aco: Extract LDS alignment calculation to a separate function.
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool then_branch_divergent;
89 Block BB_invert;
90 Block BB_endif;
91 };
92
93 static void visit_cf_list(struct isel_context *ctx,
94 struct exec_list *list);
95
96 static void add_logical_edge(unsigned pred_idx, Block *succ)
97 {
98 succ->logical_preds.emplace_back(pred_idx);
99 }
100
101
102 static void add_linear_edge(unsigned pred_idx, Block *succ)
103 {
104 succ->linear_preds.emplace_back(pred_idx);
105 }
106
107 static void add_edge(unsigned pred_idx, Block *succ)
108 {
109 add_logical_edge(pred_idx, succ);
110 add_linear_edge(pred_idx, succ);
111 }
112
113 static void append_logical_start(Block *b)
114 {
115 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
116 }
117
118 static void append_logical_end(Block *b)
119 {
120 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
121 }
122
123 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
124 {
125 assert(ctx->allocated[def->index].id());
126 return ctx->allocated[def->index];
127 }
128
129 Temp emit_mbcnt(isel_context *ctx, Definition dst,
130 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
131 {
132 Builder bld(ctx->program, ctx->block);
133 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
134 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
135
136 if (ctx->program->wave_size == 32) {
137 return thread_id_lo;
138 } else {
139 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
140 return thread_id_hi;
141 }
142 }
143
144 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
145 {
146 Builder bld(ctx->program, ctx->block);
147
148 if (!dst.id())
149 dst = bld.tmp(src.regClass());
150
151 assert(src.size() == dst.size());
152
153 if (ctx->stage != fragment_fs) {
154 if (!dst.id())
155 return src;
156
157 bld.copy(Definition(dst), src);
158 return dst;
159 }
160
161 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
162 ctx->program->needs_wqm |= program_needs_wqm;
163 return dst;
164 }
165
166 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
167 {
168 if (index.regClass() == s1)
169 return bld.readlane(bld.def(s1), data, index);
170
171 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
172
173 /* Currently not implemented on GFX6-7 */
174 assert(ctx->options->chip_class >= GFX8);
175
176 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
177 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
178 }
179
180 /* GFX10, wave64 mode:
181 * The bpermute instruction is limited to half-wave operation, which means that it can't
182 * properly support subgroup shuffle like older generations (or wave32 mode), so we
183 * emulate it here.
184 */
185 if (!ctx->has_gfx10_wave64_bpermute) {
186 ctx->has_gfx10_wave64_bpermute = true;
187 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
188 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
189 }
190
191 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
192 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
193 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
194 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
195
196 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
197 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
198 }
199
200 Temp as_vgpr(isel_context *ctx, Temp val)
201 {
202 if (val.type() == RegType::sgpr) {
203 Builder bld(ctx->program, ctx->block);
204 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
205 }
206 assert(val.type() == RegType::vgpr);
207 return val;
208 }
209
210 //assumes a != 0xffffffff
211 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
212 {
213 assert(b != 0);
214 Builder bld(ctx->program, ctx->block);
215
216 if (util_is_power_of_two_or_zero(b)) {
217 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
218 return;
219 }
220
221 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
222
223 assert(info.multiplier <= 0xffffffff);
224
225 bool pre_shift = info.pre_shift != 0;
226 bool increment = info.increment != 0;
227 bool multiply = true;
228 bool post_shift = info.post_shift != 0;
229
230 if (!pre_shift && !increment && !multiply && !post_shift) {
231 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
232 return;
233 }
234
235 Temp pre_shift_dst = a;
236 if (pre_shift) {
237 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
238 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
239 }
240
241 Temp increment_dst = pre_shift_dst;
242 if (increment) {
243 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
244 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
245 }
246
247 Temp multiply_dst = increment_dst;
248 if (multiply) {
249 multiply_dst = post_shift ? bld.tmp(v1) : dst;
250 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
251 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
252 }
253
254 if (post_shift) {
255 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
256 }
257 }
258
259 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
260 {
261 Builder bld(ctx->program, ctx->block);
262 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
263 }
264
265
266 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
267 {
268 /* no need to extract the whole vector */
269 if (src.regClass() == dst_rc) {
270 assert(idx == 0);
271 return src;
272 }
273 assert(src.size() > idx);
274 Builder bld(ctx->program, ctx->block);
275 auto it = ctx->allocated_vec.find(src.id());
276 /* the size check needs to be early because elements other than 0 may be garbage */
277 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
278 if (it->second[idx].regClass() == dst_rc) {
279 return it->second[idx];
280 } else {
281 assert(dst_rc.size() == it->second[idx].regClass().size());
282 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
283 return bld.copy(bld.def(dst_rc), it->second[idx]);
284 }
285 }
286
287 if (src.size() == dst_rc.size()) {
288 assert(idx == 0);
289 return bld.copy(bld.def(dst_rc), src);
290 } else {
291 Temp dst = bld.tmp(dst_rc);
292 emit_extract_vector(ctx, src, idx, dst);
293 return dst;
294 }
295 }
296
297 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
298 {
299 if (num_components == 1)
300 return;
301 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
302 return;
303 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
304 split->operands[0] = Operand(vec_src);
305 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
306 for (unsigned i = 0; i < num_components; i++) {
307 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
308 split->definitions[i] = Definition(elems[i]);
309 }
310 ctx->block->instructions.emplace_back(std::move(split));
311 ctx->allocated_vec.emplace(vec_src.id(), elems);
312 }
313
314 /* This vector expansion uses a mask to determine which elements in the new vector
315 * come from the original vector. The other elements are undefined. */
316 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
317 {
318 emit_split_vector(ctx, vec_src, util_bitcount(mask));
319
320 if (vec_src == dst)
321 return;
322
323 Builder bld(ctx->program, ctx->block);
324 if (num_components == 1) {
325 if (dst.type() == RegType::sgpr)
326 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
327 else
328 bld.copy(Definition(dst), vec_src);
329 return;
330 }
331
332 unsigned component_size = dst.size() / num_components;
333 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
334
335 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
336 vec->definitions[0] = Definition(dst);
337 unsigned k = 0;
338 for (unsigned i = 0; i < num_components; i++) {
339 if (mask & (1 << i)) {
340 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
341 if (dst.type() == RegType::sgpr)
342 src = bld.as_uniform(src);
343 vec->operands[i] = Operand(src);
344 } else {
345 vec->operands[i] = Operand(0u);
346 }
347 elems[i] = vec->operands[i].getTemp();
348 }
349 ctx->block->instructions.emplace_back(std::move(vec));
350 ctx->allocated_vec.emplace(dst.id(), elems);
351 }
352
353 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
354 {
355 Builder bld(ctx->program, ctx->block);
356 if (!dst.id())
357 dst = bld.tmp(bld.lm);
358
359 assert(val.regClass() == s1);
360 assert(dst.regClass() == bld.lm);
361
362 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
363 }
364
365 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
366 {
367 Builder bld(ctx->program, ctx->block);
368 if (!dst.id())
369 dst = bld.tmp(s1);
370
371 assert(val.regClass() == bld.lm);
372 assert(dst.regClass() == s1);
373
374 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
375 Temp tmp = bld.tmp(s1);
376 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
377 return emit_wqm(ctx, tmp, dst);
378 }
379
380 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
381 {
382 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
383 return get_ssa_temp(ctx, src.src.ssa);
384
385 if (src.src.ssa->num_components == size) {
386 bool identity_swizzle = true;
387 for (unsigned i = 0; identity_swizzle && i < size; i++) {
388 if (src.swizzle[i] != i)
389 identity_swizzle = false;
390 }
391 if (identity_swizzle)
392 return get_ssa_temp(ctx, src.src.ssa);
393 }
394
395 Temp vec = get_ssa_temp(ctx, src.src.ssa);
396 unsigned elem_size = vec.size() / src.src.ssa->num_components;
397 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
398 assert(vec.size() % elem_size == 0);
399
400 RegClass elem_rc = RegClass(vec.type(), elem_size);
401 if (size == 1) {
402 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
403 } else {
404 assert(size <= 4);
405 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
406 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
407 for (unsigned i = 0; i < size; ++i) {
408 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
409 vec_instr->operands[i] = Operand{elems[i]};
410 }
411 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
412 vec_instr->definitions[0] = Definition(dst);
413 ctx->block->instructions.emplace_back(std::move(vec_instr));
414 ctx->allocated_vec.emplace(dst.id(), elems);
415 return dst;
416 }
417 }
418
419 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
420 {
421 if (ptr.size() == 2)
422 return ptr;
423 Builder bld(ctx->program, ctx->block);
424 if (ptr.type() == RegType::vgpr)
425 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
426 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
427 ptr, Operand((unsigned)ctx->options->address32_hi));
428 }
429
430 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
431 {
432 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
433 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
434 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
435 sop2->definitions[0] = Definition(dst);
436 if (writes_scc)
437 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
438 ctx->block->instructions.emplace_back(std::move(sop2));
439 }
440
441 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
442 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
443 {
444 Builder bld(ctx->program, ctx->block);
445 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
446 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
447 if (src1.type() == RegType::sgpr) {
448 if (commutative && src0.type() == RegType::vgpr) {
449 Temp t = src0;
450 src0 = src1;
451 src1 = t;
452 } else if (src0.type() == RegType::vgpr &&
453 op != aco_opcode::v_madmk_f32 &&
454 op != aco_opcode::v_madak_f32 &&
455 op != aco_opcode::v_madmk_f16 &&
456 op != aco_opcode::v_madak_f16) {
457 /* If the instruction is not commutative, we emit a VOP3A instruction */
458 bld.vop2_e64(op, Definition(dst), src0, src1);
459 return;
460 } else {
461 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
462 }
463 }
464
465 if (flush_denorms && ctx->program->chip_class < GFX9) {
466 assert(dst.size() == 1);
467 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
468 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
469 } else {
470 bld.vop2(op, Definition(dst), src0, src1);
471 }
472 }
473
474 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
475 bool flush_denorms = false)
476 {
477 Temp src0 = get_alu_src(ctx, instr->src[0]);
478 Temp src1 = get_alu_src(ctx, instr->src[1]);
479 Temp src2 = get_alu_src(ctx, instr->src[2]);
480
481 /* ensure that the instruction has at most 1 sgpr operand
482 * The optimizer will inline constants for us */
483 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
484 src0 = as_vgpr(ctx, src0);
485 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
486 src1 = as_vgpr(ctx, src1);
487 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
488 src2 = as_vgpr(ctx, src2);
489
490 Builder bld(ctx->program, ctx->block);
491 if (flush_denorms && ctx->program->chip_class < GFX9) {
492 assert(dst.size() == 1);
493 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
494 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
495 } else {
496 bld.vop3(op, Definition(dst), src0, src1, src2);
497 }
498 }
499
500 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
501 {
502 Builder bld(ctx->program, ctx->block);
503 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
504 }
505
506 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
507 {
508 Temp src0 = get_alu_src(ctx, instr->src[0]);
509 Temp src1 = get_alu_src(ctx, instr->src[1]);
510 assert(src0.size() == src1.size());
511
512 aco_ptr<Instruction> vopc;
513 if (src1.type() == RegType::sgpr) {
514 if (src0.type() == RegType::vgpr) {
515 /* to swap the operands, we might also have to change the opcode */
516 switch (op) {
517 case aco_opcode::v_cmp_lt_f32:
518 op = aco_opcode::v_cmp_gt_f32;
519 break;
520 case aco_opcode::v_cmp_ge_f32:
521 op = aco_opcode::v_cmp_le_f32;
522 break;
523 case aco_opcode::v_cmp_lt_i32:
524 op = aco_opcode::v_cmp_gt_i32;
525 break;
526 case aco_opcode::v_cmp_ge_i32:
527 op = aco_opcode::v_cmp_le_i32;
528 break;
529 case aco_opcode::v_cmp_lt_u32:
530 op = aco_opcode::v_cmp_gt_u32;
531 break;
532 case aco_opcode::v_cmp_ge_u32:
533 op = aco_opcode::v_cmp_le_u32;
534 break;
535 case aco_opcode::v_cmp_lt_f64:
536 op = aco_opcode::v_cmp_gt_f64;
537 break;
538 case aco_opcode::v_cmp_ge_f64:
539 op = aco_opcode::v_cmp_le_f64;
540 break;
541 case aco_opcode::v_cmp_lt_i64:
542 op = aco_opcode::v_cmp_gt_i64;
543 break;
544 case aco_opcode::v_cmp_ge_i64:
545 op = aco_opcode::v_cmp_le_i64;
546 break;
547 case aco_opcode::v_cmp_lt_u64:
548 op = aco_opcode::v_cmp_gt_u64;
549 break;
550 case aco_opcode::v_cmp_ge_u64:
551 op = aco_opcode::v_cmp_le_u64;
552 break;
553 default: /* eq and ne are commutative */
554 break;
555 }
556 Temp t = src0;
557 src0 = src1;
558 src1 = t;
559 } else {
560 src1 = as_vgpr(ctx, src1);
561 }
562 }
563
564 Builder bld(ctx->program, ctx->block);
565 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
566 }
567
568 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
569 {
570 Temp src0 = get_alu_src(ctx, instr->src[0]);
571 Temp src1 = get_alu_src(ctx, instr->src[1]);
572 Builder bld(ctx->program, ctx->block);
573
574 assert(dst.regClass() == bld.lm);
575 assert(src0.type() == RegType::sgpr);
576 assert(src1.type() == RegType::sgpr);
577 assert(src0.regClass() == src1.regClass());
578
579 /* Emit the SALU comparison instruction */
580 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
581 /* Turn the result into a per-lane bool */
582 bool_to_vector_condition(ctx, cmp, dst);
583 }
584
585 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
586 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
587 {
588 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
589 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
590 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
591 bool use_valu = s_op == aco_opcode::num_opcodes ||
592 divergent_vals ||
593 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
594 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
595 aco_opcode op = use_valu ? v_op : s_op;
596 assert(op != aco_opcode::num_opcodes);
597 assert(dst.regClass() == ctx->program->lane_mask);
598
599 if (use_valu)
600 emit_vopc_instruction(ctx, instr, op, dst);
601 else
602 emit_sopc_instruction(ctx, instr, op, dst);
603 }
604
605 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
606 {
607 Builder bld(ctx->program, ctx->block);
608 Temp src0 = get_alu_src(ctx, instr->src[0]);
609 Temp src1 = get_alu_src(ctx, instr->src[1]);
610
611 assert(dst.regClass() == bld.lm);
612 assert(src0.regClass() == bld.lm);
613 assert(src1.regClass() == bld.lm);
614
615 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
616 }
617
618 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
619 {
620 Builder bld(ctx->program, ctx->block);
621 Temp cond = get_alu_src(ctx, instr->src[0]);
622 Temp then = get_alu_src(ctx, instr->src[1]);
623 Temp els = get_alu_src(ctx, instr->src[2]);
624
625 assert(cond.regClass() == bld.lm);
626
627 if (dst.type() == RegType::vgpr) {
628 aco_ptr<Instruction> bcsel;
629 if (dst.size() == 1) {
630 then = as_vgpr(ctx, then);
631 els = as_vgpr(ctx, els);
632
633 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
634 } else if (dst.size() == 2) {
635 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
636 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
637 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
638 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
639
640 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
641 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
642
643 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
644 } else {
645 fprintf(stderr, "Unimplemented NIR instr bit size: ");
646 nir_print_instr(&instr->instr, stderr);
647 fprintf(stderr, "\n");
648 }
649 return;
650 }
651
652 if (instr->dest.dest.ssa.bit_size == 1) {
653 assert(dst.regClass() == bld.lm);
654 assert(then.regClass() == bld.lm);
655 assert(els.regClass() == bld.lm);
656 }
657
658 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
659 if (dst.regClass() == s1 || dst.regClass() == s2) {
660 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
661 assert(dst.size() == then.size());
662 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
663 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
664 } else {
665 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
666 nir_print_instr(&instr->instr, stderr);
667 fprintf(stderr, "\n");
668 }
669 return;
670 }
671
672 /* divergent boolean bcsel
673 * this implements bcsel on bools: dst = s0 ? s1 : s2
674 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
675 assert(instr->dest.dest.ssa.bit_size == 1);
676
677 if (cond.id() != then.id())
678 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
679
680 if (cond.id() == els.id())
681 bld.sop1(Builder::s_mov, Definition(dst), then);
682 else
683 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
684 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
685 }
686
687 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
688 aco_opcode op, uint32_t undo)
689 {
690 /* multiply by 16777216 to handle denormals */
691 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
692 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
693 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
694 scaled = bld.vop1(op, bld.def(v1), scaled);
695 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
696
697 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
698
699 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
700 }
701
702 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
703 {
704 if (ctx->block->fp_mode.denorm32 == 0) {
705 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
706 return;
707 }
708
709 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
710 }
711
712 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
713 {
714 if (ctx->block->fp_mode.denorm32 == 0) {
715 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
716 return;
717 }
718
719 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
720 }
721
722 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
723 {
724 if (ctx->block->fp_mode.denorm32 == 0) {
725 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
726 return;
727 }
728
729 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
730 }
731
732 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
733 {
734 if (ctx->block->fp_mode.denorm32 == 0) {
735 bld.vop1(aco_opcode::v_log_f32, dst, val);
736 return;
737 }
738
739 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
740 }
741
742 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
743 {
744 if (ctx->options->chip_class >= GFX7)
745 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
746
747 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
748 /* TODO: create more efficient code! */
749 if (val.type() == RegType::sgpr)
750 val = as_vgpr(ctx, val);
751
752 /* Split the input value. */
753 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
754 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
755
756 /* Extract the exponent and compute the unbiased value. */
757 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
758
759 /* Extract the fractional part. */
760 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
761 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
762
763 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
765
766 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
767 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
768 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
769 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
770 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
771
772 /* Get the sign bit. */
773 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
774
775 /* Decide the operation to apply depending on the unbiased exponent. */
776 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
777 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
778 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
779 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
780 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
781 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
782
783 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
784 }
785
786 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
787 {
788 if (ctx->options->chip_class >= GFX7)
789 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
790
791 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
792 Temp src0 = as_vgpr(ctx, val);
793
794 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
795 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
796
797 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
798 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
799 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
800
801 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
802 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
803 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
804 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
805
806 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
807 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
808
809 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
810
811 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
812 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
813
814 return add->definitions[0].getTemp();
815 }
816
817 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
818 {
819 if (!instr->dest.dest.is_ssa) {
820 fprintf(stderr, "nir alu dst not in ssa: ");
821 nir_print_instr(&instr->instr, stderr);
822 fprintf(stderr, "\n");
823 abort();
824 }
825 Builder bld(ctx->program, ctx->block);
826 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
827 switch(instr->op) {
828 case nir_op_vec2:
829 case nir_op_vec3:
830 case nir_op_vec4: {
831 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
832 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
833 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
834 elems[i] = get_alu_src(ctx, instr->src[i]);
835 vec->operands[i] = Operand{elems[i]};
836 }
837 vec->definitions[0] = Definition(dst);
838 ctx->block->instructions.emplace_back(std::move(vec));
839 ctx->allocated_vec.emplace(dst.id(), elems);
840 break;
841 }
842 case nir_op_mov: {
843 Temp src = get_alu_src(ctx, instr->src[0]);
844 aco_ptr<Instruction> mov;
845 if (dst.type() == RegType::sgpr) {
846 if (src.type() == RegType::vgpr)
847 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
848 else if (src.regClass() == s1)
849 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
850 else if (src.regClass() == s2)
851 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
852 else
853 unreachable("wrong src register class for nir_op_imov");
854 } else if (dst.regClass() == v1) {
855 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
856 } else if (dst.regClass() == v2) {
857 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
858 } else {
859 nir_print_instr(&instr->instr, stderr);
860 unreachable("Should have been lowered to scalar.");
861 }
862 break;
863 }
864 case nir_op_inot: {
865 Temp src = get_alu_src(ctx, instr->src[0]);
866 if (instr->dest.dest.ssa.bit_size == 1) {
867 assert(src.regClass() == bld.lm);
868 assert(dst.regClass() == bld.lm);
869 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
870 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
871 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
872 } else if (dst.regClass() == v1) {
873 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
874 } else if (dst.type() == RegType::sgpr) {
875 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
876 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
877 } else {
878 fprintf(stderr, "Unimplemented NIR instr bit size: ");
879 nir_print_instr(&instr->instr, stderr);
880 fprintf(stderr, "\n");
881 }
882 break;
883 }
884 case nir_op_ineg: {
885 Temp src = get_alu_src(ctx, instr->src[0]);
886 if (dst.regClass() == v1) {
887 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
888 } else if (dst.regClass() == s1) {
889 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
890 } else if (dst.size() == 2) {
891 Temp src0 = bld.tmp(dst.type(), 1);
892 Temp src1 = bld.tmp(dst.type(), 1);
893 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
894
895 if (dst.regClass() == s2) {
896 Temp carry = bld.tmp(s1);
897 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
898 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
899 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
900 } else {
901 Temp lower = bld.tmp(v1);
902 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
903 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
904 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
905 }
906 } else {
907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
908 nir_print_instr(&instr->instr, stderr);
909 fprintf(stderr, "\n");
910 }
911 break;
912 }
913 case nir_op_iabs: {
914 if (dst.regClass() == s1) {
915 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
916 } else if (dst.regClass() == v1) {
917 Temp src = get_alu_src(ctx, instr->src[0]);
918 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
919 } else {
920 fprintf(stderr, "Unimplemented NIR instr bit size: ");
921 nir_print_instr(&instr->instr, stderr);
922 fprintf(stderr, "\n");
923 }
924 break;
925 }
926 case nir_op_isign: {
927 Temp src = get_alu_src(ctx, instr->src[0]);
928 if (dst.regClass() == s1) {
929 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
930 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
931 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
932 } else if (dst.regClass() == s2) {
933 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
934 Temp neqz;
935 if (ctx->program->chip_class >= GFX8)
936 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
937 else
938 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
939 /* SCC gets zero-extended to 64 bit */
940 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
941 } else if (dst.regClass() == v1) {
942 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
943 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
944 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
945 } else if (dst.regClass() == v2) {
946 Temp upper = emit_extract_vector(ctx, src, 1, v1);
947 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
948 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
949 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
950 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
951 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
952 } else {
953 fprintf(stderr, "Unimplemented NIR instr bit size: ");
954 nir_print_instr(&instr->instr, stderr);
955 fprintf(stderr, "\n");
956 }
957 break;
958 }
959 case nir_op_imax: {
960 if (dst.regClass() == v1) {
961 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
962 } else if (dst.regClass() == s1) {
963 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
964 } else {
965 fprintf(stderr, "Unimplemented NIR instr bit size: ");
966 nir_print_instr(&instr->instr, stderr);
967 fprintf(stderr, "\n");
968 }
969 break;
970 }
971 case nir_op_umax: {
972 if (dst.regClass() == v1) {
973 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
974 } else if (dst.regClass() == s1) {
975 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
976 } else {
977 fprintf(stderr, "Unimplemented NIR instr bit size: ");
978 nir_print_instr(&instr->instr, stderr);
979 fprintf(stderr, "\n");
980 }
981 break;
982 }
983 case nir_op_imin: {
984 if (dst.regClass() == v1) {
985 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
986 } else if (dst.regClass() == s1) {
987 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
988 } else {
989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
990 nir_print_instr(&instr->instr, stderr);
991 fprintf(stderr, "\n");
992 }
993 break;
994 }
995 case nir_op_umin: {
996 if (dst.regClass() == v1) {
997 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
998 } else if (dst.regClass() == s1) {
999 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1000 } else {
1001 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1002 nir_print_instr(&instr->instr, stderr);
1003 fprintf(stderr, "\n");
1004 }
1005 break;
1006 }
1007 case nir_op_ior: {
1008 if (instr->dest.dest.ssa.bit_size == 1) {
1009 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1010 } else if (dst.regClass() == v1) {
1011 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1012 } else if (dst.regClass() == s1) {
1013 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1014 } else if (dst.regClass() == s2) {
1015 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1016 } else {
1017 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1018 nir_print_instr(&instr->instr, stderr);
1019 fprintf(stderr, "\n");
1020 }
1021 break;
1022 }
1023 case nir_op_iand: {
1024 if (instr->dest.dest.ssa.bit_size == 1) {
1025 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1026 } else if (dst.regClass() == v1) {
1027 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1028 } else if (dst.regClass() == s1) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1030 } else if (dst.regClass() == s2) {
1031 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1032 } else {
1033 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1034 nir_print_instr(&instr->instr, stderr);
1035 fprintf(stderr, "\n");
1036 }
1037 break;
1038 }
1039 case nir_op_ixor: {
1040 if (instr->dest.dest.ssa.bit_size == 1) {
1041 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1042 } else if (dst.regClass() == v1) {
1043 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1044 } else if (dst.regClass() == s1) {
1045 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1046 } else if (dst.regClass() == s2) {
1047 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1048 } else {
1049 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1050 nir_print_instr(&instr->instr, stderr);
1051 fprintf(stderr, "\n");
1052 }
1053 break;
1054 }
1055 case nir_op_ushr: {
1056 if (dst.regClass() == v1) {
1057 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1058 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1059 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1060 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1061 } else if (dst.regClass() == v2) {
1062 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1063 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1064 } else if (dst.regClass() == s2) {
1065 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1066 } else if (dst.regClass() == s1) {
1067 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1068 } else {
1069 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1070 nir_print_instr(&instr->instr, stderr);
1071 fprintf(stderr, "\n");
1072 }
1073 break;
1074 }
1075 case nir_op_ishl: {
1076 if (dst.regClass() == v1) {
1077 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1078 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1079 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1080 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1081 } else if (dst.regClass() == v2) {
1082 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1083 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1084 } else if (dst.regClass() == s1) {
1085 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1086 } else if (dst.regClass() == s2) {
1087 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_ishr: {
1096 if (dst.regClass() == v1) {
1097 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1098 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1099 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1100 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1101 } else if (dst.regClass() == v2) {
1102 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1103 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1104 } else if (dst.regClass() == s1) {
1105 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1106 } else if (dst.regClass() == s2) {
1107 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1108 } else {
1109 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1110 nir_print_instr(&instr->instr, stderr);
1111 fprintf(stderr, "\n");
1112 }
1113 break;
1114 }
1115 case nir_op_find_lsb: {
1116 Temp src = get_alu_src(ctx, instr->src[0]);
1117 if (src.regClass() == s1) {
1118 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1119 } else if (src.regClass() == v1) {
1120 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1121 } else if (src.regClass() == s2) {
1122 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1123 } else {
1124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1125 nir_print_instr(&instr->instr, stderr);
1126 fprintf(stderr, "\n");
1127 }
1128 break;
1129 }
1130 case nir_op_ufind_msb:
1131 case nir_op_ifind_msb: {
1132 Temp src = get_alu_src(ctx, instr->src[0]);
1133 if (src.regClass() == s1 || src.regClass() == s2) {
1134 aco_opcode op = src.regClass() == s2 ?
1135 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1136 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1137 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1138
1139 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1140 Operand(src.size() * 32u - 1u), msb_rev);
1141 Temp msb = sub.def(0).getTemp();
1142 Temp carry = sub.def(1).getTemp();
1143
1144 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1145 } else if (src.regClass() == v1) {
1146 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1147 Temp msb_rev = bld.tmp(v1);
1148 emit_vop1_instruction(ctx, instr, op, msb_rev);
1149 Temp msb = bld.tmp(v1);
1150 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1151 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1152 } else {
1153 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1154 nir_print_instr(&instr->instr, stderr);
1155 fprintf(stderr, "\n");
1156 }
1157 break;
1158 }
1159 case nir_op_bitfield_reverse: {
1160 if (dst.regClass() == s1) {
1161 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1162 } else if (dst.regClass() == v1) {
1163 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1164 } else {
1165 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1166 nir_print_instr(&instr->instr, stderr);
1167 fprintf(stderr, "\n");
1168 }
1169 break;
1170 }
1171 case nir_op_iadd: {
1172 if (dst.regClass() == s1) {
1173 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1174 break;
1175 }
1176
1177 Temp src0 = get_alu_src(ctx, instr->src[0]);
1178 Temp src1 = get_alu_src(ctx, instr->src[1]);
1179 if (dst.regClass() == v1) {
1180 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1181 break;
1182 }
1183
1184 assert(src0.size() == 2 && src1.size() == 2);
1185 Temp src00 = bld.tmp(src0.type(), 1);
1186 Temp src01 = bld.tmp(dst.type(), 1);
1187 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1188 Temp src10 = bld.tmp(src1.type(), 1);
1189 Temp src11 = bld.tmp(dst.type(), 1);
1190 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1191
1192 if (dst.regClass() == s2) {
1193 Temp carry = bld.tmp(s1);
1194 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1195 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1196 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1197 } else if (dst.regClass() == v2) {
1198 Temp dst0 = bld.tmp(v1);
1199 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1200 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1201 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1202 } else {
1203 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1204 nir_print_instr(&instr->instr, stderr);
1205 fprintf(stderr, "\n");
1206 }
1207 break;
1208 }
1209 case nir_op_uadd_sat: {
1210 Temp src0 = get_alu_src(ctx, instr->src[0]);
1211 Temp src1 = get_alu_src(ctx, instr->src[1]);
1212 if (dst.regClass() == s1) {
1213 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1214 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1215 src0, src1);
1216 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1217 } else if (dst.regClass() == v1) {
1218 if (ctx->options->chip_class >= GFX9) {
1219 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1220 add->operands[0] = Operand(src0);
1221 add->operands[1] = Operand(src1);
1222 add->definitions[0] = Definition(dst);
1223 add->clamp = 1;
1224 ctx->block->instructions.emplace_back(std::move(add));
1225 } else {
1226 if (src1.regClass() != v1)
1227 std::swap(src0, src1);
1228 assert(src1.regClass() == v1);
1229 Temp tmp = bld.tmp(v1);
1230 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1231 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1232 }
1233 } else {
1234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1235 nir_print_instr(&instr->instr, stderr);
1236 fprintf(stderr, "\n");
1237 }
1238 break;
1239 }
1240 case nir_op_uadd_carry: {
1241 Temp src0 = get_alu_src(ctx, instr->src[0]);
1242 Temp src1 = get_alu_src(ctx, instr->src[1]);
1243 if (dst.regClass() == s1) {
1244 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1245 break;
1246 }
1247 if (dst.regClass() == v1) {
1248 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1249 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1250 break;
1251 }
1252
1253 Temp src00 = bld.tmp(src0.type(), 1);
1254 Temp src01 = bld.tmp(dst.type(), 1);
1255 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1256 Temp src10 = bld.tmp(src1.type(), 1);
1257 Temp src11 = bld.tmp(dst.type(), 1);
1258 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1259 if (dst.regClass() == s2) {
1260 Temp carry = bld.tmp(s1);
1261 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1262 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1263 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1264 } else if (dst.regClass() == v2) {
1265 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1266 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1267 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1268 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1269 } else {
1270 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1271 nir_print_instr(&instr->instr, stderr);
1272 fprintf(stderr, "\n");
1273 }
1274 break;
1275 }
1276 case nir_op_isub: {
1277 if (dst.regClass() == s1) {
1278 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1279 break;
1280 }
1281
1282 Temp src0 = get_alu_src(ctx, instr->src[0]);
1283 Temp src1 = get_alu_src(ctx, instr->src[1]);
1284 if (dst.regClass() == v1) {
1285 bld.vsub32(Definition(dst), src0, src1);
1286 break;
1287 }
1288
1289 Temp src00 = bld.tmp(src0.type(), 1);
1290 Temp src01 = bld.tmp(dst.type(), 1);
1291 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1292 Temp src10 = bld.tmp(src1.type(), 1);
1293 Temp src11 = bld.tmp(dst.type(), 1);
1294 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1295 if (dst.regClass() == s2) {
1296 Temp carry = bld.tmp(s1);
1297 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1298 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1299 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1300 } else if (dst.regClass() == v2) {
1301 Temp lower = bld.tmp(v1);
1302 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1303 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1304 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1305 } else {
1306 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1307 nir_print_instr(&instr->instr, stderr);
1308 fprintf(stderr, "\n");
1309 }
1310 break;
1311 }
1312 case nir_op_usub_borrow: {
1313 Temp src0 = get_alu_src(ctx, instr->src[0]);
1314 Temp src1 = get_alu_src(ctx, instr->src[1]);
1315 if (dst.regClass() == s1) {
1316 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1317 break;
1318 } else if (dst.regClass() == v1) {
1319 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1320 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1321 break;
1322 }
1323
1324 Temp src00 = bld.tmp(src0.type(), 1);
1325 Temp src01 = bld.tmp(dst.type(), 1);
1326 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1327 Temp src10 = bld.tmp(src1.type(), 1);
1328 Temp src11 = bld.tmp(dst.type(), 1);
1329 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1330 if (dst.regClass() == s2) {
1331 Temp borrow = bld.tmp(s1);
1332 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1333 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1334 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1335 } else if (dst.regClass() == v2) {
1336 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1337 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1338 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1339 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1340 } else {
1341 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1342 nir_print_instr(&instr->instr, stderr);
1343 fprintf(stderr, "\n");
1344 }
1345 break;
1346 }
1347 case nir_op_imul: {
1348 if (dst.regClass() == v1) {
1349 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1350 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1351 } else if (dst.regClass() == s1) {
1352 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1353 } else {
1354 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1355 nir_print_instr(&instr->instr, stderr);
1356 fprintf(stderr, "\n");
1357 }
1358 break;
1359 }
1360 case nir_op_umul_high: {
1361 if (dst.regClass() == v1) {
1362 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1363 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1364 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1365 } else if (dst.regClass() == s1) {
1366 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1367 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1368 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1369 } else {
1370 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1371 nir_print_instr(&instr->instr, stderr);
1372 fprintf(stderr, "\n");
1373 }
1374 break;
1375 }
1376 case nir_op_imul_high: {
1377 if (dst.regClass() == v1) {
1378 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1379 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1380 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1381 } else if (dst.regClass() == s1) {
1382 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1383 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1384 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1385 } else {
1386 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1387 nir_print_instr(&instr->instr, stderr);
1388 fprintf(stderr, "\n");
1389 }
1390 break;
1391 }
1392 case nir_op_fmul: {
1393 if (dst.size() == 1) {
1394 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1395 } else if (dst.size() == 2) {
1396 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1397 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1398 } else {
1399 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1400 nir_print_instr(&instr->instr, stderr);
1401 fprintf(stderr, "\n");
1402 }
1403 break;
1404 }
1405 case nir_op_fadd: {
1406 if (dst.size() == 1) {
1407 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1408 } else if (dst.size() == 2) {
1409 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1410 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1411 } else {
1412 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1413 nir_print_instr(&instr->instr, stderr);
1414 fprintf(stderr, "\n");
1415 }
1416 break;
1417 }
1418 case nir_op_fsub: {
1419 Temp src0 = get_alu_src(ctx, instr->src[0]);
1420 Temp src1 = get_alu_src(ctx, instr->src[1]);
1421 if (dst.size() == 1) {
1422 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1423 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1424 else
1425 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1426 } else if (dst.size() == 2) {
1427 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1428 get_alu_src(ctx, instr->src[0]),
1429 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1430 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1431 sub->neg[1] = true;
1432 } else {
1433 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1434 nir_print_instr(&instr->instr, stderr);
1435 fprintf(stderr, "\n");
1436 }
1437 break;
1438 }
1439 case nir_op_fmax: {
1440 if (dst.size() == 1) {
1441 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1442 } else if (dst.size() == 2) {
1443 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1444 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1445 get_alu_src(ctx, instr->src[0]),
1446 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1447 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1448 } else {
1449 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1450 get_alu_src(ctx, instr->src[0]),
1451 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1452 }
1453 } else {
1454 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1455 nir_print_instr(&instr->instr, stderr);
1456 fprintf(stderr, "\n");
1457 }
1458 break;
1459 }
1460 case nir_op_fmin: {
1461 if (dst.size() == 1) {
1462 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1463 } else if (dst.size() == 2) {
1464 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1465 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1466 get_alu_src(ctx, instr->src[0]),
1467 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1468 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1469 } else {
1470 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1471 get_alu_src(ctx, instr->src[0]),
1472 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1473 }
1474 } else {
1475 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1476 nir_print_instr(&instr->instr, stderr);
1477 fprintf(stderr, "\n");
1478 }
1479 break;
1480 }
1481 case nir_op_fmax3: {
1482 if (dst.size() == 1) {
1483 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1484 } else {
1485 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1486 nir_print_instr(&instr->instr, stderr);
1487 fprintf(stderr, "\n");
1488 }
1489 break;
1490 }
1491 case nir_op_fmin3: {
1492 if (dst.size() == 1) {
1493 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1494 } else {
1495 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1496 nir_print_instr(&instr->instr, stderr);
1497 fprintf(stderr, "\n");
1498 }
1499 break;
1500 }
1501 case nir_op_fmed3: {
1502 if (dst.size() == 1) {
1503 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1504 } else {
1505 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1506 nir_print_instr(&instr->instr, stderr);
1507 fprintf(stderr, "\n");
1508 }
1509 break;
1510 }
1511 case nir_op_umax3: {
1512 if (dst.size() == 1) {
1513 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1514 } else {
1515 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1516 nir_print_instr(&instr->instr, stderr);
1517 fprintf(stderr, "\n");
1518 }
1519 break;
1520 }
1521 case nir_op_umin3: {
1522 if (dst.size() == 1) {
1523 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1524 } else {
1525 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1526 nir_print_instr(&instr->instr, stderr);
1527 fprintf(stderr, "\n");
1528 }
1529 break;
1530 }
1531 case nir_op_umed3: {
1532 if (dst.size() == 1) {
1533 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1534 } else {
1535 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1536 nir_print_instr(&instr->instr, stderr);
1537 fprintf(stderr, "\n");
1538 }
1539 break;
1540 }
1541 case nir_op_imax3: {
1542 if (dst.size() == 1) {
1543 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1544 } else {
1545 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1546 nir_print_instr(&instr->instr, stderr);
1547 fprintf(stderr, "\n");
1548 }
1549 break;
1550 }
1551 case nir_op_imin3: {
1552 if (dst.size() == 1) {
1553 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_imed3: {
1562 if (dst.size() == 1) {
1563 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1564 } else {
1565 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1566 nir_print_instr(&instr->instr, stderr);
1567 fprintf(stderr, "\n");
1568 }
1569 break;
1570 }
1571 case nir_op_cube_face_coord: {
1572 Temp in = get_alu_src(ctx, instr->src[0], 3);
1573 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1574 emit_extract_vector(ctx, in, 1, v1),
1575 emit_extract_vector(ctx, in, 2, v1) };
1576 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1577 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1578 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1579 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1580 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1581 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1582 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1583 break;
1584 }
1585 case nir_op_cube_face_index: {
1586 Temp in = get_alu_src(ctx, instr->src[0], 3);
1587 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1588 emit_extract_vector(ctx, in, 1, v1),
1589 emit_extract_vector(ctx, in, 2, v1) };
1590 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1591 break;
1592 }
1593 case nir_op_bcsel: {
1594 emit_bcsel(ctx, instr, dst);
1595 break;
1596 }
1597 case nir_op_frsq: {
1598 if (dst.size() == 1) {
1599 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1600 } else if (dst.size() == 2) {
1601 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1602 } else {
1603 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1604 nir_print_instr(&instr->instr, stderr);
1605 fprintf(stderr, "\n");
1606 }
1607 break;
1608 }
1609 case nir_op_fneg: {
1610 Temp src = get_alu_src(ctx, instr->src[0]);
1611 if (dst.size() == 1) {
1612 if (ctx->block->fp_mode.must_flush_denorms32)
1613 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1614 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1615 } else if (dst.size() == 2) {
1616 if (ctx->block->fp_mode.must_flush_denorms16_64)
1617 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1618 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1619 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1620 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1621 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_fabs: {
1630 Temp src = get_alu_src(ctx, instr->src[0]);
1631 if (dst.size() == 1) {
1632 if (ctx->block->fp_mode.must_flush_denorms32)
1633 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1634 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1635 } else if (dst.size() == 2) {
1636 if (ctx->block->fp_mode.must_flush_denorms16_64)
1637 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1638 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1639 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1640 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1642 } else {
1643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1644 nir_print_instr(&instr->instr, stderr);
1645 fprintf(stderr, "\n");
1646 }
1647 break;
1648 }
1649 case nir_op_fsat: {
1650 Temp src = get_alu_src(ctx, instr->src[0]);
1651 if (dst.size() == 1) {
1652 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1653 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1654 // TODO: confirm that this holds under any circumstances
1655 } else if (dst.size() == 2) {
1656 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1657 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1658 vop3->clamp = true;
1659 } else {
1660 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1661 nir_print_instr(&instr->instr, stderr);
1662 fprintf(stderr, "\n");
1663 }
1664 break;
1665 }
1666 case nir_op_flog2: {
1667 if (dst.size() == 1) {
1668 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1669 } else {
1670 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1671 nir_print_instr(&instr->instr, stderr);
1672 fprintf(stderr, "\n");
1673 }
1674 break;
1675 }
1676 case nir_op_frcp: {
1677 if (dst.size() == 1) {
1678 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1679 } else if (dst.size() == 2) {
1680 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1681 } else {
1682 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1683 nir_print_instr(&instr->instr, stderr);
1684 fprintf(stderr, "\n");
1685 }
1686 break;
1687 }
1688 case nir_op_fexp2: {
1689 if (dst.size() == 1) {
1690 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1691 } else {
1692 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1693 nir_print_instr(&instr->instr, stderr);
1694 fprintf(stderr, "\n");
1695 }
1696 break;
1697 }
1698 case nir_op_fsqrt: {
1699 if (dst.size() == 1) {
1700 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1701 } else if (dst.size() == 2) {
1702 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1703 } else {
1704 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1705 nir_print_instr(&instr->instr, stderr);
1706 fprintf(stderr, "\n");
1707 }
1708 break;
1709 }
1710 case nir_op_ffract: {
1711 if (dst.size() == 1) {
1712 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1713 } else if (dst.size() == 2) {
1714 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1715 } else {
1716 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1717 nir_print_instr(&instr->instr, stderr);
1718 fprintf(stderr, "\n");
1719 }
1720 break;
1721 }
1722 case nir_op_ffloor: {
1723 if (dst.size() == 1) {
1724 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1725 } else if (dst.size() == 2) {
1726 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1727 } else {
1728 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1729 nir_print_instr(&instr->instr, stderr);
1730 fprintf(stderr, "\n");
1731 }
1732 break;
1733 }
1734 case nir_op_fceil: {
1735 if (dst.size() == 1) {
1736 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1737 } else if (dst.size() == 2) {
1738 if (ctx->options->chip_class >= GFX7) {
1739 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1740 } else {
1741 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1742 Temp src0 = get_alu_src(ctx, instr->src[0]);
1743
1744 /* trunc = trunc(src0)
1745 * if (src0 > 0.0 && src0 != trunc)
1746 * trunc += 1.0
1747 */
1748 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1749 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1750 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1751 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1752 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1753 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1754 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1755 }
1756 } else {
1757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1758 nir_print_instr(&instr->instr, stderr);
1759 fprintf(stderr, "\n");
1760 }
1761 break;
1762 }
1763 case nir_op_ftrunc: {
1764 if (dst.size() == 1) {
1765 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1766 } else if (dst.size() == 2) {
1767 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1768 } else {
1769 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1770 nir_print_instr(&instr->instr, stderr);
1771 fprintf(stderr, "\n");
1772 }
1773 break;
1774 }
1775 case nir_op_fround_even: {
1776 if (dst.size() == 1) {
1777 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1778 } else if (dst.size() == 2) {
1779 if (ctx->options->chip_class >= GFX7) {
1780 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1781 } else {
1782 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1783 Temp src0 = get_alu_src(ctx, instr->src[0]);
1784
1785 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1786 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1787
1788 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1789 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1790 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1791 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1792 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1793 tmp = sub->definitions[0].getTemp();
1794
1795 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1796 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1797 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1798 Temp cond = vop3->definitions[0].getTemp();
1799
1800 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1801 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1802 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1803 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1804
1805 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1806 }
1807 } else {
1808 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1809 nir_print_instr(&instr->instr, stderr);
1810 fprintf(stderr, "\n");
1811 }
1812 break;
1813 }
1814 case nir_op_fsin:
1815 case nir_op_fcos: {
1816 Temp src = get_alu_src(ctx, instr->src[0]);
1817 aco_ptr<Instruction> norm;
1818 if (dst.size() == 1) {
1819 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1820 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1821
1822 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1823 if (ctx->options->chip_class < GFX9)
1824 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1825
1826 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1827 bld.vop1(opcode, Definition(dst), tmp);
1828 } else {
1829 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1830 nir_print_instr(&instr->instr, stderr);
1831 fprintf(stderr, "\n");
1832 }
1833 break;
1834 }
1835 case nir_op_ldexp: {
1836 if (dst.size() == 1) {
1837 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1838 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1839 get_alu_src(ctx, instr->src[1]));
1840 } else if (dst.size() == 2) {
1841 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1842 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1843 get_alu_src(ctx, instr->src[1]));
1844 } else {
1845 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1846 nir_print_instr(&instr->instr, stderr);
1847 fprintf(stderr, "\n");
1848 }
1849 break;
1850 }
1851 case nir_op_frexp_sig: {
1852 if (dst.size() == 1) {
1853 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1854 get_alu_src(ctx, instr->src[0]));
1855 } else if (dst.size() == 2) {
1856 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1857 get_alu_src(ctx, instr->src[0]));
1858 } else {
1859 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1860 nir_print_instr(&instr->instr, stderr);
1861 fprintf(stderr, "\n");
1862 }
1863 break;
1864 }
1865 case nir_op_frexp_exp: {
1866 if (instr->src[0].src.ssa->bit_size == 32) {
1867 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1868 get_alu_src(ctx, instr->src[0]));
1869 } else if (instr->src[0].src.ssa->bit_size == 64) {
1870 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1871 get_alu_src(ctx, instr->src[0]));
1872 } else {
1873 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1874 nir_print_instr(&instr->instr, stderr);
1875 fprintf(stderr, "\n");
1876 }
1877 break;
1878 }
1879 case nir_op_fsign: {
1880 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1881 if (dst.size() == 1) {
1882 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1883 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1884 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1885 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1886 } else if (dst.size() == 2) {
1887 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1888 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1889 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1890
1891 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1892 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1893 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1894
1895 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1896 } else {
1897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1898 nir_print_instr(&instr->instr, stderr);
1899 fprintf(stderr, "\n");
1900 }
1901 break;
1902 }
1903 case nir_op_f2f32: {
1904 if (instr->src[0].src.ssa->bit_size == 64) {
1905 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1906 } else {
1907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1908 nir_print_instr(&instr->instr, stderr);
1909 fprintf(stderr, "\n");
1910 }
1911 break;
1912 }
1913 case nir_op_f2f64: {
1914 if (instr->src[0].src.ssa->bit_size == 32) {
1915 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1916 } else {
1917 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1918 nir_print_instr(&instr->instr, stderr);
1919 fprintf(stderr, "\n");
1920 }
1921 break;
1922 }
1923 case nir_op_i2f32: {
1924 assert(dst.size() == 1);
1925 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1926 break;
1927 }
1928 case nir_op_i2f64: {
1929 if (instr->src[0].src.ssa->bit_size == 32) {
1930 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1931 } else if (instr->src[0].src.ssa->bit_size == 64) {
1932 Temp src = get_alu_src(ctx, instr->src[0]);
1933 RegClass rc = RegClass(src.type(), 1);
1934 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1935 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1936 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1937 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1938 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1939 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1940
1941 } else {
1942 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1943 nir_print_instr(&instr->instr, stderr);
1944 fprintf(stderr, "\n");
1945 }
1946 break;
1947 }
1948 case nir_op_u2f32: {
1949 assert(dst.size() == 1);
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1951 break;
1952 }
1953 case nir_op_u2f64: {
1954 if (instr->src[0].src.ssa->bit_size == 32) {
1955 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1956 } else if (instr->src[0].src.ssa->bit_size == 64) {
1957 Temp src = get_alu_src(ctx, instr->src[0]);
1958 RegClass rc = RegClass(src.type(), 1);
1959 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1960 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1961 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1962 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1963 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1964 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1965 } else {
1966 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1967 nir_print_instr(&instr->instr, stderr);
1968 fprintf(stderr, "\n");
1969 }
1970 break;
1971 }
1972 case nir_op_f2i32: {
1973 Temp src = get_alu_src(ctx, instr->src[0]);
1974 if (instr->src[0].src.ssa->bit_size == 32) {
1975 if (dst.type() == RegType::vgpr)
1976 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1977 else
1978 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1979 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1980
1981 } else if (instr->src[0].src.ssa->bit_size == 64) {
1982 if (dst.type() == RegType::vgpr)
1983 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1984 else
1985 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1986 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1987
1988 } else {
1989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1990 nir_print_instr(&instr->instr, stderr);
1991 fprintf(stderr, "\n");
1992 }
1993 break;
1994 }
1995 case nir_op_f2u32: {
1996 Temp src = get_alu_src(ctx, instr->src[0]);
1997 if (instr->src[0].src.ssa->bit_size == 32) {
1998 if (dst.type() == RegType::vgpr)
1999 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2000 else
2001 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2002 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2003
2004 } else if (instr->src[0].src.ssa->bit_size == 64) {
2005 if (dst.type() == RegType::vgpr)
2006 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2007 else
2008 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2009 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2010
2011 } else {
2012 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2013 nir_print_instr(&instr->instr, stderr);
2014 fprintf(stderr, "\n");
2015 }
2016 break;
2017 }
2018 case nir_op_f2i64: {
2019 Temp src = get_alu_src(ctx, instr->src[0]);
2020 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2021 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2022 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2023 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2024 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2025 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2026 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2027 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2028 Temp new_exponent = bld.tmp(v1);
2029 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2030 if (ctx->program->chip_class >= GFX8)
2031 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2032 else
2033 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2034 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2035 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2036 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2037 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2038 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2039 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2040 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2041 Temp new_lower = bld.tmp(v1);
2042 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2043 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2045
2046 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2047 if (src.type() == RegType::vgpr)
2048 src = bld.as_uniform(src);
2049 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2050 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2051 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2052 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2053 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2054 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2055 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2056 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2057 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2058 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2059 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2060 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2061 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2062 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2063 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2064 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2065 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2066 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2067 Temp borrow = bld.tmp(s1);
2068 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2069 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2070 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2071
2072 } else if (instr->src[0].src.ssa->bit_size == 64) {
2073 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2074 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2075 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2076 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2077 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2078 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2079 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2080 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2081 if (dst.type() == RegType::sgpr) {
2082 lower = bld.as_uniform(lower);
2083 upper = bld.as_uniform(upper);
2084 }
2085 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2086
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_f2u64: {
2095 Temp src = get_alu_src(ctx, instr->src[0]);
2096 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2097 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2098 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2099 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2100 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2101 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2102 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2103 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2104 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2105 Temp new_exponent = bld.tmp(v1);
2106 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2107 if (ctx->program->chip_class >= GFX8)
2108 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2109 else
2110 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2111 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2112 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2113 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2114 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2115 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2116 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2117 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2118
2119 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2120 if (src.type() == RegType::vgpr)
2121 src = bld.as_uniform(src);
2122 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2123 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2124 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2125 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2126 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2127 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2128 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2129 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2130 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2131 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2132 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2133 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2134 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2135 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2136 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2137 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2138 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2139 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2140
2141 } else if (instr->src[0].src.ssa->bit_size == 64) {
2142 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2143 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2144 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2145 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2146 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2147 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2148 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2149 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2150 if (dst.type() == RegType::sgpr) {
2151 lower = bld.as_uniform(lower);
2152 upper = bld.as_uniform(upper);
2153 }
2154 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2155
2156 } else {
2157 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2158 nir_print_instr(&instr->instr, stderr);
2159 fprintf(stderr, "\n");
2160 }
2161 break;
2162 }
2163 case nir_op_b2f32: {
2164 Temp src = get_alu_src(ctx, instr->src[0]);
2165 assert(src.regClass() == bld.lm);
2166
2167 if (dst.regClass() == s1) {
2168 src = bool_to_scalar_condition(ctx, src);
2169 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2170 } else if (dst.regClass() == v1) {
2171 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2172 } else {
2173 unreachable("Wrong destination register class for nir_op_b2f32.");
2174 }
2175 break;
2176 }
2177 case nir_op_b2f64: {
2178 Temp src = get_alu_src(ctx, instr->src[0]);
2179 assert(src.regClass() == bld.lm);
2180
2181 if (dst.regClass() == s2) {
2182 src = bool_to_scalar_condition(ctx, src);
2183 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2184 } else if (dst.regClass() == v2) {
2185 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2186 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2187 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2188 } else {
2189 unreachable("Wrong destination register class for nir_op_b2f64.");
2190 }
2191 break;
2192 }
2193 case nir_op_i2i32: {
2194 Temp src = get_alu_src(ctx, instr->src[0]);
2195 if (instr->src[0].src.ssa->bit_size == 64) {
2196 /* we can actually just say dst = src, as it would map the lower register */
2197 emit_extract_vector(ctx, src, 0, dst);
2198 } else {
2199 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2200 nir_print_instr(&instr->instr, stderr);
2201 fprintf(stderr, "\n");
2202 }
2203 break;
2204 }
2205 case nir_op_u2u32: {
2206 Temp src = get_alu_src(ctx, instr->src[0]);
2207 if (instr->src[0].src.ssa->bit_size == 16) {
2208 if (dst.regClass() == s1) {
2209 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2210 } else {
2211 // TODO: do better with SDWA
2212 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2213 }
2214 } else if (instr->src[0].src.ssa->bit_size == 64) {
2215 /* we can actually just say dst = src, as it would map the lower register */
2216 emit_extract_vector(ctx, src, 0, dst);
2217 } else {
2218 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2219 nir_print_instr(&instr->instr, stderr);
2220 fprintf(stderr, "\n");
2221 }
2222 break;
2223 }
2224 case nir_op_i2i64: {
2225 Temp src = get_alu_src(ctx, instr->src[0]);
2226 if (src.regClass() == s1) {
2227 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2228 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2229 } else if (src.regClass() == v1) {
2230 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2231 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2232 } else {
2233 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2234 nir_print_instr(&instr->instr, stderr);
2235 fprintf(stderr, "\n");
2236 }
2237 break;
2238 }
2239 case nir_op_u2u64: {
2240 Temp src = get_alu_src(ctx, instr->src[0]);
2241 if (instr->src[0].src.ssa->bit_size == 32) {
2242 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2243 } else {
2244 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2245 nir_print_instr(&instr->instr, stderr);
2246 fprintf(stderr, "\n");
2247 }
2248 break;
2249 }
2250 case nir_op_b2i32: {
2251 Temp src = get_alu_src(ctx, instr->src[0]);
2252 assert(src.regClass() == bld.lm);
2253
2254 if (dst.regClass() == s1) {
2255 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2256 bool_to_scalar_condition(ctx, src, dst);
2257 } else if (dst.regClass() == v1) {
2258 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2259 } else {
2260 unreachable("Invalid register class for b2i32");
2261 }
2262 break;
2263 }
2264 case nir_op_i2b1: {
2265 Temp src = get_alu_src(ctx, instr->src[0]);
2266 assert(dst.regClass() == bld.lm);
2267
2268 if (src.type() == RegType::vgpr) {
2269 assert(src.regClass() == v1 || src.regClass() == v2);
2270 assert(dst.regClass() == bld.lm);
2271 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2272 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2273 } else {
2274 assert(src.regClass() == s1 || src.regClass() == s2);
2275 Temp tmp;
2276 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2277 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2278 } else {
2279 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2280 bld.scc(bld.def(s1)), Operand(0u), src);
2281 }
2282 bool_to_vector_condition(ctx, tmp, dst);
2283 }
2284 break;
2285 }
2286 case nir_op_pack_64_2x32_split: {
2287 Temp src0 = get_alu_src(ctx, instr->src[0]);
2288 Temp src1 = get_alu_src(ctx, instr->src[1]);
2289
2290 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2291 break;
2292 }
2293 case nir_op_unpack_64_2x32_split_x:
2294 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2295 break;
2296 case nir_op_unpack_64_2x32_split_y:
2297 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2298 break;
2299 case nir_op_pack_half_2x16: {
2300 Temp src = get_alu_src(ctx, instr->src[0], 2);
2301
2302 if (dst.regClass() == v1) {
2303 Temp src0 = bld.tmp(v1);
2304 Temp src1 = bld.tmp(v1);
2305 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2306 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2307 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2308 else
2309 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2310 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2311 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2312 } else {
2313 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2314 nir_print_instr(&instr->instr, stderr);
2315 fprintf(stderr, "\n");
2316 }
2317 break;
2318 }
2319 case nir_op_unpack_half_2x16_split_x: {
2320 if (dst.regClass() == v1) {
2321 Builder bld(ctx->program, ctx->block);
2322 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2323 } else {
2324 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2325 nir_print_instr(&instr->instr, stderr);
2326 fprintf(stderr, "\n");
2327 }
2328 break;
2329 }
2330 case nir_op_unpack_half_2x16_split_y: {
2331 if (dst.regClass() == v1) {
2332 Builder bld(ctx->program, ctx->block);
2333 /* TODO: use SDWA here */
2334 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2335 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2336 } else {
2337 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2338 nir_print_instr(&instr->instr, stderr);
2339 fprintf(stderr, "\n");
2340 }
2341 break;
2342 }
2343 case nir_op_fquantize2f16: {
2344 Temp src = get_alu_src(ctx, instr->src[0]);
2345 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2346 Temp f32, cmp_res;
2347
2348 if (ctx->program->chip_class >= GFX8) {
2349 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2350 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2351 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2352 } else {
2353 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2354 * so compare the result and flush to 0 if it's smaller.
2355 */
2356 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2357 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2358 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2359 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2360 cmp_res = vop3->definitions[0].getTemp();
2361 }
2362
2363 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2364 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2365 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2366 } else {
2367 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2368 }
2369 break;
2370 }
2371 case nir_op_bfm: {
2372 Temp bits = get_alu_src(ctx, instr->src[0]);
2373 Temp offset = get_alu_src(ctx, instr->src[1]);
2374
2375 if (dst.regClass() == s1) {
2376 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2377 } else if (dst.regClass() == v1) {
2378 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2379 } else {
2380 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2381 nir_print_instr(&instr->instr, stderr);
2382 fprintf(stderr, "\n");
2383 }
2384 break;
2385 }
2386 case nir_op_bitfield_select: {
2387 /* (mask & insert) | (~mask & base) */
2388 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2389 Temp insert = get_alu_src(ctx, instr->src[1]);
2390 Temp base = get_alu_src(ctx, instr->src[2]);
2391
2392 /* dst = (insert & bitmask) | (base & ~bitmask) */
2393 if (dst.regClass() == s1) {
2394 aco_ptr<Instruction> sop2;
2395 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2396 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2397 Operand lhs;
2398 if (const_insert && const_bitmask) {
2399 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2400 } else {
2401 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2402 lhs = Operand(insert);
2403 }
2404
2405 Operand rhs;
2406 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2407 if (const_base && const_bitmask) {
2408 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2409 } else {
2410 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2411 rhs = Operand(base);
2412 }
2413
2414 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2415
2416 } else if (dst.regClass() == v1) {
2417 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2418 base = as_vgpr(ctx, base);
2419 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2420 insert = as_vgpr(ctx, insert);
2421
2422 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2423
2424 } else {
2425 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2426 nir_print_instr(&instr->instr, stderr);
2427 fprintf(stderr, "\n");
2428 }
2429 break;
2430 }
2431 case nir_op_ubfe:
2432 case nir_op_ibfe: {
2433 Temp base = get_alu_src(ctx, instr->src[0]);
2434 Temp offset = get_alu_src(ctx, instr->src[1]);
2435 Temp bits = get_alu_src(ctx, instr->src[2]);
2436
2437 if (dst.type() == RegType::sgpr) {
2438 Operand extract;
2439 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2440 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2441 if (const_offset && const_bits) {
2442 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2443 extract = Operand(const_extract);
2444 } else {
2445 Operand width;
2446 if (const_bits) {
2447 width = Operand(const_bits->u32 << 16);
2448 } else {
2449 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2450 }
2451 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2452 }
2453
2454 aco_opcode opcode;
2455 if (dst.regClass() == s1) {
2456 if (instr->op == nir_op_ubfe)
2457 opcode = aco_opcode::s_bfe_u32;
2458 else
2459 opcode = aco_opcode::s_bfe_i32;
2460 } else if (dst.regClass() == s2) {
2461 if (instr->op == nir_op_ubfe)
2462 opcode = aco_opcode::s_bfe_u64;
2463 else
2464 opcode = aco_opcode::s_bfe_i64;
2465 } else {
2466 unreachable("Unsupported BFE bit size");
2467 }
2468
2469 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2470
2471 } else {
2472 aco_opcode opcode;
2473 if (dst.regClass() == v1) {
2474 if (instr->op == nir_op_ubfe)
2475 opcode = aco_opcode::v_bfe_u32;
2476 else
2477 opcode = aco_opcode::v_bfe_i32;
2478 } else {
2479 unreachable("Unsupported BFE bit size");
2480 }
2481
2482 emit_vop3a_instruction(ctx, instr, opcode, dst);
2483 }
2484 break;
2485 }
2486 case nir_op_bit_count: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 if (src.regClass() == s1) {
2489 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2490 } else if (src.regClass() == v1) {
2491 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2492 } else if (src.regClass() == v2) {
2493 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2494 emit_extract_vector(ctx, src, 1, v1),
2495 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2496 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2497 } else if (src.regClass() == s2) {
2498 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2499 } else {
2500 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2501 nir_print_instr(&instr->instr, stderr);
2502 fprintf(stderr, "\n");
2503 }
2504 break;
2505 }
2506 case nir_op_flt: {
2507 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2508 break;
2509 }
2510 case nir_op_fge: {
2511 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2512 break;
2513 }
2514 case nir_op_feq: {
2515 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2516 break;
2517 }
2518 case nir_op_fne: {
2519 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2520 break;
2521 }
2522 case nir_op_ilt: {
2523 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2524 break;
2525 }
2526 case nir_op_ige: {
2527 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2528 break;
2529 }
2530 case nir_op_ieq: {
2531 if (instr->src[0].src.ssa->bit_size == 1)
2532 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2533 else
2534 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2535 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2536 break;
2537 }
2538 case nir_op_ine: {
2539 if (instr->src[0].src.ssa->bit_size == 1)
2540 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2541 else
2542 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2543 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2544 break;
2545 }
2546 case nir_op_ult: {
2547 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2548 break;
2549 }
2550 case nir_op_uge: {
2551 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2552 break;
2553 }
2554 case nir_op_fddx:
2555 case nir_op_fddy:
2556 case nir_op_fddx_fine:
2557 case nir_op_fddy_fine:
2558 case nir_op_fddx_coarse:
2559 case nir_op_fddy_coarse: {
2560 Temp src = get_alu_src(ctx, instr->src[0]);
2561 uint16_t dpp_ctrl1, dpp_ctrl2;
2562 if (instr->op == nir_op_fddx_fine) {
2563 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2564 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2565 } else if (instr->op == nir_op_fddy_fine) {
2566 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2567 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2568 } else {
2569 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2570 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2571 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2572 else
2573 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2574 }
2575
2576 Temp tmp;
2577 if (ctx->program->chip_class >= GFX8) {
2578 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2579 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2580 } else {
2581 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2582 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2583 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2584 }
2585 emit_wqm(ctx, tmp, dst, true);
2586 break;
2587 }
2588 default:
2589 fprintf(stderr, "Unknown NIR ALU instr: ");
2590 nir_print_instr(&instr->instr, stderr);
2591 fprintf(stderr, "\n");
2592 }
2593 }
2594
2595 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2596 {
2597 Temp dst = get_ssa_temp(ctx, &instr->def);
2598
2599 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2600 // which get truncated the lsb if double and msb if int
2601 // for now, we only use s_mov_b64 with 64bit inline constants
2602 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2603 assert(dst.type() == RegType::sgpr);
2604
2605 Builder bld(ctx->program, ctx->block);
2606
2607 if (instr->def.bit_size == 1) {
2608 assert(dst.regClass() == bld.lm);
2609 int val = instr->value[0].b ? -1 : 0;
2610 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2611 bld.sop1(Builder::s_mov, Definition(dst), op);
2612 } else if (dst.size() == 1) {
2613 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2614 } else {
2615 assert(dst.size() != 1);
2616 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2617 if (instr->def.bit_size == 64)
2618 for (unsigned i = 0; i < dst.size(); i++)
2619 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2620 else {
2621 for (unsigned i = 0; i < dst.size(); i++)
2622 vec->operands[i] = Operand{instr->value[i].u32};
2623 }
2624 vec->definitions[0] = Definition(dst);
2625 ctx->block->instructions.emplace_back(std::move(vec));
2626 }
2627 }
2628
2629 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2630 {
2631 uint32_t new_mask = 0;
2632 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2633 if (mask & (1u << i))
2634 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2635 return new_mask;
2636 }
2637
2638 Operand load_lds_size_m0(isel_context *ctx)
2639 {
2640 /* TODO: m0 does not need to be initialized on GFX9+ */
2641 Builder bld(ctx->program, ctx->block);
2642 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2643 }
2644
2645 void load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2646 Temp address, unsigned base_offset, unsigned align)
2647 {
2648 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2649
2650 Builder bld(ctx->program, ctx->block);
2651
2652 Operand m = load_lds_size_m0(ctx);
2653
2654 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2655 unsigned bytes_read = 0;
2656 unsigned result_size = 0;
2657 unsigned total_bytes = num_components * elem_size_bytes;
2658 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2659 bool large_ds_read = ctx->options->chip_class >= GFX7;
2660 bool usable_read2 = ctx->options->chip_class >= GFX7;
2661
2662 while (bytes_read < total_bytes) {
2663 unsigned todo = total_bytes - bytes_read;
2664 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2665 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2666
2667 aco_opcode op = aco_opcode::last_opcode;
2668 bool read2 = false;
2669 if (todo >= 16 && aligned16 && large_ds_read) {
2670 op = aco_opcode::ds_read_b128;
2671 todo = 16;
2672 } else if (todo >= 16 && aligned8 && usable_read2) {
2673 op = aco_opcode::ds_read2_b64;
2674 read2 = true;
2675 todo = 16;
2676 } else if (todo >= 12 && aligned16 && large_ds_read) {
2677 op = aco_opcode::ds_read_b96;
2678 todo = 12;
2679 } else if (todo >= 8 && aligned8) {
2680 op = aco_opcode::ds_read_b64;
2681 todo = 8;
2682 } else if (todo >= 8 && usable_read2) {
2683 op = aco_opcode::ds_read2_b32;
2684 read2 = true;
2685 todo = 8;
2686 } else if (todo >= 4) {
2687 op = aco_opcode::ds_read_b32;
2688 todo = 4;
2689 } else {
2690 assert(false);
2691 }
2692 assert(todo % elem_size_bytes == 0);
2693 unsigned num_elements = todo / elem_size_bytes;
2694 unsigned offset = base_offset + bytes_read;
2695 unsigned max_offset = read2 ? 1019 : 65535;
2696
2697 Temp address_offset = address;
2698 if (offset > max_offset) {
2699 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2700 offset = bytes_read;
2701 }
2702 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2703
2704 Temp res;
2705 if (num_components == 1 && dst.type() == RegType::vgpr)
2706 res = dst;
2707 else
2708 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2709
2710 if (read2)
2711 res = bld.ds(op, Definition(res), address_offset, m, offset >> 2, (offset >> 2) + 1);
2712 else
2713 res = bld.ds(op, Definition(res), address_offset, m, offset);
2714
2715 if (num_components == 1) {
2716 assert(todo == total_bytes);
2717 if (dst.type() == RegType::sgpr)
2718 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2719 return;
2720 }
2721
2722 if (dst.type() == RegType::sgpr) {
2723 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2724 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2725 res = new_res;
2726 }
2727
2728 if (num_elements == 1) {
2729 result[result_size++] = res;
2730 } else {
2731 assert(res != dst && res.size() % num_elements == 0);
2732 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2733 split->operands[0] = Operand(res);
2734 for (unsigned i = 0; i < num_elements; i++)
2735 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2736 ctx->block->instructions.emplace_back(std::move(split));
2737 }
2738
2739 bytes_read += todo;
2740 }
2741
2742 assert(result_size == num_components && result_size > 1);
2743 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2744 for (unsigned i = 0; i < result_size; i++)
2745 vec->operands[i] = Operand(result[i]);
2746 vec->definitions[0] = Definition(dst);
2747 ctx->block->instructions.emplace_back(std::move(vec));
2748 ctx->allocated_vec.emplace(dst.id(), result);
2749 }
2750
2751 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2752 {
2753 if (start == 0 && size == data.size())
2754 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2755
2756 unsigned size_hint = 1;
2757 auto it = ctx->allocated_vec.find(data.id());
2758 if (it != ctx->allocated_vec.end())
2759 size_hint = it->second[0].size();
2760 if (size % size_hint || start % size_hint)
2761 size_hint = 1;
2762
2763 start /= size_hint;
2764 size /= size_hint;
2765
2766 Temp elems[size];
2767 for (unsigned i = 0; i < size; i++)
2768 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2769
2770 if (size == 1)
2771 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2772
2773 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2774 for (unsigned i = 0; i < size; i++)
2775 vec->operands[i] = Operand(elems[i]);
2776 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2777 vec->definitions[0] = Definition(res);
2778 ctx->block->instructions.emplace_back(std::move(vec));
2779 return res;
2780 }
2781
2782 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2783 {
2784 Builder bld(ctx->program, ctx->block);
2785 unsigned bytes_written = 0;
2786 bool large_ds_write = ctx->options->chip_class >= GFX7;
2787 bool usable_write2 = ctx->options->chip_class >= GFX7;
2788
2789 while (bytes_written < total_size * 4) {
2790 unsigned todo = total_size * 4 - bytes_written;
2791 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2792 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2793
2794 aco_opcode op = aco_opcode::last_opcode;
2795 bool write2 = false;
2796 unsigned size = 0;
2797 if (todo >= 16 && aligned16 && large_ds_write) {
2798 op = aco_opcode::ds_write_b128;
2799 size = 4;
2800 } else if (todo >= 16 && aligned8 && usable_write2) {
2801 op = aco_opcode::ds_write2_b64;
2802 write2 = true;
2803 size = 4;
2804 } else if (todo >= 12 && aligned16 && large_ds_write) {
2805 op = aco_opcode::ds_write_b96;
2806 size = 3;
2807 } else if (todo >= 8 && aligned8) {
2808 op = aco_opcode::ds_write_b64;
2809 size = 2;
2810 } else if (todo >= 8 && usable_write2) {
2811 op = aco_opcode::ds_write2_b32;
2812 write2 = true;
2813 size = 2;
2814 } else if (todo >= 4) {
2815 op = aco_opcode::ds_write_b32;
2816 size = 1;
2817 } else {
2818 assert(false);
2819 }
2820
2821 unsigned offset = offset0 + offset1 + bytes_written;
2822 unsigned max_offset = write2 ? 1020 : 65535;
2823 Temp address_offset = address;
2824 if (offset > max_offset) {
2825 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2826 offset = offset1 + bytes_written;
2827 }
2828 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2829
2830 if (write2) {
2831 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2832 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2833 bld.ds(op, address_offset, val0, val1, m, offset >> 2, (offset >> 2) + 1);
2834 } else {
2835 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2836 bld.ds(op, address_offset, val, m, offset);
2837 }
2838
2839 bytes_written += size * 4;
2840 }
2841 }
2842
2843 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2844 Temp address, unsigned base_offset, unsigned align)
2845 {
2846 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2847
2848 Operand m = load_lds_size_m0(ctx);
2849
2850 /* we need at most two stores for 32bit variables */
2851 int start[2], count[2];
2852 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2853 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2854 assert(wrmask == 0);
2855
2856 /* one combined store is sufficient */
2857 if (count[0] == count[1]) {
2858 Builder bld(ctx->program, ctx->block);
2859
2860 Temp address_offset = address;
2861 if ((base_offset >> 2) + start[1] > 255) {
2862 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2863 base_offset = 0;
2864 }
2865
2866 assert(count[0] == 1);
2867 Temp val0 = emit_extract_vector(ctx, data, start[0], v1);
2868 Temp val1 = emit_extract_vector(ctx, data, start[1], v1);
2869 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2870 base_offset = base_offset / elem_size_bytes;
2871 bld.ds(op, address_offset, val0, val1, m,
2872 base_offset + start[0], base_offset + start[1]);
2873 return;
2874 }
2875
2876 for (unsigned i = 0; i < 2; i++) {
2877 if (count[i] == 0)
2878 continue;
2879
2880 unsigned elem_size_words = elem_size_bytes / 4;
2881 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2882 base_offset, start[i] * elem_size_bytes, align);
2883 }
2884 return;
2885 }
2886
2887 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
2888 {
2889 unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
2890 unsigned align = 16;
2891 align = std::min(align, 1u << (ffs(itemsize) - 1));
2892 if (const_offset)
2893 align = std::min(align, 1u << (ffs(const_offset) - 1));
2894
2895 return align;
2896 }
2897
2898 void visit_store_vsgs_output(isel_context *ctx, nir_intrinsic_instr *instr)
2899 {
2900 unsigned write_mask = nir_intrinsic_write_mask(instr);
2901 unsigned component = nir_intrinsic_component(instr);
2902 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2903 unsigned idx = (nir_intrinsic_base(instr) + component) * 4u;
2904 Operand offset(s1);
2905 Builder bld(ctx->program, ctx->block);
2906
2907 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2908 if (off_instr->type != nir_instr_type_load_const)
2909 offset = bld.v_mul24_imm(bld.def(v1), get_ssa_temp(ctx, instr->src[1].ssa), 16u);
2910 else
2911 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 16u;
2912
2913 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
2914 if (ctx->stage == vertex_es) {
2915 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
2916
2917 Temp elems[NIR_MAX_VEC_COMPONENTS * 2];
2918 if (elem_size_bytes == 8) {
2919 for (unsigned i = 0; i < src.size() / 2; i++) {
2920 Temp elem = emit_extract_vector(ctx, src, i, v2);
2921 elems[i*2] = bld.tmp(v1);
2922 elems[i*2+1] = bld.tmp(v1);
2923 bld.pseudo(aco_opcode::p_split_vector, Definition(elems[i*2]), Definition(elems[i*2+1]), elem);
2924 }
2925 write_mask = widen_mask(write_mask, 2);
2926 elem_size_bytes /= 2u;
2927 } else {
2928 for (unsigned i = 0; i < src.size(); i++)
2929 elems[i] = emit_extract_vector(ctx, src, i, v1);
2930 }
2931
2932 while (write_mask) {
2933 unsigned index = u_bit_scan(&write_mask);
2934 unsigned offset = index * elem_size_bytes;
2935 Temp elem = emit_extract_vector(ctx, src, index, RegClass(RegType::vgpr, elem_size_bytes / 4));
2936
2937 Operand vaddr_offset(v1);
2938 unsigned const_offset = idx + offset;
2939 if (const_offset >= 4096u) {
2940 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
2941 const_offset %= 4096u;
2942 }
2943
2944 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
2945 mtbuf->operands[0] = Operand(esgs_ring);
2946 mtbuf->operands[1] = vaddr_offset;
2947 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->es2gs_offset));
2948 mtbuf->operands[3] = Operand(elem);
2949 mtbuf->offen = !vaddr_offset.isUndefined();
2950 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
2951 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
2952 mtbuf->offset = const_offset;
2953 mtbuf->glc = true;
2954 mtbuf->slc = true;
2955 mtbuf->barrier = barrier_none;
2956 mtbuf->can_reorder = true;
2957 bld.insert(std::move(mtbuf));
2958 }
2959 } else {
2960 unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
2961
2962 Temp vertex_idx = emit_mbcnt(ctx, bld.def(v1));
2963 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
2964 vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), vertex_idx,
2965 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
2966
2967 Temp lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
2968 if (!offset.isUndefined())
2969 lds_base = bld.vadd32(bld.def(v1), offset, lds_base);
2970
2971 unsigned align = calculate_lds_alignment(ctx, idx);
2972 store_lds(ctx, elem_size_bytes, src, write_mask, lds_base, idx, align);
2973 }
2974 }
2975
2976 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
2977 {
2978 if (ctx->stage == vertex_vs ||
2979 ctx->stage == fragment_fs ||
2980 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
2981 unsigned write_mask = nir_intrinsic_write_mask(instr);
2982 unsigned component = nir_intrinsic_component(instr);
2983 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2984 unsigned idx = nir_intrinsic_base(instr) + component;
2985
2986 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2987 if (off_instr->type != nir_instr_type_load_const) {
2988 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2989 nir_print_instr(off_instr, stderr);
2990 fprintf(stderr, "\n");
2991 }
2992 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
2993
2994 if (instr->src[0].ssa->bit_size == 64)
2995 write_mask = widen_mask(write_mask, 2);
2996
2997 for (unsigned i = 0; i < 8; ++i) {
2998 if (write_mask & (1 << i)) {
2999 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3000 ctx->outputs.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
3001 }
3002 idx++;
3003 }
3004 } else if (ctx->stage == vertex_es ||
3005 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX)) {
3006 visit_store_vsgs_output(ctx, instr);
3007 } else {
3008 unreachable("Shader stage not implemented");
3009 }
3010 }
3011
3012 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3013 {
3014 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3015 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3016
3017 Builder bld(ctx->program, ctx->block);
3018 Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3019 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
3020 }
3021
3022 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3023 {
3024 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3025 for (unsigned i = 0; i < num_components; i++)
3026 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3027 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3028 assert(num_components == 4);
3029 Builder bld(ctx->program, ctx->block);
3030 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3031 }
3032
3033 for (Operand& op : vec->operands)
3034 op = op.isUndefined() ? Operand(0u) : op;
3035
3036 vec->definitions[0] = Definition(dst);
3037 ctx->block->instructions.emplace_back(std::move(vec));
3038 emit_split_vector(ctx, dst, num_components);
3039 return;
3040 }
3041
3042 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3043 {
3044 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3045 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3046 unsigned idx = nir_intrinsic_base(instr);
3047 unsigned component = nir_intrinsic_component(instr);
3048 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3049
3050 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3051 if (offset) {
3052 assert(offset->u32 == 0);
3053 } else {
3054 /* the lower 15bit of the prim_mask contain the offset into LDS
3055 * while the upper bits contain the number of prims */
3056 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3057 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3058 Builder bld(ctx->program, ctx->block);
3059 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3060 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3061 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3062 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3063 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3064 }
3065
3066 if (instr->dest.ssa.num_components == 1) {
3067 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3068 } else {
3069 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3070 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3071 {
3072 Temp tmp = {ctx->program->allocateId(), v1};
3073 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3074 vec->operands[i] = Operand(tmp);
3075 }
3076 vec->definitions[0] = Definition(dst);
3077 ctx->block->instructions.emplace_back(std::move(vec));
3078 }
3079 }
3080
3081 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3082 unsigned offset, unsigned stride, unsigned channels)
3083 {
3084 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3085 if (vtx_info->chan_byte_size != 4 && channels == 3)
3086 return false;
3087 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3088 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3089 }
3090
3091 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3092 unsigned offset, unsigned stride, unsigned *channels)
3093 {
3094 if (!vtx_info->chan_byte_size) {
3095 *channels = vtx_info->num_channels;
3096 return vtx_info->chan_format;
3097 }
3098
3099 unsigned num_channels = *channels;
3100 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3101 unsigned new_channels = num_channels + 1;
3102 /* first, assume more loads is worse and try using a larger data format */
3103 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3104 new_channels++;
3105 /* don't make the attribute potentially out-of-bounds */
3106 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3107 new_channels = 5;
3108 }
3109
3110 if (new_channels == 5) {
3111 /* then try decreasing load size (at the cost of more loads) */
3112 new_channels = *channels;
3113 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3114 new_channels--;
3115 }
3116
3117 if (new_channels < *channels)
3118 *channels = new_channels;
3119 num_channels = new_channels;
3120 }
3121
3122 switch (vtx_info->chan_format) {
3123 case V_008F0C_BUF_DATA_FORMAT_8:
3124 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3125 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3126 case V_008F0C_BUF_DATA_FORMAT_16:
3127 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3128 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3129 case V_008F0C_BUF_DATA_FORMAT_32:
3130 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3131 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3132 }
3133 unreachable("shouldn't reach here");
3134 return V_008F0C_BUF_DATA_FORMAT_INVALID;
3135 }
3136
3137 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3138 * so we may need to fix it up. */
3139 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3140 {
3141 Builder bld(ctx->program, ctx->block);
3142
3143 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3144 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3145
3146 /* For the integer-like cases, do a natural sign extension.
3147 *
3148 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3149 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3150 * exponent.
3151 */
3152 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3153 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3154
3155 /* Convert back to the right type. */
3156 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3157 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3158 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3159 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3160 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3161 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3162 }
3163
3164 return alpha;
3165 }
3166
3167 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3168 {
3169 Builder bld(ctx->program, ctx->block);
3170 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3171 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
3172
3173 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3174 if (off_instr->type != nir_instr_type_load_const) {
3175 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3176 nir_print_instr(off_instr, stderr);
3177 fprintf(stderr, "\n");
3178 }
3179 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3180
3181 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3182
3183 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3184 unsigned component = nir_intrinsic_component(instr);
3185 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3186 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3187 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3188 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3189
3190 unsigned dfmt = attrib_format & 0xf;
3191 unsigned nfmt = (attrib_format >> 4) & 0x7;
3192 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
3193
3194 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3195 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
3196 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3197 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3198 if (post_shuffle)
3199 num_channels = MAX2(num_channels, 3);
3200
3201 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
3202 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
3203
3204 Temp index;
3205 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3206 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3207 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3208 if (divisor) {
3209 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3210 if (divisor != 1) {
3211 Temp divided = bld.tmp(v1);
3212 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3213 index = bld.vadd32(bld.def(v1), start_instance, divided);
3214 } else {
3215 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3216 }
3217 } else {
3218 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3219 }
3220 } else {
3221 index = bld.vadd32(bld.def(v1),
3222 get_arg(ctx, ctx->args->ac.base_vertex),
3223 get_arg(ctx, ctx->args->ac.vertex_id));
3224 }
3225
3226 Temp channels[num_channels];
3227 unsigned channel_start = 0;
3228 bool direct_fetch = false;
3229
3230 /* skip unused channels at the start */
3231 if (vtx_info->chan_byte_size && !post_shuffle) {
3232 channel_start = ffs(mask) - 1;
3233 for (unsigned i = 0; i < channel_start; i++)
3234 channels[i] = Temp(0, s1);
3235 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
3236 num_channels = 3 - (ffs(mask) - 1);
3237 }
3238
3239 /* load channels */
3240 while (channel_start < num_channels) {
3241 unsigned fetch_size = num_channels - channel_start;
3242 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
3243 bool expanded = false;
3244
3245 /* use MUBUF when possible to avoid possible alignment issues */
3246 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
3247 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
3248 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
3249 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
3250 vtx_info->chan_byte_size == 4;
3251 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
3252 if (!use_mubuf) {
3253 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
3254 } else {
3255 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
3256 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
3257 fetch_size = 4;
3258 expanded = true;
3259 }
3260 }
3261
3262 Temp fetch_index = index;
3263 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
3264 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
3265 fetch_offset = fetch_offset % attrib_stride;
3266 }
3267
3268 Operand soffset(0u);
3269 if (fetch_offset >= 4096) {
3270 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
3271 fetch_offset %= 4096;
3272 }
3273
3274 aco_opcode opcode;
3275 switch (fetch_size) {
3276 case 1:
3277 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
3278 break;
3279 case 2:
3280 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
3281 break;
3282 case 3:
3283 assert(ctx->options->chip_class >= GFX7 ||
3284 (!use_mubuf && ctx->options->chip_class == GFX6));
3285 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
3286 break;
3287 case 4:
3288 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
3289 break;
3290 default:
3291 unreachable("Unimplemented load_input vector size");
3292 }
3293
3294 Temp fetch_dst;
3295 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
3296 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
3297 num_channels <= 3)) {
3298 direct_fetch = true;
3299 fetch_dst = dst;
3300 } else {
3301 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
3302 }
3303
3304 if (use_mubuf) {
3305 Instruction *mubuf = bld.mubuf(opcode,
3306 Definition(fetch_dst), list, fetch_index, soffset,
3307 fetch_offset, false, true).instr;
3308 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
3309 } else {
3310 Instruction *mtbuf = bld.mtbuf(opcode,
3311 Definition(fetch_dst), list, fetch_index, soffset,
3312 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
3313 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
3314 }
3315
3316 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
3317
3318 if (fetch_size == 1) {
3319 channels[channel_start] = fetch_dst;
3320 } else {
3321 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
3322 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
3323 }
3324
3325 channel_start += fetch_size;
3326 }
3327
3328 if (!direct_fetch) {
3329 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3330 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3331
3332 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3333 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3334 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3335
3336 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3337 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3338 unsigned num_temp = 0;
3339 for (unsigned i = 0; i < dst.size(); i++) {
3340 unsigned idx = i + component;
3341 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
3342 Temp channel = channels[swizzle[idx]];
3343 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
3344 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
3345 vec->operands[i] = Operand(channel);
3346
3347 num_temp++;
3348 elems[i] = channel;
3349 } else if (is_float && idx == 3) {
3350 vec->operands[i] = Operand(0x3f800000u);
3351 } else if (!is_float && idx == 3) {
3352 vec->operands[i] = Operand(1u);
3353 } else {
3354 vec->operands[i] = Operand(0u);
3355 }
3356 }
3357 vec->definitions[0] = Definition(dst);
3358 ctx->block->instructions.emplace_back(std::move(vec));
3359 emit_split_vector(ctx, dst, dst.size());
3360
3361 if (num_temp == dst.size())
3362 ctx->allocated_vec.emplace(dst.id(), elems);
3363 }
3364 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
3365 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
3366 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
3367 if (off_instr->type != nir_instr_type_load_const ||
3368 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3369 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3370 nir_print_instr(off_instr, stderr);
3371 fprintf(stderr, "\n");
3372 }
3373
3374 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3375 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
3376 if (offset) {
3377 assert(offset->u32 == 0);
3378 } else {
3379 /* the lower 15bit of the prim_mask contain the offset into LDS
3380 * while the upper bits contain the number of prims */
3381 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
3382 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3383 Builder bld(ctx->program, ctx->block);
3384 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3385 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3386 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3387 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3388 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3389 }
3390
3391 unsigned idx = nir_intrinsic_base(instr);
3392 unsigned component = nir_intrinsic_component(instr);
3393 unsigned vertex_id = 2; /* P0 */
3394
3395 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
3396 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
3397 switch (src0->u32) {
3398 case 0:
3399 vertex_id = 2; /* P0 */
3400 break;
3401 case 1:
3402 vertex_id = 0; /* P10 */
3403 break;
3404 case 2:
3405 vertex_id = 1; /* P20 */
3406 break;
3407 default:
3408 unreachable("invalid vertex index");
3409 }
3410 }
3411
3412 if (dst.size() == 1) {
3413 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
3414 } else {
3415 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3416 for (unsigned i = 0; i < dst.size(); i++)
3417 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
3418 vec->definitions[0] = Definition(dst);
3419 bld.insert(std::move(vec));
3420 }
3421
3422 } else {
3423 unreachable("Shader stage not implemented");
3424 }
3425 }
3426
3427 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3428 {
3429 assert(ctx->stage == vertex_geometry_gs || ctx->stage == geometry_gs);
3430 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3431
3432 Builder bld(ctx->program, ctx->block);
3433 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3434
3435 Temp offset = Temp();
3436 if (instr->src[0].ssa->parent_instr->type != nir_instr_type_load_const) {
3437 /* better code could be created, but this case probably doesn't happen
3438 * much in practice */
3439 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
3440 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
3441 Temp elem;
3442 if (ctx->stage == vertex_geometry_gs) {
3443 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
3444 if (i % 2u)
3445 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
3446 } else {
3447 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
3448 }
3449 if (offset.id()) {
3450 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(s2)),
3451 Operand(i), indirect_vertex);
3452 offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), offset, elem, cond);
3453 } else {
3454 offset = elem;
3455 }
3456 }
3457 if (ctx->stage == vertex_geometry_gs)
3458 offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), offset);
3459 } else {
3460 unsigned vertex = nir_src_as_uint(instr->src[0]);
3461 if (ctx->stage == vertex_geometry_gs)
3462 offset = bld.vop3(
3463 aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
3464 Operand((vertex % 2u) * 16u), Operand(16u));
3465 else
3466 offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
3467 }
3468
3469 unsigned const_offset = nir_intrinsic_base(instr);
3470 const_offset += nir_intrinsic_component(instr);
3471
3472 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3473 if (off_instr->type != nir_instr_type_load_const) {
3474 Temp indirect_offset = get_ssa_temp(ctx, instr->src[1].ssa);
3475 offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u),
3476 bld.vadd32(bld.def(v1), indirect_offset, offset));
3477 } else {
3478 const_offset += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
3479 }
3480 const_offset *= 4u;
3481
3482 offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), offset);
3483
3484 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3485 if (ctx->stage == geometry_gs) {
3486 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
3487
3488 const_offset *= ctx->program->wave_size;
3489
3490 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3491 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3492 aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1)};
3493 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++) {
3494 Temp subelems[2];
3495 for (unsigned j = 0; j < elem_size_bytes / 4; j++) {
3496 Operand soffset(0u);
3497 if (const_offset >= 4096u)
3498 soffset = bld.copy(bld.def(s1), Operand(const_offset / 4096u * 4096u));
3499
3500 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
3501 mubuf->definitions[0] = bld.def(v1);
3502 subelems[j] = mubuf->definitions[0].getTemp();
3503 mubuf->operands[0] = Operand(esgs_ring);
3504 mubuf->operands[1] = Operand(offset);
3505 mubuf->operands[2] = Operand(soffset);
3506 mubuf->offen = true;
3507 mubuf->offset = const_offset % 4096u;
3508 mubuf->glc = true;
3509 mubuf->dlc = ctx->options->chip_class >= GFX10;
3510 mubuf->barrier = barrier_none;
3511 mubuf->can_reorder = true;
3512 bld.insert(std::move(mubuf));
3513
3514 const_offset += ctx->program->wave_size * 4u;
3515 }
3516
3517 if (elem_size_bytes == 4)
3518 elems[i] = subelems[0];
3519 else
3520 elems[i] = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), subelems[0], subelems[1]);
3521 vec->operands[i] = Operand(elems[i]);
3522 }
3523 vec->definitions[0] = Definition(dst);
3524 ctx->block->instructions.emplace_back(std::move(vec));
3525 ctx->allocated_vec.emplace(dst.id(), elems);
3526 } else {
3527 unsigned align = calculate_lds_alignment(ctx, const_offset);
3528 load_lds(ctx, elem_size_bytes, dst, offset, const_offset, align);
3529 }
3530 }
3531
3532 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
3533 {
3534 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
3535
3536 Builder bld(ctx->program, ctx->block);
3537 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3538
3539 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
3540 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
3541 Operand tes_w(0u);
3542
3543 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
3544 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
3545 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
3546 tes_w = Operand(tmp);
3547 }
3548
3549 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
3550 emit_split_vector(ctx, tess_coord, 3);
3551 }
3552
3553 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
3554 {
3555 if (ctx->program->info->need_indirect_descriptor_sets) {
3556 Builder bld(ctx->program, ctx->block);
3557 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
3558 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
3559 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
3560 }
3561
3562 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
3563 }
3564
3565
3566 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
3567 {
3568 Builder bld(ctx->program, ctx->block);
3569 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
3570 if (!ctx->divergent_vals[instr->dest.ssa.index])
3571 index = bld.as_uniform(index);
3572 unsigned desc_set = nir_intrinsic_desc_set(instr);
3573 unsigned binding = nir_intrinsic_binding(instr);
3574
3575 Temp desc_ptr;
3576 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
3577 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
3578 unsigned offset = layout->binding[binding].offset;
3579 unsigned stride;
3580 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
3581 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
3582 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
3583 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
3584 offset = pipeline_layout->push_constant_size + 16 * idx;
3585 stride = 16;
3586 } else {
3587 desc_ptr = load_desc_ptr(ctx, desc_set);
3588 stride = layout->binding[binding].size;
3589 }
3590
3591 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
3592 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
3593 if (stride != 1) {
3594 if (nir_const_index) {
3595 const_index = const_index * stride;
3596 } else if (index.type() == RegType::vgpr) {
3597 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
3598 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
3599 } else {
3600 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
3601 }
3602 }
3603 if (offset) {
3604 if (nir_const_index) {
3605 const_index = const_index + offset;
3606 } else if (index.type() == RegType::vgpr) {
3607 index = bld.vadd32(bld.def(v1), Operand(offset), index);
3608 } else {
3609 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
3610 }
3611 }
3612
3613 if (nir_const_index && const_index == 0) {
3614 index = desc_ptr;
3615 } else if (index.type() == RegType::vgpr) {
3616 index = bld.vadd32(bld.def(v1),
3617 nir_const_index ? Operand(const_index) : Operand(index),
3618 Operand(desc_ptr));
3619 } else {
3620 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3621 nir_const_index ? Operand(const_index) : Operand(index),
3622 Operand(desc_ptr));
3623 }
3624
3625 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
3626 }
3627
3628 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
3629 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
3630 {
3631 Builder bld(ctx->program, ctx->block);
3632
3633 unsigned num_bytes = dst.size() * 4;
3634 bool dlc = glc && ctx->options->chip_class >= GFX10;
3635
3636 aco_opcode op;
3637 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
3638 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3639 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3640 unsigned const_offset = 0;
3641
3642 Temp lower = Temp();
3643 if (num_bytes > 16) {
3644 assert(num_components == 3 || num_components == 4);
3645 op = aco_opcode::buffer_load_dwordx4;
3646 lower = bld.tmp(v4);
3647 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3648 mubuf->definitions[0] = Definition(lower);
3649 mubuf->operands[0] = Operand(rsrc);
3650 mubuf->operands[1] = vaddr;
3651 mubuf->operands[2] = soffset;
3652 mubuf->offen = (offset.type() == RegType::vgpr);
3653 mubuf->glc = glc;
3654 mubuf->dlc = dlc;
3655 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3656 mubuf->can_reorder = readonly;
3657 bld.insert(std::move(mubuf));
3658 emit_split_vector(ctx, lower, 2);
3659 num_bytes -= 16;
3660 const_offset = 16;
3661 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
3662 /* GFX6 doesn't support loading vec3, expand to vec4. */
3663 num_bytes = 16;
3664 }
3665
3666 switch (num_bytes) {
3667 case 4:
3668 op = aco_opcode::buffer_load_dword;
3669 break;
3670 case 8:
3671 op = aco_opcode::buffer_load_dwordx2;
3672 break;
3673 case 12:
3674 assert(ctx->options->chip_class > GFX6);
3675 op = aco_opcode::buffer_load_dwordx3;
3676 break;
3677 case 16:
3678 op = aco_opcode::buffer_load_dwordx4;
3679 break;
3680 default:
3681 unreachable("Load SSBO not implemented for this size.");
3682 }
3683 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3684 mubuf->operands[0] = Operand(rsrc);
3685 mubuf->operands[1] = vaddr;
3686 mubuf->operands[2] = soffset;
3687 mubuf->offen = (offset.type() == RegType::vgpr);
3688 mubuf->glc = glc;
3689 mubuf->dlc = dlc;
3690 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3691 mubuf->can_reorder = readonly;
3692 mubuf->offset = const_offset;
3693 aco_ptr<Instruction> instr = std::move(mubuf);
3694
3695 if (dst.size() > 4) {
3696 assert(lower != Temp());
3697 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
3698 instr->definitions[0] = Definition(upper);
3699 bld.insert(std::move(instr));
3700 if (dst.size() == 8)
3701 emit_split_vector(ctx, upper, 2);
3702 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
3703 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
3704 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
3705 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
3706 if (dst.size() == 8)
3707 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
3708 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
3709 Temp vec = bld.tmp(v4);
3710 instr->definitions[0] = Definition(vec);
3711 bld.insert(std::move(instr));
3712 emit_split_vector(ctx, vec, 4);
3713
3714 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
3715 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
3716 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
3717 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
3718 }
3719
3720 if (dst.type() == RegType::sgpr) {
3721 Temp vec = bld.tmp(RegType::vgpr, dst.size());
3722 instr->definitions[0] = Definition(vec);
3723 bld.insert(std::move(instr));
3724 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
3725 } else {
3726 instr->definitions[0] = Definition(dst);
3727 bld.insert(std::move(instr));
3728 emit_split_vector(ctx, dst, num_components);
3729 }
3730 } else {
3731 switch (num_bytes) {
3732 case 4:
3733 op = aco_opcode::s_buffer_load_dword;
3734 break;
3735 case 8:
3736 op = aco_opcode::s_buffer_load_dwordx2;
3737 break;
3738 case 12:
3739 case 16:
3740 op = aco_opcode::s_buffer_load_dwordx4;
3741 break;
3742 case 24:
3743 case 32:
3744 op = aco_opcode::s_buffer_load_dwordx8;
3745 break;
3746 default:
3747 unreachable("Load SSBO not implemented for this size.");
3748 }
3749 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3750 load->operands[0] = Operand(rsrc);
3751 load->operands[1] = Operand(bld.as_uniform(offset));
3752 assert(load->operands[1].getTemp().type() == RegType::sgpr);
3753 load->definitions[0] = Definition(dst);
3754 load->glc = glc;
3755 load->dlc = dlc;
3756 load->barrier = readonly ? barrier_none : barrier_buffer;
3757 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
3758 assert(ctx->options->chip_class >= GFX8 || !glc);
3759
3760 /* trim vector */
3761 if (dst.size() == 3) {
3762 Temp vec = bld.tmp(s4);
3763 load->definitions[0] = Definition(vec);
3764 bld.insert(std::move(load));
3765 emit_split_vector(ctx, vec, 4);
3766
3767 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3768 emit_extract_vector(ctx, vec, 0, s1),
3769 emit_extract_vector(ctx, vec, 1, s1),
3770 emit_extract_vector(ctx, vec, 2, s1));
3771 } else if (dst.size() == 6) {
3772 Temp vec = bld.tmp(s8);
3773 load->definitions[0] = Definition(vec);
3774 bld.insert(std::move(load));
3775 emit_split_vector(ctx, vec, 4);
3776
3777 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3778 emit_extract_vector(ctx, vec, 0, s2),
3779 emit_extract_vector(ctx, vec, 1, s2),
3780 emit_extract_vector(ctx, vec, 2, s2));
3781 } else {
3782 bld.insert(std::move(load));
3783 }
3784 emit_split_vector(ctx, dst, num_components);
3785 }
3786 }
3787
3788 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
3789 {
3790 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3791 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
3792
3793 Builder bld(ctx->program, ctx->block);
3794
3795 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3796 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
3797 unsigned binding = nir_intrinsic_binding(idx_instr);
3798 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
3799
3800 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
3801 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3802 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3803 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3804 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3805 if (ctx->options->chip_class >= GFX10) {
3806 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3807 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3808 S_008F0C_RESOURCE_LEVEL(1);
3809 } else {
3810 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3811 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3812 }
3813 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
3814 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
3815 Operand(0xFFFFFFFFu),
3816 Operand(desc_type));
3817 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3818 rsrc, upper_dwords);
3819 } else {
3820 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
3821 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
3822 }
3823
3824 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
3825 }
3826
3827 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3828 {
3829 Builder bld(ctx->program, ctx->block);
3830 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3831
3832 unsigned offset = nir_intrinsic_base(instr);
3833 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
3834 if (index_cv && instr->dest.ssa.bit_size == 32) {
3835
3836 unsigned count = instr->dest.ssa.num_components;
3837 unsigned start = (offset + index_cv->u32) / 4u;
3838 start -= ctx->args->ac.base_inline_push_consts;
3839 if (start + count <= ctx->args->ac.num_inline_push_consts) {
3840 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3841 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
3842 for (unsigned i = 0; i < count; ++i) {
3843 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
3844 vec->operands[i] = Operand{elems[i]};
3845 }
3846 vec->definitions[0] = Definition(dst);
3847 ctx->block->instructions.emplace_back(std::move(vec));
3848 ctx->allocated_vec.emplace(dst.id(), elems);
3849 return;
3850 }
3851 }
3852
3853 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
3854 if (offset != 0) // TODO check if index != 0 as well
3855 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
3856 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
3857 Temp vec = dst;
3858 bool trim = false;
3859 aco_opcode op;
3860
3861 switch (dst.size()) {
3862 case 1:
3863 op = aco_opcode::s_load_dword;
3864 break;
3865 case 2:
3866 op = aco_opcode::s_load_dwordx2;
3867 break;
3868 case 3:
3869 vec = bld.tmp(s4);
3870 trim = true;
3871 case 4:
3872 op = aco_opcode::s_load_dwordx4;
3873 break;
3874 case 6:
3875 vec = bld.tmp(s8);
3876 trim = true;
3877 case 8:
3878 op = aco_opcode::s_load_dwordx8;
3879 break;
3880 default:
3881 unreachable("unimplemented or forbidden load_push_constant.");
3882 }
3883
3884 bld.smem(op, Definition(vec), ptr, index);
3885
3886 if (trim) {
3887 emit_split_vector(ctx, vec, 4);
3888 RegClass rc = dst.size() == 3 ? s1 : s2;
3889 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3890 emit_extract_vector(ctx, vec, 0, rc),
3891 emit_extract_vector(ctx, vec, 1, rc),
3892 emit_extract_vector(ctx, vec, 2, rc));
3893
3894 }
3895 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
3896 }
3897
3898 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3899 {
3900 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3901
3902 Builder bld(ctx->program, ctx->block);
3903
3904 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3905 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3906 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3907 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3908 if (ctx->options->chip_class >= GFX10) {
3909 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3910 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3911 S_008F0C_RESOURCE_LEVEL(1);
3912 } else {
3913 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3914 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3915 }
3916
3917 unsigned base = nir_intrinsic_base(instr);
3918 unsigned range = nir_intrinsic_range(instr);
3919
3920 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
3921 if (base && offset.type() == RegType::sgpr)
3922 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
3923 else if (base && offset.type() == RegType::vgpr)
3924 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
3925
3926 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3927 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
3928 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
3929 Operand(desc_type));
3930
3931 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
3932 }
3933
3934 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
3935 {
3936 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3937 ctx->cf_info.exec_potentially_empty_discard = true;
3938
3939 ctx->program->needs_exact = true;
3940
3941 // TODO: optimize uniform conditions
3942 Builder bld(ctx->program, ctx->block);
3943 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3944 assert(src.regClass() == bld.lm);
3945 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
3946 bld.pseudo(aco_opcode::p_discard_if, src);
3947 ctx->block->kind |= block_kind_uses_discard_if;
3948 return;
3949 }
3950
3951 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
3952 {
3953 Builder bld(ctx->program, ctx->block);
3954
3955 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3956 ctx->cf_info.exec_potentially_empty_discard = true;
3957
3958 bool divergent = ctx->cf_info.parent_if.is_divergent ||
3959 ctx->cf_info.parent_loop.has_divergent_continue;
3960
3961 if (ctx->block->loop_nest_depth &&
3962 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
3963 /* we handle discards the same way as jump instructions */
3964 append_logical_end(ctx->block);
3965
3966 /* in loops, discard behaves like break */
3967 Block *linear_target = ctx->cf_info.parent_loop.exit;
3968 ctx->block->kind |= block_kind_discard;
3969
3970 if (!divergent) {
3971 /* uniform discard - loop ends here */
3972 assert(nir_instr_is_last(&instr->instr));
3973 ctx->block->kind |= block_kind_uniform;
3974 ctx->cf_info.has_branch = true;
3975 bld.branch(aco_opcode::p_branch);
3976 add_linear_edge(ctx->block->index, linear_target);
3977 return;
3978 }
3979
3980 /* we add a break right behind the discard() instructions */
3981 ctx->block->kind |= block_kind_break;
3982 unsigned idx = ctx->block->index;
3983
3984 /* remove critical edges from linear CFG */
3985 bld.branch(aco_opcode::p_branch);
3986 Block* break_block = ctx->program->create_and_insert_block();
3987 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3988 break_block->kind |= block_kind_uniform;
3989 add_linear_edge(idx, break_block);
3990 add_linear_edge(break_block->index, linear_target);
3991 bld.reset(break_block);
3992 bld.branch(aco_opcode::p_branch);
3993
3994 Block* continue_block = ctx->program->create_and_insert_block();
3995 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3996 add_linear_edge(idx, continue_block);
3997 append_logical_start(continue_block);
3998 ctx->block = continue_block;
3999
4000 return;
4001 }
4002
4003 /* it can currently happen that NIR doesn't remove the unreachable code */
4004 if (!nir_instr_is_last(&instr->instr)) {
4005 ctx->program->needs_exact = true;
4006 /* save exec somewhere temporarily so that it doesn't get
4007 * overwritten before the discard from outer exec masks */
4008 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
4009 bld.pseudo(aco_opcode::p_discard_if, cond);
4010 ctx->block->kind |= block_kind_uses_discard_if;
4011 return;
4012 }
4013
4014 /* This condition is incorrect for uniformly branched discards in a loop
4015 * predicated by a divergent condition, but the above code catches that case
4016 * and the discard would end up turning into a discard_if.
4017 * For example:
4018 * if (divergent) {
4019 * while (...) {
4020 * if (uniform) {
4021 * discard;
4022 * }
4023 * }
4024 * }
4025 */
4026 if (!ctx->cf_info.parent_if.is_divergent) {
4027 /* program just ends here */
4028 ctx->block->kind |= block_kind_uniform;
4029 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
4030 0 /* enabled mask */, 9 /* dest */,
4031 false /* compressed */, true/* done */, true /* valid mask */);
4032 bld.sopp(aco_opcode::s_endpgm);
4033 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
4034 } else {
4035 ctx->block->kind |= block_kind_discard;
4036 /* branch and linear edge is added by visit_if() */
4037 }
4038 }
4039
4040 enum aco_descriptor_type {
4041 ACO_DESC_IMAGE,
4042 ACO_DESC_FMASK,
4043 ACO_DESC_SAMPLER,
4044 ACO_DESC_BUFFER,
4045 ACO_DESC_PLANE_0,
4046 ACO_DESC_PLANE_1,
4047 ACO_DESC_PLANE_2,
4048 };
4049
4050 static bool
4051 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
4052 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
4053 return false;
4054 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
4055 return dim == ac_image_cube ||
4056 dim == ac_image_1darray ||
4057 dim == ac_image_2darray ||
4058 dim == ac_image_2darraymsaa;
4059 }
4060
4061 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
4062 enum aco_descriptor_type desc_type,
4063 const nir_tex_instr *tex_instr, bool image, bool write)
4064 {
4065 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
4066 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
4067 if (it != ctx->tex_desc.end())
4068 return it->second;
4069 */
4070 Temp index = Temp();
4071 bool index_set = false;
4072 unsigned constant_index = 0;
4073 unsigned descriptor_set;
4074 unsigned base_index;
4075 Builder bld(ctx->program, ctx->block);
4076
4077 if (!deref_instr) {
4078 assert(tex_instr && !image);
4079 descriptor_set = 0;
4080 base_index = tex_instr->sampler_index;
4081 } else {
4082 while(deref_instr->deref_type != nir_deref_type_var) {
4083 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
4084 if (!array_size)
4085 array_size = 1;
4086
4087 assert(deref_instr->deref_type == nir_deref_type_array);
4088 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
4089 if (const_value) {
4090 constant_index += array_size * const_value->u32;
4091 } else {
4092 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
4093 if (indirect.type() == RegType::vgpr)
4094 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
4095
4096 if (array_size != 1)
4097 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
4098
4099 if (!index_set) {
4100 index = indirect;
4101 index_set = true;
4102 } else {
4103 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
4104 }
4105 }
4106
4107 deref_instr = nir_src_as_deref(deref_instr->parent);
4108 }
4109 descriptor_set = deref_instr->var->data.descriptor_set;
4110 base_index = deref_instr->var->data.binding;
4111 }
4112
4113 Temp list = load_desc_ptr(ctx, descriptor_set);
4114 list = convert_pointer_to_64_bit(ctx, list);
4115
4116 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
4117 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
4118 unsigned offset = binding->offset;
4119 unsigned stride = binding->size;
4120 aco_opcode opcode;
4121 RegClass type;
4122
4123 assert(base_index < layout->binding_count);
4124
4125 switch (desc_type) {
4126 case ACO_DESC_IMAGE:
4127 type = s8;
4128 opcode = aco_opcode::s_load_dwordx8;
4129 break;
4130 case ACO_DESC_FMASK:
4131 type = s8;
4132 opcode = aco_opcode::s_load_dwordx8;
4133 offset += 32;
4134 break;
4135 case ACO_DESC_SAMPLER:
4136 type = s4;
4137 opcode = aco_opcode::s_load_dwordx4;
4138 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4139 offset += radv_combined_image_descriptor_sampler_offset(binding);
4140 break;
4141 case ACO_DESC_BUFFER:
4142 type = s4;
4143 opcode = aco_opcode::s_load_dwordx4;
4144 break;
4145 case ACO_DESC_PLANE_0:
4146 case ACO_DESC_PLANE_1:
4147 type = s8;
4148 opcode = aco_opcode::s_load_dwordx8;
4149 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
4150 break;
4151 case ACO_DESC_PLANE_2:
4152 type = s4;
4153 opcode = aco_opcode::s_load_dwordx4;
4154 offset += 64;
4155 break;
4156 default:
4157 unreachable("invalid desc_type\n");
4158 }
4159
4160 offset += constant_index * stride;
4161
4162 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
4163 (!index_set || binding->immutable_samplers_equal)) {
4164 if (binding->immutable_samplers_equal)
4165 constant_index = 0;
4166
4167 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4168 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4169 Operand(samplers[constant_index * 4 + 0]),
4170 Operand(samplers[constant_index * 4 + 1]),
4171 Operand(samplers[constant_index * 4 + 2]),
4172 Operand(samplers[constant_index * 4 + 3]));
4173 }
4174
4175 Operand off;
4176 if (!index_set) {
4177 off = bld.copy(bld.def(s1), Operand(offset));
4178 } else {
4179 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
4180 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
4181 }
4182
4183 Temp res = bld.smem(opcode, bld.def(type), list, off);
4184
4185 if (desc_type == ACO_DESC_PLANE_2) {
4186 Temp components[8];
4187 for (unsigned i = 0; i < 8; i++)
4188 components[i] = bld.tmp(s1);
4189 bld.pseudo(aco_opcode::p_split_vector,
4190 Definition(components[0]),
4191 Definition(components[1]),
4192 Definition(components[2]),
4193 Definition(components[3]),
4194 res);
4195
4196 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
4197 bld.pseudo(aco_opcode::p_split_vector,
4198 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
4199 Definition(components[4]),
4200 Definition(components[5]),
4201 Definition(components[6]),
4202 Definition(components[7]),
4203 desc2);
4204
4205 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
4206 components[0], components[1], components[2], components[3],
4207 components[4], components[5], components[6], components[7]);
4208 }
4209
4210 return res;
4211 }
4212
4213 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
4214 {
4215 switch (dim) {
4216 case GLSL_SAMPLER_DIM_BUF:
4217 return 1;
4218 case GLSL_SAMPLER_DIM_1D:
4219 return array ? 2 : 1;
4220 case GLSL_SAMPLER_DIM_2D:
4221 return array ? 3 : 2;
4222 case GLSL_SAMPLER_DIM_MS:
4223 return array ? 4 : 3;
4224 case GLSL_SAMPLER_DIM_3D:
4225 case GLSL_SAMPLER_DIM_CUBE:
4226 return 3;
4227 case GLSL_SAMPLER_DIM_RECT:
4228 case GLSL_SAMPLER_DIM_SUBPASS:
4229 return 2;
4230 case GLSL_SAMPLER_DIM_SUBPASS_MS:
4231 return 3;
4232 default:
4233 break;
4234 }
4235 return 0;
4236 }
4237
4238
4239 /* Adjust the sample index according to FMASK.
4240 *
4241 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4242 * which is the identity mapping. Each nibble says which physical sample
4243 * should be fetched to get that sample.
4244 *
4245 * For example, 0x11111100 means there are only 2 samples stored and
4246 * the second sample covers 3/4 of the pixel. When reading samples 0
4247 * and 1, return physical sample 0 (determined by the first two 0s
4248 * in FMASK), otherwise return physical sample 1.
4249 *
4250 * The sample index should be adjusted as follows:
4251 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4252 */
4253 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
4254 {
4255 Builder bld(ctx->program, ctx->block);
4256 Temp fmask = bld.tmp(v1);
4257 unsigned dim = ctx->options->chip_class >= GFX10
4258 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
4259 : 0;
4260
4261 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
4262 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
4263 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
4264 load->operands[0] = Operand(fmask_desc_ptr);
4265 load->operands[1] = Operand(s4); /* no sampler */
4266 load->operands[2] = Operand(coord);
4267 load->definitions[0] = Definition(fmask);
4268 load->glc = false;
4269 load->dlc = false;
4270 load->dmask = 0x1;
4271 load->unrm = true;
4272 load->da = da;
4273 load->dim = dim;
4274 load->can_reorder = true; /* fmask images shouldn't be modified */
4275 ctx->block->instructions.emplace_back(std::move(load));
4276
4277 Operand sample_index4;
4278 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4279 sample_index4 = Operand(sample_index.constantValue() << 2);
4280 } else if (sample_index.regClass() == s1) {
4281 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4282 } else {
4283 assert(sample_index.regClass() == v1);
4284 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4285 }
4286
4287 Temp final_sample;
4288 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4289 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4290 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4291 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4292 else
4293 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4294
4295 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4296 * resource descriptor is 0 (invalid),
4297 */
4298 Temp compare = bld.tmp(bld.lm);
4299 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4300 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4301
4302 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4303
4304 /* Replace the MSAA sample index. */
4305 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4306 }
4307
4308 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4309 {
4310
4311 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4312 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4313 bool is_array = glsl_sampler_type_is_array(type);
4314 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4315 assert(!add_frag_pos && "Input attachments should be lowered.");
4316 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4317 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4318 int count = image_type_to_components_count(dim, is_array);
4319 std::vector<Temp> coords(count);
4320 Builder bld(ctx->program, ctx->block);
4321
4322 if (is_ms) {
4323 count--;
4324 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
4325 /* get sample index */
4326 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4327 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4328 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
4329 std::vector<Temp> fmask_load_address;
4330 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
4331 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
4332
4333 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4334 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
4335 } else {
4336 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
4337 }
4338 }
4339
4340 if (gfx9_1d) {
4341 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
4342 coords.resize(coords.size() + 1);
4343 coords[1] = bld.copy(bld.def(v1), Operand(0u));
4344 if (is_array)
4345 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
4346 } else {
4347 for (int i = 0; i < count; i++)
4348 coords[i] = emit_extract_vector(ctx, src0, i, v1);
4349 }
4350
4351 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4352 instr->intrinsic == nir_intrinsic_image_deref_store) {
4353 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4354 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4355
4356 if (!level_zero)
4357 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
4358 }
4359
4360 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4361 for (unsigned i = 0; i < coords.size(); i++)
4362 vec->operands[i] = Operand(coords[i]);
4363 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4364 vec->definitions[0] = Definition(res);
4365 ctx->block->instructions.emplace_back(std::move(vec));
4366 return res;
4367 }
4368
4369
4370 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4371 {
4372 Builder bld(ctx->program, ctx->block);
4373 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4374 const struct glsl_type *type = glsl_without_array(var->type);
4375 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4376 bool is_array = glsl_sampler_type_is_array(type);
4377 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4378
4379 if (dim == GLSL_SAMPLER_DIM_BUF) {
4380 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4381 unsigned num_channels = util_last_bit(mask);
4382 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4383 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4384
4385 aco_opcode opcode;
4386 switch (num_channels) {
4387 case 1:
4388 opcode = aco_opcode::buffer_load_format_x;
4389 break;
4390 case 2:
4391 opcode = aco_opcode::buffer_load_format_xy;
4392 break;
4393 case 3:
4394 opcode = aco_opcode::buffer_load_format_xyz;
4395 break;
4396 case 4:
4397 opcode = aco_opcode::buffer_load_format_xyzw;
4398 break;
4399 default:
4400 unreachable(">4 channel buffer image load");
4401 }
4402 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4403 load->operands[0] = Operand(rsrc);
4404 load->operands[1] = Operand(vindex);
4405 load->operands[2] = Operand((uint32_t) 0);
4406 Temp tmp;
4407 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4408 tmp = dst;
4409 else
4410 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4411 load->definitions[0] = Definition(tmp);
4412 load->idxen = true;
4413 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4414 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4415 load->barrier = barrier_image;
4416 ctx->block->instructions.emplace_back(std::move(load));
4417
4418 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4419 return;
4420 }
4421
4422 Temp coords = get_image_coords(ctx, instr, type);
4423 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4424
4425 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4426 unsigned num_components = util_bitcount(dmask);
4427 Temp tmp;
4428 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4429 tmp = dst;
4430 else
4431 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4432
4433 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4434 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4435
4436 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
4437 load->operands[0] = Operand(resource);
4438 load->operands[1] = Operand(s4); /* no sampler */
4439 load->operands[2] = Operand(coords);
4440 load->definitions[0] = Definition(tmp);
4441 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4442 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4443 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4444 load->dmask = dmask;
4445 load->unrm = true;
4446 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4447 load->barrier = barrier_image;
4448 ctx->block->instructions.emplace_back(std::move(load));
4449
4450 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4451 return;
4452 }
4453
4454 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4455 {
4456 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4457 const struct glsl_type *type = glsl_without_array(var->type);
4458 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4459 bool is_array = glsl_sampler_type_is_array(type);
4460 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4461
4462 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4463
4464 if (dim == GLSL_SAMPLER_DIM_BUF) {
4465 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4466 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4467 aco_opcode opcode;
4468 switch (data.size()) {
4469 case 1:
4470 opcode = aco_opcode::buffer_store_format_x;
4471 break;
4472 case 2:
4473 opcode = aco_opcode::buffer_store_format_xy;
4474 break;
4475 case 3:
4476 opcode = aco_opcode::buffer_store_format_xyz;
4477 break;
4478 case 4:
4479 opcode = aco_opcode::buffer_store_format_xyzw;
4480 break;
4481 default:
4482 unreachable(">4 channel buffer image store");
4483 }
4484 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4485 store->operands[0] = Operand(rsrc);
4486 store->operands[1] = Operand(vindex);
4487 store->operands[2] = Operand((uint32_t) 0);
4488 store->operands[3] = Operand(data);
4489 store->idxen = true;
4490 store->glc = glc;
4491 store->dlc = false;
4492 store->disable_wqm = true;
4493 store->barrier = barrier_image;
4494 ctx->program->needs_exact = true;
4495 ctx->block->instructions.emplace_back(std::move(store));
4496 return;
4497 }
4498
4499 assert(data.type() == RegType::vgpr);
4500 Temp coords = get_image_coords(ctx, instr, type);
4501 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4502
4503 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
4504 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
4505
4506 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
4507 store->operands[0] = Operand(resource);
4508 store->operands[1] = Operand(data);
4509 store->operands[2] = Operand(coords);
4510 store->glc = glc;
4511 store->dlc = false;
4512 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4513 store->dmask = (1 << data.size()) - 1;
4514 store->unrm = true;
4515 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4516 store->disable_wqm = true;
4517 store->barrier = barrier_image;
4518 ctx->program->needs_exact = true;
4519 ctx->block->instructions.emplace_back(std::move(store));
4520 return;
4521 }
4522
4523 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4524 {
4525 /* return the previous value if dest is ever used */
4526 bool return_previous = false;
4527 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4528 return_previous = true;
4529 break;
4530 }
4531 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4532 return_previous = true;
4533 break;
4534 }
4535
4536 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4537 const struct glsl_type *type = glsl_without_array(var->type);
4538 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4539 bool is_array = glsl_sampler_type_is_array(type);
4540 Builder bld(ctx->program, ctx->block);
4541
4542 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4543 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
4544
4545 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
4546 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
4547
4548 aco_opcode buf_op, image_op;
4549 switch (instr->intrinsic) {
4550 case nir_intrinsic_image_deref_atomic_add:
4551 buf_op = aco_opcode::buffer_atomic_add;
4552 image_op = aco_opcode::image_atomic_add;
4553 break;
4554 case nir_intrinsic_image_deref_atomic_umin:
4555 buf_op = aco_opcode::buffer_atomic_umin;
4556 image_op = aco_opcode::image_atomic_umin;
4557 break;
4558 case nir_intrinsic_image_deref_atomic_imin:
4559 buf_op = aco_opcode::buffer_atomic_smin;
4560 image_op = aco_opcode::image_atomic_smin;
4561 break;
4562 case nir_intrinsic_image_deref_atomic_umax:
4563 buf_op = aco_opcode::buffer_atomic_umax;
4564 image_op = aco_opcode::image_atomic_umax;
4565 break;
4566 case nir_intrinsic_image_deref_atomic_imax:
4567 buf_op = aco_opcode::buffer_atomic_smax;
4568 image_op = aco_opcode::image_atomic_smax;
4569 break;
4570 case nir_intrinsic_image_deref_atomic_and:
4571 buf_op = aco_opcode::buffer_atomic_and;
4572 image_op = aco_opcode::image_atomic_and;
4573 break;
4574 case nir_intrinsic_image_deref_atomic_or:
4575 buf_op = aco_opcode::buffer_atomic_or;
4576 image_op = aco_opcode::image_atomic_or;
4577 break;
4578 case nir_intrinsic_image_deref_atomic_xor:
4579 buf_op = aco_opcode::buffer_atomic_xor;
4580 image_op = aco_opcode::image_atomic_xor;
4581 break;
4582 case nir_intrinsic_image_deref_atomic_exchange:
4583 buf_op = aco_opcode::buffer_atomic_swap;
4584 image_op = aco_opcode::image_atomic_swap;
4585 break;
4586 case nir_intrinsic_image_deref_atomic_comp_swap:
4587 buf_op = aco_opcode::buffer_atomic_cmpswap;
4588 image_op = aco_opcode::image_atomic_cmpswap;
4589 break;
4590 default:
4591 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
4592 }
4593
4594 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4595
4596 if (dim == GLSL_SAMPLER_DIM_BUF) {
4597 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4598 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4599 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
4600 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4601 mubuf->operands[0] = Operand(resource);
4602 mubuf->operands[1] = Operand(vindex);
4603 mubuf->operands[2] = Operand((uint32_t)0);
4604 mubuf->operands[3] = Operand(data);
4605 if (return_previous)
4606 mubuf->definitions[0] = Definition(dst);
4607 mubuf->offset = 0;
4608 mubuf->idxen = true;
4609 mubuf->glc = return_previous;
4610 mubuf->dlc = false; /* Not needed for atomics */
4611 mubuf->disable_wqm = true;
4612 mubuf->barrier = barrier_image;
4613 ctx->program->needs_exact = true;
4614 ctx->block->instructions.emplace_back(std::move(mubuf));
4615 return;
4616 }
4617
4618 Temp coords = get_image_coords(ctx, instr, type);
4619 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4620 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
4621 mimg->operands[0] = Operand(resource);
4622 mimg->operands[1] = Operand(data);
4623 mimg->operands[2] = Operand(coords);
4624 if (return_previous)
4625 mimg->definitions[0] = Definition(dst);
4626 mimg->glc = return_previous;
4627 mimg->dlc = false; /* Not needed for atomics */
4628 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4629 mimg->dmask = (1 << data.size()) - 1;
4630 mimg->unrm = true;
4631 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4632 mimg->disable_wqm = true;
4633 mimg->barrier = barrier_image;
4634 ctx->program->needs_exact = true;
4635 ctx->block->instructions.emplace_back(std::move(mimg));
4636 return;
4637 }
4638
4639 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
4640 {
4641 if (in_elements && ctx->options->chip_class == GFX8) {
4642 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
4643 Builder bld(ctx->program, ctx->block);
4644
4645 Temp size = emit_extract_vector(ctx, desc, 2, s1);
4646
4647 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
4648 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
4649
4650 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
4651 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
4652
4653 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
4654 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
4655
4656 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
4657 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
4658 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
4659 if (dst.type() == RegType::vgpr)
4660 bld.copy(Definition(dst), shr_dst);
4661
4662 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
4663 } else {
4664 emit_extract_vector(ctx, desc, 2, dst);
4665 }
4666 }
4667
4668 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
4669 {
4670 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4671 const struct glsl_type *type = glsl_without_array(var->type);
4672 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4673 bool is_array = glsl_sampler_type_is_array(type);
4674 Builder bld(ctx->program, ctx->block);
4675
4676 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
4677 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
4678 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
4679 }
4680
4681 /* LOD */
4682 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
4683
4684 /* Resource */
4685 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
4686
4687 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4688
4689 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
4690 mimg->operands[0] = Operand(resource);
4691 mimg->operands[1] = Operand(s4); /* no sampler */
4692 mimg->operands[2] = Operand(lod);
4693 uint8_t& dmask = mimg->dmask;
4694 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4695 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
4696 mimg->da = glsl_sampler_type_is_array(type);
4697 mimg->can_reorder = true;
4698 Definition& def = mimg->definitions[0];
4699 ctx->block->instructions.emplace_back(std::move(mimg));
4700
4701 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
4702 glsl_sampler_type_is_array(type)) {
4703
4704 assert(instr->dest.ssa.num_components == 3);
4705 Temp tmp = {ctx->program->allocateId(), v3};
4706 def = Definition(tmp);
4707 emit_split_vector(ctx, tmp, 3);
4708
4709 /* divide 3rd value by 6 by multiplying with magic number */
4710 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
4711 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
4712
4713 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4714 emit_extract_vector(ctx, tmp, 0, v1),
4715 emit_extract_vector(ctx, tmp, 1, v1),
4716 by_6);
4717
4718 } else if (ctx->options->chip_class == GFX9 &&
4719 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
4720 glsl_sampler_type_is_array(type)) {
4721 assert(instr->dest.ssa.num_components == 2);
4722 def = Definition(dst);
4723 dmask = 0x5;
4724 } else {
4725 def = Definition(dst);
4726 }
4727
4728 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4729 }
4730
4731 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4732 {
4733 Builder bld(ctx->program, ctx->block);
4734 unsigned num_components = instr->num_components;
4735
4736 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4737 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4738 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4739
4740 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4741 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
4742 }
4743
4744 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4745 {
4746 Builder bld(ctx->program, ctx->block);
4747 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
4748 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4749 unsigned writemask = nir_intrinsic_write_mask(instr);
4750 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
4751
4752 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4753 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4754
4755 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
4756 ctx->options->chip_class >= GFX8;
4757 if (smem)
4758 offset = bld.as_uniform(offset);
4759 bool smem_nonfs = smem && ctx->stage != fragment_fs;
4760
4761 while (writemask) {
4762 int start, count;
4763 u_bit_scan_consecutive_range(&writemask, &start, &count);
4764 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
4765 /* GFX6 doesn't support storing vec3, split it. */
4766 writemask |= 1u << (start + 2);
4767 count = 2;
4768 }
4769 int num_bytes = count * elem_size_bytes;
4770
4771 if (num_bytes > 16) {
4772 assert(elem_size_bytes == 8);
4773 writemask |= (((count - 2) << 1) - 1) << (start + 2);
4774 count = 2;
4775 num_bytes = 16;
4776 }
4777
4778 // TODO: check alignment of sub-dword stores
4779 // TODO: split 3 bytes. there is no store instruction for that
4780
4781 Temp write_data;
4782 if (count != instr->num_components) {
4783 emit_split_vector(ctx, data, instr->num_components);
4784 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4785 for (int i = 0; i < count; i++) {
4786 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
4787 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
4788 }
4789 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
4790 vec->definitions[0] = Definition(write_data);
4791 ctx->block->instructions.emplace_back(std::move(vec));
4792 } else if (!smem && data.type() != RegType::vgpr) {
4793 assert(num_bytes % 4 == 0);
4794 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
4795 } else if (smem_nonfs && data.type() == RegType::vgpr) {
4796 assert(num_bytes % 4 == 0);
4797 write_data = bld.as_uniform(data);
4798 } else {
4799 write_data = data;
4800 }
4801
4802 aco_opcode vmem_op, smem_op;
4803 switch (num_bytes) {
4804 case 4:
4805 vmem_op = aco_opcode::buffer_store_dword;
4806 smem_op = aco_opcode::s_buffer_store_dword;
4807 break;
4808 case 8:
4809 vmem_op = aco_opcode::buffer_store_dwordx2;
4810 smem_op = aco_opcode::s_buffer_store_dwordx2;
4811 break;
4812 case 12:
4813 vmem_op = aco_opcode::buffer_store_dwordx3;
4814 smem_op = aco_opcode::last_opcode;
4815 assert(!smem && ctx->options->chip_class > GFX6);
4816 break;
4817 case 16:
4818 vmem_op = aco_opcode::buffer_store_dwordx4;
4819 smem_op = aco_opcode::s_buffer_store_dwordx4;
4820 break;
4821 default:
4822 unreachable("Store SSBO not implemented for this size.");
4823 }
4824 if (ctx->stage == fragment_fs)
4825 smem_op = aco_opcode::p_fs_buffer_store_smem;
4826
4827 if (smem) {
4828 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
4829 store->operands[0] = Operand(rsrc);
4830 if (start) {
4831 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4832 offset, Operand(start * elem_size_bytes));
4833 store->operands[1] = Operand(off);
4834 } else {
4835 store->operands[1] = Operand(offset);
4836 }
4837 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
4838 store->operands[1].setFixed(m0);
4839 store->operands[2] = Operand(write_data);
4840 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4841 store->dlc = false;
4842 store->disable_wqm = true;
4843 store->barrier = barrier_buffer;
4844 ctx->block->instructions.emplace_back(std::move(store));
4845 ctx->program->wb_smem_l1_on_end = true;
4846 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
4847 ctx->block->kind |= block_kind_needs_lowering;
4848 ctx->program->needs_exact = true;
4849 }
4850 } else {
4851 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
4852 store->operands[0] = Operand(rsrc);
4853 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4854 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4855 store->operands[3] = Operand(write_data);
4856 store->offset = start * elem_size_bytes;
4857 store->offen = (offset.type() == RegType::vgpr);
4858 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4859 store->dlc = false;
4860 store->disable_wqm = true;
4861 store->barrier = barrier_buffer;
4862 ctx->program->needs_exact = true;
4863 ctx->block->instructions.emplace_back(std::move(store));
4864 }
4865 }
4866 }
4867
4868 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4869 {
4870 /* return the previous value if dest is ever used */
4871 bool return_previous = false;
4872 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4873 return_previous = true;
4874 break;
4875 }
4876 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4877 return_previous = true;
4878 break;
4879 }
4880
4881 Builder bld(ctx->program, ctx->block);
4882 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
4883
4884 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
4885 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
4886 get_ssa_temp(ctx, instr->src[3].ssa), data);
4887
4888 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
4889 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4890 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4891
4892 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4893
4894 aco_opcode op32, op64;
4895 switch (instr->intrinsic) {
4896 case nir_intrinsic_ssbo_atomic_add:
4897 op32 = aco_opcode::buffer_atomic_add;
4898 op64 = aco_opcode::buffer_atomic_add_x2;
4899 break;
4900 case nir_intrinsic_ssbo_atomic_imin:
4901 op32 = aco_opcode::buffer_atomic_smin;
4902 op64 = aco_opcode::buffer_atomic_smin_x2;
4903 break;
4904 case nir_intrinsic_ssbo_atomic_umin:
4905 op32 = aco_opcode::buffer_atomic_umin;
4906 op64 = aco_opcode::buffer_atomic_umin_x2;
4907 break;
4908 case nir_intrinsic_ssbo_atomic_imax:
4909 op32 = aco_opcode::buffer_atomic_smax;
4910 op64 = aco_opcode::buffer_atomic_smax_x2;
4911 break;
4912 case nir_intrinsic_ssbo_atomic_umax:
4913 op32 = aco_opcode::buffer_atomic_umax;
4914 op64 = aco_opcode::buffer_atomic_umax_x2;
4915 break;
4916 case nir_intrinsic_ssbo_atomic_and:
4917 op32 = aco_opcode::buffer_atomic_and;
4918 op64 = aco_opcode::buffer_atomic_and_x2;
4919 break;
4920 case nir_intrinsic_ssbo_atomic_or:
4921 op32 = aco_opcode::buffer_atomic_or;
4922 op64 = aco_opcode::buffer_atomic_or_x2;
4923 break;
4924 case nir_intrinsic_ssbo_atomic_xor:
4925 op32 = aco_opcode::buffer_atomic_xor;
4926 op64 = aco_opcode::buffer_atomic_xor_x2;
4927 break;
4928 case nir_intrinsic_ssbo_atomic_exchange:
4929 op32 = aco_opcode::buffer_atomic_swap;
4930 op64 = aco_opcode::buffer_atomic_swap_x2;
4931 break;
4932 case nir_intrinsic_ssbo_atomic_comp_swap:
4933 op32 = aco_opcode::buffer_atomic_cmpswap;
4934 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
4935 break;
4936 default:
4937 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
4938 }
4939 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
4940 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4941 mubuf->operands[0] = Operand(rsrc);
4942 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4943 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4944 mubuf->operands[3] = Operand(data);
4945 if (return_previous)
4946 mubuf->definitions[0] = Definition(dst);
4947 mubuf->offset = 0;
4948 mubuf->offen = (offset.type() == RegType::vgpr);
4949 mubuf->glc = return_previous;
4950 mubuf->dlc = false; /* Not needed for atomics */
4951 mubuf->disable_wqm = true;
4952 mubuf->barrier = barrier_buffer;
4953 ctx->program->needs_exact = true;
4954 ctx->block->instructions.emplace_back(std::move(mubuf));
4955 }
4956
4957 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
4958
4959 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4960 Builder bld(ctx->program, ctx->block);
4961 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
4962 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
4963 }
4964
4965 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
4966 {
4967 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4968 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4969
4970 if (addr.type() == RegType::vgpr)
4971 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
4972 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
4973 }
4974
4975 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
4976 {
4977 Builder bld(ctx->program, ctx->block);
4978 unsigned num_components = instr->num_components;
4979 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
4980
4981 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4982 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
4983
4984 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4985 bool dlc = glc && ctx->options->chip_class >= GFX10;
4986 aco_opcode op;
4987 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
4988 bool global = ctx->options->chip_class >= GFX9;
4989
4990 if (ctx->options->chip_class >= GFX7) {
4991 aco_opcode op;
4992 switch (num_bytes) {
4993 case 4:
4994 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
4995 break;
4996 case 8:
4997 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
4998 break;
4999 case 12:
5000 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
5001 break;
5002 case 16:
5003 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
5004 break;
5005 default:
5006 unreachable("load_global not implemented for this size.");
5007 }
5008
5009 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
5010 flat->operands[0] = Operand(addr);
5011 flat->operands[1] = Operand(s1);
5012 flat->glc = glc;
5013 flat->dlc = dlc;
5014 flat->barrier = barrier_buffer;
5015
5016 if (dst.type() == RegType::sgpr) {
5017 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5018 flat->definitions[0] = Definition(vec);
5019 ctx->block->instructions.emplace_back(std::move(flat));
5020 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5021 } else {
5022 flat->definitions[0] = Definition(dst);
5023 ctx->block->instructions.emplace_back(std::move(flat));
5024 }
5025 emit_split_vector(ctx, dst, num_components);
5026 } else {
5027 assert(ctx->options->chip_class == GFX6);
5028
5029 /* GFX6 doesn't support loading vec3, expand to vec4. */
5030 num_bytes = num_bytes == 12 ? 16 : num_bytes;
5031
5032 aco_opcode op;
5033 switch (num_bytes) {
5034 case 4:
5035 op = aco_opcode::buffer_load_dword;
5036 break;
5037 case 8:
5038 op = aco_opcode::buffer_load_dwordx2;
5039 break;
5040 case 16:
5041 op = aco_opcode::buffer_load_dwordx4;
5042 break;
5043 default:
5044 unreachable("load_global not implemented for this size.");
5045 }
5046
5047 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5048
5049 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
5050 mubuf->operands[0] = Operand(rsrc);
5051 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5052 mubuf->operands[2] = Operand(0u);
5053 mubuf->glc = glc;
5054 mubuf->dlc = false;
5055 mubuf->offset = 0;
5056 mubuf->addr64 = addr.type() == RegType::vgpr;
5057 mubuf->disable_wqm = false;
5058 mubuf->barrier = barrier_buffer;
5059 aco_ptr<Instruction> instr = std::move(mubuf);
5060
5061 /* expand vector */
5062 if (dst.size() == 3) {
5063 Temp vec = bld.tmp(v4);
5064 instr->definitions[0] = Definition(vec);
5065 bld.insert(std::move(instr));
5066 emit_split_vector(ctx, vec, 4);
5067
5068 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
5069 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
5070 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
5071 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
5072 }
5073
5074 if (dst.type() == RegType::sgpr) {
5075 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5076 instr->definitions[0] = Definition(vec);
5077 bld.insert(std::move(instr));
5078 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
5079 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5080 } else {
5081 instr->definitions[0] = Definition(dst);
5082 bld.insert(std::move(instr));
5083 emit_split_vector(ctx, dst, num_components);
5084 }
5085 }
5086 } else {
5087 switch (num_bytes) {
5088 case 4:
5089 op = aco_opcode::s_load_dword;
5090 break;
5091 case 8:
5092 op = aco_opcode::s_load_dwordx2;
5093 break;
5094 case 12:
5095 case 16:
5096 op = aco_opcode::s_load_dwordx4;
5097 break;
5098 default:
5099 unreachable("load_global not implemented for this size.");
5100 }
5101 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
5102 load->operands[0] = Operand(addr);
5103 load->operands[1] = Operand(0u);
5104 load->definitions[0] = Definition(dst);
5105 load->glc = glc;
5106 load->dlc = dlc;
5107 load->barrier = barrier_buffer;
5108 assert(ctx->options->chip_class >= GFX8 || !glc);
5109
5110 if (dst.size() == 3) {
5111 /* trim vector */
5112 Temp vec = bld.tmp(s4);
5113 load->definitions[0] = Definition(vec);
5114 ctx->block->instructions.emplace_back(std::move(load));
5115 emit_split_vector(ctx, vec, 4);
5116
5117 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5118 emit_extract_vector(ctx, vec, 0, s1),
5119 emit_extract_vector(ctx, vec, 1, s1),
5120 emit_extract_vector(ctx, vec, 2, s1));
5121 } else {
5122 ctx->block->instructions.emplace_back(std::move(load));
5123 }
5124 }
5125 }
5126
5127 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
5128 {
5129 Builder bld(ctx->program, ctx->block);
5130 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5131
5132 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5133 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
5134
5135 if (ctx->options->chip_class >= GFX7)
5136 addr = as_vgpr(ctx, addr);
5137
5138 unsigned writemask = nir_intrinsic_write_mask(instr);
5139 while (writemask) {
5140 int start, count;
5141 u_bit_scan_consecutive_range(&writemask, &start, &count);
5142 if (count == 3 && ctx->options->chip_class == GFX6) {
5143 /* GFX6 doesn't support storing vec3, split it. */
5144 writemask |= 1u << (start + 2);
5145 count = 2;
5146 }
5147 unsigned num_bytes = count * elem_size_bytes;
5148
5149 Temp write_data = data;
5150 if (count != instr->num_components) {
5151 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5152 for (int i = 0; i < count; i++)
5153 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
5154 write_data = bld.tmp(RegType::vgpr, count);
5155 vec->definitions[0] = Definition(write_data);
5156 ctx->block->instructions.emplace_back(std::move(vec));
5157 }
5158
5159 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5160 unsigned offset = start * elem_size_bytes;
5161
5162 if (ctx->options->chip_class >= GFX7) {
5163 if (offset > 0 && ctx->options->chip_class < GFX9) {
5164 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
5165 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
5166 Temp carry = bld.tmp(bld.lm);
5167 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
5168
5169 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
5170 Operand(offset), addr0);
5171 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
5172 Operand(0u), addr1,
5173 carry).def(1).setHint(vcc);
5174
5175 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
5176
5177 offset = 0;
5178 }
5179
5180 bool global = ctx->options->chip_class >= GFX9;
5181 aco_opcode op;
5182 switch (num_bytes) {
5183 case 4:
5184 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
5185 break;
5186 case 8:
5187 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
5188 break;
5189 case 12:
5190 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
5191 break;
5192 case 16:
5193 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
5194 break;
5195 default:
5196 unreachable("store_global not implemented for this size.");
5197 }
5198
5199 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
5200 flat->operands[0] = Operand(addr);
5201 flat->operands[1] = Operand(s1);
5202 flat->operands[2] = Operand(data);
5203 flat->glc = glc;
5204 flat->dlc = false;
5205 flat->offset = offset;
5206 flat->disable_wqm = true;
5207 flat->barrier = barrier_buffer;
5208 ctx->program->needs_exact = true;
5209 ctx->block->instructions.emplace_back(std::move(flat));
5210 } else {
5211 assert(ctx->options->chip_class == GFX6);
5212
5213 aco_opcode op;
5214 switch (num_bytes) {
5215 case 4:
5216 op = aco_opcode::buffer_store_dword;
5217 break;
5218 case 8:
5219 op = aco_opcode::buffer_store_dwordx2;
5220 break;
5221 case 16:
5222 op = aco_opcode::buffer_store_dwordx4;
5223 break;
5224 default:
5225 unreachable("store_global not implemented for this size.");
5226 }
5227
5228 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5229
5230 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
5231 mubuf->operands[0] = Operand(rsrc);
5232 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5233 mubuf->operands[2] = Operand(0u);
5234 mubuf->operands[3] = Operand(write_data);
5235 mubuf->glc = glc;
5236 mubuf->dlc = false;
5237 mubuf->offset = offset;
5238 mubuf->addr64 = addr.type() == RegType::vgpr;
5239 mubuf->disable_wqm = true;
5240 mubuf->barrier = barrier_buffer;
5241 ctx->program->needs_exact = true;
5242 ctx->block->instructions.emplace_back(std::move(mubuf));
5243 }
5244 }
5245 }
5246
5247 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5248 {
5249 /* return the previous value if dest is ever used */
5250 bool return_previous = false;
5251 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5252 return_previous = true;
5253 break;
5254 }
5255 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5256 return_previous = true;
5257 break;
5258 }
5259
5260 Builder bld(ctx->program, ctx->block);
5261 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5262 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5263
5264 if (ctx->options->chip_class >= GFX7)
5265 addr = as_vgpr(ctx, addr);
5266
5267 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
5268 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5269 get_ssa_temp(ctx, instr->src[2].ssa), data);
5270
5271 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5272
5273 aco_opcode op32, op64;
5274
5275 if (ctx->options->chip_class >= GFX7) {
5276 bool global = ctx->options->chip_class >= GFX9;
5277 switch (instr->intrinsic) {
5278 case nir_intrinsic_global_atomic_add:
5279 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
5280 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
5281 break;
5282 case nir_intrinsic_global_atomic_imin:
5283 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
5284 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
5285 break;
5286 case nir_intrinsic_global_atomic_umin:
5287 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
5288 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
5289 break;
5290 case nir_intrinsic_global_atomic_imax:
5291 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
5292 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
5293 break;
5294 case nir_intrinsic_global_atomic_umax:
5295 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
5296 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
5297 break;
5298 case nir_intrinsic_global_atomic_and:
5299 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
5300 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
5301 break;
5302 case nir_intrinsic_global_atomic_or:
5303 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
5304 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
5305 break;
5306 case nir_intrinsic_global_atomic_xor:
5307 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
5308 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
5309 break;
5310 case nir_intrinsic_global_atomic_exchange:
5311 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
5312 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
5313 break;
5314 case nir_intrinsic_global_atomic_comp_swap:
5315 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
5316 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
5317 break;
5318 default:
5319 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5320 }
5321
5322 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5323 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
5324 flat->operands[0] = Operand(addr);
5325 flat->operands[1] = Operand(s1);
5326 flat->operands[2] = Operand(data);
5327 if (return_previous)
5328 flat->definitions[0] = Definition(dst);
5329 flat->glc = return_previous;
5330 flat->dlc = false; /* Not needed for atomics */
5331 flat->offset = 0;
5332 flat->disable_wqm = true;
5333 flat->barrier = barrier_buffer;
5334 ctx->program->needs_exact = true;
5335 ctx->block->instructions.emplace_back(std::move(flat));
5336 } else {
5337 assert(ctx->options->chip_class == GFX6);
5338
5339 switch (instr->intrinsic) {
5340 case nir_intrinsic_global_atomic_add:
5341 op32 = aco_opcode::buffer_atomic_add;
5342 op64 = aco_opcode::buffer_atomic_add_x2;
5343 break;
5344 case nir_intrinsic_global_atomic_imin:
5345 op32 = aco_opcode::buffer_atomic_smin;
5346 op64 = aco_opcode::buffer_atomic_smin_x2;
5347 break;
5348 case nir_intrinsic_global_atomic_umin:
5349 op32 = aco_opcode::buffer_atomic_umin;
5350 op64 = aco_opcode::buffer_atomic_umin_x2;
5351 break;
5352 case nir_intrinsic_global_atomic_imax:
5353 op32 = aco_opcode::buffer_atomic_smax;
5354 op64 = aco_opcode::buffer_atomic_smax_x2;
5355 break;
5356 case nir_intrinsic_global_atomic_umax:
5357 op32 = aco_opcode::buffer_atomic_umax;
5358 op64 = aco_opcode::buffer_atomic_umax_x2;
5359 break;
5360 case nir_intrinsic_global_atomic_and:
5361 op32 = aco_opcode::buffer_atomic_and;
5362 op64 = aco_opcode::buffer_atomic_and_x2;
5363 break;
5364 case nir_intrinsic_global_atomic_or:
5365 op32 = aco_opcode::buffer_atomic_or;
5366 op64 = aco_opcode::buffer_atomic_or_x2;
5367 break;
5368 case nir_intrinsic_global_atomic_xor:
5369 op32 = aco_opcode::buffer_atomic_xor;
5370 op64 = aco_opcode::buffer_atomic_xor_x2;
5371 break;
5372 case nir_intrinsic_global_atomic_exchange:
5373 op32 = aco_opcode::buffer_atomic_swap;
5374 op64 = aco_opcode::buffer_atomic_swap_x2;
5375 break;
5376 case nir_intrinsic_global_atomic_comp_swap:
5377 op32 = aco_opcode::buffer_atomic_cmpswap;
5378 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5379 break;
5380 default:
5381 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5382 }
5383
5384 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5385
5386 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5387
5388 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5389 mubuf->operands[0] = Operand(rsrc);
5390 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5391 mubuf->operands[2] = Operand(0u);
5392 mubuf->operands[3] = Operand(data);
5393 if (return_previous)
5394 mubuf->definitions[0] = Definition(dst);
5395 mubuf->glc = return_previous;
5396 mubuf->dlc = false;
5397 mubuf->offset = 0;
5398 mubuf->addr64 = addr.type() == RegType::vgpr;
5399 mubuf->disable_wqm = true;
5400 mubuf->barrier = barrier_buffer;
5401 ctx->program->needs_exact = true;
5402 ctx->block->instructions.emplace_back(std::move(mubuf));
5403 }
5404 }
5405
5406 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
5407 Builder bld(ctx->program, ctx->block);
5408 switch(instr->intrinsic) {
5409 case nir_intrinsic_group_memory_barrier:
5410 case nir_intrinsic_memory_barrier:
5411 bld.barrier(aco_opcode::p_memory_barrier_common);
5412 break;
5413 case nir_intrinsic_memory_barrier_buffer:
5414 bld.barrier(aco_opcode::p_memory_barrier_buffer);
5415 break;
5416 case nir_intrinsic_memory_barrier_image:
5417 bld.barrier(aco_opcode::p_memory_barrier_image);
5418 break;
5419 case nir_intrinsic_memory_barrier_tcs_patch:
5420 case nir_intrinsic_memory_barrier_shared:
5421 bld.barrier(aco_opcode::p_memory_barrier_shared);
5422 break;
5423 default:
5424 unreachable("Unimplemented memory barrier intrinsic");
5425 break;
5426 }
5427 }
5428
5429 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5430 {
5431 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
5432 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5433 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
5434 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5435 Builder bld(ctx->program, ctx->block);
5436
5437 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5438 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5439 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
5440 }
5441
5442 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5443 {
5444 unsigned writemask = nir_intrinsic_write_mask(instr);
5445 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5446 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5447 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5448 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
5449
5450 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5451 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
5452 }
5453
5454 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5455 {
5456 unsigned offset = nir_intrinsic_base(instr);
5457 Operand m = load_lds_size_m0(ctx);
5458 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5459 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5460
5461 unsigned num_operands = 3;
5462 aco_opcode op32, op64, op32_rtn, op64_rtn;
5463 switch(instr->intrinsic) {
5464 case nir_intrinsic_shared_atomic_add:
5465 op32 = aco_opcode::ds_add_u32;
5466 op64 = aco_opcode::ds_add_u64;
5467 op32_rtn = aco_opcode::ds_add_rtn_u32;
5468 op64_rtn = aco_opcode::ds_add_rtn_u64;
5469 break;
5470 case nir_intrinsic_shared_atomic_imin:
5471 op32 = aco_opcode::ds_min_i32;
5472 op64 = aco_opcode::ds_min_i64;
5473 op32_rtn = aco_opcode::ds_min_rtn_i32;
5474 op64_rtn = aco_opcode::ds_min_rtn_i64;
5475 break;
5476 case nir_intrinsic_shared_atomic_umin:
5477 op32 = aco_opcode::ds_min_u32;
5478 op64 = aco_opcode::ds_min_u64;
5479 op32_rtn = aco_opcode::ds_min_rtn_u32;
5480 op64_rtn = aco_opcode::ds_min_rtn_u64;
5481 break;
5482 case nir_intrinsic_shared_atomic_imax:
5483 op32 = aco_opcode::ds_max_i32;
5484 op64 = aco_opcode::ds_max_i64;
5485 op32_rtn = aco_opcode::ds_max_rtn_i32;
5486 op64_rtn = aco_opcode::ds_max_rtn_i64;
5487 break;
5488 case nir_intrinsic_shared_atomic_umax:
5489 op32 = aco_opcode::ds_max_u32;
5490 op64 = aco_opcode::ds_max_u64;
5491 op32_rtn = aco_opcode::ds_max_rtn_u32;
5492 op64_rtn = aco_opcode::ds_max_rtn_u64;
5493 break;
5494 case nir_intrinsic_shared_atomic_and:
5495 op32 = aco_opcode::ds_and_b32;
5496 op64 = aco_opcode::ds_and_b64;
5497 op32_rtn = aco_opcode::ds_and_rtn_b32;
5498 op64_rtn = aco_opcode::ds_and_rtn_b64;
5499 break;
5500 case nir_intrinsic_shared_atomic_or:
5501 op32 = aco_opcode::ds_or_b32;
5502 op64 = aco_opcode::ds_or_b64;
5503 op32_rtn = aco_opcode::ds_or_rtn_b32;
5504 op64_rtn = aco_opcode::ds_or_rtn_b64;
5505 break;
5506 case nir_intrinsic_shared_atomic_xor:
5507 op32 = aco_opcode::ds_xor_b32;
5508 op64 = aco_opcode::ds_xor_b64;
5509 op32_rtn = aco_opcode::ds_xor_rtn_b32;
5510 op64_rtn = aco_opcode::ds_xor_rtn_b64;
5511 break;
5512 case nir_intrinsic_shared_atomic_exchange:
5513 op32 = aco_opcode::ds_write_b32;
5514 op64 = aco_opcode::ds_write_b64;
5515 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
5516 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
5517 break;
5518 case nir_intrinsic_shared_atomic_comp_swap:
5519 op32 = aco_opcode::ds_cmpst_b32;
5520 op64 = aco_opcode::ds_cmpst_b64;
5521 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
5522 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
5523 num_operands = 4;
5524 break;
5525 default:
5526 unreachable("Unhandled shared atomic intrinsic");
5527 }
5528
5529 /* return the previous value if dest is ever used */
5530 bool return_previous = false;
5531 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5532 return_previous = true;
5533 break;
5534 }
5535 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5536 return_previous = true;
5537 break;
5538 }
5539
5540 aco_opcode op;
5541 if (data.size() == 1) {
5542 assert(instr->dest.ssa.bit_size == 32);
5543 op = return_previous ? op32_rtn : op32;
5544 } else {
5545 assert(instr->dest.ssa.bit_size == 64);
5546 op = return_previous ? op64_rtn : op64;
5547 }
5548
5549 if (offset > 65535) {
5550 Builder bld(ctx->program, ctx->block);
5551 address = bld.vadd32(bld.def(v1), Operand(offset), address);
5552 offset = 0;
5553 }
5554
5555 aco_ptr<DS_instruction> ds;
5556 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
5557 ds->operands[0] = Operand(address);
5558 ds->operands[1] = Operand(data);
5559 if (num_operands == 4)
5560 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
5561 ds->operands[num_operands - 1] = m;
5562 ds->offset0 = offset;
5563 if (return_previous)
5564 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
5565 ctx->block->instructions.emplace_back(std::move(ds));
5566 }
5567
5568 Temp get_scratch_resource(isel_context *ctx)
5569 {
5570 Builder bld(ctx->program, ctx->block);
5571 Temp scratch_addr = ctx->program->private_segment_buffer;
5572 if (ctx->stage != compute_cs)
5573 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
5574
5575 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
5576 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
5577
5578 if (ctx->program->chip_class >= GFX10) {
5579 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5580 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5581 S_008F0C_RESOURCE_LEVEL(1);
5582 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
5583 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5584 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5585 }
5586
5587 /* older generations need element size = 16 bytes. element size removed in GFX9 */
5588 if (ctx->program->chip_class <= GFX8)
5589 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
5590
5591 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
5592 }
5593
5594 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5595 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
5596 Builder bld(ctx->program, ctx->block);
5597 Temp rsrc = get_scratch_resource(ctx);
5598 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5599 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5600
5601 aco_opcode op;
5602 switch (dst.size()) {
5603 case 1:
5604 op = aco_opcode::buffer_load_dword;
5605 break;
5606 case 2:
5607 op = aco_opcode::buffer_load_dwordx2;
5608 break;
5609 case 3:
5610 op = aco_opcode::buffer_load_dwordx3;
5611 break;
5612 case 4:
5613 op = aco_opcode::buffer_load_dwordx4;
5614 break;
5615 case 6:
5616 case 8: {
5617 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5618 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
5619 bld.def(v4), rsrc, offset,
5620 ctx->program->scratch_offset, 0, true);
5621 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
5622 aco_opcode::buffer_load_dwordx4,
5623 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
5624 rsrc, offset, ctx->program->scratch_offset, 16, true);
5625 emit_split_vector(ctx, lower, 2);
5626 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
5627 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
5628 if (dst.size() == 8) {
5629 emit_split_vector(ctx, upper, 2);
5630 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
5631 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
5632 } else {
5633 elems[2] = upper;
5634 }
5635
5636 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
5637 Format::PSEUDO, dst.size() / 2, 1)};
5638 for (unsigned i = 0; i < dst.size() / 2; i++)
5639 vec->operands[i] = Operand(elems[i]);
5640 vec->definitions[0] = Definition(dst);
5641 bld.insert(std::move(vec));
5642 ctx->allocated_vec.emplace(dst.id(), elems);
5643 return;
5644 }
5645 default:
5646 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
5647 }
5648
5649 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
5650 emit_split_vector(ctx, dst, instr->num_components);
5651 }
5652
5653 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5654 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
5655 Builder bld(ctx->program, ctx->block);
5656 Temp rsrc = get_scratch_resource(ctx);
5657 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5658 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5659
5660 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5661 unsigned writemask = nir_intrinsic_write_mask(instr);
5662
5663 while (writemask) {
5664 int start, count;
5665 u_bit_scan_consecutive_range(&writemask, &start, &count);
5666 int num_bytes = count * elem_size_bytes;
5667
5668 if (num_bytes > 16) {
5669 assert(elem_size_bytes == 8);
5670 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5671 count = 2;
5672 num_bytes = 16;
5673 }
5674
5675 // TODO: check alignment of sub-dword stores
5676 // TODO: split 3 bytes. there is no store instruction for that
5677
5678 Temp write_data;
5679 if (count != instr->num_components) {
5680 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5681 for (int i = 0; i < count; i++) {
5682 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
5683 vec->operands[i] = Operand(elem);
5684 }
5685 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
5686 vec->definitions[0] = Definition(write_data);
5687 ctx->block->instructions.emplace_back(std::move(vec));
5688 } else {
5689 write_data = data;
5690 }
5691
5692 aco_opcode op;
5693 switch (num_bytes) {
5694 case 4:
5695 op = aco_opcode::buffer_store_dword;
5696 break;
5697 case 8:
5698 op = aco_opcode::buffer_store_dwordx2;
5699 break;
5700 case 12:
5701 op = aco_opcode::buffer_store_dwordx3;
5702 break;
5703 case 16:
5704 op = aco_opcode::buffer_store_dwordx4;
5705 break;
5706 default:
5707 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
5708 }
5709
5710 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
5711 }
5712 }
5713
5714 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
5715 uint8_t log2_ps_iter_samples;
5716 if (ctx->program->info->ps.force_persample) {
5717 log2_ps_iter_samples =
5718 util_logbase2(ctx->options->key.fs.num_samples);
5719 } else {
5720 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
5721 }
5722
5723 /* The bit pattern matches that used by fixed function fragment
5724 * processing. */
5725 static const unsigned ps_iter_masks[] = {
5726 0xffff, /* not used */
5727 0x5555,
5728 0x1111,
5729 0x0101,
5730 0x0001,
5731 };
5732 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
5733
5734 Builder bld(ctx->program, ctx->block);
5735
5736 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
5737 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
5738 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
5739 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
5740 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5741 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
5742 }
5743
5744 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
5745 Builder bld(ctx->program, ctx->block);
5746
5747 unsigned stream = nir_intrinsic_stream_id(instr);
5748 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5749 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
5750 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
5751
5752 /* get GSVS ring */
5753 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
5754
5755 unsigned num_components =
5756 ctx->program->info->gs.num_stream_output_components[stream];
5757 assert(num_components);
5758
5759 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
5760 unsigned stream_offset = 0;
5761 for (unsigned i = 0; i < stream; i++) {
5762 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
5763 stream_offset += prev_stride * ctx->program->wave_size;
5764 }
5765
5766 /* Limit on the stride field for <= GFX7. */
5767 assert(stride < (1 << 14));
5768
5769 Temp gsvs_dwords[4];
5770 for (unsigned i = 0; i < 4; i++)
5771 gsvs_dwords[i] = bld.tmp(s1);
5772 bld.pseudo(aco_opcode::p_split_vector,
5773 Definition(gsvs_dwords[0]),
5774 Definition(gsvs_dwords[1]),
5775 Definition(gsvs_dwords[2]),
5776 Definition(gsvs_dwords[3]),
5777 gsvs_ring);
5778
5779 if (stream_offset) {
5780 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
5781
5782 Temp carry = bld.tmp(s1);
5783 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
5784 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
5785 }
5786
5787 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
5788 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
5789
5790 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5791 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
5792
5793 unsigned offset = 0;
5794 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
5795 if (ctx->program->info->gs.output_streams[i] != stream)
5796 continue;
5797
5798 for (unsigned j = 0; j < 4; j++) {
5799 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
5800 continue;
5801
5802 if (ctx->outputs.mask[i] & (1 << j)) {
5803 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
5804 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
5805 if (const_offset >= 4096u) {
5806 if (vaddr_offset.isUndefined())
5807 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
5808 else
5809 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
5810 const_offset %= 4096u;
5811 }
5812
5813 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
5814 mtbuf->operands[0] = Operand(gsvs_ring);
5815 mtbuf->operands[1] = vaddr_offset;
5816 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
5817 mtbuf->operands[3] = Operand(ctx->outputs.outputs[i][j]);
5818 mtbuf->offen = !vaddr_offset.isUndefined();
5819 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
5820 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
5821 mtbuf->offset = const_offset;
5822 mtbuf->glc = true;
5823 mtbuf->slc = true;
5824 mtbuf->barrier = barrier_gs_data;
5825 mtbuf->can_reorder = true;
5826 bld.insert(std::move(mtbuf));
5827 }
5828
5829 offset += ctx->shader->info.gs.vertices_out;
5830 }
5831
5832 /* outputs for the next vertex are undefined and keeping them around can
5833 * create invalid IR with control flow */
5834 ctx->outputs.mask[i] = 0;
5835 }
5836
5837 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
5838 }
5839
5840 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
5841 {
5842 Builder bld(ctx->program, ctx->block);
5843
5844 if (cluster_size == 1) {
5845 return src;
5846 } if (op == nir_op_iand && cluster_size == 4) {
5847 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
5848 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5849 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
5850 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
5851 } else if (op == nir_op_ior && cluster_size == 4) {
5852 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
5853 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
5854 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
5855 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
5856 //subgroupAnd(val) -> (exec & ~val) == 0
5857 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
5858 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
5859 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
5860 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
5861 //subgroupOr(val) -> (val & exec) != 0
5862 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
5863 return bool_to_vector_condition(ctx, tmp);
5864 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
5865 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
5866 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5867 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
5868 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
5869 return bool_to_vector_condition(ctx, tmp);
5870 } else {
5871 //subgroupClustered{And,Or,Xor}(val, n) ->
5872 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
5873 //cluster_offset = ~(n - 1) & lane_id
5874 //cluster_mask = ((1 << n) - 1)
5875 //subgroupClusteredAnd():
5876 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
5877 //subgroupClusteredOr():
5878 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
5879 //subgroupClusteredXor():
5880 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
5881 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
5882 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
5883
5884 Temp tmp;
5885 if (op == nir_op_iand)
5886 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5887 else
5888 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5889
5890 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
5891
5892 if (ctx->program->chip_class <= GFX7)
5893 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
5894 else if (ctx->program->wave_size == 64)
5895 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
5896 else
5897 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
5898 tmp = emit_extract_vector(ctx, tmp, 0, v1);
5899 if (cluster_mask != 0xffffffff)
5900 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
5901
5902 Definition cmp_def = Definition();
5903 if (op == nir_op_iand) {
5904 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
5905 } else if (op == nir_op_ior) {
5906 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5907 } else if (op == nir_op_ixor) {
5908 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
5909 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
5910 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5911 }
5912 cmp_def.setHint(vcc);
5913 return cmp_def.getTemp();
5914 }
5915 }
5916
5917 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
5918 {
5919 Builder bld(ctx->program, ctx->block);
5920
5921 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
5922 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
5923 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
5924 Temp tmp;
5925 if (op == nir_op_iand)
5926 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5927 else
5928 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
5929
5930 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
5931 Temp lo = lohi.def(0).getTemp();
5932 Temp hi = lohi.def(1).getTemp();
5933 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
5934
5935 Definition cmp_def = Definition();
5936 if (op == nir_op_iand)
5937 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5938 else if (op == nir_op_ior)
5939 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5940 else if (op == nir_op_ixor)
5941 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
5942 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
5943 cmp_def.setHint(vcc);
5944 return cmp_def.getTemp();
5945 }
5946
5947 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
5948 {
5949 Builder bld(ctx->program, ctx->block);
5950
5951 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
5952 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
5953 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
5954 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
5955 if (op == nir_op_iand)
5956 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5957 else if (op == nir_op_ior)
5958 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5959 else if (op == nir_op_ixor)
5960 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5961
5962 assert(false);
5963 return Temp();
5964 }
5965
5966 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
5967 {
5968 Builder bld(ctx->program, ctx->block);
5969 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
5970 if (src.regClass().type() == RegType::vgpr) {
5971 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
5972 } else if (src.regClass() == s1) {
5973 bld.sop1(aco_opcode::s_mov_b32, dst, src);
5974 } else if (src.regClass() == s2) {
5975 bld.sop1(aco_opcode::s_mov_b64, dst, src);
5976 } else {
5977 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5978 nir_print_instr(&instr->instr, stderr);
5979 fprintf(stderr, "\n");
5980 }
5981 }
5982
5983 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
5984 {
5985 Builder bld(ctx->program, ctx->block);
5986 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
5987 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
5988 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
5989
5990 Temp ddx_1, ddx_2, ddy_1, ddy_2;
5991 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
5992 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
5993 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
5994
5995 /* Build DD X/Y */
5996 if (ctx->program->chip_class >= GFX8) {
5997 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
5998 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
5999 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
6000 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
6001 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
6002 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
6003 } else {
6004 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
6005 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
6006 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
6007 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
6008 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
6009 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
6010 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
6011 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
6012 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
6013 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
6014 }
6015
6016 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
6017 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
6018 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
6019 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
6020 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
6021 Temp wqm1 = bld.tmp(v1);
6022 emit_wqm(ctx, tmp1, wqm1, true);
6023 Temp wqm2 = bld.tmp(v1);
6024 emit_wqm(ctx, tmp2, wqm2, true);
6025 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
6026 return;
6027 }
6028
6029 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
6030 {
6031 Builder bld(ctx->program, ctx->block);
6032 switch(instr->intrinsic) {
6033 case nir_intrinsic_load_barycentric_sample:
6034 case nir_intrinsic_load_barycentric_pixel:
6035 case nir_intrinsic_load_barycentric_centroid: {
6036 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
6037 Temp bary = Temp(0, s2);
6038 switch (mode) {
6039 case INTERP_MODE_SMOOTH:
6040 case INTERP_MODE_NONE:
6041 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6042 bary = get_arg(ctx, ctx->args->ac.persp_center);
6043 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6044 bary = ctx->persp_centroid;
6045 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6046 bary = get_arg(ctx, ctx->args->ac.persp_sample);
6047 break;
6048 case INTERP_MODE_NOPERSPECTIVE:
6049 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6050 bary = get_arg(ctx, ctx->args->ac.linear_center);
6051 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6052 bary = ctx->linear_centroid;
6053 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6054 bary = get_arg(ctx, ctx->args->ac.linear_sample);
6055 break;
6056 default:
6057 break;
6058 }
6059 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6060 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
6061 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
6062 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6063 Operand(p1), Operand(p2));
6064 emit_split_vector(ctx, dst, 2);
6065 break;
6066 }
6067 case nir_intrinsic_load_barycentric_model: {
6068 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
6069
6070 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6071 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
6072 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
6073 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
6074 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6075 Operand(p1), Operand(p2), Operand(p3));
6076 emit_split_vector(ctx, dst, 3);
6077 break;
6078 }
6079 case nir_intrinsic_load_barycentric_at_sample: {
6080 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
6081 switch (ctx->options->key.fs.num_samples) {
6082 case 2: sample_pos_offset += 1 << 3; break;
6083 case 4: sample_pos_offset += 3 << 3; break;
6084 case 8: sample_pos_offset += 7 << 3; break;
6085 default: break;
6086 }
6087 Temp sample_pos;
6088 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6089 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
6090 Temp private_segment_buffer = ctx->program->private_segment_buffer;
6091 if (addr.type() == RegType::sgpr) {
6092 Operand offset;
6093 if (const_addr) {
6094 sample_pos_offset += const_addr->u32 << 3;
6095 offset = Operand(sample_pos_offset);
6096 } else if (ctx->options->chip_class >= GFX9) {
6097 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6098 } else {
6099 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
6100 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6101 }
6102
6103 Operand off = bld.copy(bld.def(s1), Operand(offset));
6104 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
6105
6106 } else if (ctx->options->chip_class >= GFX9) {
6107 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6108 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
6109 } else if (ctx->options->chip_class >= GFX7) {
6110 /* addr += private_segment_buffer + sample_pos_offset */
6111 Temp tmp0 = bld.tmp(s1);
6112 Temp tmp1 = bld.tmp(s1);
6113 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
6114 Definition scc_tmp = bld.def(s1, scc);
6115 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
6116 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
6117 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6118 Temp pck0 = bld.tmp(v1);
6119 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
6120 tmp1 = as_vgpr(ctx, tmp1);
6121 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
6122 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
6123
6124 /* sample_pos = flat_load_dwordx2 addr */
6125 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
6126 } else {
6127 assert(ctx->options->chip_class == GFX6);
6128
6129 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6130 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6131 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
6132
6133 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6134 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
6135
6136 sample_pos = bld.tmp(v2);
6137
6138 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
6139 load->definitions[0] = Definition(sample_pos);
6140 load->operands[0] = Operand(rsrc);
6141 load->operands[1] = Operand(addr);
6142 load->operands[2] = Operand(0u);
6143 load->offset = sample_pos_offset;
6144 load->offen = 0;
6145 load->addr64 = true;
6146 load->glc = false;
6147 load->dlc = false;
6148 load->disable_wqm = false;
6149 load->barrier = barrier_none;
6150 load->can_reorder = true;
6151 ctx->block->instructions.emplace_back(std::move(load));
6152 }
6153
6154 /* sample_pos -= 0.5 */
6155 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
6156 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
6157 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
6158 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
6159 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
6160
6161 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6162 break;
6163 }
6164 case nir_intrinsic_load_barycentric_at_offset: {
6165 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
6166 RegClass rc = RegClass(offset.type(), 1);
6167 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
6168 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
6169 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6170 break;
6171 }
6172 case nir_intrinsic_load_front_face: {
6173 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6174 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
6175 break;
6176 }
6177 case nir_intrinsic_load_view_index: {
6178 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
6179 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6180 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
6181 break;
6182 }
6183
6184 /* fallthrough */
6185 }
6186 case nir_intrinsic_load_layer_id: {
6187 unsigned idx = nir_intrinsic_base(instr);
6188 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6189 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
6190 break;
6191 }
6192 case nir_intrinsic_load_frag_coord: {
6193 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
6194 break;
6195 }
6196 case nir_intrinsic_load_sample_pos: {
6197 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
6198 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
6199 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6200 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
6201 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
6202 break;
6203 }
6204 case nir_intrinsic_load_tess_coord:
6205 visit_load_tess_coord(ctx, instr);
6206 break;
6207 case nir_intrinsic_load_interpolated_input:
6208 visit_load_interpolated_input(ctx, instr);
6209 break;
6210 case nir_intrinsic_store_output:
6211 visit_store_output(ctx, instr);
6212 break;
6213 case nir_intrinsic_load_input:
6214 case nir_intrinsic_load_input_vertex:
6215 visit_load_input(ctx, instr);
6216 break;
6217 case nir_intrinsic_load_per_vertex_input:
6218 visit_load_per_vertex_input(ctx, instr);
6219 break;
6220 case nir_intrinsic_load_ubo:
6221 visit_load_ubo(ctx, instr);
6222 break;
6223 case nir_intrinsic_load_push_constant:
6224 visit_load_push_constant(ctx, instr);
6225 break;
6226 case nir_intrinsic_load_constant:
6227 visit_load_constant(ctx, instr);
6228 break;
6229 case nir_intrinsic_vulkan_resource_index:
6230 visit_load_resource(ctx, instr);
6231 break;
6232 case nir_intrinsic_discard:
6233 visit_discard(ctx, instr);
6234 break;
6235 case nir_intrinsic_discard_if:
6236 visit_discard_if(ctx, instr);
6237 break;
6238 case nir_intrinsic_load_shared:
6239 visit_load_shared(ctx, instr);
6240 break;
6241 case nir_intrinsic_store_shared:
6242 visit_store_shared(ctx, instr);
6243 break;
6244 case nir_intrinsic_shared_atomic_add:
6245 case nir_intrinsic_shared_atomic_imin:
6246 case nir_intrinsic_shared_atomic_umin:
6247 case nir_intrinsic_shared_atomic_imax:
6248 case nir_intrinsic_shared_atomic_umax:
6249 case nir_intrinsic_shared_atomic_and:
6250 case nir_intrinsic_shared_atomic_or:
6251 case nir_intrinsic_shared_atomic_xor:
6252 case nir_intrinsic_shared_atomic_exchange:
6253 case nir_intrinsic_shared_atomic_comp_swap:
6254 visit_shared_atomic(ctx, instr);
6255 break;
6256 case nir_intrinsic_image_deref_load:
6257 visit_image_load(ctx, instr);
6258 break;
6259 case nir_intrinsic_image_deref_store:
6260 visit_image_store(ctx, instr);
6261 break;
6262 case nir_intrinsic_image_deref_atomic_add:
6263 case nir_intrinsic_image_deref_atomic_umin:
6264 case nir_intrinsic_image_deref_atomic_imin:
6265 case nir_intrinsic_image_deref_atomic_umax:
6266 case nir_intrinsic_image_deref_atomic_imax:
6267 case nir_intrinsic_image_deref_atomic_and:
6268 case nir_intrinsic_image_deref_atomic_or:
6269 case nir_intrinsic_image_deref_atomic_xor:
6270 case nir_intrinsic_image_deref_atomic_exchange:
6271 case nir_intrinsic_image_deref_atomic_comp_swap:
6272 visit_image_atomic(ctx, instr);
6273 break;
6274 case nir_intrinsic_image_deref_size:
6275 visit_image_size(ctx, instr);
6276 break;
6277 case nir_intrinsic_load_ssbo:
6278 visit_load_ssbo(ctx, instr);
6279 break;
6280 case nir_intrinsic_store_ssbo:
6281 visit_store_ssbo(ctx, instr);
6282 break;
6283 case nir_intrinsic_load_global:
6284 visit_load_global(ctx, instr);
6285 break;
6286 case nir_intrinsic_store_global:
6287 visit_store_global(ctx, instr);
6288 break;
6289 case nir_intrinsic_global_atomic_add:
6290 case nir_intrinsic_global_atomic_imin:
6291 case nir_intrinsic_global_atomic_umin:
6292 case nir_intrinsic_global_atomic_imax:
6293 case nir_intrinsic_global_atomic_umax:
6294 case nir_intrinsic_global_atomic_and:
6295 case nir_intrinsic_global_atomic_or:
6296 case nir_intrinsic_global_atomic_xor:
6297 case nir_intrinsic_global_atomic_exchange:
6298 case nir_intrinsic_global_atomic_comp_swap:
6299 visit_global_atomic(ctx, instr);
6300 break;
6301 case nir_intrinsic_ssbo_atomic_add:
6302 case nir_intrinsic_ssbo_atomic_imin:
6303 case nir_intrinsic_ssbo_atomic_umin:
6304 case nir_intrinsic_ssbo_atomic_imax:
6305 case nir_intrinsic_ssbo_atomic_umax:
6306 case nir_intrinsic_ssbo_atomic_and:
6307 case nir_intrinsic_ssbo_atomic_or:
6308 case nir_intrinsic_ssbo_atomic_xor:
6309 case nir_intrinsic_ssbo_atomic_exchange:
6310 case nir_intrinsic_ssbo_atomic_comp_swap:
6311 visit_atomic_ssbo(ctx, instr);
6312 break;
6313 case nir_intrinsic_load_scratch:
6314 visit_load_scratch(ctx, instr);
6315 break;
6316 case nir_intrinsic_store_scratch:
6317 visit_store_scratch(ctx, instr);
6318 break;
6319 case nir_intrinsic_get_buffer_size:
6320 visit_get_buffer_size(ctx, instr);
6321 break;
6322 case nir_intrinsic_control_barrier: {
6323 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6324 /* GFX6 only (thanks to a hw bug workaround):
6325 * The real barrier instruction isn’t needed, because an entire patch
6326 * always fits into a single wave.
6327 */
6328 break;
6329 }
6330
6331 if (ctx->shader->info.stage == MESA_SHADER_COMPUTE) {
6332 unsigned* bsize = ctx->program->info->cs.block_size;
6333 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
6334 if (workgroup_size > ctx->program->wave_size)
6335 bld.sopp(aco_opcode::s_barrier);
6336 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6337 /* For each patch provided during rendering, n​ TCS shader invocations will be processed,
6338 * where n​ is the number of vertices in the output patch.
6339 */
6340 unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
6341 if (workgroup_size > ctx->program->wave_size)
6342 bld.sopp(aco_opcode::s_barrier);
6343 } else {
6344 /* We don't know the workgroup size, so always emit the s_barrier. */
6345 bld.sopp(aco_opcode::s_barrier);
6346 }
6347
6348 break;
6349 }
6350 case nir_intrinsic_memory_barrier_tcs_patch:
6351 case nir_intrinsic_group_memory_barrier:
6352 case nir_intrinsic_memory_barrier:
6353 case nir_intrinsic_memory_barrier_buffer:
6354 case nir_intrinsic_memory_barrier_image:
6355 case nir_intrinsic_memory_barrier_shared:
6356 emit_memory_barrier(ctx, instr);
6357 break;
6358 case nir_intrinsic_load_num_work_groups: {
6359 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6360 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
6361 emit_split_vector(ctx, dst, 3);
6362 break;
6363 }
6364 case nir_intrinsic_load_local_invocation_id: {
6365 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6366 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
6367 emit_split_vector(ctx, dst, 3);
6368 break;
6369 }
6370 case nir_intrinsic_load_work_group_id: {
6371 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6372 struct ac_arg *args = ctx->args->ac.workgroup_ids;
6373 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6374 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
6375 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
6376 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
6377 emit_split_vector(ctx, dst, 3);
6378 break;
6379 }
6380 case nir_intrinsic_load_local_invocation_index: {
6381 Temp id = emit_mbcnt(ctx, bld.def(v1));
6382
6383 /* The tg_size bits [6:11] contain the subgroup id,
6384 * we need this multiplied by the wave size, and then OR the thread id to it.
6385 */
6386 if (ctx->program->wave_size == 64) {
6387 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
6388 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
6389 get_arg(ctx, ctx->args->ac.tg_size));
6390 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
6391 } else {
6392 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
6393 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
6394 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6395 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
6396 }
6397 break;
6398 }
6399 case nir_intrinsic_load_subgroup_id: {
6400 if (ctx->stage == compute_cs) {
6401 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
6402 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6403 } else {
6404 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
6405 }
6406 break;
6407 }
6408 case nir_intrinsic_load_subgroup_invocation: {
6409 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
6410 break;
6411 }
6412 case nir_intrinsic_load_num_subgroups: {
6413 if (ctx->stage == compute_cs)
6414 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
6415 get_arg(ctx, ctx->args->ac.tg_size));
6416 else
6417 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
6418 break;
6419 }
6420 case nir_intrinsic_ballot: {
6421 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6422 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6423 Definition tmp = bld.def(dst.regClass());
6424 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
6425 if (instr->src[0].ssa->bit_size == 1) {
6426 assert(src.regClass() == bld.lm);
6427 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
6428 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
6429 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
6430 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
6431 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
6432 } else {
6433 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6434 nir_print_instr(&instr->instr, stderr);
6435 fprintf(stderr, "\n");
6436 }
6437 if (dst.size() != bld.lm.size()) {
6438 /* Wave32 with ballot size set to 64 */
6439 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
6440 }
6441 emit_wqm(ctx, tmp.getTemp(), dst);
6442 break;
6443 }
6444 case nir_intrinsic_shuffle:
6445 case nir_intrinsic_read_invocation: {
6446 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6447 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
6448 emit_uniform_subgroup(ctx, instr, src);
6449 } else {
6450 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
6451 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
6452 tid = bld.as_uniform(tid);
6453 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6454 if (src.regClass() == v1) {
6455 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
6456 } else if (src.regClass() == v2) {
6457 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6458 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6459 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
6460 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
6461 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6462 emit_split_vector(ctx, dst, 2);
6463 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
6464 assert(src.regClass() == bld.lm);
6465 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
6466 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6467 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
6468 assert(src.regClass() == bld.lm);
6469 Temp tmp;
6470 if (ctx->program->chip_class <= GFX7)
6471 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
6472 else if (ctx->program->wave_size == 64)
6473 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
6474 else
6475 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
6476 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6477 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
6478 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
6479 } else {
6480 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6481 nir_print_instr(&instr->instr, stderr);
6482 fprintf(stderr, "\n");
6483 }
6484 }
6485 break;
6486 }
6487 case nir_intrinsic_load_sample_id: {
6488 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6489 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6490 break;
6491 }
6492 case nir_intrinsic_load_sample_mask_in: {
6493 visit_load_sample_mask_in(ctx, instr);
6494 break;
6495 }
6496 case nir_intrinsic_read_first_invocation: {
6497 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6498 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6499 if (src.regClass() == v1) {
6500 emit_wqm(ctx,
6501 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
6502 dst);
6503 } else if (src.regClass() == v2) {
6504 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6505 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6506 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
6507 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
6508 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6509 emit_split_vector(ctx, dst, 2);
6510 } else if (instr->dest.ssa.bit_size == 1) {
6511 assert(src.regClass() == bld.lm);
6512 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
6513 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
6514 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6515 } else if (src.regClass() == s1) {
6516 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
6517 } else if (src.regClass() == s2) {
6518 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
6519 } else {
6520 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6521 nir_print_instr(&instr->instr, stderr);
6522 fprintf(stderr, "\n");
6523 }
6524 break;
6525 }
6526 case nir_intrinsic_vote_all: {
6527 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6528 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6529 assert(src.regClass() == bld.lm);
6530 assert(dst.regClass() == bld.lm);
6531
6532 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6533 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6534 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
6535 break;
6536 }
6537 case nir_intrinsic_vote_any: {
6538 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6539 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6540 assert(src.regClass() == bld.lm);
6541 assert(dst.regClass() == bld.lm);
6542
6543 Temp tmp = bool_to_scalar_condition(ctx, src);
6544 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6545 break;
6546 }
6547 case nir_intrinsic_reduce:
6548 case nir_intrinsic_inclusive_scan:
6549 case nir_intrinsic_exclusive_scan: {
6550 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6551 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6552 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
6553 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
6554 nir_intrinsic_cluster_size(instr) : 0;
6555 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
6556
6557 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
6558 emit_uniform_subgroup(ctx, instr, src);
6559 } else if (instr->dest.ssa.bit_size == 1) {
6560 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
6561 op = nir_op_iand;
6562 else if (op == nir_op_iadd)
6563 op = nir_op_ixor;
6564 else if (op == nir_op_umax || op == nir_op_imax)
6565 op = nir_op_ior;
6566 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
6567
6568 switch (instr->intrinsic) {
6569 case nir_intrinsic_reduce:
6570 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
6571 break;
6572 case nir_intrinsic_exclusive_scan:
6573 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
6574 break;
6575 case nir_intrinsic_inclusive_scan:
6576 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
6577 break;
6578 default:
6579 assert(false);
6580 }
6581 } else if (cluster_size == 1) {
6582 bld.copy(Definition(dst), src);
6583 } else {
6584 src = as_vgpr(ctx, src);
6585
6586 ReduceOp reduce_op;
6587 switch (op) {
6588 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
6589 CASE(iadd)
6590 CASE(imul)
6591 CASE(fadd)
6592 CASE(fmul)
6593 CASE(imin)
6594 CASE(umin)
6595 CASE(fmin)
6596 CASE(imax)
6597 CASE(umax)
6598 CASE(fmax)
6599 CASE(iand)
6600 CASE(ior)
6601 CASE(ixor)
6602 default:
6603 unreachable("unknown reduction op");
6604 #undef CASE
6605 }
6606
6607 aco_opcode aco_op;
6608 switch (instr->intrinsic) {
6609 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
6610 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
6611 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
6612 default:
6613 unreachable("unknown reduce intrinsic");
6614 }
6615
6616 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
6617 reduce->operands[0] = Operand(src);
6618 // filled in by aco_reduce_assign.cpp, used internally as part of the
6619 // reduce sequence
6620 assert(dst.size() == 1 || dst.size() == 2);
6621 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
6622 reduce->operands[2] = Operand(v1.as_linear());
6623
6624 Temp tmp_dst = bld.tmp(dst.regClass());
6625 reduce->definitions[0] = Definition(tmp_dst);
6626 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
6627 reduce->definitions[2] = Definition();
6628 reduce->definitions[3] = Definition(scc, s1);
6629 reduce->definitions[4] = Definition();
6630 reduce->reduce_op = reduce_op;
6631 reduce->cluster_size = cluster_size;
6632 ctx->block->instructions.emplace_back(std::move(reduce));
6633
6634 emit_wqm(ctx, tmp_dst, dst);
6635 }
6636 break;
6637 }
6638 case nir_intrinsic_quad_broadcast: {
6639 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6640 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6641 emit_uniform_subgroup(ctx, instr, src);
6642 } else {
6643 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6644 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
6645 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
6646
6647 if (instr->dest.ssa.bit_size == 1) {
6648 assert(src.regClass() == bld.lm);
6649 assert(dst.regClass() == bld.lm);
6650 uint32_t half_mask = 0x11111111u << lane;
6651 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
6652 Temp tmp = bld.tmp(bld.lm);
6653 bld.sop1(Builder::s_wqm, Definition(tmp),
6654 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
6655 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
6656 emit_wqm(ctx, tmp, dst);
6657 } else if (instr->dest.ssa.bit_size == 32) {
6658 if (ctx->program->chip_class >= GFX8)
6659 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
6660 else
6661 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
6662 } else if (instr->dest.ssa.bit_size == 64) {
6663 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6664 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6665 if (ctx->program->chip_class >= GFX8) {
6666 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6667 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6668 } else {
6669 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
6670 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
6671 }
6672 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6673 emit_split_vector(ctx, dst, 2);
6674 } else {
6675 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6676 nir_print_instr(&instr->instr, stderr);
6677 fprintf(stderr, "\n");
6678 }
6679 }
6680 break;
6681 }
6682 case nir_intrinsic_quad_swap_horizontal:
6683 case nir_intrinsic_quad_swap_vertical:
6684 case nir_intrinsic_quad_swap_diagonal:
6685 case nir_intrinsic_quad_swizzle_amd: {
6686 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6687 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6688 emit_uniform_subgroup(ctx, instr, src);
6689 break;
6690 }
6691 uint16_t dpp_ctrl = 0;
6692 switch (instr->intrinsic) {
6693 case nir_intrinsic_quad_swap_horizontal:
6694 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
6695 break;
6696 case nir_intrinsic_quad_swap_vertical:
6697 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
6698 break;
6699 case nir_intrinsic_quad_swap_diagonal:
6700 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
6701 break;
6702 case nir_intrinsic_quad_swizzle_amd:
6703 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
6704 break;
6705 default:
6706 break;
6707 }
6708 if (ctx->program->chip_class < GFX8)
6709 dpp_ctrl |= (1 << 15);
6710
6711 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6712 if (instr->dest.ssa.bit_size == 1) {
6713 assert(src.regClass() == bld.lm);
6714 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
6715 if (ctx->program->chip_class >= GFX8)
6716 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6717 else
6718 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6719 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
6720 emit_wqm(ctx, tmp, dst);
6721 } else if (instr->dest.ssa.bit_size == 32) {
6722 Temp tmp;
6723 if (ctx->program->chip_class >= GFX8)
6724 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6725 else
6726 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6727 emit_wqm(ctx, tmp, dst);
6728 } else if (instr->dest.ssa.bit_size == 64) {
6729 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6730 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6731 if (ctx->program->chip_class >= GFX8) {
6732 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6733 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6734 } else {
6735 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
6736 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
6737 }
6738 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6739 emit_split_vector(ctx, dst, 2);
6740 } else {
6741 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6742 nir_print_instr(&instr->instr, stderr);
6743 fprintf(stderr, "\n");
6744 }
6745 break;
6746 }
6747 case nir_intrinsic_masked_swizzle_amd: {
6748 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6749 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6750 emit_uniform_subgroup(ctx, instr, src);
6751 break;
6752 }
6753 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6754 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
6755 if (dst.regClass() == v1) {
6756 emit_wqm(ctx,
6757 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
6758 dst);
6759 } else if (dst.regClass() == v2) {
6760 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6761 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6762 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
6763 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
6764 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6765 emit_split_vector(ctx, dst, 2);
6766 } else {
6767 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6768 nir_print_instr(&instr->instr, stderr);
6769 fprintf(stderr, "\n");
6770 }
6771 break;
6772 }
6773 case nir_intrinsic_write_invocation_amd: {
6774 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6775 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
6776 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
6777 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6778 if (dst.regClass() == v1) {
6779 /* src2 is ignored for writelane. RA assigns the same reg for dst */
6780 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
6781 } else if (dst.regClass() == v2) {
6782 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
6783 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
6784 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
6785 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
6786 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
6787 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
6788 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6789 emit_split_vector(ctx, dst, 2);
6790 } else {
6791 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6792 nir_print_instr(&instr->instr, stderr);
6793 fprintf(stderr, "\n");
6794 }
6795 break;
6796 }
6797 case nir_intrinsic_mbcnt_amd: {
6798 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6799 RegClass rc = RegClass(src.type(), 1);
6800 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
6801 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
6802 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6803 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
6804 emit_wqm(ctx, wqm_tmp, dst);
6805 break;
6806 }
6807 case nir_intrinsic_load_helper_invocation: {
6808 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6809 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
6810 ctx->block->kind |= block_kind_needs_lowering;
6811 ctx->program->needs_exact = true;
6812 break;
6813 }
6814 case nir_intrinsic_is_helper_invocation: {
6815 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6816 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
6817 ctx->block->kind |= block_kind_needs_lowering;
6818 ctx->program->needs_exact = true;
6819 break;
6820 }
6821 case nir_intrinsic_demote:
6822 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
6823
6824 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
6825 ctx->cf_info.exec_potentially_empty_discard = true;
6826 ctx->block->kind |= block_kind_uses_demote;
6827 ctx->program->needs_exact = true;
6828 break;
6829 case nir_intrinsic_demote_if: {
6830 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6831 assert(src.regClass() == bld.lm);
6832 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6833 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
6834
6835 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
6836 ctx->cf_info.exec_potentially_empty_discard = true;
6837 ctx->block->kind |= block_kind_uses_demote;
6838 ctx->program->needs_exact = true;
6839 break;
6840 }
6841 case nir_intrinsic_first_invocation: {
6842 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
6843 get_ssa_temp(ctx, &instr->dest.ssa));
6844 break;
6845 }
6846 case nir_intrinsic_shader_clock:
6847 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
6848 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
6849 break;
6850 case nir_intrinsic_load_vertex_id_zero_base: {
6851 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6852 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
6853 break;
6854 }
6855 case nir_intrinsic_load_first_vertex: {
6856 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6857 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
6858 break;
6859 }
6860 case nir_intrinsic_load_base_instance: {
6861 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6862 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
6863 break;
6864 }
6865 case nir_intrinsic_load_instance_id: {
6866 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6867 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
6868 break;
6869 }
6870 case nir_intrinsic_load_draw_id: {
6871 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6872 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
6873 break;
6874 }
6875 case nir_intrinsic_load_invocation_id: {
6876 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6877
6878 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
6879 if (ctx->options->chip_class >= GFX10)
6880 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
6881 else
6882 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
6883 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6884 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
6885 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
6886 } else {
6887 unreachable("Unsupported stage for load_invocation_id");
6888 }
6889
6890 break;
6891 }
6892 case nir_intrinsic_load_primitive_id: {
6893 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6894
6895 switch (ctx->shader->info.stage) {
6896 case MESA_SHADER_GEOMETRY:
6897 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
6898 break;
6899 case MESA_SHADER_TESS_CTRL:
6900 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
6901 break;
6902 case MESA_SHADER_TESS_EVAL:
6903 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
6904 break;
6905 default:
6906 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
6907 }
6908
6909 break;
6910 }
6911 case nir_intrinsic_load_patch_vertices_in: {
6912 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
6913 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
6914
6915 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6916 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
6917 break;
6918 }
6919 case nir_intrinsic_emit_vertex_with_counter: {
6920 visit_emit_vertex_with_counter(ctx, instr);
6921 break;
6922 }
6923 case nir_intrinsic_end_primitive_with_counter: {
6924 unsigned stream = nir_intrinsic_stream_id(instr);
6925 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
6926 break;
6927 }
6928 case nir_intrinsic_set_vertex_count: {
6929 /* unused, the HW keeps track of this for us */
6930 break;
6931 }
6932 default:
6933 fprintf(stderr, "Unimplemented intrinsic instr: ");
6934 nir_print_instr(&instr->instr, stderr);
6935 fprintf(stderr, "\n");
6936 abort();
6937
6938 break;
6939 }
6940 }
6941
6942
6943 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
6944 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
6945 enum glsl_base_type *stype)
6946 {
6947 nir_deref_instr *texture_deref_instr = NULL;
6948 nir_deref_instr *sampler_deref_instr = NULL;
6949 int plane = -1;
6950
6951 for (unsigned i = 0; i < instr->num_srcs; i++) {
6952 switch (instr->src[i].src_type) {
6953 case nir_tex_src_texture_deref:
6954 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
6955 break;
6956 case nir_tex_src_sampler_deref:
6957 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
6958 break;
6959 case nir_tex_src_plane:
6960 plane = nir_src_as_int(instr->src[i].src);
6961 break;
6962 default:
6963 break;
6964 }
6965 }
6966
6967 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
6968
6969 if (!sampler_deref_instr)
6970 sampler_deref_instr = texture_deref_instr;
6971
6972 if (plane >= 0) {
6973 assert(instr->op != nir_texop_txf_ms &&
6974 instr->op != nir_texop_samples_identical);
6975 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
6976 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
6977 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
6978 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
6979 } else if (instr->op == nir_texop_fragment_mask_fetch) {
6980 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
6981 } else {
6982 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
6983 }
6984 if (samp_ptr) {
6985 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
6986
6987 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
6988 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
6989 Builder bld(ctx->program, ctx->block);
6990
6991 /* to avoid unnecessary moves, we split and recombine sampler and image */
6992 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
6993 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6994 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6995 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
6996 Definition(img[2]), Definition(img[3]), Definition(img[4]),
6997 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
6998 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
6999 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
7000
7001 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
7002 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
7003 img[0], img[1], img[2], img[3],
7004 img[4], img[5], img[6], img[7]);
7005 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7006 samp[0], samp[1], samp[2], samp[3]);
7007 }
7008 }
7009 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
7010 instr->op == nir_texop_samples_identical))
7011 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7012 }
7013
7014 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
7015 Temp *out_ma, Temp *out_sc, Temp *out_tc)
7016 {
7017 Builder bld(ctx->program, ctx->block);
7018
7019 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
7020 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
7021 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
7022
7023 Operand neg_one(0xbf800000u);
7024 Operand one(0x3f800000u);
7025 Operand two(0x40000000u);
7026 Operand four(0x40800000u);
7027
7028 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
7029 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
7030 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
7031
7032 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
7033 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
7034 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
7035 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
7036
7037 // select sc
7038 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
7039 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
7040 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
7041 one, is_ma_y);
7042 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7043
7044 // select tc
7045 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
7046 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
7047 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7048
7049 // select ma
7050 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7051 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
7052 deriv_z, is_ma_z);
7053 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
7054 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
7055 }
7056
7057 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
7058 {
7059 Builder bld(ctx->program, ctx->block);
7060 Temp ma, tc, sc, id;
7061
7062 if (is_array) {
7063 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
7064
7065 // see comment in ac_prepare_cube_coords()
7066 if (ctx->options->chip_class <= GFX8)
7067 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
7068 }
7069
7070 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7071
7072 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
7073 vop3a->operands[0] = Operand(ma);
7074 vop3a->abs[0] = true;
7075 Temp invma = bld.tmp(v1);
7076 vop3a->definitions[0] = Definition(invma);
7077 ctx->block->instructions.emplace_back(std::move(vop3a));
7078
7079 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7080 if (!is_deriv)
7081 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
7082
7083 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7084 if (!is_deriv)
7085 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
7086
7087 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7088
7089 if (is_deriv) {
7090 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
7091 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
7092
7093 for (unsigned i = 0; i < 2; i++) {
7094 // see comment in ac_prepare_cube_coords()
7095 Temp deriv_ma;
7096 Temp deriv_sc, deriv_tc;
7097 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
7098 &deriv_ma, &deriv_sc, &deriv_tc);
7099
7100 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
7101
7102 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7103 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
7104 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
7105 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7106 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
7107 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
7108 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
7109 }
7110
7111 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
7112 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
7113 }
7114
7115 if (is_array)
7116 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
7117 coords.resize(3);
7118 coords[0] = sc;
7119 coords[1] = tc;
7120 coords[2] = id;
7121 }
7122
7123 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
7124 {
7125 if (vec->parent_instr->type != nir_instr_type_alu)
7126 return;
7127 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
7128 if (vec_instr->op != nir_op_vec(vec->num_components))
7129 return;
7130
7131 for (unsigned i = 0; i < vec->num_components; i++) {
7132 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
7133 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
7134 }
7135 }
7136
7137 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
7138 {
7139 Builder bld(ctx->program, ctx->block);
7140 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
7141 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
7142 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
7143 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
7144 std::vector<Temp> coords;
7145 std::vector<Temp> derivs;
7146 nir_const_value *sample_index_cv = NULL;
7147 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
7148 enum glsl_base_type stype;
7149 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
7150
7151 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
7152 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
7153 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
7154 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
7155
7156 for (unsigned i = 0; i < instr->num_srcs; i++) {
7157 switch (instr->src[i].src_type) {
7158 case nir_tex_src_coord: {
7159 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
7160 for (unsigned i = 0; i < coord.size(); i++)
7161 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
7162 break;
7163 }
7164 case nir_tex_src_bias:
7165 if (instr->op == nir_texop_txb) {
7166 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
7167 has_bias = true;
7168 }
7169 break;
7170 case nir_tex_src_lod: {
7171 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
7172
7173 if (val && val->f32 <= 0.0) {
7174 level_zero = true;
7175 } else {
7176 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
7177 has_lod = true;
7178 }
7179 break;
7180 }
7181 case nir_tex_src_comparator:
7182 if (instr->is_shadow) {
7183 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
7184 has_compare = true;
7185 }
7186 break;
7187 case nir_tex_src_offset:
7188 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
7189 get_const_vec(instr->src[i].src.ssa, const_offset);
7190 has_offset = true;
7191 break;
7192 case nir_tex_src_ddx:
7193 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
7194 has_ddx = true;
7195 break;
7196 case nir_tex_src_ddy:
7197 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
7198 has_ddy = true;
7199 break;
7200 case nir_tex_src_ms_index:
7201 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
7202 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
7203 has_sample_index = true;
7204 break;
7205 case nir_tex_src_texture_offset:
7206 case nir_tex_src_sampler_offset:
7207 default:
7208 break;
7209 }
7210 }
7211
7212 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
7213 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
7214
7215 if (instr->op == nir_texop_texture_samples) {
7216 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
7217
7218 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
7219 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
7220 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
7221 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
7222
7223 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7224 samples, Operand(1u), bld.scc(is_msaa));
7225 return;
7226 }
7227
7228 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
7229 aco_ptr<Instruction> tmp_instr;
7230 Temp acc, pack = Temp();
7231
7232 uint32_t pack_const = 0;
7233 for (unsigned i = 0; i < offset.size(); i++) {
7234 if (!const_offset[i])
7235 continue;
7236 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
7237 }
7238
7239 if (offset.type() == RegType::sgpr) {
7240 for (unsigned i = 0; i < offset.size(); i++) {
7241 if (const_offset[i])
7242 continue;
7243
7244 acc = emit_extract_vector(ctx, offset, i, s1);
7245 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
7246
7247 if (i) {
7248 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
7249 }
7250
7251 if (pack == Temp()) {
7252 pack = acc;
7253 } else {
7254 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
7255 }
7256 }
7257
7258 if (pack_const && pack != Temp())
7259 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
7260 } else {
7261 for (unsigned i = 0; i < offset.size(); i++) {
7262 if (const_offset[i])
7263 continue;
7264
7265 acc = emit_extract_vector(ctx, offset, i, v1);
7266 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
7267
7268 if (i) {
7269 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
7270 }
7271
7272 if (pack == Temp()) {
7273 pack = acc;
7274 } else {
7275 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
7276 }
7277 }
7278
7279 if (pack_const && pack != Temp())
7280 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
7281 }
7282 if (pack_const && pack == Temp())
7283 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
7284 else if (pack == Temp())
7285 has_offset = false;
7286 else
7287 offset = pack;
7288 }
7289
7290 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
7291 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
7292
7293 /* pack derivatives */
7294 if (has_ddx || has_ddy) {
7295 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
7296 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
7297 Temp zero = bld.copy(bld.def(v1), Operand(0u));
7298 derivs = {ddy, zero, ddy, zero};
7299 } else {
7300 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
7301 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
7302 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
7303 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
7304 }
7305 has_derivs = true;
7306 }
7307
7308 if (instr->coord_components > 1 &&
7309 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7310 instr->is_array &&
7311 instr->op != nir_texop_txf)
7312 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
7313
7314 if (instr->coord_components > 2 &&
7315 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
7316 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7317 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
7318 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7319 instr->is_array &&
7320 instr->op != nir_texop_txf &&
7321 instr->op != nir_texop_txf_ms &&
7322 instr->op != nir_texop_fragment_fetch &&
7323 instr->op != nir_texop_fragment_mask_fetch)
7324 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
7325
7326 if (ctx->options->chip_class == GFX9 &&
7327 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7328 instr->op != nir_texop_lod && instr->coord_components) {
7329 assert(coords.size() > 0 && coords.size() < 3);
7330
7331 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
7332 Operand((uint32_t) 0) :
7333 Operand((uint32_t) 0x3f000000)));
7334 }
7335
7336 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
7337
7338 if (instr->op == nir_texop_samples_identical)
7339 resource = fmask_ptr;
7340
7341 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7342 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7343 instr->op != nir_texop_txs &&
7344 instr->op != nir_texop_fragment_fetch &&
7345 instr->op != nir_texop_fragment_mask_fetch) {
7346 assert(has_sample_index);
7347 Operand op(sample_index);
7348 if (sample_index_cv)
7349 op = Operand(sample_index_cv->u32);
7350 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
7351 }
7352
7353 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
7354 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
7355 Temp off = emit_extract_vector(ctx, offset, i, v1);
7356 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
7357 }
7358 has_offset = false;
7359 }
7360
7361 /* Build tex instruction */
7362 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
7363 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
7364 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
7365 : 0;
7366 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7367 Temp tmp_dst = dst;
7368
7369 /* gather4 selects the component by dmask and always returns vec4 */
7370 if (instr->op == nir_texop_tg4) {
7371 assert(instr->dest.ssa.num_components == 4);
7372 if (instr->is_shadow)
7373 dmask = 1;
7374 else
7375 dmask = 1 << instr->component;
7376 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
7377 tmp_dst = bld.tmp(v4);
7378 } else if (instr->op == nir_texop_samples_identical) {
7379 tmp_dst = bld.tmp(v1);
7380 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
7381 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
7382 }
7383
7384 aco_ptr<MIMG_instruction> tex;
7385 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
7386 if (!has_lod)
7387 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7388
7389 bool div_by_6 = instr->op == nir_texop_txs &&
7390 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
7391 instr->is_array &&
7392 (dmask & (1 << 2));
7393 if (tmp_dst.id() == dst.id() && div_by_6)
7394 tmp_dst = bld.tmp(tmp_dst.regClass());
7395
7396 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7397 tex->operands[0] = Operand(resource);
7398 tex->operands[1] = Operand(s4); /* no sampler */
7399 tex->operands[2] = Operand(as_vgpr(ctx,lod));
7400 if (ctx->options->chip_class == GFX9 &&
7401 instr->op == nir_texop_txs &&
7402 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7403 instr->is_array) {
7404 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
7405 } else if (instr->op == nir_texop_query_levels) {
7406 tex->dmask = 1 << 3;
7407 } else {
7408 tex->dmask = dmask;
7409 }
7410 tex->da = da;
7411 tex->definitions[0] = Definition(tmp_dst);
7412 tex->dim = dim;
7413 tex->can_reorder = true;
7414 ctx->block->instructions.emplace_back(std::move(tex));
7415
7416 if (div_by_6) {
7417 /* divide 3rd value by 6 by multiplying with magic number */
7418 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7419 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
7420 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
7421 assert(instr->dest.ssa.num_components == 3);
7422 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
7423 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7424 emit_extract_vector(ctx, tmp_dst, 0, v1),
7425 emit_extract_vector(ctx, tmp_dst, 1, v1),
7426 by_6);
7427
7428 }
7429
7430 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7431 return;
7432 }
7433
7434 Temp tg4_compare_cube_wa64 = Temp();
7435
7436 if (tg4_integer_workarounds) {
7437 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7438 tex->operands[0] = Operand(resource);
7439 tex->operands[1] = Operand(s4); /* no sampler */
7440 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7441 tex->dim = dim;
7442 tex->dmask = 0x3;
7443 tex->da = da;
7444 Temp size = bld.tmp(v2);
7445 tex->definitions[0] = Definition(size);
7446 tex->can_reorder = true;
7447 ctx->block->instructions.emplace_back(std::move(tex));
7448 emit_split_vector(ctx, size, size.size());
7449
7450 Temp half_texel[2];
7451 for (unsigned i = 0; i < 2; i++) {
7452 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
7453 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
7454 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
7455 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
7456 }
7457
7458 Temp new_coords[2] = {
7459 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
7460 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
7461 };
7462
7463 if (tg4_integer_cube_workaround) {
7464 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
7465 Temp desc[resource.size()];
7466 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
7467 Format::PSEUDO, 1, resource.size())};
7468 split->operands[0] = Operand(resource);
7469 for (unsigned i = 0; i < resource.size(); i++) {
7470 desc[i] = bld.tmp(s1);
7471 split->definitions[i] = Definition(desc[i]);
7472 }
7473 ctx->block->instructions.emplace_back(std::move(split));
7474
7475 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
7476 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
7477 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
7478
7479 Temp nfmt;
7480 if (stype == GLSL_TYPE_UINT) {
7481 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7482 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
7483 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
7484 bld.scc(compare_cube_wa));
7485 } else {
7486 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7487 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
7488 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
7489 bld.scc(compare_cube_wa));
7490 }
7491 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
7492 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
7493
7494 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
7495
7496 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
7497 Operand((uint32_t)C_008F14_NUM_FORMAT));
7498 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
7499
7500 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
7501 Format::PSEUDO, resource.size(), 1)};
7502 for (unsigned i = 0; i < resource.size(); i++)
7503 vec->operands[i] = Operand(desc[i]);
7504 resource = bld.tmp(resource.regClass());
7505 vec->definitions[0] = Definition(resource);
7506 ctx->block->instructions.emplace_back(std::move(vec));
7507
7508 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7509 new_coords[0], coords[0], tg4_compare_cube_wa64);
7510 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7511 new_coords[1], coords[1], tg4_compare_cube_wa64);
7512 }
7513 coords[0] = new_coords[0];
7514 coords[1] = new_coords[1];
7515 }
7516
7517 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7518 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
7519
7520 assert(coords.size() == 1);
7521 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
7522 aco_opcode op;
7523 switch (last_bit) {
7524 case 1:
7525 op = aco_opcode::buffer_load_format_x; break;
7526 case 2:
7527 op = aco_opcode::buffer_load_format_xy; break;
7528 case 3:
7529 op = aco_opcode::buffer_load_format_xyz; break;
7530 case 4:
7531 op = aco_opcode::buffer_load_format_xyzw; break;
7532 default:
7533 unreachable("Tex instruction loads more than 4 components.");
7534 }
7535
7536 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
7537 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
7538 tmp_dst = dst;
7539 else
7540 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
7541
7542 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
7543 mubuf->operands[0] = Operand(resource);
7544 mubuf->operands[1] = Operand(coords[0]);
7545 mubuf->operands[2] = Operand((uint32_t) 0);
7546 mubuf->definitions[0] = Definition(tmp_dst);
7547 mubuf->idxen = true;
7548 mubuf->can_reorder = true;
7549 ctx->block->instructions.emplace_back(std::move(mubuf));
7550
7551 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
7552 return;
7553 }
7554
7555 /* gather MIMG address components */
7556 std::vector<Temp> args;
7557 if (has_offset)
7558 args.emplace_back(offset);
7559 if (has_bias)
7560 args.emplace_back(bias);
7561 if (has_compare)
7562 args.emplace_back(compare);
7563 if (has_derivs)
7564 args.insert(args.end(), derivs.begin(), derivs.end());
7565
7566 args.insert(args.end(), coords.begin(), coords.end());
7567 if (has_sample_index)
7568 args.emplace_back(sample_index);
7569 if (has_lod)
7570 args.emplace_back(lod);
7571
7572 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
7573 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
7574 vec->definitions[0] = Definition(arg);
7575 for (unsigned i = 0; i < args.size(); i++)
7576 vec->operands[i] = Operand(args[i]);
7577 ctx->block->instructions.emplace_back(std::move(vec));
7578
7579
7580 if (instr->op == nir_texop_txf ||
7581 instr->op == nir_texop_txf_ms ||
7582 instr->op == nir_texop_samples_identical ||
7583 instr->op == nir_texop_fragment_fetch ||
7584 instr->op == nir_texop_fragment_mask_fetch) {
7585 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
7586 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
7587 tex->operands[0] = Operand(resource);
7588 tex->operands[1] = Operand(s4); /* no sampler */
7589 tex->operands[2] = Operand(arg);
7590 tex->dim = dim;
7591 tex->dmask = dmask;
7592 tex->unrm = true;
7593 tex->da = da;
7594 tex->definitions[0] = Definition(tmp_dst);
7595 tex->can_reorder = true;
7596 ctx->block->instructions.emplace_back(std::move(tex));
7597
7598 if (instr->op == nir_texop_samples_identical) {
7599 assert(dmask == 1 && dst.regClass() == v1);
7600 assert(dst.id() != tmp_dst.id());
7601
7602 Temp tmp = bld.tmp(bld.lm);
7603 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
7604 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
7605
7606 } else {
7607 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7608 }
7609 return;
7610 }
7611
7612 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
7613 aco_opcode opcode = aco_opcode::image_sample;
7614 if (has_offset) { /* image_sample_*_o */
7615 if (has_compare) {
7616 opcode = aco_opcode::image_sample_c_o;
7617 if (has_derivs)
7618 opcode = aco_opcode::image_sample_c_d_o;
7619 if (has_bias)
7620 opcode = aco_opcode::image_sample_c_b_o;
7621 if (level_zero)
7622 opcode = aco_opcode::image_sample_c_lz_o;
7623 if (has_lod)
7624 opcode = aco_opcode::image_sample_c_l_o;
7625 } else {
7626 opcode = aco_opcode::image_sample_o;
7627 if (has_derivs)
7628 opcode = aco_opcode::image_sample_d_o;
7629 if (has_bias)
7630 opcode = aco_opcode::image_sample_b_o;
7631 if (level_zero)
7632 opcode = aco_opcode::image_sample_lz_o;
7633 if (has_lod)
7634 opcode = aco_opcode::image_sample_l_o;
7635 }
7636 } else { /* no offset */
7637 if (has_compare) {
7638 opcode = aco_opcode::image_sample_c;
7639 if (has_derivs)
7640 opcode = aco_opcode::image_sample_c_d;
7641 if (has_bias)
7642 opcode = aco_opcode::image_sample_c_b;
7643 if (level_zero)
7644 opcode = aco_opcode::image_sample_c_lz;
7645 if (has_lod)
7646 opcode = aco_opcode::image_sample_c_l;
7647 } else {
7648 opcode = aco_opcode::image_sample;
7649 if (has_derivs)
7650 opcode = aco_opcode::image_sample_d;
7651 if (has_bias)
7652 opcode = aco_opcode::image_sample_b;
7653 if (level_zero)
7654 opcode = aco_opcode::image_sample_lz;
7655 if (has_lod)
7656 opcode = aco_opcode::image_sample_l;
7657 }
7658 }
7659
7660 if (instr->op == nir_texop_tg4) {
7661 if (has_offset) {
7662 opcode = aco_opcode::image_gather4_lz_o;
7663 if (has_compare)
7664 opcode = aco_opcode::image_gather4_c_lz_o;
7665 } else {
7666 opcode = aco_opcode::image_gather4_lz;
7667 if (has_compare)
7668 opcode = aco_opcode::image_gather4_c_lz;
7669 }
7670 } else if (instr->op == nir_texop_lod) {
7671 opcode = aco_opcode::image_get_lod;
7672 }
7673
7674 /* we don't need the bias, sample index, compare value or offset to be
7675 * computed in WQM but if the p_create_vector copies the coordinates, then it
7676 * needs to be in WQM */
7677 if (ctx->stage == fragment_fs &&
7678 !has_derivs && !has_lod && !level_zero &&
7679 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
7680 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
7681 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
7682
7683 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
7684 tex->operands[0] = Operand(resource);
7685 tex->operands[1] = Operand(sampler);
7686 tex->operands[2] = Operand(arg);
7687 tex->dim = dim;
7688 tex->dmask = dmask;
7689 tex->da = da;
7690 tex->definitions[0] = Definition(tmp_dst);
7691 tex->can_reorder = true;
7692 ctx->block->instructions.emplace_back(std::move(tex));
7693
7694 if (tg4_integer_cube_workaround) {
7695 assert(tmp_dst.id() != dst.id());
7696 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
7697
7698 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7699 Temp val[4];
7700 for (unsigned i = 0; i < dst.size(); i++) {
7701 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
7702 Temp cvt_val;
7703 if (stype == GLSL_TYPE_UINT)
7704 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
7705 else
7706 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
7707 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
7708 }
7709 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
7710 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7711 val[0], val[1], val[2], val[3]);
7712 }
7713 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
7714 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
7715
7716 }
7717
7718
7719 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
7720 {
7721 Temp tmp = get_ssa_temp(ctx, ssa);
7722 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
7723 return Operand(tmp.regClass());
7724 else
7725 return Operand(tmp);
7726 }
7727
7728 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
7729 {
7730 aco_ptr<Pseudo_instruction> phi;
7731 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7732 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
7733
7734 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
7735 logical |= ctx->block->kind & block_kind_merge;
7736 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
7737
7738 /* we want a sorted list of sources, since the predecessor list is also sorted */
7739 std::map<unsigned, nir_ssa_def*> phi_src;
7740 nir_foreach_phi_src(src, instr)
7741 phi_src[src->pred->index] = src->src.ssa;
7742
7743 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
7744 unsigned num_operands = 0;
7745 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size())];
7746 unsigned num_defined = 0;
7747 unsigned cur_pred_idx = 0;
7748 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
7749 if (cur_pred_idx < preds.size()) {
7750 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
7751 unsigned block = ctx->cf_info.nir_to_aco[src.first];
7752 unsigned skipped = 0;
7753 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
7754 skipped++;
7755 if (cur_pred_idx + skipped < preds.size()) {
7756 for (unsigned i = 0; i < skipped; i++)
7757 operands[num_operands++] = Operand(dst.regClass());
7758 cur_pred_idx += skipped;
7759 } else {
7760 continue;
7761 }
7762 }
7763 cur_pred_idx++;
7764 Operand op = get_phi_operand(ctx, src.second);
7765 operands[num_operands++] = op;
7766 num_defined += !op.isUndefined();
7767 }
7768 /* handle block_kind_continue_or_break at loop exit blocks */
7769 while (cur_pred_idx++ < preds.size())
7770 operands[num_operands++] = Operand(dst.regClass());
7771
7772 if (num_defined == 0) {
7773 Builder bld(ctx->program, ctx->block);
7774 if (dst.regClass() == s1) {
7775 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
7776 } else if (dst.regClass() == v1) {
7777 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
7778 } else {
7779 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7780 for (unsigned i = 0; i < dst.size(); i++)
7781 vec->operands[i] = Operand(0u);
7782 vec->definitions[0] = Definition(dst);
7783 ctx->block->instructions.emplace_back(std::move(vec));
7784 }
7785 return;
7786 }
7787
7788 /* we can use a linear phi in some cases if one src is undef */
7789 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
7790 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
7791
7792 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
7793 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
7794 assert(invert->kind & block_kind_invert);
7795
7796 unsigned then_block = invert->linear_preds[0];
7797
7798 Block* insert_block = NULL;
7799 for (unsigned i = 0; i < num_operands; i++) {
7800 Operand op = operands[i];
7801 if (op.isUndefined())
7802 continue;
7803 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
7804 phi->operands[0] = op;
7805 break;
7806 }
7807 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
7808 phi->operands[1] = Operand(dst.regClass());
7809 phi->definitions[0] = Definition(dst);
7810 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
7811 return;
7812 }
7813
7814 /* try to scalarize vector phis */
7815 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
7816 // TODO: scalarize linear phis on divergent ifs
7817 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
7818 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
7819 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
7820 Operand src = operands[i];
7821 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
7822 can_scalarize = false;
7823 }
7824 if (can_scalarize) {
7825 unsigned num_components = instr->dest.ssa.num_components;
7826 assert(dst.size() % num_components == 0);
7827 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
7828
7829 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
7830 for (unsigned k = 0; k < num_components; k++) {
7831 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7832 for (unsigned i = 0; i < num_operands; i++) {
7833 Operand src = operands[i];
7834 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
7835 }
7836 Temp phi_dst = {ctx->program->allocateId(), rc};
7837 phi->definitions[0] = Definition(phi_dst);
7838 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7839 new_vec[k] = phi_dst;
7840 vec->operands[k] = Operand(phi_dst);
7841 }
7842 vec->definitions[0] = Definition(dst);
7843 ctx->block->instructions.emplace_back(std::move(vec));
7844 ctx->allocated_vec.emplace(dst.id(), new_vec);
7845 return;
7846 }
7847 }
7848
7849 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7850 for (unsigned i = 0; i < num_operands; i++)
7851 phi->operands[i] = operands[i];
7852 phi->definitions[0] = Definition(dst);
7853 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7854 }
7855
7856
7857 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
7858 {
7859 Temp dst = get_ssa_temp(ctx, &instr->def);
7860
7861 assert(dst.type() == RegType::sgpr);
7862
7863 if (dst.size() == 1) {
7864 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
7865 } else {
7866 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7867 for (unsigned i = 0; i < dst.size(); i++)
7868 vec->operands[i] = Operand(0u);
7869 vec->definitions[0] = Definition(dst);
7870 ctx->block->instructions.emplace_back(std::move(vec));
7871 }
7872 }
7873
7874 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
7875 {
7876 Builder bld(ctx->program, ctx->block);
7877 Block *logical_target;
7878 append_logical_end(ctx->block);
7879 unsigned idx = ctx->block->index;
7880
7881 switch (instr->type) {
7882 case nir_jump_break:
7883 logical_target = ctx->cf_info.parent_loop.exit;
7884 add_logical_edge(idx, logical_target);
7885 ctx->block->kind |= block_kind_break;
7886
7887 if (!ctx->cf_info.parent_if.is_divergent &&
7888 !ctx->cf_info.parent_loop.has_divergent_continue) {
7889 /* uniform break - directly jump out of the loop */
7890 ctx->block->kind |= block_kind_uniform;
7891 ctx->cf_info.has_branch = true;
7892 bld.branch(aco_opcode::p_branch);
7893 add_linear_edge(idx, logical_target);
7894 return;
7895 }
7896 ctx->cf_info.parent_loop.has_divergent_branch = true;
7897 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7898 break;
7899 case nir_jump_continue:
7900 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7901 add_logical_edge(idx, logical_target);
7902 ctx->block->kind |= block_kind_continue;
7903
7904 if (ctx->cf_info.parent_if.is_divergent) {
7905 /* for potential uniform breaks after this continue,
7906 we must ensure that they are handled correctly */
7907 ctx->cf_info.parent_loop.has_divergent_continue = true;
7908 ctx->cf_info.parent_loop.has_divergent_branch = true;
7909 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7910 } else {
7911 /* uniform continue - directly jump to the loop header */
7912 ctx->block->kind |= block_kind_uniform;
7913 ctx->cf_info.has_branch = true;
7914 bld.branch(aco_opcode::p_branch);
7915 add_linear_edge(idx, logical_target);
7916 return;
7917 }
7918 break;
7919 default:
7920 fprintf(stderr, "Unknown NIR jump instr: ");
7921 nir_print_instr(&instr->instr, stderr);
7922 fprintf(stderr, "\n");
7923 abort();
7924 }
7925
7926 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
7927 ctx->cf_info.exec_potentially_empty_break = true;
7928 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
7929 }
7930
7931 /* remove critical edges from linear CFG */
7932 bld.branch(aco_opcode::p_branch);
7933 Block* break_block = ctx->program->create_and_insert_block();
7934 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7935 break_block->kind |= block_kind_uniform;
7936 add_linear_edge(idx, break_block);
7937 /* the loop_header pointer might be invalidated by this point */
7938 if (instr->type == nir_jump_continue)
7939 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7940 add_linear_edge(break_block->index, logical_target);
7941 bld.reset(break_block);
7942 bld.branch(aco_opcode::p_branch);
7943
7944 Block* continue_block = ctx->program->create_and_insert_block();
7945 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7946 add_linear_edge(idx, continue_block);
7947 append_logical_start(continue_block);
7948 ctx->block = continue_block;
7949 return;
7950 }
7951
7952 void visit_block(isel_context *ctx, nir_block *block)
7953 {
7954 nir_foreach_instr(instr, block) {
7955 switch (instr->type) {
7956 case nir_instr_type_alu:
7957 visit_alu_instr(ctx, nir_instr_as_alu(instr));
7958 break;
7959 case nir_instr_type_load_const:
7960 visit_load_const(ctx, nir_instr_as_load_const(instr));
7961 break;
7962 case nir_instr_type_intrinsic:
7963 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
7964 break;
7965 case nir_instr_type_tex:
7966 visit_tex(ctx, nir_instr_as_tex(instr));
7967 break;
7968 case nir_instr_type_phi:
7969 visit_phi(ctx, nir_instr_as_phi(instr));
7970 break;
7971 case nir_instr_type_ssa_undef:
7972 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
7973 break;
7974 case nir_instr_type_deref:
7975 break;
7976 case nir_instr_type_jump:
7977 visit_jump(ctx, nir_instr_as_jump(instr));
7978 break;
7979 default:
7980 fprintf(stderr, "Unknown NIR instr type: ");
7981 nir_print_instr(instr, stderr);
7982 fprintf(stderr, "\n");
7983 //abort();
7984 }
7985 }
7986
7987 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7988 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
7989 }
7990
7991
7992
7993 static void visit_loop(isel_context *ctx, nir_loop *loop)
7994 {
7995 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
7996 append_logical_end(ctx->block);
7997 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
7998 Builder bld(ctx->program, ctx->block);
7999 bld.branch(aco_opcode::p_branch);
8000 unsigned loop_preheader_idx = ctx->block->index;
8001
8002 Block loop_exit = Block();
8003 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8004 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
8005
8006 Block* loop_header = ctx->program->create_and_insert_block();
8007 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
8008 loop_header->kind |= block_kind_loop_header;
8009 add_edge(loop_preheader_idx, loop_header);
8010 ctx->block = loop_header;
8011
8012 /* emit loop body */
8013 unsigned loop_header_idx = loop_header->index;
8014 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
8015 append_logical_start(ctx->block);
8016 visit_cf_list(ctx, &loop->body);
8017
8018 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
8019 if (!ctx->cf_info.has_branch) {
8020 append_logical_end(ctx->block);
8021 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
8022 /* Discards can result in code running with an empty exec mask.
8023 * This would result in divergent breaks not ever being taken. As a
8024 * workaround, break the loop when the loop mask is empty instead of
8025 * always continuing. */
8026 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
8027 unsigned block_idx = ctx->block->index;
8028
8029 /* create helper blocks to avoid critical edges */
8030 Block *break_block = ctx->program->create_and_insert_block();
8031 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8032 break_block->kind = block_kind_uniform;
8033 bld.reset(break_block);
8034 bld.branch(aco_opcode::p_branch);
8035 add_linear_edge(block_idx, break_block);
8036 add_linear_edge(break_block->index, &loop_exit);
8037
8038 Block *continue_block = ctx->program->create_and_insert_block();
8039 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8040 continue_block->kind = block_kind_uniform;
8041 bld.reset(continue_block);
8042 bld.branch(aco_opcode::p_branch);
8043 add_linear_edge(block_idx, continue_block);
8044 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
8045
8046 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8047 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
8048 ctx->block = &ctx->program->blocks[block_idx];
8049 } else {
8050 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
8051 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8052 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8053 else
8054 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8055 }
8056
8057 bld.reset(ctx->block);
8058 bld.branch(aco_opcode::p_branch);
8059 }
8060
8061 /* fixup phis in loop header from unreachable blocks */
8062 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
8063 bool linear = ctx->cf_info.has_branch;
8064 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
8065 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
8066 if ((logical && instr->opcode == aco_opcode::p_phi) ||
8067 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
8068 /* the last operand should be the one that needs to be removed */
8069 instr->operands.pop_back();
8070 } else if (!is_phi(instr)) {
8071 break;
8072 }
8073 }
8074 }
8075
8076 ctx->cf_info.has_branch = false;
8077
8078 // TODO: if the loop has not a single exit, we must add one °°
8079 /* emit loop successor block */
8080 ctx->block = ctx->program->insert_block(std::move(loop_exit));
8081 append_logical_start(ctx->block);
8082
8083 #if 0
8084 // TODO: check if it is beneficial to not branch on continues
8085 /* trim linear phis in loop header */
8086 for (auto&& instr : loop_entry->instructions) {
8087 if (instr->opcode == aco_opcode::p_linear_phi) {
8088 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
8089 new_phi->definitions[0] = instr->definitions[0];
8090 for (unsigned i = 0; i < new_phi->operands.size(); i++)
8091 new_phi->operands[i] = instr->operands[i];
8092 /* check that the remaining operands are all the same */
8093 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
8094 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
8095 instr.swap(new_phi);
8096 } else if (instr->opcode == aco_opcode::p_phi) {
8097 continue;
8098 } else {
8099 break;
8100 }
8101 }
8102 #endif
8103 }
8104
8105 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
8106 {
8107 ic->cond = cond;
8108
8109 append_logical_end(ctx->block);
8110 ctx->block->kind |= block_kind_branch;
8111
8112 /* branch to linear then block */
8113 assert(cond.regClass() == ctx->program->lane_mask);
8114 aco_ptr<Pseudo_branch_instruction> branch;
8115 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8116 branch->operands[0] = Operand(cond);
8117 ctx->block->instructions.push_back(std::move(branch));
8118
8119 ic->BB_if_idx = ctx->block->index;
8120 ic->BB_invert = Block();
8121 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8122 /* Invert blocks are intentionally not marked as top level because they
8123 * are not part of the logical cfg. */
8124 ic->BB_invert.kind |= block_kind_invert;
8125 ic->BB_endif = Block();
8126 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8127 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
8128
8129 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
8130 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
8131 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
8132 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
8133 ctx->cf_info.parent_if.is_divergent = true;
8134
8135 /* divergent branches use cbranch_execz */
8136 ctx->cf_info.exec_potentially_empty_discard = false;
8137 ctx->cf_info.exec_potentially_empty_break = false;
8138 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8139
8140 /** emit logical then block */
8141 Block* BB_then_logical = ctx->program->create_and_insert_block();
8142 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8143 add_edge(ic->BB_if_idx, BB_then_logical);
8144 ctx->block = BB_then_logical;
8145 append_logical_start(BB_then_logical);
8146 }
8147
8148 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
8149 {
8150 Block *BB_then_logical = ctx->block;
8151 append_logical_end(BB_then_logical);
8152 /* branch from logical then block to invert block */
8153 aco_ptr<Pseudo_branch_instruction> branch;
8154 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8155 BB_then_logical->instructions.emplace_back(std::move(branch));
8156 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
8157 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8158 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
8159 BB_then_logical->kind |= block_kind_uniform;
8160 assert(!ctx->cf_info.has_branch);
8161 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8162 ctx->cf_info.parent_loop.has_divergent_branch = false;
8163
8164 /** emit linear then block */
8165 Block* BB_then_linear = ctx->program->create_and_insert_block();
8166 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8167 BB_then_linear->kind |= block_kind_uniform;
8168 add_linear_edge(ic->BB_if_idx, BB_then_linear);
8169 /* branch from linear then block to invert block */
8170 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8171 BB_then_linear->instructions.emplace_back(std::move(branch));
8172 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
8173
8174 /** emit invert merge block */
8175 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
8176 ic->invert_idx = ctx->block->index;
8177
8178 /* branch to linear else block (skip else) */
8179 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
8180 branch->operands[0] = Operand(ic->cond);
8181 ctx->block->instructions.push_back(std::move(branch));
8182
8183 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
8184 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
8185 ic->exec_potentially_empty_break_depth_old =
8186 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8187 /* divergent branches use cbranch_execz */
8188 ctx->cf_info.exec_potentially_empty_discard = false;
8189 ctx->cf_info.exec_potentially_empty_break = false;
8190 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8191
8192 /** emit logical else block */
8193 Block* BB_else_logical = ctx->program->create_and_insert_block();
8194 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8195 add_logical_edge(ic->BB_if_idx, BB_else_logical);
8196 add_linear_edge(ic->invert_idx, BB_else_logical);
8197 ctx->block = BB_else_logical;
8198 append_logical_start(BB_else_logical);
8199 }
8200
8201 static void end_divergent_if(isel_context *ctx, if_context *ic)
8202 {
8203 Block *BB_else_logical = ctx->block;
8204 append_logical_end(BB_else_logical);
8205
8206 /* branch from logical else block to endif block */
8207 aco_ptr<Pseudo_branch_instruction> branch;
8208 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8209 BB_else_logical->instructions.emplace_back(std::move(branch));
8210 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
8211 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8212 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
8213 BB_else_logical->kind |= block_kind_uniform;
8214
8215 assert(!ctx->cf_info.has_branch);
8216 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
8217
8218
8219 /** emit linear else block */
8220 Block* BB_else_linear = ctx->program->create_and_insert_block();
8221 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8222 BB_else_linear->kind |= block_kind_uniform;
8223 add_linear_edge(ic->invert_idx, BB_else_linear);
8224
8225 /* branch from linear else block to endif block */
8226 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8227 BB_else_linear->instructions.emplace_back(std::move(branch));
8228 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
8229
8230
8231 /** emit endif merge block */
8232 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
8233 append_logical_start(ctx->block);
8234
8235
8236 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
8237 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
8238 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
8239 ctx->cf_info.exec_potentially_empty_break_depth =
8240 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8241 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
8242 !ctx->cf_info.parent_if.is_divergent) {
8243 ctx->cf_info.exec_potentially_empty_break = false;
8244 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8245 }
8246 /* uniform control flow never has an empty exec-mask */
8247 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
8248 ctx->cf_info.exec_potentially_empty_discard = false;
8249 ctx->cf_info.exec_potentially_empty_break = false;
8250 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8251 }
8252 }
8253
8254 static void visit_if(isel_context *ctx, nir_if *if_stmt)
8255 {
8256 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
8257 Builder bld(ctx->program, ctx->block);
8258 aco_ptr<Pseudo_branch_instruction> branch;
8259
8260 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
8261 /**
8262 * Uniform conditionals are represented in the following way*) :
8263 *
8264 * The linear and logical CFG:
8265 * BB_IF
8266 * / \
8267 * BB_THEN (logical) BB_ELSE (logical)
8268 * \ /
8269 * BB_ENDIF
8270 *
8271 * *) Exceptions may be due to break and continue statements within loops
8272 * If a break/continue happens within uniform control flow, it branches
8273 * to the loop exit/entry block. Otherwise, it branches to the next
8274 * merge block.
8275 **/
8276 append_logical_end(ctx->block);
8277 ctx->block->kind |= block_kind_uniform;
8278
8279 /* emit branch */
8280 assert(cond.regClass() == bld.lm);
8281 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
8282 cond = bool_to_scalar_condition(ctx, cond);
8283
8284 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8285 branch->operands[0] = Operand(cond);
8286 branch->operands[0].setFixed(scc);
8287 ctx->block->instructions.emplace_back(std::move(branch));
8288
8289 unsigned BB_if_idx = ctx->block->index;
8290 Block BB_endif = Block();
8291 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8292 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
8293
8294 /** emit then block */
8295 Block* BB_then = ctx->program->create_and_insert_block();
8296 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8297 add_edge(BB_if_idx, BB_then);
8298 append_logical_start(BB_then);
8299 ctx->block = BB_then;
8300 visit_cf_list(ctx, &if_stmt->then_list);
8301 BB_then = ctx->block;
8302 bool then_branch = ctx->cf_info.has_branch;
8303 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8304
8305 if (!then_branch) {
8306 append_logical_end(BB_then);
8307 /* branch from then block to endif block */
8308 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8309 BB_then->instructions.emplace_back(std::move(branch));
8310 add_linear_edge(BB_then->index, &BB_endif);
8311 if (!then_branch_divergent)
8312 add_logical_edge(BB_then->index, &BB_endif);
8313 BB_then->kind |= block_kind_uniform;
8314 }
8315
8316 ctx->cf_info.has_branch = false;
8317 ctx->cf_info.parent_loop.has_divergent_branch = false;
8318
8319 /** emit else block */
8320 Block* BB_else = ctx->program->create_and_insert_block();
8321 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8322 add_edge(BB_if_idx, BB_else);
8323 append_logical_start(BB_else);
8324 ctx->block = BB_else;
8325 visit_cf_list(ctx, &if_stmt->else_list);
8326 BB_else = ctx->block;
8327
8328 if (!ctx->cf_info.has_branch) {
8329 append_logical_end(BB_else);
8330 /* branch from then block to endif block */
8331 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8332 BB_else->instructions.emplace_back(std::move(branch));
8333 add_linear_edge(BB_else->index, &BB_endif);
8334 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8335 add_logical_edge(BB_else->index, &BB_endif);
8336 BB_else->kind |= block_kind_uniform;
8337 }
8338
8339 ctx->cf_info.has_branch &= then_branch;
8340 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
8341
8342 /** emit endif merge block */
8343 if (!ctx->cf_info.has_branch) {
8344 ctx->block = ctx->program->insert_block(std::move(BB_endif));
8345 append_logical_start(ctx->block);
8346 }
8347 } else { /* non-uniform condition */
8348 /**
8349 * To maintain a logical and linear CFG without critical edges,
8350 * non-uniform conditionals are represented in the following way*) :
8351 *
8352 * The linear CFG:
8353 * BB_IF
8354 * / \
8355 * BB_THEN (logical) BB_THEN (linear)
8356 * \ /
8357 * BB_INVERT (linear)
8358 * / \
8359 * BB_ELSE (logical) BB_ELSE (linear)
8360 * \ /
8361 * BB_ENDIF
8362 *
8363 * The logical CFG:
8364 * BB_IF
8365 * / \
8366 * BB_THEN (logical) BB_ELSE (logical)
8367 * \ /
8368 * BB_ENDIF
8369 *
8370 * *) Exceptions may be due to break and continue statements within loops
8371 **/
8372
8373 if_context ic;
8374
8375 begin_divergent_if_then(ctx, &ic, cond);
8376 visit_cf_list(ctx, &if_stmt->then_list);
8377
8378 begin_divergent_if_else(ctx, &ic);
8379 visit_cf_list(ctx, &if_stmt->else_list);
8380
8381 end_divergent_if(ctx, &ic);
8382 }
8383 }
8384
8385 static void visit_cf_list(isel_context *ctx,
8386 struct exec_list *list)
8387 {
8388 foreach_list_typed(nir_cf_node, node, node, list) {
8389 switch (node->type) {
8390 case nir_cf_node_block:
8391 visit_block(ctx, nir_cf_node_as_block(node));
8392 break;
8393 case nir_cf_node_if:
8394 visit_if(ctx, nir_cf_node_as_if(node));
8395 break;
8396 case nir_cf_node_loop:
8397 visit_loop(ctx, nir_cf_node_as_loop(node));
8398 break;
8399 default:
8400 unreachable("unimplemented cf list type");
8401 }
8402 }
8403 }
8404
8405 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
8406 {
8407 int offset = ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
8408 uint64_t mask = ctx->outputs.mask[slot];
8409 if (!is_pos && !mask)
8410 return;
8411 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
8412 return;
8413 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8414 exp->enabled_mask = mask;
8415 for (unsigned i = 0; i < 4; ++i) {
8416 if (mask & (1 << i))
8417 exp->operands[i] = Operand(ctx->outputs.outputs[slot][i]);
8418 else
8419 exp->operands[i] = Operand(v1);
8420 }
8421 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
8422 * Setting valid_mask=1 prevents it and has no other effect.
8423 */
8424 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
8425 exp->done = false;
8426 exp->compressed = false;
8427 if (is_pos)
8428 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8429 else
8430 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
8431 ctx->block->instructions.emplace_back(std::move(exp));
8432 }
8433
8434 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
8435 {
8436 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8437 exp->enabled_mask = 0;
8438 for (unsigned i = 0; i < 4; ++i)
8439 exp->operands[i] = Operand(v1);
8440 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
8441 exp->operands[0] = Operand(ctx->outputs.outputs[VARYING_SLOT_PSIZ][0]);
8442 exp->enabled_mask |= 0x1;
8443 }
8444 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
8445 exp->operands[2] = Operand(ctx->outputs.outputs[VARYING_SLOT_LAYER][0]);
8446 exp->enabled_mask |= 0x4;
8447 }
8448 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
8449 if (ctx->options->chip_class < GFX9) {
8450 exp->operands[3] = Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]);
8451 exp->enabled_mask |= 0x8;
8452 } else {
8453 Builder bld(ctx->program, ctx->block);
8454
8455 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
8456 Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]));
8457 if (exp->operands[2].isTemp())
8458 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
8459
8460 exp->operands[2] = Operand(out);
8461 exp->enabled_mask |= 0x4;
8462 }
8463 }
8464 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
8465 exp->done = false;
8466 exp->compressed = false;
8467 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8468 ctx->block->instructions.emplace_back(std::move(exp));
8469 }
8470
8471 static void create_vs_exports(isel_context *ctx)
8472 {
8473 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
8474
8475 if (outinfo->export_prim_id) {
8476 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
8477 ctx->outputs.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
8478 }
8479
8480 if (ctx->options->key.has_multiview_view_index) {
8481 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
8482 ctx->outputs.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
8483 }
8484
8485 /* the order these position exports are created is important */
8486 int next_pos = 0;
8487 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
8488 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
8489 export_vs_psiz_layer_viewport(ctx, &next_pos);
8490 }
8491 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8492 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
8493 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8494 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
8495
8496 if (ctx->export_clip_dists) {
8497 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8498 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
8499 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8500 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
8501 }
8502
8503 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
8504 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
8505 i != VARYING_SLOT_PRIMITIVE_ID)
8506 continue;
8507
8508 export_vs_varying(ctx, i, false, NULL);
8509 }
8510 }
8511
8512 static void export_fs_mrt_z(isel_context *ctx)
8513 {
8514 Builder bld(ctx->program, ctx->block);
8515 unsigned enabled_channels = 0;
8516 bool compr = false;
8517 Operand values[4];
8518
8519 for (unsigned i = 0; i < 4; ++i) {
8520 values[i] = Operand(v1);
8521 }
8522
8523 /* Both stencil and sample mask only need 16-bits. */
8524 if (!ctx->program->info->ps.writes_z &&
8525 (ctx->program->info->ps.writes_stencil ||
8526 ctx->program->info->ps.writes_sample_mask)) {
8527 compr = true; /* COMPR flag */
8528
8529 if (ctx->program->info->ps.writes_stencil) {
8530 /* Stencil should be in X[23:16]. */
8531 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8532 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
8533 enabled_channels |= 0x3;
8534 }
8535
8536 if (ctx->program->info->ps.writes_sample_mask) {
8537 /* SampleMask should be in Y[15:0]. */
8538 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8539 enabled_channels |= 0xc;
8540 }
8541 } else {
8542 if (ctx->program->info->ps.writes_z) {
8543 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_DEPTH][0]);
8544 enabled_channels |= 0x1;
8545 }
8546
8547 if (ctx->program->info->ps.writes_stencil) {
8548 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8549 enabled_channels |= 0x2;
8550 }
8551
8552 if (ctx->program->info->ps.writes_sample_mask) {
8553 values[2] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8554 enabled_channels |= 0x4;
8555 }
8556 }
8557
8558 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
8559 * writemask component.
8560 */
8561 if (ctx->options->chip_class == GFX6 &&
8562 ctx->options->family != CHIP_OLAND &&
8563 ctx->options->family != CHIP_HAINAN) {
8564 enabled_channels |= 0x1;
8565 }
8566
8567 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8568 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
8569 }
8570
8571 static void export_fs_mrt_color(isel_context *ctx, int slot)
8572 {
8573 Builder bld(ctx->program, ctx->block);
8574 unsigned write_mask = ctx->outputs.mask[slot];
8575 Operand values[4];
8576
8577 for (unsigned i = 0; i < 4; ++i) {
8578 if (write_mask & (1 << i)) {
8579 values[i] = Operand(ctx->outputs.outputs[slot][i]);
8580 } else {
8581 values[i] = Operand(v1);
8582 }
8583 }
8584
8585 unsigned target, col_format;
8586 unsigned enabled_channels = 0;
8587 aco_opcode compr_op = (aco_opcode)0;
8588
8589 slot -= FRAG_RESULT_DATA0;
8590 target = V_008DFC_SQ_EXP_MRT + slot;
8591 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
8592
8593 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
8594 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
8595
8596 switch (col_format)
8597 {
8598 case V_028714_SPI_SHADER_ZERO:
8599 enabled_channels = 0; /* writemask */
8600 target = V_008DFC_SQ_EXP_NULL;
8601 break;
8602
8603 case V_028714_SPI_SHADER_32_R:
8604 enabled_channels = 1;
8605 break;
8606
8607 case V_028714_SPI_SHADER_32_GR:
8608 enabled_channels = 0x3;
8609 break;
8610
8611 case V_028714_SPI_SHADER_32_AR:
8612 if (ctx->options->chip_class >= GFX10) {
8613 /* Special case: on GFX10, the outputs are different for 32_AR */
8614 enabled_channels = 0x3;
8615 values[1] = values[3];
8616 values[3] = Operand(v1);
8617 } else {
8618 enabled_channels = 0x9;
8619 }
8620 break;
8621
8622 case V_028714_SPI_SHADER_FP16_ABGR:
8623 enabled_channels = 0x5;
8624 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
8625 break;
8626
8627 case V_028714_SPI_SHADER_UNORM16_ABGR:
8628 enabled_channels = 0x5;
8629 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
8630 break;
8631
8632 case V_028714_SPI_SHADER_SNORM16_ABGR:
8633 enabled_channels = 0x5;
8634 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
8635 break;
8636
8637 case V_028714_SPI_SHADER_UINT16_ABGR: {
8638 enabled_channels = 0x5;
8639 compr_op = aco_opcode::v_cvt_pk_u16_u32;
8640 if (is_int8 || is_int10) {
8641 /* clamp */
8642 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
8643 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
8644
8645 for (unsigned i = 0; i < 4; i++) {
8646 if ((write_mask >> i) & 1) {
8647 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
8648 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
8649 values[i]);
8650 }
8651 }
8652 }
8653 break;
8654 }
8655
8656 case V_028714_SPI_SHADER_SINT16_ABGR:
8657 enabled_channels = 0x5;
8658 compr_op = aco_opcode::v_cvt_pk_i16_i32;
8659 if (is_int8 || is_int10) {
8660 /* clamp */
8661 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
8662 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
8663 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
8664 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
8665
8666 for (unsigned i = 0; i < 4; i++) {
8667 if ((write_mask >> i) & 1) {
8668 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
8669 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
8670 values[i]);
8671 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
8672 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
8673 values[i]);
8674 }
8675 }
8676 }
8677 break;
8678
8679 case V_028714_SPI_SHADER_32_ABGR:
8680 enabled_channels = 0xF;
8681 break;
8682
8683 default:
8684 break;
8685 }
8686
8687 if (target == V_008DFC_SQ_EXP_NULL)
8688 return;
8689
8690 if ((bool) compr_op) {
8691 for (int i = 0; i < 2; i++) {
8692 /* check if at least one of the values to be compressed is enabled */
8693 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
8694 if (enabled) {
8695 enabled_channels |= enabled << (i*2);
8696 values[i] = bld.vop3(compr_op, bld.def(v1),
8697 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
8698 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
8699 } else {
8700 values[i] = Operand(v1);
8701 }
8702 }
8703 values[2] = Operand(v1);
8704 values[3] = Operand(v1);
8705 } else {
8706 for (int i = 0; i < 4; i++)
8707 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
8708 }
8709
8710 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8711 enabled_channels, target, (bool) compr_op);
8712 }
8713
8714 static void create_fs_exports(isel_context *ctx)
8715 {
8716 /* Export depth, stencil and sample mask. */
8717 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
8718 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
8719 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) {
8720 export_fs_mrt_z(ctx);
8721 }
8722
8723 /* Export all color render targets. */
8724 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i) {
8725 if (ctx->outputs.mask[i])
8726 export_fs_mrt_color(ctx, i);
8727 }
8728 }
8729
8730 static void emit_stream_output(isel_context *ctx,
8731 Temp const *so_buffers,
8732 Temp const *so_write_offset,
8733 const struct radv_stream_output *output)
8734 {
8735 unsigned num_comps = util_bitcount(output->component_mask);
8736 unsigned writemask = (1 << num_comps) - 1;
8737 unsigned loc = output->location;
8738 unsigned buf = output->buffer;
8739
8740 assert(num_comps && num_comps <= 4);
8741 if (!num_comps || num_comps > 4)
8742 return;
8743
8744 unsigned start = ffs(output->component_mask) - 1;
8745
8746 Temp out[4];
8747 bool all_undef = true;
8748 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
8749 for (unsigned i = 0; i < num_comps; i++) {
8750 out[i] = ctx->outputs.outputs[loc][start + i];
8751 all_undef = all_undef && !out[i].id();
8752 }
8753 if (all_undef)
8754 return;
8755
8756 while (writemask) {
8757 int start, count;
8758 u_bit_scan_consecutive_range(&writemask, &start, &count);
8759 if (count == 3 && ctx->options->chip_class == GFX6) {
8760 /* GFX6 doesn't support storing vec3, split it. */
8761 writemask |= 1u << (start + 2);
8762 count = 2;
8763 }
8764
8765 unsigned offset = output->offset + start * 4;
8766
8767 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
8768 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
8769 for (int i = 0; i < count; ++i)
8770 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
8771 vec->definitions[0] = Definition(write_data);
8772 ctx->block->instructions.emplace_back(std::move(vec));
8773
8774 aco_opcode opcode;
8775 switch (count) {
8776 case 1:
8777 opcode = aco_opcode::buffer_store_dword;
8778 break;
8779 case 2:
8780 opcode = aco_opcode::buffer_store_dwordx2;
8781 break;
8782 case 3:
8783 opcode = aco_opcode::buffer_store_dwordx3;
8784 break;
8785 case 4:
8786 opcode = aco_opcode::buffer_store_dwordx4;
8787 break;
8788 default:
8789 unreachable("Unsupported dword count.");
8790 }
8791
8792 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
8793 store->operands[0] = Operand(so_buffers[buf]);
8794 store->operands[1] = Operand(so_write_offset[buf]);
8795 store->operands[2] = Operand((uint32_t) 0);
8796 store->operands[3] = Operand(write_data);
8797 if (offset > 4095) {
8798 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
8799 Builder bld(ctx->program, ctx->block);
8800 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
8801 } else {
8802 store->offset = offset;
8803 }
8804 store->offen = true;
8805 store->glc = true;
8806 store->dlc = false;
8807 store->slc = true;
8808 store->can_reorder = true;
8809 ctx->block->instructions.emplace_back(std::move(store));
8810 }
8811 }
8812
8813 static void emit_streamout(isel_context *ctx, unsigned stream)
8814 {
8815 Builder bld(ctx->program, ctx->block);
8816
8817 Temp so_buffers[4];
8818 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
8819 for (unsigned i = 0; i < 4; i++) {
8820 unsigned stride = ctx->program->info->so.strides[i];
8821 if (!stride)
8822 continue;
8823
8824 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
8825 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
8826 }
8827
8828 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
8829 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
8830
8831 Temp tid = emit_mbcnt(ctx, bld.def(v1));
8832
8833 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
8834
8835 if_context ic;
8836 begin_divergent_if_then(ctx, &ic, can_emit);
8837
8838 bld.reset(ctx->block);
8839
8840 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
8841
8842 Temp so_write_offset[4];
8843
8844 for (unsigned i = 0; i < 4; i++) {
8845 unsigned stride = ctx->program->info->so.strides[i];
8846 if (!stride)
8847 continue;
8848
8849 if (stride == 1) {
8850 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
8851 get_arg(ctx, ctx->args->streamout_write_idx),
8852 get_arg(ctx, ctx->args->streamout_offset[i]));
8853 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
8854
8855 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
8856 } else {
8857 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
8858 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
8859 get_arg(ctx, ctx->args->streamout_offset[i]));
8860 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
8861 }
8862 }
8863
8864 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
8865 struct radv_stream_output *output =
8866 &ctx->program->info->so.outputs[i];
8867 if (stream != output->stream)
8868 continue;
8869
8870 emit_stream_output(ctx, so_buffers, so_write_offset, output);
8871 }
8872
8873 begin_divergent_if_else(ctx, &ic);
8874 end_divergent_if(ctx, &ic);
8875 }
8876
8877 } /* end namespace */
8878
8879 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
8880 {
8881 /* Split all arguments except for the first (ring_offsets) and the last
8882 * (exec) so that the dead channels don't stay live throughout the program.
8883 */
8884 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
8885 if (startpgm->definitions[i].regClass().size() > 1) {
8886 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
8887 startpgm->definitions[i].regClass().size());
8888 }
8889 }
8890 }
8891
8892 void handle_bc_optimize(isel_context *ctx)
8893 {
8894 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
8895 Builder bld(ctx->program, ctx->block);
8896 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
8897 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
8898 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
8899 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
8900 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
8901 if (uses_center && uses_centroid) {
8902 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
8903 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
8904
8905 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
8906 Temp new_coord[2];
8907 for (unsigned i = 0; i < 2; i++) {
8908 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
8909 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
8910 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8911 persp_centroid, persp_center, sel);
8912 }
8913 ctx->persp_centroid = bld.tmp(v2);
8914 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
8915 Operand(new_coord[0]), Operand(new_coord[1]));
8916 emit_split_vector(ctx, ctx->persp_centroid, 2);
8917 }
8918
8919 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
8920 Temp new_coord[2];
8921 for (unsigned i = 0; i < 2; i++) {
8922 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
8923 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
8924 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8925 linear_centroid, linear_center, sel);
8926 }
8927 ctx->linear_centroid = bld.tmp(v2);
8928 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
8929 Operand(new_coord[0]), Operand(new_coord[1]));
8930 emit_split_vector(ctx, ctx->linear_centroid, 2);
8931 }
8932 }
8933 }
8934
8935 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
8936 {
8937 Program *program = ctx->program;
8938
8939 unsigned float_controls = shader->info.float_controls_execution_mode;
8940
8941 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
8942 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
8943 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
8944 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
8945 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
8946
8947 program->next_fp_mode.must_flush_denorms32 =
8948 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
8949 program->next_fp_mode.must_flush_denorms16_64 =
8950 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
8951 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
8952
8953 program->next_fp_mode.care_about_round32 =
8954 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
8955
8956 program->next_fp_mode.care_about_round16_64 =
8957 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
8958 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
8959
8960 /* default to preserving fp16 and fp64 denorms, since it's free */
8961 if (program->next_fp_mode.must_flush_denorms16_64)
8962 program->next_fp_mode.denorm16_64 = 0;
8963 else
8964 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
8965
8966 /* preserving fp32 denorms is expensive, so only do it if asked */
8967 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
8968 program->next_fp_mode.denorm32 = fp_denorm_keep;
8969 else
8970 program->next_fp_mode.denorm32 = 0;
8971
8972 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
8973 program->next_fp_mode.round32 = fp_round_tz;
8974 else
8975 program->next_fp_mode.round32 = fp_round_ne;
8976
8977 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
8978 program->next_fp_mode.round16_64 = fp_round_tz;
8979 else
8980 program->next_fp_mode.round16_64 = fp_round_ne;
8981
8982 ctx->block->fp_mode = program->next_fp_mode;
8983 }
8984
8985 void cleanup_cfg(Program *program)
8986 {
8987 /* create linear_succs/logical_succs */
8988 for (Block& BB : program->blocks) {
8989 for (unsigned idx : BB.linear_preds)
8990 program->blocks[idx].linear_succs.emplace_back(BB.index);
8991 for (unsigned idx : BB.logical_preds)
8992 program->blocks[idx].logical_succs.emplace_back(BB.index);
8993 }
8994 }
8995
8996 void select_program(Program *program,
8997 unsigned shader_count,
8998 struct nir_shader *const *shaders,
8999 ac_shader_config* config,
9000 struct radv_shader_args *args)
9001 {
9002 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
9003
9004 for (unsigned i = 0; i < shader_count; i++) {
9005 nir_shader *nir = shaders[i];
9006 init_context(&ctx, nir);
9007
9008 setup_fp_mode(&ctx, nir);
9009
9010 if (!i) {
9011 /* needs to be after init_context() for FS */
9012 Pseudo_instruction *startpgm = add_startpgm(&ctx);
9013 append_logical_start(ctx.block);
9014 split_arguments(&ctx, startpgm);
9015 }
9016
9017 if_context ic;
9018 if (shader_count >= 2) {
9019 Builder bld(ctx.program, ctx.block);
9020 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | (i * 8u)));
9021 Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
9022 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
9023
9024 begin_divergent_if_then(&ctx, &ic, cond);
9025 }
9026
9027 if (i) {
9028 Builder bld(ctx.program, ctx.block);
9029
9030 bld.barrier(aco_opcode::p_memory_barrier_shared);
9031 bld.sopp(aco_opcode::s_barrier);
9032
9033 if (ctx.stage == vertex_geometry_gs) {
9034 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
9035 }
9036 } else if (ctx.stage == geometry_gs)
9037 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
9038
9039 if (ctx.stage == fragment_fs)
9040 handle_bc_optimize(&ctx);
9041
9042 nir_function_impl *func = nir_shader_get_entrypoint(nir);
9043 visit_cf_list(&ctx, &func->body);
9044
9045 if (ctx.program->info->so.num_outputs && ctx.stage == vertex_vs)
9046 emit_streamout(&ctx, 0);
9047
9048 if (ctx.stage == vertex_vs) {
9049 create_vs_exports(&ctx);
9050 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
9051 Builder bld(ctx.program, ctx.block);
9052 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
9053 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
9054 }
9055
9056 if (ctx.stage == fragment_fs)
9057 create_fs_exports(&ctx);
9058
9059 if (shader_count >= 2) {
9060 begin_divergent_if_else(&ctx, &ic);
9061 end_divergent_if(&ctx, &ic);
9062 }
9063
9064 ralloc_free(ctx.divergent_vals);
9065 }
9066
9067 program->config->float_mode = program->blocks[0].fp_mode.val;
9068
9069 append_logical_end(ctx.block);
9070 ctx.block->kind |= block_kind_uniform | block_kind_export_end;
9071 Builder bld(ctx.program, ctx.block);
9072 if (ctx.program->wb_smem_l1_on_end)
9073 bld.smem(aco_opcode::s_dcache_wb, false);
9074 bld.sopp(aco_opcode::s_endpgm);
9075
9076 cleanup_cfg(program);
9077 }
9078
9079 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
9080 ac_shader_config* config,
9081 struct radv_shader_args *args)
9082 {
9083 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
9084
9085 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
9086 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
9087 program->next_fp_mode.must_flush_denorms32 = false;
9088 program->next_fp_mode.must_flush_denorms16_64 = false;
9089 program->next_fp_mode.care_about_round32 = false;
9090 program->next_fp_mode.care_about_round16_64 = false;
9091 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9092 program->next_fp_mode.denorm32 = 0;
9093 program->next_fp_mode.round32 = fp_round_ne;
9094 program->next_fp_mode.round16_64 = fp_round_ne;
9095 ctx.block->fp_mode = program->next_fp_mode;
9096
9097 add_startpgm(&ctx);
9098 append_logical_start(ctx.block);
9099
9100 Builder bld(ctx.program, ctx.block);
9101
9102 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
9103
9104 Operand stream_id(0u);
9105 if (args->shader_info->so.num_outputs)
9106 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9107 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
9108
9109 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
9110
9111 std::stack<Block> endif_blocks;
9112
9113 for (unsigned stream = 0; stream < 4; stream++) {
9114 if (stream_id.isConstant() && stream != stream_id.constantValue())
9115 continue;
9116
9117 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
9118 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
9119 continue;
9120
9121 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
9122
9123 unsigned BB_if_idx = ctx.block->index;
9124 Block BB_endif = Block();
9125 if (!stream_id.isConstant()) {
9126 /* begin IF */
9127 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
9128 append_logical_end(ctx.block);
9129 ctx.block->kind |= block_kind_uniform;
9130 bld.branch(aco_opcode::p_cbranch_z, cond);
9131
9132 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
9133
9134 ctx.block = ctx.program->create_and_insert_block();
9135 add_edge(BB_if_idx, ctx.block);
9136 bld.reset(ctx.block);
9137 append_logical_start(ctx.block);
9138 }
9139
9140 unsigned offset = 0;
9141 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9142 if (args->shader_info->gs.output_streams[i] != stream)
9143 continue;
9144
9145 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
9146 unsigned length = util_last_bit(output_usage_mask);
9147 for (unsigned j = 0; j < length; ++j) {
9148 if (!(output_usage_mask & (1 << j)))
9149 continue;
9150
9151 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
9152 Temp voffset = vtx_offset;
9153 if (const_offset >= 4096u) {
9154 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
9155 const_offset %= 4096u;
9156 }
9157
9158 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
9159 mubuf->definitions[0] = bld.def(v1);
9160 mubuf->operands[0] = Operand(gsvs_ring);
9161 mubuf->operands[1] = Operand(voffset);
9162 mubuf->operands[2] = Operand(0u);
9163 mubuf->offen = true;
9164 mubuf->offset = const_offset;
9165 mubuf->glc = true;
9166 mubuf->slc = true;
9167 mubuf->dlc = args->options->chip_class >= GFX10;
9168 mubuf->barrier = barrier_none;
9169 mubuf->can_reorder = true;
9170
9171 ctx.outputs.mask[i] |= 1 << j;
9172 ctx.outputs.outputs[i][j] = mubuf->definitions[0].getTemp();
9173
9174 bld.insert(std::move(mubuf));
9175
9176 offset++;
9177 }
9178 }
9179
9180 if (args->shader_info->so.num_outputs) {
9181 emit_streamout(&ctx, stream);
9182 bld.reset(ctx.block);
9183 }
9184
9185 if (stream == 0) {
9186 create_vs_exports(&ctx);
9187 ctx.block->kind |= block_kind_export_end;
9188 }
9189
9190 if (!stream_id.isConstant()) {
9191 append_logical_end(ctx.block);
9192
9193 /* branch from then block to endif block */
9194 bld.branch(aco_opcode::p_branch);
9195 add_edge(ctx.block->index, &BB_endif);
9196 ctx.block->kind |= block_kind_uniform;
9197
9198 /* emit else block */
9199 ctx.block = ctx.program->create_and_insert_block();
9200 add_edge(BB_if_idx, ctx.block);
9201 bld.reset(ctx.block);
9202 append_logical_start(ctx.block);
9203
9204 endif_blocks.push(std::move(BB_endif));
9205 }
9206 }
9207
9208 while (!endif_blocks.empty()) {
9209 Block BB_endif = std::move(endif_blocks.top());
9210 endif_blocks.pop();
9211
9212 Block *BB_else = ctx.block;
9213
9214 append_logical_end(BB_else);
9215 /* branch from else block to endif block */
9216 bld.branch(aco_opcode::p_branch);
9217 add_edge(BB_else->index, &BB_endif);
9218 BB_else->kind |= block_kind_uniform;
9219
9220 /** emit endif merge block */
9221 ctx.block = program->insert_block(std::move(BB_endif));
9222 bld.reset(ctx.block);
9223 append_logical_start(ctx.block);
9224 }
9225
9226 program->config->float_mode = program->blocks[0].fp_mode.val;
9227
9228 append_logical_end(ctx.block);
9229 ctx.block->kind |= block_kind_uniform;
9230 bld.sopp(aco_opcode::s_endpgm);
9231
9232 cleanup_cfg(program);
9233 }
9234 }