 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
4332 }
4333
4334 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
4335 {
4336 Builder bld(ctx->program, ctx->block);
4337 unsigned num_components = instr->num_components;
4338 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
4339
4340 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4341 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
4342
4343 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4344 aco_opcode op;
4345 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
4346 bool global = ctx->options->chip_class >= GFX9;
4347 aco_opcode op;
4348 switch (num_bytes) {
4349 case 4:
4350 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
4351 break;
4352 case 8:
4353 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
4354 break;
4355 case 12:
4356 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
4357 break;
4358 case 16:
4359 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
4360 break;
4361 default:
4362 unreachable("load_global not implemented for this size.");
4363 }
4364 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
4365 flat->operands[0] = Operand(addr);
4366 flat->operands[1] = Operand(s1);
4367 flat->glc = glc;
4368
4369 if (dst.type() == RegType::sgpr) {
4370 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4371 flat->definitions[0] = Definition(vec);
4372 ctx->block->instructions.emplace_back(std::move(flat));
4373 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
4374 } else {
4375 flat->definitions[0] = Definition(dst);
4376 ctx->block->instructions.emplace_back(std::move(flat));
4377 }
4378 emit_split_vector(ctx, dst, num_components);
4379 } else {
4380 switch (num_bytes) {
4381 case 4:
4382 op = aco_opcode::s_load_dword;
4383 break;
4384 case 8:
4385 op = aco_opcode::s_load_dwordx2;
4386 break;
4387 case 12:
4388 case 16:
4389 op = aco_opcode::s_load_dwordx4;
4390 break;
4391 default:
4392 unreachable("load_global not implemented for this size.");
4393 }
4394 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4395 load->operands[0] = Operand(addr);
4396 load->operands[1] = Operand(0u);
4397 load->definitions[0] = Definition(dst);
4398 load->glc = glc;
4399 load->barrier = barrier_buffer;
4400 assert(ctx->options->chip_class >= GFX8 || !glc);
4401
4402 if (dst.size() == 3) {
4403 /* trim vector */
4404 Temp vec = bld.tmp(s4);
4405 load->definitions[0] = Definition(vec);
4406 ctx->block->instructions.emplace_back(std::move(load));
4407 emit_split_vector(ctx, vec, 4);
4408
4409 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4410 emit_extract_vector(ctx, vec, 0, s1),
4411 emit_extract_vector(ctx, vec, 1, s1),
4412 emit_extract_vector(ctx, vec, 2, s1));
4413 } else {
4414 ctx->block->instructions.emplace_back(std::move(load));
4415 }
4416 }
4417 }
4418
4419 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
4420 {
4421 Builder bld(ctx->program, ctx->block);
4422 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4423
4424 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4425 Temp addr = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4426
4427 unsigned writemask = nir_intrinsic_write_mask(instr);
4428 while (writemask) {
4429 int start, count;
4430 u_bit_scan_consecutive_range(&writemask, &start, &count);
4431 unsigned num_bytes = count * elem_size_bytes;
4432
4433 Temp write_data = data;
4434 if (count != instr->num_components) {
4435 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4436 for (int i = 0; i < count; i++)
4437 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
4438 write_data = bld.tmp(RegType::vgpr, count);
4439 vec->definitions[0] = Definition(write_data);
4440 ctx->block->instructions.emplace_back(std::move(vec));
4441 }
4442
4443 unsigned offset = start * elem_size_bytes;
4444 if (offset > 0 && ctx->options->chip_class < GFX9) {
4445 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
4446 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
4447 Temp carry = bld.tmp(s2);
4448 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
4449
4450 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
4451 Operand(offset), addr0);
4452 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(s2),
4453 Operand(0u), addr1,
4454 carry).def(1).setHint(vcc);
4455
4456 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
4457
4458 offset = 0;
4459 }
4460
4461 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4462 bool global = ctx->options->chip_class >= GFX9;
4463 aco_opcode op;
4464 switch (num_bytes) {
4465 case 4:
4466 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
4467 break;
4468 case 8:
4469 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
4470 break;
4471 case 12:
4472 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
4473 break;
4474 case 16:
4475 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
4476 break;
4477 default:
4478 unreachable("store_global not implemented for this size.");
4479 }
4480 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
4481 flat->operands[0] = Operand(addr);
4482 flat->operands[1] = Operand(s1);
4483 flat->operands[2] = Operand(data);
4484 flat->glc = glc;
4485 flat->offset = offset;
4486 ctx->block->instructions.emplace_back(std::move(flat));
4487 }
4488 }
4489
4490 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
4491 Builder bld(ctx->program, ctx->block);
4492 switch(instr->intrinsic) {
4493 case nir_intrinsic_group_memory_barrier:
4494 case nir_intrinsic_memory_barrier:
4495 bld.barrier(aco_opcode::p_memory_barrier_all);
4496 break;
4497 case nir_intrinsic_memory_barrier_atomic_counter:
4498 bld.barrier(aco_opcode::p_memory_barrier_atomic);
4499 break;
4500 case nir_intrinsic_memory_barrier_buffer:
4501 bld.barrier(aco_opcode::p_memory_barrier_buffer);
4502 break;
4503 case nir_intrinsic_memory_barrier_image:
4504 bld.barrier(aco_opcode::p_memory_barrier_image);
4505 break;
4506 case nir_intrinsic_memory_barrier_shared:
4507 bld.barrier(aco_opcode::p_memory_barrier_shared);
4508 break;
4509 default:
4510 unreachable("Unimplemented memory barrier intrinsic");
4511 break;
4512 }
4513 }
4514
4515 Operand load_lds_size_m0(isel_context *ctx)
4516 {
4517 /* TODO: m0 does not need to be initialized on GFX9+ */
4518 Builder bld(ctx->program, ctx->block);
4519 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
4520 }
4521
4522
4523 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
4524 {
4525 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
4526 Operand m = load_lds_size_m0(ctx);
4527 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4528 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
4529 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4530 Builder bld(ctx->program, ctx->block);
4531
4532 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4533 unsigned bytes_read = 0;
4534 unsigned result_size = 0;
4535 unsigned total_bytes = instr->num_components * elem_size_bytes;
4536 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : instr->dest.ssa.bit_size / 8;
4537 std::array<Temp, 4> result;
4538
4539 while (bytes_read < total_bytes) {
4540 unsigned todo = total_bytes - bytes_read;
4541 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
4542 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
4543
4544 aco_opcode op = aco_opcode::last_opcode;
4545 if (todo >= 16 && aligned16) {
4546 op = aco_opcode::ds_read_b128;
4547 todo = 16;
4548 } else if (todo >= 12 && aligned16) {
4549 op = aco_opcode::ds_read_b96;
4550 todo = 12;
4551 } else if (todo >= 8) {
4552 op = aligned8 ? aco_opcode::ds_read_b64 : aco_opcode::ds_read2_b32;
4553 todo = 8;
4554 } else if (todo >= 4) {
4555 op = aco_opcode::ds_read_b32;
4556 todo = 4;
4557 } else {
4558 assert(false);
4559 }
4560 assert(todo % elem_size_bytes == 0);
4561 unsigned num_elements = todo / elem_size_bytes;
4562 unsigned offset = nir_intrinsic_base(instr) + bytes_read;
4563 unsigned max_offset = op == aco_opcode::ds_read2_b32 ? 1019 : 65535;
4564
4565 Temp address_offset = address;
4566 if (offset > max_offset) {
4567 address_offset = bld.vadd32(bld.def(v1), Operand((uint32_t)nir_intrinsic_base(instr)), address_offset);
4568 offset = bytes_read;
4569 }
4570 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
4571
4572 Temp res;
4573 if (instr->num_components == 1 && dst.type() == RegType::vgpr)
4574 res = dst;
4575 else
4576 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
4577
4578 if (op == aco_opcode::ds_read2_b32)
4579 res = bld.ds(op, Definition(res), address_offset, m, offset >> 2, (offset >> 2) + 1);
4580 else
4581 res = bld.ds(op, Definition(res), address_offset, m, offset);
4582
4583 if (instr->num_components == 1) {
4584 assert(todo == total_bytes);
4585 if (dst.type() == RegType::sgpr)
4586 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
4587 return;
4588 }
4589
4590 if (dst.type() == RegType::sgpr)
4591 res = bld.as_uniform(res);
4592
4593 if (num_elements == 1) {
4594 result[result_size++] = res;
4595 } else {
4596 assert(res != dst && res.size() % num_elements == 0);
4597 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
4598 split->operands[0] = Operand(res);
4599 for (unsigned i = 0; i < num_elements; i++)
4600 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
4601 ctx->block->instructions.emplace_back(std::move(split));
4602 }
4603
4604 bytes_read += todo;
4605 }
4606
4607 assert(result_size == instr->num_components && result_size > 1);
4608 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
4609 for (unsigned i = 0; i < result_size; i++)
4610 vec->operands[i] = Operand(result[i]);
4611 vec->definitions[0] = Definition(dst);
4612 ctx->block->instructions.emplace_back(std::move(vec));
4613 ctx->allocated_vec.emplace(dst.id(), result);
4614 }
4615
4616 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned offset0, unsigned offset1, unsigned align)
4617 {
4618 Builder bld(ctx->program, ctx->block);
4619 unsigned bytes_written = 0;
4620 while (bytes_written < data.size() * 4) {
4621 unsigned todo = data.size() * 4 - bytes_written;
4622 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
4623 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
4624
4625 aco_opcode op = aco_opcode::last_opcode;
4626 unsigned size = 0;
4627 if (todo >= 16 && aligned16) {
4628 op = aco_opcode::ds_write_b128;
4629 size = 4;
4630 } else if (todo >= 12 && aligned16) {
4631 op = aco_opcode::ds_write_b96;
4632 size = 3;
4633 } else if (todo >= 8) {
4634 op = aligned8 ? aco_opcode::ds_write_b64 : aco_opcode::ds_write2_b32;
4635 size = 2;
4636 } else if (todo >= 4) {
4637 op = aco_opcode::ds_write_b32;
4638 size = 1;
4639 } else {
4640 assert(false);
4641 }
4642
4643 bool write2 = op == aco_opcode::ds_write2_b32;
4644 unsigned offset = offset0 + offset1 + bytes_written;
4645 unsigned max_offset = write2 ? 1020 : 65535;
4646 Temp address_offset = address;
4647 if (offset > max_offset) {
4648 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
4649 offset = offset1 + bytes_written;
4650 }
4651 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
4652
4653 if (write2) {
4654 Temp val0 = emit_extract_vector(ctx, data, bytes_written >> 2, v1);
4655 Temp val1 = emit_extract_vector(ctx, data, (bytes_written >> 2) + 1, v1);
4656 bld.ds(op, address_offset, val0, val1, m, offset >> 2, (offset >> 2) + 1);
4657 } else {
4658 Temp val = emit_extract_vector(ctx, data, bytes_written >> 2, RegClass(RegType::vgpr, size));
4659 bld.ds(op, address_offset, val, m, offset);
4660 }
4661
4662 bytes_written += size * 4;
4663 }
4664 }
4665
4666 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
4667 {
4668 unsigned offset = nir_intrinsic_base(instr);
4669 unsigned writemask = nir_intrinsic_write_mask(instr);
4670 Operand m = load_lds_size_m0(ctx);
4671 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
4672 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4673 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4674 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
4675
4676 /* we need at most two stores for 32bit variables */
4677 int start[2], count[2];
4678 u_bit_scan_consecutive_range(&writemask, &start[0], &count[0]);
4679 u_bit_scan_consecutive_range(&writemask, &start[1], &count[1]);
4680 assert(writemask == 0);
4681
4682 /* one combined store is sufficient */
4683 if (count[0] == count[1]) {
4684 Builder bld(ctx->program, ctx->block);
4685
4686 Temp address_offset = address;
4687 if ((offset >> 2) + start[1] > 255) {
4688 address_offset = bld.vadd32(bld.def(v1), Operand(offset), address_offset);
4689 offset = 0;
4690 }
4691
4692 assert(count[0] == 1);
4693 Temp val0 = emit_extract_vector(ctx, data, start[0], v1);
4694 Temp val1 = emit_extract_vector(ctx, data, start[1], v1);
4695 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
4696 offset = offset / elem_size_bytes;
4697 bld.ds(op, address_offset, val0, val1, m,
4698 offset + start[0], offset + start[1]);
4699 return;
4700 }
4701
4702 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
4703 for (unsigned i = 0; i < 2; i++) {
4704 if (count[i] == 0)
4705 continue;
4706
4707 Temp write_data = emit_extract_vector(ctx, data, start[i], RegClass(RegType::vgpr, count[i] * elem_size_bytes / 4));
4708 ds_write_helper(ctx, m, address, write_data, offset, start[i] * elem_size_bytes, align);
4709 }
4710 return;
4711 }
4712
4713 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4714 {
4715 unsigned offset = nir_intrinsic_base(instr);
4716 Operand m = load_lds_size_m0(ctx);
4717 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4718 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4719
4720 unsigned num_operands = 3;
4721 aco_opcode op32, op64, op32_rtn, op64_rtn;
4722 switch(instr->intrinsic) {
4723 case nir_intrinsic_shared_atomic_add:
4724 op32 = aco_opcode::ds_add_u32;
4725 op64 = aco_opcode::ds_add_u64;
4726 op32_rtn = aco_opcode::ds_add_rtn_u32;
4727 op64_rtn = aco_opcode::ds_add_rtn_u64;
4728 break;
4729 case nir_intrinsic_shared_atomic_imin:
4730 op32 = aco_opcode::ds_min_i32;
4731 op64 = aco_opcode::ds_min_i64;
4732 op32_rtn = aco_opcode::ds_min_rtn_i32;
4733 op64_rtn = aco_opcode::ds_min_rtn_i64;
4734 break;
4735 case nir_intrinsic_shared_atomic_umin:
4736 op32 = aco_opcode::ds_min_u32;
4737 op64 = aco_opcode::ds_min_u64;
4738 op32_rtn = aco_opcode::ds_min_rtn_u32;
4739 op64_rtn = aco_opcode::ds_min_rtn_u64;
4740 break;
4741 case nir_intrinsic_shared_atomic_imax:
4742 op32 = aco_opcode::ds_max_i32;
4743 op64 = aco_opcode::ds_max_i64;
4744 op32_rtn = aco_opcode::ds_max_rtn_i32;
4745 op64_rtn = aco_opcode::ds_max_rtn_i64;
4746 break;
4747 case nir_intrinsic_shared_atomic_umax:
4748 op32 = aco_opcode::ds_max_u32;
4749 op64 = aco_opcode::ds_max_u64;
4750 op32_rtn = aco_opcode::ds_max_rtn_u32;
4751 op64_rtn = aco_opcode::ds_max_rtn_u64;
4752 break;
4753 case nir_intrinsic_shared_atomic_and:
4754 op32 = aco_opcode::ds_and_b32;
4755 op64 = aco_opcode::ds_and_b64;
4756 op32_rtn = aco_opcode::ds_and_rtn_b32;
4757 op64_rtn = aco_opcode::ds_and_rtn_b64;
4758 break;
4759 case nir_intrinsic_shared_atomic_or:
4760 op32 = aco_opcode::ds_or_b32;
4761 op64 = aco_opcode::ds_or_b64;
4762 op32_rtn = aco_opcode::ds_or_rtn_b32;
4763 op64_rtn = aco_opcode::ds_or_rtn_b64;
4764 break;
4765 case nir_intrinsic_shared_atomic_xor:
4766 op32 = aco_opcode::ds_xor_b32;
4767 op64 = aco_opcode::ds_xor_b64;
4768 op32_rtn = aco_opcode::ds_xor_rtn_b32;
4769 op64_rtn = aco_opcode::ds_xor_rtn_b64;
4770 break;
4771 case nir_intrinsic_shared_atomic_exchange:
4772 op32 = aco_opcode::ds_write_b32;
4773 op64 = aco_opcode::ds_write_b64;
4774 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
4775 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
4776 break;
4777 case nir_intrinsic_shared_atomic_comp_swap:
4778 op32 = aco_opcode::ds_cmpst_b32;
4779 op64 = aco_opcode::ds_cmpst_b64;
4780 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
4781 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
4782 num_operands = 4;
4783 break;
4784 default:
4785 unreachable("Unhandled shared atomic intrinsic");
4786 }
4787
4788 /* return the previous value if dest is ever used */
4789 bool return_previous = false;
4790 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4791 return_previous = true;
4792 break;
4793 }
4794 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4795 return_previous = true;
4796 break;
4797 }
4798
4799 aco_opcode op;
4800 if (data.size() == 1) {
4801 assert(instr->dest.ssa.bit_size == 32);
4802 op = return_previous ? op32_rtn : op32;
4803 } else {
4804 assert(instr->dest.ssa.bit_size == 64);
4805 op = return_previous ? op64_rtn : op64;
4806 }
4807
4808 if (offset > 65535) {
4809 Builder bld(ctx->program, ctx->block);
4810 address = bld.vadd32(bld.def(v1), Operand(offset), address);
4811 offset = 0;
4812 }
4813
4814 aco_ptr<DS_instruction> ds;
4815 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
4816 ds->operands[0] = Operand(address);
4817 ds->operands[1] = Operand(data);
4818 if (num_operands == 4)
4819 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
4820 ds->operands[num_operands - 1] = m;
4821 ds->offset0 = offset;
4822 if (return_previous)
4823 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
4824 ctx->block->instructions.emplace_back(std::move(ds));
4825 }
4826
4827 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
4828 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
4829 Builder bld(ctx->program, ctx->block);
4830 Temp scratch_addr = ctx->private_segment_buffer;
4831 if (ctx->stage != MESA_SHADER_COMPUTE)
4832 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), ctx->private_segment_buffer, Operand(0u));
4833 uint32_t rsrc_conf;
4834 /* older generations need element size = 16 bytes */
4835 if (ctx->program->chip_class >= GFX9)
4836 rsrc_conf = 0x00E00000u;
4837 else
4838 rsrc_conf = 0x00F80000u;
4839 /* buffer res = addr + num_records = -1, index_stride = 64, add_tid_enable = true */
4840 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
4841 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4842 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4843
4844 aco_opcode op;
4845 switch (dst.size()) {
4846 case 1:
4847 op = aco_opcode::buffer_load_dword;
4848 break;
4849 case 2:
4850 op = aco_opcode::buffer_load_dwordx2;
4851 break;
4852 case 3:
4853 op = aco_opcode::buffer_load_dwordx3;
4854 break;
4855 case 4:
4856 op = aco_opcode::buffer_load_dwordx4;
4857 break;
4858 case 6:
4859 case 8: {
4860 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4861 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
4862 bld.def(v4), offset, rsrc,
4863 ctx->scratch_offset, 0, true);
4864 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
4865 aco_opcode::buffer_load_dwordx4,
4866 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
4867 offset, rsrc, ctx->scratch_offset, 16, true);
4868 emit_split_vector(ctx, lower, 2);
4869 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
4870 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
4871 if (dst.size() == 8) {
4872 emit_split_vector(ctx, upper, 2);
4873 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
4874 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
4875 } else {
4876 elems[2] = upper;
4877 }
4878
4879 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
4880 Format::PSEUDO, dst.size() / 2, 1)};
4881 for (unsigned i = 0; i < dst.size() / 2; i++)
4882 vec->operands[i] = Operand(elems[i]);
4883 vec->definitions[0] = Definition(dst);
4884 bld.insert(std::move(vec));
4885 ctx->allocated_vec.emplace(dst.id(), elems);
4886 return;
4887 }
4888 default:
4889 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
4890 }
4891
4892 bld.mubuf(op, Definition(dst), offset, rsrc, ctx->scratch_offset, 0, true);
4893 emit_split_vector(ctx, dst, instr->num_components);
4894 }
4895
4896 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
4897 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
4898 Builder bld(ctx->program, ctx->block);
4899 Temp scratch_addr = ctx->private_segment_buffer;
4900 if (ctx->stage != MESA_SHADER_COMPUTE)
4901 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), ctx->private_segment_buffer, Operand(0u));
4902 uint32_t rsrc_conf;
4903 /* older generations need element size = 16 bytes */
4904 if (ctx->program->chip_class >= GFX9)
4905 rsrc_conf = 0x00E00000u;
4906 else
4907 rsrc_conf = 0x00F80000u;
4908 /* buffer res = addr + num_records = -1, index_stride = 64, add_tid_enable = true */
4909 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
4910 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4911 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4912
4913 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4914 unsigned writemask = nir_intrinsic_write_mask(instr);
4915
4916 while (writemask) {
4917 int start, count;
4918 u_bit_scan_consecutive_range(&writemask, &start, &count);
4919 int num_bytes = count * elem_size_bytes;
4920
4921 if (num_bytes > 16) {
4922 assert(elem_size_bytes == 8);
4923 writemask |= (((count - 2) << 1) - 1) << (start + 2);
4924 count = 2;
4925 num_bytes = 16;
4926 }
4927
4928 // TODO: check alignment of sub-dword stores
4929 // TODO: split 3 bytes. there is no store instruction for that
4930
4931 Temp write_data;
4932 if (count != instr->num_components) {
4933 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4934 for (int i = 0; i < count; i++) {
4935 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
4936 vec->operands[i] = Operand(elem);
4937 }
4938 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
4939 vec->definitions[0] = Definition(write_data);
4940 ctx->block->instructions.emplace_back(std::move(vec));
4941 } else {
4942 write_data = data;
4943 }
4944
4945 aco_opcode op;
4946 switch (num_bytes) {
4947 case 4:
4948 op = aco_opcode::buffer_store_dword;
4949 break;
4950 case 8:
4951 op = aco_opcode::buffer_store_dwordx2;
4952 break;
4953 case 12:
4954 op = aco_opcode::buffer_store_dwordx3;
4955 break;
4956 case 16:
4957 op = aco_opcode::buffer_store_dwordx4;
4958 break;
4959 default:
4960 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
4961 }
4962
4963 bld.mubuf(op, offset, rsrc, ctx->scratch_offset, write_data, start * elem_size_bytes, true);
4964 }
4965 }
4966
4967 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
4968 uint8_t log2_ps_iter_samples;
4969 if (ctx->program->info->ps.force_persample) {
4970 log2_ps_iter_samples =
4971 util_logbase2(ctx->options->key.fs.num_samples);
4972 } else {
4973 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
4974 }
4975
4976 /* The bit pattern matches that used by fixed function fragment
4977 * processing. */
4978 static const unsigned ps_iter_masks[] = {
4979 0xffff, /* not used */
4980 0x5555,
4981 0x1111,
4982 0x0101,
4983 0x0001,
4984 };
4985 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
4986
4987 Builder bld(ctx->program, ctx->block);
4988
4989 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), ctx->fs_inputs[fs_input::ancillary], Operand(8u), Operand(4u));
4990 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
4991 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
4992 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4993 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, ctx->fs_inputs[fs_input::sample_coverage]);
4994 }
4995
4996 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
4997 {
4998 Builder bld(ctx->program, ctx->block);
4999
5000 if (cluster_size == 1) {
5001 return src;
5002 } if (op == nir_op_iand && cluster_size == 4) {
5003 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
5004 Temp tmp = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc), Operand(exec, s2), src);
5005 return bld.sop1(aco_opcode::s_not_b64, bld.def(s2), bld.def(s1, scc),
5006 bld.sop1(aco_opcode::s_wqm_b64, bld.def(s2), bld.def(s1, scc), tmp));
5007 } else if (op == nir_op_ior && cluster_size == 4) {
5008 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
5009 return bld.sop1(aco_opcode::s_wqm_b64, bld.def(s2), bld.def(s1, scc),
5010 bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2)));
5011 } else if (op == nir_op_iand && cluster_size == 64) {
5012 //subgroupAnd(val) -> (exec & ~val) == 0
5013 Temp tmp = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc), Operand(exec, s2), src).def(1).getTemp();
5014 return bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), tmp, Operand(0u));
5015 } else if (op == nir_op_ior && cluster_size == 64) {
5016 //subgroupOr(val) -> (val & exec) != 0
5017 return bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2)).def(1).getTemp();
5018 } else if (op == nir_op_ixor && cluster_size == 64) {
5019 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
5020 Temp tmp = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
5021 tmp = bld.sop1(aco_opcode::s_bcnt1_i32_b64, bld.def(s2), bld.def(s1, scc), tmp);
5022 return bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
5023 } else {
5024 //subgroupClustered{And,Or,Xor}(val, n) ->
5025 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0))
5026 //cluster_offset = ~(n - 1) & lane_id
5027 //cluster_mask = ((1 << n) - 1)
5028 //subgroupClusteredAnd():
5029 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
5030 //subgroupClusteredOr():
5031 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
5032 //subgroupClusteredXor():
5033 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
5034 Temp lane_id = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), Operand((uint32_t) -1),
5035 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
5036 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
5037
5038 Temp tmp;
5039 if (op == nir_op_iand)
5040 tmp = bld.sop2(aco_opcode::s_orn2_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
5041 else
5042 tmp = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
5043
5044 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
5045 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
5046 tmp = emit_extract_vector(ctx, tmp, 0, v1);
5047 if (cluster_mask != 0xffffffff)
5048 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
5049
5050 Definition cmp_def = Definition();
5051 if (op == nir_op_iand) {
5052 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(s2), Operand(cluster_mask), tmp).def(0);
5053 } else if (op == nir_op_ior) {
5054 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), tmp).def(0);
5055 } else if (op == nir_op_ixor) {
5056 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
5057 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
5058 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), tmp).def(0);
5059 }
5060 cmp_def.setHint(vcc);
5061 return cmp_def.getTemp();
5062 }
5063 }
5064
5065 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
5066 {
5067 Builder bld(ctx->program, ctx->block);
5068
5069 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
5070 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
5071 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
5072 Temp tmp;
5073 if (op == nir_op_iand)
5074 tmp = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc), Operand(exec, s2), src);
5075 else
5076 tmp = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2));
5077
5078 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
5079 Temp lo = lohi.def(0).getTemp();
5080 Temp hi = lohi.def(1).getTemp();
5081 Temp mbcnt = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), hi,
5082 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), lo, Operand(0u)));
5083
5084 Definition cmp_def = Definition();
5085 if (op == nir_op_iand)
5086 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(s2), Operand(0u), mbcnt).def(0);
5087 else if (op == nir_op_ior)
5088 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), mbcnt).def(0);
5089 else if (op == nir_op_ixor)
5090 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u),
5091 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
5092 cmp_def.setHint(vcc);
5093 return cmp_def.getTemp();
5094 }
5095
5096 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
5097 {
5098 Builder bld(ctx->program, ctx->block);
5099
5100 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
5101 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
5102 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
5103 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
5104 if (op == nir_op_iand)
5105 return bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), tmp, src);
5106 else if (op == nir_op_ior)
5107 return bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), tmp, src);
5108 else if (op == nir_op_ixor)
5109 return bld.sop2(aco_opcode::s_xor_b64, bld.def(s2), bld.def(s1, scc), tmp, src);
5110
5111 assert(false);
5112 return Temp();
5113 }
5114
5115 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
5116 {
5117 Builder bld(ctx->program, ctx->block);
5118 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
5119 if (src.regClass().type() == RegType::vgpr) {
5120 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
5121 } else if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5122 bld.sopc(aco_opcode::s_cmp_lg_u64, bld.scc(dst), Operand(0u), Operand(src));
5123 } else if (src.regClass() == s1) {
5124 bld.sop1(aco_opcode::s_mov_b32, dst, src);
5125 } else if (src.regClass() == s2) {
5126 bld.sop1(aco_opcode::s_mov_b64, dst, src);
5127 } else {
5128 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5129 nir_print_instr(&instr->instr, stderr);
5130 fprintf(stderr, "\n");
5131 }
5132 }
5133
5134 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
5135 {
5136 Builder bld(ctx->program, ctx->block);
5137 Temp p1 = ctx->fs_inputs[fs_input::persp_center_p1];
5138 Temp p2 = ctx->fs_inputs[fs_input::persp_center_p2];
5139
5140 /* Build DD X/Y */
5141 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_quad_perm(0, 0, 0, 0));
5142 Temp ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_quad_perm(1, 1, 1, 1));
5143 Temp ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_quad_perm(2, 2, 2, 2));
5144 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_quad_perm(0, 0, 0, 0));
5145 Temp ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_quad_perm(1, 1, 1, 1));
5146 Temp ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_quad_perm(2, 2, 2, 2));
5147
5148 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
5149 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
5150 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
5151 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
5152 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
5153 Temp wqm1 = bld.tmp(v1);
5154 emit_wqm(ctx, tmp1, wqm1, true);
5155 Temp wqm2 = bld.tmp(v1);
5156 emit_wqm(ctx, tmp2, wqm2, true);
5157 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
5158 return;
5159 }
5160
5161 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
5162 {
5163 Builder bld(ctx->program, ctx->block);
5164 switch(instr->intrinsic) {
5165 case nir_intrinsic_load_barycentric_sample:
5166 case nir_intrinsic_load_barycentric_pixel:
5167 case nir_intrinsic_load_barycentric_centroid: {
5168 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
5169 fs_input input = get_interp_input(instr->intrinsic, mode);
5170
5171 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5172 if (input == fs_input::max_inputs) {
5173 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5174 Operand(0u), Operand(0u));
5175 } else {
5176 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5177 ctx->fs_inputs[input],
5178 ctx->fs_inputs[input + 1]);
5179 }
5180 emit_split_vector(ctx, dst, 2);
5181 break;
5182 }
5183 case nir_intrinsic_load_barycentric_at_sample: {
5184 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
5185 switch (ctx->options->key.fs.num_samples) {
5186 case 2: sample_pos_offset += 1 << 3; break;
5187 case 4: sample_pos_offset += 3 << 3; break;
5188 case 8: sample_pos_offset += 7 << 3; break;
5189 default: break;
5190 }
5191 Temp sample_pos;
5192 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5193 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
5194 if (addr.type() == RegType::sgpr) {
5195 Operand offset;
5196 if (const_addr) {
5197 sample_pos_offset += const_addr->u32 << 3;
5198 offset = Operand(sample_pos_offset);
5199 } else if (ctx->options->chip_class >= GFX9) {
5200 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
5201 } else {
5202 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
5203 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
5204 }
5205 addr = ctx->private_segment_buffer;
5206 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), addr, Operand(offset));
5207
5208 } else if (ctx->options->chip_class >= GFX9) {
5209 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
5210 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, ctx->private_segment_buffer, sample_pos_offset);
5211 } else {
5212 /* addr += ctx->private_segment_buffer + sample_pos_offset */
5213 Temp tmp0 = bld.tmp(s1);
5214 Temp tmp1 = bld.tmp(s1);
5215 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), ctx->private_segment_buffer);
5216 Definition scc_tmp = bld.def(s1, scc);
5217 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
5218 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), scc_tmp.getTemp());
5219 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
5220 Temp pck0 = bld.tmp(v1);
5221 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
5222 tmp1 = as_vgpr(ctx, tmp1);
5223 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(s2)), tmp1, Operand(0u), carry);
5224 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
5225
5226 /* sample_pos = flat_load_dwordx2 addr */
5227 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
5228 }
5229
5230 /* sample_pos -= 0.5 */
5231 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
5232 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
5233 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
5234 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
5235 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
5236
5237 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
5238 break;
5239 }
5240 case nir_intrinsic_load_barycentric_at_offset: {
5241 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5242 RegClass rc = RegClass(offset.type(), 1);
5243 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
5244 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
5245 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
5246 break;
5247 }
5248 case nir_intrinsic_load_front_face: {
5249 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5250 Operand(0u), ctx->fs_inputs[fs_input::front_face]).def(0).setHint(vcc);
5251 break;
5252 }
5253 case nir_intrinsic_load_view_index:
5254 case nir_intrinsic_load_layer_id: {
5255 if (instr->intrinsic == nir_intrinsic_load_view_index && (ctx->stage & sw_vs)) {
5256 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5257 bld.copy(Definition(dst), Operand(ctx->view_index));
5258 break;
5259 }
5260
5261 unsigned idx = nir_intrinsic_base(instr);
5262 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5263 Operand(2u), bld.m0(ctx->prim_mask), idx, 0);
5264 break;
5265 }
5266 case nir_intrinsic_load_frag_coord: {
5267 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
5268 break;
5269 }
5270 case nir_intrinsic_load_sample_pos: {
5271 Temp posx = ctx->fs_inputs[fs_input::frag_pos_0];
5272 Temp posy = ctx->fs_inputs[fs_input::frag_pos_1];
5273 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5274 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
5275 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
5276 break;
5277 }
5278 case nir_intrinsic_load_interpolated_input:
5279 visit_load_interpolated_input(ctx, instr);
5280 break;
5281 case nir_intrinsic_store_output:
5282 visit_store_output(ctx, instr);
5283 break;
5284 case nir_intrinsic_load_input:
5285 visit_load_input(ctx, instr);
5286 break;
5287 case nir_intrinsic_load_ubo:
5288 visit_load_ubo(ctx, instr);
5289 break;
5290 case nir_intrinsic_load_push_constant:
5291 visit_load_push_constant(ctx, instr);
5292 break;
5293 case nir_intrinsic_load_constant:
5294 visit_load_constant(ctx, instr);
5295 break;
5296 case nir_intrinsic_vulkan_resource_index:
5297 visit_load_resource(ctx, instr);
5298 break;
5299 case nir_intrinsic_discard:
5300 visit_discard(ctx, instr);
5301 break;
5302 case nir_intrinsic_discard_if:
5303 visit_discard_if(ctx, instr);
5304 break;
5305 case nir_intrinsic_load_shared:
5306 visit_load_shared(ctx, instr);
5307 break;
5308 case nir_intrinsic_store_shared:
5309 visit_store_shared(ctx, instr);
5310 break;
5311 case nir_intrinsic_shared_atomic_add:
5312 case nir_intrinsic_shared_atomic_imin:
5313 case nir_intrinsic_shared_atomic_umin:
5314 case nir_intrinsic_shared_atomic_imax:
5315 case nir_intrinsic_shared_atomic_umax:
5316 case nir_intrinsic_shared_atomic_and:
5317 case nir_intrinsic_shared_atomic_or:
5318 case nir_intrinsic_shared_atomic_xor:
5319 case nir_intrinsic_shared_atomic_exchange:
5320 case nir_intrinsic_shared_atomic_comp_swap:
5321 visit_shared_atomic(ctx, instr);
5322 break;
5323 case nir_intrinsic_image_deref_load:
5324 visit_image_load(ctx, instr);
5325 break;
5326 case nir_intrinsic_image_deref_store:
5327 visit_image_store(ctx, instr);
5328 break;
5329 case nir_intrinsic_image_deref_atomic_add:
5330 case nir_intrinsic_image_deref_atomic_umin:
5331 case nir_intrinsic_image_deref_atomic_imin:
5332 case nir_intrinsic_image_deref_atomic_umax:
5333 case nir_intrinsic_image_deref_atomic_imax:
5334 case nir_intrinsic_image_deref_atomic_and:
5335 case nir_intrinsic_image_deref_atomic_or:
5336 case nir_intrinsic_image_deref_atomic_xor:
5337 case nir_intrinsic_image_deref_atomic_exchange:
5338 case nir_intrinsic_image_deref_atomic_comp_swap:
5339 visit_image_atomic(ctx, instr);
5340 break;
5341 case nir_intrinsic_image_deref_size:
5342 visit_image_size(ctx, instr);
5343 break;
5344 case nir_intrinsic_load_ssbo:
5345 visit_load_ssbo(ctx, instr);
5346 break;
5347 case nir_intrinsic_store_ssbo:
5348 visit_store_ssbo(ctx, instr);
5349 break;
5350 case nir_intrinsic_load_global:
5351 visit_load_global(ctx, instr);
5352 break;
5353 case nir_intrinsic_store_global:
5354 visit_store_global(ctx, instr);
5355 break;
5356 case nir_intrinsic_ssbo_atomic_add:
5357 case nir_intrinsic_ssbo_atomic_imin:
5358 case nir_intrinsic_ssbo_atomic_umin:
5359 case nir_intrinsic_ssbo_atomic_imax:
5360 case nir_intrinsic_ssbo_atomic_umax:
5361 case nir_intrinsic_ssbo_atomic_and:
5362 case nir_intrinsic_ssbo_atomic_or:
5363 case nir_intrinsic_ssbo_atomic_xor:
5364 case nir_intrinsic_ssbo_atomic_exchange:
5365 case nir_intrinsic_ssbo_atomic_comp_swap:
5366 visit_atomic_ssbo(ctx, instr);
5367 break;
5368 case nir_intrinsic_load_scratch:
5369 visit_load_scratch(ctx, instr);
5370 break;
5371 case nir_intrinsic_store_scratch:
5372 visit_store_scratch(ctx, instr);
5373 break;
5374 case nir_intrinsic_get_buffer_size:
5375 visit_get_buffer_size(ctx, instr);
5376 break;
5377 case nir_intrinsic_barrier: {
5378 unsigned* bsize = ctx->program->info->cs.block_size;
5379 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
5380 if (workgroup_size > 64)
5381 bld.sopp(aco_opcode::s_barrier);
5382 break;
5383 }
5384 case nir_intrinsic_group_memory_barrier:
5385 case nir_intrinsic_memory_barrier:
5386 case nir_intrinsic_memory_barrier_atomic_counter:
5387 case nir_intrinsic_memory_barrier_buffer:
5388 case nir_intrinsic_memory_barrier_image:
5389 case nir_intrinsic_memory_barrier_shared:
5390 emit_memory_barrier(ctx, instr);
5391 break;
5392 case nir_intrinsic_load_num_work_groups:
5393 case nir_intrinsic_load_work_group_id:
5394 case nir_intrinsic_load_local_invocation_id: {
5395 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5396 Temp* ids;
5397 if (instr->intrinsic == nir_intrinsic_load_num_work_groups)
5398 ids = ctx->num_workgroups;
5399 else if (instr->intrinsic == nir_intrinsic_load_work_group_id)
5400 ids = ctx->workgroup_ids;
5401 else
5402 ids = ctx->local_invocation_ids;
5403 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5404 ids[0].id() ? Operand(ids[0]) : Operand(1u),
5405 ids[1].id() ? Operand(ids[1]) : Operand(1u),
5406 ids[2].id() ? Operand(ids[2]) : Operand(1u));
5407 emit_split_vector(ctx, dst, 3);
5408 break;
5409 }
5410 case nir_intrinsic_load_local_invocation_index: {
5411 Temp id = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), Operand((uint32_t) -1),
5412 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
5413 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u), ctx->tg_size);
5414 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
5415 break;
5416 }
5417 case nir_intrinsic_load_subgroup_id: {
5418 if (ctx->stage == compute_cs) {
5419 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u), ctx->tg_size);
5420 bld.sop2(aco_opcode::s_lshr_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), tg_num, Operand(0x6u));
5421 } else {
5422 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
5423 }
5424 break;
5425 }
5426 case nir_intrinsic_load_subgroup_invocation: {
5427 bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand((uint32_t) -1),
5428 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
5429 break;
5430 }
5431 case nir_intrinsic_load_num_subgroups: {
5432 if (ctx->stage == compute_cs)
5433 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu), ctx->tg_size);
5434 else
5435 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
5436 break;
5437 }
5438 case nir_intrinsic_ballot: {
5439 Definition tmp = bld.def(s2);
5440 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5441 if (instr->src[0].ssa->bit_size == 1 && src.regClass() == s2) {
5442 bld.sop2(aco_opcode::s_and_b64, tmp, bld.def(s1, scc), Operand(exec, s2), src);
5443 } else if (instr->src[0].ssa->bit_size == 1 && src.regClass() == s1) {
5444 bld.sop2(aco_opcode::s_cselect_b64, tmp, Operand(exec, s2), Operand(0u), bld.scc(src));
5445 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
5446 bld.vopc(aco_opcode::v_cmp_lg_u32, tmp, Operand(0u), src);
5447 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
5448 bld.vopc(aco_opcode::v_cmp_lg_u64, tmp, Operand(0u), src);
5449 } else {
5450 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5451 nir_print_instr(&instr->instr, stderr);
5452 fprintf(stderr, "\n");
5453 }
5454 emit_wqm(ctx, tmp.getTemp(), get_ssa_temp(ctx, &instr->dest.ssa));
5455 break;
5456 }
5457 case nir_intrinsic_shuffle: {
5458 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5459 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
5460 emit_uniform_subgroup(ctx, instr, src);
5461 } else {
5462 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
5463 assert(tid.regClass() == v1);
5464 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5465 if (src.regClass() == v1) {
5466 tid = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), tid);
5467 emit_wqm(ctx, bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), tid, src), dst);
5468 } else if (src.regClass() == v2) {
5469 tid = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), tid);
5470
5471 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5472 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5473 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), tid, lo));
5474 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), tid, hi));
5475 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5476 emit_split_vector(ctx, dst, 2);
5477 } else if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5478 Temp tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
5479 tmp = emit_extract_vector(ctx, tmp, 0, v1);
5480 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
5481 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), tmp), dst);
5482 } else {
5483 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5484 nir_print_instr(&instr->instr, stderr);
5485 fprintf(stderr, "\n");
5486 }
5487 }
5488 break;
5489 }
5490 case nir_intrinsic_load_sample_id: {
5491 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5492 ctx->fs_inputs[ancillary], Operand(8u), Operand(4u));
5493 break;
5494 }
5495 case nir_intrinsic_load_sample_mask_in: {
5496 visit_load_sample_mask_in(ctx, instr);
5497 break;
5498 }
5499 case nir_intrinsic_read_first_invocation: {
5500 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5501 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5502 if (src.regClass() == v1) {
5503 emit_wqm(ctx,
5504 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
5505 dst);
5506 } else if (src.regClass() == v2) {
5507 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5508 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5509 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
5510 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
5511 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5512 emit_split_vector(ctx, dst, 2);
5513 } else if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5514 emit_wqm(ctx,
5515 bld.sopc(aco_opcode::s_bitcmp1_b64, bld.def(s1, scc), src,
5516 bld.sop1(aco_opcode::s_ff1_i32_b64, bld.def(s1), Operand(exec, s2))),
5517 dst);
5518 } else if (src.regClass() == s1) {
5519 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
5520 } else if (src.regClass() == s2) {
5521 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
5522 } else {
5523 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5524 nir_print_instr(&instr->instr, stderr);
5525 fprintf(stderr, "\n");
5526 }
5527 break;
5528 }
5529 case nir_intrinsic_read_invocation: {
5530 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5531 Temp lane = get_ssa_temp(ctx, instr->src[1].ssa);
5532 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5533 assert(lane.regClass() == s1);
5534 if (src.regClass() == v1) {
5535 emit_wqm(ctx, bld.vop3(aco_opcode::v_readlane_b32, bld.def(s1), src, lane), dst);
5536 } else if (src.regClass() == v2) {
5537 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5538 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5539 lo = emit_wqm(ctx, bld.vop3(aco_opcode::v_readlane_b32, bld.def(s1), lo, lane));
5540 hi = emit_wqm(ctx, bld.vop3(aco_opcode::v_readlane_b32, bld.def(s1), hi, lane));
5541 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5542 emit_split_vector(ctx, dst, 2);
5543 } else if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5544 emit_wqm(ctx, bld.sopc(aco_opcode::s_bitcmp1_b64, bld.def(s1, scc), src, lane), dst);
5545 } else if (src.regClass() == s1) {
5546 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
5547 } else if (src.regClass() == s2) {
5548 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
5549 } else {
5550 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5551 nir_print_instr(&instr->instr, stderr);
5552 fprintf(stderr, "\n");
5553 }
5554 break;
5555 }
5556 case nir_intrinsic_vote_all: {
5557 Temp src = as_divergent_bool(ctx, get_ssa_temp(ctx, instr->src[0].ssa), false);
5558 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5559 assert(src.regClass() == s2);
5560 assert(dst.regClass() == s1);
5561
5562 Definition tmp = bld.def(s1);
5563 bld.sopc(aco_opcode::s_cmp_eq_u64, bld.scc(tmp),
5564 bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2)),
5565 Operand(exec, s2));
5566 emit_wqm(ctx, tmp.getTemp(), dst);
5567 break;
5568 }
5569 case nir_intrinsic_vote_any: {
5570 Temp src = as_divergent_bool(ctx, get_ssa_temp(ctx, instr->src[0].ssa), false);
5571 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5572 assert(src.regClass() == s2);
5573 assert(dst.regClass() == s1);
5574
5575 Definition tmp = bld.def(s1);
5576 bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.scc(tmp), src, Operand(exec, s2));
5577 emit_wqm(ctx, tmp.getTemp(), dst);
5578 break;
5579 }
5580 case nir_intrinsic_reduce:
5581 case nir_intrinsic_inclusive_scan:
5582 case nir_intrinsic_exclusive_scan: {
5583 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5584 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5585 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
5586 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
5587 nir_intrinsic_cluster_size(instr) : 0;
5588 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : 64, 64));
5589
5590 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
5591 emit_uniform_subgroup(ctx, instr, src);
5592 } else if (instr->dest.ssa.bit_size == 1) {
5593 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
5594 op = nir_op_iand;
5595 else if (op == nir_op_iadd)
5596 op = nir_op_ixor;
5597 else if (op == nir_op_umax || op == nir_op_imax)
5598 op = nir_op_ior;
5599 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
5600
5601 switch (instr->intrinsic) {
5602 case nir_intrinsic_reduce:
5603 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
5604 break;
5605 case nir_intrinsic_exclusive_scan:
5606 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
5607 break;
5608 case nir_intrinsic_inclusive_scan:
5609 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
5610 break;
5611 default:
5612 assert(false);
5613 }
5614 } else if (cluster_size == 1) {
5615 bld.copy(Definition(dst), src);
5616 } else {
5617 src = as_vgpr(ctx, src);
5618
5619 ReduceOp reduce_op;
5620 switch (op) {
5621 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
5622 CASE(iadd)
5623 CASE(imul)
5624 CASE(fadd)
5625 CASE(fmul)
5626 CASE(imin)
5627 CASE(umin)
5628 CASE(fmin)
5629 CASE(imax)
5630 CASE(umax)
5631 CASE(fmax)
5632 CASE(iand)
5633 CASE(ior)
5634 CASE(ixor)
5635 default:
5636 unreachable("unknown reduction op");
5637 #undef CASE
5638 }
5639
5640 aco_opcode aco_op;
5641 switch (instr->intrinsic) {
5642 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
5643 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
5644 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
5645 default:
5646 unreachable("unknown reduce intrinsic");
5647 }
5648
5649 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
5650 reduce->operands[0] = Operand(src);
5651 // filled in by aco_reduce_assign.cpp, used internally as part of the
5652 // reduce sequence
5653 assert(dst.size() == 1 || dst.size() == 2);
5654 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
5655 reduce->operands[2] = Operand(v1.as_linear());
5656
5657 Temp tmp_dst = bld.tmp(dst.regClass());
5658 reduce->definitions[0] = Definition(tmp_dst);
5659 reduce->definitions[1] = bld.def(s2); // used internally
5660 reduce->definitions[2] = Definition();
5661 reduce->definitions[3] = Definition(scc, s1);
5662 reduce->definitions[4] = Definition();
5663 reduce->reduce_op = reduce_op;
5664 reduce->cluster_size = cluster_size;
5665 ctx->block->instructions.emplace_back(std::move(reduce));
5666
5667 emit_wqm(ctx, tmp_dst, dst);
5668 }
5669 break;
5670 }
5671 case nir_intrinsic_quad_broadcast: {
5672 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5673 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
5674 emit_uniform_subgroup(ctx, instr, src);
5675 } else {
5676 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5677 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
5678 if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5679 uint32_t half_mask = 0x11111111u << lane;
5680 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
5681 Temp tmp = bld.tmp(s2);
5682 bld.sop1(aco_opcode::s_wqm_b64, Definition(tmp),
5683 bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), mask_tmp,
5684 bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc), src, Operand(exec, s2))));
5685 emit_wqm(ctx, tmp, dst);
5686 } else if (instr->dest.ssa.bit_size == 32) {
5687 emit_wqm(ctx,
5688 bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src,
5689 dpp_quad_perm(lane, lane, lane, lane)),
5690 dst);
5691 } else if (instr->dest.ssa.bit_size == 64) {
5692 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5693 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5694 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_quad_perm(lane, lane, lane, lane)));
5695 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_quad_perm(lane, lane, lane, lane)));
5696 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5697 emit_split_vector(ctx, dst, 2);
5698 } else {
5699 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5700 nir_print_instr(&instr->instr, stderr);
5701 fprintf(stderr, "\n");
5702 }
5703 }
5704 break;
5705 }
5706 case nir_intrinsic_quad_swap_horizontal:
5707 case nir_intrinsic_quad_swap_vertical:
5708 case nir_intrinsic_quad_swap_diagonal:
5709 case nir_intrinsic_quad_swizzle_amd: {
5710 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5711 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
5712 emit_uniform_subgroup(ctx, instr, src);
5713 break;
5714 }
5715 uint16_t dpp_ctrl = 0;
5716 switch (instr->intrinsic) {
5717 case nir_intrinsic_quad_swap_horizontal:
5718 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
5719 break;
5720 case nir_intrinsic_quad_swap_vertical:
5721 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
5722 break;
5723 case nir_intrinsic_quad_swap_diagonal:
5724 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
5725 break;
5726 case nir_intrinsic_quad_swizzle_amd: {
5727 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
5728 break;
5729 }
5730 default:
5731 break;
5732 }
5733
5734 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5735 if (instr->dest.ssa.bit_size == 1 && src.regClass() == s2) {
5736 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
5737 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
5738 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(s2), Operand(0u), src);
5739 emit_wqm(ctx, tmp, dst);
5740 } else if (instr->dest.ssa.bit_size == 32) {
5741 Temp tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
5742 emit_wqm(ctx, tmp, dst);
5743 } else if (instr->dest.ssa.bit_size == 64) {
5744 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5745 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5746 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
5747 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
5748 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5749 emit_split_vector(ctx, dst, 2);
5750 } else {
5751 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5752 nir_print_instr(&instr->instr, stderr);
5753 fprintf(stderr, "\n");
5754 }
5755 break;
5756 }
5757 case nir_intrinsic_masked_swizzle_amd: {
5758 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5759 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
5760 emit_uniform_subgroup(ctx, instr, src);
5761 break;
5762 }
5763 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5764 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
5765 if (dst.regClass() == v1) {
5766 emit_wqm(ctx,
5767 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
5768 dst);
5769 } else if (dst.regClass() == v2) {
5770 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5771 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5772 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
5773 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
5774 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5775 emit_split_vector(ctx, dst, 2);
5776 } else {
5777 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5778 nir_print_instr(&instr->instr, stderr);
5779 fprintf(stderr, "\n");
5780 }
5781 break;
5782 }
5783 case nir_intrinsic_write_invocation_amd: {
5784 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5785 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
5786 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
5787 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5788 if (dst.regClass() == v1) {
5789 /* src2 is ignored for writelane. RA assigns the same reg for dst */
5790 emit_wqm(ctx, bld.vop3(aco_opcode::v_writelane_b32, bld.def(v1), val, lane, src), dst);
5791 } else if (dst.regClass() == v2) {
5792 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
5793 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
5794 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
5795 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
5796 Temp lo = emit_wqm(ctx, bld.vop3(aco_opcode::v_writelane_b32, bld.def(v1), val_lo, lane, src_hi));
5797 Temp hi = emit_wqm(ctx, bld.vop3(aco_opcode::v_writelane_b32, bld.def(v1), val_hi, lane, src_hi));
5798 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5799 emit_split_vector(ctx, dst, 2);
5800 } else {
5801 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5802 nir_print_instr(&instr->instr, stderr);
5803 fprintf(stderr, "\n");
5804 }
5805 break;
5806 }
5807 case nir_intrinsic_mbcnt_amd: {
5808 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5809 RegClass rc = RegClass(src.type(), 1);
5810 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
5811 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
5812 Temp tmp = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), mask_lo, Operand(0u));
5813 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5814 Temp wqm_tmp = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), mask_hi, tmp);
5815 emit_wqm(ctx, wqm_tmp, dst);
5816 break;
5817 }
5818 case nir_intrinsic_load_helper_invocation: {
5819 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5820 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
5821 ctx->block->kind |= block_kind_needs_lowering;
5822 ctx->program->needs_exact = true;
5823 break;
5824 }
5825 case nir_intrinsic_is_helper_invocation: {
5826 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5827 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
5828 ctx->block->kind |= block_kind_needs_lowering;
5829 ctx->program->needs_exact = true;
5830 break;
5831 }
5832 case nir_intrinsic_demote:
5833 bld.pseudo(aco_opcode::p_demote_to_helper);
5834 ctx->block->kind |= block_kind_needs_lowering;
5835 ctx->program->needs_exact = true;
5836 break;
5837 case nir_intrinsic_demote_if: {
5838 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.def(s2), bld.def(s1, scc),
5839 as_divergent_bool(ctx, get_ssa_temp(ctx, instr->src[0].ssa), false),
5840 Operand(exec, s2));
5841 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
5842 ctx->block->kind |= block_kind_needs_lowering;
5843 ctx->program->needs_exact = true;
5844 break;
5845 }
5846 case nir_intrinsic_first_invocation: {
5847 emit_wqm(ctx, bld.sop1(aco_opcode::s_ff1_i32_b64, bld.def(s1), Operand(exec, s2)),
5848 get_ssa_temp(ctx, &instr->dest.ssa));
5849 break;
5850 }
5851 case nir_intrinsic_shader_clock:
5852 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
5853 break;
5854 case nir_intrinsic_load_vertex_id_zero_base: {
5855 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5856 bld.copy(Definition(dst), ctx->vertex_id);
5857 break;
5858 }
5859 case nir_intrinsic_load_first_vertex: {
5860 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5861 bld.copy(Definition(dst), ctx->base_vertex);
5862 break;
5863 }
5864 case nir_intrinsic_load_base_instance: {
5865 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5866 bld.copy(Definition(dst), ctx->start_instance);
5867 break;
5868 }
5869 case nir_intrinsic_load_instance_id: {
5870 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5871 bld.copy(Definition(dst), ctx->instance_id);
5872 break;
5873 }
5874 case nir_intrinsic_load_draw_id: {
5875 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5876 bld.copy(Definition(dst), ctx->draw_id);
5877 break;
5878 }
5879 default:
5880 fprintf(stderr, "Unimplemented intrinsic instr: ");
5881 nir_print_instr(&instr->instr, stderr);
5882 fprintf(stderr, "\n");
5883 abort();
5884
5885 break;
5886 }
5887 }
5888
5889
5890 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
5891 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
5892 enum glsl_base_type *stype)
5893 {
5894 nir_deref_instr *texture_deref_instr = NULL;
5895 nir_deref_instr *sampler_deref_instr = NULL;
5896 int plane = -1;
5897
5898 for (unsigned i = 0; i < instr->num_srcs; i++) {
5899 switch (instr->src[i].src_type) {
5900 case nir_tex_src_texture_deref:
5901 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
5902 break;
5903 case nir_tex_src_sampler_deref:
5904 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
5905 break;
5906 case nir_tex_src_plane:
5907 plane = nir_src_as_int(instr->src[i].src);
5908 break;
5909 default:
5910 break;
5911 }
5912 }
5913
5914 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
5915
5916 if (!sampler_deref_instr)
5917 sampler_deref_instr = texture_deref_instr;
5918
5919 if (plane >= 0) {
5920 assert(instr->op != nir_texop_txf_ms &&
5921 instr->op != nir_texop_samples_identical);
5922 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
5923 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
5924 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
5925 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
5926 } else {
5927 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
5928 }
5929 if (samp_ptr) {
5930 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
5931 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
5932 fprintf(stderr, "Unimplemented sampler descriptor: ");
5933 nir_print_instr(&instr->instr, stderr);
5934 fprintf(stderr, "\n");
5935 abort();
5936 // TODO: build samp_ptr = and(samp_ptr, res_ptr)
5937 }
5938 }
5939 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
5940 instr->op == nir_texop_samples_identical))
5941 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
5942 }
5943
5944 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
5945 Temp *out_ma, Temp *out_sc, Temp *out_tc)
5946 {
5947 Builder bld(ctx->program, ctx->block);
5948
5949 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
5950 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
5951 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
5952
5953 Operand neg_one(0xbf800000u);
5954 Operand one(0x3f800000u);
5955 Operand two(0x40000000u);
5956 Operand four(0x40800000u);
5957
5958 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(s2)), Operand(0u), ma);
5959 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
5960 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
5961
5962 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(s2)), four, id);
5963 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(s2), two, id);
5964 is_ma_y = bld.sop2(aco_opcode::s_andn2_b64, bld.hint_vcc(bld.def(s2)), is_ma_y, is_ma_z);
5965 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), is_ma_z, is_ma_y);
5966
5967 // select sc
5968 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
5969 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
5970 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
5971 one, is_ma_y);
5972 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
5973
5974 // select tc
5975 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
5976 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
5977 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
5978
5979 // select ma
5980 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
5981 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
5982 deriv_z, is_ma_z);
5983 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
5984 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
5985 }
5986
5987 void prepare_cube_coords(isel_context *ctx, Temp* coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
5988 {
5989 Builder bld(ctx->program, ctx->block);
5990 Temp coord_args[4], ma, tc, sc, id;
5991 for (unsigned i = 0; i < (is_array ? 4 : 3); i++)
5992 coord_args[i] = emit_extract_vector(ctx, *coords, i, v1);
5993
5994 if (is_array) {
5995 coord_args[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_args[3]);
5996
5997 // see comment in ac_prepare_cube_coords()
5998 if (ctx->options->chip_class <= GFX8)
5999 coord_args[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coord_args[3]);
6000 }
6001
6002 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6003
6004 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
6005 vop3a->operands[0] = Operand(ma);
6006 vop3a->abs[0] = true;
6007 Temp invma = bld.tmp(v1);
6008 vop3a->definitions[0] = Definition(invma);
6009 ctx->block->instructions.emplace_back(std::move(vop3a));
6010
6011 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6012 if (!is_deriv)
6013 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
6014
6015 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6016 if (!is_deriv)
6017 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
6018
6019 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6020
6021 if (is_deriv) {
6022 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
6023 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
6024
6025 for (unsigned i = 0; i < 2; i++) {
6026 // see comment in ac_prepare_cube_coords()
6027 Temp deriv_ma;
6028 Temp deriv_sc, deriv_tc;
6029 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
6030 &deriv_ma, &deriv_sc, &deriv_tc);
6031
6032 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
6033
6034 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
6035 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
6036 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
6037 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
6038 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
6039 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
6040 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
6041 }
6042
6043 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
6044 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
6045 }
6046
6047 if (is_array)
6048 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coord_args[3], id, Operand(0x41000000u/*8.0*/));
6049 *coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), sc, tc, id);
6050
6051 }
6052
6053 Temp apply_round_slice(isel_context *ctx, Temp coords, unsigned idx)
6054 {
6055 Temp coord_vec[3];
6056 for (unsigned i = 0; i < coords.size(); i++)
6057 coord_vec[i] = emit_extract_vector(ctx, coords, i, v1);
6058
6059 Builder bld(ctx->program, ctx->block);
6060 coord_vec[idx] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_vec[idx]);
6061
6062 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
6063 for (unsigned i = 0; i < coords.size(); i++)
6064 vec->operands[i] = Operand(coord_vec[i]);
6065 Temp res = bld.tmp(RegType::vgpr, coords.size());
6066 vec->definitions[0] = Definition(res);
6067 ctx->block->instructions.emplace_back(std::move(vec));
6068 return res;
6069 }
6070
6071 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
6072 {
6073 if (vec->parent_instr->type != nir_instr_type_alu)
6074 return;
6075 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
6076 if (vec_instr->op != nir_op_vec(vec->num_components))
6077 return;
6078
6079 for (unsigned i = 0; i < vec->num_components; i++) {
6080 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
6081 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
6082 }
6083 }
6084
6085 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
6086 {
6087 Builder bld(ctx->program, ctx->block);
6088 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
6089 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
6090 Temp resource, sampler, fmask_ptr, bias = Temp(), coords, compare = Temp(), sample_index = Temp(),
6091 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(), derivs = Temp();
6092 nir_const_value *sample_index_cv = NULL;
6093 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
6094 enum glsl_base_type stype;
6095 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
6096
6097 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
6098 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
6099 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
6100 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
6101
6102 for (unsigned i = 0; i < instr->num_srcs; i++) {
6103 switch (instr->src[i].src_type) {
6104 case nir_tex_src_coord:
6105 coords = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[i].src.ssa));
6106 break;
6107 case nir_tex_src_bias:
6108 if (instr->op == nir_texop_txb) {
6109 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
6110 has_bias = true;
6111 }
6112 break;
6113 case nir_tex_src_lod: {
6114 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
6115
6116 if (val && val->f32 <= 0.0) {
6117 level_zero = true;
6118 } else {
6119 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
6120 has_lod = true;
6121 }
6122 break;
6123 }
6124 case nir_tex_src_comparator:
6125 if (instr->is_shadow) {
6126 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
6127 has_compare = true;
6128 }
6129 break;
6130 case nir_tex_src_offset:
6131 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
6132 get_const_vec(instr->src[i].src.ssa, const_offset);
6133 has_offset = true;
6134 break;
6135 case nir_tex_src_ddx:
6136 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
6137 has_ddx = true;
6138 break;
6139 case nir_tex_src_ddy:
6140 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
6141 has_ddy = true;
6142 break;
6143 case nir_tex_src_ms_index:
6144 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
6145 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
6146 has_sample_index = true;
6147 break;
6148 case nir_tex_src_texture_offset:
6149 case nir_tex_src_sampler_offset:
6150 default:
6151 break;
6152 }
6153 }
6154 // TODO: all other cases: structure taken from ac_nir_to_llvm.c
6155 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
6156 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
6157
6158 if (instr->op == nir_texop_texture_samples) {
6159 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
6160
6161 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
6162 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
6163 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
6164 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
6165
6166 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6167 samples, Operand(1u), bld.scc(is_msaa));
6168 return;
6169 }
6170
6171 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
6172 aco_ptr<Instruction> tmp_instr;
6173 Temp acc, pack = Temp();
6174
6175 uint32_t pack_const = 0;
6176 for (unsigned i = 0; i < offset.size(); i++) {
6177 if (!const_offset[i])
6178 continue;
6179 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
6180 }
6181
6182 if (offset.type() == RegType::sgpr) {
6183 for (unsigned i = 0; i < offset.size(); i++) {
6184 if (const_offset[i])
6185 continue;
6186
6187 acc = emit_extract_vector(ctx, offset, i, s1);
6188 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
6189
6190 if (i) {
6191 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
6192 }
6193
6194 if (pack == Temp()) {
6195 pack = acc;
6196 } else {
6197 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
6198 }
6199 }
6200
6201 if (pack_const && pack != Temp())
6202 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
6203 } else {
6204 for (unsigned i = 0; i < offset.size(); i++) {
6205 if (const_offset[i])
6206 continue;
6207
6208 acc = emit_extract_vector(ctx, offset, i, v1);
6209 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
6210
6211 if (i) {
6212 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
6213 }
6214
6215 if (pack == Temp()) {
6216 pack = acc;
6217 } else {
6218 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
6219 }
6220 }
6221
6222 if (pack_const && pack != Temp())
6223 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
6224 }
6225 if (pack_const && pack == Temp())
6226 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
6227 else if (pack == Temp())
6228 has_offset = false;
6229 else
6230 offset = pack;
6231 }
6232
6233 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
6234 prepare_cube_coords(ctx, &coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
6235
6236 /* pack derivatives */
6237 if (has_ddx || has_ddy) {
6238 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class >= GFX9) {
6239 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(v4),
6240 ddx, Operand(0u), ddy, Operand(0u));
6241 } else {
6242 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, ddx.size() + ddy.size()), ddx, ddy);
6243 }
6244 has_derivs = true;
6245 }
6246
6247 if (instr->coord_components > 1 &&
6248 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
6249 instr->is_array &&
6250 instr->op != nir_texop_txf)
6251 coords = apply_round_slice(ctx, coords, 1);
6252
6253 if (instr->coord_components > 2 &&
6254 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
6255 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
6256 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
6257 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
6258 instr->is_array &&
6259 instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms)
6260 coords = apply_round_slice(ctx, coords, 2);
6261
6262 if (ctx->options->chip_class >= GFX9 &&
6263 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
6264 instr->op != nir_texop_lod && instr->coord_components) {
6265 assert(coords.size() > 0 && coords.size() < 3);
6266
6267 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size() + 1, 1)};
6268 vec->operands[0] = Operand(emit_extract_vector(ctx, coords, 0, v1));
6269 vec->operands[1] = instr->op == nir_texop_txf ? Operand((uint32_t) 0) : Operand((uint32_t) 0x3f000000);
6270 if (coords.size() > 1)
6271 vec->operands[2] = Operand(emit_extract_vector(ctx, coords, 1, v1));
6272 coords = bld.tmp(RegType::vgpr, coords.size() + 1);
6273 vec->definitions[0] = Definition(coords);
6274 ctx->block->instructions.emplace_back(std::move(vec));
6275 }
6276
6277 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
6278
6279 if (instr->op == nir_texop_samples_identical)
6280 resource = fmask_ptr;
6281
6282 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
6283 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
6284 instr->op != nir_texop_txs) {
6285 assert(has_sample_index);
6286 Operand op(sample_index);
6287 if (sample_index_cv)
6288 op = Operand(sample_index_cv->u32);
6289 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
6290 }
6291
6292 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
6293 Temp split_coords[coords.size()];
6294 emit_split_vector(ctx, coords, coords.size());
6295 for (unsigned i = 0; i < coords.size(); i++)
6296 split_coords[i] = emit_extract_vector(ctx, coords, i, v1);
6297
6298 unsigned i = 0;
6299 for (; i < std::min(offset.size(), instr->coord_components); i++) {
6300 Temp off = emit_extract_vector(ctx, offset, i, v1);
6301 split_coords[i] = bld.vadd32(bld.def(v1), split_coords[i], off);
6302 }
6303
6304 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
6305 for (unsigned i = 0; i < coords.size(); i++)
6306 vec->operands[i] = Operand(split_coords[i]);
6307 coords = bld.tmp(coords.regClass());
6308 vec->definitions[0] = Definition(coords);
6309 ctx->block->instructions.emplace_back(std::move(vec));
6310
6311 has_offset = false;
6312 }
6313
6314 /* Build tex instruction */
6315 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
6316 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6317 Temp tmp_dst = dst;
6318
6319 /* gather4 selects the component by dmask and always returns vec4 */
6320 if (instr->op == nir_texop_tg4) {
6321 assert(instr->dest.ssa.num_components == 4);
6322 if (instr->is_shadow)
6323 dmask = 1;
6324 else
6325 dmask = 1 << instr->component;
6326 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
6327 tmp_dst = bld.tmp(v4);
6328 } else if (instr->op == nir_texop_samples_identical) {
6329 tmp_dst = bld.tmp(v1);
6330 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
6331 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
6332 }
6333
6334 aco_ptr<MIMG_instruction> tex;
6335 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
6336 if (!has_lod)
6337 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6338
6339 bool div_by_6 = instr->op == nir_texop_txs &&
6340 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
6341 instr->is_array &&
6342 (dmask & (1 << 2));
6343 if (tmp_dst.id() == dst.id() && div_by_6)
6344 tmp_dst = bld.tmp(tmp_dst.regClass());
6345
6346 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
6347 tex->operands[0] = Operand(as_vgpr(ctx,lod));
6348 tex->operands[1] = Operand(resource);
6349 if (ctx->options->chip_class >= GFX9 &&
6350 instr->op == nir_texop_txs &&
6351 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
6352 instr->is_array) {
6353 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
6354 } else if (instr->op == nir_texop_query_levels) {
6355 tex->dmask = 1 << 3;
6356 } else {
6357 tex->dmask = dmask;
6358 }
6359 tex->da = da;
6360 tex->definitions[0] = Definition(tmp_dst);
6361 tex->can_reorder = true;
6362 ctx->block->instructions.emplace_back(std::move(tex));
6363
6364 if (div_by_6) {
6365 /* divide 3rd value by 6 by multiplying with magic number */
6366 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
6367 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6368 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
6369 assert(instr->dest.ssa.num_components == 3);
6370 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
6371 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
6372 emit_extract_vector(ctx, tmp_dst, 0, v1),
6373 emit_extract_vector(ctx, tmp_dst, 1, v1),
6374 by_6);
6375
6376 }
6377
6378 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
6379 return;
6380 }
6381
6382 Temp tg4_compare_cube_wa64 = Temp();
6383
6384 if (tg4_integer_workarounds) {
6385 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
6386 tex->operands[0] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6387 tex->operands[1] = Operand(resource);
6388 tex->dmask = 0x3;
6389 tex->da = da;
6390 Temp size = bld.tmp(v2);
6391 tex->definitions[0] = Definition(size);
6392 tex->can_reorder = true;
6393 ctx->block->instructions.emplace_back(std::move(tex));
6394 emit_split_vector(ctx, size, size.size());
6395
6396 Temp half_texel[2];
6397 for (unsigned i = 0; i < 2; i++) {
6398 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
6399 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
6400 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
6401 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
6402 }
6403
6404 Temp orig_coords[2] = {
6405 emit_extract_vector(ctx, coords, 0, v1),
6406 emit_extract_vector(ctx, coords, 1, v1)};
6407 Temp new_coords[2] = {
6408 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[0], half_texel[0]),
6409 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[1], half_texel[1])
6410 };
6411
6412 if (tg4_integer_cube_workaround) {
6413 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
6414 Temp desc[resource.size()];
6415 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
6416 Format::PSEUDO, 1, resource.size())};
6417 split->operands[0] = Operand(resource);
6418 for (unsigned i = 0; i < resource.size(); i++) {
6419 desc[i] = bld.tmp(s1);
6420 split->definitions[i] = Definition(desc[i]);
6421 }
6422 ctx->block->instructions.emplace_back(std::move(split));
6423
6424 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
6425 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
6426 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
6427
6428 Temp nfmt;
6429 if (stype == GLSL_TYPE_UINT) {
6430 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
6431 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
6432 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
6433 bld.scc(compare_cube_wa));
6434 } else {
6435 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
6436 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
6437 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
6438 bld.scc(compare_cube_wa));
6439 }
6440 tg4_compare_cube_wa64 = as_divergent_bool(ctx, compare_cube_wa, true);
6441 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
6442
6443 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
6444 Operand((uint32_t)C_008F14_NUM_FORMAT));
6445 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
6446
6447 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6448 Format::PSEUDO, resource.size(), 1)};
6449 for (unsigned i = 0; i < resource.size(); i++)
6450 vec->operands[i] = Operand(desc[i]);
6451 resource = bld.tmp(resource.regClass());
6452 vec->definitions[0] = Definition(resource);
6453 ctx->block->instructions.emplace_back(std::move(vec));
6454
6455 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
6456 new_coords[0], orig_coords[0], tg4_compare_cube_wa64);
6457 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
6458 new_coords[1], orig_coords[1], tg4_compare_cube_wa64);
6459 }
6460
6461 if (coords.size() == 3) {
6462 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3),
6463 new_coords[0], new_coords[1],
6464 emit_extract_vector(ctx, coords, 2, v1));
6465 } else {
6466 assert(coords.size() == 2);
6467 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2),
6468 new_coords[0], new_coords[1]);
6469 }
6470 }
6471
6472 if (!(has_ddx && has_ddy) && !has_lod && !level_zero &&
6473 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
6474 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
6475 coords = emit_wqm(ctx, coords, bld.tmp(coords.regClass()), true);
6476
6477 std::vector<Operand> args;
6478 if (has_offset)
6479 args.emplace_back(Operand(offset));
6480 if (has_bias)
6481 args.emplace_back(Operand(bias));
6482 if (has_compare)
6483 args.emplace_back(Operand(compare));
6484 if (has_derivs)
6485 args.emplace_back(Operand(derivs));
6486 args.emplace_back(Operand(coords));
6487 if (has_sample_index)
6488 args.emplace_back(Operand(sample_index));
6489 if (has_lod)
6490 args.emplace_back(lod);
6491
6492 Operand arg;
6493 if (args.size() > 1) {
6494 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
6495 unsigned size = 0;
6496 for (unsigned i = 0; i < args.size(); i++) {
6497 size += args[i].size();
6498 vec->operands[i] = args[i];
6499 }
6500 RegClass rc = RegClass(RegType::vgpr, size);
6501 Temp tmp = bld.tmp(rc);
6502 vec->definitions[0] = Definition(tmp);
6503 ctx->block->instructions.emplace_back(std::move(vec));
6504 arg = Operand(tmp);
6505 } else {
6506 assert(args[0].isTemp());
6507 arg = Operand(as_vgpr(ctx, args[0].getTemp()));
6508 }
6509
6510 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
6511 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
6512
6513 assert(coords.size() == 1);
6514 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
6515 aco_opcode op;
6516 switch (last_bit) {
6517 case 1:
6518 op = aco_opcode::buffer_load_format_x; break;
6519 case 2:
6520 op = aco_opcode::buffer_load_format_xy; break;
6521 case 3:
6522 op = aco_opcode::buffer_load_format_xyz; break;
6523 case 4:
6524 op = aco_opcode::buffer_load_format_xyzw; break;
6525 default:
6526 unreachable("Tex instruction loads more than 4 components.");
6527 }
6528
6529 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
6530 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
6531 tmp_dst = dst;
6532 else
6533 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
6534
6535 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
6536 mubuf->operands[0] = Operand(coords);
6537 mubuf->operands[1] = Operand(resource);
6538 mubuf->operands[2] = Operand((uint32_t) 0);
6539 mubuf->definitions[0] = Definition(tmp_dst);
6540 mubuf->idxen = true;
6541 mubuf->can_reorder = true;
6542 ctx->block->instructions.emplace_back(std::move(mubuf));
6543
6544 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
6545 return;
6546 }
6547
6548
6549 if (instr->op == nir_texop_txf ||
6550 instr->op == nir_texop_txf_ms ||
6551 instr->op == nir_texop_samples_identical) {
6552 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
6553 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 2, 1));
6554 tex->operands[0] = Operand(arg);
6555 tex->operands[1] = Operand(resource);
6556 tex->dmask = dmask;
6557 tex->unrm = true;
6558 tex->da = da;
6559 tex->definitions[0] = Definition(tmp_dst);
6560 tex->can_reorder = true;
6561 ctx->block->instructions.emplace_back(std::move(tex));
6562
6563 if (instr->op == nir_texop_samples_identical) {
6564 assert(dmask == 1 && dst.regClass() == v1);
6565 assert(dst.id() != tmp_dst.id());
6566
6567 Temp tmp = bld.tmp(s2);
6568 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
6569 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
6570
6571 } else {
6572 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
6573 }
6574 return;
6575 }
6576
6577 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
6578 aco_opcode opcode = aco_opcode::image_sample;
6579 if (has_offset) { /* image_sample_*_o */
6580 if (has_compare) {
6581 opcode = aco_opcode::image_sample_c_o;
6582 if (has_derivs)
6583 opcode = aco_opcode::image_sample_c_d_o;
6584 if (has_bias)
6585 opcode = aco_opcode::image_sample_c_b_o;
6586 if (level_zero)
6587 opcode = aco_opcode::image_sample_c_lz_o;
6588 if (has_lod)
6589 opcode = aco_opcode::image_sample_c_l_o;
6590 } else {
6591 opcode = aco_opcode::image_sample_o;
6592 if (has_derivs)
6593 opcode = aco_opcode::image_sample_d_o;
6594 if (has_bias)
6595 opcode = aco_opcode::image_sample_b_o;
6596 if (level_zero)
6597 opcode = aco_opcode::image_sample_lz_o;
6598 if (has_lod)
6599 opcode = aco_opcode::image_sample_l_o;
6600 }
6601 } else { /* no offset */
6602 if (has_compare) {
6603 opcode = aco_opcode::image_sample_c;
6604 if (has_derivs)
6605 opcode = aco_opcode::image_sample_c_d;
6606 if (has_bias)
6607 opcode = aco_opcode::image_sample_c_b;
6608 if (level_zero)
6609 opcode = aco_opcode::image_sample_c_lz;
6610 if (has_lod)
6611 opcode = aco_opcode::image_sample_c_l;
6612 } else {
6613 opcode = aco_opcode::image_sample;
6614 if (has_derivs)
6615 opcode = aco_opcode::image_sample_d;
6616 if (has_bias)
6617 opcode = aco_opcode::image_sample_b;
6618 if (level_zero)
6619 opcode = aco_opcode::image_sample_lz;
6620 if (has_lod)
6621 opcode = aco_opcode::image_sample_l;
6622 }
6623 }
6624
6625 if (instr->op == nir_texop_tg4) {
6626 if (has_offset) {
6627 opcode = aco_opcode::image_gather4_lz_o;
6628 if (has_compare)
6629 opcode = aco_opcode::image_gather4_c_lz_o;
6630 } else {
6631 opcode = aco_opcode::image_gather4_lz;
6632 if (has_compare)
6633 opcode = aco_opcode::image_gather4_c_lz;
6634 }
6635 } else if (instr->op == nir_texop_lod) {
6636 opcode = aco_opcode::image_get_lod;
6637 }
6638
6639 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
6640 tex->operands[0] = arg;
6641 tex->operands[1] = Operand(resource);
6642 tex->operands[2] = Operand(sampler);
6643 tex->dmask = dmask;
6644 tex->da = da;
6645 tex->definitions[0] = Definition(tmp_dst);
6646 tex->can_reorder = true;
6647 ctx->block->instructions.emplace_back(std::move(tex));
6648
6649 if (tg4_integer_cube_workaround) {
6650 assert(tmp_dst.id() != dst.id());
6651 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
6652
6653 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
6654 Temp val[4];
6655 for (unsigned i = 0; i < dst.size(); i++) {
6656 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
6657 Temp cvt_val;
6658 if (stype == GLSL_TYPE_UINT)
6659 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
6660 else
6661 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
6662 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
6663 }
6664 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
6665 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
6666 val[0], val[1], val[2], val[3]);
6667 }
6668 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
6669 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
6670
6671 }
6672
6673
6674 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
6675 {
6676 Temp tmp = get_ssa_temp(ctx, ssa);
6677 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
6678 return Operand(tmp.regClass());
6679 else
6680 return Operand(tmp);
6681 }
6682
6683 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
6684 {
6685 aco_ptr<Pseudo_instruction> phi;
6686 unsigned num_src = exec_list_length(&instr->srcs);
6687 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6688
6689 aco_opcode opcode = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index] ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
6690
6691 std::map<unsigned, nir_ssa_def*> phi_src;
6692 bool all_undef = true;
6693 nir_foreach_phi_src(src, instr) {
6694 phi_src[src->pred->index] = src->src.ssa;
6695 if (src->src.ssa->parent_instr->type != nir_instr_type_ssa_undef)
6696 all_undef = false;
6697 }
6698 if (all_undef) {
6699 Builder bld(ctx->program, ctx->block);
6700 if (dst.regClass() == s1) {
6701 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
6702 } else if (dst.regClass() == v1) {
6703 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
6704 } else {
6705 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
6706 for (unsigned i = 0; i < dst.size(); i++)
6707 vec->operands[i] = Operand(0u);
6708 vec->definitions[0] = Definition(dst);
6709 ctx->block->instructions.emplace_back(std::move(vec));
6710 }
6711 return;
6712 }
6713
6714 /* try to scalarize vector phis */
6715 if (dst.size() > 1) {
6716 // TODO: scalarize linear phis on divergent ifs
6717 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
6718 std::array<Temp, 4> new_vec;
6719 for (std::pair<const unsigned, nir_ssa_def*>& pair : phi_src) {
6720 Operand src = get_phi_operand(ctx, pair.second);
6721 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end()) {
6722 can_scalarize = false;
6723 break;
6724 }
6725 }
6726 if (can_scalarize) {
6727 unsigned num_components = instr->dest.ssa.num_components;
6728 assert(dst.size() % num_components == 0);
6729 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
6730
6731 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
6732 for (unsigned k = 0; k < num_components; k++) {
6733 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_src, 1));
6734 std::map<unsigned, nir_ssa_def*>::iterator it = phi_src.begin();
6735 for (unsigned i = 0; i < num_src; i++) {
6736 Operand src = get_phi_operand(ctx, it->second);
6737 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
6738 ++it;
6739 }
6740 Temp phi_dst = {ctx->program->allocateId(), rc};
6741 phi->definitions[0] = Definition(phi_dst);
6742 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
6743 new_vec[k] = phi_dst;
6744 vec->operands[k] = Operand(phi_dst);
6745 }
6746 vec->definitions[0] = Definition(dst);
6747 ctx->block->instructions.emplace_back(std::move(vec));
6748 ctx->allocated_vec.emplace(dst.id(), new_vec);
6749 return;
6750 }
6751 }
6752
6753 unsigned extra_src = 0;
6754 if (opcode == aco_opcode::p_linear_phi && (ctx->block->kind & block_kind_loop_exit) &&
6755 ctx->program->blocks[ctx->block->index-2].kind & block_kind_continue_or_break) {
6756 extra_src++;
6757 }
6758
6759 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_src + extra_src, 1));
6760
6761 /* if we have a linear phi on a divergent if, we know that one src is undef */
6762 if (opcode == aco_opcode::p_linear_phi && ctx->block->kind & block_kind_merge) {
6763 assert(extra_src == 0);
6764 Block* block;
6765 /* we place the phi either in the invert-block or in the current block */
6766 if (phi_src.begin()->second->parent_instr->type != nir_instr_type_ssa_undef) {
6767 assert((++phi_src.begin())->second->parent_instr->type == nir_instr_type_ssa_undef);
6768 Block& linear_else = ctx->program->blocks[ctx->block->linear_preds[1]];
6769 block = &ctx->program->blocks[linear_else.linear_preds[0]];
6770 assert(block->kind & block_kind_invert);
6771 phi->operands[0] = get_phi_operand(ctx, phi_src.begin()->second);
6772 } else {
6773 assert((++phi_src.begin())->second->parent_instr->type != nir_instr_type_ssa_undef);
6774 block = ctx->block;
6775 phi->operands[0] = get_phi_operand(ctx, (++phi_src.begin())->second);
6776 }
6777 phi->operands[1] = Operand(dst.regClass());
6778 phi->definitions[0] = Definition(dst);
6779 block->instructions.emplace(block->instructions.begin(), std::move(phi));
6780 return;
6781 }
6782
6783 std::map<unsigned, nir_ssa_def*>::iterator it = phi_src.begin();
6784 for (unsigned i = 0; i < num_src; i++) {
6785 phi->operands[i] = get_phi_operand(ctx, it->second);
6786 ++it;
6787 }
6788 for (unsigned i = 0; i < extra_src; i++)
6789 phi->operands[num_src + i] = Operand(dst.regClass());
6790 phi->definitions[0] = Definition(dst);
6791 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
6792 }
6793
6794
6795 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
6796 {
6797 Temp dst = get_ssa_temp(ctx, &instr->def);
6798
6799 assert(dst.type() == RegType::sgpr);
6800
6801 if (dst.size() == 1) {
6802 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
6803 } else {
6804 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
6805 for (unsigned i = 0; i < dst.size(); i++)
6806 vec->operands[i] = Operand(0u);
6807 vec->definitions[0] = Definition(dst);
6808 ctx->block->instructions.emplace_back(std::move(vec));
6809 }
6810 }
6811
6812 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
6813 {
6814 Builder bld(ctx->program, ctx->block);
6815 Block *logical_target;
6816 append_logical_end(ctx->block);
6817 unsigned idx = ctx->block->index;
6818
6819 switch (instr->type) {
6820 case nir_jump_break:
6821 logical_target = ctx->cf_info.parent_loop.exit;
6822 add_logical_edge(idx, logical_target);
6823 ctx->block->kind |= block_kind_break;
6824
6825 if (!ctx->cf_info.parent_if.is_divergent &&
6826 !ctx->cf_info.parent_loop.has_divergent_continue) {
6827 /* uniform break - directly jump out of the loop */
6828 ctx->block->kind |= block_kind_uniform;
6829 ctx->cf_info.has_branch = true;
6830 bld.branch(aco_opcode::p_branch);
6831 add_linear_edge(idx, logical_target);
6832 return;
6833 }
6834 ctx->cf_info.parent_loop.has_divergent_branch = true;
6835 break;
6836 case nir_jump_continue:
6837 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
6838 add_logical_edge(idx, logical_target);
6839 ctx->block->kind |= block_kind_continue;
6840
6841 if (ctx->cf_info.parent_if.is_divergent) {
6842 /* for potential uniform breaks after this continue,
6843 we must ensure that they are handled correctly */
6844 ctx->cf_info.parent_loop.has_divergent_continue = true;
6845 ctx->cf_info.parent_loop.has_divergent_branch = true;
6846 } else {
6847 /* uniform continue - directly jump to the loop header */
6848 ctx->block->kind |= block_kind_uniform;
6849 ctx->cf_info.has_branch = true;
6850 bld.branch(aco_opcode::p_branch);
6851 add_linear_edge(idx, logical_target);
6852 return;
6853 }
6854 break;
6855 default:
6856 fprintf(stderr, "Unknown NIR jump instr: ");
6857 nir_print_instr(&instr->instr, stderr);
6858 fprintf(stderr, "\n");
6859 abort();
6860 }
6861
6862 /* remove critical edges from linear CFG */
6863 bld.branch(aco_opcode::p_branch);
6864 Block* break_block = ctx->program->create_and_insert_block();
6865 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
6866 break_block->kind |= block_kind_uniform;
6867 add_linear_edge(idx, break_block);
6868 /* the loop_header pointer might be invalidated by this point */
6869 if (instr->type == nir_jump_continue)
6870 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
6871 add_linear_edge(break_block->index, logical_target);
6872 bld.reset(break_block);
6873 bld.branch(aco_opcode::p_branch);
6874
6875 Block* continue_block = ctx->program->create_and_insert_block();
6876 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
6877 add_linear_edge(idx, continue_block);
6878 append_logical_start(continue_block);
6879 ctx->block = continue_block;
6880 return;
6881 }
6882
6883 void visit_block(isel_context *ctx, nir_block *block)
6884 {
6885 nir_foreach_instr(instr, block) {
6886 switch (instr->type) {
6887 case nir_instr_type_alu:
6888 visit_alu_instr(ctx, nir_instr_as_alu(instr));
6889 break;
6890 case nir_instr_type_load_const:
6891 visit_load_const(ctx, nir_instr_as_load_const(instr));
6892 break;
6893 case nir_instr_type_intrinsic:
6894 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
6895 break;
6896 case nir_instr_type_tex:
6897 visit_tex(ctx, nir_instr_as_tex(instr));
6898 break;
6899 case nir_instr_type_phi:
6900 visit_phi(ctx, nir_instr_as_phi(instr));
6901 break;
6902 case nir_instr_type_ssa_undef:
6903 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
6904 break;
6905 case nir_instr_type_deref:
6906 break;
6907 case nir_instr_type_jump:
6908 visit_jump(ctx, nir_instr_as_jump(instr));
6909 break;
6910 default:
6911 fprintf(stderr, "Unknown NIR instr type: ");
6912 nir_print_instr(instr, stderr);
6913 fprintf(stderr, "\n");
6914 //abort();
6915 }
6916 }
6917 }
6918
6919
6920
6921 static void visit_loop(isel_context *ctx, nir_loop *loop)
6922 {
6923 append_logical_end(ctx->block);
6924 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
6925 Builder bld(ctx->program, ctx->block);
6926 bld.branch(aco_opcode::p_branch);
6927 unsigned loop_preheader_idx = ctx->block->index;
6928
6929 Block loop_exit = Block();
6930 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
6931 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
6932
6933 Block* loop_header = ctx->program->create_and_insert_block();
6934 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
6935 loop_header->kind |= block_kind_loop_header;
6936 add_edge(loop_preheader_idx, loop_header);
6937 ctx->block = loop_header;
6938
6939 /* emit loop body */
6940 unsigned loop_header_idx = loop_header->index;
6941 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
6942 append_logical_start(ctx->block);
6943 visit_cf_list(ctx, &loop->body);
6944
6945 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
6946 if (!ctx->cf_info.has_branch) {
6947 append_logical_end(ctx->block);
6948 if (ctx->cf_info.exec_potentially_empty) {
6949 /* Discards can result in code running with an empty exec mask.
6950 * This would result in divergent breaks not ever being taken. As a
6951 * workaround, break the loop when the loop mask is empty instead of
6952 * always continuing. */
6953 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
6954
6955 /* create "loop_almost_exit" to avoid critical edges */
6956 unsigned block_idx = ctx->block->index;
6957 Block *loop_almost_exit = ctx->program->create_and_insert_block();
6958 loop_almost_exit->loop_nest_depth = ctx->cf_info.loop_nest_depth;
6959 loop_almost_exit->kind = block_kind_uniform;
6960 bld.reset(loop_almost_exit);
6961 bld.branch(aco_opcode::p_branch);
6962
6963 add_linear_edge(block_idx, loop_almost_exit);
6964 add_linear_edge(loop_almost_exit->index, &loop_exit);
6965
6966 ctx->block = &ctx->program->blocks[block_idx];
6967 } else {
6968 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
6969 }
6970 if (!ctx->cf_info.parent_loop.has_divergent_branch)
6971 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
6972 else
6973 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
6974 bld.reset(ctx->block);
6975 bld.branch(aco_opcode::p_branch);
6976 }
6977
6978 /* fixup phis in loop header from unreachable blocks */
6979 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
6980 bool linear = ctx->cf_info.has_branch;
6981 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
6982 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
6983 if ((logical && instr->opcode == aco_opcode::p_phi) ||
6984 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
6985 /* the last operand should be the one that needs to be removed */
6986 instr->operands.pop_back();
6987 } else if (!is_phi(instr)) {
6988 break;
6989 }
6990 }
6991 }
6992
6993 ctx->cf_info.has_branch = false;
6994
6995 // TODO: if the loop has not a single exit, we must add one °°
6996 /* emit loop successor block */
6997 ctx->block = ctx->program->insert_block(std::move(loop_exit));
6998 append_logical_start(ctx->block);
6999
7000 #if 0
7001 // TODO: check if it is beneficial to not branch on continues
7002 /* trim linear phis in loop header */
7003 for (auto&& instr : loop_entry->instructions) {
7004 if (instr->opcode == aco_opcode::p_linear_phi) {
7005 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
7006 new_phi->definitions[0] = instr->definitions[0];
7007 for (unsigned i = 0; i < new_phi->operands.size(); i++)
7008 new_phi->operands[i] = instr->operands[i];
7009 /* check that the remaining operands are all the same */
7010 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
7011 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
7012 instr.swap(new_phi);
7013 } else if (instr->opcode == aco_opcode::p_phi) {
7014 continue;
7015 } else {
7016 break;
7017 }
7018 }
7019 #endif
7020 }
7021
7022 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
7023 {
7024 ic->cond = cond;
7025
7026 append_logical_end(ctx->block);
7027 ctx->block->kind |= block_kind_branch;
7028
7029 /* branch to linear then block */
7030 assert(cond.regClass() == s2);
7031 aco_ptr<Pseudo_branch_instruction> branch;
7032 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
7033 branch->operands[0] = Operand(cond);
7034 ctx->block->instructions.push_back(std::move(branch));
7035
7036 ic->BB_if_idx = ctx->block->index;
7037 ic->BB_invert = Block();
7038 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7039 /* Invert blocks are intentionally not marked as top level because they
7040 * are not part of the logical cfg. */
7041 ic->BB_invert.kind |= block_kind_invert;
7042 ic->BB_endif = Block();
7043 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7044 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
7045
7046 ic->exec_potentially_empty_old = ctx->cf_info.exec_potentially_empty;
7047 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
7048 ctx->cf_info.parent_if.is_divergent = true;
7049 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
7050
7051 /** emit logical then block */
7052 Block* BB_then_logical = ctx->program->create_and_insert_block();
7053 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7054 add_edge(ic->BB_if_idx, BB_then_logical);
7055 ctx->block = BB_then_logical;
7056 append_logical_start(BB_then_logical);
7057 }
7058
7059 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
7060 {
7061 Block *BB_then_logical = ctx->block;
7062 append_logical_end(BB_then_logical);
7063 /* branch from logical then block to invert block */
7064 aco_ptr<Pseudo_branch_instruction> branch;
7065 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7066 BB_then_logical->instructions.emplace_back(std::move(branch));
7067 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
7068 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7069 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
7070 BB_then_logical->kind |= block_kind_uniform;
7071 assert(!ctx->cf_info.has_branch);
7072 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
7073 ctx->cf_info.parent_loop.has_divergent_branch = false;
7074
7075 /** emit linear then block */
7076 Block* BB_then_linear = ctx->program->create_and_insert_block();
7077 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7078 BB_then_linear->kind |= block_kind_uniform;
7079 add_linear_edge(ic->BB_if_idx, BB_then_linear);
7080 /* branch from linear then block to invert block */
7081 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7082 BB_then_linear->instructions.emplace_back(std::move(branch));
7083 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
7084
7085 /** emit invert merge block */
7086 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
7087 ic->invert_idx = ctx->block->index;
7088
7089 /* branch to linear else block (skip else) */
7090 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
7091 branch->operands[0] = Operand(ic->cond);
7092 ctx->block->instructions.push_back(std::move(branch));
7093
7094 ic->exec_potentially_empty_old |= ctx->cf_info.exec_potentially_empty;
7095 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
7096
7097 /** emit logical else block */
7098 Block* BB_else_logical = ctx->program->create_and_insert_block();
7099 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7100 add_logical_edge(ic->BB_if_idx, BB_else_logical);
7101 add_linear_edge(ic->invert_idx, BB_else_logical);
7102 ctx->block = BB_else_logical;
7103 append_logical_start(BB_else_logical);
7104 }
7105
7106 static void end_divergent_if(isel_context *ctx, if_context *ic)
7107 {
7108 Block *BB_else_logical = ctx->block;
7109 append_logical_end(BB_else_logical);
7110
7111 /* branch from logical else block to endif block */
7112 aco_ptr<Pseudo_branch_instruction> branch;
7113 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7114 BB_else_logical->instructions.emplace_back(std::move(branch));
7115 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
7116 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7117 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
7118 BB_else_logical->kind |= block_kind_uniform;
7119
7120 assert(!ctx->cf_info.has_branch);
7121 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
7122
7123
7124 /** emit linear else block */
7125 Block* BB_else_linear = ctx->program->create_and_insert_block();
7126 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7127 BB_else_linear->kind |= block_kind_uniform;
7128 add_linear_edge(ic->invert_idx, BB_else_linear);
7129
7130 /* branch from linear else block to endif block */
7131 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7132 BB_else_linear->instructions.emplace_back(std::move(branch));
7133 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
7134
7135
7136 /** emit endif merge block */
7137 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
7138 append_logical_start(ctx->block);
7139
7140
7141 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
7142 ctx->cf_info.exec_potentially_empty |= ic->exec_potentially_empty_old;
7143 /* uniform control flow never has an empty exec-mask */
7144 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
7145 ctx->cf_info.exec_potentially_empty = false;
7146 }
7147
7148 static void visit_if(isel_context *ctx, nir_if *if_stmt)
7149 {
7150 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
7151 Builder bld(ctx->program, ctx->block);
7152 aco_ptr<Pseudo_branch_instruction> branch;
7153
7154 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
7155 /**
7156 * Uniform conditionals are represented in the following way*) :
7157 *
7158 * The linear and logical CFG:
7159 * BB_IF
7160 * / \
7161 * BB_THEN (logical) BB_ELSE (logical)
7162 * \ /
7163 * BB_ENDIF
7164 *
7165 * *) Exceptions may be due to break and continue statements within loops
7166 * If a break/continue happens within uniform control flow, it branches
7167 * to the loop exit/entry block. Otherwise, it branches to the next
7168 * merge block.
7169 **/
7170 append_logical_end(ctx->block);
7171 ctx->block->kind |= block_kind_uniform;
7172
7173 /* emit branch */
7174 if (cond.regClass() == s2) {
7175 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
7176 cond = as_uniform_bool(ctx, cond);
7177 }
7178 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
7179 branch->operands[0] = Operand(cond);
7180 branch->operands[0].setFixed(scc);
7181 ctx->block->instructions.emplace_back(std::move(branch));
7182
7183 unsigned BB_if_idx = ctx->block->index;
7184 Block BB_endif = Block();
7185 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7186 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
7187
7188 /** emit then block */
7189 Block* BB_then = ctx->program->create_and_insert_block();
7190 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7191 add_edge(BB_if_idx, BB_then);
7192 append_logical_start(BB_then);
7193 ctx->block = BB_then;
7194 visit_cf_list(ctx, &if_stmt->then_list);
7195 BB_then = ctx->block;
7196 bool then_branch = ctx->cf_info.has_branch;
7197 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
7198
7199 if (!then_branch) {
7200 append_logical_end(BB_then);
7201 /* branch from then block to endif block */
7202 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7203 BB_then->instructions.emplace_back(std::move(branch));
7204 add_linear_edge(BB_then->index, &BB_endif);
7205 if (!then_branch_divergent)
7206 add_logical_edge(BB_then->index, &BB_endif);
7207 BB_then->kind |= block_kind_uniform;
7208 }
7209
7210 ctx->cf_info.has_branch = false;
7211 ctx->cf_info.parent_loop.has_divergent_branch = false;
7212
7213 /** emit else block */
7214 Block* BB_else = ctx->program->create_and_insert_block();
7215 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7216 add_edge(BB_if_idx, BB_else);
7217 append_logical_start(BB_else);
7218 ctx->block = BB_else;
7219 visit_cf_list(ctx, &if_stmt->else_list);
7220 BB_else = ctx->block;
7221
7222 if (!ctx->cf_info.has_branch) {
7223 append_logical_end(BB_else);
7224 /* branch from then block to endif block */
7225 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7226 BB_else->instructions.emplace_back(std::move(branch));
7227 add_linear_edge(BB_else->index, &BB_endif);
7228 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7229 add_logical_edge(BB_else->index, &BB_endif);
7230 BB_else->kind |= block_kind_uniform;
7231 }
7232
7233 ctx->cf_info.has_branch &= then_branch;
7234 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
7235
7236 /** emit endif merge block */
7237 if (!ctx->cf_info.has_branch) {
7238 ctx->block = ctx->program->insert_block(std::move(BB_endif));
7239 append_logical_start(ctx->block);
7240 }
7241 } else { /* non-uniform condition */
7242 /**
7243 * To maintain a logical and linear CFG without critical edges,
7244 * non-uniform conditionals are represented in the following way*) :
7245 *
7246 * The linear CFG:
7247 * BB_IF
7248 * / \
7249 * BB_THEN (logical) BB_THEN (linear)
7250 * \ /
7251 * BB_INVERT (linear)
7252 * / \
7253 * BB_ELSE (logical) BB_ELSE (linear)
7254 * \ /
7255 * BB_ENDIF
7256 *
7257 * The logical CFG:
7258 * BB_IF
7259 * / \
7260 * BB_THEN (logical) BB_ELSE (logical)
7261 * \ /
7262 * BB_ENDIF
7263 *
7264 * *) Exceptions may be due to break and continue statements within loops
7265 **/
7266
7267 if_context ic;
7268
7269 begin_divergent_if_then(ctx, &ic, cond);
7270 visit_cf_list(ctx, &if_stmt->then_list);
7271
7272 begin_divergent_if_else(ctx, &ic);
7273 visit_cf_list(ctx, &if_stmt->else_list);
7274
7275 end_divergent_if(ctx, &ic);
7276 }
7277 }
7278
7279 static void visit_cf_list(isel_context *ctx,
7280 struct exec_list *list)
7281 {
7282 foreach_list_typed(nir_cf_node, node, node, list) {
7283 switch (node->type) {
7284 case nir_cf_node_block:
7285 visit_block(ctx, nir_cf_node_as_block(node));
7286 break;
7287 case nir_cf_node_if:
7288 visit_if(ctx, nir_cf_node_as_if(node));
7289 break;
7290 case nir_cf_node_loop:
7291 visit_loop(ctx, nir_cf_node_as_loop(node));
7292 break;
7293 default:
7294 unreachable("unimplemented cf list type");
7295 }
7296 }
7297 }
7298
7299 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
7300 {
7301 int offset = ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
7302 uint64_t mask = ctx->vs_output.mask[slot];
7303 if (!is_pos && !mask)
7304 return;
7305 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
7306 return;
7307 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
7308 exp->enabled_mask = mask;
7309 for (unsigned i = 0; i < 4; ++i) {
7310 if (mask & (1 << i))
7311 exp->operands[i] = Operand(ctx->vs_output.outputs[slot][i]);
7312 else
7313 exp->operands[i] = Operand(v1);
7314 }
7315 exp->valid_mask = false;
7316 exp->done = false;
7317 exp->compressed = false;
7318 if (is_pos)
7319 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
7320 else
7321 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
7322 ctx->block->instructions.emplace_back(std::move(exp));
7323 }
7324
7325 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
7326 {
7327 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
7328 exp->enabled_mask = 0;
7329 for (unsigned i = 0; i < 4; ++i)
7330 exp->operands[i] = Operand(v1);
7331 if (ctx->vs_output.mask[VARYING_SLOT_PSIZ]) {
7332 exp->operands[0] = Operand(ctx->vs_output.outputs[VARYING_SLOT_PSIZ][0]);
7333 exp->enabled_mask |= 0x1;
7334 }
7335 if (ctx->vs_output.mask[VARYING_SLOT_LAYER]) {
7336 exp->operands[2] = Operand(ctx->vs_output.outputs[VARYING_SLOT_LAYER][0]);
7337 exp->enabled_mask |= 0x4;
7338 }
7339 if (ctx->vs_output.mask[VARYING_SLOT_VIEWPORT]) {
7340 if (ctx->options->chip_class < GFX9) {
7341 exp->operands[3] = Operand(ctx->vs_output.outputs[VARYING_SLOT_VIEWPORT][0]);
7342 exp->enabled_mask |= 0x8;
7343 } else {
7344 Builder bld(ctx->program, ctx->block);
7345
7346 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
7347 Operand(ctx->vs_output.outputs[VARYING_SLOT_VIEWPORT][0]));
7348 if (exp->operands[2].isTemp())
7349 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
7350
7351 exp->operands[2] = Operand(out);
7352 exp->enabled_mask |= 0x4;
7353 }
7354 }
7355 exp->valid_mask = false;
7356 exp->done = false;
7357 exp->compressed = false;
7358 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
7359 ctx->block->instructions.emplace_back(std::move(exp));
7360 }
7361
7362 static void create_vs_exports(isel_context *ctx)
7363 {
7364 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
7365
7366 if (outinfo->export_prim_id) {
7367 ctx->vs_output.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
7368 ctx->vs_output.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = ctx->vs_prim_id;
7369 }
7370
7371 if (ctx->options->key.has_multiview_view_index) {
7372 ctx->vs_output.mask[VARYING_SLOT_LAYER] |= 0x1;
7373 ctx->vs_output.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, ctx->view_index);
7374 }
7375
7376 /* the order these position exports are created is important */
7377 int next_pos = 0;
7378 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
7379 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
7380 export_vs_psiz_layer_viewport(ctx, &next_pos);
7381 }
7382 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
7383 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
7384 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
7385 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
7386
7387 if (ctx->options->key.vs_common_out.export_clip_dists) {
7388 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
7389 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
7390 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
7391 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
7392 }
7393
7394 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
7395 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
7396 i != VARYING_SLOT_PRIMITIVE_ID)
7397 continue;
7398
7399 export_vs_varying(ctx, i, false, NULL);
7400 }
7401 }
7402
7403 static void emit_stream_output(isel_context *ctx,
7404 Temp const *so_buffers,
7405 Temp const *so_write_offset,
7406 const struct radv_stream_output *output)
7407 {
7408 unsigned num_comps = util_bitcount(output->component_mask);
7409 unsigned loc = output->location;
7410 unsigned buf = output->buffer;
7411 unsigned offset = output->offset;
7412
7413 assert(num_comps && num_comps <= 4);
7414 if (!num_comps || num_comps > 4)
7415 return;
7416
7417 unsigned start = ffs(output->component_mask) - 1;
7418
7419 Temp out[4];
7420 bool all_undef = true;
7421 assert(ctx->stage == vertex_vs);
7422 for (unsigned i = 0; i < num_comps; i++) {
7423 out[i] = ctx->vs_output.outputs[loc][start + i];
7424 all_undef = all_undef && !out[i].id();
7425 }
7426 if (all_undef)
7427 return;
7428
7429 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_comps)};
7430 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_comps, 1)};
7431 for (unsigned i = 0; i < num_comps; ++i)
7432 vec->operands[i] = (ctx->vs_output.mask[loc] & 1 << i) ? Operand(out[i]) : Operand(0u);
7433 vec->definitions[0] = Definition(write_data);
7434 ctx->block->instructions.emplace_back(std::move(vec));
7435
7436 aco_opcode opcode;
7437 switch (num_comps) {
7438 case 1:
7439 opcode = aco_opcode::buffer_store_dword;
7440 break;
7441 case 2:
7442 opcode = aco_opcode::buffer_store_dwordx2;
7443 break;
7444 case 3:
7445 opcode = aco_opcode::buffer_store_dwordx3;
7446 break;
7447 case 4:
7448 opcode = aco_opcode::buffer_store_dwordx4;
7449 break;
7450 }
7451
7452 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
7453 store->operands[0] = Operand(so_write_offset[buf]);
7454 store->operands[1] = Operand(so_buffers[buf]);
7455 store->operands[2] = Operand((uint32_t) 0);
7456 store->operands[3] = Operand(write_data);
7457 if (offset > 4095) {
7458 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
7459 Builder bld(ctx->program, ctx->block);
7460 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
7461 } else {
7462 store->offset = offset;
7463 }
7464 store->offen = true;
7465 store->glc = true;
7466 store->slc = true;
7467 store->can_reorder = true;
7468 ctx->block->instructions.emplace_back(std::move(store));
7469 }
7470
7471 static void emit_streamout(isel_context *ctx, unsigned stream)
7472 {
7473 Builder bld(ctx->program, ctx->block);
7474
7475 Temp so_buffers[4];
7476 Temp buf_ptr = convert_pointer_to_64_bit(ctx, ctx->streamout_buffers);
7477 for (unsigned i = 0; i < 4; i++) {
7478 unsigned stride = ctx->program->info->so.strides[i];
7479 if (!stride)
7480 continue;
7481
7482 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, Operand(i * 16u));
7483 }
7484
7485 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7486 ctx->streamout_config, Operand(0x70010u));
7487
7488 Temp tid = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), Operand((uint32_t) -1),
7489 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
7490
7491 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(s2), so_vtx_count, tid);
7492
7493 if_context ic;
7494 begin_divergent_if_then(ctx, &ic, can_emit);
7495
7496 bld.reset(ctx->block);
7497
7498 Temp so_write_index = bld.vadd32(bld.def(v1), ctx->streamout_write_idx, tid);
7499
7500 Temp so_write_offset[4];
7501
7502 for (unsigned i = 0; i < 4; i++) {
7503 unsigned stride = ctx->program->info->so.strides[i];
7504 if (!stride)
7505 continue;
7506
7507 if (stride == 1) {
7508 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
7509 ctx->streamout_write_idx, ctx->streamout_offset[i]);
7510 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
7511
7512 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
7513 } else {
7514 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
7515 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u), ctx->streamout_offset[i]);
7516 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
7517 }
7518 }
7519
7520 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
7521 struct radv_stream_output *output =
7522 &ctx->program->info->so.outputs[i];
7523 if (stream != output->stream)
7524 continue;
7525
7526 emit_stream_output(ctx, so_buffers, so_write_offset, output);
7527 }
7528
7529 begin_divergent_if_else(ctx, &ic);
7530 end_divergent_if(ctx, &ic);
7531 }
7532
7533 } /* end namespace */
7534
7535 void handle_bc_optimize(isel_context *ctx)
7536 {
7537 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
7538 Builder bld(ctx->program, ctx->block);
7539 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
7540 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
7541 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
7542 if (uses_center && uses_centroid) {
7543 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(s2)), ctx->prim_mask, Operand(0u));
7544
7545 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
7546 for (unsigned i = 0; i < 2; i++) {
7547 Temp new_coord = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7548 ctx->fs_inputs[fs_input::persp_centroid_p1 + i],
7549 ctx->fs_inputs[fs_input::persp_center_p1 + i],
7550 sel);
7551 ctx->fs_inputs[fs_input::persp_centroid_p1 + i] = new_coord;
7552 }
7553 }
7554
7555 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
7556 for (unsigned i = 0; i < 2; i++) {
7557 Temp new_coord = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7558 ctx->fs_inputs[fs_input::linear_centroid_p1 + i],
7559 ctx->fs_inputs[fs_input::linear_center_p1 + i],
7560 sel);
7561 ctx->fs_inputs[fs_input::linear_centroid_p1 + i] = new_coord;
7562 }
7563 }
7564 }
7565 }
7566
7567 void select_program(Program *program,
7568 unsigned shader_count,
7569 struct nir_shader *const *shaders,
7570 ac_shader_config* config,
7571 struct radv_shader_info *info,
7572 struct radv_nir_compiler_options *options)
7573 {
7574 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, info, options);
7575
7576 for (unsigned i = 0; i < shader_count; i++) {
7577 nir_shader *nir = shaders[i];
7578 init_context(&ctx, nir);
7579
7580 if (!i) {
7581 add_startpgm(&ctx); /* needs to be after init_context() for FS */
7582 append_logical_start(ctx.block);
7583 }
7584
7585 if_context ic;
7586 if (shader_count >= 2) {
7587 Builder bld(ctx.program, ctx.block);
7588 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), ctx.merged_wave_info, Operand((8u << 16) | (i * 8u)));
7589 Temp thread_id = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, bld.def(v1), Operand((uint32_t) -1),
7590 bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, bld.def(v1), Operand((uint32_t) -1), Operand(0u)));
7591 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(s2)), count, thread_id);
7592
7593 begin_divergent_if_then(&ctx, &ic, cond);
7594 }
7595
7596 if (i) {
7597 Builder bld(ctx.program, ctx.block);
7598 bld.barrier(aco_opcode::p_memory_barrier_shared); //TODO: different barriers are needed for different stages
7599 bld.sopp(aco_opcode::s_barrier);
7600 }
7601
7602 if (ctx.stage == fragment_fs)
7603 handle_bc_optimize(&ctx);
7604
7605 nir_function_impl *func = nir_shader_get_entrypoint(nir);
7606 visit_cf_list(&ctx, &func->body);
7607
7608 if (ctx.program->info->so.num_outputs/*&& !ctx->is_gs_copy_shader */)
7609 emit_streamout(&ctx, 0);
7610
7611 if (ctx.stage == vertex_vs)
7612 create_vs_exports(&ctx);
7613
7614 if (shader_count >= 2) {
7615 begin_divergent_if_else(&ctx, &ic);
7616 end_divergent_if(&ctx, &ic);
7617 }
7618
7619 ralloc_free(ctx.divergent_vals);
7620 }
7621
7622 append_logical_end(ctx.block);
7623 ctx.block->kind |= block_kind_uniform;
7624 Builder bld(ctx.program, ctx.block);
7625 if (ctx.program->wb_smem_l1_on_end)
7626 bld.smem(aco_opcode::s_dcache_wb, false);
7627 bld.sopp(aco_opcode::s_endpgm);
7628
7629 /* cleanup CFG */
7630 for (Block& BB : program->blocks) {
7631 for (unsigned idx : BB.linear_preds)
7632 program->blocks[idx].linear_succs.emplace_back(BB.index);
7633 for (unsigned idx : BB.logical_preds)
7634 program->blocks[idx].logical_succs.emplace_back(BB.index);
7635 }
7636 }
7637 }