aco/ngg: Implement NGG VS and TES.
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool uniform_has_then_branch;
89 bool then_branch_divergent;
90 Block BB_invert;
91 Block BB_endif;
92 };
93
94 static bool visit_cf_list(struct isel_context *ctx,
95 struct exec_list *list);
96
97 static void add_logical_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->logical_preds.emplace_back(pred_idx);
100 }
101
102
103 static void add_linear_edge(unsigned pred_idx, Block *succ)
104 {
105 succ->linear_preds.emplace_back(pred_idx);
106 }
107
108 static void add_edge(unsigned pred_idx, Block *succ)
109 {
110 add_logical_edge(pred_idx, succ);
111 add_linear_edge(pred_idx, succ);
112 }
113
114 static void append_logical_start(Block *b)
115 {
116 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
117 }
118
119 static void append_logical_end(Block *b)
120 {
121 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
122 }
123
124 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
125 {
126 assert(ctx->allocated[def->index].id());
127 return ctx->allocated[def->index];
128 }
129
130 Temp emit_mbcnt(isel_context *ctx, Definition dst,
131 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
132 {
133 Builder bld(ctx->program, ctx->block);
134 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
135 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
136
137 if (ctx->program->wave_size == 32) {
138 return thread_id_lo;
139 } else {
140 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
141 return thread_id_hi;
142 }
143 }
144
145 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
146 {
147 Builder bld(ctx->program, ctx->block);
148
149 if (!dst.id())
150 dst = bld.tmp(src.regClass());
151
152 assert(src.size() == dst.size());
153
154 if (ctx->stage != fragment_fs) {
155 if (!dst.id())
156 return src;
157
158 bld.copy(Definition(dst), src);
159 return dst;
160 }
161
162 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
163 ctx->program->needs_wqm |= program_needs_wqm;
164 return dst;
165 }
166
167 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
168 {
169 if (index.regClass() == s1)
170 return bld.readlane(bld.def(s1), data, index);
171
172 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
173
174 /* Currently not implemented on GFX6-7 */
175 assert(ctx->options->chip_class >= GFX8);
176
177 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
178 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
179 }
180
181 /* GFX10, wave64 mode:
182 * The bpermute instruction is limited to half-wave operation, which means that it can't
183 * properly support subgroup shuffle like older generations (or wave32 mode), so we
184 * emulate it here.
185 */
186 if (!ctx->has_gfx10_wave64_bpermute) {
187 ctx->has_gfx10_wave64_bpermute = true;
188 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
189 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
190 }
191
192 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
193 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
194 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
195 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
196
197 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
198 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
199 }
200
201 Temp as_vgpr(isel_context *ctx, Temp val)
202 {
203 if (val.type() == RegType::sgpr) {
204 Builder bld(ctx->program, ctx->block);
205 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
206 }
207 assert(val.type() == RegType::vgpr);
208 return val;
209 }
210
211 //assumes a != 0xffffffff
212 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
213 {
214 assert(b != 0);
215 Builder bld(ctx->program, ctx->block);
216
217 if (util_is_power_of_two_or_zero(b)) {
218 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
219 return;
220 }
221
222 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
223
224 assert(info.multiplier <= 0xffffffff);
225
226 bool pre_shift = info.pre_shift != 0;
227 bool increment = info.increment != 0;
228 bool multiply = true;
229 bool post_shift = info.post_shift != 0;
230
231 if (!pre_shift && !increment && !multiply && !post_shift) {
232 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
233 return;
234 }
235
236 Temp pre_shift_dst = a;
237 if (pre_shift) {
238 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
239 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
240 }
241
242 Temp increment_dst = pre_shift_dst;
243 if (increment) {
244 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
245 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
246 }
247
248 Temp multiply_dst = increment_dst;
249 if (multiply) {
250 multiply_dst = post_shift ? bld.tmp(v1) : dst;
251 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
252 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
253 }
254
255 if (post_shift) {
256 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
257 }
258 }
259
260 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
261 {
262 Builder bld(ctx->program, ctx->block);
263 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
264 }
265
266
267 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
268 {
269 /* no need to extract the whole vector */
270 if (src.regClass() == dst_rc) {
271 assert(idx == 0);
272 return src;
273 }
274
275 assert(src.bytes() > (idx * dst_rc.bytes()));
276 Builder bld(ctx->program, ctx->block);
277 auto it = ctx->allocated_vec.find(src.id());
278 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
279 if (it->second[idx].regClass() == dst_rc) {
280 return it->second[idx];
281 } else {
282 assert(!dst_rc.is_subdword());
283 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
284 return bld.copy(bld.def(dst_rc), it->second[idx]);
285 }
286 }
287
288 if (dst_rc.is_subdword())
289 src = as_vgpr(ctx, src);
290
291 if (src.bytes() == dst_rc.bytes()) {
292 assert(idx == 0);
293 return bld.copy(bld.def(dst_rc), src);
294 } else {
295 Temp dst = bld.tmp(dst_rc);
296 emit_extract_vector(ctx, src, idx, dst);
297 return dst;
298 }
299 }
300
301 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
302 {
303 if (num_components == 1)
304 return;
305 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
306 return;
307 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
308 split->operands[0] = Operand(vec_src);
309 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
310 RegClass rc;
311 if (num_components > vec_src.size()) {
312 if (vec_src.type() == RegType::sgpr)
313 return;
314
315 /* sub-dword split */
316 assert(vec_src.type() == RegType::vgpr);
317 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
318 } else {
319 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
320 }
321 for (unsigned i = 0; i < num_components; i++) {
322 elems[i] = {ctx->program->allocateId(), rc};
323 split->definitions[i] = Definition(elems[i]);
324 }
325 ctx->block->instructions.emplace_back(std::move(split));
326 ctx->allocated_vec.emplace(vec_src.id(), elems);
327 }
328
329 /* This vector expansion uses a mask to determine which elements in the new vector
330 * come from the original vector. The other elements are undefined. */
331 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
332 {
333 emit_split_vector(ctx, vec_src, util_bitcount(mask));
334
335 if (vec_src == dst)
336 return;
337
338 Builder bld(ctx->program, ctx->block);
339 if (num_components == 1) {
340 if (dst.type() == RegType::sgpr)
341 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
342 else
343 bld.copy(Definition(dst), vec_src);
344 return;
345 }
346
347 unsigned component_size = dst.size() / num_components;
348 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
349
350 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
351 vec->definitions[0] = Definition(dst);
352 unsigned k = 0;
353 for (unsigned i = 0; i < num_components; i++) {
354 if (mask & (1 << i)) {
355 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
356 if (dst.type() == RegType::sgpr)
357 src = bld.as_uniform(src);
358 vec->operands[i] = Operand(src);
359 } else {
360 vec->operands[i] = Operand(0u);
361 }
362 elems[i] = vec->operands[i].getTemp();
363 }
364 ctx->block->instructions.emplace_back(std::move(vec));
365 ctx->allocated_vec.emplace(dst.id(), elems);
366 }
367
368 /* adjust misaligned small bit size loads */
369 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
370 {
371 Builder bld(ctx->program, ctx->block);
372 Operand shift;
373 Temp select = Temp();
374 if (offset.isConstant()) {
375 assert(offset.constantValue() && offset.constantValue() < 4);
376 shift = Operand(offset.constantValue() * 8);
377 } else {
378 /* bit_offset = 8 * (offset & 0x3) */
379 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
380 select = bld.tmp(s1);
381 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
382 }
383
384 if (vec.size() == 1) {
385 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
386 } else if (vec.size() == 2) {
387 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
388 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
389 if (tmp == dst)
390 emit_split_vector(ctx, dst, 2);
391 else
392 emit_extract_vector(ctx, tmp, 0, dst);
393 } else if (vec.size() == 4) {
394 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
395 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
396 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
397 if (select != Temp())
398 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), select);
399 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
400 Temp mid = bld.tmp(s1);
401 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
402 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
403 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
405 emit_split_vector(ctx, dst, 2);
406 }
407 }
408
409 /* this function trims subdword vectors:
410 * if dst is vgpr - split the src and create a shrunk version according to the mask.
411 * if dst is sgpr - split the src, but move the original to sgpr. */
412 void trim_subdword_vector(isel_context *ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
413 {
414 assert(vec_src.type() == RegType::vgpr);
415 emit_split_vector(ctx, vec_src, num_components);
416
417 Builder bld(ctx->program, ctx->block);
418 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
419 unsigned component_size = vec_src.bytes() / num_components;
420 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
421
422 unsigned k = 0;
423 for (unsigned i = 0; i < num_components; i++) {
424 if (mask & (1 << i))
425 elems[k++] = emit_extract_vector(ctx, vec_src, i, rc);
426 }
427
428 if (dst.type() == RegType::vgpr) {
429 assert(dst.bytes() == k * component_size);
430 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, k, 1)};
431 for (unsigned i = 0; i < k; i++)
432 vec->operands[i] = Operand(elems[i]);
433 vec->definitions[0] = Definition(dst);
434 bld.insert(std::move(vec));
435 } else {
436 // TODO: alignbyte if mask doesn't start with 1?
437 assert(mask & 1);
438 assert(dst.size() == vec_src.size());
439 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
440 }
441 ctx->allocated_vec.emplace(dst.id(), elems);
442 }
443
444 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
445 {
446 Builder bld(ctx->program, ctx->block);
447 if (!dst.id())
448 dst = bld.tmp(bld.lm);
449
450 assert(val.regClass() == s1);
451 assert(dst.regClass() == bld.lm);
452
453 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
454 }
455
456 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
457 {
458 Builder bld(ctx->program, ctx->block);
459 if (!dst.id())
460 dst = bld.tmp(s1);
461
462 assert(val.regClass() == bld.lm);
463 assert(dst.regClass() == s1);
464
465 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
466 Temp tmp = bld.tmp(s1);
467 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
468 return emit_wqm(ctx, tmp, dst);
469 }
470
471 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
472 {
473 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
474 return get_ssa_temp(ctx, src.src.ssa);
475
476 if (src.src.ssa->num_components == size) {
477 bool identity_swizzle = true;
478 for (unsigned i = 0; identity_swizzle && i < size; i++) {
479 if (src.swizzle[i] != i)
480 identity_swizzle = false;
481 }
482 if (identity_swizzle)
483 return get_ssa_temp(ctx, src.src.ssa);
484 }
485
486 Temp vec = get_ssa_temp(ctx, src.src.ssa);
487 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
488 assert(elem_size > 0);
489 assert(vec.bytes() % elem_size == 0);
490
491 if (elem_size < 4 && vec.type() == RegType::sgpr) {
492 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
493 assert(size == 1);
494 unsigned swizzle = src.swizzle[0];
495 if (vec.size() > 1) {
496 assert(src.src.ssa->bit_size == 16);
497 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
498 swizzle = swizzle & 1;
499 }
500 if (swizzle == 0)
501 return vec;
502
503 Temp dst{ctx->program->allocateId(), s1};
504 aco_ptr<SOP2_instruction> bfe{create_instruction<SOP2_instruction>(aco_opcode::s_bfe_u32, Format::SOP2, 2, 1)};
505 bfe->operands[0] = Operand(vec);
506 bfe->operands[1] = Operand(uint32_t((src.src.ssa->bit_size << 16) | (src.src.ssa->bit_size * swizzle)));
507 bfe->definitions[0] = Definition(dst);
508 ctx->block->instructions.emplace_back(std::move(bfe));
509 return dst;
510 }
511
512 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
513 if (size == 1) {
514 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
515 } else {
516 assert(size <= 4);
517 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
518 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
519 for (unsigned i = 0; i < size; ++i) {
520 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
521 vec_instr->operands[i] = Operand{elems[i]};
522 }
523 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
524 vec_instr->definitions[0] = Definition(dst);
525 ctx->block->instructions.emplace_back(std::move(vec_instr));
526 ctx->allocated_vec.emplace(dst.id(), elems);
527 return dst;
528 }
529 }
530
531 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
532 {
533 if (ptr.size() == 2)
534 return ptr;
535 Builder bld(ctx->program, ctx->block);
536 if (ptr.type() == RegType::vgpr)
537 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
538 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
539 ptr, Operand((unsigned)ctx->options->address32_hi));
540 }
541
542 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
543 {
544 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
545 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
546 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
547 sop2->definitions[0] = Definition(dst);
548 if (writes_scc)
549 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
550 ctx->block->instructions.emplace_back(std::move(sop2));
551 }
552
553 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
554 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
555 {
556 Builder bld(ctx->program, ctx->block);
557 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
558 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
559 if (src1.type() == RegType::sgpr) {
560 if (commutative && src0.type() == RegType::vgpr) {
561 Temp t = src0;
562 src0 = src1;
563 src1 = t;
564 } else if (src0.type() == RegType::vgpr &&
565 op != aco_opcode::v_madmk_f32 &&
566 op != aco_opcode::v_madak_f32 &&
567 op != aco_opcode::v_madmk_f16 &&
568 op != aco_opcode::v_madak_f16) {
569 /* If the instruction is not commutative, we emit a VOP3A instruction */
570 bld.vop2_e64(op, Definition(dst), src0, src1);
571 return;
572 } else {
573 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
574 }
575 }
576
577 if (flush_denorms && ctx->program->chip_class < GFX9) {
578 assert(dst.size() == 1);
579 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
580 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
581 } else {
582 bld.vop2(op, Definition(dst), src0, src1);
583 }
584 }
585
586 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
587 bool flush_denorms = false)
588 {
589 Temp src0 = get_alu_src(ctx, instr->src[0]);
590 Temp src1 = get_alu_src(ctx, instr->src[1]);
591 Temp src2 = get_alu_src(ctx, instr->src[2]);
592
593 /* ensure that the instruction has at most 1 sgpr operand
594 * The optimizer will inline constants for us */
595 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
596 src0 = as_vgpr(ctx, src0);
597 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
598 src1 = as_vgpr(ctx, src1);
599 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
600 src2 = as_vgpr(ctx, src2);
601
602 Builder bld(ctx->program, ctx->block);
603 if (flush_denorms && ctx->program->chip_class < GFX9) {
604 assert(dst.size() == 1);
605 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
606 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
607 } else {
608 bld.vop3(op, Definition(dst), src0, src1, src2);
609 }
610 }
611
612 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
613 {
614 Builder bld(ctx->program, ctx->block);
615 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
616 }
617
618 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
619 {
620 Temp src0 = get_alu_src(ctx, instr->src[0]);
621 Temp src1 = get_alu_src(ctx, instr->src[1]);
622 assert(src0.size() == src1.size());
623
624 aco_ptr<Instruction> vopc;
625 if (src1.type() == RegType::sgpr) {
626 if (src0.type() == RegType::vgpr) {
627 /* to swap the operands, we might also have to change the opcode */
628 switch (op) {
629 case aco_opcode::v_cmp_lt_f32:
630 op = aco_opcode::v_cmp_gt_f32;
631 break;
632 case aco_opcode::v_cmp_ge_f32:
633 op = aco_opcode::v_cmp_le_f32;
634 break;
635 case aco_opcode::v_cmp_lt_i32:
636 op = aco_opcode::v_cmp_gt_i32;
637 break;
638 case aco_opcode::v_cmp_ge_i32:
639 op = aco_opcode::v_cmp_le_i32;
640 break;
641 case aco_opcode::v_cmp_lt_u32:
642 op = aco_opcode::v_cmp_gt_u32;
643 break;
644 case aco_opcode::v_cmp_ge_u32:
645 op = aco_opcode::v_cmp_le_u32;
646 break;
647 case aco_opcode::v_cmp_lt_f64:
648 op = aco_opcode::v_cmp_gt_f64;
649 break;
650 case aco_opcode::v_cmp_ge_f64:
651 op = aco_opcode::v_cmp_le_f64;
652 break;
653 case aco_opcode::v_cmp_lt_i64:
654 op = aco_opcode::v_cmp_gt_i64;
655 break;
656 case aco_opcode::v_cmp_ge_i64:
657 op = aco_opcode::v_cmp_le_i64;
658 break;
659 case aco_opcode::v_cmp_lt_u64:
660 op = aco_opcode::v_cmp_gt_u64;
661 break;
662 case aco_opcode::v_cmp_ge_u64:
663 op = aco_opcode::v_cmp_le_u64;
664 break;
665 default: /* eq and ne are commutative */
666 break;
667 }
668 Temp t = src0;
669 src0 = src1;
670 src1 = t;
671 } else {
672 src1 = as_vgpr(ctx, src1);
673 }
674 }
675
676 Builder bld(ctx->program, ctx->block);
677 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
678 }
679
680 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
681 {
682 Temp src0 = get_alu_src(ctx, instr->src[0]);
683 Temp src1 = get_alu_src(ctx, instr->src[1]);
684 Builder bld(ctx->program, ctx->block);
685
686 assert(dst.regClass() == bld.lm);
687 assert(src0.type() == RegType::sgpr);
688 assert(src1.type() == RegType::sgpr);
689 assert(src0.regClass() == src1.regClass());
690
691 /* Emit the SALU comparison instruction */
692 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
693 /* Turn the result into a per-lane bool */
694 bool_to_vector_condition(ctx, cmp, dst);
695 }
696
697 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
698 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
699 {
700 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
701 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
702 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
703 bool use_valu = s_op == aco_opcode::num_opcodes ||
704 divergent_vals ||
705 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
706 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
707 aco_opcode op = use_valu ? v_op : s_op;
708 assert(op != aco_opcode::num_opcodes);
709 assert(dst.regClass() == ctx->program->lane_mask);
710
711 if (use_valu)
712 emit_vopc_instruction(ctx, instr, op, dst);
713 else
714 emit_sopc_instruction(ctx, instr, op, dst);
715 }
716
717 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
718 {
719 Builder bld(ctx->program, ctx->block);
720 Temp src0 = get_alu_src(ctx, instr->src[0]);
721 Temp src1 = get_alu_src(ctx, instr->src[1]);
722
723 assert(dst.regClass() == bld.lm);
724 assert(src0.regClass() == bld.lm);
725 assert(src1.regClass() == bld.lm);
726
727 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
728 }
729
730 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
731 {
732 Builder bld(ctx->program, ctx->block);
733 Temp cond = get_alu_src(ctx, instr->src[0]);
734 Temp then = get_alu_src(ctx, instr->src[1]);
735 Temp els = get_alu_src(ctx, instr->src[2]);
736
737 assert(cond.regClass() == bld.lm);
738
739 if (dst.type() == RegType::vgpr) {
740 aco_ptr<Instruction> bcsel;
741 if (dst.size() == 1) {
742 then = as_vgpr(ctx, then);
743 els = as_vgpr(ctx, els);
744
745 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
746 } else if (dst.size() == 2) {
747 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
748 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
749 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
750 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
751
752 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
753 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
754
755 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
756 } else {
757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
758 nir_print_instr(&instr->instr, stderr);
759 fprintf(stderr, "\n");
760 }
761 return;
762 }
763
764 if (instr->dest.dest.ssa.bit_size == 1) {
765 assert(dst.regClass() == bld.lm);
766 assert(then.regClass() == bld.lm);
767 assert(els.regClass() == bld.lm);
768 }
769
770 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
771 if (dst.regClass() == s1 || dst.regClass() == s2) {
772 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
773 assert(dst.size() == then.size());
774 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
775 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
776 } else {
777 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
778 nir_print_instr(&instr->instr, stderr);
779 fprintf(stderr, "\n");
780 }
781 return;
782 }
783
784 /* divergent boolean bcsel
785 * this implements bcsel on bools: dst = s0 ? s1 : s2
786 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
787 assert(instr->dest.dest.ssa.bit_size == 1);
788
789 if (cond.id() != then.id())
790 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
791
792 if (cond.id() == els.id())
793 bld.sop1(Builder::s_mov, Definition(dst), then);
794 else
795 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
796 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
797 }
798
799 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
800 aco_opcode op, uint32_t undo)
801 {
802 /* multiply by 16777216 to handle denormals */
803 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
804 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
805 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
806 scaled = bld.vop1(op, bld.def(v1), scaled);
807 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
808
809 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
810
811 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
812 }
813
814 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
815 {
816 if (ctx->block->fp_mode.denorm32 == 0) {
817 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
818 return;
819 }
820
821 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
822 }
823
824 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
825 {
826 if (ctx->block->fp_mode.denorm32 == 0) {
827 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
828 return;
829 }
830
831 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
832 }
833
834 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
835 {
836 if (ctx->block->fp_mode.denorm32 == 0) {
837 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
838 return;
839 }
840
841 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
842 }
843
844 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
845 {
846 if (ctx->block->fp_mode.denorm32 == 0) {
847 bld.vop1(aco_opcode::v_log_f32, dst, val);
848 return;
849 }
850
851 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
852 }
853
854 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
855 {
856 if (ctx->options->chip_class >= GFX7)
857 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
858
859 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
860 /* TODO: create more efficient code! */
861 if (val.type() == RegType::sgpr)
862 val = as_vgpr(ctx, val);
863
864 /* Split the input value. */
865 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
866 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
867
868 /* Extract the exponent and compute the unbiased value. */
869 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
870
871 /* Extract the fractional part. */
872 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
873 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
874
875 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
876 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
877
878 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
879 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
880 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
881 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
882 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
883
884 /* Get the sign bit. */
885 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
886
887 /* Decide the operation to apply depending on the unbiased exponent. */
888 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
889 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
890 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
891 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
892 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
893 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
894
895 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
896 }
897
898 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
899 {
900 if (ctx->options->chip_class >= GFX7)
901 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
902
903 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
904 Temp src0 = as_vgpr(ctx, val);
905
906 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
907 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
908
909 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
910 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
911 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
912
913 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
914 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
915 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
916 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
917
918 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
919 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
920
921 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
922
923 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
924 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
925
926 return add->definitions[0].getTemp();
927 }
928
929 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
930 {
931 if (!instr->dest.dest.is_ssa) {
932 fprintf(stderr, "nir alu dst not in ssa: ");
933 nir_print_instr(&instr->instr, stderr);
934 fprintf(stderr, "\n");
935 abort();
936 }
937 Builder bld(ctx->program, ctx->block);
938 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
939 switch(instr->op) {
940 case nir_op_vec2:
941 case nir_op_vec3:
942 case nir_op_vec4: {
943 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
944 unsigned num = instr->dest.dest.ssa.num_components;
945 for (unsigned i = 0; i < num; ++i)
946 elems[i] = get_alu_src(ctx, instr->src[i]);
947
948 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
949 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
950 for (unsigned i = 0; i < num; ++i)
951 vec->operands[i] = Operand{elems[i]};
952 vec->definitions[0] = Definition(dst);
953 ctx->block->instructions.emplace_back(std::move(vec));
954 ctx->allocated_vec.emplace(dst.id(), elems);
955 } else {
956 // TODO: that is a bit suboptimal..
957 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
958 for (unsigned i = 0; i < num - 1; ++i)
959 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
960 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
961 for (unsigned i = 0; i < num; ++i) {
962 unsigned bit = i * instr->dest.dest.ssa.bit_size;
963 if (bit % 32 == 0) {
964 elems[bit / 32] = elems[i];
965 } else {
966 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
967 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
968 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
969 }
970 }
971 if (dst.size() == 1)
972 bld.copy(Definition(dst), elems[0]);
973 else
974 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
975 }
976 break;
977 }
978 case nir_op_mov: {
979 Temp src = get_alu_src(ctx, instr->src[0]);
980 aco_ptr<Instruction> mov;
981 if (dst.type() == RegType::sgpr) {
982 if (src.type() == RegType::vgpr)
983 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
984 else if (src.regClass() == s1)
985 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
986 else if (src.regClass() == s2)
987 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
988 else
989 unreachable("wrong src register class for nir_op_imov");
990 } else if (dst.regClass() == v1) {
991 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
992 } else if (dst.regClass() == v2) {
993 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
994 } else {
995 nir_print_instr(&instr->instr, stderr);
996 unreachable("Should have been lowered to scalar.");
997 }
998 break;
999 }
1000 case nir_op_inot: {
1001 Temp src = get_alu_src(ctx, instr->src[0]);
1002 if (instr->dest.dest.ssa.bit_size == 1) {
1003 assert(src.regClass() == bld.lm);
1004 assert(dst.regClass() == bld.lm);
1005 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1006 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1007 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1008 } else if (dst.regClass() == v1) {
1009 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1010 } else if (dst.type() == RegType::sgpr) {
1011 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1012 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1013 } else {
1014 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1015 nir_print_instr(&instr->instr, stderr);
1016 fprintf(stderr, "\n");
1017 }
1018 break;
1019 }
1020 case nir_op_ineg: {
1021 Temp src = get_alu_src(ctx, instr->src[0]);
1022 if (dst.regClass() == v1) {
1023 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1024 } else if (dst.regClass() == s1) {
1025 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1026 } else if (dst.size() == 2) {
1027 Temp src0 = bld.tmp(dst.type(), 1);
1028 Temp src1 = bld.tmp(dst.type(), 1);
1029 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1030
1031 if (dst.regClass() == s2) {
1032 Temp carry = bld.tmp(s1);
1033 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1034 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1035 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1036 } else {
1037 Temp lower = bld.tmp(v1);
1038 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1039 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1040 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1041 }
1042 } else {
1043 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1044 nir_print_instr(&instr->instr, stderr);
1045 fprintf(stderr, "\n");
1046 }
1047 break;
1048 }
1049 case nir_op_iabs: {
1050 if (dst.regClass() == s1) {
1051 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1052 } else if (dst.regClass() == v1) {
1053 Temp src = get_alu_src(ctx, instr->src[0]);
1054 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1055 } else {
1056 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1057 nir_print_instr(&instr->instr, stderr);
1058 fprintf(stderr, "\n");
1059 }
1060 break;
1061 }
1062 case nir_op_isign: {
1063 Temp src = get_alu_src(ctx, instr->src[0]);
1064 if (dst.regClass() == s1) {
1065 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
1066 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
1067 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
1068 } else if (dst.regClass() == s2) {
1069 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1070 Temp neqz;
1071 if (ctx->program->chip_class >= GFX8)
1072 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1073 else
1074 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1075 /* SCC gets zero-extended to 64 bit */
1076 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1077 } else if (dst.regClass() == v1) {
1078 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
1079 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1080 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
1081 } else if (dst.regClass() == v2) {
1082 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1083 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1084 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1085 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1086 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1087 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_imax: {
1096 if (dst.regClass() == v1) {
1097 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1098 } else if (dst.regClass() == s1) {
1099 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1100 } else {
1101 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1102 nir_print_instr(&instr->instr, stderr);
1103 fprintf(stderr, "\n");
1104 }
1105 break;
1106 }
1107 case nir_op_umax: {
1108 if (dst.regClass() == v1) {
1109 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1110 } else if (dst.regClass() == s1) {
1111 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1112 } else {
1113 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1114 nir_print_instr(&instr->instr, stderr);
1115 fprintf(stderr, "\n");
1116 }
1117 break;
1118 }
1119 case nir_op_imin: {
1120 if (dst.regClass() == v1) {
1121 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1122 } else if (dst.regClass() == s1) {
1123 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1124 } else {
1125 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1126 nir_print_instr(&instr->instr, stderr);
1127 fprintf(stderr, "\n");
1128 }
1129 break;
1130 }
1131 case nir_op_umin: {
1132 if (dst.regClass() == v1) {
1133 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1134 } else if (dst.regClass() == s1) {
1135 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1136 } else {
1137 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1138 nir_print_instr(&instr->instr, stderr);
1139 fprintf(stderr, "\n");
1140 }
1141 break;
1142 }
1143 case nir_op_ior: {
1144 if (instr->dest.dest.ssa.bit_size == 1) {
1145 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1146 } else if (dst.regClass() == v1) {
1147 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1148 } else if (dst.regClass() == s1) {
1149 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1150 } else if (dst.regClass() == s2) {
1151 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1152 } else {
1153 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1154 nir_print_instr(&instr->instr, stderr);
1155 fprintf(stderr, "\n");
1156 }
1157 break;
1158 }
1159 case nir_op_iand: {
1160 if (instr->dest.dest.ssa.bit_size == 1) {
1161 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1162 } else if (dst.regClass() == v1) {
1163 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1164 } else if (dst.regClass() == s1) {
1165 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1166 } else if (dst.regClass() == s2) {
1167 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1168 } else {
1169 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1170 nir_print_instr(&instr->instr, stderr);
1171 fprintf(stderr, "\n");
1172 }
1173 break;
1174 }
1175 case nir_op_ixor: {
1176 if (instr->dest.dest.ssa.bit_size == 1) {
1177 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1178 } else if (dst.regClass() == v1) {
1179 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1180 } else if (dst.regClass() == s1) {
1181 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1182 } else if (dst.regClass() == s2) {
1183 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1184 } else {
1185 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1186 nir_print_instr(&instr->instr, stderr);
1187 fprintf(stderr, "\n");
1188 }
1189 break;
1190 }
1191 case nir_op_ushr: {
1192 if (dst.regClass() == v1) {
1193 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1194 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1195 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1196 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1197 } else if (dst.regClass() == v2) {
1198 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1199 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1200 } else if (dst.regClass() == s2) {
1201 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1202 } else if (dst.regClass() == s1) {
1203 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1204 } else {
1205 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1206 nir_print_instr(&instr->instr, stderr);
1207 fprintf(stderr, "\n");
1208 }
1209 break;
1210 }
1211 case nir_op_ishl: {
1212 if (dst.regClass() == v1) {
1213 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1214 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1215 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1216 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1217 } else if (dst.regClass() == v2) {
1218 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1219 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1220 } else if (dst.regClass() == s1) {
1221 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1222 } else if (dst.regClass() == s2) {
1223 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1224 } else {
1225 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1226 nir_print_instr(&instr->instr, stderr);
1227 fprintf(stderr, "\n");
1228 }
1229 break;
1230 }
1231 case nir_op_ishr: {
1232 if (dst.regClass() == v1) {
1233 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1234 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1235 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1236 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1237 } else if (dst.regClass() == v2) {
1238 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1239 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1240 } else if (dst.regClass() == s1) {
1241 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1242 } else if (dst.regClass() == s2) {
1243 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1244 } else {
1245 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1246 nir_print_instr(&instr->instr, stderr);
1247 fprintf(stderr, "\n");
1248 }
1249 break;
1250 }
1251 case nir_op_find_lsb: {
1252 Temp src = get_alu_src(ctx, instr->src[0]);
1253 if (src.regClass() == s1) {
1254 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1255 } else if (src.regClass() == v1) {
1256 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1257 } else if (src.regClass() == s2) {
1258 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1259 } else {
1260 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1261 nir_print_instr(&instr->instr, stderr);
1262 fprintf(stderr, "\n");
1263 }
1264 break;
1265 }
1266 case nir_op_ufind_msb:
1267 case nir_op_ifind_msb: {
1268 Temp src = get_alu_src(ctx, instr->src[0]);
1269 if (src.regClass() == s1 || src.regClass() == s2) {
1270 aco_opcode op = src.regClass() == s2 ?
1271 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1272 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1273 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1274
1275 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1276 Operand(src.size() * 32u - 1u), msb_rev);
1277 Temp msb = sub.def(0).getTemp();
1278 Temp carry = sub.def(1).getTemp();
1279
1280 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1281 } else if (src.regClass() == v1) {
1282 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1283 Temp msb_rev = bld.tmp(v1);
1284 emit_vop1_instruction(ctx, instr, op, msb_rev);
1285 Temp msb = bld.tmp(v1);
1286 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1287 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1288 } else {
1289 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1290 nir_print_instr(&instr->instr, stderr);
1291 fprintf(stderr, "\n");
1292 }
1293 break;
1294 }
1295 case nir_op_bitfield_reverse: {
1296 if (dst.regClass() == s1) {
1297 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1298 } else if (dst.regClass() == v1) {
1299 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1300 } else {
1301 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1302 nir_print_instr(&instr->instr, stderr);
1303 fprintf(stderr, "\n");
1304 }
1305 break;
1306 }
1307 case nir_op_iadd: {
1308 if (dst.regClass() == s1) {
1309 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1310 break;
1311 }
1312
1313 Temp src0 = get_alu_src(ctx, instr->src[0]);
1314 Temp src1 = get_alu_src(ctx, instr->src[1]);
1315 if (dst.regClass() == v1) {
1316 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1317 break;
1318 }
1319
1320 assert(src0.size() == 2 && src1.size() == 2);
1321 Temp src00 = bld.tmp(src0.type(), 1);
1322 Temp src01 = bld.tmp(dst.type(), 1);
1323 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1324 Temp src10 = bld.tmp(src1.type(), 1);
1325 Temp src11 = bld.tmp(dst.type(), 1);
1326 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1327
1328 if (dst.regClass() == s2) {
1329 Temp carry = bld.tmp(s1);
1330 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1331 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1332 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1333 } else if (dst.regClass() == v2) {
1334 Temp dst0 = bld.tmp(v1);
1335 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1336 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1337 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1338 } else {
1339 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1340 nir_print_instr(&instr->instr, stderr);
1341 fprintf(stderr, "\n");
1342 }
1343 break;
1344 }
1345 case nir_op_uadd_sat: {
1346 Temp src0 = get_alu_src(ctx, instr->src[0]);
1347 Temp src1 = get_alu_src(ctx, instr->src[1]);
1348 if (dst.regClass() == s1) {
1349 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1350 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1351 src0, src1);
1352 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1353 } else if (dst.regClass() == v1) {
1354 if (ctx->options->chip_class >= GFX9) {
1355 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1356 add->operands[0] = Operand(src0);
1357 add->operands[1] = Operand(src1);
1358 add->definitions[0] = Definition(dst);
1359 add->clamp = 1;
1360 ctx->block->instructions.emplace_back(std::move(add));
1361 } else {
1362 if (src1.regClass() != v1)
1363 std::swap(src0, src1);
1364 assert(src1.regClass() == v1);
1365 Temp tmp = bld.tmp(v1);
1366 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1367 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1368 }
1369 } else {
1370 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1371 nir_print_instr(&instr->instr, stderr);
1372 fprintf(stderr, "\n");
1373 }
1374 break;
1375 }
1376 case nir_op_uadd_carry: {
1377 Temp src0 = get_alu_src(ctx, instr->src[0]);
1378 Temp src1 = get_alu_src(ctx, instr->src[1]);
1379 if (dst.regClass() == s1) {
1380 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1381 break;
1382 }
1383 if (dst.regClass() == v1) {
1384 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1385 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1386 break;
1387 }
1388
1389 Temp src00 = bld.tmp(src0.type(), 1);
1390 Temp src01 = bld.tmp(dst.type(), 1);
1391 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1392 Temp src10 = bld.tmp(src1.type(), 1);
1393 Temp src11 = bld.tmp(dst.type(), 1);
1394 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1395 if (dst.regClass() == s2) {
1396 Temp carry = bld.tmp(s1);
1397 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1398 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1399 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1400 } else if (dst.regClass() == v2) {
1401 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1402 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1403 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1405 } else {
1406 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1407 nir_print_instr(&instr->instr, stderr);
1408 fprintf(stderr, "\n");
1409 }
1410 break;
1411 }
1412 case nir_op_isub: {
1413 if (dst.regClass() == s1) {
1414 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1415 break;
1416 }
1417
1418 Temp src0 = get_alu_src(ctx, instr->src[0]);
1419 Temp src1 = get_alu_src(ctx, instr->src[1]);
1420 if (dst.regClass() == v1) {
1421 bld.vsub32(Definition(dst), src0, src1);
1422 break;
1423 }
1424
1425 Temp src00 = bld.tmp(src0.type(), 1);
1426 Temp src01 = bld.tmp(dst.type(), 1);
1427 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1428 Temp src10 = bld.tmp(src1.type(), 1);
1429 Temp src11 = bld.tmp(dst.type(), 1);
1430 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1431 if (dst.regClass() == s2) {
1432 Temp carry = bld.tmp(s1);
1433 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1434 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1435 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1436 } else if (dst.regClass() == v2) {
1437 Temp lower = bld.tmp(v1);
1438 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1439 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1440 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1441 } else {
1442 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1443 nir_print_instr(&instr->instr, stderr);
1444 fprintf(stderr, "\n");
1445 }
1446 break;
1447 }
1448 case nir_op_usub_borrow: {
1449 Temp src0 = get_alu_src(ctx, instr->src[0]);
1450 Temp src1 = get_alu_src(ctx, instr->src[1]);
1451 if (dst.regClass() == s1) {
1452 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1453 break;
1454 } else if (dst.regClass() == v1) {
1455 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1456 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1457 break;
1458 }
1459
1460 Temp src00 = bld.tmp(src0.type(), 1);
1461 Temp src01 = bld.tmp(dst.type(), 1);
1462 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1463 Temp src10 = bld.tmp(src1.type(), 1);
1464 Temp src11 = bld.tmp(dst.type(), 1);
1465 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1466 if (dst.regClass() == s2) {
1467 Temp borrow = bld.tmp(s1);
1468 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1469 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1470 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1471 } else if (dst.regClass() == v2) {
1472 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1473 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1474 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1475 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1476 } else {
1477 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1478 nir_print_instr(&instr->instr, stderr);
1479 fprintf(stderr, "\n");
1480 }
1481 break;
1482 }
1483 case nir_op_imul: {
1484 if (dst.regClass() == v1) {
1485 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1486 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1487 } else if (dst.regClass() == s1) {
1488 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1489 } else {
1490 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1491 nir_print_instr(&instr->instr, stderr);
1492 fprintf(stderr, "\n");
1493 }
1494 break;
1495 }
1496 case nir_op_umul_high: {
1497 if (dst.regClass() == v1) {
1498 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1499 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1500 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1501 } else if (dst.regClass() == s1) {
1502 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1503 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1504 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1505 } else {
1506 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1507 nir_print_instr(&instr->instr, stderr);
1508 fprintf(stderr, "\n");
1509 }
1510 break;
1511 }
1512 case nir_op_imul_high: {
1513 if (dst.regClass() == v1) {
1514 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1515 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1516 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1517 } else if (dst.regClass() == s1) {
1518 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1519 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1520 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1521 } else {
1522 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1523 nir_print_instr(&instr->instr, stderr);
1524 fprintf(stderr, "\n");
1525 }
1526 break;
1527 }
1528 case nir_op_fmul: {
1529 if (dst.size() == 1) {
1530 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1531 } else if (dst.size() == 2) {
1532 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1533 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1534 } else {
1535 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1536 nir_print_instr(&instr->instr, stderr);
1537 fprintf(stderr, "\n");
1538 }
1539 break;
1540 }
1541 case nir_op_fadd: {
1542 if (dst.size() == 1) {
1543 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1544 } else if (dst.size() == 2) {
1545 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1546 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1547 } else {
1548 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1549 nir_print_instr(&instr->instr, stderr);
1550 fprintf(stderr, "\n");
1551 }
1552 break;
1553 }
1554 case nir_op_fsub: {
1555 Temp src0 = get_alu_src(ctx, instr->src[0]);
1556 Temp src1 = get_alu_src(ctx, instr->src[1]);
1557 if (dst.size() == 1) {
1558 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1559 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1560 else
1561 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1562 } else if (dst.size() == 2) {
1563 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1564 get_alu_src(ctx, instr->src[0]),
1565 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1566 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1567 sub->neg[1] = true;
1568 } else {
1569 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1570 nir_print_instr(&instr->instr, stderr);
1571 fprintf(stderr, "\n");
1572 }
1573 break;
1574 }
1575 case nir_op_fmax: {
1576 if (dst.size() == 1) {
1577 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1578 } else if (dst.size() == 2) {
1579 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1580 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1581 get_alu_src(ctx, instr->src[0]),
1582 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1583 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1584 } else {
1585 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1586 get_alu_src(ctx, instr->src[0]),
1587 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1588 }
1589 } else {
1590 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1591 nir_print_instr(&instr->instr, stderr);
1592 fprintf(stderr, "\n");
1593 }
1594 break;
1595 }
1596 case nir_op_fmin: {
1597 if (dst.size() == 1) {
1598 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1599 } else if (dst.size() == 2) {
1600 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1601 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1602 get_alu_src(ctx, instr->src[0]),
1603 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1604 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1605 } else {
1606 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1607 get_alu_src(ctx, instr->src[0]),
1608 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1609 }
1610 } else {
1611 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1612 nir_print_instr(&instr->instr, stderr);
1613 fprintf(stderr, "\n");
1614 }
1615 break;
1616 }
1617 case nir_op_fmax3: {
1618 if (dst.size() == 1) {
1619 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1620 } else {
1621 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1622 nir_print_instr(&instr->instr, stderr);
1623 fprintf(stderr, "\n");
1624 }
1625 break;
1626 }
1627 case nir_op_fmin3: {
1628 if (dst.size() == 1) {
1629 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1630 } else {
1631 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1632 nir_print_instr(&instr->instr, stderr);
1633 fprintf(stderr, "\n");
1634 }
1635 break;
1636 }
1637 case nir_op_fmed3: {
1638 if (dst.size() == 1) {
1639 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1640 } else {
1641 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1642 nir_print_instr(&instr->instr, stderr);
1643 fprintf(stderr, "\n");
1644 }
1645 break;
1646 }
1647 case nir_op_umax3: {
1648 if (dst.size() == 1) {
1649 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1650 } else {
1651 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1652 nir_print_instr(&instr->instr, stderr);
1653 fprintf(stderr, "\n");
1654 }
1655 break;
1656 }
1657 case nir_op_umin3: {
1658 if (dst.size() == 1) {
1659 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1660 } else {
1661 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1662 nir_print_instr(&instr->instr, stderr);
1663 fprintf(stderr, "\n");
1664 }
1665 break;
1666 }
1667 case nir_op_umed3: {
1668 if (dst.size() == 1) {
1669 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1670 } else {
1671 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1672 nir_print_instr(&instr->instr, stderr);
1673 fprintf(stderr, "\n");
1674 }
1675 break;
1676 }
1677 case nir_op_imax3: {
1678 if (dst.size() == 1) {
1679 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1680 } else {
1681 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1682 nir_print_instr(&instr->instr, stderr);
1683 fprintf(stderr, "\n");
1684 }
1685 break;
1686 }
1687 case nir_op_imin3: {
1688 if (dst.size() == 1) {
1689 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1690 } else {
1691 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1692 nir_print_instr(&instr->instr, stderr);
1693 fprintf(stderr, "\n");
1694 }
1695 break;
1696 }
1697 case nir_op_imed3: {
1698 if (dst.size() == 1) {
1699 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1700 } else {
1701 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1702 nir_print_instr(&instr->instr, stderr);
1703 fprintf(stderr, "\n");
1704 }
1705 break;
1706 }
1707 case nir_op_cube_face_coord: {
1708 Temp in = get_alu_src(ctx, instr->src[0], 3);
1709 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1710 emit_extract_vector(ctx, in, 1, v1),
1711 emit_extract_vector(ctx, in, 2, v1) };
1712 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1713 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1714 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1715 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1716 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1717 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1718 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1719 break;
1720 }
1721 case nir_op_cube_face_index: {
1722 Temp in = get_alu_src(ctx, instr->src[0], 3);
1723 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1724 emit_extract_vector(ctx, in, 1, v1),
1725 emit_extract_vector(ctx, in, 2, v1) };
1726 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1727 break;
1728 }
1729 case nir_op_bcsel: {
1730 emit_bcsel(ctx, instr, dst);
1731 break;
1732 }
1733 case nir_op_frsq: {
1734 if (dst.size() == 1) {
1735 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1736 } else if (dst.size() == 2) {
1737 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1738 } else {
1739 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1740 nir_print_instr(&instr->instr, stderr);
1741 fprintf(stderr, "\n");
1742 }
1743 break;
1744 }
1745 case nir_op_fneg: {
1746 Temp src = get_alu_src(ctx, instr->src[0]);
1747 if (dst.size() == 1) {
1748 if (ctx->block->fp_mode.must_flush_denorms32)
1749 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1750 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1751 } else if (dst.size() == 2) {
1752 if (ctx->block->fp_mode.must_flush_denorms16_64)
1753 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1754 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1755 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1756 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1757 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1758 } else {
1759 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1760 nir_print_instr(&instr->instr, stderr);
1761 fprintf(stderr, "\n");
1762 }
1763 break;
1764 }
1765 case nir_op_fabs: {
1766 Temp src = get_alu_src(ctx, instr->src[0]);
1767 if (dst.size() == 1) {
1768 if (ctx->block->fp_mode.must_flush_denorms32)
1769 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1770 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1771 } else if (dst.size() == 2) {
1772 if (ctx->block->fp_mode.must_flush_denorms16_64)
1773 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1774 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1775 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1776 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1777 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1778 } else {
1779 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1780 nir_print_instr(&instr->instr, stderr);
1781 fprintf(stderr, "\n");
1782 }
1783 break;
1784 }
1785 case nir_op_fsat: {
1786 Temp src = get_alu_src(ctx, instr->src[0]);
1787 if (dst.size() == 1) {
1788 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1789 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1790 // TODO: confirm that this holds under any circumstances
1791 } else if (dst.size() == 2) {
1792 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1793 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1794 vop3->clamp = true;
1795 } else {
1796 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1797 nir_print_instr(&instr->instr, stderr);
1798 fprintf(stderr, "\n");
1799 }
1800 break;
1801 }
1802 case nir_op_flog2: {
1803 if (dst.size() == 1) {
1804 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1805 } else {
1806 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1807 nir_print_instr(&instr->instr, stderr);
1808 fprintf(stderr, "\n");
1809 }
1810 break;
1811 }
1812 case nir_op_frcp: {
1813 if (dst.size() == 1) {
1814 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1815 } else if (dst.size() == 2) {
1816 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1817 } else {
1818 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1819 nir_print_instr(&instr->instr, stderr);
1820 fprintf(stderr, "\n");
1821 }
1822 break;
1823 }
1824 case nir_op_fexp2: {
1825 if (dst.size() == 1) {
1826 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1827 } else {
1828 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1829 nir_print_instr(&instr->instr, stderr);
1830 fprintf(stderr, "\n");
1831 }
1832 break;
1833 }
1834 case nir_op_fsqrt: {
1835 if (dst.size() == 1) {
1836 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1837 } else if (dst.size() == 2) {
1838 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1839 } else {
1840 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1841 nir_print_instr(&instr->instr, stderr);
1842 fprintf(stderr, "\n");
1843 }
1844 break;
1845 }
1846 case nir_op_ffract: {
1847 if (dst.size() == 1) {
1848 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1849 } else if (dst.size() == 2) {
1850 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1851 } else {
1852 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1853 nir_print_instr(&instr->instr, stderr);
1854 fprintf(stderr, "\n");
1855 }
1856 break;
1857 }
1858 case nir_op_ffloor: {
1859 if (dst.size() == 1) {
1860 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1861 } else if (dst.size() == 2) {
1862 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1863 } else {
1864 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1865 nir_print_instr(&instr->instr, stderr);
1866 fprintf(stderr, "\n");
1867 }
1868 break;
1869 }
1870 case nir_op_fceil: {
1871 if (dst.size() == 1) {
1872 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1873 } else if (dst.size() == 2) {
1874 if (ctx->options->chip_class >= GFX7) {
1875 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1876 } else {
1877 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1878 Temp src0 = get_alu_src(ctx, instr->src[0]);
1879
1880 /* trunc = trunc(src0)
1881 * if (src0 > 0.0 && src0 != trunc)
1882 * trunc += 1.0
1883 */
1884 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1885 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1886 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1887 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1888 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1889 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1890 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1891 }
1892 } else {
1893 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1894 nir_print_instr(&instr->instr, stderr);
1895 fprintf(stderr, "\n");
1896 }
1897 break;
1898 }
1899 case nir_op_ftrunc: {
1900 if (dst.size() == 1) {
1901 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1902 } else if (dst.size() == 2) {
1903 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1904 } else {
1905 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1906 nir_print_instr(&instr->instr, stderr);
1907 fprintf(stderr, "\n");
1908 }
1909 break;
1910 }
1911 case nir_op_fround_even: {
1912 if (dst.size() == 1) {
1913 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1914 } else if (dst.size() == 2) {
1915 if (ctx->options->chip_class >= GFX7) {
1916 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1917 } else {
1918 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1919 Temp src0 = get_alu_src(ctx, instr->src[0]);
1920
1921 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1922 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1923
1924 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1925 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1926 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1927 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1928 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1929 tmp = sub->definitions[0].getTemp();
1930
1931 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1932 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1933 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1934 Temp cond = vop3->definitions[0].getTemp();
1935
1936 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1937 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1938 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1939 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1940
1941 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1942 }
1943 } else {
1944 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1945 nir_print_instr(&instr->instr, stderr);
1946 fprintf(stderr, "\n");
1947 }
1948 break;
1949 }
1950 case nir_op_fsin:
1951 case nir_op_fcos: {
1952 Temp src = get_alu_src(ctx, instr->src[0]);
1953 aco_ptr<Instruction> norm;
1954 if (dst.size() == 1) {
1955 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1956 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1957
1958 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1959 if (ctx->options->chip_class < GFX9)
1960 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1961
1962 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1963 bld.vop1(opcode, Definition(dst), tmp);
1964 } else {
1965 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1966 nir_print_instr(&instr->instr, stderr);
1967 fprintf(stderr, "\n");
1968 }
1969 break;
1970 }
1971 case nir_op_ldexp: {
1972 if (dst.size() == 1) {
1973 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1974 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1975 get_alu_src(ctx, instr->src[1]));
1976 } else if (dst.size() == 2) {
1977 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1978 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1979 get_alu_src(ctx, instr->src[1]));
1980 } else {
1981 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1982 nir_print_instr(&instr->instr, stderr);
1983 fprintf(stderr, "\n");
1984 }
1985 break;
1986 }
1987 case nir_op_frexp_sig: {
1988 if (dst.size() == 1) {
1989 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1990 get_alu_src(ctx, instr->src[0]));
1991 } else if (dst.size() == 2) {
1992 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1993 get_alu_src(ctx, instr->src[0]));
1994 } else {
1995 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1996 nir_print_instr(&instr->instr, stderr);
1997 fprintf(stderr, "\n");
1998 }
1999 break;
2000 }
2001 case nir_op_frexp_exp: {
2002 if (instr->src[0].src.ssa->bit_size == 32) {
2003 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
2004 get_alu_src(ctx, instr->src[0]));
2005 } else if (instr->src[0].src.ssa->bit_size == 64) {
2006 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
2007 get_alu_src(ctx, instr->src[0]));
2008 } else {
2009 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2010 nir_print_instr(&instr->instr, stderr);
2011 fprintf(stderr, "\n");
2012 }
2013 break;
2014 }
2015 case nir_op_fsign: {
2016 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2017 if (dst.size() == 1) {
2018 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2019 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2020 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2021 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2022 } else if (dst.size() == 2) {
2023 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2024 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2025 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2026
2027 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2028 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2029 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2030
2031 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2032 } else {
2033 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2034 nir_print_instr(&instr->instr, stderr);
2035 fprintf(stderr, "\n");
2036 }
2037 break;
2038 }
2039 case nir_op_f2f16:
2040 case nir_op_f2f16_rtne: {
2041 Temp src = get_alu_src(ctx, instr->src[0]);
2042 if (instr->src[0].src.ssa->bit_size == 64)
2043 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2044 src = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2045 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2046 break;
2047 }
2048 case nir_op_f2f16_rtz: {
2049 Temp src = get_alu_src(ctx, instr->src[0]);
2050 if (instr->src[0].src.ssa->bit_size == 64)
2051 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2052 src = bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, bld.def(v1), src, Operand(0u));
2053 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2054 break;
2055 }
2056 case nir_op_f2f32: {
2057 if (instr->src[0].src.ssa->bit_size == 16) {
2058 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2059 } else if (instr->src[0].src.ssa->bit_size == 64) {
2060 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2061 } else {
2062 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2063 nir_print_instr(&instr->instr, stderr);
2064 fprintf(stderr, "\n");
2065 }
2066 break;
2067 }
2068 case nir_op_f2f64: {
2069 Temp src = get_alu_src(ctx, instr->src[0]);
2070 if (instr->src[0].src.ssa->bit_size == 16)
2071 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2072 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2073 break;
2074 }
2075 case nir_op_i2f32: {
2076 assert(dst.size() == 1);
2077 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
2078 break;
2079 }
2080 case nir_op_i2f64: {
2081 if (instr->src[0].src.ssa->bit_size == 32) {
2082 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
2083 } else if (instr->src[0].src.ssa->bit_size == 64) {
2084 Temp src = get_alu_src(ctx, instr->src[0]);
2085 RegClass rc = RegClass(src.type(), 1);
2086 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2087 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2088 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2089 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2090 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2091 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2092
2093 } else {
2094 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2095 nir_print_instr(&instr->instr, stderr);
2096 fprintf(stderr, "\n");
2097 }
2098 break;
2099 }
2100 case nir_op_u2f32: {
2101 assert(dst.size() == 1);
2102 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
2103 break;
2104 }
2105 case nir_op_u2f64: {
2106 if (instr->src[0].src.ssa->bit_size == 32) {
2107 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
2108 } else if (instr->src[0].src.ssa->bit_size == 64) {
2109 Temp src = get_alu_src(ctx, instr->src[0]);
2110 RegClass rc = RegClass(src.type(), 1);
2111 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2112 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2113 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2114 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2115 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2116 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2117 } else {
2118 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2119 nir_print_instr(&instr->instr, stderr);
2120 fprintf(stderr, "\n");
2121 }
2122 break;
2123 }
2124 case nir_op_f2i16: {
2125 Temp src = get_alu_src(ctx, instr->src[0]);
2126 if (instr->src[0].src.ssa->bit_size == 16)
2127 src = bld.vop1(aco_opcode::v_cvt_i16_f16, bld.def(v1), src);
2128 else if (instr->src[0].src.ssa->bit_size == 32)
2129 src = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src);
2130 else
2131 src = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src);
2132
2133 if (dst.type() == RegType::vgpr)
2134 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2135 else
2136 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2137 break;
2138 }
2139 case nir_op_f2u16: {
2140 Temp src = get_alu_src(ctx, instr->src[0]);
2141 if (instr->src[0].src.ssa->bit_size == 16)
2142 src = bld.vop1(aco_opcode::v_cvt_u16_f16, bld.def(v1), src);
2143 else if (instr->src[0].src.ssa->bit_size == 32)
2144 src = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src);
2145 else
2146 src = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src);
2147
2148 if (dst.type() == RegType::vgpr)
2149 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2150 else
2151 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2152 break;
2153 }
2154 case nir_op_f2i32: {
2155 Temp src = get_alu_src(ctx, instr->src[0]);
2156 if (instr->src[0].src.ssa->bit_size == 32) {
2157 if (dst.type() == RegType::vgpr)
2158 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
2159 else
2160 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2161 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
2162
2163 } else if (instr->src[0].src.ssa->bit_size == 64) {
2164 if (dst.type() == RegType::vgpr)
2165 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
2166 else
2167 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2168 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
2169
2170 } else {
2171 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2172 nir_print_instr(&instr->instr, stderr);
2173 fprintf(stderr, "\n");
2174 }
2175 break;
2176 }
2177 case nir_op_f2u32: {
2178 Temp src = get_alu_src(ctx, instr->src[0]);
2179 if (instr->src[0].src.ssa->bit_size == 32) {
2180 if (dst.type() == RegType::vgpr)
2181 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2182 else
2183 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2184 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2185
2186 } else if (instr->src[0].src.ssa->bit_size == 64) {
2187 if (dst.type() == RegType::vgpr)
2188 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2189 else
2190 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2191 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2192
2193 } else {
2194 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2195 nir_print_instr(&instr->instr, stderr);
2196 fprintf(stderr, "\n");
2197 }
2198 break;
2199 }
2200 case nir_op_f2i64: {
2201 Temp src = get_alu_src(ctx, instr->src[0]);
2202 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2203 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2204 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2205 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2206 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2207 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2208 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2209 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2210 Temp new_exponent = bld.tmp(v1);
2211 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2212 if (ctx->program->chip_class >= GFX8)
2213 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2214 else
2215 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2216 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2217 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2218 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2219 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2220 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2221 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2222 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2223 Temp new_lower = bld.tmp(v1);
2224 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2225 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2226 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2227
2228 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2229 if (src.type() == RegType::vgpr)
2230 src = bld.as_uniform(src);
2231 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2232 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2233 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2234 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2235 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2236 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2237 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2238 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2239 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2240 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2241 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2242 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2243 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2244 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2245 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2246 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2247 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2248 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2249 Temp borrow = bld.tmp(s1);
2250 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2251 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2252 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2253
2254 } else if (instr->src[0].src.ssa->bit_size == 64) {
2255 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2256 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2257 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2258 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2259 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2260 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2261 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2262 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2263 if (dst.type() == RegType::sgpr) {
2264 lower = bld.as_uniform(lower);
2265 upper = bld.as_uniform(upper);
2266 }
2267 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2268
2269 } else {
2270 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2271 nir_print_instr(&instr->instr, stderr);
2272 fprintf(stderr, "\n");
2273 }
2274 break;
2275 }
2276 case nir_op_f2u64: {
2277 Temp src = get_alu_src(ctx, instr->src[0]);
2278 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2279 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2280 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2281 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2282 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2283 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2284 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2285 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2286 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2287 Temp new_exponent = bld.tmp(v1);
2288 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2289 if (ctx->program->chip_class >= GFX8)
2290 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2291 else
2292 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2293 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2294 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2295 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2296 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2297 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2298 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2299 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2300
2301 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2302 if (src.type() == RegType::vgpr)
2303 src = bld.as_uniform(src);
2304 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2305 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2306 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2307 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2308 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2309 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2310 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2311 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2312 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2313 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2314 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2315 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2316 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2317 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2318 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2319 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2320 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2321 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2322
2323 } else if (instr->src[0].src.ssa->bit_size == 64) {
2324 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2325 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2326 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2327 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2328 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2329 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2330 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2331 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2332 if (dst.type() == RegType::sgpr) {
2333 lower = bld.as_uniform(lower);
2334 upper = bld.as_uniform(upper);
2335 }
2336 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2337
2338 } else {
2339 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2340 nir_print_instr(&instr->instr, stderr);
2341 fprintf(stderr, "\n");
2342 }
2343 break;
2344 }
2345 case nir_op_b2f32: {
2346 Temp src = get_alu_src(ctx, instr->src[0]);
2347 assert(src.regClass() == bld.lm);
2348
2349 if (dst.regClass() == s1) {
2350 src = bool_to_scalar_condition(ctx, src);
2351 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2352 } else if (dst.regClass() == v1) {
2353 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2354 } else {
2355 unreachable("Wrong destination register class for nir_op_b2f32.");
2356 }
2357 break;
2358 }
2359 case nir_op_b2f64: {
2360 Temp src = get_alu_src(ctx, instr->src[0]);
2361 assert(src.regClass() == bld.lm);
2362
2363 if (dst.regClass() == s2) {
2364 src = bool_to_scalar_condition(ctx, src);
2365 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2366 } else if (dst.regClass() == v2) {
2367 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2368 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2369 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2370 } else {
2371 unreachable("Wrong destination register class for nir_op_b2f64.");
2372 }
2373 break;
2374 }
2375 case nir_op_i2i8:
2376 case nir_op_u2u8: {
2377 Temp src = get_alu_src(ctx, instr->src[0]);
2378 /* we can actually just say dst = src */
2379 if (src.regClass() == s1)
2380 bld.copy(Definition(dst), src);
2381 else
2382 emit_extract_vector(ctx, src, 0, dst);
2383 break;
2384 }
2385 case nir_op_i2i16: {
2386 Temp src = get_alu_src(ctx, instr->src[0]);
2387 if (instr->src[0].src.ssa->bit_size == 8) {
2388 if (dst.regClass() == s1) {
2389 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(dst), Operand(src));
2390 } else {
2391 assert(src.regClass() == v1b);
2392 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2393 sdwa->operands[0] = Operand(src);
2394 sdwa->definitions[0] = Definition(dst);
2395 sdwa->sel[0] = sdwa_sbyte;
2396 sdwa->dst_sel = sdwa_sword;
2397 ctx->block->instructions.emplace_back(std::move(sdwa));
2398 }
2399 } else {
2400 Temp src = get_alu_src(ctx, instr->src[0]);
2401 /* we can actually just say dst = src */
2402 if (src.regClass() == s1)
2403 bld.copy(Definition(dst), src);
2404 else
2405 emit_extract_vector(ctx, src, 0, dst);
2406 }
2407 break;
2408 }
2409 case nir_op_u2u16: {
2410 Temp src = get_alu_src(ctx, instr->src[0]);
2411 if (instr->src[0].src.ssa->bit_size == 8) {
2412 if (dst.regClass() == s1)
2413 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFu), src);
2414 else {
2415 assert(src.regClass() == v1b);
2416 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2417 sdwa->operands[0] = Operand(src);
2418 sdwa->definitions[0] = Definition(dst);
2419 sdwa->sel[0] = sdwa_ubyte;
2420 sdwa->dst_sel = sdwa_uword;
2421 ctx->block->instructions.emplace_back(std::move(sdwa));
2422 }
2423 } else {
2424 Temp src = get_alu_src(ctx, instr->src[0]);
2425 /* we can actually just say dst = src */
2426 if (src.regClass() == s1)
2427 bld.copy(Definition(dst), src);
2428 else
2429 emit_extract_vector(ctx, src, 0, dst);
2430 }
2431 break;
2432 }
2433 case nir_op_i2i32: {
2434 Temp src = get_alu_src(ctx, instr->src[0]);
2435 if (instr->src[0].src.ssa->bit_size == 8) {
2436 if (dst.regClass() == s1) {
2437 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(dst), Operand(src));
2438 } else {
2439 assert(src.regClass() == v1b);
2440 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2441 sdwa->operands[0] = Operand(src);
2442 sdwa->definitions[0] = Definition(dst);
2443 sdwa->sel[0] = sdwa_sbyte;
2444 sdwa->dst_sel = sdwa_sdword;
2445 ctx->block->instructions.emplace_back(std::move(sdwa));
2446 }
2447 } else if (instr->src[0].src.ssa->bit_size == 16) {
2448 if (dst.regClass() == s1) {
2449 bld.sop1(aco_opcode::s_sext_i32_i16, Definition(dst), Operand(src));
2450 } else {
2451 assert(src.regClass() == v2b);
2452 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2453 sdwa->operands[0] = Operand(src);
2454 sdwa->definitions[0] = Definition(dst);
2455 sdwa->sel[0] = sdwa_sword;
2456 sdwa->dst_sel = sdwa_udword;
2457 ctx->block->instructions.emplace_back(std::move(sdwa));
2458 }
2459 } else if (instr->src[0].src.ssa->bit_size == 64) {
2460 /* we can actually just say dst = src, as it would map the lower register */
2461 emit_extract_vector(ctx, src, 0, dst);
2462 } else {
2463 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2464 nir_print_instr(&instr->instr, stderr);
2465 fprintf(stderr, "\n");
2466 }
2467 break;
2468 }
2469 case nir_op_u2u32: {
2470 Temp src = get_alu_src(ctx, instr->src[0]);
2471 if (instr->src[0].src.ssa->bit_size == 8) {
2472 if (dst.regClass() == s1)
2473 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFu), src);
2474 else {
2475 assert(src.regClass() == v1b);
2476 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2477 sdwa->operands[0] = Operand(src);
2478 sdwa->definitions[0] = Definition(dst);
2479 sdwa->sel[0] = sdwa_ubyte;
2480 sdwa->dst_sel = sdwa_udword;
2481 ctx->block->instructions.emplace_back(std::move(sdwa));
2482 }
2483 } else if (instr->src[0].src.ssa->bit_size == 16) {
2484 if (dst.regClass() == s1) {
2485 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2486 } else {
2487 assert(src.regClass() == v2b);
2488 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2489 sdwa->operands[0] = Operand(src);
2490 sdwa->definitions[0] = Definition(dst);
2491 sdwa->sel[0] = sdwa_uword;
2492 sdwa->dst_sel = sdwa_udword;
2493 ctx->block->instructions.emplace_back(std::move(sdwa));
2494 }
2495 } else if (instr->src[0].src.ssa->bit_size == 64) {
2496 /* we can actually just say dst = src, as it would map the lower register */
2497 emit_extract_vector(ctx, src, 0, dst);
2498 } else {
2499 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2500 nir_print_instr(&instr->instr, stderr);
2501 fprintf(stderr, "\n");
2502 }
2503 break;
2504 }
2505 case nir_op_i2i64: {
2506 Temp src = get_alu_src(ctx, instr->src[0]);
2507 if (src.regClass() == s1) {
2508 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2509 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2510 } else if (src.regClass() == v1) {
2511 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2512 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2513 } else {
2514 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2515 nir_print_instr(&instr->instr, stderr);
2516 fprintf(stderr, "\n");
2517 }
2518 break;
2519 }
2520 case nir_op_u2u64: {
2521 Temp src = get_alu_src(ctx, instr->src[0]);
2522 if (instr->src[0].src.ssa->bit_size == 32) {
2523 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2524 } else {
2525 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2526 nir_print_instr(&instr->instr, stderr);
2527 fprintf(stderr, "\n");
2528 }
2529 break;
2530 }
2531 case nir_op_b2b32:
2532 case nir_op_b2i32: {
2533 Temp src = get_alu_src(ctx, instr->src[0]);
2534 assert(src.regClass() == bld.lm);
2535
2536 if (dst.regClass() == s1) {
2537 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2538 bool_to_scalar_condition(ctx, src, dst);
2539 } else if (dst.regClass() == v1) {
2540 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2541 } else {
2542 unreachable("Invalid register class for b2i32");
2543 }
2544 break;
2545 }
2546 case nir_op_b2b1:
2547 case nir_op_i2b1: {
2548 Temp src = get_alu_src(ctx, instr->src[0]);
2549 assert(dst.regClass() == bld.lm);
2550
2551 if (src.type() == RegType::vgpr) {
2552 assert(src.regClass() == v1 || src.regClass() == v2);
2553 assert(dst.regClass() == bld.lm);
2554 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2555 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2556 } else {
2557 assert(src.regClass() == s1 || src.regClass() == s2);
2558 Temp tmp;
2559 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2560 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2561 } else {
2562 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2563 bld.scc(bld.def(s1)), Operand(0u), src);
2564 }
2565 bool_to_vector_condition(ctx, tmp, dst);
2566 }
2567 break;
2568 }
2569 case nir_op_pack_64_2x32_split: {
2570 Temp src0 = get_alu_src(ctx, instr->src[0]);
2571 Temp src1 = get_alu_src(ctx, instr->src[1]);
2572
2573 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2574 break;
2575 }
2576 case nir_op_unpack_64_2x32_split_x:
2577 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2578 break;
2579 case nir_op_unpack_64_2x32_split_y:
2580 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2581 break;
2582 case nir_op_unpack_32_2x16_split_x:
2583 if (dst.type() == RegType::vgpr) {
2584 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2585 } else {
2586 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2587 }
2588 break;
2589 case nir_op_unpack_32_2x16_split_y:
2590 if (dst.type() == RegType::vgpr) {
2591 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2592 } else {
2593 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2594 }
2595 break;
2596 case nir_op_pack_32_2x16_split: {
2597 Temp src0 = get_alu_src(ctx, instr->src[0]);
2598 Temp src1 = get_alu_src(ctx, instr->src[1]);
2599 if (dst.regClass() == v1) {
2600 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2601 } else {
2602 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2603 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2604 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2605 }
2606 break;
2607 }
2608 case nir_op_pack_half_2x16: {
2609 Temp src = get_alu_src(ctx, instr->src[0], 2);
2610
2611 if (dst.regClass() == v1) {
2612 Temp src0 = bld.tmp(v1);
2613 Temp src1 = bld.tmp(v1);
2614 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2615 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2616 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2617 else
2618 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2619 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2620 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2621 } else {
2622 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2623 nir_print_instr(&instr->instr, stderr);
2624 fprintf(stderr, "\n");
2625 }
2626 break;
2627 }
2628 case nir_op_unpack_half_2x16_split_x: {
2629 if (dst.regClass() == v1) {
2630 Builder bld(ctx->program, ctx->block);
2631 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2632 } else {
2633 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2634 nir_print_instr(&instr->instr, stderr);
2635 fprintf(stderr, "\n");
2636 }
2637 break;
2638 }
2639 case nir_op_unpack_half_2x16_split_y: {
2640 if (dst.regClass() == v1) {
2641 Builder bld(ctx->program, ctx->block);
2642 /* TODO: use SDWA here */
2643 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2644 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2645 } else {
2646 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2647 nir_print_instr(&instr->instr, stderr);
2648 fprintf(stderr, "\n");
2649 }
2650 break;
2651 }
2652 case nir_op_fquantize2f16: {
2653 Temp src = get_alu_src(ctx, instr->src[0]);
2654 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2655 Temp f32, cmp_res;
2656
2657 if (ctx->program->chip_class >= GFX8) {
2658 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2659 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2660 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2661 } else {
2662 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2663 * so compare the result and flush to 0 if it's smaller.
2664 */
2665 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2666 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2667 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2668 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2669 cmp_res = vop3->definitions[0].getTemp();
2670 }
2671
2672 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2673 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2674 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2675 } else {
2676 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2677 }
2678 break;
2679 }
2680 case nir_op_bfm: {
2681 Temp bits = get_alu_src(ctx, instr->src[0]);
2682 Temp offset = get_alu_src(ctx, instr->src[1]);
2683
2684 if (dst.regClass() == s1) {
2685 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2686 } else if (dst.regClass() == v1) {
2687 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2688 } else {
2689 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2690 nir_print_instr(&instr->instr, stderr);
2691 fprintf(stderr, "\n");
2692 }
2693 break;
2694 }
2695 case nir_op_bitfield_select: {
2696 /* (mask & insert) | (~mask & base) */
2697 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2698 Temp insert = get_alu_src(ctx, instr->src[1]);
2699 Temp base = get_alu_src(ctx, instr->src[2]);
2700
2701 /* dst = (insert & bitmask) | (base & ~bitmask) */
2702 if (dst.regClass() == s1) {
2703 aco_ptr<Instruction> sop2;
2704 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2705 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2706 Operand lhs;
2707 if (const_insert && const_bitmask) {
2708 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2709 } else {
2710 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2711 lhs = Operand(insert);
2712 }
2713
2714 Operand rhs;
2715 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2716 if (const_base && const_bitmask) {
2717 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2718 } else {
2719 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2720 rhs = Operand(base);
2721 }
2722
2723 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2724
2725 } else if (dst.regClass() == v1) {
2726 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2727 base = as_vgpr(ctx, base);
2728 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2729 insert = as_vgpr(ctx, insert);
2730
2731 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2732
2733 } else {
2734 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2735 nir_print_instr(&instr->instr, stderr);
2736 fprintf(stderr, "\n");
2737 }
2738 break;
2739 }
2740 case nir_op_ubfe:
2741 case nir_op_ibfe: {
2742 Temp base = get_alu_src(ctx, instr->src[0]);
2743 Temp offset = get_alu_src(ctx, instr->src[1]);
2744 Temp bits = get_alu_src(ctx, instr->src[2]);
2745
2746 if (dst.type() == RegType::sgpr) {
2747 Operand extract;
2748 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2749 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2750 if (const_offset && const_bits) {
2751 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2752 extract = Operand(const_extract);
2753 } else {
2754 Operand width;
2755 if (const_bits) {
2756 width = Operand(const_bits->u32 << 16);
2757 } else {
2758 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2759 }
2760 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2761 }
2762
2763 aco_opcode opcode;
2764 if (dst.regClass() == s1) {
2765 if (instr->op == nir_op_ubfe)
2766 opcode = aco_opcode::s_bfe_u32;
2767 else
2768 opcode = aco_opcode::s_bfe_i32;
2769 } else if (dst.regClass() == s2) {
2770 if (instr->op == nir_op_ubfe)
2771 opcode = aco_opcode::s_bfe_u64;
2772 else
2773 opcode = aco_opcode::s_bfe_i64;
2774 } else {
2775 unreachable("Unsupported BFE bit size");
2776 }
2777
2778 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2779
2780 } else {
2781 aco_opcode opcode;
2782 if (dst.regClass() == v1) {
2783 if (instr->op == nir_op_ubfe)
2784 opcode = aco_opcode::v_bfe_u32;
2785 else
2786 opcode = aco_opcode::v_bfe_i32;
2787 } else {
2788 unreachable("Unsupported BFE bit size");
2789 }
2790
2791 emit_vop3a_instruction(ctx, instr, opcode, dst);
2792 }
2793 break;
2794 }
2795 case nir_op_bit_count: {
2796 Temp src = get_alu_src(ctx, instr->src[0]);
2797 if (src.regClass() == s1) {
2798 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2799 } else if (src.regClass() == v1) {
2800 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2801 } else if (src.regClass() == v2) {
2802 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2803 emit_extract_vector(ctx, src, 1, v1),
2804 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2805 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2806 } else if (src.regClass() == s2) {
2807 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2808 } else {
2809 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2810 nir_print_instr(&instr->instr, stderr);
2811 fprintf(stderr, "\n");
2812 }
2813 break;
2814 }
2815 case nir_op_flt: {
2816 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2817 break;
2818 }
2819 case nir_op_fge: {
2820 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2821 break;
2822 }
2823 case nir_op_feq: {
2824 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2825 break;
2826 }
2827 case nir_op_fne: {
2828 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2829 break;
2830 }
2831 case nir_op_ilt: {
2832 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2833 break;
2834 }
2835 case nir_op_ige: {
2836 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2837 break;
2838 }
2839 case nir_op_ieq: {
2840 if (instr->src[0].src.ssa->bit_size == 1)
2841 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2842 else
2843 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2844 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2845 break;
2846 }
2847 case nir_op_ine: {
2848 if (instr->src[0].src.ssa->bit_size == 1)
2849 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2850 else
2851 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2852 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2853 break;
2854 }
2855 case nir_op_ult: {
2856 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2857 break;
2858 }
2859 case nir_op_uge: {
2860 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2861 break;
2862 }
2863 case nir_op_fddx:
2864 case nir_op_fddy:
2865 case nir_op_fddx_fine:
2866 case nir_op_fddy_fine:
2867 case nir_op_fddx_coarse:
2868 case nir_op_fddy_coarse: {
2869 Temp src = get_alu_src(ctx, instr->src[0]);
2870 uint16_t dpp_ctrl1, dpp_ctrl2;
2871 if (instr->op == nir_op_fddx_fine) {
2872 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2873 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2874 } else if (instr->op == nir_op_fddy_fine) {
2875 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2876 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2877 } else {
2878 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2879 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2880 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2881 else
2882 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2883 }
2884
2885 Temp tmp;
2886 if (ctx->program->chip_class >= GFX8) {
2887 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2888 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2889 } else {
2890 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2891 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2892 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2893 }
2894 emit_wqm(ctx, tmp, dst, true);
2895 break;
2896 }
2897 default:
2898 fprintf(stderr, "Unknown NIR ALU instr: ");
2899 nir_print_instr(&instr->instr, stderr);
2900 fprintf(stderr, "\n");
2901 }
2902 }
2903
2904 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2905 {
2906 Temp dst = get_ssa_temp(ctx, &instr->def);
2907
2908 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2909 // which get truncated the lsb if double and msb if int
2910 // for now, we only use s_mov_b64 with 64bit inline constants
2911 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2912 assert(dst.type() == RegType::sgpr);
2913
2914 Builder bld(ctx->program, ctx->block);
2915
2916 if (instr->def.bit_size == 1) {
2917 assert(dst.regClass() == bld.lm);
2918 int val = instr->value[0].b ? -1 : 0;
2919 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2920 bld.sop1(Builder::s_mov, Definition(dst), op);
2921 } else if (dst.size() == 1) {
2922 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2923 } else {
2924 assert(dst.size() != 1);
2925 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2926 if (instr->def.bit_size == 64)
2927 for (unsigned i = 0; i < dst.size(); i++)
2928 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2929 else {
2930 for (unsigned i = 0; i < dst.size(); i++)
2931 vec->operands[i] = Operand{instr->value[i].u32};
2932 }
2933 vec->definitions[0] = Definition(dst);
2934 ctx->block->instructions.emplace_back(std::move(vec));
2935 }
2936 }
2937
2938 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2939 {
2940 uint32_t new_mask = 0;
2941 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2942 if (mask & (1u << i))
2943 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2944 return new_mask;
2945 }
2946
2947 Operand load_lds_size_m0(isel_context *ctx)
2948 {
2949 /* TODO: m0 does not need to be initialized on GFX9+ */
2950 Builder bld(ctx->program, ctx->block);
2951 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2952 }
2953
2954 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2955 Temp address, unsigned base_offset, unsigned align)
2956 {
2957 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2958
2959 Builder bld(ctx->program, ctx->block);
2960
2961 Operand m = load_lds_size_m0(ctx);
2962
2963 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2964 unsigned bytes_read = 0;
2965 unsigned result_size = 0;
2966 unsigned total_bytes = num_components * elem_size_bytes;
2967 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2968 bool large_ds_read = ctx->options->chip_class >= GFX7;
2969 bool usable_read2 = ctx->options->chip_class >= GFX7;
2970
2971 while (bytes_read < total_bytes) {
2972 unsigned todo = total_bytes - bytes_read;
2973 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2974 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2975
2976 aco_opcode op = aco_opcode::last_opcode;
2977 bool read2 = false;
2978 if (todo >= 16 && aligned16 && large_ds_read) {
2979 op = aco_opcode::ds_read_b128;
2980 todo = 16;
2981 } else if (todo >= 16 && aligned8 && usable_read2) {
2982 op = aco_opcode::ds_read2_b64;
2983 read2 = true;
2984 todo = 16;
2985 } else if (todo >= 12 && aligned16 && large_ds_read) {
2986 op = aco_opcode::ds_read_b96;
2987 todo = 12;
2988 } else if (todo >= 8 && aligned8) {
2989 op = aco_opcode::ds_read_b64;
2990 todo = 8;
2991 } else if (todo >= 8 && usable_read2) {
2992 op = aco_opcode::ds_read2_b32;
2993 read2 = true;
2994 todo = 8;
2995 } else if (todo >= 4) {
2996 op = aco_opcode::ds_read_b32;
2997 todo = 4;
2998 } else {
2999 assert(false);
3000 }
3001 assert(todo % elem_size_bytes == 0);
3002 unsigned num_elements = todo / elem_size_bytes;
3003 unsigned offset = base_offset + bytes_read;
3004 unsigned max_offset = read2 ? 1019 : 65535;
3005
3006 Temp address_offset = address;
3007 if (offset > max_offset) {
3008 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3009 offset = bytes_read;
3010 }
3011 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
3012
3013 Temp res;
3014 if (num_components == 1 && dst.type() == RegType::vgpr)
3015 res = dst;
3016 else
3017 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
3018
3019 if (read2)
3020 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
3021 else
3022 res = bld.ds(op, Definition(res), address_offset, m, offset);
3023
3024 if (num_components == 1) {
3025 assert(todo == total_bytes);
3026 if (dst.type() == RegType::sgpr)
3027 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
3028 return dst;
3029 }
3030
3031 if (dst.type() == RegType::sgpr) {
3032 Temp new_res = bld.tmp(RegType::sgpr, res.size());
3033 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
3034 res = new_res;
3035 }
3036
3037 if (num_elements == 1) {
3038 result[result_size++] = res;
3039 } else {
3040 assert(res != dst && res.size() % num_elements == 0);
3041 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
3042 split->operands[0] = Operand(res);
3043 for (unsigned i = 0; i < num_elements; i++)
3044 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
3045 ctx->block->instructions.emplace_back(std::move(split));
3046 }
3047
3048 bytes_read += todo;
3049 }
3050
3051 assert(result_size == num_components && result_size > 1);
3052 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
3053 for (unsigned i = 0; i < result_size; i++)
3054 vec->operands[i] = Operand(result[i]);
3055 vec->definitions[0] = Definition(dst);
3056 ctx->block->instructions.emplace_back(std::move(vec));
3057 ctx->allocated_vec.emplace(dst.id(), result);
3058
3059 return dst;
3060 }
3061
3062 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
3063 {
3064 if (start == 0 && size == data.size())
3065 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
3066
3067 unsigned size_hint = 1;
3068 auto it = ctx->allocated_vec.find(data.id());
3069 if (it != ctx->allocated_vec.end())
3070 size_hint = it->second[0].size();
3071 if (size % size_hint || start % size_hint)
3072 size_hint = 1;
3073
3074 start /= size_hint;
3075 size /= size_hint;
3076
3077 Temp elems[size];
3078 for (unsigned i = 0; i < size; i++)
3079 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
3080
3081 if (size == 1)
3082 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
3083
3084 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
3085 for (unsigned i = 0; i < size; i++)
3086 vec->operands[i] = Operand(elems[i]);
3087 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
3088 vec->definitions[0] = Definition(res);
3089 ctx->block->instructions.emplace_back(std::move(vec));
3090 return res;
3091 }
3092
3093 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
3094 {
3095 Builder bld(ctx->program, ctx->block);
3096 unsigned bytes_written = 0;
3097 bool large_ds_write = ctx->options->chip_class >= GFX7;
3098 bool usable_write2 = ctx->options->chip_class >= GFX7;
3099
3100 while (bytes_written < total_size * 4) {
3101 unsigned todo = total_size * 4 - bytes_written;
3102 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
3103 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
3104
3105 aco_opcode op = aco_opcode::last_opcode;
3106 bool write2 = false;
3107 unsigned size = 0;
3108 if (todo >= 16 && aligned16 && large_ds_write) {
3109 op = aco_opcode::ds_write_b128;
3110 size = 4;
3111 } else if (todo >= 16 && aligned8 && usable_write2) {
3112 op = aco_opcode::ds_write2_b64;
3113 write2 = true;
3114 size = 4;
3115 } else if (todo >= 12 && aligned16 && large_ds_write) {
3116 op = aco_opcode::ds_write_b96;
3117 size = 3;
3118 } else if (todo >= 8 && aligned8) {
3119 op = aco_opcode::ds_write_b64;
3120 size = 2;
3121 } else if (todo >= 8 && usable_write2) {
3122 op = aco_opcode::ds_write2_b32;
3123 write2 = true;
3124 size = 2;
3125 } else if (todo >= 4) {
3126 op = aco_opcode::ds_write_b32;
3127 size = 1;
3128 } else {
3129 assert(false);
3130 }
3131
3132 unsigned offset = offset0 + offset1 + bytes_written;
3133 unsigned max_offset = write2 ? 1020 : 65535;
3134 Temp address_offset = address;
3135 if (offset > max_offset) {
3136 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
3137 offset = offset1 + bytes_written;
3138 }
3139 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
3140
3141 if (write2) {
3142 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
3143 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
3144 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
3145 } else {
3146 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
3147 bld.ds(op, address_offset, val, m, offset);
3148 }
3149
3150 bytes_written += size * 4;
3151 }
3152 }
3153
3154 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3155 Temp address, unsigned base_offset, unsigned align)
3156 {
3157 assert(util_is_power_of_two_nonzero(align) && align >= 4);
3158 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3159
3160 Operand m = load_lds_size_m0(ctx);
3161
3162 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
3163 assert(wrmask <= 0x0f);
3164 int start[2], count[2];
3165 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
3166 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
3167 assert(wrmask == 0);
3168
3169 /* one combined store is sufficient */
3170 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
3171 Builder bld(ctx->program, ctx->block);
3172
3173 Temp address_offset = address;
3174 if ((base_offset / elem_size_bytes) + start[1] > 255) {
3175 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3176 base_offset = 0;
3177 }
3178
3179 assert(count[0] == 1);
3180 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
3181
3182 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
3183 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
3184 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3185 base_offset = base_offset / elem_size_bytes;
3186 bld.ds(op, address_offset, val0, val1, m,
3187 base_offset + start[0], base_offset + start[1]);
3188 return;
3189 }
3190
3191 for (unsigned i = 0; i < 2; i++) {
3192 if (count[i] == 0)
3193 continue;
3194
3195 unsigned elem_size_words = elem_size_bytes / 4;
3196 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
3197 base_offset, start[i] * elem_size_bytes, align);
3198 }
3199 return;
3200 }
3201
3202 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3203 {
3204 unsigned align = 16;
3205 if (const_offset)
3206 align = std::min(align, 1u << (ffs(const_offset) - 1));
3207
3208 return align;
3209 }
3210
3211
3212 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3213 unsigned split_cnt = 0u, Temp dst = Temp())
3214 {
3215 Builder bld(ctx->program, ctx->block);
3216 unsigned dword_size = elem_size_bytes / 4;
3217
3218 if (!dst.id())
3219 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3220
3221 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3222 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3223 instr->definitions[0] = Definition(dst);
3224
3225 for (unsigned i = 0; i < cnt; ++i) {
3226 if (arr[i].id()) {
3227 assert(arr[i].size() == dword_size);
3228 allocated_vec[i] = arr[i];
3229 instr->operands[i] = Operand(arr[i]);
3230 } else {
3231 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3232 allocated_vec[i] = zero;
3233 instr->operands[i] = Operand(zero);
3234 }
3235 }
3236
3237 bld.insert(std::move(instr));
3238
3239 if (split_cnt)
3240 emit_split_vector(ctx, dst, split_cnt);
3241 else
3242 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3243
3244 return dst;
3245 }
3246
3247 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3248 {
3249 if (const_offset >= 4096) {
3250 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3251 const_offset %= 4096u;
3252
3253 if (!voffset.id())
3254 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3255 else if (unlikely(voffset.regClass() == s1))
3256 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3257 else if (likely(voffset.regClass() == v1))
3258 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3259 else
3260 unreachable("Unsupported register class of voffset");
3261 }
3262
3263 return const_offset;
3264 }
3265
3266 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3267 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
3268 {
3269 assert(vdata.id());
3270 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3271 assert(vdata.size() >= 1 && vdata.size() <= 4);
3272
3273 Builder bld(ctx->program, ctx->block);
3274 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
3275 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3276
3277 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3278 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3279 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3280 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3281 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
3282
3283 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3284 }
3285
3286 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3287 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3288 bool allow_combining = true, bool reorder = true, bool slc = false)
3289 {
3290 Builder bld(ctx->program, ctx->block);
3291 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3292 assert(write_mask);
3293
3294 if (elem_size_bytes == 8) {
3295 elem_size_bytes = 4;
3296 write_mask = widen_mask(write_mask, 2);
3297 }
3298
3299 while (write_mask) {
3300 int start = 0;
3301 int count = 0;
3302 u_bit_scan_consecutive_range(&write_mask, &start, &count);
3303 assert(count > 0);
3304 assert(start >= 0);
3305
3306 while (count > 0) {
3307 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
3308 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
3309
3310 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
3311 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
3312 sub_count = 2;
3313
3314 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
3315 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
3316
3317 count -= sub_count;
3318 start += sub_count;
3319 }
3320
3321 assert(count == 0);
3322 }
3323 }
3324
3325 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3326 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3327 {
3328 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3329 assert(size_dwords >= 1 && size_dwords <= 4);
3330
3331 Builder bld(ctx->program, ctx->block);
3332 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3333 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3334 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3335
3336 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3337 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3338 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3339 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3340 /* disable_wqm */ false, /* glc */ true,
3341 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3342
3343 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3344
3345 return vdata;
3346 }
3347
3348 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3349 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3350 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3351 {
3352 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3353 assert((num_components * elem_size_bytes / 4) == dst.size());
3354 assert(!!stride != allow_combining);
3355
3356 Builder bld(ctx->program, ctx->block);
3357 unsigned split_cnt = num_components;
3358
3359 if (elem_size_bytes == 8) {
3360 elem_size_bytes = 4;
3361 num_components *= 2;
3362 }
3363
3364 if (!stride)
3365 stride = elem_size_bytes;
3366
3367 unsigned load_size = 1;
3368 if (allow_combining) {
3369 if ((num_components % 4) == 0)
3370 load_size = 4;
3371 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3372 load_size = 3;
3373 else if ((num_components % 2) == 0)
3374 load_size = 2;
3375 }
3376
3377 unsigned num_loads = num_components / load_size;
3378 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3379
3380 for (unsigned i = 0; i < num_loads; ++i) {
3381 unsigned const_offset = i * stride * load_size + base_const_offset;
3382 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3383 }
3384
3385 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, load_size * 4u, split_cnt, dst);
3386 }
3387
3388 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3389 {
3390 Builder bld(ctx->program, ctx->block);
3391 Temp offset = base_offset.first;
3392 unsigned const_offset = base_offset.second;
3393
3394 if (!nir_src_is_const(*off_src)) {
3395 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3396 Temp with_stride;
3397
3398 /* Calculate indirect offset with stride */
3399 if (likely(indirect_offset_arg.regClass() == v1))
3400 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3401 else if (indirect_offset_arg.regClass() == s1)
3402 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3403 else
3404 unreachable("Unsupported register class of indirect offset");
3405
3406 /* Add to the supplied base offset */
3407 if (offset.id() == 0)
3408 offset = with_stride;
3409 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3410 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3411 else if (offset.size() == 1 && with_stride.size() == 1)
3412 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3413 else
3414 unreachable("Unsupported register class of indirect offset");
3415 } else {
3416 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3417 const_offset += const_offset_arg * stride;
3418 }
3419
3420 return std::make_pair(offset, const_offset);
3421 }
3422
3423 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3424 {
3425 Builder bld(ctx->program, ctx->block);
3426 Temp offset;
3427
3428 if (off1.first.id() && off2.first.id()) {
3429 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3430 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3431 else if (off1.first.size() == 1 && off2.first.size() == 1)
3432 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3433 else
3434 unreachable("Unsupported register class of indirect offset");
3435 } else {
3436 offset = off1.first.id() ? off1.first : off2.first;
3437 }
3438
3439 return std::make_pair(offset, off1.second + off2.second);
3440 }
3441
3442 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3443 {
3444 Builder bld(ctx->program, ctx->block);
3445 unsigned const_offset = offs.second * multiplier;
3446
3447 if (!offs.first.id())
3448 return std::make_pair(offs.first, const_offset);
3449
3450 Temp offset = unlikely(offs.first.regClass() == s1)
3451 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3452 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3453
3454 return std::make_pair(offset, const_offset);
3455 }
3456
3457 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3458 {
3459 Builder bld(ctx->program, ctx->block);
3460
3461 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3462 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3463 /* component is in bytes */
3464 const_offset += nir_intrinsic_component(instr) * component_stride;
3465
3466 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3467 nir_src *off_src = nir_get_io_offset_src(instr);
3468 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3469 }
3470
3471 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3472 {
3473 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3474 }
3475
3476 Temp get_tess_rel_patch_id(isel_context *ctx)
3477 {
3478 Builder bld(ctx->program, ctx->block);
3479
3480 switch (ctx->shader->info.stage) {
3481 case MESA_SHADER_TESS_CTRL:
3482 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3483 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3484 case MESA_SHADER_TESS_EVAL:
3485 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3486 default:
3487 unreachable("Unsupported stage in get_tess_rel_patch_id");
3488 }
3489 }
3490
3491 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3492 {
3493 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3494 Builder bld(ctx->program, ctx->block);
3495
3496 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3497 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3498
3499 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3500
3501 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3502 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3503
3504 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3505 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3506 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3507
3508 return offset_mul(ctx, offs, 4u);
3509 }
3510
3511 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3512 {
3513 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3514 Builder bld(ctx->program, ctx->block);
3515
3516 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3517 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3518 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3519 uint32_t output_vertex_size = num_tcs_outputs * 16;
3520 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3521 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3522
3523 std::pair<Temp, unsigned> offs = instr
3524 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3525 : std::make_pair(Temp(), 0u);
3526
3527 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3528 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3529
3530 if (per_vertex) {
3531 assert(instr);
3532
3533 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3534 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3535
3536 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3537 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3538 } else {
3539 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3540 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3541 }
3542
3543 return offs;
3544 }
3545
3546 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3547 {
3548 Builder bld(ctx->program, ctx->block);
3549
3550 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3551 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3552
3553 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3554
3555 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3556 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3557 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3558
3559 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3560 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3561
3562 return offs;
3563 }
3564
3565 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3566 {
3567 Builder bld(ctx->program, ctx->block);
3568
3569 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3570 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3571 : ctx->args->options->key.tes.tcs_num_outputs;
3572
3573 unsigned output_vertex_size = num_tcs_outputs * 16;
3574 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3575 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3576 unsigned attr_stride = ctx->tcs_num_patches;
3577
3578 std::pair<Temp, unsigned> offs = instr
3579 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3580 : std::make_pair(Temp(), 0u);
3581
3582 if (const_base_offset)
3583 offs.second += const_base_offset * attr_stride;
3584
3585 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3586 Temp patch_off = bld.v_mul_imm(bld.def(v1), rel_patch_id, 16u);
3587 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3588
3589 return offs;
3590 }
3591
3592 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
3593 {
3594 unsigned off = nir_intrinsic_base(instr) * 4u;
3595 nir_src *off_src = nir_get_io_offset_src(instr);
3596
3597 if (!nir_src_is_const(*off_src)) {
3598 *indirect = true;
3599 return false;
3600 }
3601
3602 *indirect = false;
3603 off += nir_src_as_uint(*off_src) * 16u;
3604
3605 while (mask) {
3606 unsigned slot = u_bit_scan64(&mask) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
3607 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
3608 return true;
3609 }
3610
3611 return false;
3612 }
3613
3614 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
3615 {
3616 unsigned write_mask = nir_intrinsic_write_mask(instr);
3617 unsigned component = nir_intrinsic_component(instr);
3618 unsigned idx = nir_intrinsic_base(instr) + component;
3619
3620 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3621 if (off_instr->type != nir_instr_type_load_const)
3622 return false;
3623
3624 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3625 idx += nir_src_as_uint(instr->src[1]) * 4u;
3626
3627 if (instr->src[0].ssa->bit_size == 64)
3628 write_mask = widen_mask(write_mask, 2);
3629
3630 for (unsigned i = 0; i < 8; ++i) {
3631 if (write_mask & (1 << i)) {
3632 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3633 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, v1);
3634 }
3635 idx++;
3636 }
3637
3638 return true;
3639 }
3640
3641 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
3642 {
3643 /* Only TCS per-vertex inputs are supported by this function.
3644 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
3645 */
3646 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
3647 return false;
3648
3649 nir_src *off_src = nir_get_io_offset_src(instr);
3650 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3651 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
3652 bool can_use_temps = nir_src_is_const(*off_src) &&
3653 vertex_index_instr->type == nir_instr_type_intrinsic &&
3654 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
3655
3656 if (!can_use_temps)
3657 return false;
3658
3659 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
3660 Temp *src = &ctx->inputs.temps[idx];
3661 Temp vec = create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u);
3662 assert(vec.size() == dst.size());
3663
3664 Builder bld(ctx->program, ctx->block);
3665 bld.copy(Definition(dst), vec);
3666 return true;
3667 }
3668
3669 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
3670 {
3671 Builder bld(ctx->program, ctx->block);
3672
3673 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
3674 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3675 unsigned write_mask = nir_intrinsic_write_mask(instr);
3676 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3677
3678 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
3679 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
3680 bool indirect_write;
3681 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
3682 if (temp_only_input && !indirect_write)
3683 return;
3684 }
3685
3686 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
3687 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
3688 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3689 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
3690 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
3691 } else {
3692 Temp lds_base;
3693
3694 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3695 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
3696 unsigned itemsize = ctx->stage == vertex_geometry_gs
3697 ? ctx->program->info->vs.es_info.esgs_itemsize
3698 : ctx->program->info->tes.es_info.esgs_itemsize;
3699 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
3700 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3701 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
3702 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3703 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3704 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
3705 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
3706 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
3707 */
3708 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
3709 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
3710 lds_base = bld.v_mul_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
3711 } else {
3712 unreachable("Invalid LS or ES stage");
3713 }
3714
3715 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
3716 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3717 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
3718 }
3719 }
3720
3721 bool should_write_tcs_patch_output_to_vmem(isel_context *ctx, nir_intrinsic_instr *instr)
3722 {
3723 unsigned off = nir_intrinsic_base(instr) * 4u;
3724 return off != ctx->tcs_tess_lvl_out_loc &&
3725 off != ctx->tcs_tess_lvl_in_loc;
3726 }
3727
3728 bool should_write_tcs_output_to_lds(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3729 {
3730 /* When none of the appropriate outputs are read, we are OK to never write to LDS */
3731 if (per_vertex ? ctx->shader->info.outputs_read == 0U : ctx->shader->info.patch_outputs_read == 0u)
3732 return false;
3733
3734 uint64_t mask = per_vertex
3735 ? ctx->shader->info.outputs_read
3736 : ctx->shader->info.patch_outputs_read;
3737 bool indirect_write;
3738 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
3739 return indirect_write || output_read;
3740 }
3741
3742 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3743 {
3744 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3745 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3746
3747 Builder bld(ctx->program, ctx->block);
3748
3749 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
3750 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3751 unsigned write_mask = nir_intrinsic_write_mask(instr);
3752
3753 /* Only write to VMEM if the output is per-vertex or it's per-patch non tess factor */
3754 bool write_to_vmem = per_vertex || should_write_tcs_patch_output_to_vmem(ctx, instr);
3755 /* Only write to LDS if the output is read by the shader, or it's per-patch tess factor */
3756 bool write_to_lds = !write_to_vmem || should_write_tcs_output_to_lds(ctx, instr, per_vertex);
3757
3758 if (write_to_vmem) {
3759 std::pair<Temp, unsigned> vmem_offs = per_vertex
3760 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
3761 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
3762
3763 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3764 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3765 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
3766 }
3767
3768 if (write_to_lds) {
3769 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3770 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3771 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
3772 }
3773 }
3774
3775 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3776 {
3777 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3778 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3779
3780 Builder bld(ctx->program, ctx->block);
3781
3782 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3783 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3784 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3785 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3786
3787 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
3788 }
3789
3790 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3791 {
3792 if (ctx->stage == vertex_vs ||
3793 ctx->stage == tess_eval_vs ||
3794 ctx->stage == fragment_fs ||
3795 ctx->stage == ngg_vertex_gs ||
3796 ctx->stage == ngg_tess_eval_gs ||
3797 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3798 bool stored_to_temps = store_output_to_temps(ctx, instr);
3799 if (!stored_to_temps) {
3800 fprintf(stderr, "Unimplemented output offset instruction:\n");
3801 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
3802 fprintf(stderr, "\n");
3803 abort();
3804 }
3805 } else if (ctx->stage == vertex_es ||
3806 ctx->stage == vertex_ls ||
3807 ctx->stage == tess_eval_es ||
3808 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3809 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3810 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
3811 visit_store_ls_or_es_output(ctx, instr);
3812 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
3813 visit_store_tcs_output(ctx, instr, false);
3814 } else {
3815 unreachable("Shader stage not implemented");
3816 }
3817 }
3818
3819 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
3820 {
3821 visit_load_tcs_output(ctx, instr, false);
3822 }
3823
3824 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3825 {
3826 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3827 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3828
3829 Builder bld(ctx->program, ctx->block);
3830 Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3831 if (ctx->program->has_16bank_lds)
3832 interp_p1.instr->operands[0].setLateKill(true);
3833 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component);
3834 }
3835
3836 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3837 {
3838 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3839 for (unsigned i = 0; i < num_components; i++)
3840 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3841 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3842 assert(num_components == 4);
3843 Builder bld(ctx->program, ctx->block);
3844 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3845 }
3846
3847 for (Operand& op : vec->operands)
3848 op = op.isUndefined() ? Operand(0u) : op;
3849
3850 vec->definitions[0] = Definition(dst);
3851 ctx->block->instructions.emplace_back(std::move(vec));
3852 emit_split_vector(ctx, dst, num_components);
3853 return;
3854 }
3855
3856 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3857 {
3858 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3859 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3860 unsigned idx = nir_intrinsic_base(instr);
3861 unsigned component = nir_intrinsic_component(instr);
3862 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3863
3864 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3865 if (offset) {
3866 assert(offset->u32 == 0);
3867 } else {
3868 /* the lower 15bit of the prim_mask contain the offset into LDS
3869 * while the upper bits contain the number of prims */
3870 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3871 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3872 Builder bld(ctx->program, ctx->block);
3873 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3874 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3875 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3876 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3877 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3878 }
3879
3880 if (instr->dest.ssa.num_components == 1) {
3881 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3882 } else {
3883 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3884 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3885 {
3886 Temp tmp = {ctx->program->allocateId(), v1};
3887 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3888 vec->operands[i] = Operand(tmp);
3889 }
3890 vec->definitions[0] = Definition(dst);
3891 ctx->block->instructions.emplace_back(std::move(vec));
3892 }
3893 }
3894
3895 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3896 unsigned offset, unsigned stride, unsigned channels)
3897 {
3898 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3899 if (vtx_info->chan_byte_size != 4 && channels == 3)
3900 return false;
3901 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3902 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3903 }
3904
3905 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3906 unsigned offset, unsigned stride, unsigned *channels)
3907 {
3908 if (!vtx_info->chan_byte_size) {
3909 *channels = vtx_info->num_channels;
3910 return vtx_info->chan_format;
3911 }
3912
3913 unsigned num_channels = *channels;
3914 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3915 unsigned new_channels = num_channels + 1;
3916 /* first, assume more loads is worse and try using a larger data format */
3917 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3918 new_channels++;
3919 /* don't make the attribute potentially out-of-bounds */
3920 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3921 new_channels = 5;
3922 }
3923
3924 if (new_channels == 5) {
3925 /* then try decreasing load size (at the cost of more loads) */
3926 new_channels = *channels;
3927 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3928 new_channels--;
3929 }
3930
3931 if (new_channels < *channels)
3932 *channels = new_channels;
3933 num_channels = new_channels;
3934 }
3935
3936 switch (vtx_info->chan_format) {
3937 case V_008F0C_BUF_DATA_FORMAT_8:
3938 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3939 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3940 case V_008F0C_BUF_DATA_FORMAT_16:
3941 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3942 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3943 case V_008F0C_BUF_DATA_FORMAT_32:
3944 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3945 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3946 }
3947 unreachable("shouldn't reach here");
3948 return V_008F0C_BUF_DATA_FORMAT_INVALID;
3949 }
3950
3951 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3952 * so we may need to fix it up. */
3953 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3954 {
3955 Builder bld(ctx->program, ctx->block);
3956
3957 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3958 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3959
3960 /* For the integer-like cases, do a natural sign extension.
3961 *
3962 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3963 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3964 * exponent.
3965 */
3966 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3967 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3968
3969 /* Convert back to the right type. */
3970 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3971 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3972 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3973 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3974 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3975 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3976 }
3977
3978 return alpha;
3979 }
3980
3981 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3982 {
3983 Builder bld(ctx->program, ctx->block);
3984 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3985 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
3986
3987 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3988 if (off_instr->type != nir_instr_type_load_const) {
3989 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3990 nir_print_instr(off_instr, stderr);
3991 fprintf(stderr, "\n");
3992 }
3993 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3994
3995 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3996
3997 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3998 unsigned component = nir_intrinsic_component(instr);
3999 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4000 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4001 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4002 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4003
4004 unsigned dfmt = attrib_format & 0xf;
4005 unsigned nfmt = (attrib_format >> 4) & 0x7;
4006 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4007
4008 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4009 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4010 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4011 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4012 if (post_shuffle)
4013 num_channels = MAX2(num_channels, 3);
4014
4015 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4016 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4017
4018 Temp index;
4019 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4020 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4021 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4022 if (divisor) {
4023 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4024 if (divisor != 1) {
4025 Temp divided = bld.tmp(v1);
4026 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4027 index = bld.vadd32(bld.def(v1), start_instance, divided);
4028 } else {
4029 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4030 }
4031 } else {
4032 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4033 }
4034 } else {
4035 index = bld.vadd32(bld.def(v1),
4036 get_arg(ctx, ctx->args->ac.base_vertex),
4037 get_arg(ctx, ctx->args->ac.vertex_id));
4038 }
4039
4040 Temp channels[num_channels];
4041 unsigned channel_start = 0;
4042 bool direct_fetch = false;
4043
4044 /* skip unused channels at the start */
4045 if (vtx_info->chan_byte_size && !post_shuffle) {
4046 channel_start = ffs(mask) - 1;
4047 for (unsigned i = 0; i < channel_start; i++)
4048 channels[i] = Temp(0, s1);
4049 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4050 num_channels = 3 - (ffs(mask) - 1);
4051 }
4052
4053 /* load channels */
4054 while (channel_start < num_channels) {
4055 unsigned fetch_size = num_channels - channel_start;
4056 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4057 bool expanded = false;
4058
4059 /* use MUBUF when possible to avoid possible alignment issues */
4060 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4061 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4062 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4063 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4064 vtx_info->chan_byte_size == 4;
4065 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4066 if (!use_mubuf) {
4067 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
4068 } else {
4069 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
4070 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4071 fetch_size = 4;
4072 expanded = true;
4073 }
4074 }
4075
4076 Temp fetch_index = index;
4077 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4078 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4079 fetch_offset = fetch_offset % attrib_stride;
4080 }
4081
4082 Operand soffset(0u);
4083 if (fetch_offset >= 4096) {
4084 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4085 fetch_offset %= 4096;
4086 }
4087
4088 aco_opcode opcode;
4089 switch (fetch_size) {
4090 case 1:
4091 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4092 break;
4093 case 2:
4094 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4095 break;
4096 case 3:
4097 assert(ctx->options->chip_class >= GFX7 ||
4098 (!use_mubuf && ctx->options->chip_class == GFX6));
4099 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4100 break;
4101 case 4:
4102 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4103 break;
4104 default:
4105 unreachable("Unimplemented load_input vector size");
4106 }
4107
4108 Temp fetch_dst;
4109 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
4110 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4111 num_channels <= 3)) {
4112 direct_fetch = true;
4113 fetch_dst = dst;
4114 } else {
4115 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
4116 }
4117
4118 if (use_mubuf) {
4119 Instruction *mubuf = bld.mubuf(opcode,
4120 Definition(fetch_dst), list, fetch_index, soffset,
4121 fetch_offset, false, true).instr;
4122 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
4123 } else {
4124 Instruction *mtbuf = bld.mtbuf(opcode,
4125 Definition(fetch_dst), list, fetch_index, soffset,
4126 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4127 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
4128 }
4129
4130 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4131
4132 if (fetch_size == 1) {
4133 channels[channel_start] = fetch_dst;
4134 } else {
4135 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
4136 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
4137 }
4138
4139 channel_start += fetch_size;
4140 }
4141
4142 if (!direct_fetch) {
4143 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4144 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4145
4146 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4147 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4148 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4149
4150 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4151 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4152 unsigned num_temp = 0;
4153 for (unsigned i = 0; i < dst.size(); i++) {
4154 unsigned idx = i + component;
4155 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4156 Temp channel = channels[swizzle[idx]];
4157 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4158 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4159 vec->operands[i] = Operand(channel);
4160
4161 num_temp++;
4162 elems[i] = channel;
4163 } else if (is_float && idx == 3) {
4164 vec->operands[i] = Operand(0x3f800000u);
4165 } else if (!is_float && idx == 3) {
4166 vec->operands[i] = Operand(1u);
4167 } else {
4168 vec->operands[i] = Operand(0u);
4169 }
4170 }
4171 vec->definitions[0] = Definition(dst);
4172 ctx->block->instructions.emplace_back(std::move(vec));
4173 emit_split_vector(ctx, dst, dst.size());
4174
4175 if (num_temp == dst.size())
4176 ctx->allocated_vec.emplace(dst.id(), elems);
4177 }
4178 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4179 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4180 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4181 if (off_instr->type != nir_instr_type_load_const ||
4182 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4183 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4184 nir_print_instr(off_instr, stderr);
4185 fprintf(stderr, "\n");
4186 }
4187
4188 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4189 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4190 if (offset) {
4191 assert(offset->u32 == 0);
4192 } else {
4193 /* the lower 15bit of the prim_mask contain the offset into LDS
4194 * while the upper bits contain the number of prims */
4195 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4196 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4197 Builder bld(ctx->program, ctx->block);
4198 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4199 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4200 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4201 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4202 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4203 }
4204
4205 unsigned idx = nir_intrinsic_base(instr);
4206 unsigned component = nir_intrinsic_component(instr);
4207 unsigned vertex_id = 2; /* P0 */
4208
4209 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4210 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4211 switch (src0->u32) {
4212 case 0:
4213 vertex_id = 2; /* P0 */
4214 break;
4215 case 1:
4216 vertex_id = 0; /* P10 */
4217 break;
4218 case 2:
4219 vertex_id = 1; /* P20 */
4220 break;
4221 default:
4222 unreachable("invalid vertex index");
4223 }
4224 }
4225
4226 if (dst.size() == 1) {
4227 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4228 } else {
4229 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4230 for (unsigned i = 0; i < dst.size(); i++)
4231 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4232 vec->definitions[0] = Definition(dst);
4233 bld.insert(std::move(vec));
4234 }
4235
4236 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4237 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4238 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4239 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4240 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4241
4242 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4243 } else {
4244 unreachable("Shader stage not implemented");
4245 }
4246 }
4247
4248 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4249 {
4250 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4251
4252 Builder bld(ctx->program, ctx->block);
4253 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4254 Temp vertex_offset;
4255
4256 if (!nir_src_is_const(*vertex_src)) {
4257 /* better code could be created, but this case probably doesn't happen
4258 * much in practice */
4259 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4260 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4261 Temp elem;
4262
4263 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4264 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4265 if (i % 2u)
4266 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4267 } else {
4268 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4269 }
4270
4271 if (vertex_offset.id()) {
4272 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4273 Operand(i), indirect_vertex);
4274 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4275 } else {
4276 vertex_offset = elem;
4277 }
4278 }
4279
4280 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4281 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4282 } else {
4283 unsigned vertex = nir_src_as_uint(*vertex_src);
4284 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4285 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4286 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4287 Operand((vertex % 2u) * 16u), Operand(16u));
4288 else
4289 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4290 }
4291
4292 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4293 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4294 return offset_mul(ctx, offs, 4u);
4295 }
4296
4297 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4298 {
4299 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4300
4301 Builder bld(ctx->program, ctx->block);
4302 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4303 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4304
4305 if (ctx->stage == geometry_gs) {
4306 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4307 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4308 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4309 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4310 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4311 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4312 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4313 } else {
4314 unreachable("Unsupported GS stage.");
4315 }
4316 }
4317
4318 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4319 {
4320 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4321
4322 Builder bld(ctx->program, ctx->block);
4323 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4324
4325 if (load_input_from_temps(ctx, instr, dst))
4326 return;
4327
4328 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4329 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4330 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4331
4332 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4333 }
4334
4335 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4336 {
4337 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4338
4339 Builder bld(ctx->program, ctx->block);
4340
4341 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4342 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4343 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4344
4345 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4346 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
4347
4348 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
4349 }
4350
4351 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4352 {
4353 switch (ctx->shader->info.stage) {
4354 case MESA_SHADER_GEOMETRY:
4355 visit_load_gs_per_vertex_input(ctx, instr);
4356 break;
4357 case MESA_SHADER_TESS_CTRL:
4358 visit_load_tcs_per_vertex_input(ctx, instr);
4359 break;
4360 case MESA_SHADER_TESS_EVAL:
4361 visit_load_tes_per_vertex_input(ctx, instr);
4362 break;
4363 default:
4364 unreachable("Unimplemented shader stage");
4365 }
4366 }
4367
4368 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4369 {
4370 visit_load_tcs_output(ctx, instr, true);
4371 }
4372
4373 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4374 {
4375 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4376 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4377
4378 visit_store_tcs_output(ctx, instr, true);
4379 }
4380
4381 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4382 {
4383 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4384
4385 Builder bld(ctx->program, ctx->block);
4386 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4387
4388 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4389 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4390 Operand tes_w(0u);
4391
4392 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4393 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4394 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4395 tes_w = Operand(tmp);
4396 }
4397
4398 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4399 emit_split_vector(ctx, tess_coord, 3);
4400 }
4401
4402 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4403 {
4404 if (ctx->program->info->need_indirect_descriptor_sets) {
4405 Builder bld(ctx->program, ctx->block);
4406 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4407 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4408 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4409 }
4410
4411 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4412 }
4413
4414
4415 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4416 {
4417 Builder bld(ctx->program, ctx->block);
4418 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4419 if (!ctx->divergent_vals[instr->dest.ssa.index])
4420 index = bld.as_uniform(index);
4421 unsigned desc_set = nir_intrinsic_desc_set(instr);
4422 unsigned binding = nir_intrinsic_binding(instr);
4423
4424 Temp desc_ptr;
4425 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4426 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4427 unsigned offset = layout->binding[binding].offset;
4428 unsigned stride;
4429 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4430 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4431 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4432 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4433 offset = pipeline_layout->push_constant_size + 16 * idx;
4434 stride = 16;
4435 } else {
4436 desc_ptr = load_desc_ptr(ctx, desc_set);
4437 stride = layout->binding[binding].size;
4438 }
4439
4440 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4441 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4442 if (stride != 1) {
4443 if (nir_const_index) {
4444 const_index = const_index * stride;
4445 } else if (index.type() == RegType::vgpr) {
4446 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4447 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4448 } else {
4449 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4450 }
4451 }
4452 if (offset) {
4453 if (nir_const_index) {
4454 const_index = const_index + offset;
4455 } else if (index.type() == RegType::vgpr) {
4456 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4457 } else {
4458 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4459 }
4460 }
4461
4462 if (nir_const_index && const_index == 0) {
4463 index = desc_ptr;
4464 } else if (index.type() == RegType::vgpr) {
4465 index = bld.vadd32(bld.def(v1),
4466 nir_const_index ? Operand(const_index) : Operand(index),
4467 Operand(desc_ptr));
4468 } else {
4469 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4470 nir_const_index ? Operand(const_index) : Operand(index),
4471 Operand(desc_ptr));
4472 }
4473
4474 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4475 }
4476
4477 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
4478 Temp dst, Temp rsrc, Temp offset, int byte_align,
4479 bool glc=false, bool readonly=true)
4480 {
4481 Builder bld(ctx->program, ctx->block);
4482 bool dlc = glc && ctx->options->chip_class >= GFX10;
4483 unsigned num_bytes = num_components * component_size;
4484
4485 aco_opcode op;
4486 if (dst.type() == RegType::vgpr || ((ctx->options->chip_class < GFX8 || component_size < 4) && !readonly)) {
4487 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4488 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4489 unsigned const_offset = 0;
4490
4491 /* for small bit sizes add buffer for unaligned loads */
4492 if (byte_align) {
4493 if (num_bytes > 2)
4494 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4495 else
4496 byte_align = 0;
4497 }
4498
4499 Temp lower = Temp();
4500 if (num_bytes > 16) {
4501 assert(num_components == 3 || num_components == 4);
4502 op = aco_opcode::buffer_load_dwordx4;
4503 lower = bld.tmp(v4);
4504 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4505 mubuf->definitions[0] = Definition(lower);
4506 mubuf->operands[0] = Operand(rsrc);
4507 mubuf->operands[1] = vaddr;
4508 mubuf->operands[2] = soffset;
4509 mubuf->offen = (offset.type() == RegType::vgpr);
4510 mubuf->glc = glc;
4511 mubuf->dlc = dlc;
4512 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4513 mubuf->can_reorder = readonly;
4514 bld.insert(std::move(mubuf));
4515 emit_split_vector(ctx, lower, 2);
4516 num_bytes -= 16;
4517 const_offset = 16;
4518 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4519 /* GFX6 doesn't support loading vec3, expand to vec4. */
4520 num_bytes = 16;
4521 }
4522
4523 switch (num_bytes) {
4524 case 1:
4525 op = aco_opcode::buffer_load_ubyte;
4526 break;
4527 case 2:
4528 op = aco_opcode::buffer_load_ushort;
4529 break;
4530 case 3:
4531 case 4:
4532 op = aco_opcode::buffer_load_dword;
4533 break;
4534 case 5:
4535 case 6:
4536 case 7:
4537 case 8:
4538 op = aco_opcode::buffer_load_dwordx2;
4539 break;
4540 case 10:
4541 case 12:
4542 assert(ctx->options->chip_class > GFX6);
4543 op = aco_opcode::buffer_load_dwordx3;
4544 break;
4545 case 16:
4546 op = aco_opcode::buffer_load_dwordx4;
4547 break;
4548 default:
4549 unreachable("Load SSBO not implemented for this size.");
4550 }
4551 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4552 mubuf->operands[0] = Operand(rsrc);
4553 mubuf->operands[1] = vaddr;
4554 mubuf->operands[2] = soffset;
4555 mubuf->offen = (offset.type() == RegType::vgpr);
4556 mubuf->glc = glc;
4557 mubuf->dlc = dlc;
4558 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4559 mubuf->can_reorder = readonly;
4560 mubuf->offset = const_offset;
4561 aco_ptr<Instruction> instr = std::move(mubuf);
4562
4563 if (component_size < 4) {
4564 Temp vec = num_bytes <= 4 ? bld.tmp(v1) : num_bytes <= 8 ? bld.tmp(v2) : bld.tmp(v3);
4565 instr->definitions[0] = Definition(vec);
4566 bld.insert(std::move(instr));
4567
4568 if (byte_align == -1 || (byte_align && dst.type() == RegType::sgpr)) {
4569 Operand align = byte_align == -1 ? Operand(offset) : Operand((uint32_t)byte_align);
4570 Temp tmp[3] = {vec, vec, vec};
4571
4572 if (vec.size() == 3) {
4573 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
4574 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
4575 } else if (vec.size() == 2) {
4576 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
4577 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
4578 }
4579 for (unsigned i = 0; i < dst.size(); i++)
4580 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], align);
4581
4582 vec = tmp[0];
4583 if (dst.size() == 2)
4584 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
4585
4586 byte_align = 0;
4587 }
4588
4589 if (dst.type() == RegType::vgpr && num_components == 1) {
4590 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), vec, Operand(byte_align / component_size));
4591 } else {
4592 trim_subdword_vector(ctx, vec, dst, 4 * vec.size() / component_size, ((1 << num_components) - 1) << byte_align / component_size);
4593 }
4594
4595 return;
4596
4597 } else if (dst.size() > 4) {
4598 assert(lower != Temp());
4599 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4600 instr->definitions[0] = Definition(upper);
4601 bld.insert(std::move(instr));
4602 if (dst.size() == 8)
4603 emit_split_vector(ctx, upper, 2);
4604 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4605 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4606 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4607 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4608 if (dst.size() == 8)
4609 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4610 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4611 Temp vec = bld.tmp(v4);
4612 instr->definitions[0] = Definition(vec);
4613 bld.insert(std::move(instr));
4614 emit_split_vector(ctx, vec, 4);
4615
4616 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4617 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4618 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4619 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4620 }
4621
4622 if (dst.type() == RegType::sgpr) {
4623 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4624 instr->definitions[0] = Definition(vec);
4625 bld.insert(std::move(instr));
4626 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4627 } else {
4628 instr->definitions[0] = Definition(dst);
4629 bld.insert(std::move(instr));
4630 emit_split_vector(ctx, dst, num_components);
4631 }
4632 } else {
4633 /* for small bit sizes add buffer for unaligned loads */
4634 if (byte_align)
4635 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4636
4637 switch (num_bytes) {
4638 case 1:
4639 case 2:
4640 case 3:
4641 case 4:
4642 op = aco_opcode::s_buffer_load_dword;
4643 break;
4644 case 5:
4645 case 6:
4646 case 7:
4647 case 8:
4648 op = aco_opcode::s_buffer_load_dwordx2;
4649 break;
4650 case 10:
4651 case 12:
4652 case 16:
4653 op = aco_opcode::s_buffer_load_dwordx4;
4654 break;
4655 case 24:
4656 case 32:
4657 op = aco_opcode::s_buffer_load_dwordx8;
4658 break;
4659 default:
4660 unreachable("Load SSBO not implemented for this size.");
4661 }
4662 offset = bld.as_uniform(offset);
4663 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4664 load->operands[0] = Operand(rsrc);
4665 load->operands[1] = Operand(offset);
4666 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4667 load->definitions[0] = Definition(dst);
4668 load->glc = glc;
4669 load->dlc = dlc;
4670 load->barrier = readonly ? barrier_none : barrier_buffer;
4671 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4672 assert(ctx->options->chip_class >= GFX8 || !glc);
4673
4674 /* adjust misaligned small bit size loads */
4675 if (byte_align) {
4676 Temp vec = num_bytes <= 4 ? bld.tmp(s1) : num_bytes <= 8 ? bld.tmp(s2) : bld.tmp(s4);
4677 load->definitions[0] = Definition(vec);
4678 bld.insert(std::move(load));
4679 Operand byte_offset = byte_align > 0 ? Operand(uint32_t(byte_align)) : Operand(offset);
4680 byte_align_scalar(ctx, vec, byte_offset, dst);
4681
4682 /* trim vector */
4683 } else if (dst.size() == 3) {
4684 Temp vec = bld.tmp(s4);
4685 load->definitions[0] = Definition(vec);
4686 bld.insert(std::move(load));
4687 emit_split_vector(ctx, vec, 4);
4688
4689 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4690 emit_extract_vector(ctx, vec, 0, s1),
4691 emit_extract_vector(ctx, vec, 1, s1),
4692 emit_extract_vector(ctx, vec, 2, s1));
4693 } else if (dst.size() == 6) {
4694 Temp vec = bld.tmp(s8);
4695 load->definitions[0] = Definition(vec);
4696 bld.insert(std::move(load));
4697 emit_split_vector(ctx, vec, 4);
4698
4699 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4700 emit_extract_vector(ctx, vec, 0, s2),
4701 emit_extract_vector(ctx, vec, 1, s2),
4702 emit_extract_vector(ctx, vec, 2, s2));
4703 } else {
4704 bld.insert(std::move(load));
4705 }
4706 emit_split_vector(ctx, dst, num_components);
4707 }
4708 }
4709
4710 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4711 {
4712 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4713 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4714
4715 Builder bld(ctx->program, ctx->block);
4716
4717 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4718 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4719 unsigned binding = nir_intrinsic_binding(idx_instr);
4720 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4721
4722 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4723 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4724 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4725 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4726 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4727 if (ctx->options->chip_class >= GFX10) {
4728 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4729 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4730 S_008F0C_RESOURCE_LEVEL(1);
4731 } else {
4732 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4733 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4734 }
4735 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4736 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4737 Operand(0xFFFFFFFFu),
4738 Operand(desc_type));
4739 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4740 rsrc, upper_dwords);
4741 } else {
4742 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4743 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4744 }
4745 unsigned size = instr->dest.ssa.bit_size / 8;
4746 int byte_align = 0;
4747 if (size < 4) {
4748 unsigned align_mul = nir_intrinsic_align_mul(instr);
4749 unsigned align_offset = nir_intrinsic_align_offset(instr);
4750 byte_align = align_mul % 4 == 0 ? align_offset : -1;
4751 }
4752 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align);
4753 }
4754
4755 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4756 {
4757 Builder bld(ctx->program, ctx->block);
4758 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4759 unsigned offset = nir_intrinsic_base(instr);
4760 unsigned count = instr->dest.ssa.num_components;
4761 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4762
4763 if (index_cv && instr->dest.ssa.bit_size == 32) {
4764 unsigned start = (offset + index_cv->u32) / 4u;
4765 start -= ctx->args->ac.base_inline_push_consts;
4766 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4767 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4768 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4769 for (unsigned i = 0; i < count; ++i) {
4770 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4771 vec->operands[i] = Operand{elems[i]};
4772 }
4773 vec->definitions[0] = Definition(dst);
4774 ctx->block->instructions.emplace_back(std::move(vec));
4775 ctx->allocated_vec.emplace(dst.id(), elems);
4776 return;
4777 }
4778 }
4779
4780 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4781 if (offset != 0) // TODO check if index != 0 as well
4782 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4783 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4784 Temp vec = dst;
4785 bool trim = false;
4786 bool aligned = true;
4787
4788 if (instr->dest.ssa.bit_size == 8) {
4789 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
4790 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
4791 if (!aligned)
4792 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
4793 } else if (instr->dest.ssa.bit_size == 16) {
4794 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
4795 if (!aligned)
4796 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
4797 }
4798
4799 aco_opcode op;
4800
4801 switch (vec.size()) {
4802 case 1:
4803 op = aco_opcode::s_load_dword;
4804 break;
4805 case 2:
4806 op = aco_opcode::s_load_dwordx2;
4807 break;
4808 case 3:
4809 vec = bld.tmp(s4);
4810 trim = true;
4811 case 4:
4812 op = aco_opcode::s_load_dwordx4;
4813 break;
4814 case 6:
4815 vec = bld.tmp(s8);
4816 trim = true;
4817 case 8:
4818 op = aco_opcode::s_load_dwordx8;
4819 break;
4820 default:
4821 unreachable("unimplemented or forbidden load_push_constant.");
4822 }
4823
4824 bld.smem(op, Definition(vec), ptr, index);
4825
4826 if (!aligned) {
4827 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
4828 byte_align_scalar(ctx, vec, byte_offset, dst);
4829 return;
4830 }
4831
4832 if (trim) {
4833 emit_split_vector(ctx, vec, 4);
4834 RegClass rc = dst.size() == 3 ? s1 : s2;
4835 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4836 emit_extract_vector(ctx, vec, 0, rc),
4837 emit_extract_vector(ctx, vec, 1, rc),
4838 emit_extract_vector(ctx, vec, 2, rc));
4839
4840 }
4841 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4842 }
4843
4844 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4845 {
4846 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4847
4848 Builder bld(ctx->program, ctx->block);
4849
4850 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4851 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4852 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4853 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4854 if (ctx->options->chip_class >= GFX10) {
4855 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4856 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4857 S_008F0C_RESOURCE_LEVEL(1);
4858 } else {
4859 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4860 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4861 }
4862
4863 unsigned base = nir_intrinsic_base(instr);
4864 unsigned range = nir_intrinsic_range(instr);
4865
4866 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
4867 if (base && offset.type() == RegType::sgpr)
4868 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
4869 else if (base && offset.type() == RegType::vgpr)
4870 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
4871
4872 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4873 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
4874 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
4875 Operand(desc_type));
4876 unsigned size = instr->dest.ssa.bit_size / 8;
4877 // TODO: get alignment information for subdword constants
4878 unsigned byte_align = size < 4 ? -1 : 0;
4879 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, byte_align);
4880 }
4881
4882 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
4883 {
4884 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4885 ctx->cf_info.exec_potentially_empty_discard = true;
4886
4887 ctx->program->needs_exact = true;
4888
4889 // TODO: optimize uniform conditions
4890 Builder bld(ctx->program, ctx->block);
4891 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4892 assert(src.regClass() == bld.lm);
4893 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
4894 bld.pseudo(aco_opcode::p_discard_if, src);
4895 ctx->block->kind |= block_kind_uses_discard_if;
4896 return;
4897 }
4898
4899 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
4900 {
4901 Builder bld(ctx->program, ctx->block);
4902
4903 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4904 ctx->cf_info.exec_potentially_empty_discard = true;
4905
4906 bool divergent = ctx->cf_info.parent_if.is_divergent ||
4907 ctx->cf_info.parent_loop.has_divergent_continue;
4908
4909 if (ctx->block->loop_nest_depth &&
4910 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
4911 /* we handle discards the same way as jump instructions */
4912 append_logical_end(ctx->block);
4913
4914 /* in loops, discard behaves like break */
4915 Block *linear_target = ctx->cf_info.parent_loop.exit;
4916 ctx->block->kind |= block_kind_discard;
4917
4918 if (!divergent) {
4919 /* uniform discard - loop ends here */
4920 assert(nir_instr_is_last(&instr->instr));
4921 ctx->block->kind |= block_kind_uniform;
4922 ctx->cf_info.has_branch = true;
4923 bld.branch(aco_opcode::p_branch);
4924 add_linear_edge(ctx->block->index, linear_target);
4925 return;
4926 }
4927
4928 /* we add a break right behind the discard() instructions */
4929 ctx->block->kind |= block_kind_break;
4930 unsigned idx = ctx->block->index;
4931
4932 ctx->cf_info.parent_loop.has_divergent_branch = true;
4933 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
4934
4935 /* remove critical edges from linear CFG */
4936 bld.branch(aco_opcode::p_branch);
4937 Block* break_block = ctx->program->create_and_insert_block();
4938 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4939 break_block->kind |= block_kind_uniform;
4940 add_linear_edge(idx, break_block);
4941 add_linear_edge(break_block->index, linear_target);
4942 bld.reset(break_block);
4943 bld.branch(aco_opcode::p_branch);
4944
4945 Block* continue_block = ctx->program->create_and_insert_block();
4946 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4947 add_linear_edge(idx, continue_block);
4948 append_logical_start(continue_block);
4949 ctx->block = continue_block;
4950
4951 return;
4952 }
4953
4954 /* it can currently happen that NIR doesn't remove the unreachable code */
4955 if (!nir_instr_is_last(&instr->instr)) {
4956 ctx->program->needs_exact = true;
4957 /* save exec somewhere temporarily so that it doesn't get
4958 * overwritten before the discard from outer exec masks */
4959 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
4960 bld.pseudo(aco_opcode::p_discard_if, cond);
4961 ctx->block->kind |= block_kind_uses_discard_if;
4962 return;
4963 }
4964
4965 /* This condition is incorrect for uniformly branched discards in a loop
4966 * predicated by a divergent condition, but the above code catches that case
4967 * and the discard would end up turning into a discard_if.
4968 * For example:
4969 * if (divergent) {
4970 * while (...) {
4971 * if (uniform) {
4972 * discard;
4973 * }
4974 * }
4975 * }
4976 */
4977 if (!ctx->cf_info.parent_if.is_divergent) {
4978 /* program just ends here */
4979 ctx->block->kind |= block_kind_uniform;
4980 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
4981 0 /* enabled mask */, 9 /* dest */,
4982 false /* compressed */, true/* done */, true /* valid mask */);
4983 bld.sopp(aco_opcode::s_endpgm);
4984 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
4985 } else {
4986 ctx->block->kind |= block_kind_discard;
4987 /* branch and linear edge is added by visit_if() */
4988 }
4989 }
4990
4991 enum aco_descriptor_type {
4992 ACO_DESC_IMAGE,
4993 ACO_DESC_FMASK,
4994 ACO_DESC_SAMPLER,
4995 ACO_DESC_BUFFER,
4996 ACO_DESC_PLANE_0,
4997 ACO_DESC_PLANE_1,
4998 ACO_DESC_PLANE_2,
4999 };
5000
5001 static bool
5002 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5003 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5004 return false;
5005 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5006 return dim == ac_image_cube ||
5007 dim == ac_image_1darray ||
5008 dim == ac_image_2darray ||
5009 dim == ac_image_2darraymsaa;
5010 }
5011
5012 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5013 enum aco_descriptor_type desc_type,
5014 const nir_tex_instr *tex_instr, bool image, bool write)
5015 {
5016 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5017 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5018 if (it != ctx->tex_desc.end())
5019 return it->second;
5020 */
5021 Temp index = Temp();
5022 bool index_set = false;
5023 unsigned constant_index = 0;
5024 unsigned descriptor_set;
5025 unsigned base_index;
5026 Builder bld(ctx->program, ctx->block);
5027
5028 if (!deref_instr) {
5029 assert(tex_instr && !image);
5030 descriptor_set = 0;
5031 base_index = tex_instr->sampler_index;
5032 } else {
5033 while(deref_instr->deref_type != nir_deref_type_var) {
5034 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5035 if (!array_size)
5036 array_size = 1;
5037
5038 assert(deref_instr->deref_type == nir_deref_type_array);
5039 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5040 if (const_value) {
5041 constant_index += array_size * const_value->u32;
5042 } else {
5043 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5044 if (indirect.type() == RegType::vgpr)
5045 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5046
5047 if (array_size != 1)
5048 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5049
5050 if (!index_set) {
5051 index = indirect;
5052 index_set = true;
5053 } else {
5054 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5055 }
5056 }
5057
5058 deref_instr = nir_src_as_deref(deref_instr->parent);
5059 }
5060 descriptor_set = deref_instr->var->data.descriptor_set;
5061 base_index = deref_instr->var->data.binding;
5062 }
5063
5064 Temp list = load_desc_ptr(ctx, descriptor_set);
5065 list = convert_pointer_to_64_bit(ctx, list);
5066
5067 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5068 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5069 unsigned offset = binding->offset;
5070 unsigned stride = binding->size;
5071 aco_opcode opcode;
5072 RegClass type;
5073
5074 assert(base_index < layout->binding_count);
5075
5076 switch (desc_type) {
5077 case ACO_DESC_IMAGE:
5078 type = s8;
5079 opcode = aco_opcode::s_load_dwordx8;
5080 break;
5081 case ACO_DESC_FMASK:
5082 type = s8;
5083 opcode = aco_opcode::s_load_dwordx8;
5084 offset += 32;
5085 break;
5086 case ACO_DESC_SAMPLER:
5087 type = s4;
5088 opcode = aco_opcode::s_load_dwordx4;
5089 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5090 offset += radv_combined_image_descriptor_sampler_offset(binding);
5091 break;
5092 case ACO_DESC_BUFFER:
5093 type = s4;
5094 opcode = aco_opcode::s_load_dwordx4;
5095 break;
5096 case ACO_DESC_PLANE_0:
5097 case ACO_DESC_PLANE_1:
5098 type = s8;
5099 opcode = aco_opcode::s_load_dwordx8;
5100 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5101 break;
5102 case ACO_DESC_PLANE_2:
5103 type = s4;
5104 opcode = aco_opcode::s_load_dwordx4;
5105 offset += 64;
5106 break;
5107 default:
5108 unreachable("invalid desc_type\n");
5109 }
5110
5111 offset += constant_index * stride;
5112
5113 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5114 (!index_set || binding->immutable_samplers_equal)) {
5115 if (binding->immutable_samplers_equal)
5116 constant_index = 0;
5117
5118 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5119 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5120 Operand(samplers[constant_index * 4 + 0]),
5121 Operand(samplers[constant_index * 4 + 1]),
5122 Operand(samplers[constant_index * 4 + 2]),
5123 Operand(samplers[constant_index * 4 + 3]));
5124 }
5125
5126 Operand off;
5127 if (!index_set) {
5128 off = bld.copy(bld.def(s1), Operand(offset));
5129 } else {
5130 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5131 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5132 }
5133
5134 Temp res = bld.smem(opcode, bld.def(type), list, off);
5135
5136 if (desc_type == ACO_DESC_PLANE_2) {
5137 Temp components[8];
5138 for (unsigned i = 0; i < 8; i++)
5139 components[i] = bld.tmp(s1);
5140 bld.pseudo(aco_opcode::p_split_vector,
5141 Definition(components[0]),
5142 Definition(components[1]),
5143 Definition(components[2]),
5144 Definition(components[3]),
5145 res);
5146
5147 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5148 bld.pseudo(aco_opcode::p_split_vector,
5149 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5150 Definition(components[4]),
5151 Definition(components[5]),
5152 Definition(components[6]),
5153 Definition(components[7]),
5154 desc2);
5155
5156 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5157 components[0], components[1], components[2], components[3],
5158 components[4], components[5], components[6], components[7]);
5159 }
5160
5161 return res;
5162 }
5163
5164 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5165 {
5166 switch (dim) {
5167 case GLSL_SAMPLER_DIM_BUF:
5168 return 1;
5169 case GLSL_SAMPLER_DIM_1D:
5170 return array ? 2 : 1;
5171 case GLSL_SAMPLER_DIM_2D:
5172 return array ? 3 : 2;
5173 case GLSL_SAMPLER_DIM_MS:
5174 return array ? 4 : 3;
5175 case GLSL_SAMPLER_DIM_3D:
5176 case GLSL_SAMPLER_DIM_CUBE:
5177 return 3;
5178 case GLSL_SAMPLER_DIM_RECT:
5179 case GLSL_SAMPLER_DIM_SUBPASS:
5180 return 2;
5181 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5182 return 3;
5183 default:
5184 break;
5185 }
5186 return 0;
5187 }
5188
5189
5190 /* Adjust the sample index according to FMASK.
5191 *
5192 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5193 * which is the identity mapping. Each nibble says which physical sample
5194 * should be fetched to get that sample.
5195 *
5196 * For example, 0x11111100 means there are only 2 samples stored and
5197 * the second sample covers 3/4 of the pixel. When reading samples 0
5198 * and 1, return physical sample 0 (determined by the first two 0s
5199 * in FMASK), otherwise return physical sample 1.
5200 *
5201 * The sample index should be adjusted as follows:
5202 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5203 */
5204 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5205 {
5206 Builder bld(ctx->program, ctx->block);
5207 Temp fmask = bld.tmp(v1);
5208 unsigned dim = ctx->options->chip_class >= GFX10
5209 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5210 : 0;
5211
5212 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5213 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5214 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5215 load->operands[0] = Operand(fmask_desc_ptr);
5216 load->operands[1] = Operand(s4); /* no sampler */
5217 load->operands[2] = Operand(coord);
5218 load->definitions[0] = Definition(fmask);
5219 load->glc = false;
5220 load->dlc = false;
5221 load->dmask = 0x1;
5222 load->unrm = true;
5223 load->da = da;
5224 load->dim = dim;
5225 load->can_reorder = true; /* fmask images shouldn't be modified */
5226 ctx->block->instructions.emplace_back(std::move(load));
5227
5228 Operand sample_index4;
5229 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
5230 sample_index4 = Operand(sample_index.constantValue() << 2);
5231 } else if (sample_index.regClass() == s1) {
5232 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5233 } else {
5234 assert(sample_index.regClass() == v1);
5235 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5236 }
5237
5238 Temp final_sample;
5239 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5240 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5241 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5242 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5243 else
5244 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5245
5246 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5247 * resource descriptor is 0 (invalid),
5248 */
5249 Temp compare = bld.tmp(bld.lm);
5250 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5251 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5252
5253 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5254
5255 /* Replace the MSAA sample index. */
5256 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5257 }
5258
5259 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5260 {
5261
5262 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5263 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5264 bool is_array = glsl_sampler_type_is_array(type);
5265 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5266 assert(!add_frag_pos && "Input attachments should be lowered.");
5267 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5268 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5269 int count = image_type_to_components_count(dim, is_array);
5270 std::vector<Temp> coords(count);
5271 Builder bld(ctx->program, ctx->block);
5272
5273 if (is_ms) {
5274 count--;
5275 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5276 /* get sample index */
5277 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5278 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5279 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5280 std::vector<Temp> fmask_load_address;
5281 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5282 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5283
5284 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5285 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5286 } else {
5287 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5288 }
5289 }
5290
5291 if (gfx9_1d) {
5292 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5293 coords.resize(coords.size() + 1);
5294 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5295 if (is_array)
5296 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5297 } else {
5298 for (int i = 0; i < count; i++)
5299 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5300 }
5301
5302 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5303 instr->intrinsic == nir_intrinsic_image_deref_store) {
5304 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5305 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5306
5307 if (!level_zero)
5308 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5309 }
5310
5311 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5312 for (unsigned i = 0; i < coords.size(); i++)
5313 vec->operands[i] = Operand(coords[i]);
5314 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5315 vec->definitions[0] = Definition(res);
5316 ctx->block->instructions.emplace_back(std::move(vec));
5317 return res;
5318 }
5319
5320
5321 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5322 {
5323 Builder bld(ctx->program, ctx->block);
5324 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5325 const struct glsl_type *type = glsl_without_array(var->type);
5326 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5327 bool is_array = glsl_sampler_type_is_array(type);
5328 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5329
5330 if (dim == GLSL_SAMPLER_DIM_BUF) {
5331 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5332 unsigned num_channels = util_last_bit(mask);
5333 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5334 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5335
5336 aco_opcode opcode;
5337 switch (num_channels) {
5338 case 1:
5339 opcode = aco_opcode::buffer_load_format_x;
5340 break;
5341 case 2:
5342 opcode = aco_opcode::buffer_load_format_xy;
5343 break;
5344 case 3:
5345 opcode = aco_opcode::buffer_load_format_xyz;
5346 break;
5347 case 4:
5348 opcode = aco_opcode::buffer_load_format_xyzw;
5349 break;
5350 default:
5351 unreachable(">4 channel buffer image load");
5352 }
5353 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5354 load->operands[0] = Operand(rsrc);
5355 load->operands[1] = Operand(vindex);
5356 load->operands[2] = Operand((uint32_t) 0);
5357 Temp tmp;
5358 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5359 tmp = dst;
5360 else
5361 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5362 load->definitions[0] = Definition(tmp);
5363 load->idxen = true;
5364 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5365 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5366 load->barrier = barrier_image;
5367 ctx->block->instructions.emplace_back(std::move(load));
5368
5369 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5370 return;
5371 }
5372
5373 Temp coords = get_image_coords(ctx, instr, type);
5374 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5375
5376 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5377 unsigned num_components = util_bitcount(dmask);
5378 Temp tmp;
5379 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5380 tmp = dst;
5381 else
5382 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5383
5384 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5385 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5386
5387 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5388 load->operands[0] = Operand(resource);
5389 load->operands[1] = Operand(s4); /* no sampler */
5390 load->operands[2] = Operand(coords);
5391 load->definitions[0] = Definition(tmp);
5392 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5393 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5394 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5395 load->dmask = dmask;
5396 load->unrm = true;
5397 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5398 load->barrier = barrier_image;
5399 ctx->block->instructions.emplace_back(std::move(load));
5400
5401 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5402 return;
5403 }
5404
5405 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5406 {
5407 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5408 const struct glsl_type *type = glsl_without_array(var->type);
5409 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5410 bool is_array = glsl_sampler_type_is_array(type);
5411 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5412
5413 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5414
5415 if (dim == GLSL_SAMPLER_DIM_BUF) {
5416 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5417 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5418 aco_opcode opcode;
5419 switch (data.size()) {
5420 case 1:
5421 opcode = aco_opcode::buffer_store_format_x;
5422 break;
5423 case 2:
5424 opcode = aco_opcode::buffer_store_format_xy;
5425 break;
5426 case 3:
5427 opcode = aco_opcode::buffer_store_format_xyz;
5428 break;
5429 case 4:
5430 opcode = aco_opcode::buffer_store_format_xyzw;
5431 break;
5432 default:
5433 unreachable(">4 channel buffer image store");
5434 }
5435 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5436 store->operands[0] = Operand(rsrc);
5437 store->operands[1] = Operand(vindex);
5438 store->operands[2] = Operand((uint32_t) 0);
5439 store->operands[3] = Operand(data);
5440 store->idxen = true;
5441 store->glc = glc;
5442 store->dlc = false;
5443 store->disable_wqm = true;
5444 store->barrier = barrier_image;
5445 ctx->program->needs_exact = true;
5446 ctx->block->instructions.emplace_back(std::move(store));
5447 return;
5448 }
5449
5450 assert(data.type() == RegType::vgpr);
5451 Temp coords = get_image_coords(ctx, instr, type);
5452 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5453
5454 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5455 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5456
5457 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5458 store->operands[0] = Operand(resource);
5459 store->operands[1] = Operand(data);
5460 store->operands[2] = Operand(coords);
5461 store->glc = glc;
5462 store->dlc = false;
5463 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5464 store->dmask = (1 << data.size()) - 1;
5465 store->unrm = true;
5466 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5467 store->disable_wqm = true;
5468 store->barrier = barrier_image;
5469 ctx->program->needs_exact = true;
5470 ctx->block->instructions.emplace_back(std::move(store));
5471 return;
5472 }
5473
5474 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5475 {
5476 /* return the previous value if dest is ever used */
5477 bool return_previous = false;
5478 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5479 return_previous = true;
5480 break;
5481 }
5482 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5483 return_previous = true;
5484 break;
5485 }
5486
5487 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5488 const struct glsl_type *type = glsl_without_array(var->type);
5489 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5490 bool is_array = glsl_sampler_type_is_array(type);
5491 Builder bld(ctx->program, ctx->block);
5492
5493 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5494 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5495
5496 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5497 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5498
5499 aco_opcode buf_op, image_op;
5500 switch (instr->intrinsic) {
5501 case nir_intrinsic_image_deref_atomic_add:
5502 buf_op = aco_opcode::buffer_atomic_add;
5503 image_op = aco_opcode::image_atomic_add;
5504 break;
5505 case nir_intrinsic_image_deref_atomic_umin:
5506 buf_op = aco_opcode::buffer_atomic_umin;
5507 image_op = aco_opcode::image_atomic_umin;
5508 break;
5509 case nir_intrinsic_image_deref_atomic_imin:
5510 buf_op = aco_opcode::buffer_atomic_smin;
5511 image_op = aco_opcode::image_atomic_smin;
5512 break;
5513 case nir_intrinsic_image_deref_atomic_umax:
5514 buf_op = aco_opcode::buffer_atomic_umax;
5515 image_op = aco_opcode::image_atomic_umax;
5516 break;
5517 case nir_intrinsic_image_deref_atomic_imax:
5518 buf_op = aco_opcode::buffer_atomic_smax;
5519 image_op = aco_opcode::image_atomic_smax;
5520 break;
5521 case nir_intrinsic_image_deref_atomic_and:
5522 buf_op = aco_opcode::buffer_atomic_and;
5523 image_op = aco_opcode::image_atomic_and;
5524 break;
5525 case nir_intrinsic_image_deref_atomic_or:
5526 buf_op = aco_opcode::buffer_atomic_or;
5527 image_op = aco_opcode::image_atomic_or;
5528 break;
5529 case nir_intrinsic_image_deref_atomic_xor:
5530 buf_op = aco_opcode::buffer_atomic_xor;
5531 image_op = aco_opcode::image_atomic_xor;
5532 break;
5533 case nir_intrinsic_image_deref_atomic_exchange:
5534 buf_op = aco_opcode::buffer_atomic_swap;
5535 image_op = aco_opcode::image_atomic_swap;
5536 break;
5537 case nir_intrinsic_image_deref_atomic_comp_swap:
5538 buf_op = aco_opcode::buffer_atomic_cmpswap;
5539 image_op = aco_opcode::image_atomic_cmpswap;
5540 break;
5541 default:
5542 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5543 }
5544
5545 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5546
5547 if (dim == GLSL_SAMPLER_DIM_BUF) {
5548 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5549 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5550 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5551 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5552 mubuf->operands[0] = Operand(resource);
5553 mubuf->operands[1] = Operand(vindex);
5554 mubuf->operands[2] = Operand((uint32_t)0);
5555 mubuf->operands[3] = Operand(data);
5556 if (return_previous)
5557 mubuf->definitions[0] = Definition(dst);
5558 mubuf->offset = 0;
5559 mubuf->idxen = true;
5560 mubuf->glc = return_previous;
5561 mubuf->dlc = false; /* Not needed for atomics */
5562 mubuf->disable_wqm = true;
5563 mubuf->barrier = barrier_image;
5564 ctx->program->needs_exact = true;
5565 ctx->block->instructions.emplace_back(std::move(mubuf));
5566 return;
5567 }
5568
5569 Temp coords = get_image_coords(ctx, instr, type);
5570 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5571 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5572 mimg->operands[0] = Operand(resource);
5573 mimg->operands[1] = Operand(data);
5574 mimg->operands[2] = Operand(coords);
5575 if (return_previous)
5576 mimg->definitions[0] = Definition(dst);
5577 mimg->glc = return_previous;
5578 mimg->dlc = false; /* Not needed for atomics */
5579 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5580 mimg->dmask = (1 << data.size()) - 1;
5581 mimg->unrm = true;
5582 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5583 mimg->disable_wqm = true;
5584 mimg->barrier = barrier_image;
5585 ctx->program->needs_exact = true;
5586 ctx->block->instructions.emplace_back(std::move(mimg));
5587 return;
5588 }
5589
5590 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5591 {
5592 if (in_elements && ctx->options->chip_class == GFX8) {
5593 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5594 Builder bld(ctx->program, ctx->block);
5595
5596 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5597
5598 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5599 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5600
5601 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5602 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5603
5604 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5605 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5606
5607 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5608 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5609 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5610 if (dst.type() == RegType::vgpr)
5611 bld.copy(Definition(dst), shr_dst);
5612
5613 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5614 } else {
5615 emit_extract_vector(ctx, desc, 2, dst);
5616 }
5617 }
5618
5619 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5620 {
5621 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5622 const struct glsl_type *type = glsl_without_array(var->type);
5623 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5624 bool is_array = glsl_sampler_type_is_array(type);
5625 Builder bld(ctx->program, ctx->block);
5626
5627 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5628 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5629 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5630 }
5631
5632 /* LOD */
5633 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5634
5635 /* Resource */
5636 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5637
5638 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5639
5640 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5641 mimg->operands[0] = Operand(resource);
5642 mimg->operands[1] = Operand(s4); /* no sampler */
5643 mimg->operands[2] = Operand(lod);
5644 uint8_t& dmask = mimg->dmask;
5645 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5646 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
5647 mimg->da = glsl_sampler_type_is_array(type);
5648 mimg->can_reorder = true;
5649 Definition& def = mimg->definitions[0];
5650 ctx->block->instructions.emplace_back(std::move(mimg));
5651
5652 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
5653 glsl_sampler_type_is_array(type)) {
5654
5655 assert(instr->dest.ssa.num_components == 3);
5656 Temp tmp = {ctx->program->allocateId(), v3};
5657 def = Definition(tmp);
5658 emit_split_vector(ctx, tmp, 3);
5659
5660 /* divide 3rd value by 6 by multiplying with magic number */
5661 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
5662 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
5663
5664 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5665 emit_extract_vector(ctx, tmp, 0, v1),
5666 emit_extract_vector(ctx, tmp, 1, v1),
5667 by_6);
5668
5669 } else if (ctx->options->chip_class == GFX9 &&
5670 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
5671 glsl_sampler_type_is_array(type)) {
5672 assert(instr->dest.ssa.num_components == 2);
5673 def = Definition(dst);
5674 dmask = 0x5;
5675 } else {
5676 def = Definition(dst);
5677 }
5678
5679 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5680 }
5681
5682 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5683 {
5684 Builder bld(ctx->program, ctx->block);
5685 unsigned num_components = instr->num_components;
5686
5687 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5688 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5689 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5690
5691 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5692 unsigned size = instr->dest.ssa.bit_size / 8;
5693 int byte_align = 0;
5694 if (size < 4) {
5695 unsigned align_mul = nir_intrinsic_align_mul(instr);
5696 unsigned align_offset = nir_intrinsic_align_offset(instr);
5697 byte_align = align_mul % 4 == 0 ? align_offset : -1;
5698 }
5699 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align, glc, false);
5700 }
5701
5702 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5703 {
5704 Builder bld(ctx->program, ctx->block);
5705 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5706 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5707 unsigned writemask = nir_intrinsic_write_mask(instr);
5708 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5709
5710 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5711 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5712
5713 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5714 ctx->options->chip_class >= GFX8 &&
5715 elem_size_bytes >= 4;
5716 if (smem)
5717 offset = bld.as_uniform(offset);
5718 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5719
5720 while (writemask) {
5721 int start, count;
5722 u_bit_scan_consecutive_range(&writemask, &start, &count);
5723 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5724 /* GFX6 doesn't support storing vec3, split it. */
5725 writemask |= 1u << (start + 2);
5726 count = 2;
5727 }
5728 int num_bytes = count * elem_size_bytes;
5729
5730 /* dword or larger stores have to be dword-aligned */
5731 if (elem_size_bytes < 4 && num_bytes > 2) {
5732 // TODO: improve alignment check of sub-dword stores
5733 unsigned count_new = 2 / elem_size_bytes;
5734 writemask |= ((1 << (count - count_new)) - 1) << (start + count_new);
5735 count = count_new;
5736 num_bytes = 2;
5737 }
5738
5739 if (num_bytes > 16) {
5740 assert(elem_size_bytes == 8);
5741 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5742 count = 2;
5743 num_bytes = 16;
5744 }
5745
5746 Temp write_data;
5747 if (elem_size_bytes < 4) {
5748 if (data.type() == RegType::sgpr) {
5749 data = as_vgpr(ctx, data);
5750 emit_split_vector(ctx, data, 4 * data.size() / elem_size_bytes);
5751 }
5752 RegClass rc = RegClass(RegType::vgpr, elem_size_bytes).as_subdword();
5753 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5754 for (int i = 0; i < count; i++)
5755 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, rc));
5756 write_data = bld.tmp(RegClass(RegType::vgpr, num_bytes).as_subdword());
5757 vec->definitions[0] = Definition(write_data);
5758 bld.insert(std::move(vec));
5759 } else if (count != instr->num_components) {
5760 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5761 for (int i = 0; i < count; i++) {
5762 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5763 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5764 }
5765 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5766 vec->definitions[0] = Definition(write_data);
5767 ctx->block->instructions.emplace_back(std::move(vec));
5768 } else if (!smem && data.type() != RegType::vgpr) {
5769 assert(num_bytes % 4 == 0);
5770 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5771 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5772 assert(num_bytes % 4 == 0);
5773 write_data = bld.as_uniform(data);
5774 } else {
5775 write_data = data;
5776 }
5777
5778 aco_opcode vmem_op, smem_op = aco_opcode::last_opcode;
5779 switch (num_bytes) {
5780 case 1:
5781 vmem_op = aco_opcode::buffer_store_byte;
5782 break;
5783 case 2:
5784 vmem_op = aco_opcode::buffer_store_short;
5785 break;
5786 case 4:
5787 vmem_op = aco_opcode::buffer_store_dword;
5788 smem_op = aco_opcode::s_buffer_store_dword;
5789 break;
5790 case 8:
5791 vmem_op = aco_opcode::buffer_store_dwordx2;
5792 smem_op = aco_opcode::s_buffer_store_dwordx2;
5793 break;
5794 case 12:
5795 vmem_op = aco_opcode::buffer_store_dwordx3;
5796 assert(!smem && ctx->options->chip_class > GFX6);
5797 break;
5798 case 16:
5799 vmem_op = aco_opcode::buffer_store_dwordx4;
5800 smem_op = aco_opcode::s_buffer_store_dwordx4;
5801 break;
5802 default:
5803 unreachable("Store SSBO not implemented for this size.");
5804 }
5805 if (ctx->stage == fragment_fs)
5806 smem_op = aco_opcode::p_fs_buffer_store_smem;
5807
5808 if (smem) {
5809 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5810 store->operands[0] = Operand(rsrc);
5811 if (start) {
5812 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5813 offset, Operand(start * elem_size_bytes));
5814 store->operands[1] = Operand(off);
5815 } else {
5816 store->operands[1] = Operand(offset);
5817 }
5818 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5819 store->operands[1].setFixed(m0);
5820 store->operands[2] = Operand(write_data);
5821 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5822 store->dlc = false;
5823 store->disable_wqm = true;
5824 store->barrier = barrier_buffer;
5825 ctx->block->instructions.emplace_back(std::move(store));
5826 ctx->program->wb_smem_l1_on_end = true;
5827 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
5828 ctx->block->kind |= block_kind_needs_lowering;
5829 ctx->program->needs_exact = true;
5830 }
5831 } else {
5832 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
5833 store->operands[0] = Operand(rsrc);
5834 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5835 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5836 store->operands[3] = Operand(write_data);
5837 store->offset = start * elem_size_bytes;
5838 store->offen = (offset.type() == RegType::vgpr);
5839 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5840 store->dlc = false;
5841 store->disable_wqm = true;
5842 store->barrier = barrier_buffer;
5843 ctx->program->needs_exact = true;
5844 ctx->block->instructions.emplace_back(std::move(store));
5845 }
5846 }
5847 }
5848
5849 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5850 {
5851 /* return the previous value if dest is ever used */
5852 bool return_previous = false;
5853 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5854 return_previous = true;
5855 break;
5856 }
5857 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5858 return_previous = true;
5859 break;
5860 }
5861
5862 Builder bld(ctx->program, ctx->block);
5863 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
5864
5865 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
5866 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5867 get_ssa_temp(ctx, instr->src[3].ssa), data);
5868
5869 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
5870 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5871 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5872
5873 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5874
5875 aco_opcode op32, op64;
5876 switch (instr->intrinsic) {
5877 case nir_intrinsic_ssbo_atomic_add:
5878 op32 = aco_opcode::buffer_atomic_add;
5879 op64 = aco_opcode::buffer_atomic_add_x2;
5880 break;
5881 case nir_intrinsic_ssbo_atomic_imin:
5882 op32 = aco_opcode::buffer_atomic_smin;
5883 op64 = aco_opcode::buffer_atomic_smin_x2;
5884 break;
5885 case nir_intrinsic_ssbo_atomic_umin:
5886 op32 = aco_opcode::buffer_atomic_umin;
5887 op64 = aco_opcode::buffer_atomic_umin_x2;
5888 break;
5889 case nir_intrinsic_ssbo_atomic_imax:
5890 op32 = aco_opcode::buffer_atomic_smax;
5891 op64 = aco_opcode::buffer_atomic_smax_x2;
5892 break;
5893 case nir_intrinsic_ssbo_atomic_umax:
5894 op32 = aco_opcode::buffer_atomic_umax;
5895 op64 = aco_opcode::buffer_atomic_umax_x2;
5896 break;
5897 case nir_intrinsic_ssbo_atomic_and:
5898 op32 = aco_opcode::buffer_atomic_and;
5899 op64 = aco_opcode::buffer_atomic_and_x2;
5900 break;
5901 case nir_intrinsic_ssbo_atomic_or:
5902 op32 = aco_opcode::buffer_atomic_or;
5903 op64 = aco_opcode::buffer_atomic_or_x2;
5904 break;
5905 case nir_intrinsic_ssbo_atomic_xor:
5906 op32 = aco_opcode::buffer_atomic_xor;
5907 op64 = aco_opcode::buffer_atomic_xor_x2;
5908 break;
5909 case nir_intrinsic_ssbo_atomic_exchange:
5910 op32 = aco_opcode::buffer_atomic_swap;
5911 op64 = aco_opcode::buffer_atomic_swap_x2;
5912 break;
5913 case nir_intrinsic_ssbo_atomic_comp_swap:
5914 op32 = aco_opcode::buffer_atomic_cmpswap;
5915 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5916 break;
5917 default:
5918 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
5919 }
5920 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5921 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5922 mubuf->operands[0] = Operand(rsrc);
5923 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5924 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5925 mubuf->operands[3] = Operand(data);
5926 if (return_previous)
5927 mubuf->definitions[0] = Definition(dst);
5928 mubuf->offset = 0;
5929 mubuf->offen = (offset.type() == RegType::vgpr);
5930 mubuf->glc = return_previous;
5931 mubuf->dlc = false; /* Not needed for atomics */
5932 mubuf->disable_wqm = true;
5933 mubuf->barrier = barrier_buffer;
5934 ctx->program->needs_exact = true;
5935 ctx->block->instructions.emplace_back(std::move(mubuf));
5936 }
5937
5938 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
5939
5940 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5941 Builder bld(ctx->program, ctx->block);
5942 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
5943 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
5944 }
5945
5946 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
5947 {
5948 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5949 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5950
5951 if (addr.type() == RegType::vgpr)
5952 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
5953 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
5954 }
5955
5956 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
5957 {
5958 Builder bld(ctx->program, ctx->block);
5959 unsigned num_components = instr->num_components;
5960 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
5961
5962 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5963 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5964
5965 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5966 bool dlc = glc && ctx->options->chip_class >= GFX10;
5967 aco_opcode op;
5968 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
5969 bool global = ctx->options->chip_class >= GFX9;
5970
5971 if (ctx->options->chip_class >= GFX7) {
5972 aco_opcode op;
5973 switch (num_bytes) {
5974 case 4:
5975 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
5976 break;
5977 case 8:
5978 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
5979 break;
5980 case 12:
5981 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
5982 break;
5983 case 16:
5984 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
5985 break;
5986 default:
5987 unreachable("load_global not implemented for this size.");
5988 }
5989
5990 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
5991 flat->operands[0] = Operand(addr);
5992 flat->operands[1] = Operand(s1);
5993 flat->glc = glc;
5994 flat->dlc = dlc;
5995 flat->barrier = barrier_buffer;
5996
5997 if (dst.type() == RegType::sgpr) {
5998 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5999 flat->definitions[0] = Definition(vec);
6000 ctx->block->instructions.emplace_back(std::move(flat));
6001 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6002 } else {
6003 flat->definitions[0] = Definition(dst);
6004 ctx->block->instructions.emplace_back(std::move(flat));
6005 }
6006 emit_split_vector(ctx, dst, num_components);
6007 } else {
6008 assert(ctx->options->chip_class == GFX6);
6009
6010 /* GFX6 doesn't support loading vec3, expand to vec4. */
6011 num_bytes = num_bytes == 12 ? 16 : num_bytes;
6012
6013 aco_opcode op;
6014 switch (num_bytes) {
6015 case 4:
6016 op = aco_opcode::buffer_load_dword;
6017 break;
6018 case 8:
6019 op = aco_opcode::buffer_load_dwordx2;
6020 break;
6021 case 16:
6022 op = aco_opcode::buffer_load_dwordx4;
6023 break;
6024 default:
6025 unreachable("load_global not implemented for this size.");
6026 }
6027
6028 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6029
6030 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
6031 mubuf->operands[0] = Operand(rsrc);
6032 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6033 mubuf->operands[2] = Operand(0u);
6034 mubuf->glc = glc;
6035 mubuf->dlc = false;
6036 mubuf->offset = 0;
6037 mubuf->addr64 = addr.type() == RegType::vgpr;
6038 mubuf->disable_wqm = false;
6039 mubuf->barrier = barrier_buffer;
6040 aco_ptr<Instruction> instr = std::move(mubuf);
6041
6042 /* expand vector */
6043 if (dst.size() == 3) {
6044 Temp vec = bld.tmp(v4);
6045 instr->definitions[0] = Definition(vec);
6046 bld.insert(std::move(instr));
6047 emit_split_vector(ctx, vec, 4);
6048
6049 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
6050 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
6051 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
6052 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
6053 }
6054
6055 if (dst.type() == RegType::sgpr) {
6056 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6057 instr->definitions[0] = Definition(vec);
6058 bld.insert(std::move(instr));
6059 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
6060 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6061 } else {
6062 instr->definitions[0] = Definition(dst);
6063 bld.insert(std::move(instr));
6064 emit_split_vector(ctx, dst, num_components);
6065 }
6066 }
6067 } else {
6068 switch (num_bytes) {
6069 case 4:
6070 op = aco_opcode::s_load_dword;
6071 break;
6072 case 8:
6073 op = aco_opcode::s_load_dwordx2;
6074 break;
6075 case 12:
6076 case 16:
6077 op = aco_opcode::s_load_dwordx4;
6078 break;
6079 default:
6080 unreachable("load_global not implemented for this size.");
6081 }
6082 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
6083 load->operands[0] = Operand(addr);
6084 load->operands[1] = Operand(0u);
6085 load->definitions[0] = Definition(dst);
6086 load->glc = glc;
6087 load->dlc = dlc;
6088 load->barrier = barrier_buffer;
6089 assert(ctx->options->chip_class >= GFX8 || !glc);
6090
6091 if (dst.size() == 3) {
6092 /* trim vector */
6093 Temp vec = bld.tmp(s4);
6094 load->definitions[0] = Definition(vec);
6095 ctx->block->instructions.emplace_back(std::move(load));
6096 emit_split_vector(ctx, vec, 4);
6097
6098 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6099 emit_extract_vector(ctx, vec, 0, s1),
6100 emit_extract_vector(ctx, vec, 1, s1),
6101 emit_extract_vector(ctx, vec, 2, s1));
6102 } else {
6103 ctx->block->instructions.emplace_back(std::move(load));
6104 }
6105 }
6106 }
6107
6108 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6109 {
6110 Builder bld(ctx->program, ctx->block);
6111 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6112
6113 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6114 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6115
6116 if (ctx->options->chip_class >= GFX7)
6117 addr = as_vgpr(ctx, addr);
6118
6119 unsigned writemask = nir_intrinsic_write_mask(instr);
6120 while (writemask) {
6121 int start, count;
6122 u_bit_scan_consecutive_range(&writemask, &start, &count);
6123 if (count == 3 && ctx->options->chip_class == GFX6) {
6124 /* GFX6 doesn't support storing vec3, split it. */
6125 writemask |= 1u << (start + 2);
6126 count = 2;
6127 }
6128 unsigned num_bytes = count * elem_size_bytes;
6129
6130 Temp write_data = data;
6131 if (count != instr->num_components) {
6132 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6133 for (int i = 0; i < count; i++)
6134 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
6135 write_data = bld.tmp(RegType::vgpr, count);
6136 vec->definitions[0] = Definition(write_data);
6137 ctx->block->instructions.emplace_back(std::move(vec));
6138 }
6139
6140 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6141 unsigned offset = start * elem_size_bytes;
6142
6143 if (ctx->options->chip_class >= GFX7) {
6144 if (offset > 0 && ctx->options->chip_class < GFX9) {
6145 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6146 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6147 Temp carry = bld.tmp(bld.lm);
6148 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6149
6150 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6151 Operand(offset), addr0);
6152 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6153 Operand(0u), addr1,
6154 carry).def(1).setHint(vcc);
6155
6156 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6157
6158 offset = 0;
6159 }
6160
6161 bool global = ctx->options->chip_class >= GFX9;
6162 aco_opcode op;
6163 switch (num_bytes) {
6164 case 4:
6165 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6166 break;
6167 case 8:
6168 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6169 break;
6170 case 12:
6171 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6172 break;
6173 case 16:
6174 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6175 break;
6176 default:
6177 unreachable("store_global not implemented for this size.");
6178 }
6179
6180 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6181 flat->operands[0] = Operand(addr);
6182 flat->operands[1] = Operand(s1);
6183 flat->operands[2] = Operand(data);
6184 flat->glc = glc;
6185 flat->dlc = false;
6186 flat->offset = offset;
6187 flat->disable_wqm = true;
6188 flat->barrier = barrier_buffer;
6189 ctx->program->needs_exact = true;
6190 ctx->block->instructions.emplace_back(std::move(flat));
6191 } else {
6192 assert(ctx->options->chip_class == GFX6);
6193
6194 aco_opcode op;
6195 switch (num_bytes) {
6196 case 4:
6197 op = aco_opcode::buffer_store_dword;
6198 break;
6199 case 8:
6200 op = aco_opcode::buffer_store_dwordx2;
6201 break;
6202 case 16:
6203 op = aco_opcode::buffer_store_dwordx4;
6204 break;
6205 default:
6206 unreachable("store_global not implemented for this size.");
6207 }
6208
6209 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6210
6211 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6212 mubuf->operands[0] = Operand(rsrc);
6213 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6214 mubuf->operands[2] = Operand(0u);
6215 mubuf->operands[3] = Operand(write_data);
6216 mubuf->glc = glc;
6217 mubuf->dlc = false;
6218 mubuf->offset = offset;
6219 mubuf->addr64 = addr.type() == RegType::vgpr;
6220 mubuf->disable_wqm = true;
6221 mubuf->barrier = barrier_buffer;
6222 ctx->program->needs_exact = true;
6223 ctx->block->instructions.emplace_back(std::move(mubuf));
6224 }
6225 }
6226 }
6227
6228 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6229 {
6230 /* return the previous value if dest is ever used */
6231 bool return_previous = false;
6232 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6233 return_previous = true;
6234 break;
6235 }
6236 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6237 return_previous = true;
6238 break;
6239 }
6240
6241 Builder bld(ctx->program, ctx->block);
6242 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6243 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6244
6245 if (ctx->options->chip_class >= GFX7)
6246 addr = as_vgpr(ctx, addr);
6247
6248 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6249 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6250 get_ssa_temp(ctx, instr->src[2].ssa), data);
6251
6252 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6253
6254 aco_opcode op32, op64;
6255
6256 if (ctx->options->chip_class >= GFX7) {
6257 bool global = ctx->options->chip_class >= GFX9;
6258 switch (instr->intrinsic) {
6259 case nir_intrinsic_global_atomic_add:
6260 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6261 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6262 break;
6263 case nir_intrinsic_global_atomic_imin:
6264 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6265 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6266 break;
6267 case nir_intrinsic_global_atomic_umin:
6268 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6269 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6270 break;
6271 case nir_intrinsic_global_atomic_imax:
6272 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6273 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6274 break;
6275 case nir_intrinsic_global_atomic_umax:
6276 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6277 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6278 break;
6279 case nir_intrinsic_global_atomic_and:
6280 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6281 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6282 break;
6283 case nir_intrinsic_global_atomic_or:
6284 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6285 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6286 break;
6287 case nir_intrinsic_global_atomic_xor:
6288 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6289 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6290 break;
6291 case nir_intrinsic_global_atomic_exchange:
6292 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6293 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6294 break;
6295 case nir_intrinsic_global_atomic_comp_swap:
6296 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6297 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6298 break;
6299 default:
6300 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6301 }
6302
6303 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6304 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6305 flat->operands[0] = Operand(addr);
6306 flat->operands[1] = Operand(s1);
6307 flat->operands[2] = Operand(data);
6308 if (return_previous)
6309 flat->definitions[0] = Definition(dst);
6310 flat->glc = return_previous;
6311 flat->dlc = false; /* Not needed for atomics */
6312 flat->offset = 0;
6313 flat->disable_wqm = true;
6314 flat->barrier = barrier_buffer;
6315 ctx->program->needs_exact = true;
6316 ctx->block->instructions.emplace_back(std::move(flat));
6317 } else {
6318 assert(ctx->options->chip_class == GFX6);
6319
6320 switch (instr->intrinsic) {
6321 case nir_intrinsic_global_atomic_add:
6322 op32 = aco_opcode::buffer_atomic_add;
6323 op64 = aco_opcode::buffer_atomic_add_x2;
6324 break;
6325 case nir_intrinsic_global_atomic_imin:
6326 op32 = aco_opcode::buffer_atomic_smin;
6327 op64 = aco_opcode::buffer_atomic_smin_x2;
6328 break;
6329 case nir_intrinsic_global_atomic_umin:
6330 op32 = aco_opcode::buffer_atomic_umin;
6331 op64 = aco_opcode::buffer_atomic_umin_x2;
6332 break;
6333 case nir_intrinsic_global_atomic_imax:
6334 op32 = aco_opcode::buffer_atomic_smax;
6335 op64 = aco_opcode::buffer_atomic_smax_x2;
6336 break;
6337 case nir_intrinsic_global_atomic_umax:
6338 op32 = aco_opcode::buffer_atomic_umax;
6339 op64 = aco_opcode::buffer_atomic_umax_x2;
6340 break;
6341 case nir_intrinsic_global_atomic_and:
6342 op32 = aco_opcode::buffer_atomic_and;
6343 op64 = aco_opcode::buffer_atomic_and_x2;
6344 break;
6345 case nir_intrinsic_global_atomic_or:
6346 op32 = aco_opcode::buffer_atomic_or;
6347 op64 = aco_opcode::buffer_atomic_or_x2;
6348 break;
6349 case nir_intrinsic_global_atomic_xor:
6350 op32 = aco_opcode::buffer_atomic_xor;
6351 op64 = aco_opcode::buffer_atomic_xor_x2;
6352 break;
6353 case nir_intrinsic_global_atomic_exchange:
6354 op32 = aco_opcode::buffer_atomic_swap;
6355 op64 = aco_opcode::buffer_atomic_swap_x2;
6356 break;
6357 case nir_intrinsic_global_atomic_comp_swap:
6358 op32 = aco_opcode::buffer_atomic_cmpswap;
6359 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6360 break;
6361 default:
6362 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6363 }
6364
6365 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6366
6367 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6368
6369 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6370 mubuf->operands[0] = Operand(rsrc);
6371 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6372 mubuf->operands[2] = Operand(0u);
6373 mubuf->operands[3] = Operand(data);
6374 if (return_previous)
6375 mubuf->definitions[0] = Definition(dst);
6376 mubuf->glc = return_previous;
6377 mubuf->dlc = false;
6378 mubuf->offset = 0;
6379 mubuf->addr64 = addr.type() == RegType::vgpr;
6380 mubuf->disable_wqm = true;
6381 mubuf->barrier = barrier_buffer;
6382 ctx->program->needs_exact = true;
6383 ctx->block->instructions.emplace_back(std::move(mubuf));
6384 }
6385 }
6386
6387 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6388 Builder bld(ctx->program, ctx->block);
6389 switch(instr->intrinsic) {
6390 case nir_intrinsic_group_memory_barrier:
6391 case nir_intrinsic_memory_barrier:
6392 bld.barrier(aco_opcode::p_memory_barrier_common);
6393 break;
6394 case nir_intrinsic_memory_barrier_buffer:
6395 bld.barrier(aco_opcode::p_memory_barrier_buffer);
6396 break;
6397 case nir_intrinsic_memory_barrier_image:
6398 bld.barrier(aco_opcode::p_memory_barrier_image);
6399 break;
6400 case nir_intrinsic_memory_barrier_tcs_patch:
6401 case nir_intrinsic_memory_barrier_shared:
6402 bld.barrier(aco_opcode::p_memory_barrier_shared);
6403 break;
6404 default:
6405 unreachable("Unimplemented memory barrier intrinsic");
6406 break;
6407 }
6408 }
6409
6410 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6411 {
6412 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6413 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6414 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
6415 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6416 Builder bld(ctx->program, ctx->block);
6417
6418 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6419 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6420 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6421 }
6422
6423 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6424 {
6425 unsigned writemask = nir_intrinsic_write_mask(instr);
6426 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6427 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6428 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6429 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
6430
6431 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6432 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6433 }
6434
6435 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6436 {
6437 unsigned offset = nir_intrinsic_base(instr);
6438 Operand m = load_lds_size_m0(ctx);
6439 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6440 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6441
6442 unsigned num_operands = 3;
6443 aco_opcode op32, op64, op32_rtn, op64_rtn;
6444 switch(instr->intrinsic) {
6445 case nir_intrinsic_shared_atomic_add:
6446 op32 = aco_opcode::ds_add_u32;
6447 op64 = aco_opcode::ds_add_u64;
6448 op32_rtn = aco_opcode::ds_add_rtn_u32;
6449 op64_rtn = aco_opcode::ds_add_rtn_u64;
6450 break;
6451 case nir_intrinsic_shared_atomic_imin:
6452 op32 = aco_opcode::ds_min_i32;
6453 op64 = aco_opcode::ds_min_i64;
6454 op32_rtn = aco_opcode::ds_min_rtn_i32;
6455 op64_rtn = aco_opcode::ds_min_rtn_i64;
6456 break;
6457 case nir_intrinsic_shared_atomic_umin:
6458 op32 = aco_opcode::ds_min_u32;
6459 op64 = aco_opcode::ds_min_u64;
6460 op32_rtn = aco_opcode::ds_min_rtn_u32;
6461 op64_rtn = aco_opcode::ds_min_rtn_u64;
6462 break;
6463 case nir_intrinsic_shared_atomic_imax:
6464 op32 = aco_opcode::ds_max_i32;
6465 op64 = aco_opcode::ds_max_i64;
6466 op32_rtn = aco_opcode::ds_max_rtn_i32;
6467 op64_rtn = aco_opcode::ds_max_rtn_i64;
6468 break;
6469 case nir_intrinsic_shared_atomic_umax:
6470 op32 = aco_opcode::ds_max_u32;
6471 op64 = aco_opcode::ds_max_u64;
6472 op32_rtn = aco_opcode::ds_max_rtn_u32;
6473 op64_rtn = aco_opcode::ds_max_rtn_u64;
6474 break;
6475 case nir_intrinsic_shared_atomic_and:
6476 op32 = aco_opcode::ds_and_b32;
6477 op64 = aco_opcode::ds_and_b64;
6478 op32_rtn = aco_opcode::ds_and_rtn_b32;
6479 op64_rtn = aco_opcode::ds_and_rtn_b64;
6480 break;
6481 case nir_intrinsic_shared_atomic_or:
6482 op32 = aco_opcode::ds_or_b32;
6483 op64 = aco_opcode::ds_or_b64;
6484 op32_rtn = aco_opcode::ds_or_rtn_b32;
6485 op64_rtn = aco_opcode::ds_or_rtn_b64;
6486 break;
6487 case nir_intrinsic_shared_atomic_xor:
6488 op32 = aco_opcode::ds_xor_b32;
6489 op64 = aco_opcode::ds_xor_b64;
6490 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6491 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6492 break;
6493 case nir_intrinsic_shared_atomic_exchange:
6494 op32 = aco_opcode::ds_write_b32;
6495 op64 = aco_opcode::ds_write_b64;
6496 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6497 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
6498 break;
6499 case nir_intrinsic_shared_atomic_comp_swap:
6500 op32 = aco_opcode::ds_cmpst_b32;
6501 op64 = aco_opcode::ds_cmpst_b64;
6502 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6503 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6504 num_operands = 4;
6505 break;
6506 default:
6507 unreachable("Unhandled shared atomic intrinsic");
6508 }
6509
6510 /* return the previous value if dest is ever used */
6511 bool return_previous = false;
6512 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6513 return_previous = true;
6514 break;
6515 }
6516 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6517 return_previous = true;
6518 break;
6519 }
6520
6521 aco_opcode op;
6522 if (data.size() == 1) {
6523 assert(instr->dest.ssa.bit_size == 32);
6524 op = return_previous ? op32_rtn : op32;
6525 } else {
6526 assert(instr->dest.ssa.bit_size == 64);
6527 op = return_previous ? op64_rtn : op64;
6528 }
6529
6530 if (offset > 65535) {
6531 Builder bld(ctx->program, ctx->block);
6532 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6533 offset = 0;
6534 }
6535
6536 aco_ptr<DS_instruction> ds;
6537 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6538 ds->operands[0] = Operand(address);
6539 ds->operands[1] = Operand(data);
6540 if (num_operands == 4)
6541 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6542 ds->operands[num_operands - 1] = m;
6543 ds->offset0 = offset;
6544 if (return_previous)
6545 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6546 ctx->block->instructions.emplace_back(std::move(ds));
6547 }
6548
6549 Temp get_scratch_resource(isel_context *ctx)
6550 {
6551 Builder bld(ctx->program, ctx->block);
6552 Temp scratch_addr = ctx->program->private_segment_buffer;
6553 if (ctx->stage != compute_cs)
6554 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6555
6556 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6557 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6558
6559 if (ctx->program->chip_class >= GFX10) {
6560 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6561 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6562 S_008F0C_RESOURCE_LEVEL(1);
6563 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6564 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6565 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6566 }
6567
6568 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6569 if (ctx->program->chip_class <= GFX8)
6570 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6571
6572 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6573 }
6574
6575 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6576 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6577 Builder bld(ctx->program, ctx->block);
6578 Temp rsrc = get_scratch_resource(ctx);
6579 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6580 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6581
6582 aco_opcode op;
6583 switch (dst.size()) {
6584 case 1:
6585 op = aco_opcode::buffer_load_dword;
6586 break;
6587 case 2:
6588 op = aco_opcode::buffer_load_dwordx2;
6589 break;
6590 case 3:
6591 op = aco_opcode::buffer_load_dwordx3;
6592 break;
6593 case 4:
6594 op = aco_opcode::buffer_load_dwordx4;
6595 break;
6596 case 6:
6597 case 8: {
6598 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6599 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6600 bld.def(v4), rsrc, offset,
6601 ctx->program->scratch_offset, 0, true);
6602 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6603 aco_opcode::buffer_load_dwordx4,
6604 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6605 rsrc, offset, ctx->program->scratch_offset, 16, true);
6606 emit_split_vector(ctx, lower, 2);
6607 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6608 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6609 if (dst.size() == 8) {
6610 emit_split_vector(ctx, upper, 2);
6611 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6612 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6613 } else {
6614 elems[2] = upper;
6615 }
6616
6617 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6618 Format::PSEUDO, dst.size() / 2, 1)};
6619 for (unsigned i = 0; i < dst.size() / 2; i++)
6620 vec->operands[i] = Operand(elems[i]);
6621 vec->definitions[0] = Definition(dst);
6622 bld.insert(std::move(vec));
6623 ctx->allocated_vec.emplace(dst.id(), elems);
6624 return;
6625 }
6626 default:
6627 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
6628 }
6629
6630 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
6631 emit_split_vector(ctx, dst, instr->num_components);
6632 }
6633
6634 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6635 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6636 Builder bld(ctx->program, ctx->block);
6637 Temp rsrc = get_scratch_resource(ctx);
6638 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6639 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6640
6641 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6642 unsigned writemask = nir_intrinsic_write_mask(instr);
6643
6644 while (writemask) {
6645 int start, count;
6646 u_bit_scan_consecutive_range(&writemask, &start, &count);
6647 int num_bytes = count * elem_size_bytes;
6648
6649 if (num_bytes > 16) {
6650 assert(elem_size_bytes == 8);
6651 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6652 count = 2;
6653 num_bytes = 16;
6654 }
6655
6656 // TODO: check alignment of sub-dword stores
6657 // TODO: split 3 bytes. there is no store instruction for that
6658
6659 Temp write_data;
6660 if (count != instr->num_components) {
6661 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6662 for (int i = 0; i < count; i++) {
6663 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6664 vec->operands[i] = Operand(elem);
6665 }
6666 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6667 vec->definitions[0] = Definition(write_data);
6668 ctx->block->instructions.emplace_back(std::move(vec));
6669 } else {
6670 write_data = data;
6671 }
6672
6673 aco_opcode op;
6674 switch (num_bytes) {
6675 case 4:
6676 op = aco_opcode::buffer_store_dword;
6677 break;
6678 case 8:
6679 op = aco_opcode::buffer_store_dwordx2;
6680 break;
6681 case 12:
6682 op = aco_opcode::buffer_store_dwordx3;
6683 break;
6684 case 16:
6685 op = aco_opcode::buffer_store_dwordx4;
6686 break;
6687 default:
6688 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6689 }
6690
6691 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6692 }
6693 }
6694
6695 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6696 uint8_t log2_ps_iter_samples;
6697 if (ctx->program->info->ps.force_persample) {
6698 log2_ps_iter_samples =
6699 util_logbase2(ctx->options->key.fs.num_samples);
6700 } else {
6701 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6702 }
6703
6704 /* The bit pattern matches that used by fixed function fragment
6705 * processing. */
6706 static const unsigned ps_iter_masks[] = {
6707 0xffff, /* not used */
6708 0x5555,
6709 0x1111,
6710 0x0101,
6711 0x0001,
6712 };
6713 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6714
6715 Builder bld(ctx->program, ctx->block);
6716
6717 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6718 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6719 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6720 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6721 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6722 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6723 }
6724
6725 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6726 Builder bld(ctx->program, ctx->block);
6727
6728 unsigned stream = nir_intrinsic_stream_id(instr);
6729 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6730 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6731 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6732
6733 /* get GSVS ring */
6734 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6735
6736 unsigned num_components =
6737 ctx->program->info->gs.num_stream_output_components[stream];
6738 assert(num_components);
6739
6740 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6741 unsigned stream_offset = 0;
6742 for (unsigned i = 0; i < stream; i++) {
6743 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6744 stream_offset += prev_stride * ctx->program->wave_size;
6745 }
6746
6747 /* Limit on the stride field for <= GFX7. */
6748 assert(stride < (1 << 14));
6749
6750 Temp gsvs_dwords[4];
6751 for (unsigned i = 0; i < 4; i++)
6752 gsvs_dwords[i] = bld.tmp(s1);
6753 bld.pseudo(aco_opcode::p_split_vector,
6754 Definition(gsvs_dwords[0]),
6755 Definition(gsvs_dwords[1]),
6756 Definition(gsvs_dwords[2]),
6757 Definition(gsvs_dwords[3]),
6758 gsvs_ring);
6759
6760 if (stream_offset) {
6761 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6762
6763 Temp carry = bld.tmp(s1);
6764 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6765 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6766 }
6767
6768 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6769 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6770
6771 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6772 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6773
6774 unsigned offset = 0;
6775 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6776 if (ctx->program->info->gs.output_streams[i] != stream)
6777 continue;
6778
6779 for (unsigned j = 0; j < 4; j++) {
6780 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6781 continue;
6782
6783 if (ctx->outputs.mask[i] & (1 << j)) {
6784 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6785 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6786 if (const_offset >= 4096u) {
6787 if (vaddr_offset.isUndefined())
6788 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6789 else
6790 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6791 const_offset %= 4096u;
6792 }
6793
6794 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6795 mtbuf->operands[0] = Operand(gsvs_ring);
6796 mtbuf->operands[1] = vaddr_offset;
6797 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6798 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6799 mtbuf->offen = !vaddr_offset.isUndefined();
6800 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6801 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6802 mtbuf->offset = const_offset;
6803 mtbuf->glc = true;
6804 mtbuf->slc = true;
6805 mtbuf->barrier = barrier_gs_data;
6806 mtbuf->can_reorder = true;
6807 bld.insert(std::move(mtbuf));
6808 }
6809
6810 offset += ctx->shader->info.gs.vertices_out;
6811 }
6812
6813 /* outputs for the next vertex are undefined and keeping them around can
6814 * create invalid IR with control flow */
6815 ctx->outputs.mask[i] = 0;
6816 }
6817
6818 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6819 }
6820
6821 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6822 {
6823 Builder bld(ctx->program, ctx->block);
6824
6825 if (cluster_size == 1) {
6826 return src;
6827 } if (op == nir_op_iand && cluster_size == 4) {
6828 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6829 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6830 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6831 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6832 } else if (op == nir_op_ior && cluster_size == 4) {
6833 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6834 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6835 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6836 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6837 //subgroupAnd(val) -> (exec & ~val) == 0
6838 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6839 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6840 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6841 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6842 //subgroupOr(val) -> (val & exec) != 0
6843 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6844 return bool_to_vector_condition(ctx, tmp);
6845 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6846 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6847 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6848 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6849 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6850 return bool_to_vector_condition(ctx, tmp);
6851 } else {
6852 //subgroupClustered{And,Or,Xor}(val, n) ->
6853 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6854 //cluster_offset = ~(n - 1) & lane_id
6855 //cluster_mask = ((1 << n) - 1)
6856 //subgroupClusteredAnd():
6857 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6858 //subgroupClusteredOr():
6859 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6860 //subgroupClusteredXor():
6861 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6862 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6863 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6864
6865 Temp tmp;
6866 if (op == nir_op_iand)
6867 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6868 else
6869 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6870
6871 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6872
6873 if (ctx->program->chip_class <= GFX7)
6874 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6875 else if (ctx->program->wave_size == 64)
6876 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6877 else
6878 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6879 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6880 if (cluster_mask != 0xffffffff)
6881 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6882
6883 Definition cmp_def = Definition();
6884 if (op == nir_op_iand) {
6885 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6886 } else if (op == nir_op_ior) {
6887 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6888 } else if (op == nir_op_ixor) {
6889 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6890 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6891 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6892 }
6893 cmp_def.setHint(vcc);
6894 return cmp_def.getTemp();
6895 }
6896 }
6897
6898 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
6899 {
6900 Builder bld(ctx->program, ctx->block);
6901
6902 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
6903 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
6904 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
6905 Temp tmp;
6906 if (op == nir_op_iand)
6907 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6908 else
6909 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
6910
6911 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
6912 Temp lo = lohi.def(0).getTemp();
6913 Temp hi = lohi.def(1).getTemp();
6914 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
6915
6916 Definition cmp_def = Definition();
6917 if (op == nir_op_iand)
6918 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6919 else if (op == nir_op_ior)
6920 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6921 else if (op == nir_op_ixor)
6922 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
6923 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
6924 cmp_def.setHint(vcc);
6925 return cmp_def.getTemp();
6926 }
6927
6928 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
6929 {
6930 Builder bld(ctx->program, ctx->block);
6931
6932 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
6933 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
6934 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
6935 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
6936 if (op == nir_op_iand)
6937 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6938 else if (op == nir_op_ior)
6939 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6940 else if (op == nir_op_ixor)
6941 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6942
6943 assert(false);
6944 return Temp();
6945 }
6946
6947 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
6948 {
6949 Builder bld(ctx->program, ctx->block);
6950 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
6951 if (src.regClass().type() == RegType::vgpr) {
6952 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
6953 } else if (src.regClass() == s1) {
6954 bld.sop1(aco_opcode::s_mov_b32, dst, src);
6955 } else if (src.regClass() == s2) {
6956 bld.sop1(aco_opcode::s_mov_b64, dst, src);
6957 } else {
6958 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6959 nir_print_instr(&instr->instr, stderr);
6960 fprintf(stderr, "\n");
6961 }
6962 }
6963
6964 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
6965 {
6966 Builder bld(ctx->program, ctx->block);
6967 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
6968 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
6969 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
6970
6971 Temp ddx_1, ddx_2, ddy_1, ddy_2;
6972 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
6973 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
6974 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
6975
6976 /* Build DD X/Y */
6977 if (ctx->program->chip_class >= GFX8) {
6978 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
6979 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
6980 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
6981 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
6982 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
6983 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
6984 } else {
6985 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
6986 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
6987 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
6988 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
6989 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
6990 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
6991 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
6992 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
6993 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
6994 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
6995 }
6996
6997 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
6998 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
6999 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
7000 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
7001 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
7002 Temp wqm1 = bld.tmp(v1);
7003 emit_wqm(ctx, tmp1, wqm1, true);
7004 Temp wqm2 = bld.tmp(v1);
7005 emit_wqm(ctx, tmp2, wqm2, true);
7006 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7007 return;
7008 }
7009
7010 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7011 {
7012 Builder bld(ctx->program, ctx->block);
7013 switch(instr->intrinsic) {
7014 case nir_intrinsic_load_barycentric_sample:
7015 case nir_intrinsic_load_barycentric_pixel:
7016 case nir_intrinsic_load_barycentric_centroid: {
7017 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7018 Temp bary = Temp(0, s2);
7019 switch (mode) {
7020 case INTERP_MODE_SMOOTH:
7021 case INTERP_MODE_NONE:
7022 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7023 bary = get_arg(ctx, ctx->args->ac.persp_center);
7024 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7025 bary = ctx->persp_centroid;
7026 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7027 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7028 break;
7029 case INTERP_MODE_NOPERSPECTIVE:
7030 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7031 bary = get_arg(ctx, ctx->args->ac.linear_center);
7032 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7033 bary = ctx->linear_centroid;
7034 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7035 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7036 break;
7037 default:
7038 break;
7039 }
7040 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7041 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7042 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7043 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7044 Operand(p1), Operand(p2));
7045 emit_split_vector(ctx, dst, 2);
7046 break;
7047 }
7048 case nir_intrinsic_load_barycentric_model: {
7049 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7050
7051 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7052 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7053 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7054 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7055 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7056 Operand(p1), Operand(p2), Operand(p3));
7057 emit_split_vector(ctx, dst, 3);
7058 break;
7059 }
7060 case nir_intrinsic_load_barycentric_at_sample: {
7061 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7062 switch (ctx->options->key.fs.num_samples) {
7063 case 2: sample_pos_offset += 1 << 3; break;
7064 case 4: sample_pos_offset += 3 << 3; break;
7065 case 8: sample_pos_offset += 7 << 3; break;
7066 default: break;
7067 }
7068 Temp sample_pos;
7069 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7070 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7071 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7072 if (addr.type() == RegType::sgpr) {
7073 Operand offset;
7074 if (const_addr) {
7075 sample_pos_offset += const_addr->u32 << 3;
7076 offset = Operand(sample_pos_offset);
7077 } else if (ctx->options->chip_class >= GFX9) {
7078 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7079 } else {
7080 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7081 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7082 }
7083
7084 Operand off = bld.copy(bld.def(s1), Operand(offset));
7085 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7086
7087 } else if (ctx->options->chip_class >= GFX9) {
7088 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7089 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7090 } else if (ctx->options->chip_class >= GFX7) {
7091 /* addr += private_segment_buffer + sample_pos_offset */
7092 Temp tmp0 = bld.tmp(s1);
7093 Temp tmp1 = bld.tmp(s1);
7094 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7095 Definition scc_tmp = bld.def(s1, scc);
7096 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7097 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7098 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7099 Temp pck0 = bld.tmp(v1);
7100 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7101 tmp1 = as_vgpr(ctx, tmp1);
7102 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7103 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7104
7105 /* sample_pos = flat_load_dwordx2 addr */
7106 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7107 } else {
7108 assert(ctx->options->chip_class == GFX6);
7109
7110 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7111 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7112 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7113
7114 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7115 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7116
7117 sample_pos = bld.tmp(v2);
7118
7119 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7120 load->definitions[0] = Definition(sample_pos);
7121 load->operands[0] = Operand(rsrc);
7122 load->operands[1] = Operand(addr);
7123 load->operands[2] = Operand(0u);
7124 load->offset = sample_pos_offset;
7125 load->offen = 0;
7126 load->addr64 = true;
7127 load->glc = false;
7128 load->dlc = false;
7129 load->disable_wqm = false;
7130 load->barrier = barrier_none;
7131 load->can_reorder = true;
7132 ctx->block->instructions.emplace_back(std::move(load));
7133 }
7134
7135 /* sample_pos -= 0.5 */
7136 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7137 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7138 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7139 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7140 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7141
7142 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7143 break;
7144 }
7145 case nir_intrinsic_load_barycentric_at_offset: {
7146 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7147 RegClass rc = RegClass(offset.type(), 1);
7148 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7149 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7150 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7151 break;
7152 }
7153 case nir_intrinsic_load_front_face: {
7154 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7155 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7156 break;
7157 }
7158 case nir_intrinsic_load_view_index: {
7159 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7160 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7161 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7162 break;
7163 }
7164
7165 /* fallthrough */
7166 }
7167 case nir_intrinsic_load_layer_id: {
7168 unsigned idx = nir_intrinsic_base(instr);
7169 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7170 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7171 break;
7172 }
7173 case nir_intrinsic_load_frag_coord: {
7174 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7175 break;
7176 }
7177 case nir_intrinsic_load_sample_pos: {
7178 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7179 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7180 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7181 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7182 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7183 break;
7184 }
7185 case nir_intrinsic_load_tess_coord:
7186 visit_load_tess_coord(ctx, instr);
7187 break;
7188 case nir_intrinsic_load_interpolated_input:
7189 visit_load_interpolated_input(ctx, instr);
7190 break;
7191 case nir_intrinsic_store_output:
7192 visit_store_output(ctx, instr);
7193 break;
7194 case nir_intrinsic_load_input:
7195 case nir_intrinsic_load_input_vertex:
7196 visit_load_input(ctx, instr);
7197 break;
7198 case nir_intrinsic_load_output:
7199 visit_load_output(ctx, instr);
7200 break;
7201 case nir_intrinsic_load_per_vertex_input:
7202 visit_load_per_vertex_input(ctx, instr);
7203 break;
7204 case nir_intrinsic_load_per_vertex_output:
7205 visit_load_per_vertex_output(ctx, instr);
7206 break;
7207 case nir_intrinsic_store_per_vertex_output:
7208 visit_store_per_vertex_output(ctx, instr);
7209 break;
7210 case nir_intrinsic_load_ubo:
7211 visit_load_ubo(ctx, instr);
7212 break;
7213 case nir_intrinsic_load_push_constant:
7214 visit_load_push_constant(ctx, instr);
7215 break;
7216 case nir_intrinsic_load_constant:
7217 visit_load_constant(ctx, instr);
7218 break;
7219 case nir_intrinsic_vulkan_resource_index:
7220 visit_load_resource(ctx, instr);
7221 break;
7222 case nir_intrinsic_discard:
7223 visit_discard(ctx, instr);
7224 break;
7225 case nir_intrinsic_discard_if:
7226 visit_discard_if(ctx, instr);
7227 break;
7228 case nir_intrinsic_load_shared:
7229 visit_load_shared(ctx, instr);
7230 break;
7231 case nir_intrinsic_store_shared:
7232 visit_store_shared(ctx, instr);
7233 break;
7234 case nir_intrinsic_shared_atomic_add:
7235 case nir_intrinsic_shared_atomic_imin:
7236 case nir_intrinsic_shared_atomic_umin:
7237 case nir_intrinsic_shared_atomic_imax:
7238 case nir_intrinsic_shared_atomic_umax:
7239 case nir_intrinsic_shared_atomic_and:
7240 case nir_intrinsic_shared_atomic_or:
7241 case nir_intrinsic_shared_atomic_xor:
7242 case nir_intrinsic_shared_atomic_exchange:
7243 case nir_intrinsic_shared_atomic_comp_swap:
7244 visit_shared_atomic(ctx, instr);
7245 break;
7246 case nir_intrinsic_image_deref_load:
7247 visit_image_load(ctx, instr);
7248 break;
7249 case nir_intrinsic_image_deref_store:
7250 visit_image_store(ctx, instr);
7251 break;
7252 case nir_intrinsic_image_deref_atomic_add:
7253 case nir_intrinsic_image_deref_atomic_umin:
7254 case nir_intrinsic_image_deref_atomic_imin:
7255 case nir_intrinsic_image_deref_atomic_umax:
7256 case nir_intrinsic_image_deref_atomic_imax:
7257 case nir_intrinsic_image_deref_atomic_and:
7258 case nir_intrinsic_image_deref_atomic_or:
7259 case nir_intrinsic_image_deref_atomic_xor:
7260 case nir_intrinsic_image_deref_atomic_exchange:
7261 case nir_intrinsic_image_deref_atomic_comp_swap:
7262 visit_image_atomic(ctx, instr);
7263 break;
7264 case nir_intrinsic_image_deref_size:
7265 visit_image_size(ctx, instr);
7266 break;
7267 case nir_intrinsic_load_ssbo:
7268 visit_load_ssbo(ctx, instr);
7269 break;
7270 case nir_intrinsic_store_ssbo:
7271 visit_store_ssbo(ctx, instr);
7272 break;
7273 case nir_intrinsic_load_global:
7274 visit_load_global(ctx, instr);
7275 break;
7276 case nir_intrinsic_store_global:
7277 visit_store_global(ctx, instr);
7278 break;
7279 case nir_intrinsic_global_atomic_add:
7280 case nir_intrinsic_global_atomic_imin:
7281 case nir_intrinsic_global_atomic_umin:
7282 case nir_intrinsic_global_atomic_imax:
7283 case nir_intrinsic_global_atomic_umax:
7284 case nir_intrinsic_global_atomic_and:
7285 case nir_intrinsic_global_atomic_or:
7286 case nir_intrinsic_global_atomic_xor:
7287 case nir_intrinsic_global_atomic_exchange:
7288 case nir_intrinsic_global_atomic_comp_swap:
7289 visit_global_atomic(ctx, instr);
7290 break;
7291 case nir_intrinsic_ssbo_atomic_add:
7292 case nir_intrinsic_ssbo_atomic_imin:
7293 case nir_intrinsic_ssbo_atomic_umin:
7294 case nir_intrinsic_ssbo_atomic_imax:
7295 case nir_intrinsic_ssbo_atomic_umax:
7296 case nir_intrinsic_ssbo_atomic_and:
7297 case nir_intrinsic_ssbo_atomic_or:
7298 case nir_intrinsic_ssbo_atomic_xor:
7299 case nir_intrinsic_ssbo_atomic_exchange:
7300 case nir_intrinsic_ssbo_atomic_comp_swap:
7301 visit_atomic_ssbo(ctx, instr);
7302 break;
7303 case nir_intrinsic_load_scratch:
7304 visit_load_scratch(ctx, instr);
7305 break;
7306 case nir_intrinsic_store_scratch:
7307 visit_store_scratch(ctx, instr);
7308 break;
7309 case nir_intrinsic_get_buffer_size:
7310 visit_get_buffer_size(ctx, instr);
7311 break;
7312 case nir_intrinsic_control_barrier: {
7313 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7314 /* GFX6 only (thanks to a hw bug workaround):
7315 * The real barrier instruction isn’t needed, because an entire patch
7316 * always fits into a single wave.
7317 */
7318 break;
7319 }
7320
7321 if (ctx->program->workgroup_size > ctx->program->wave_size)
7322 bld.sopp(aco_opcode::s_barrier);
7323
7324 break;
7325 }
7326 case nir_intrinsic_memory_barrier_tcs_patch:
7327 case nir_intrinsic_group_memory_barrier:
7328 case nir_intrinsic_memory_barrier:
7329 case nir_intrinsic_memory_barrier_buffer:
7330 case nir_intrinsic_memory_barrier_image:
7331 case nir_intrinsic_memory_barrier_shared:
7332 emit_memory_barrier(ctx, instr);
7333 break;
7334 case nir_intrinsic_load_num_work_groups: {
7335 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7336 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7337 emit_split_vector(ctx, dst, 3);
7338 break;
7339 }
7340 case nir_intrinsic_load_local_invocation_id: {
7341 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7342 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7343 emit_split_vector(ctx, dst, 3);
7344 break;
7345 }
7346 case nir_intrinsic_load_work_group_id: {
7347 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7348 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7349 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7350 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7351 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7352 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7353 emit_split_vector(ctx, dst, 3);
7354 break;
7355 }
7356 case nir_intrinsic_load_local_invocation_index: {
7357 Temp id = emit_mbcnt(ctx, bld.def(v1));
7358
7359 /* The tg_size bits [6:11] contain the subgroup id,
7360 * we need this multiplied by the wave size, and then OR the thread id to it.
7361 */
7362 if (ctx->program->wave_size == 64) {
7363 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7364 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7365 get_arg(ctx, ctx->args->ac.tg_size));
7366 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7367 } else {
7368 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7369 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7370 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7371 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7372 }
7373 break;
7374 }
7375 case nir_intrinsic_load_subgroup_id: {
7376 if (ctx->stage == compute_cs) {
7377 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7378 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7379 } else {
7380 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7381 }
7382 break;
7383 }
7384 case nir_intrinsic_load_subgroup_invocation: {
7385 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7386 break;
7387 }
7388 case nir_intrinsic_load_num_subgroups: {
7389 if (ctx->stage == compute_cs)
7390 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7391 get_arg(ctx, ctx->args->ac.tg_size));
7392 else
7393 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7394 break;
7395 }
7396 case nir_intrinsic_ballot: {
7397 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7398 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7399 Definition tmp = bld.def(dst.regClass());
7400 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7401 if (instr->src[0].ssa->bit_size == 1) {
7402 assert(src.regClass() == bld.lm);
7403 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7404 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7405 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7406 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7407 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7408 } else {
7409 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7410 nir_print_instr(&instr->instr, stderr);
7411 fprintf(stderr, "\n");
7412 }
7413 if (dst.size() != bld.lm.size()) {
7414 /* Wave32 with ballot size set to 64 */
7415 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7416 }
7417 emit_wqm(ctx, tmp.getTemp(), dst);
7418 break;
7419 }
7420 case nir_intrinsic_shuffle:
7421 case nir_intrinsic_read_invocation: {
7422 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7423 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
7424 emit_uniform_subgroup(ctx, instr, src);
7425 } else {
7426 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7427 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
7428 tid = bld.as_uniform(tid);
7429 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7430 if (src.regClass() == v1) {
7431 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7432 } else if (src.regClass() == v2) {
7433 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7434 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7435 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7436 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7437 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7438 emit_split_vector(ctx, dst, 2);
7439 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7440 assert(src.regClass() == bld.lm);
7441 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7442 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7443 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7444 assert(src.regClass() == bld.lm);
7445 Temp tmp;
7446 if (ctx->program->chip_class <= GFX7)
7447 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7448 else if (ctx->program->wave_size == 64)
7449 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7450 else
7451 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7452 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7453 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7454 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7455 } else {
7456 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7457 nir_print_instr(&instr->instr, stderr);
7458 fprintf(stderr, "\n");
7459 }
7460 }
7461 break;
7462 }
7463 case nir_intrinsic_load_sample_id: {
7464 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7465 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7466 break;
7467 }
7468 case nir_intrinsic_load_sample_mask_in: {
7469 visit_load_sample_mask_in(ctx, instr);
7470 break;
7471 }
7472 case nir_intrinsic_read_first_invocation: {
7473 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7474 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7475 if (src.regClass() == v1) {
7476 emit_wqm(ctx,
7477 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7478 dst);
7479 } else if (src.regClass() == v2) {
7480 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7481 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7482 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7483 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7484 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7485 emit_split_vector(ctx, dst, 2);
7486 } else if (instr->dest.ssa.bit_size == 1) {
7487 assert(src.regClass() == bld.lm);
7488 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7489 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7490 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7491 } else if (src.regClass() == s1) {
7492 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7493 } else if (src.regClass() == s2) {
7494 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7495 } else {
7496 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7497 nir_print_instr(&instr->instr, stderr);
7498 fprintf(stderr, "\n");
7499 }
7500 break;
7501 }
7502 case nir_intrinsic_vote_all: {
7503 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7504 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7505 assert(src.regClass() == bld.lm);
7506 assert(dst.regClass() == bld.lm);
7507
7508 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7509 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7510 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7511 break;
7512 }
7513 case nir_intrinsic_vote_any: {
7514 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7515 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7516 assert(src.regClass() == bld.lm);
7517 assert(dst.regClass() == bld.lm);
7518
7519 Temp tmp = bool_to_scalar_condition(ctx, src);
7520 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7521 break;
7522 }
7523 case nir_intrinsic_reduce:
7524 case nir_intrinsic_inclusive_scan:
7525 case nir_intrinsic_exclusive_scan: {
7526 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7527 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7528 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7529 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7530 nir_intrinsic_cluster_size(instr) : 0;
7531 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7532
7533 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7534 emit_uniform_subgroup(ctx, instr, src);
7535 } else if (instr->dest.ssa.bit_size == 1) {
7536 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7537 op = nir_op_iand;
7538 else if (op == nir_op_iadd)
7539 op = nir_op_ixor;
7540 else if (op == nir_op_umax || op == nir_op_imax)
7541 op = nir_op_ior;
7542 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7543
7544 switch (instr->intrinsic) {
7545 case nir_intrinsic_reduce:
7546 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7547 break;
7548 case nir_intrinsic_exclusive_scan:
7549 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7550 break;
7551 case nir_intrinsic_inclusive_scan:
7552 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7553 break;
7554 default:
7555 assert(false);
7556 }
7557 } else if (cluster_size == 1) {
7558 bld.copy(Definition(dst), src);
7559 } else {
7560 src = as_vgpr(ctx, src);
7561
7562 ReduceOp reduce_op;
7563 switch (op) {
7564 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7565 CASE(iadd)
7566 CASE(imul)
7567 CASE(fadd)
7568 CASE(fmul)
7569 CASE(imin)
7570 CASE(umin)
7571 CASE(fmin)
7572 CASE(imax)
7573 CASE(umax)
7574 CASE(fmax)
7575 CASE(iand)
7576 CASE(ior)
7577 CASE(ixor)
7578 default:
7579 unreachable("unknown reduction op");
7580 #undef CASE
7581 }
7582
7583 aco_opcode aco_op;
7584 switch (instr->intrinsic) {
7585 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7586 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7587 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7588 default:
7589 unreachable("unknown reduce intrinsic");
7590 }
7591
7592 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7593 reduce->operands[0] = Operand(src);
7594 // filled in by aco_reduce_assign.cpp, used internally as part of the
7595 // reduce sequence
7596 assert(dst.size() == 1 || dst.size() == 2);
7597 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7598 reduce->operands[2] = Operand(v1.as_linear());
7599
7600 Temp tmp_dst = bld.tmp(dst.regClass());
7601 reduce->definitions[0] = Definition(tmp_dst);
7602 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7603 reduce->definitions[2] = Definition();
7604 reduce->definitions[3] = Definition(scc, s1);
7605 reduce->definitions[4] = Definition();
7606 reduce->reduce_op = reduce_op;
7607 reduce->cluster_size = cluster_size;
7608 ctx->block->instructions.emplace_back(std::move(reduce));
7609
7610 emit_wqm(ctx, tmp_dst, dst);
7611 }
7612 break;
7613 }
7614 case nir_intrinsic_quad_broadcast: {
7615 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7616 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7617 emit_uniform_subgroup(ctx, instr, src);
7618 } else {
7619 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7620 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7621 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7622
7623 if (instr->dest.ssa.bit_size == 1) {
7624 assert(src.regClass() == bld.lm);
7625 assert(dst.regClass() == bld.lm);
7626 uint32_t half_mask = 0x11111111u << lane;
7627 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7628 Temp tmp = bld.tmp(bld.lm);
7629 bld.sop1(Builder::s_wqm, Definition(tmp),
7630 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7631 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7632 emit_wqm(ctx, tmp, dst);
7633 } else if (instr->dest.ssa.bit_size == 32) {
7634 if (ctx->program->chip_class >= GFX8)
7635 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7636 else
7637 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7638 } else if (instr->dest.ssa.bit_size == 64) {
7639 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7640 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7641 if (ctx->program->chip_class >= GFX8) {
7642 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7643 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7644 } else {
7645 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7646 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7647 }
7648 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7649 emit_split_vector(ctx, dst, 2);
7650 } else {
7651 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7652 nir_print_instr(&instr->instr, stderr);
7653 fprintf(stderr, "\n");
7654 }
7655 }
7656 break;
7657 }
7658 case nir_intrinsic_quad_swap_horizontal:
7659 case nir_intrinsic_quad_swap_vertical:
7660 case nir_intrinsic_quad_swap_diagonal:
7661 case nir_intrinsic_quad_swizzle_amd: {
7662 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7663 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7664 emit_uniform_subgroup(ctx, instr, src);
7665 break;
7666 }
7667 uint16_t dpp_ctrl = 0;
7668 switch (instr->intrinsic) {
7669 case nir_intrinsic_quad_swap_horizontal:
7670 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7671 break;
7672 case nir_intrinsic_quad_swap_vertical:
7673 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7674 break;
7675 case nir_intrinsic_quad_swap_diagonal:
7676 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7677 break;
7678 case nir_intrinsic_quad_swizzle_amd:
7679 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7680 break;
7681 default:
7682 break;
7683 }
7684 if (ctx->program->chip_class < GFX8)
7685 dpp_ctrl |= (1 << 15);
7686
7687 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7688 if (instr->dest.ssa.bit_size == 1) {
7689 assert(src.regClass() == bld.lm);
7690 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7691 if (ctx->program->chip_class >= GFX8)
7692 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7693 else
7694 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7695 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7696 emit_wqm(ctx, tmp, dst);
7697 } else if (instr->dest.ssa.bit_size == 32) {
7698 Temp tmp;
7699 if (ctx->program->chip_class >= GFX8)
7700 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7701 else
7702 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7703 emit_wqm(ctx, tmp, dst);
7704 } else if (instr->dest.ssa.bit_size == 64) {
7705 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7706 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7707 if (ctx->program->chip_class >= GFX8) {
7708 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7709 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7710 } else {
7711 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7712 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7713 }
7714 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7715 emit_split_vector(ctx, dst, 2);
7716 } else {
7717 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7718 nir_print_instr(&instr->instr, stderr);
7719 fprintf(stderr, "\n");
7720 }
7721 break;
7722 }
7723 case nir_intrinsic_masked_swizzle_amd: {
7724 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7725 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7726 emit_uniform_subgroup(ctx, instr, src);
7727 break;
7728 }
7729 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7730 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7731 if (dst.regClass() == v1) {
7732 emit_wqm(ctx,
7733 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7734 dst);
7735 } else if (dst.regClass() == v2) {
7736 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7737 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7738 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7739 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7740 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7741 emit_split_vector(ctx, dst, 2);
7742 } else {
7743 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7744 nir_print_instr(&instr->instr, stderr);
7745 fprintf(stderr, "\n");
7746 }
7747 break;
7748 }
7749 case nir_intrinsic_write_invocation_amd: {
7750 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7751 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7752 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7753 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7754 if (dst.regClass() == v1) {
7755 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7756 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7757 } else if (dst.regClass() == v2) {
7758 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7759 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7760 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7761 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7762 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7763 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7764 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7765 emit_split_vector(ctx, dst, 2);
7766 } else {
7767 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7768 nir_print_instr(&instr->instr, stderr);
7769 fprintf(stderr, "\n");
7770 }
7771 break;
7772 }
7773 case nir_intrinsic_mbcnt_amd: {
7774 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7775 RegClass rc = RegClass(src.type(), 1);
7776 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7777 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7778 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7779 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7780 emit_wqm(ctx, wqm_tmp, dst);
7781 break;
7782 }
7783 case nir_intrinsic_load_helper_invocation: {
7784 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7785 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7786 ctx->block->kind |= block_kind_needs_lowering;
7787 ctx->program->needs_exact = true;
7788 break;
7789 }
7790 case nir_intrinsic_is_helper_invocation: {
7791 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7792 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7793 ctx->block->kind |= block_kind_needs_lowering;
7794 ctx->program->needs_exact = true;
7795 break;
7796 }
7797 case nir_intrinsic_demote:
7798 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7799
7800 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7801 ctx->cf_info.exec_potentially_empty_discard = true;
7802 ctx->block->kind |= block_kind_uses_demote;
7803 ctx->program->needs_exact = true;
7804 break;
7805 case nir_intrinsic_demote_if: {
7806 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7807 assert(src.regClass() == bld.lm);
7808 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7809 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7810
7811 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7812 ctx->cf_info.exec_potentially_empty_discard = true;
7813 ctx->block->kind |= block_kind_uses_demote;
7814 ctx->program->needs_exact = true;
7815 break;
7816 }
7817 case nir_intrinsic_first_invocation: {
7818 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7819 get_ssa_temp(ctx, &instr->dest.ssa));
7820 break;
7821 }
7822 case nir_intrinsic_shader_clock:
7823 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7824 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7825 break;
7826 case nir_intrinsic_load_vertex_id_zero_base: {
7827 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7828 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7829 break;
7830 }
7831 case nir_intrinsic_load_first_vertex: {
7832 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7833 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7834 break;
7835 }
7836 case nir_intrinsic_load_base_instance: {
7837 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7838 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7839 break;
7840 }
7841 case nir_intrinsic_load_instance_id: {
7842 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7843 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7844 break;
7845 }
7846 case nir_intrinsic_load_draw_id: {
7847 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7848 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7849 break;
7850 }
7851 case nir_intrinsic_load_invocation_id: {
7852 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7853
7854 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7855 if (ctx->options->chip_class >= GFX10)
7856 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7857 else
7858 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7859 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7860 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7861 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7862 } else {
7863 unreachable("Unsupported stage for load_invocation_id");
7864 }
7865
7866 break;
7867 }
7868 case nir_intrinsic_load_primitive_id: {
7869 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7870
7871 switch (ctx->shader->info.stage) {
7872 case MESA_SHADER_GEOMETRY:
7873 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7874 break;
7875 case MESA_SHADER_TESS_CTRL:
7876 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7877 break;
7878 case MESA_SHADER_TESS_EVAL:
7879 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7880 break;
7881 default:
7882 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7883 }
7884
7885 break;
7886 }
7887 case nir_intrinsic_load_patch_vertices_in: {
7888 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7889 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
7890
7891 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7892 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
7893 break;
7894 }
7895 case nir_intrinsic_emit_vertex_with_counter: {
7896 visit_emit_vertex_with_counter(ctx, instr);
7897 break;
7898 }
7899 case nir_intrinsic_end_primitive_with_counter: {
7900 unsigned stream = nir_intrinsic_stream_id(instr);
7901 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
7902 break;
7903 }
7904 case nir_intrinsic_set_vertex_count: {
7905 /* unused, the HW keeps track of this for us */
7906 break;
7907 }
7908 default:
7909 fprintf(stderr, "Unimplemented intrinsic instr: ");
7910 nir_print_instr(&instr->instr, stderr);
7911 fprintf(stderr, "\n");
7912 abort();
7913
7914 break;
7915 }
7916 }
7917
7918
7919 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
7920 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
7921 enum glsl_base_type *stype)
7922 {
7923 nir_deref_instr *texture_deref_instr = NULL;
7924 nir_deref_instr *sampler_deref_instr = NULL;
7925 int plane = -1;
7926
7927 for (unsigned i = 0; i < instr->num_srcs; i++) {
7928 switch (instr->src[i].src_type) {
7929 case nir_tex_src_texture_deref:
7930 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
7931 break;
7932 case nir_tex_src_sampler_deref:
7933 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
7934 break;
7935 case nir_tex_src_plane:
7936 plane = nir_src_as_int(instr->src[i].src);
7937 break;
7938 default:
7939 break;
7940 }
7941 }
7942
7943 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
7944
7945 if (!sampler_deref_instr)
7946 sampler_deref_instr = texture_deref_instr;
7947
7948 if (plane >= 0) {
7949 assert(instr->op != nir_texop_txf_ms &&
7950 instr->op != nir_texop_samples_identical);
7951 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
7952 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
7953 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7954 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
7955 } else if (instr->op == nir_texop_fragment_mask_fetch) {
7956 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7957 } else {
7958 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
7959 }
7960 if (samp_ptr) {
7961 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
7962
7963 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
7964 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
7965 Builder bld(ctx->program, ctx->block);
7966
7967 /* to avoid unnecessary moves, we split and recombine sampler and image */
7968 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
7969 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7970 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7971 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
7972 Definition(img[2]), Definition(img[3]), Definition(img[4]),
7973 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
7974 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
7975 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
7976
7977 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
7978 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
7979 img[0], img[1], img[2], img[3],
7980 img[4], img[5], img[6], img[7]);
7981 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7982 samp[0], samp[1], samp[2], samp[3]);
7983 }
7984 }
7985 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
7986 instr->op == nir_texop_samples_identical))
7987 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7988 }
7989
7990 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
7991 Temp *out_ma, Temp *out_sc, Temp *out_tc)
7992 {
7993 Builder bld(ctx->program, ctx->block);
7994
7995 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
7996 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
7997 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
7998
7999 Operand neg_one(0xbf800000u);
8000 Operand one(0x3f800000u);
8001 Operand two(0x40000000u);
8002 Operand four(0x40800000u);
8003
8004 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8005 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8006 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8007
8008 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8009 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8010 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8011 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8012
8013 // select sc
8014 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8015 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8016 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8017 one, is_ma_y);
8018 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8019
8020 // select tc
8021 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8022 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8023 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8024
8025 // select ma
8026 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8027 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8028 deriv_z, is_ma_z);
8029 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8030 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8031 }
8032
8033 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8034 {
8035 Builder bld(ctx->program, ctx->block);
8036 Temp ma, tc, sc, id;
8037
8038 if (is_array) {
8039 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8040
8041 // see comment in ac_prepare_cube_coords()
8042 if (ctx->options->chip_class <= GFX8)
8043 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8044 }
8045
8046 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8047
8048 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8049 vop3a->operands[0] = Operand(ma);
8050 vop3a->abs[0] = true;
8051 Temp invma = bld.tmp(v1);
8052 vop3a->definitions[0] = Definition(invma);
8053 ctx->block->instructions.emplace_back(std::move(vop3a));
8054
8055 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8056 if (!is_deriv)
8057 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8058
8059 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8060 if (!is_deriv)
8061 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8062
8063 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8064
8065 if (is_deriv) {
8066 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8067 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8068
8069 for (unsigned i = 0; i < 2; i++) {
8070 // see comment in ac_prepare_cube_coords()
8071 Temp deriv_ma;
8072 Temp deriv_sc, deriv_tc;
8073 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8074 &deriv_ma, &deriv_sc, &deriv_tc);
8075
8076 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8077
8078 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8079 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8080 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8081 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8082 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8083 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8084 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8085 }
8086
8087 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8088 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8089 }
8090
8091 if (is_array)
8092 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8093 coords.resize(3);
8094 coords[0] = sc;
8095 coords[1] = tc;
8096 coords[2] = id;
8097 }
8098
8099 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8100 {
8101 if (vec->parent_instr->type != nir_instr_type_alu)
8102 return;
8103 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8104 if (vec_instr->op != nir_op_vec(vec->num_components))
8105 return;
8106
8107 for (unsigned i = 0; i < vec->num_components; i++) {
8108 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8109 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8110 }
8111 }
8112
8113 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8114 {
8115 Builder bld(ctx->program, ctx->block);
8116 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8117 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
8118 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8119 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
8120 std::vector<Temp> coords;
8121 std::vector<Temp> derivs;
8122 nir_const_value *sample_index_cv = NULL;
8123 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8124 enum glsl_base_type stype;
8125 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8126
8127 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8128 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8129 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8130 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8131
8132 for (unsigned i = 0; i < instr->num_srcs; i++) {
8133 switch (instr->src[i].src_type) {
8134 case nir_tex_src_coord: {
8135 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8136 for (unsigned i = 0; i < coord.size(); i++)
8137 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8138 break;
8139 }
8140 case nir_tex_src_bias:
8141 if (instr->op == nir_texop_txb) {
8142 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8143 has_bias = true;
8144 }
8145 break;
8146 case nir_tex_src_lod: {
8147 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8148
8149 if (val && val->f32 <= 0.0) {
8150 level_zero = true;
8151 } else {
8152 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8153 has_lod = true;
8154 }
8155 break;
8156 }
8157 case nir_tex_src_comparator:
8158 if (instr->is_shadow) {
8159 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8160 has_compare = true;
8161 }
8162 break;
8163 case nir_tex_src_offset:
8164 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8165 get_const_vec(instr->src[i].src.ssa, const_offset);
8166 has_offset = true;
8167 break;
8168 case nir_tex_src_ddx:
8169 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8170 has_ddx = true;
8171 break;
8172 case nir_tex_src_ddy:
8173 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8174 has_ddy = true;
8175 break;
8176 case nir_tex_src_ms_index:
8177 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8178 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8179 has_sample_index = true;
8180 break;
8181 case nir_tex_src_texture_offset:
8182 case nir_tex_src_sampler_offset:
8183 default:
8184 break;
8185 }
8186 }
8187
8188 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8189 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8190
8191 if (instr->op == nir_texop_texture_samples) {
8192 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8193
8194 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8195 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8196 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8197 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8198
8199 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8200 samples, Operand(1u), bld.scc(is_msaa));
8201 return;
8202 }
8203
8204 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8205 aco_ptr<Instruction> tmp_instr;
8206 Temp acc, pack = Temp();
8207
8208 uint32_t pack_const = 0;
8209 for (unsigned i = 0; i < offset.size(); i++) {
8210 if (!const_offset[i])
8211 continue;
8212 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8213 }
8214
8215 if (offset.type() == RegType::sgpr) {
8216 for (unsigned i = 0; i < offset.size(); i++) {
8217 if (const_offset[i])
8218 continue;
8219
8220 acc = emit_extract_vector(ctx, offset, i, s1);
8221 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8222
8223 if (i) {
8224 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8225 }
8226
8227 if (pack == Temp()) {
8228 pack = acc;
8229 } else {
8230 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8231 }
8232 }
8233
8234 if (pack_const && pack != Temp())
8235 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8236 } else {
8237 for (unsigned i = 0; i < offset.size(); i++) {
8238 if (const_offset[i])
8239 continue;
8240
8241 acc = emit_extract_vector(ctx, offset, i, v1);
8242 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8243
8244 if (i) {
8245 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8246 }
8247
8248 if (pack == Temp()) {
8249 pack = acc;
8250 } else {
8251 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8252 }
8253 }
8254
8255 if (pack_const && pack != Temp())
8256 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8257 }
8258 if (pack_const && pack == Temp())
8259 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8260 else if (pack == Temp())
8261 has_offset = false;
8262 else
8263 offset = pack;
8264 }
8265
8266 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8267 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8268
8269 /* pack derivatives */
8270 if (has_ddx || has_ddy) {
8271 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8272 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8273 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8274 derivs = {ddy, zero, ddy, zero};
8275 } else {
8276 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8277 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8278 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8279 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8280 }
8281 has_derivs = true;
8282 }
8283
8284 if (instr->coord_components > 1 &&
8285 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8286 instr->is_array &&
8287 instr->op != nir_texop_txf)
8288 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8289
8290 if (instr->coord_components > 2 &&
8291 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8292 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8293 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8294 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8295 instr->is_array &&
8296 instr->op != nir_texop_txf &&
8297 instr->op != nir_texop_txf_ms &&
8298 instr->op != nir_texop_fragment_fetch &&
8299 instr->op != nir_texop_fragment_mask_fetch)
8300 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8301
8302 if (ctx->options->chip_class == GFX9 &&
8303 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8304 instr->op != nir_texop_lod && instr->coord_components) {
8305 assert(coords.size() > 0 && coords.size() < 3);
8306
8307 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8308 Operand((uint32_t) 0) :
8309 Operand((uint32_t) 0x3f000000)));
8310 }
8311
8312 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8313
8314 if (instr->op == nir_texop_samples_identical)
8315 resource = fmask_ptr;
8316
8317 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8318 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8319 instr->op != nir_texop_txs &&
8320 instr->op != nir_texop_fragment_fetch &&
8321 instr->op != nir_texop_fragment_mask_fetch) {
8322 assert(has_sample_index);
8323 Operand op(sample_index);
8324 if (sample_index_cv)
8325 op = Operand(sample_index_cv->u32);
8326 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8327 }
8328
8329 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8330 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8331 Temp off = emit_extract_vector(ctx, offset, i, v1);
8332 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8333 }
8334 has_offset = false;
8335 }
8336
8337 /* Build tex instruction */
8338 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8339 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8340 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8341 : 0;
8342 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8343 Temp tmp_dst = dst;
8344
8345 /* gather4 selects the component by dmask and always returns vec4 */
8346 if (instr->op == nir_texop_tg4) {
8347 assert(instr->dest.ssa.num_components == 4);
8348 if (instr->is_shadow)
8349 dmask = 1;
8350 else
8351 dmask = 1 << instr->component;
8352 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8353 tmp_dst = bld.tmp(v4);
8354 } else if (instr->op == nir_texop_samples_identical) {
8355 tmp_dst = bld.tmp(v1);
8356 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8357 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8358 }
8359
8360 aco_ptr<MIMG_instruction> tex;
8361 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8362 if (!has_lod)
8363 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8364
8365 bool div_by_6 = instr->op == nir_texop_txs &&
8366 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8367 instr->is_array &&
8368 (dmask & (1 << 2));
8369 if (tmp_dst.id() == dst.id() && div_by_6)
8370 tmp_dst = bld.tmp(tmp_dst.regClass());
8371
8372 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8373 tex->operands[0] = Operand(resource);
8374 tex->operands[1] = Operand(s4); /* no sampler */
8375 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8376 if (ctx->options->chip_class == GFX9 &&
8377 instr->op == nir_texop_txs &&
8378 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8379 instr->is_array) {
8380 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8381 } else if (instr->op == nir_texop_query_levels) {
8382 tex->dmask = 1 << 3;
8383 } else {
8384 tex->dmask = dmask;
8385 }
8386 tex->da = da;
8387 tex->definitions[0] = Definition(tmp_dst);
8388 tex->dim = dim;
8389 tex->can_reorder = true;
8390 ctx->block->instructions.emplace_back(std::move(tex));
8391
8392 if (div_by_6) {
8393 /* divide 3rd value by 6 by multiplying with magic number */
8394 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8395 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8396 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8397 assert(instr->dest.ssa.num_components == 3);
8398 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8399 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8400 emit_extract_vector(ctx, tmp_dst, 0, v1),
8401 emit_extract_vector(ctx, tmp_dst, 1, v1),
8402 by_6);
8403
8404 }
8405
8406 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8407 return;
8408 }
8409
8410 Temp tg4_compare_cube_wa64 = Temp();
8411
8412 if (tg4_integer_workarounds) {
8413 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8414 tex->operands[0] = Operand(resource);
8415 tex->operands[1] = Operand(s4); /* no sampler */
8416 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8417 tex->dim = dim;
8418 tex->dmask = 0x3;
8419 tex->da = da;
8420 Temp size = bld.tmp(v2);
8421 tex->definitions[0] = Definition(size);
8422 tex->can_reorder = true;
8423 ctx->block->instructions.emplace_back(std::move(tex));
8424 emit_split_vector(ctx, size, size.size());
8425
8426 Temp half_texel[2];
8427 for (unsigned i = 0; i < 2; i++) {
8428 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8429 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8430 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8431 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8432 }
8433
8434 Temp new_coords[2] = {
8435 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8436 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8437 };
8438
8439 if (tg4_integer_cube_workaround) {
8440 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8441 Temp desc[resource.size()];
8442 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8443 Format::PSEUDO, 1, resource.size())};
8444 split->operands[0] = Operand(resource);
8445 for (unsigned i = 0; i < resource.size(); i++) {
8446 desc[i] = bld.tmp(s1);
8447 split->definitions[i] = Definition(desc[i]);
8448 }
8449 ctx->block->instructions.emplace_back(std::move(split));
8450
8451 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8452 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8453 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8454
8455 Temp nfmt;
8456 if (stype == GLSL_TYPE_UINT) {
8457 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8458 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8459 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8460 bld.scc(compare_cube_wa));
8461 } else {
8462 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8463 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8464 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8465 bld.scc(compare_cube_wa));
8466 }
8467 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8468 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8469
8470 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8471
8472 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8473 Operand((uint32_t)C_008F14_NUM_FORMAT));
8474 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8475
8476 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8477 Format::PSEUDO, resource.size(), 1)};
8478 for (unsigned i = 0; i < resource.size(); i++)
8479 vec->operands[i] = Operand(desc[i]);
8480 resource = bld.tmp(resource.regClass());
8481 vec->definitions[0] = Definition(resource);
8482 ctx->block->instructions.emplace_back(std::move(vec));
8483
8484 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8485 new_coords[0], coords[0], tg4_compare_cube_wa64);
8486 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8487 new_coords[1], coords[1], tg4_compare_cube_wa64);
8488 }
8489 coords[0] = new_coords[0];
8490 coords[1] = new_coords[1];
8491 }
8492
8493 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8494 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8495
8496 assert(coords.size() == 1);
8497 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8498 aco_opcode op;
8499 switch (last_bit) {
8500 case 1:
8501 op = aco_opcode::buffer_load_format_x; break;
8502 case 2:
8503 op = aco_opcode::buffer_load_format_xy; break;
8504 case 3:
8505 op = aco_opcode::buffer_load_format_xyz; break;
8506 case 4:
8507 op = aco_opcode::buffer_load_format_xyzw; break;
8508 default:
8509 unreachable("Tex instruction loads more than 4 components.");
8510 }
8511
8512 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8513 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8514 tmp_dst = dst;
8515 else
8516 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8517
8518 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8519 mubuf->operands[0] = Operand(resource);
8520 mubuf->operands[1] = Operand(coords[0]);
8521 mubuf->operands[2] = Operand((uint32_t) 0);
8522 mubuf->definitions[0] = Definition(tmp_dst);
8523 mubuf->idxen = true;
8524 mubuf->can_reorder = true;
8525 ctx->block->instructions.emplace_back(std::move(mubuf));
8526
8527 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8528 return;
8529 }
8530
8531 /* gather MIMG address components */
8532 std::vector<Temp> args;
8533 if (has_offset)
8534 args.emplace_back(offset);
8535 if (has_bias)
8536 args.emplace_back(bias);
8537 if (has_compare)
8538 args.emplace_back(compare);
8539 if (has_derivs)
8540 args.insert(args.end(), derivs.begin(), derivs.end());
8541
8542 args.insert(args.end(), coords.begin(), coords.end());
8543 if (has_sample_index)
8544 args.emplace_back(sample_index);
8545 if (has_lod)
8546 args.emplace_back(lod);
8547
8548 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8549 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8550 vec->definitions[0] = Definition(arg);
8551 for (unsigned i = 0; i < args.size(); i++)
8552 vec->operands[i] = Operand(args[i]);
8553 ctx->block->instructions.emplace_back(std::move(vec));
8554
8555
8556 if (instr->op == nir_texop_txf ||
8557 instr->op == nir_texop_txf_ms ||
8558 instr->op == nir_texop_samples_identical ||
8559 instr->op == nir_texop_fragment_fetch ||
8560 instr->op == nir_texop_fragment_mask_fetch) {
8561 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8562 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8563 tex->operands[0] = Operand(resource);
8564 tex->operands[1] = Operand(s4); /* no sampler */
8565 tex->operands[2] = Operand(arg);
8566 tex->dim = dim;
8567 tex->dmask = dmask;
8568 tex->unrm = true;
8569 tex->da = da;
8570 tex->definitions[0] = Definition(tmp_dst);
8571 tex->can_reorder = true;
8572 ctx->block->instructions.emplace_back(std::move(tex));
8573
8574 if (instr->op == nir_texop_samples_identical) {
8575 assert(dmask == 1 && dst.regClass() == v1);
8576 assert(dst.id() != tmp_dst.id());
8577
8578 Temp tmp = bld.tmp(bld.lm);
8579 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8580 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8581
8582 } else {
8583 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8584 }
8585 return;
8586 }
8587
8588 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8589 aco_opcode opcode = aco_opcode::image_sample;
8590 if (has_offset) { /* image_sample_*_o */
8591 if (has_compare) {
8592 opcode = aco_opcode::image_sample_c_o;
8593 if (has_derivs)
8594 opcode = aco_opcode::image_sample_c_d_o;
8595 if (has_bias)
8596 opcode = aco_opcode::image_sample_c_b_o;
8597 if (level_zero)
8598 opcode = aco_opcode::image_sample_c_lz_o;
8599 if (has_lod)
8600 opcode = aco_opcode::image_sample_c_l_o;
8601 } else {
8602 opcode = aco_opcode::image_sample_o;
8603 if (has_derivs)
8604 opcode = aco_opcode::image_sample_d_o;
8605 if (has_bias)
8606 opcode = aco_opcode::image_sample_b_o;
8607 if (level_zero)
8608 opcode = aco_opcode::image_sample_lz_o;
8609 if (has_lod)
8610 opcode = aco_opcode::image_sample_l_o;
8611 }
8612 } else { /* no offset */
8613 if (has_compare) {
8614 opcode = aco_opcode::image_sample_c;
8615 if (has_derivs)
8616 opcode = aco_opcode::image_sample_c_d;
8617 if (has_bias)
8618 opcode = aco_opcode::image_sample_c_b;
8619 if (level_zero)
8620 opcode = aco_opcode::image_sample_c_lz;
8621 if (has_lod)
8622 opcode = aco_opcode::image_sample_c_l;
8623 } else {
8624 opcode = aco_opcode::image_sample;
8625 if (has_derivs)
8626 opcode = aco_opcode::image_sample_d;
8627 if (has_bias)
8628 opcode = aco_opcode::image_sample_b;
8629 if (level_zero)
8630 opcode = aco_opcode::image_sample_lz;
8631 if (has_lod)
8632 opcode = aco_opcode::image_sample_l;
8633 }
8634 }
8635
8636 if (instr->op == nir_texop_tg4) {
8637 if (has_offset) {
8638 opcode = aco_opcode::image_gather4_lz_o;
8639 if (has_compare)
8640 opcode = aco_opcode::image_gather4_c_lz_o;
8641 } else {
8642 opcode = aco_opcode::image_gather4_lz;
8643 if (has_compare)
8644 opcode = aco_opcode::image_gather4_c_lz;
8645 }
8646 } else if (instr->op == nir_texop_lod) {
8647 opcode = aco_opcode::image_get_lod;
8648 }
8649
8650 /* we don't need the bias, sample index, compare value or offset to be
8651 * computed in WQM but if the p_create_vector copies the coordinates, then it
8652 * needs to be in WQM */
8653 if (ctx->stage == fragment_fs &&
8654 !has_derivs && !has_lod && !level_zero &&
8655 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8656 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8657 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8658
8659 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8660 tex->operands[0] = Operand(resource);
8661 tex->operands[1] = Operand(sampler);
8662 tex->operands[2] = Operand(arg);
8663 tex->dim = dim;
8664 tex->dmask = dmask;
8665 tex->da = da;
8666 tex->definitions[0] = Definition(tmp_dst);
8667 tex->can_reorder = true;
8668 ctx->block->instructions.emplace_back(std::move(tex));
8669
8670 if (tg4_integer_cube_workaround) {
8671 assert(tmp_dst.id() != dst.id());
8672 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8673
8674 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8675 Temp val[4];
8676 for (unsigned i = 0; i < dst.size(); i++) {
8677 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8678 Temp cvt_val;
8679 if (stype == GLSL_TYPE_UINT)
8680 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8681 else
8682 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8683 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8684 }
8685 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8686 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8687 val[0], val[1], val[2], val[3]);
8688 }
8689 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8690 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8691
8692 }
8693
8694
8695 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8696 {
8697 Temp tmp = get_ssa_temp(ctx, ssa);
8698 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8699 return Operand(tmp.regClass());
8700 else
8701 return Operand(tmp);
8702 }
8703
8704 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8705 {
8706 aco_ptr<Pseudo_instruction> phi;
8707 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8708 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8709
8710 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8711 logical |= ctx->block->kind & block_kind_merge;
8712 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8713
8714 /* we want a sorted list of sources, since the predecessor list is also sorted */
8715 std::map<unsigned, nir_ssa_def*> phi_src;
8716 nir_foreach_phi_src(src, instr)
8717 phi_src[src->pred->index] = src->src.ssa;
8718
8719 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8720 unsigned num_operands = 0;
8721 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8722 unsigned num_defined = 0;
8723 unsigned cur_pred_idx = 0;
8724 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8725 if (cur_pred_idx < preds.size()) {
8726 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8727 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8728 unsigned skipped = 0;
8729 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8730 skipped++;
8731 if (cur_pred_idx + skipped < preds.size()) {
8732 for (unsigned i = 0; i < skipped; i++)
8733 operands[num_operands++] = Operand(dst.regClass());
8734 cur_pred_idx += skipped;
8735 } else {
8736 continue;
8737 }
8738 }
8739 /* Handle missing predecessors at the end. This shouldn't happen with loop
8740 * headers and we can't ignore these sources for loop header phis. */
8741 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8742 continue;
8743 cur_pred_idx++;
8744 Operand op = get_phi_operand(ctx, src.second);
8745 operands[num_operands++] = op;
8746 num_defined += !op.isUndefined();
8747 }
8748 /* handle block_kind_continue_or_break at loop exit blocks */
8749 while (cur_pred_idx++ < preds.size())
8750 operands[num_operands++] = Operand(dst.regClass());
8751
8752 /* If the loop ends with a break, still add a linear continue edge in case
8753 * that break is divergent or continue_or_break is used. We'll either remove
8754 * this operand later in visit_loop() if it's not necessary or replace the
8755 * undef with something correct. */
8756 if (!logical && ctx->block->kind & block_kind_loop_header) {
8757 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
8758 nir_block *last = nir_loop_last_block(loop);
8759 if (last->successors[0] != instr->instr.block)
8760 operands[num_operands++] = Operand(RegClass());
8761 }
8762
8763 if (num_defined == 0) {
8764 Builder bld(ctx->program, ctx->block);
8765 if (dst.regClass() == s1) {
8766 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8767 } else if (dst.regClass() == v1) {
8768 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8769 } else {
8770 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8771 for (unsigned i = 0; i < dst.size(); i++)
8772 vec->operands[i] = Operand(0u);
8773 vec->definitions[0] = Definition(dst);
8774 ctx->block->instructions.emplace_back(std::move(vec));
8775 }
8776 return;
8777 }
8778
8779 /* we can use a linear phi in some cases if one src is undef */
8780 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8781 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8782
8783 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8784 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8785 assert(invert->kind & block_kind_invert);
8786
8787 unsigned then_block = invert->linear_preds[0];
8788
8789 Block* insert_block = NULL;
8790 for (unsigned i = 0; i < num_operands; i++) {
8791 Operand op = operands[i];
8792 if (op.isUndefined())
8793 continue;
8794 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8795 phi->operands[0] = op;
8796 break;
8797 }
8798 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8799 phi->operands[1] = Operand(dst.regClass());
8800 phi->definitions[0] = Definition(dst);
8801 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8802 return;
8803 }
8804
8805 /* try to scalarize vector phis */
8806 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8807 // TODO: scalarize linear phis on divergent ifs
8808 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8809 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8810 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8811 Operand src = operands[i];
8812 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8813 can_scalarize = false;
8814 }
8815 if (can_scalarize) {
8816 unsigned num_components = instr->dest.ssa.num_components;
8817 assert(dst.size() % num_components == 0);
8818 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8819
8820 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8821 for (unsigned k = 0; k < num_components; k++) {
8822 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8823 for (unsigned i = 0; i < num_operands; i++) {
8824 Operand src = operands[i];
8825 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8826 }
8827 Temp phi_dst = {ctx->program->allocateId(), rc};
8828 phi->definitions[0] = Definition(phi_dst);
8829 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8830 new_vec[k] = phi_dst;
8831 vec->operands[k] = Operand(phi_dst);
8832 }
8833 vec->definitions[0] = Definition(dst);
8834 ctx->block->instructions.emplace_back(std::move(vec));
8835 ctx->allocated_vec.emplace(dst.id(), new_vec);
8836 return;
8837 }
8838 }
8839
8840 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8841 for (unsigned i = 0; i < num_operands; i++)
8842 phi->operands[i] = operands[i];
8843 phi->definitions[0] = Definition(dst);
8844 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8845 }
8846
8847
8848 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
8849 {
8850 Temp dst = get_ssa_temp(ctx, &instr->def);
8851
8852 assert(dst.type() == RegType::sgpr);
8853
8854 if (dst.size() == 1) {
8855 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
8856 } else {
8857 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8858 for (unsigned i = 0; i < dst.size(); i++)
8859 vec->operands[i] = Operand(0u);
8860 vec->definitions[0] = Definition(dst);
8861 ctx->block->instructions.emplace_back(std::move(vec));
8862 }
8863 }
8864
8865 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
8866 {
8867 Builder bld(ctx->program, ctx->block);
8868 Block *logical_target;
8869 append_logical_end(ctx->block);
8870 unsigned idx = ctx->block->index;
8871
8872 switch (instr->type) {
8873 case nir_jump_break:
8874 logical_target = ctx->cf_info.parent_loop.exit;
8875 add_logical_edge(idx, logical_target);
8876 ctx->block->kind |= block_kind_break;
8877
8878 if (!ctx->cf_info.parent_if.is_divergent &&
8879 !ctx->cf_info.parent_loop.has_divergent_continue) {
8880 /* uniform break - directly jump out of the loop */
8881 ctx->block->kind |= block_kind_uniform;
8882 ctx->cf_info.has_branch = true;
8883 bld.branch(aco_opcode::p_branch);
8884 add_linear_edge(idx, logical_target);
8885 return;
8886 }
8887 ctx->cf_info.parent_loop.has_divergent_branch = true;
8888 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8889 break;
8890 case nir_jump_continue:
8891 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8892 add_logical_edge(idx, logical_target);
8893 ctx->block->kind |= block_kind_continue;
8894
8895 if (ctx->cf_info.parent_if.is_divergent) {
8896 /* for potential uniform breaks after this continue,
8897 we must ensure that they are handled correctly */
8898 ctx->cf_info.parent_loop.has_divergent_continue = true;
8899 ctx->cf_info.parent_loop.has_divergent_branch = true;
8900 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8901 } else {
8902 /* uniform continue - directly jump to the loop header */
8903 ctx->block->kind |= block_kind_uniform;
8904 ctx->cf_info.has_branch = true;
8905 bld.branch(aco_opcode::p_branch);
8906 add_linear_edge(idx, logical_target);
8907 return;
8908 }
8909 break;
8910 default:
8911 fprintf(stderr, "Unknown NIR jump instr: ");
8912 nir_print_instr(&instr->instr, stderr);
8913 fprintf(stderr, "\n");
8914 abort();
8915 }
8916
8917 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
8918 ctx->cf_info.exec_potentially_empty_break = true;
8919 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
8920 }
8921
8922 /* remove critical edges from linear CFG */
8923 bld.branch(aco_opcode::p_branch);
8924 Block* break_block = ctx->program->create_and_insert_block();
8925 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8926 break_block->kind |= block_kind_uniform;
8927 add_linear_edge(idx, break_block);
8928 /* the loop_header pointer might be invalidated by this point */
8929 if (instr->type == nir_jump_continue)
8930 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8931 add_linear_edge(break_block->index, logical_target);
8932 bld.reset(break_block);
8933 bld.branch(aco_opcode::p_branch);
8934
8935 Block* continue_block = ctx->program->create_and_insert_block();
8936 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8937 add_linear_edge(idx, continue_block);
8938 append_logical_start(continue_block);
8939 ctx->block = continue_block;
8940 return;
8941 }
8942
8943 void visit_block(isel_context *ctx, nir_block *block)
8944 {
8945 nir_foreach_instr(instr, block) {
8946 switch (instr->type) {
8947 case nir_instr_type_alu:
8948 visit_alu_instr(ctx, nir_instr_as_alu(instr));
8949 break;
8950 case nir_instr_type_load_const:
8951 visit_load_const(ctx, nir_instr_as_load_const(instr));
8952 break;
8953 case nir_instr_type_intrinsic:
8954 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
8955 break;
8956 case nir_instr_type_tex:
8957 visit_tex(ctx, nir_instr_as_tex(instr));
8958 break;
8959 case nir_instr_type_phi:
8960 visit_phi(ctx, nir_instr_as_phi(instr));
8961 break;
8962 case nir_instr_type_ssa_undef:
8963 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
8964 break;
8965 case nir_instr_type_deref:
8966 break;
8967 case nir_instr_type_jump:
8968 visit_jump(ctx, nir_instr_as_jump(instr));
8969 break;
8970 default:
8971 fprintf(stderr, "Unknown NIR instr type: ");
8972 nir_print_instr(instr, stderr);
8973 fprintf(stderr, "\n");
8974 //abort();
8975 }
8976 }
8977
8978 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8979 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
8980 }
8981
8982
8983
8984 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
8985 aco_ptr<Instruction>& header_phi, Operand *vals)
8986 {
8987 vals[0] = Operand(header_phi->definitions[0].getTemp());
8988 RegClass rc = vals[0].regClass();
8989
8990 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
8991
8992 unsigned next_pred = 1;
8993
8994 for (unsigned idx = first + 1; idx <= last; idx++) {
8995 Block& block = ctx->program->blocks[idx];
8996 if (block.loop_nest_depth != loop_nest_depth) {
8997 vals[idx - first] = vals[idx - 1 - first];
8998 continue;
8999 }
9000
9001 if (block.kind & block_kind_continue) {
9002 vals[idx - first] = header_phi->operands[next_pred];
9003 next_pred++;
9004 continue;
9005 }
9006
9007 bool all_same = true;
9008 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9009 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9010
9011 Operand val;
9012 if (all_same) {
9013 val = vals[block.linear_preds[0] - first];
9014 } else {
9015 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9016 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9017 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9018 phi->operands[i] = vals[block.linear_preds[i] - first];
9019 val = Operand(Temp(ctx->program->allocateId(), rc));
9020 phi->definitions[0] = Definition(val.getTemp());
9021 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9022 }
9023 vals[idx - first] = val;
9024 }
9025
9026 return vals[last - first];
9027 }
9028
9029 static void visit_loop(isel_context *ctx, nir_loop *loop)
9030 {
9031 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9032 append_logical_end(ctx->block);
9033 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9034 Builder bld(ctx->program, ctx->block);
9035 bld.branch(aco_opcode::p_branch);
9036 unsigned loop_preheader_idx = ctx->block->index;
9037
9038 Block loop_exit = Block();
9039 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9040 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9041
9042 Block* loop_header = ctx->program->create_and_insert_block();
9043 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9044 loop_header->kind |= block_kind_loop_header;
9045 add_edge(loop_preheader_idx, loop_header);
9046 ctx->block = loop_header;
9047
9048 /* emit loop body */
9049 unsigned loop_header_idx = loop_header->index;
9050 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9051 append_logical_start(ctx->block);
9052 bool unreachable = visit_cf_list(ctx, &loop->body);
9053
9054 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9055 if (!ctx->cf_info.has_branch) {
9056 append_logical_end(ctx->block);
9057 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9058 /* Discards can result in code running with an empty exec mask.
9059 * This would result in divergent breaks not ever being taken. As a
9060 * workaround, break the loop when the loop mask is empty instead of
9061 * always continuing. */
9062 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9063 unsigned block_idx = ctx->block->index;
9064
9065 /* create helper blocks to avoid critical edges */
9066 Block *break_block = ctx->program->create_and_insert_block();
9067 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9068 break_block->kind = block_kind_uniform;
9069 bld.reset(break_block);
9070 bld.branch(aco_opcode::p_branch);
9071 add_linear_edge(block_idx, break_block);
9072 add_linear_edge(break_block->index, &loop_exit);
9073
9074 Block *continue_block = ctx->program->create_and_insert_block();
9075 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9076 continue_block->kind = block_kind_uniform;
9077 bld.reset(continue_block);
9078 bld.branch(aco_opcode::p_branch);
9079 add_linear_edge(block_idx, continue_block);
9080 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9081
9082 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9083 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9084 ctx->block = &ctx->program->blocks[block_idx];
9085 } else {
9086 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9087 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9088 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9089 else
9090 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9091 }
9092
9093 bld.reset(ctx->block);
9094 bld.branch(aco_opcode::p_branch);
9095 }
9096
9097 /* Fixup phis in loop header from unreachable blocks.
9098 * has_branch/has_divergent_branch also indicates if the loop ends with a
9099 * break/continue instruction, but we don't emit those if unreachable=true */
9100 if (unreachable) {
9101 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9102 bool linear = ctx->cf_info.has_branch;
9103 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9104 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9105 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9106 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9107 /* the last operand should be the one that needs to be removed */
9108 instr->operands.pop_back();
9109 } else if (!is_phi(instr)) {
9110 break;
9111 }
9112 }
9113 }
9114
9115 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9116 * and the previous one shouldn't both happen at once because a break in the
9117 * merge block would get CSE'd */
9118 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9119 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9120 Operand vals[num_vals];
9121 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9122 if (instr->opcode == aco_opcode::p_linear_phi) {
9123 if (ctx->cf_info.has_branch)
9124 instr->operands.pop_back();
9125 else
9126 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9127 } else if (!is_phi(instr)) {
9128 break;
9129 }
9130 }
9131 }
9132
9133 ctx->cf_info.has_branch = false;
9134
9135 // TODO: if the loop has not a single exit, we must add one °°
9136 /* emit loop successor block */
9137 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9138 append_logical_start(ctx->block);
9139
9140 #if 0
9141 // TODO: check if it is beneficial to not branch on continues
9142 /* trim linear phis in loop header */
9143 for (auto&& instr : loop_entry->instructions) {
9144 if (instr->opcode == aco_opcode::p_linear_phi) {
9145 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9146 new_phi->definitions[0] = instr->definitions[0];
9147 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9148 new_phi->operands[i] = instr->operands[i];
9149 /* check that the remaining operands are all the same */
9150 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9151 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9152 instr.swap(new_phi);
9153 } else if (instr->opcode == aco_opcode::p_phi) {
9154 continue;
9155 } else {
9156 break;
9157 }
9158 }
9159 #endif
9160 }
9161
9162 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9163 {
9164 ic->cond = cond;
9165
9166 append_logical_end(ctx->block);
9167 ctx->block->kind |= block_kind_branch;
9168
9169 /* branch to linear then block */
9170 assert(cond.regClass() == ctx->program->lane_mask);
9171 aco_ptr<Pseudo_branch_instruction> branch;
9172 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9173 branch->operands[0] = Operand(cond);
9174 ctx->block->instructions.push_back(std::move(branch));
9175
9176 ic->BB_if_idx = ctx->block->index;
9177 ic->BB_invert = Block();
9178 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9179 /* Invert blocks are intentionally not marked as top level because they
9180 * are not part of the logical cfg. */
9181 ic->BB_invert.kind |= block_kind_invert;
9182 ic->BB_endif = Block();
9183 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9184 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9185
9186 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9187 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9188 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9189 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9190 ctx->cf_info.parent_if.is_divergent = true;
9191
9192 /* divergent branches use cbranch_execz */
9193 ctx->cf_info.exec_potentially_empty_discard = false;
9194 ctx->cf_info.exec_potentially_empty_break = false;
9195 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9196
9197 /** emit logical then block */
9198 Block* BB_then_logical = ctx->program->create_and_insert_block();
9199 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9200 add_edge(ic->BB_if_idx, BB_then_logical);
9201 ctx->block = BB_then_logical;
9202 append_logical_start(BB_then_logical);
9203 }
9204
9205 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9206 {
9207 Block *BB_then_logical = ctx->block;
9208 append_logical_end(BB_then_logical);
9209 /* branch from logical then block to invert block */
9210 aco_ptr<Pseudo_branch_instruction> branch;
9211 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9212 BB_then_logical->instructions.emplace_back(std::move(branch));
9213 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9214 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9215 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9216 BB_then_logical->kind |= block_kind_uniform;
9217 assert(!ctx->cf_info.has_branch);
9218 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9219 ctx->cf_info.parent_loop.has_divergent_branch = false;
9220
9221 /** emit linear then block */
9222 Block* BB_then_linear = ctx->program->create_and_insert_block();
9223 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9224 BB_then_linear->kind |= block_kind_uniform;
9225 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9226 /* branch from linear then block to invert block */
9227 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9228 BB_then_linear->instructions.emplace_back(std::move(branch));
9229 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9230
9231 /** emit invert merge block */
9232 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9233 ic->invert_idx = ctx->block->index;
9234
9235 /* branch to linear else block (skip else) */
9236 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9237 branch->operands[0] = Operand(ic->cond);
9238 ctx->block->instructions.push_back(std::move(branch));
9239
9240 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9241 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9242 ic->exec_potentially_empty_break_depth_old =
9243 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9244 /* divergent branches use cbranch_execz */
9245 ctx->cf_info.exec_potentially_empty_discard = false;
9246 ctx->cf_info.exec_potentially_empty_break = false;
9247 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9248
9249 /** emit logical else block */
9250 Block* BB_else_logical = ctx->program->create_and_insert_block();
9251 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9252 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9253 add_linear_edge(ic->invert_idx, BB_else_logical);
9254 ctx->block = BB_else_logical;
9255 append_logical_start(BB_else_logical);
9256 }
9257
9258 static void end_divergent_if(isel_context *ctx, if_context *ic)
9259 {
9260 Block *BB_else_logical = ctx->block;
9261 append_logical_end(BB_else_logical);
9262
9263 /* branch from logical else block to endif block */
9264 aco_ptr<Pseudo_branch_instruction> branch;
9265 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9266 BB_else_logical->instructions.emplace_back(std::move(branch));
9267 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9268 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9269 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9270 BB_else_logical->kind |= block_kind_uniform;
9271
9272 assert(!ctx->cf_info.has_branch);
9273 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9274
9275
9276 /** emit linear else block */
9277 Block* BB_else_linear = ctx->program->create_and_insert_block();
9278 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9279 BB_else_linear->kind |= block_kind_uniform;
9280 add_linear_edge(ic->invert_idx, BB_else_linear);
9281
9282 /* branch from linear else block to endif block */
9283 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9284 BB_else_linear->instructions.emplace_back(std::move(branch));
9285 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9286
9287
9288 /** emit endif merge block */
9289 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9290 append_logical_start(ctx->block);
9291
9292
9293 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9294 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9295 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9296 ctx->cf_info.exec_potentially_empty_break_depth =
9297 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9298 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9299 !ctx->cf_info.parent_if.is_divergent) {
9300 ctx->cf_info.exec_potentially_empty_break = false;
9301 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9302 }
9303 /* uniform control flow never has an empty exec-mask */
9304 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9305 ctx->cf_info.exec_potentially_empty_discard = false;
9306 ctx->cf_info.exec_potentially_empty_break = false;
9307 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9308 }
9309 }
9310
9311 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9312 {
9313 assert(cond.regClass() == s1);
9314
9315 append_logical_end(ctx->block);
9316 ctx->block->kind |= block_kind_uniform;
9317
9318 aco_ptr<Pseudo_branch_instruction> branch;
9319 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9320 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9321 branch->operands[0] = Operand(cond);
9322 branch->operands[0].setFixed(scc);
9323 ctx->block->instructions.emplace_back(std::move(branch));
9324
9325 ic->BB_if_idx = ctx->block->index;
9326 ic->BB_endif = Block();
9327 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9328 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9329
9330 ctx->cf_info.has_branch = false;
9331 ctx->cf_info.parent_loop.has_divergent_branch = false;
9332
9333 /** emit then block */
9334 Block* BB_then = ctx->program->create_and_insert_block();
9335 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9336 add_edge(ic->BB_if_idx, BB_then);
9337 append_logical_start(BB_then);
9338 ctx->block = BB_then;
9339 }
9340
9341 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9342 {
9343 Block *BB_then = ctx->block;
9344
9345 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9346 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9347
9348 if (!ic->uniform_has_then_branch) {
9349 append_logical_end(BB_then);
9350 /* branch from then block to endif block */
9351 aco_ptr<Pseudo_branch_instruction> branch;
9352 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9353 BB_then->instructions.emplace_back(std::move(branch));
9354 add_linear_edge(BB_then->index, &ic->BB_endif);
9355 if (!ic->then_branch_divergent)
9356 add_logical_edge(BB_then->index, &ic->BB_endif);
9357 BB_then->kind |= block_kind_uniform;
9358 }
9359
9360 ctx->cf_info.has_branch = false;
9361 ctx->cf_info.parent_loop.has_divergent_branch = false;
9362
9363 /** emit else block */
9364 Block* BB_else = ctx->program->create_and_insert_block();
9365 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9366 add_edge(ic->BB_if_idx, BB_else);
9367 append_logical_start(BB_else);
9368 ctx->block = BB_else;
9369 }
9370
9371 static void end_uniform_if(isel_context *ctx, if_context *ic)
9372 {
9373 Block *BB_else = ctx->block;
9374
9375 if (!ctx->cf_info.has_branch) {
9376 append_logical_end(BB_else);
9377 /* branch from then block to endif block */
9378 aco_ptr<Pseudo_branch_instruction> branch;
9379 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9380 BB_else->instructions.emplace_back(std::move(branch));
9381 add_linear_edge(BB_else->index, &ic->BB_endif);
9382 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9383 add_logical_edge(BB_else->index, &ic->BB_endif);
9384 BB_else->kind |= block_kind_uniform;
9385 }
9386
9387 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9388 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9389
9390 /** emit endif merge block */
9391 if (!ctx->cf_info.has_branch) {
9392 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9393 append_logical_start(ctx->block);
9394 }
9395 }
9396
9397 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9398 {
9399 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9400 Builder bld(ctx->program, ctx->block);
9401 aco_ptr<Pseudo_branch_instruction> branch;
9402 if_context ic;
9403
9404 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
9405 /**
9406 * Uniform conditionals are represented in the following way*) :
9407 *
9408 * The linear and logical CFG:
9409 * BB_IF
9410 * / \
9411 * BB_THEN (logical) BB_ELSE (logical)
9412 * \ /
9413 * BB_ENDIF
9414 *
9415 * *) Exceptions may be due to break and continue statements within loops
9416 * If a break/continue happens within uniform control flow, it branches
9417 * to the loop exit/entry block. Otherwise, it branches to the next
9418 * merge block.
9419 **/
9420
9421 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9422 assert(cond.regClass() == ctx->program->lane_mask);
9423 cond = bool_to_scalar_condition(ctx, cond);
9424
9425 begin_uniform_if_then(ctx, &ic, cond);
9426 visit_cf_list(ctx, &if_stmt->then_list);
9427
9428 begin_uniform_if_else(ctx, &ic);
9429 visit_cf_list(ctx, &if_stmt->else_list);
9430
9431 end_uniform_if(ctx, &ic);
9432
9433 return !ctx->cf_info.has_branch;
9434 } else { /* non-uniform condition */
9435 /**
9436 * To maintain a logical and linear CFG without critical edges,
9437 * non-uniform conditionals are represented in the following way*) :
9438 *
9439 * The linear CFG:
9440 * BB_IF
9441 * / \
9442 * BB_THEN (logical) BB_THEN (linear)
9443 * \ /
9444 * BB_INVERT (linear)
9445 * / \
9446 * BB_ELSE (logical) BB_ELSE (linear)
9447 * \ /
9448 * BB_ENDIF
9449 *
9450 * The logical CFG:
9451 * BB_IF
9452 * / \
9453 * BB_THEN (logical) BB_ELSE (logical)
9454 * \ /
9455 * BB_ENDIF
9456 *
9457 * *) Exceptions may be due to break and continue statements within loops
9458 **/
9459
9460 begin_divergent_if_then(ctx, &ic, cond);
9461 visit_cf_list(ctx, &if_stmt->then_list);
9462
9463 begin_divergent_if_else(ctx, &ic);
9464 visit_cf_list(ctx, &if_stmt->else_list);
9465
9466 end_divergent_if(ctx, &ic);
9467
9468 return true;
9469 }
9470 }
9471
9472 static bool visit_cf_list(isel_context *ctx,
9473 struct exec_list *list)
9474 {
9475 foreach_list_typed(nir_cf_node, node, node, list) {
9476 switch (node->type) {
9477 case nir_cf_node_block:
9478 visit_block(ctx, nir_cf_node_as_block(node));
9479 break;
9480 case nir_cf_node_if:
9481 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9482 return true;
9483 break;
9484 case nir_cf_node_loop:
9485 visit_loop(ctx, nir_cf_node_as_loop(node));
9486 break;
9487 default:
9488 unreachable("unimplemented cf list type");
9489 }
9490 }
9491 return false;
9492 }
9493
9494 static void create_null_export(isel_context *ctx)
9495 {
9496 /* Some shader stages always need to have exports.
9497 * So when there is none, we need to add a null export.
9498 */
9499
9500 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9501 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9502 Builder bld(ctx->program, ctx->block);
9503 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9504 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9505 }
9506
9507 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9508 {
9509 assert(ctx->stage == vertex_vs ||
9510 ctx->stage == tess_eval_vs ||
9511 ctx->stage == gs_copy_vs ||
9512 ctx->stage == ngg_vertex_gs ||
9513 ctx->stage == ngg_tess_eval_gs);
9514
9515 int offset = (ctx->stage & sw_tes)
9516 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9517 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9518 uint64_t mask = ctx->outputs.mask[slot];
9519 if (!is_pos && !mask)
9520 return false;
9521 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9522 return false;
9523 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9524 exp->enabled_mask = mask;
9525 for (unsigned i = 0; i < 4; ++i) {
9526 if (mask & (1 << i))
9527 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9528 else
9529 exp->operands[i] = Operand(v1);
9530 }
9531 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9532 * Setting valid_mask=1 prevents it and has no other effect.
9533 */
9534 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9535 exp->done = false;
9536 exp->compressed = false;
9537 if (is_pos)
9538 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9539 else
9540 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9541 ctx->block->instructions.emplace_back(std::move(exp));
9542
9543 return true;
9544 }
9545
9546 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9547 {
9548 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9549 exp->enabled_mask = 0;
9550 for (unsigned i = 0; i < 4; ++i)
9551 exp->operands[i] = Operand(v1);
9552 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9553 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9554 exp->enabled_mask |= 0x1;
9555 }
9556 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9557 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9558 exp->enabled_mask |= 0x4;
9559 }
9560 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9561 if (ctx->options->chip_class < GFX9) {
9562 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9563 exp->enabled_mask |= 0x8;
9564 } else {
9565 Builder bld(ctx->program, ctx->block);
9566
9567 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9568 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9569 if (exp->operands[2].isTemp())
9570 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9571
9572 exp->operands[2] = Operand(out);
9573 exp->enabled_mask |= 0x4;
9574 }
9575 }
9576 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9577 exp->done = false;
9578 exp->compressed = false;
9579 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9580 ctx->block->instructions.emplace_back(std::move(exp));
9581 }
9582
9583 static void create_export_phis(isel_context *ctx)
9584 {
9585 /* Used when exports are needed, but the output temps are defined in a preceding block.
9586 * This function will set up phis in order to access the outputs in the next block.
9587 */
9588
9589 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9590 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9591 ctx->block->instructions.pop_back();
9592
9593 Builder bld(ctx->program, ctx->block);
9594
9595 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9596 uint64_t mask = ctx->outputs.mask[slot];
9597 for (unsigned i = 0; i < 4; ++i) {
9598 if (!(mask & (1 << i)))
9599 continue;
9600
9601 Temp old = ctx->outputs.temps[slot * 4 + i];
9602 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9603 ctx->outputs.temps[slot * 4 + i] = phi;
9604 }
9605 }
9606
9607 bld.insert(std::move(logical_start));
9608 }
9609
9610 static void create_vs_exports(isel_context *ctx)
9611 {
9612 assert(ctx->stage == vertex_vs ||
9613 ctx->stage == tess_eval_vs ||
9614 ctx->stage == gs_copy_vs ||
9615 ctx->stage == ngg_vertex_gs ||
9616 ctx->stage == ngg_tess_eval_gs);
9617
9618 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9619 ? &ctx->program->info->tes.outinfo
9620 : &ctx->program->info->vs.outinfo;
9621
9622 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9623 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9624 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9625 }
9626
9627 if (ctx->options->key.has_multiview_view_index) {
9628 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9629 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9630 }
9631
9632 /* the order these position exports are created is important */
9633 int next_pos = 0;
9634 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9635 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9636 export_vs_psiz_layer_viewport(ctx, &next_pos);
9637 exported_pos = true;
9638 }
9639 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9640 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9641 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9642 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9643
9644 if (ctx->export_clip_dists) {
9645 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9646 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9647 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9648 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9649 }
9650
9651 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9652 if (i < VARYING_SLOT_VAR0 &&
9653 i != VARYING_SLOT_LAYER &&
9654 i != VARYING_SLOT_PRIMITIVE_ID)
9655 continue;
9656
9657 export_vs_varying(ctx, i, false, NULL);
9658 }
9659
9660 if (!exported_pos)
9661 create_null_export(ctx);
9662 }
9663
9664 static bool export_fs_mrt_z(isel_context *ctx)
9665 {
9666 Builder bld(ctx->program, ctx->block);
9667 unsigned enabled_channels = 0;
9668 bool compr = false;
9669 Operand values[4];
9670
9671 for (unsigned i = 0; i < 4; ++i) {
9672 values[i] = Operand(v1);
9673 }
9674
9675 /* Both stencil and sample mask only need 16-bits. */
9676 if (!ctx->program->info->ps.writes_z &&
9677 (ctx->program->info->ps.writes_stencil ||
9678 ctx->program->info->ps.writes_sample_mask)) {
9679 compr = true; /* COMPR flag */
9680
9681 if (ctx->program->info->ps.writes_stencil) {
9682 /* Stencil should be in X[23:16]. */
9683 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9684 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9685 enabled_channels |= 0x3;
9686 }
9687
9688 if (ctx->program->info->ps.writes_sample_mask) {
9689 /* SampleMask should be in Y[15:0]. */
9690 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9691 enabled_channels |= 0xc;
9692 }
9693 } else {
9694 if (ctx->program->info->ps.writes_z) {
9695 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
9696 enabled_channels |= 0x1;
9697 }
9698
9699 if (ctx->program->info->ps.writes_stencil) {
9700 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9701 enabled_channels |= 0x2;
9702 }
9703
9704 if (ctx->program->info->ps.writes_sample_mask) {
9705 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9706 enabled_channels |= 0x4;
9707 }
9708 }
9709
9710 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9711 * writemask component.
9712 */
9713 if (ctx->options->chip_class == GFX6 &&
9714 ctx->options->family != CHIP_OLAND &&
9715 ctx->options->family != CHIP_HAINAN) {
9716 enabled_channels |= 0x1;
9717 }
9718
9719 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9720 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9721
9722 return true;
9723 }
9724
9725 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9726 {
9727 Builder bld(ctx->program, ctx->block);
9728 unsigned write_mask = ctx->outputs.mask[slot];
9729 Operand values[4];
9730
9731 for (unsigned i = 0; i < 4; ++i) {
9732 if (write_mask & (1 << i)) {
9733 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9734 } else {
9735 values[i] = Operand(v1);
9736 }
9737 }
9738
9739 unsigned target, col_format;
9740 unsigned enabled_channels = 0;
9741 aco_opcode compr_op = (aco_opcode)0;
9742
9743 slot -= FRAG_RESULT_DATA0;
9744 target = V_008DFC_SQ_EXP_MRT + slot;
9745 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9746
9747 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9748 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9749
9750 switch (col_format)
9751 {
9752 case V_028714_SPI_SHADER_ZERO:
9753 enabled_channels = 0; /* writemask */
9754 target = V_008DFC_SQ_EXP_NULL;
9755 break;
9756
9757 case V_028714_SPI_SHADER_32_R:
9758 enabled_channels = 1;
9759 break;
9760
9761 case V_028714_SPI_SHADER_32_GR:
9762 enabled_channels = 0x3;
9763 break;
9764
9765 case V_028714_SPI_SHADER_32_AR:
9766 if (ctx->options->chip_class >= GFX10) {
9767 /* Special case: on GFX10, the outputs are different for 32_AR */
9768 enabled_channels = 0x3;
9769 values[1] = values[3];
9770 values[3] = Operand(v1);
9771 } else {
9772 enabled_channels = 0x9;
9773 }
9774 break;
9775
9776 case V_028714_SPI_SHADER_FP16_ABGR:
9777 enabled_channels = 0x5;
9778 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9779 break;
9780
9781 case V_028714_SPI_SHADER_UNORM16_ABGR:
9782 enabled_channels = 0x5;
9783 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9784 break;
9785
9786 case V_028714_SPI_SHADER_SNORM16_ABGR:
9787 enabled_channels = 0x5;
9788 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9789 break;
9790
9791 case V_028714_SPI_SHADER_UINT16_ABGR: {
9792 enabled_channels = 0x5;
9793 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9794 if (is_int8 || is_int10) {
9795 /* clamp */
9796 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9797 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9798
9799 for (unsigned i = 0; i < 4; i++) {
9800 if ((write_mask >> i) & 1) {
9801 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9802 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9803 values[i]);
9804 }
9805 }
9806 }
9807 break;
9808 }
9809
9810 case V_028714_SPI_SHADER_SINT16_ABGR:
9811 enabled_channels = 0x5;
9812 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9813 if (is_int8 || is_int10) {
9814 /* clamp */
9815 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9816 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9817 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9818 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9819
9820 for (unsigned i = 0; i < 4; i++) {
9821 if ((write_mask >> i) & 1) {
9822 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9823 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9824 values[i]);
9825 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
9826 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
9827 values[i]);
9828 }
9829 }
9830 }
9831 break;
9832
9833 case V_028714_SPI_SHADER_32_ABGR:
9834 enabled_channels = 0xF;
9835 break;
9836
9837 default:
9838 break;
9839 }
9840
9841 if (target == V_008DFC_SQ_EXP_NULL)
9842 return false;
9843
9844 if ((bool) compr_op) {
9845 for (int i = 0; i < 2; i++) {
9846 /* check if at least one of the values to be compressed is enabled */
9847 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
9848 if (enabled) {
9849 enabled_channels |= enabled << (i*2);
9850 values[i] = bld.vop3(compr_op, bld.def(v1),
9851 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
9852 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
9853 } else {
9854 values[i] = Operand(v1);
9855 }
9856 }
9857 values[2] = Operand(v1);
9858 values[3] = Operand(v1);
9859 } else {
9860 for (int i = 0; i < 4; i++)
9861 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
9862 }
9863
9864 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9865 enabled_channels, target, (bool) compr_op);
9866 return true;
9867 }
9868
9869 static void create_fs_exports(isel_context *ctx)
9870 {
9871 bool exported = false;
9872
9873 /* Export depth, stencil and sample mask. */
9874 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
9875 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
9876 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
9877 exported |= export_fs_mrt_z(ctx);
9878
9879 /* Export all color render targets. */
9880 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
9881 if (ctx->outputs.mask[i])
9882 exported |= export_fs_mrt_color(ctx, i);
9883
9884 if (!exported)
9885 create_null_export(ctx);
9886 }
9887
9888 static void write_tcs_tess_factors(isel_context *ctx)
9889 {
9890 unsigned outer_comps;
9891 unsigned inner_comps;
9892
9893 switch (ctx->args->options->key.tcs.primitive_mode) {
9894 case GL_ISOLINES:
9895 outer_comps = 2;
9896 inner_comps = 0;
9897 break;
9898 case GL_TRIANGLES:
9899 outer_comps = 3;
9900 inner_comps = 1;
9901 break;
9902 case GL_QUADS:
9903 outer_comps = 4;
9904 inner_comps = 2;
9905 break;
9906 default:
9907 return;
9908 }
9909
9910 Builder bld(ctx->program, ctx->block);
9911
9912 bld.barrier(aco_opcode::p_memory_barrier_shared);
9913 if (unlikely(ctx->program->chip_class != GFX6 && ctx->program->workgroup_size > ctx->program->wave_size))
9914 bld.sopp(aco_opcode::s_barrier);
9915
9916 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
9917 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
9918
9919 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
9920 if_context ic_invocation_id_is_zero;
9921 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
9922 bld.reset(ctx->block);
9923
9924 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
9925
9926 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
9927 unsigned stride = inner_comps + outer_comps;
9928 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
9929 Temp tf_inner_vec;
9930 Temp tf_outer_vec;
9931 Temp out[6];
9932 assert(stride <= (sizeof(out) / sizeof(Temp)));
9933
9934 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
9935 // LINES reversal
9936 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
9937 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
9938 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
9939 } else {
9940 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
9941 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
9942
9943 for (unsigned i = 0; i < outer_comps; ++i)
9944 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
9945 for (unsigned i = 0; i < inner_comps; ++i)
9946 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
9947 }
9948
9949 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
9950 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
9951 Temp byte_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, stride * 4u);
9952 unsigned tf_const_offset = 0;
9953
9954 if (ctx->program->chip_class <= GFX8) {
9955 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
9956 if_context ic_rel_patch_id_is_zero;
9957 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
9958 bld.reset(ctx->block);
9959
9960 /* Store the dynamic HS control word. */
9961 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
9962 bld.mubuf(aco_opcode::buffer_store_dword,
9963 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
9964 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
9965 /* disable_wqm */ false, /* glc */ true);
9966 tf_const_offset += 4;
9967
9968 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
9969 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
9970 bld.reset(ctx->block);
9971 }
9972
9973 assert(stride == 2 || stride == 4 || stride == 6);
9974 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
9975 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
9976
9977 /* Store to offchip for TES to read - only if TES reads them */
9978 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
9979 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
9980 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
9981
9982 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
9983 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
9984
9985 if (likely(inner_comps)) {
9986 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
9987 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
9988 }
9989 }
9990
9991 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
9992 end_divergent_if(ctx, &ic_invocation_id_is_zero);
9993 }
9994
9995 static void emit_stream_output(isel_context *ctx,
9996 Temp const *so_buffers,
9997 Temp const *so_write_offset,
9998 const struct radv_stream_output *output)
9999 {
10000 unsigned num_comps = util_bitcount(output->component_mask);
10001 unsigned writemask = (1 << num_comps) - 1;
10002 unsigned loc = output->location;
10003 unsigned buf = output->buffer;
10004
10005 assert(num_comps && num_comps <= 4);
10006 if (!num_comps || num_comps > 4)
10007 return;
10008
10009 unsigned start = ffs(output->component_mask) - 1;
10010
10011 Temp out[4];
10012 bool all_undef = true;
10013 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
10014 for (unsigned i = 0; i < num_comps; i++) {
10015 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10016 all_undef = all_undef && !out[i].id();
10017 }
10018 if (all_undef)
10019 return;
10020
10021 while (writemask) {
10022 int start, count;
10023 u_bit_scan_consecutive_range(&writemask, &start, &count);
10024 if (count == 3 && ctx->options->chip_class == GFX6) {
10025 /* GFX6 doesn't support storing vec3, split it. */
10026 writemask |= 1u << (start + 2);
10027 count = 2;
10028 }
10029
10030 unsigned offset = output->offset + start * 4;
10031
10032 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10033 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10034 for (int i = 0; i < count; ++i)
10035 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10036 vec->definitions[0] = Definition(write_data);
10037 ctx->block->instructions.emplace_back(std::move(vec));
10038
10039 aco_opcode opcode;
10040 switch (count) {
10041 case 1:
10042 opcode = aco_opcode::buffer_store_dword;
10043 break;
10044 case 2:
10045 opcode = aco_opcode::buffer_store_dwordx2;
10046 break;
10047 case 3:
10048 opcode = aco_opcode::buffer_store_dwordx3;
10049 break;
10050 case 4:
10051 opcode = aco_opcode::buffer_store_dwordx4;
10052 break;
10053 default:
10054 unreachable("Unsupported dword count.");
10055 }
10056
10057 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10058 store->operands[0] = Operand(so_buffers[buf]);
10059 store->operands[1] = Operand(so_write_offset[buf]);
10060 store->operands[2] = Operand((uint32_t) 0);
10061 store->operands[3] = Operand(write_data);
10062 if (offset > 4095) {
10063 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10064 Builder bld(ctx->program, ctx->block);
10065 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10066 } else {
10067 store->offset = offset;
10068 }
10069 store->offen = true;
10070 store->glc = true;
10071 store->dlc = false;
10072 store->slc = true;
10073 store->can_reorder = true;
10074 ctx->block->instructions.emplace_back(std::move(store));
10075 }
10076 }
10077
10078 static void emit_streamout(isel_context *ctx, unsigned stream)
10079 {
10080 Builder bld(ctx->program, ctx->block);
10081
10082 Temp so_buffers[4];
10083 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10084 for (unsigned i = 0; i < 4; i++) {
10085 unsigned stride = ctx->program->info->so.strides[i];
10086 if (!stride)
10087 continue;
10088
10089 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10090 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10091 }
10092
10093 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10094 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10095
10096 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10097
10098 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10099
10100 if_context ic;
10101 begin_divergent_if_then(ctx, &ic, can_emit);
10102
10103 bld.reset(ctx->block);
10104
10105 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10106
10107 Temp so_write_offset[4];
10108
10109 for (unsigned i = 0; i < 4; i++) {
10110 unsigned stride = ctx->program->info->so.strides[i];
10111 if (!stride)
10112 continue;
10113
10114 if (stride == 1) {
10115 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10116 get_arg(ctx, ctx->args->streamout_write_idx),
10117 get_arg(ctx, ctx->args->streamout_offset[i]));
10118 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10119
10120 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10121 } else {
10122 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10123 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10124 get_arg(ctx, ctx->args->streamout_offset[i]));
10125 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10126 }
10127 }
10128
10129 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10130 struct radv_stream_output *output =
10131 &ctx->program->info->so.outputs[i];
10132 if (stream != output->stream)
10133 continue;
10134
10135 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10136 }
10137
10138 begin_divergent_if_else(ctx, &ic);
10139 end_divergent_if(ctx, &ic);
10140 }
10141
10142 } /* end namespace */
10143
10144 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10145 {
10146 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10147 Builder bld(ctx->program, ctx->block);
10148 constexpr unsigned hs_idx = 1u;
10149 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10150 get_arg(ctx, ctx->args->merged_wave_info),
10151 Operand((8u << 16) | (hs_idx * 8u)));
10152 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10153
10154 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10155
10156 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10157 get_arg(ctx, ctx->args->rel_auto_id),
10158 get_arg(ctx, ctx->args->ac.instance_id),
10159 ls_has_nonzero_hs_threads);
10160 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10161 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10162 get_arg(ctx, ctx->args->rel_auto_id),
10163 ls_has_nonzero_hs_threads);
10164 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10165 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10166 get_arg(ctx, ctx->args->ac.vertex_id),
10167 ls_has_nonzero_hs_threads);
10168
10169 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10170 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10171 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10172 }
10173
10174 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10175 {
10176 /* Split all arguments except for the first (ring_offsets) and the last
10177 * (exec) so that the dead channels don't stay live throughout the program.
10178 */
10179 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10180 if (startpgm->definitions[i].regClass().size() > 1) {
10181 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10182 startpgm->definitions[i].regClass().size());
10183 }
10184 }
10185 }
10186
10187 void handle_bc_optimize(isel_context *ctx)
10188 {
10189 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10190 Builder bld(ctx->program, ctx->block);
10191 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10192 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10193 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10194 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10195 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10196 if (uses_center && uses_centroid) {
10197 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10198 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10199
10200 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10201 Temp new_coord[2];
10202 for (unsigned i = 0; i < 2; i++) {
10203 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10204 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10205 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10206 persp_centroid, persp_center, sel);
10207 }
10208 ctx->persp_centroid = bld.tmp(v2);
10209 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10210 Operand(new_coord[0]), Operand(new_coord[1]));
10211 emit_split_vector(ctx, ctx->persp_centroid, 2);
10212 }
10213
10214 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10215 Temp new_coord[2];
10216 for (unsigned i = 0; i < 2; i++) {
10217 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10218 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10219 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10220 linear_centroid, linear_center, sel);
10221 }
10222 ctx->linear_centroid = bld.tmp(v2);
10223 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10224 Operand(new_coord[0]), Operand(new_coord[1]));
10225 emit_split_vector(ctx, ctx->linear_centroid, 2);
10226 }
10227 }
10228 }
10229
10230 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10231 {
10232 Program *program = ctx->program;
10233
10234 unsigned float_controls = shader->info.float_controls_execution_mode;
10235
10236 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10237 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10238 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10239 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10240 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10241
10242 program->next_fp_mode.must_flush_denorms32 =
10243 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10244 program->next_fp_mode.must_flush_denorms16_64 =
10245 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10246 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10247
10248 program->next_fp_mode.care_about_round32 =
10249 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10250
10251 program->next_fp_mode.care_about_round16_64 =
10252 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10253 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10254
10255 /* default to preserving fp16 and fp64 denorms, since it's free */
10256 if (program->next_fp_mode.must_flush_denorms16_64)
10257 program->next_fp_mode.denorm16_64 = 0;
10258 else
10259 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10260
10261 /* preserving fp32 denorms is expensive, so only do it if asked */
10262 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10263 program->next_fp_mode.denorm32 = fp_denorm_keep;
10264 else
10265 program->next_fp_mode.denorm32 = 0;
10266
10267 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10268 program->next_fp_mode.round32 = fp_round_tz;
10269 else
10270 program->next_fp_mode.round32 = fp_round_ne;
10271
10272 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10273 program->next_fp_mode.round16_64 = fp_round_tz;
10274 else
10275 program->next_fp_mode.round16_64 = fp_round_ne;
10276
10277 ctx->block->fp_mode = program->next_fp_mode;
10278 }
10279
10280 void cleanup_cfg(Program *program)
10281 {
10282 /* create linear_succs/logical_succs */
10283 for (Block& BB : program->blocks) {
10284 for (unsigned idx : BB.linear_preds)
10285 program->blocks[idx].linear_succs.emplace_back(BB.index);
10286 for (unsigned idx : BB.logical_preds)
10287 program->blocks[idx].logical_succs.emplace_back(BB.index);
10288 }
10289 }
10290
10291 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10292 {
10293 Builder bld(ctx->program, ctx->block);
10294
10295 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10296 Temp count = i == 0
10297 ? get_arg(ctx, ctx->args->merged_wave_info)
10298 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10299 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10300
10301 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10302 Temp cond;
10303
10304 if (ctx->program->wave_size == 64) {
10305 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10306 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10307 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10308 } else {
10309 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10310 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10311 }
10312
10313 return cond;
10314 }
10315
10316 bool ngg_early_prim_export(isel_context *ctx)
10317 {
10318 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10319 return true;
10320 }
10321
10322 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10323 {
10324 Builder bld(ctx->program, ctx->block);
10325
10326 /* Get the id of the current wave within the threadgroup (workgroup) */
10327 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10328 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10329
10330 /* Execute the following code only on the first wave (wave id 0),
10331 * use the SCC def to tell if the wave id is zero or not.
10332 */
10333 Temp cond = wave_id_in_tg.def(1).getTemp();
10334 if_context ic;
10335 begin_uniform_if_then(ctx, &ic, cond);
10336 begin_uniform_if_else(ctx, &ic);
10337 bld.reset(ctx->block);
10338
10339 /* Number of vertices output by VS/TES */
10340 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10341 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10342 /* Number of primitives output by VS/TES */
10343 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10344 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10345
10346 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10347 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10348 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10349
10350 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10351 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10352
10353 end_uniform_if(ctx, &ic);
10354 }
10355
10356 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10357 {
10358 Builder bld(ctx->program, ctx->block);
10359
10360 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10361 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10362 }
10363
10364 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10365 Temp tmp;
10366
10367 for (unsigned i = 0; i < num_vertices; ++i) {
10368 assert(vtxindex[i].id());
10369
10370 if (i)
10371 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10372 else
10373 tmp = vtxindex[i];
10374
10375 /* The initial edge flag is always false in tess eval shaders. */
10376 if (ctx->stage == ngg_vertex_gs) {
10377 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10378 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10379 }
10380 }
10381
10382 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10383
10384 return tmp;
10385 }
10386
10387 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10388 {
10389 Builder bld(ctx->program, ctx->block);
10390 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10391
10392 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10393 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10394 false /* compressed */, true/* done */, false /* valid mask */);
10395 }
10396
10397 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10398 {
10399 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10400 * These must always come before VS exports.
10401 *
10402 * It is recommended to do these as early as possible. They can be at the beginning when
10403 * there is no SW GS and the shader doesn't write edge flags.
10404 */
10405
10406 if_context ic;
10407 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10408 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10409
10410 Builder bld(ctx->program, ctx->block);
10411 constexpr unsigned max_vertices_per_primitive = 3;
10412 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10413
10414 if (ctx->stage == ngg_vertex_gs) {
10415 /* TODO: optimize for points & lines */
10416 } else if (ctx->stage == ngg_tess_eval_gs) {
10417 if (ctx->shader->info.tess.point_mode)
10418 num_vertices_per_primitive = 1;
10419 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10420 num_vertices_per_primitive = 2;
10421 } else {
10422 unreachable("Unsupported NGG shader stage");
10423 }
10424
10425 Temp vtxindex[max_vertices_per_primitive];
10426 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10427 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10428 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10429 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10430 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10431 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10432 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10433 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10434
10435 /* Export primitive data to the index buffer. */
10436 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10437
10438 /* Export primitive ID. */
10439 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10440 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10441 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10442 Temp provoking_vtx_index = vtxindex[0];
10443 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10444
10445 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10446 }
10447
10448 begin_divergent_if_else(ctx, &ic);
10449 end_divergent_if(ctx, &ic);
10450 }
10451
10452 void ngg_emit_nogs_output(isel_context *ctx)
10453 {
10454 /* Emits NGG GS output, for stages that don't have SW GS. */
10455
10456 if_context ic;
10457 Builder bld(ctx->program, ctx->block);
10458 bool late_prim_export = !ngg_early_prim_export(ctx);
10459
10460 /* NGG streamout is currently disabled by default. */
10461 assert(!ctx->args->shader_info->so.num_outputs);
10462
10463 if (late_prim_export) {
10464 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10465 create_export_phis(ctx);
10466 /* Do what we need to do in the GS threads. */
10467 ngg_emit_nogs_gsthreads(ctx);
10468
10469 /* What comes next should be executed on ES threads. */
10470 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10471 begin_divergent_if_then(ctx, &ic, is_es_thread);
10472 bld.reset(ctx->block);
10473 }
10474
10475 /* Export VS outputs */
10476 ctx->block->kind |= block_kind_export_end;
10477 create_vs_exports(ctx);
10478
10479 /* Export primitive ID */
10480 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10481 Temp prim_id;
10482
10483 if (ctx->stage == ngg_vertex_gs) {
10484 /* Wait for GS threads to store primitive ID in LDS. */
10485 bld.barrier(aco_opcode::p_memory_barrier_shared);
10486 bld.sopp(aco_opcode::s_barrier);
10487
10488 /* Calculate LDS address where the GS threads stored the primitive ID. */
10489 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10490 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10491 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10492 Temp wave_id_mul = bld.v_mul_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10493 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10494 Temp addr = bld.v_mul_imm(bld.def(v1), thread_id_in_tg, 4u);
10495
10496 /* Load primitive ID from LDS. */
10497 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10498 } else if (ctx->stage == ngg_tess_eval_gs) {
10499 /* TES: Just use the patch ID as the primitive ID. */
10500 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10501 } else {
10502 unreachable("unsupported NGG shader stage.");
10503 }
10504
10505 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10506 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10507
10508 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10509 }
10510
10511 if (late_prim_export) {
10512 begin_divergent_if_else(ctx, &ic);
10513 end_divergent_if(ctx, &ic);
10514 bld.reset(ctx->block);
10515 }
10516 }
10517
10518 void select_program(Program *program,
10519 unsigned shader_count,
10520 struct nir_shader *const *shaders,
10521 ac_shader_config* config,
10522 struct radv_shader_args *args)
10523 {
10524 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10525 if_context ic_merged_wave_info;
10526 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10527
10528 for (unsigned i = 0; i < shader_count; i++) {
10529 nir_shader *nir = shaders[i];
10530 init_context(&ctx, nir);
10531
10532 setup_fp_mode(&ctx, nir);
10533
10534 if (!i) {
10535 /* needs to be after init_context() for FS */
10536 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10537 append_logical_start(ctx.block);
10538
10539 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10540 fix_ls_vgpr_init_bug(&ctx, startpgm);
10541
10542 split_arguments(&ctx, startpgm);
10543 }
10544
10545 if (ngg_no_gs) {
10546 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10547
10548 if (ngg_early_prim_export(&ctx))
10549 ngg_emit_nogs_gsthreads(&ctx);
10550 }
10551
10552 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10553 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10554 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10555 ((nir->info.stage == MESA_SHADER_VERTEX &&
10556 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10557 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10558 ctx.stage == tess_eval_geometry_gs));
10559
10560 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10561 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10562 if (check_merged_wave_info) {
10563 Temp cond = merged_wave_info_to_mask(&ctx, i);
10564 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10565 }
10566
10567 if (i) {
10568 Builder bld(ctx.program, ctx.block);
10569
10570 bld.barrier(aco_opcode::p_memory_barrier_shared);
10571 bld.sopp(aco_opcode::s_barrier);
10572
10573 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10574 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10575 }
10576 } else if (ctx.stage == geometry_gs)
10577 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10578
10579 if (ctx.stage == fragment_fs)
10580 handle_bc_optimize(&ctx);
10581
10582 visit_cf_list(&ctx, &func->body);
10583
10584 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10585 emit_streamout(&ctx, 0);
10586
10587 if (ctx.stage & hw_vs) {
10588 create_vs_exports(&ctx);
10589 ctx.block->kind |= block_kind_export_end;
10590 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10591 ngg_emit_nogs_output(&ctx);
10592 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
10593 Builder bld(ctx.program, ctx.block);
10594 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
10595 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
10596 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
10597 write_tcs_tess_factors(&ctx);
10598 }
10599
10600 if (ctx.stage == fragment_fs) {
10601 create_fs_exports(&ctx);
10602 ctx.block->kind |= block_kind_export_end;
10603 }
10604
10605 if (endif_merged_wave_info) {
10606 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
10607 end_divergent_if(&ctx, &ic_merged_wave_info);
10608 }
10609
10610 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
10611 ngg_emit_nogs_output(&ctx);
10612
10613 ralloc_free(ctx.divergent_vals);
10614
10615 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
10616 /* Outputs of the previous stage are inputs to the next stage */
10617 ctx.inputs = ctx.outputs;
10618 ctx.outputs = shader_io_state();
10619 }
10620 }
10621
10622 program->config->float_mode = program->blocks[0].fp_mode.val;
10623
10624 append_logical_end(ctx.block);
10625 ctx.block->kind |= block_kind_uniform;
10626 Builder bld(ctx.program, ctx.block);
10627 if (ctx.program->wb_smem_l1_on_end)
10628 bld.smem(aco_opcode::s_dcache_wb, false);
10629 bld.sopp(aco_opcode::s_endpgm);
10630
10631 cleanup_cfg(program);
10632 }
10633
10634 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
10635 ac_shader_config* config,
10636 struct radv_shader_args *args)
10637 {
10638 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
10639
10640 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
10641 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
10642 program->next_fp_mode.must_flush_denorms32 = false;
10643 program->next_fp_mode.must_flush_denorms16_64 = false;
10644 program->next_fp_mode.care_about_round32 = false;
10645 program->next_fp_mode.care_about_round16_64 = false;
10646 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10647 program->next_fp_mode.denorm32 = 0;
10648 program->next_fp_mode.round32 = fp_round_ne;
10649 program->next_fp_mode.round16_64 = fp_round_ne;
10650 ctx.block->fp_mode = program->next_fp_mode;
10651
10652 add_startpgm(&ctx);
10653 append_logical_start(ctx.block);
10654
10655 Builder bld(ctx.program, ctx.block);
10656
10657 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
10658
10659 Operand stream_id(0u);
10660 if (args->shader_info->so.num_outputs)
10661 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10662 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
10663
10664 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
10665
10666 std::stack<Block> endif_blocks;
10667
10668 for (unsigned stream = 0; stream < 4; stream++) {
10669 if (stream_id.isConstant() && stream != stream_id.constantValue())
10670 continue;
10671
10672 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
10673 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
10674 continue;
10675
10676 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
10677
10678 unsigned BB_if_idx = ctx.block->index;
10679 Block BB_endif = Block();
10680 if (!stream_id.isConstant()) {
10681 /* begin IF */
10682 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
10683 append_logical_end(ctx.block);
10684 ctx.block->kind |= block_kind_uniform;
10685 bld.branch(aco_opcode::p_cbranch_z, cond);
10686
10687 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
10688
10689 ctx.block = ctx.program->create_and_insert_block();
10690 add_edge(BB_if_idx, ctx.block);
10691 bld.reset(ctx.block);
10692 append_logical_start(ctx.block);
10693 }
10694
10695 unsigned offset = 0;
10696 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10697 if (args->shader_info->gs.output_streams[i] != stream)
10698 continue;
10699
10700 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
10701 unsigned length = util_last_bit(output_usage_mask);
10702 for (unsigned j = 0; j < length; ++j) {
10703 if (!(output_usage_mask & (1 << j)))
10704 continue;
10705
10706 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
10707 Temp voffset = vtx_offset;
10708 if (const_offset >= 4096u) {
10709 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
10710 const_offset %= 4096u;
10711 }
10712
10713 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
10714 mubuf->definitions[0] = bld.def(v1);
10715 mubuf->operands[0] = Operand(gsvs_ring);
10716 mubuf->operands[1] = Operand(voffset);
10717 mubuf->operands[2] = Operand(0u);
10718 mubuf->offen = true;
10719 mubuf->offset = const_offset;
10720 mubuf->glc = true;
10721 mubuf->slc = true;
10722 mubuf->dlc = args->options->chip_class >= GFX10;
10723 mubuf->barrier = barrier_none;
10724 mubuf->can_reorder = true;
10725
10726 ctx.outputs.mask[i] |= 1 << j;
10727 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
10728
10729 bld.insert(std::move(mubuf));
10730
10731 offset++;
10732 }
10733 }
10734
10735 if (args->shader_info->so.num_outputs) {
10736 emit_streamout(&ctx, stream);
10737 bld.reset(ctx.block);
10738 }
10739
10740 if (stream == 0) {
10741 create_vs_exports(&ctx);
10742 ctx.block->kind |= block_kind_export_end;
10743 }
10744
10745 if (!stream_id.isConstant()) {
10746 append_logical_end(ctx.block);
10747
10748 /* branch from then block to endif block */
10749 bld.branch(aco_opcode::p_branch);
10750 add_edge(ctx.block->index, &BB_endif);
10751 ctx.block->kind |= block_kind_uniform;
10752
10753 /* emit else block */
10754 ctx.block = ctx.program->create_and_insert_block();
10755 add_edge(BB_if_idx, ctx.block);
10756 bld.reset(ctx.block);
10757 append_logical_start(ctx.block);
10758
10759 endif_blocks.push(std::move(BB_endif));
10760 }
10761 }
10762
10763 while (!endif_blocks.empty()) {
10764 Block BB_endif = std::move(endif_blocks.top());
10765 endif_blocks.pop();
10766
10767 Block *BB_else = ctx.block;
10768
10769 append_logical_end(BB_else);
10770 /* branch from else block to endif block */
10771 bld.branch(aco_opcode::p_branch);
10772 add_edge(BB_else->index, &BB_endif);
10773 BB_else->kind |= block_kind_uniform;
10774
10775 /** emit endif merge block */
10776 ctx.block = program->insert_block(std::move(BB_endif));
10777 bld.reset(ctx.block);
10778 append_logical_start(ctx.block);
10779 }
10780
10781 program->config->float_mode = program->blocks[0].fp_mode.val;
10782
10783 append_logical_end(ctx.block);
10784 ctx.block->kind |= block_kind_uniform;
10785 bld.sopp(aco_opcode::s_endpgm);
10786
10787 cleanup_cfg(program);
10788 }
10789 }