aco: Extract tcs_driver_location_matches_api_mask to separate function.
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool then_branch_divergent;
89 Block BB_invert;
90 Block BB_endif;
91 };
92
93 static bool visit_cf_list(struct isel_context *ctx,
94 struct exec_list *list);
95
96 static void add_logical_edge(unsigned pred_idx, Block *succ)
97 {
98 succ->logical_preds.emplace_back(pred_idx);
99 }
100
101
102 static void add_linear_edge(unsigned pred_idx, Block *succ)
103 {
104 succ->linear_preds.emplace_back(pred_idx);
105 }
106
107 static void add_edge(unsigned pred_idx, Block *succ)
108 {
109 add_logical_edge(pred_idx, succ);
110 add_linear_edge(pred_idx, succ);
111 }
112
113 static void append_logical_start(Block *b)
114 {
115 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
116 }
117
118 static void append_logical_end(Block *b)
119 {
120 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
121 }
122
123 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
124 {
125 assert(ctx->allocated[def->index].id());
126 return ctx->allocated[def->index];
127 }
128
129 Temp emit_mbcnt(isel_context *ctx, Definition dst,
130 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
131 {
132 Builder bld(ctx->program, ctx->block);
133 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
134 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
135
136 if (ctx->program->wave_size == 32) {
137 return thread_id_lo;
138 } else {
139 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
140 return thread_id_hi;
141 }
142 }
143
144 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
145 {
146 Builder bld(ctx->program, ctx->block);
147
148 if (!dst.id())
149 dst = bld.tmp(src.regClass());
150
151 assert(src.size() == dst.size());
152
153 if (ctx->stage != fragment_fs) {
154 if (!dst.id())
155 return src;
156
157 bld.copy(Definition(dst), src);
158 return dst;
159 }
160
161 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
162 ctx->program->needs_wqm |= program_needs_wqm;
163 return dst;
164 }
165
166 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
167 {
168 if (index.regClass() == s1)
169 return bld.readlane(bld.def(s1), data, index);
170
171 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
172
173 /* Currently not implemented on GFX6-7 */
174 assert(ctx->options->chip_class >= GFX8);
175
176 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
177 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
178 }
179
180 /* GFX10, wave64 mode:
181 * The bpermute instruction is limited to half-wave operation, which means that it can't
182 * properly support subgroup shuffle like older generations (or wave32 mode), so we
183 * emulate it here.
184 */
185 if (!ctx->has_gfx10_wave64_bpermute) {
186 ctx->has_gfx10_wave64_bpermute = true;
187 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
188 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
189 }
190
191 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
192 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
193 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
194 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
195
196 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
197 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
198 }
199
200 Temp as_vgpr(isel_context *ctx, Temp val)
201 {
202 if (val.type() == RegType::sgpr) {
203 Builder bld(ctx->program, ctx->block);
204 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
205 }
206 assert(val.type() == RegType::vgpr);
207 return val;
208 }
209
210 //assumes a != 0xffffffff
211 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
212 {
213 assert(b != 0);
214 Builder bld(ctx->program, ctx->block);
215
216 if (util_is_power_of_two_or_zero(b)) {
217 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
218 return;
219 }
220
221 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
222
223 assert(info.multiplier <= 0xffffffff);
224
225 bool pre_shift = info.pre_shift != 0;
226 bool increment = info.increment != 0;
227 bool multiply = true;
228 bool post_shift = info.post_shift != 0;
229
230 if (!pre_shift && !increment && !multiply && !post_shift) {
231 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
232 return;
233 }
234
235 Temp pre_shift_dst = a;
236 if (pre_shift) {
237 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
238 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
239 }
240
241 Temp increment_dst = pre_shift_dst;
242 if (increment) {
243 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
244 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
245 }
246
247 Temp multiply_dst = increment_dst;
248 if (multiply) {
249 multiply_dst = post_shift ? bld.tmp(v1) : dst;
250 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
251 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
252 }
253
254 if (post_shift) {
255 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
256 }
257 }
258
259 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
260 {
261 Builder bld(ctx->program, ctx->block);
262 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
263 }
264
265
266 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
267 {
268 /* no need to extract the whole vector */
269 if (src.regClass() == dst_rc) {
270 assert(idx == 0);
271 return src;
272 }
273 assert(src.size() > idx);
274 Builder bld(ctx->program, ctx->block);
275 auto it = ctx->allocated_vec.find(src.id());
276 /* the size check needs to be early because elements other than 0 may be garbage */
277 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
278 if (it->second[idx].regClass() == dst_rc) {
279 return it->second[idx];
280 } else {
281 assert(dst_rc.size() == it->second[idx].regClass().size());
282 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
283 return bld.copy(bld.def(dst_rc), it->second[idx]);
284 }
285 }
286
287 if (src.size() == dst_rc.size()) {
288 assert(idx == 0);
289 return bld.copy(bld.def(dst_rc), src);
290 } else {
291 Temp dst = bld.tmp(dst_rc);
292 emit_extract_vector(ctx, src, idx, dst);
293 return dst;
294 }
295 }
296
297 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
298 {
299 if (num_components == 1)
300 return;
301 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
302 return;
303 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
304 split->operands[0] = Operand(vec_src);
305 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
306 for (unsigned i = 0; i < num_components; i++) {
307 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
308 split->definitions[i] = Definition(elems[i]);
309 }
310 ctx->block->instructions.emplace_back(std::move(split));
311 ctx->allocated_vec.emplace(vec_src.id(), elems);
312 }
313
314 /* This vector expansion uses a mask to determine which elements in the new vector
315 * come from the original vector. The other elements are undefined. */
316 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
317 {
318 emit_split_vector(ctx, vec_src, util_bitcount(mask));
319
320 if (vec_src == dst)
321 return;
322
323 Builder bld(ctx->program, ctx->block);
324 if (num_components == 1) {
325 if (dst.type() == RegType::sgpr)
326 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
327 else
328 bld.copy(Definition(dst), vec_src);
329 return;
330 }
331
332 unsigned component_size = dst.size() / num_components;
333 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
334
335 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
336 vec->definitions[0] = Definition(dst);
337 unsigned k = 0;
338 for (unsigned i = 0; i < num_components; i++) {
339 if (mask & (1 << i)) {
340 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
341 if (dst.type() == RegType::sgpr)
342 src = bld.as_uniform(src);
343 vec->operands[i] = Operand(src);
344 } else {
345 vec->operands[i] = Operand(0u);
346 }
347 elems[i] = vec->operands[i].getTemp();
348 }
349 ctx->block->instructions.emplace_back(std::move(vec));
350 ctx->allocated_vec.emplace(dst.id(), elems);
351 }
352
353 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
354 {
355 Builder bld(ctx->program, ctx->block);
356 if (!dst.id())
357 dst = bld.tmp(bld.lm);
358
359 assert(val.regClass() == s1);
360 assert(dst.regClass() == bld.lm);
361
362 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
363 }
364
365 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
366 {
367 Builder bld(ctx->program, ctx->block);
368 if (!dst.id())
369 dst = bld.tmp(s1);
370
371 assert(val.regClass() == bld.lm);
372 assert(dst.regClass() == s1);
373
374 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
375 Temp tmp = bld.tmp(s1);
376 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
377 return emit_wqm(ctx, tmp, dst);
378 }
379
380 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
381 {
382 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
383 return get_ssa_temp(ctx, src.src.ssa);
384
385 if (src.src.ssa->num_components == size) {
386 bool identity_swizzle = true;
387 for (unsigned i = 0; identity_swizzle && i < size; i++) {
388 if (src.swizzle[i] != i)
389 identity_swizzle = false;
390 }
391 if (identity_swizzle)
392 return get_ssa_temp(ctx, src.src.ssa);
393 }
394
395 Temp vec = get_ssa_temp(ctx, src.src.ssa);
396 unsigned elem_size = vec.size() / src.src.ssa->num_components;
397 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
398 assert(vec.size() % elem_size == 0);
399
400 RegClass elem_rc = RegClass(vec.type(), elem_size);
401 if (size == 1) {
402 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
403 } else {
404 assert(size <= 4);
405 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
406 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
407 for (unsigned i = 0; i < size; ++i) {
408 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
409 vec_instr->operands[i] = Operand{elems[i]};
410 }
411 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
412 vec_instr->definitions[0] = Definition(dst);
413 ctx->block->instructions.emplace_back(std::move(vec_instr));
414 ctx->allocated_vec.emplace(dst.id(), elems);
415 return dst;
416 }
417 }
418
419 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
420 {
421 if (ptr.size() == 2)
422 return ptr;
423 Builder bld(ctx->program, ctx->block);
424 if (ptr.type() == RegType::vgpr)
425 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
426 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
427 ptr, Operand((unsigned)ctx->options->address32_hi));
428 }
429
430 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
431 {
432 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
433 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
434 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
435 sop2->definitions[0] = Definition(dst);
436 if (writes_scc)
437 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
438 ctx->block->instructions.emplace_back(std::move(sop2));
439 }
440
441 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
442 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
443 {
444 Builder bld(ctx->program, ctx->block);
445 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
446 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
447 if (src1.type() == RegType::sgpr) {
448 if (commutative && src0.type() == RegType::vgpr) {
449 Temp t = src0;
450 src0 = src1;
451 src1 = t;
452 } else if (src0.type() == RegType::vgpr &&
453 op != aco_opcode::v_madmk_f32 &&
454 op != aco_opcode::v_madak_f32 &&
455 op != aco_opcode::v_madmk_f16 &&
456 op != aco_opcode::v_madak_f16) {
457 /* If the instruction is not commutative, we emit a VOP3A instruction */
458 bld.vop2_e64(op, Definition(dst), src0, src1);
459 return;
460 } else {
461 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
462 }
463 }
464
465 if (flush_denorms && ctx->program->chip_class < GFX9) {
466 assert(dst.size() == 1);
467 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
468 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
469 } else {
470 bld.vop2(op, Definition(dst), src0, src1);
471 }
472 }
473
474 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
475 bool flush_denorms = false)
476 {
477 Temp src0 = get_alu_src(ctx, instr->src[0]);
478 Temp src1 = get_alu_src(ctx, instr->src[1]);
479 Temp src2 = get_alu_src(ctx, instr->src[2]);
480
481 /* ensure that the instruction has at most 1 sgpr operand
482 * The optimizer will inline constants for us */
483 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
484 src0 = as_vgpr(ctx, src0);
485 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
486 src1 = as_vgpr(ctx, src1);
487 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
488 src2 = as_vgpr(ctx, src2);
489
490 Builder bld(ctx->program, ctx->block);
491 if (flush_denorms && ctx->program->chip_class < GFX9) {
492 assert(dst.size() == 1);
493 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
494 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
495 } else {
496 bld.vop3(op, Definition(dst), src0, src1, src2);
497 }
498 }
499
500 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
501 {
502 Builder bld(ctx->program, ctx->block);
503 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
504 }
505
506 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
507 {
508 Temp src0 = get_alu_src(ctx, instr->src[0]);
509 Temp src1 = get_alu_src(ctx, instr->src[1]);
510 assert(src0.size() == src1.size());
511
512 aco_ptr<Instruction> vopc;
513 if (src1.type() == RegType::sgpr) {
514 if (src0.type() == RegType::vgpr) {
515 /* to swap the operands, we might also have to change the opcode */
516 switch (op) {
517 case aco_opcode::v_cmp_lt_f32:
518 op = aco_opcode::v_cmp_gt_f32;
519 break;
520 case aco_opcode::v_cmp_ge_f32:
521 op = aco_opcode::v_cmp_le_f32;
522 break;
523 case aco_opcode::v_cmp_lt_i32:
524 op = aco_opcode::v_cmp_gt_i32;
525 break;
526 case aco_opcode::v_cmp_ge_i32:
527 op = aco_opcode::v_cmp_le_i32;
528 break;
529 case aco_opcode::v_cmp_lt_u32:
530 op = aco_opcode::v_cmp_gt_u32;
531 break;
532 case aco_opcode::v_cmp_ge_u32:
533 op = aco_opcode::v_cmp_le_u32;
534 break;
535 case aco_opcode::v_cmp_lt_f64:
536 op = aco_opcode::v_cmp_gt_f64;
537 break;
538 case aco_opcode::v_cmp_ge_f64:
539 op = aco_opcode::v_cmp_le_f64;
540 break;
541 case aco_opcode::v_cmp_lt_i64:
542 op = aco_opcode::v_cmp_gt_i64;
543 break;
544 case aco_opcode::v_cmp_ge_i64:
545 op = aco_opcode::v_cmp_le_i64;
546 break;
547 case aco_opcode::v_cmp_lt_u64:
548 op = aco_opcode::v_cmp_gt_u64;
549 break;
550 case aco_opcode::v_cmp_ge_u64:
551 op = aco_opcode::v_cmp_le_u64;
552 break;
553 default: /* eq and ne are commutative */
554 break;
555 }
556 Temp t = src0;
557 src0 = src1;
558 src1 = t;
559 } else {
560 src1 = as_vgpr(ctx, src1);
561 }
562 }
563
564 Builder bld(ctx->program, ctx->block);
565 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
566 }
567
568 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
569 {
570 Temp src0 = get_alu_src(ctx, instr->src[0]);
571 Temp src1 = get_alu_src(ctx, instr->src[1]);
572 Builder bld(ctx->program, ctx->block);
573
574 assert(dst.regClass() == bld.lm);
575 assert(src0.type() == RegType::sgpr);
576 assert(src1.type() == RegType::sgpr);
577 assert(src0.regClass() == src1.regClass());
578
579 /* Emit the SALU comparison instruction */
580 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
581 /* Turn the result into a per-lane bool */
582 bool_to_vector_condition(ctx, cmp, dst);
583 }
584
585 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
586 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
587 {
588 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
589 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
590 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
591 bool use_valu = s_op == aco_opcode::num_opcodes ||
592 divergent_vals ||
593 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
594 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
595 aco_opcode op = use_valu ? v_op : s_op;
596 assert(op != aco_opcode::num_opcodes);
597 assert(dst.regClass() == ctx->program->lane_mask);
598
599 if (use_valu)
600 emit_vopc_instruction(ctx, instr, op, dst);
601 else
602 emit_sopc_instruction(ctx, instr, op, dst);
603 }
604
605 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
606 {
607 Builder bld(ctx->program, ctx->block);
608 Temp src0 = get_alu_src(ctx, instr->src[0]);
609 Temp src1 = get_alu_src(ctx, instr->src[1]);
610
611 assert(dst.regClass() == bld.lm);
612 assert(src0.regClass() == bld.lm);
613 assert(src1.regClass() == bld.lm);
614
615 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
616 }
617
618 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
619 {
620 Builder bld(ctx->program, ctx->block);
621 Temp cond = get_alu_src(ctx, instr->src[0]);
622 Temp then = get_alu_src(ctx, instr->src[1]);
623 Temp els = get_alu_src(ctx, instr->src[2]);
624
625 assert(cond.regClass() == bld.lm);
626
627 if (dst.type() == RegType::vgpr) {
628 aco_ptr<Instruction> bcsel;
629 if (dst.size() == 1) {
630 then = as_vgpr(ctx, then);
631 els = as_vgpr(ctx, els);
632
633 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
634 } else if (dst.size() == 2) {
635 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
636 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
637 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
638 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
639
640 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
641 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
642
643 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
644 } else {
645 fprintf(stderr, "Unimplemented NIR instr bit size: ");
646 nir_print_instr(&instr->instr, stderr);
647 fprintf(stderr, "\n");
648 }
649 return;
650 }
651
652 if (instr->dest.dest.ssa.bit_size == 1) {
653 assert(dst.regClass() == bld.lm);
654 assert(then.regClass() == bld.lm);
655 assert(els.regClass() == bld.lm);
656 }
657
658 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
659 if (dst.regClass() == s1 || dst.regClass() == s2) {
660 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
661 assert(dst.size() == then.size());
662 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
663 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
664 } else {
665 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
666 nir_print_instr(&instr->instr, stderr);
667 fprintf(stderr, "\n");
668 }
669 return;
670 }
671
672 /* divergent boolean bcsel
673 * this implements bcsel on bools: dst = s0 ? s1 : s2
674 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
675 assert(instr->dest.dest.ssa.bit_size == 1);
676
677 if (cond.id() != then.id())
678 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
679
680 if (cond.id() == els.id())
681 bld.sop1(Builder::s_mov, Definition(dst), then);
682 else
683 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
684 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
685 }
686
687 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
688 aco_opcode op, uint32_t undo)
689 {
690 /* multiply by 16777216 to handle denormals */
691 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
692 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
693 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
694 scaled = bld.vop1(op, bld.def(v1), scaled);
695 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
696
697 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
698
699 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
700 }
701
702 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
703 {
704 if (ctx->block->fp_mode.denorm32 == 0) {
705 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
706 return;
707 }
708
709 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
710 }
711
712 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
713 {
714 if (ctx->block->fp_mode.denorm32 == 0) {
715 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
716 return;
717 }
718
719 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
720 }
721
722 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
723 {
724 if (ctx->block->fp_mode.denorm32 == 0) {
725 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
726 return;
727 }
728
729 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
730 }
731
732 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
733 {
734 if (ctx->block->fp_mode.denorm32 == 0) {
735 bld.vop1(aco_opcode::v_log_f32, dst, val);
736 return;
737 }
738
739 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
740 }
741
742 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
743 {
744 if (ctx->options->chip_class >= GFX7)
745 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
746
747 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
748 /* TODO: create more efficient code! */
749 if (val.type() == RegType::sgpr)
750 val = as_vgpr(ctx, val);
751
752 /* Split the input value. */
753 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
754 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
755
756 /* Extract the exponent and compute the unbiased value. */
757 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
758
759 /* Extract the fractional part. */
760 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
761 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
762
763 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
765
766 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
767 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
768 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
769 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
770 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
771
772 /* Get the sign bit. */
773 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
774
775 /* Decide the operation to apply depending on the unbiased exponent. */
776 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
777 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
778 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
779 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
780 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
781 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
782
783 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
784 }
785
786 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
787 {
788 if (ctx->options->chip_class >= GFX7)
789 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
790
791 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
792 Temp src0 = as_vgpr(ctx, val);
793
794 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
795 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
796
797 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
798 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
799 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
800
801 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
802 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
803 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
804 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
805
806 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
807 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
808
809 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
810
811 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
812 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
813
814 return add->definitions[0].getTemp();
815 }
816
817 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
818 {
819 if (!instr->dest.dest.is_ssa) {
820 fprintf(stderr, "nir alu dst not in ssa: ");
821 nir_print_instr(&instr->instr, stderr);
822 fprintf(stderr, "\n");
823 abort();
824 }
825 Builder bld(ctx->program, ctx->block);
826 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
827 switch(instr->op) {
828 case nir_op_vec2:
829 case nir_op_vec3:
830 case nir_op_vec4: {
831 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
832 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
833 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
834 elems[i] = get_alu_src(ctx, instr->src[i]);
835 vec->operands[i] = Operand{elems[i]};
836 }
837 vec->definitions[0] = Definition(dst);
838 ctx->block->instructions.emplace_back(std::move(vec));
839 ctx->allocated_vec.emplace(dst.id(), elems);
840 break;
841 }
842 case nir_op_mov: {
843 Temp src = get_alu_src(ctx, instr->src[0]);
844 aco_ptr<Instruction> mov;
845 if (dst.type() == RegType::sgpr) {
846 if (src.type() == RegType::vgpr)
847 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
848 else if (src.regClass() == s1)
849 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
850 else if (src.regClass() == s2)
851 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
852 else
853 unreachable("wrong src register class for nir_op_imov");
854 } else if (dst.regClass() == v1) {
855 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
856 } else if (dst.regClass() == v2) {
857 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
858 } else {
859 nir_print_instr(&instr->instr, stderr);
860 unreachable("Should have been lowered to scalar.");
861 }
862 break;
863 }
864 case nir_op_inot: {
865 Temp src = get_alu_src(ctx, instr->src[0]);
866 if (instr->dest.dest.ssa.bit_size == 1) {
867 assert(src.regClass() == bld.lm);
868 assert(dst.regClass() == bld.lm);
869 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
870 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
871 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
872 } else if (dst.regClass() == v1) {
873 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
874 } else if (dst.type() == RegType::sgpr) {
875 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
876 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
877 } else {
878 fprintf(stderr, "Unimplemented NIR instr bit size: ");
879 nir_print_instr(&instr->instr, stderr);
880 fprintf(stderr, "\n");
881 }
882 break;
883 }
884 case nir_op_ineg: {
885 Temp src = get_alu_src(ctx, instr->src[0]);
886 if (dst.regClass() == v1) {
887 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
888 } else if (dst.regClass() == s1) {
889 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
890 } else if (dst.size() == 2) {
891 Temp src0 = bld.tmp(dst.type(), 1);
892 Temp src1 = bld.tmp(dst.type(), 1);
893 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
894
895 if (dst.regClass() == s2) {
896 Temp carry = bld.tmp(s1);
897 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
898 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
899 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
900 } else {
901 Temp lower = bld.tmp(v1);
902 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
903 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
904 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
905 }
906 } else {
907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
908 nir_print_instr(&instr->instr, stderr);
909 fprintf(stderr, "\n");
910 }
911 break;
912 }
913 case nir_op_iabs: {
914 if (dst.regClass() == s1) {
915 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
916 } else if (dst.regClass() == v1) {
917 Temp src = get_alu_src(ctx, instr->src[0]);
918 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
919 } else {
920 fprintf(stderr, "Unimplemented NIR instr bit size: ");
921 nir_print_instr(&instr->instr, stderr);
922 fprintf(stderr, "\n");
923 }
924 break;
925 }
926 case nir_op_isign: {
927 Temp src = get_alu_src(ctx, instr->src[0]);
928 if (dst.regClass() == s1) {
929 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
930 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
931 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
932 } else if (dst.regClass() == s2) {
933 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
934 Temp neqz;
935 if (ctx->program->chip_class >= GFX8)
936 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
937 else
938 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
939 /* SCC gets zero-extended to 64 bit */
940 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
941 } else if (dst.regClass() == v1) {
942 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
943 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
944 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
945 } else if (dst.regClass() == v2) {
946 Temp upper = emit_extract_vector(ctx, src, 1, v1);
947 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
948 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
949 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
950 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
951 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
952 } else {
953 fprintf(stderr, "Unimplemented NIR instr bit size: ");
954 nir_print_instr(&instr->instr, stderr);
955 fprintf(stderr, "\n");
956 }
957 break;
958 }
959 case nir_op_imax: {
960 if (dst.regClass() == v1) {
961 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
962 } else if (dst.regClass() == s1) {
963 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
964 } else {
965 fprintf(stderr, "Unimplemented NIR instr bit size: ");
966 nir_print_instr(&instr->instr, stderr);
967 fprintf(stderr, "\n");
968 }
969 break;
970 }
971 case nir_op_umax: {
972 if (dst.regClass() == v1) {
973 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
974 } else if (dst.regClass() == s1) {
975 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
976 } else {
977 fprintf(stderr, "Unimplemented NIR instr bit size: ");
978 nir_print_instr(&instr->instr, stderr);
979 fprintf(stderr, "\n");
980 }
981 break;
982 }
983 case nir_op_imin: {
984 if (dst.regClass() == v1) {
985 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
986 } else if (dst.regClass() == s1) {
987 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
988 } else {
989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
990 nir_print_instr(&instr->instr, stderr);
991 fprintf(stderr, "\n");
992 }
993 break;
994 }
995 case nir_op_umin: {
996 if (dst.regClass() == v1) {
997 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
998 } else if (dst.regClass() == s1) {
999 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1000 } else {
1001 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1002 nir_print_instr(&instr->instr, stderr);
1003 fprintf(stderr, "\n");
1004 }
1005 break;
1006 }
1007 case nir_op_ior: {
1008 if (instr->dest.dest.ssa.bit_size == 1) {
1009 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1010 } else if (dst.regClass() == v1) {
1011 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1012 } else if (dst.regClass() == s1) {
1013 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1014 } else if (dst.regClass() == s2) {
1015 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1016 } else {
1017 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1018 nir_print_instr(&instr->instr, stderr);
1019 fprintf(stderr, "\n");
1020 }
1021 break;
1022 }
1023 case nir_op_iand: {
1024 if (instr->dest.dest.ssa.bit_size == 1) {
1025 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1026 } else if (dst.regClass() == v1) {
1027 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1028 } else if (dst.regClass() == s1) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1030 } else if (dst.regClass() == s2) {
1031 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1032 } else {
1033 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1034 nir_print_instr(&instr->instr, stderr);
1035 fprintf(stderr, "\n");
1036 }
1037 break;
1038 }
1039 case nir_op_ixor: {
1040 if (instr->dest.dest.ssa.bit_size == 1) {
1041 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1042 } else if (dst.regClass() == v1) {
1043 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1044 } else if (dst.regClass() == s1) {
1045 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1046 } else if (dst.regClass() == s2) {
1047 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1048 } else {
1049 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1050 nir_print_instr(&instr->instr, stderr);
1051 fprintf(stderr, "\n");
1052 }
1053 break;
1054 }
1055 case nir_op_ushr: {
1056 if (dst.regClass() == v1) {
1057 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1058 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1059 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1060 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1061 } else if (dst.regClass() == v2) {
1062 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1063 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1064 } else if (dst.regClass() == s2) {
1065 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1066 } else if (dst.regClass() == s1) {
1067 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1068 } else {
1069 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1070 nir_print_instr(&instr->instr, stderr);
1071 fprintf(stderr, "\n");
1072 }
1073 break;
1074 }
1075 case nir_op_ishl: {
1076 if (dst.regClass() == v1) {
1077 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1078 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1079 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1080 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1081 } else if (dst.regClass() == v2) {
1082 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1083 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1084 } else if (dst.regClass() == s1) {
1085 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1086 } else if (dst.regClass() == s2) {
1087 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1088 } else {
1089 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1090 nir_print_instr(&instr->instr, stderr);
1091 fprintf(stderr, "\n");
1092 }
1093 break;
1094 }
1095 case nir_op_ishr: {
1096 if (dst.regClass() == v1) {
1097 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1098 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1099 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1100 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1101 } else if (dst.regClass() == v2) {
1102 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1103 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1104 } else if (dst.regClass() == s1) {
1105 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1106 } else if (dst.regClass() == s2) {
1107 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1108 } else {
1109 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1110 nir_print_instr(&instr->instr, stderr);
1111 fprintf(stderr, "\n");
1112 }
1113 break;
1114 }
1115 case nir_op_find_lsb: {
1116 Temp src = get_alu_src(ctx, instr->src[0]);
1117 if (src.regClass() == s1) {
1118 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1119 } else if (src.regClass() == v1) {
1120 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1121 } else if (src.regClass() == s2) {
1122 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1123 } else {
1124 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1125 nir_print_instr(&instr->instr, stderr);
1126 fprintf(stderr, "\n");
1127 }
1128 break;
1129 }
1130 case nir_op_ufind_msb:
1131 case nir_op_ifind_msb: {
1132 Temp src = get_alu_src(ctx, instr->src[0]);
1133 if (src.regClass() == s1 || src.regClass() == s2) {
1134 aco_opcode op = src.regClass() == s2 ?
1135 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1136 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1137 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1138
1139 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1140 Operand(src.size() * 32u - 1u), msb_rev);
1141 Temp msb = sub.def(0).getTemp();
1142 Temp carry = sub.def(1).getTemp();
1143
1144 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1145 } else if (src.regClass() == v1) {
1146 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1147 Temp msb_rev = bld.tmp(v1);
1148 emit_vop1_instruction(ctx, instr, op, msb_rev);
1149 Temp msb = bld.tmp(v1);
1150 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1151 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1152 } else {
1153 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1154 nir_print_instr(&instr->instr, stderr);
1155 fprintf(stderr, "\n");
1156 }
1157 break;
1158 }
1159 case nir_op_bitfield_reverse: {
1160 if (dst.regClass() == s1) {
1161 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1162 } else if (dst.regClass() == v1) {
1163 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1164 } else {
1165 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1166 nir_print_instr(&instr->instr, stderr);
1167 fprintf(stderr, "\n");
1168 }
1169 break;
1170 }
1171 case nir_op_iadd: {
1172 if (dst.regClass() == s1) {
1173 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1174 break;
1175 }
1176
1177 Temp src0 = get_alu_src(ctx, instr->src[0]);
1178 Temp src1 = get_alu_src(ctx, instr->src[1]);
1179 if (dst.regClass() == v1) {
1180 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1181 break;
1182 }
1183
1184 assert(src0.size() == 2 && src1.size() == 2);
1185 Temp src00 = bld.tmp(src0.type(), 1);
1186 Temp src01 = bld.tmp(dst.type(), 1);
1187 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1188 Temp src10 = bld.tmp(src1.type(), 1);
1189 Temp src11 = bld.tmp(dst.type(), 1);
1190 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1191
1192 if (dst.regClass() == s2) {
1193 Temp carry = bld.tmp(s1);
1194 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1195 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1196 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1197 } else if (dst.regClass() == v2) {
1198 Temp dst0 = bld.tmp(v1);
1199 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1200 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1201 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1202 } else {
1203 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1204 nir_print_instr(&instr->instr, stderr);
1205 fprintf(stderr, "\n");
1206 }
1207 break;
1208 }
1209 case nir_op_uadd_sat: {
1210 Temp src0 = get_alu_src(ctx, instr->src[0]);
1211 Temp src1 = get_alu_src(ctx, instr->src[1]);
1212 if (dst.regClass() == s1) {
1213 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1214 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1215 src0, src1);
1216 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1217 } else if (dst.regClass() == v1) {
1218 if (ctx->options->chip_class >= GFX9) {
1219 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1220 add->operands[0] = Operand(src0);
1221 add->operands[1] = Operand(src1);
1222 add->definitions[0] = Definition(dst);
1223 add->clamp = 1;
1224 ctx->block->instructions.emplace_back(std::move(add));
1225 } else {
1226 if (src1.regClass() != v1)
1227 std::swap(src0, src1);
1228 assert(src1.regClass() == v1);
1229 Temp tmp = bld.tmp(v1);
1230 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1231 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1232 }
1233 } else {
1234 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1235 nir_print_instr(&instr->instr, stderr);
1236 fprintf(stderr, "\n");
1237 }
1238 break;
1239 }
1240 case nir_op_uadd_carry: {
1241 Temp src0 = get_alu_src(ctx, instr->src[0]);
1242 Temp src1 = get_alu_src(ctx, instr->src[1]);
1243 if (dst.regClass() == s1) {
1244 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1245 break;
1246 }
1247 if (dst.regClass() == v1) {
1248 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1249 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1250 break;
1251 }
1252
1253 Temp src00 = bld.tmp(src0.type(), 1);
1254 Temp src01 = bld.tmp(dst.type(), 1);
1255 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1256 Temp src10 = bld.tmp(src1.type(), 1);
1257 Temp src11 = bld.tmp(dst.type(), 1);
1258 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1259 if (dst.regClass() == s2) {
1260 Temp carry = bld.tmp(s1);
1261 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1262 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1263 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1264 } else if (dst.regClass() == v2) {
1265 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1266 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1267 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1268 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1269 } else {
1270 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1271 nir_print_instr(&instr->instr, stderr);
1272 fprintf(stderr, "\n");
1273 }
1274 break;
1275 }
1276 case nir_op_isub: {
1277 if (dst.regClass() == s1) {
1278 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1279 break;
1280 }
1281
1282 Temp src0 = get_alu_src(ctx, instr->src[0]);
1283 Temp src1 = get_alu_src(ctx, instr->src[1]);
1284 if (dst.regClass() == v1) {
1285 bld.vsub32(Definition(dst), src0, src1);
1286 break;
1287 }
1288
1289 Temp src00 = bld.tmp(src0.type(), 1);
1290 Temp src01 = bld.tmp(dst.type(), 1);
1291 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1292 Temp src10 = bld.tmp(src1.type(), 1);
1293 Temp src11 = bld.tmp(dst.type(), 1);
1294 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1295 if (dst.regClass() == s2) {
1296 Temp carry = bld.tmp(s1);
1297 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1298 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1299 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1300 } else if (dst.regClass() == v2) {
1301 Temp lower = bld.tmp(v1);
1302 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1303 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1304 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1305 } else {
1306 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1307 nir_print_instr(&instr->instr, stderr);
1308 fprintf(stderr, "\n");
1309 }
1310 break;
1311 }
1312 case nir_op_usub_borrow: {
1313 Temp src0 = get_alu_src(ctx, instr->src[0]);
1314 Temp src1 = get_alu_src(ctx, instr->src[1]);
1315 if (dst.regClass() == s1) {
1316 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1317 break;
1318 } else if (dst.regClass() == v1) {
1319 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1320 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1321 break;
1322 }
1323
1324 Temp src00 = bld.tmp(src0.type(), 1);
1325 Temp src01 = bld.tmp(dst.type(), 1);
1326 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1327 Temp src10 = bld.tmp(src1.type(), 1);
1328 Temp src11 = bld.tmp(dst.type(), 1);
1329 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1330 if (dst.regClass() == s2) {
1331 Temp borrow = bld.tmp(s1);
1332 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1333 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1334 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1335 } else if (dst.regClass() == v2) {
1336 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1337 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1338 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1339 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1340 } else {
1341 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1342 nir_print_instr(&instr->instr, stderr);
1343 fprintf(stderr, "\n");
1344 }
1345 break;
1346 }
1347 case nir_op_imul: {
1348 if (dst.regClass() == v1) {
1349 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1350 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1351 } else if (dst.regClass() == s1) {
1352 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1353 } else {
1354 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1355 nir_print_instr(&instr->instr, stderr);
1356 fprintf(stderr, "\n");
1357 }
1358 break;
1359 }
1360 case nir_op_umul_high: {
1361 if (dst.regClass() == v1) {
1362 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1363 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1364 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1365 } else if (dst.regClass() == s1) {
1366 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1367 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1368 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1369 } else {
1370 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1371 nir_print_instr(&instr->instr, stderr);
1372 fprintf(stderr, "\n");
1373 }
1374 break;
1375 }
1376 case nir_op_imul_high: {
1377 if (dst.regClass() == v1) {
1378 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1379 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1380 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1381 } else if (dst.regClass() == s1) {
1382 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1383 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1384 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1385 } else {
1386 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1387 nir_print_instr(&instr->instr, stderr);
1388 fprintf(stderr, "\n");
1389 }
1390 break;
1391 }
1392 case nir_op_fmul: {
1393 if (dst.size() == 1) {
1394 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1395 } else if (dst.size() == 2) {
1396 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1397 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1398 } else {
1399 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1400 nir_print_instr(&instr->instr, stderr);
1401 fprintf(stderr, "\n");
1402 }
1403 break;
1404 }
1405 case nir_op_fadd: {
1406 if (dst.size() == 1) {
1407 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1408 } else if (dst.size() == 2) {
1409 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1410 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1411 } else {
1412 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1413 nir_print_instr(&instr->instr, stderr);
1414 fprintf(stderr, "\n");
1415 }
1416 break;
1417 }
1418 case nir_op_fsub: {
1419 Temp src0 = get_alu_src(ctx, instr->src[0]);
1420 Temp src1 = get_alu_src(ctx, instr->src[1]);
1421 if (dst.size() == 1) {
1422 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1423 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1424 else
1425 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1426 } else if (dst.size() == 2) {
1427 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1428 get_alu_src(ctx, instr->src[0]),
1429 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1430 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1431 sub->neg[1] = true;
1432 } else {
1433 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1434 nir_print_instr(&instr->instr, stderr);
1435 fprintf(stderr, "\n");
1436 }
1437 break;
1438 }
1439 case nir_op_fmax: {
1440 if (dst.size() == 1) {
1441 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1442 } else if (dst.size() == 2) {
1443 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1444 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1445 get_alu_src(ctx, instr->src[0]),
1446 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1447 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1448 } else {
1449 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1450 get_alu_src(ctx, instr->src[0]),
1451 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1452 }
1453 } else {
1454 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1455 nir_print_instr(&instr->instr, stderr);
1456 fprintf(stderr, "\n");
1457 }
1458 break;
1459 }
1460 case nir_op_fmin: {
1461 if (dst.size() == 1) {
1462 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1463 } else if (dst.size() == 2) {
1464 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1465 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1466 get_alu_src(ctx, instr->src[0]),
1467 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1468 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1469 } else {
1470 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1471 get_alu_src(ctx, instr->src[0]),
1472 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1473 }
1474 } else {
1475 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1476 nir_print_instr(&instr->instr, stderr);
1477 fprintf(stderr, "\n");
1478 }
1479 break;
1480 }
1481 case nir_op_fmax3: {
1482 if (dst.size() == 1) {
1483 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1484 } else {
1485 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1486 nir_print_instr(&instr->instr, stderr);
1487 fprintf(stderr, "\n");
1488 }
1489 break;
1490 }
1491 case nir_op_fmin3: {
1492 if (dst.size() == 1) {
1493 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1494 } else {
1495 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1496 nir_print_instr(&instr->instr, stderr);
1497 fprintf(stderr, "\n");
1498 }
1499 break;
1500 }
1501 case nir_op_fmed3: {
1502 if (dst.size() == 1) {
1503 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1504 } else {
1505 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1506 nir_print_instr(&instr->instr, stderr);
1507 fprintf(stderr, "\n");
1508 }
1509 break;
1510 }
1511 case nir_op_umax3: {
1512 if (dst.size() == 1) {
1513 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1514 } else {
1515 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1516 nir_print_instr(&instr->instr, stderr);
1517 fprintf(stderr, "\n");
1518 }
1519 break;
1520 }
1521 case nir_op_umin3: {
1522 if (dst.size() == 1) {
1523 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1524 } else {
1525 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1526 nir_print_instr(&instr->instr, stderr);
1527 fprintf(stderr, "\n");
1528 }
1529 break;
1530 }
1531 case nir_op_umed3: {
1532 if (dst.size() == 1) {
1533 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1534 } else {
1535 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1536 nir_print_instr(&instr->instr, stderr);
1537 fprintf(stderr, "\n");
1538 }
1539 break;
1540 }
1541 case nir_op_imax3: {
1542 if (dst.size() == 1) {
1543 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1544 } else {
1545 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1546 nir_print_instr(&instr->instr, stderr);
1547 fprintf(stderr, "\n");
1548 }
1549 break;
1550 }
1551 case nir_op_imin3: {
1552 if (dst.size() == 1) {
1553 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1554 } else {
1555 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1556 nir_print_instr(&instr->instr, stderr);
1557 fprintf(stderr, "\n");
1558 }
1559 break;
1560 }
1561 case nir_op_imed3: {
1562 if (dst.size() == 1) {
1563 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1564 } else {
1565 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1566 nir_print_instr(&instr->instr, stderr);
1567 fprintf(stderr, "\n");
1568 }
1569 break;
1570 }
1571 case nir_op_cube_face_coord: {
1572 Temp in = get_alu_src(ctx, instr->src[0], 3);
1573 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1574 emit_extract_vector(ctx, in, 1, v1),
1575 emit_extract_vector(ctx, in, 2, v1) };
1576 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1577 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1578 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1579 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1580 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1581 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1582 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1583 break;
1584 }
1585 case nir_op_cube_face_index: {
1586 Temp in = get_alu_src(ctx, instr->src[0], 3);
1587 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1588 emit_extract_vector(ctx, in, 1, v1),
1589 emit_extract_vector(ctx, in, 2, v1) };
1590 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1591 break;
1592 }
1593 case nir_op_bcsel: {
1594 emit_bcsel(ctx, instr, dst);
1595 break;
1596 }
1597 case nir_op_frsq: {
1598 if (dst.size() == 1) {
1599 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1600 } else if (dst.size() == 2) {
1601 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1602 } else {
1603 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1604 nir_print_instr(&instr->instr, stderr);
1605 fprintf(stderr, "\n");
1606 }
1607 break;
1608 }
1609 case nir_op_fneg: {
1610 Temp src = get_alu_src(ctx, instr->src[0]);
1611 if (dst.size() == 1) {
1612 if (ctx->block->fp_mode.must_flush_denorms32)
1613 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1614 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1615 } else if (dst.size() == 2) {
1616 if (ctx->block->fp_mode.must_flush_denorms16_64)
1617 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1618 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1619 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1620 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1621 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1622 } else {
1623 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1624 nir_print_instr(&instr->instr, stderr);
1625 fprintf(stderr, "\n");
1626 }
1627 break;
1628 }
1629 case nir_op_fabs: {
1630 Temp src = get_alu_src(ctx, instr->src[0]);
1631 if (dst.size() == 1) {
1632 if (ctx->block->fp_mode.must_flush_denorms32)
1633 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1634 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1635 } else if (dst.size() == 2) {
1636 if (ctx->block->fp_mode.must_flush_denorms16_64)
1637 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1638 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1639 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1640 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1642 } else {
1643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1644 nir_print_instr(&instr->instr, stderr);
1645 fprintf(stderr, "\n");
1646 }
1647 break;
1648 }
1649 case nir_op_fsat: {
1650 Temp src = get_alu_src(ctx, instr->src[0]);
1651 if (dst.size() == 1) {
1652 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1653 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1654 // TODO: confirm that this holds under any circumstances
1655 } else if (dst.size() == 2) {
1656 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1657 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1658 vop3->clamp = true;
1659 } else {
1660 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1661 nir_print_instr(&instr->instr, stderr);
1662 fprintf(stderr, "\n");
1663 }
1664 break;
1665 }
1666 case nir_op_flog2: {
1667 if (dst.size() == 1) {
1668 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1669 } else {
1670 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1671 nir_print_instr(&instr->instr, stderr);
1672 fprintf(stderr, "\n");
1673 }
1674 break;
1675 }
1676 case nir_op_frcp: {
1677 if (dst.size() == 1) {
1678 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1679 } else if (dst.size() == 2) {
1680 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1681 } else {
1682 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1683 nir_print_instr(&instr->instr, stderr);
1684 fprintf(stderr, "\n");
1685 }
1686 break;
1687 }
1688 case nir_op_fexp2: {
1689 if (dst.size() == 1) {
1690 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1691 } else {
1692 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1693 nir_print_instr(&instr->instr, stderr);
1694 fprintf(stderr, "\n");
1695 }
1696 break;
1697 }
1698 case nir_op_fsqrt: {
1699 if (dst.size() == 1) {
1700 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1701 } else if (dst.size() == 2) {
1702 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1703 } else {
1704 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1705 nir_print_instr(&instr->instr, stderr);
1706 fprintf(stderr, "\n");
1707 }
1708 break;
1709 }
1710 case nir_op_ffract: {
1711 if (dst.size() == 1) {
1712 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1713 } else if (dst.size() == 2) {
1714 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1715 } else {
1716 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1717 nir_print_instr(&instr->instr, stderr);
1718 fprintf(stderr, "\n");
1719 }
1720 break;
1721 }
1722 case nir_op_ffloor: {
1723 if (dst.size() == 1) {
1724 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1725 } else if (dst.size() == 2) {
1726 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1727 } else {
1728 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1729 nir_print_instr(&instr->instr, stderr);
1730 fprintf(stderr, "\n");
1731 }
1732 break;
1733 }
1734 case nir_op_fceil: {
1735 if (dst.size() == 1) {
1736 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1737 } else if (dst.size() == 2) {
1738 if (ctx->options->chip_class >= GFX7) {
1739 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1740 } else {
1741 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1742 Temp src0 = get_alu_src(ctx, instr->src[0]);
1743
1744 /* trunc = trunc(src0)
1745 * if (src0 > 0.0 && src0 != trunc)
1746 * trunc += 1.0
1747 */
1748 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1749 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1750 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1751 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1752 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1753 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1754 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1755 }
1756 } else {
1757 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1758 nir_print_instr(&instr->instr, stderr);
1759 fprintf(stderr, "\n");
1760 }
1761 break;
1762 }
1763 case nir_op_ftrunc: {
1764 if (dst.size() == 1) {
1765 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1766 } else if (dst.size() == 2) {
1767 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1768 } else {
1769 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1770 nir_print_instr(&instr->instr, stderr);
1771 fprintf(stderr, "\n");
1772 }
1773 break;
1774 }
1775 case nir_op_fround_even: {
1776 if (dst.size() == 1) {
1777 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1778 } else if (dst.size() == 2) {
1779 if (ctx->options->chip_class >= GFX7) {
1780 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1781 } else {
1782 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1783 Temp src0 = get_alu_src(ctx, instr->src[0]);
1784
1785 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1786 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1787
1788 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1789 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1790 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1791 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1792 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1793 tmp = sub->definitions[0].getTemp();
1794
1795 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1796 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1797 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1798 Temp cond = vop3->definitions[0].getTemp();
1799
1800 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1801 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1802 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1803 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1804
1805 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1806 }
1807 } else {
1808 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1809 nir_print_instr(&instr->instr, stderr);
1810 fprintf(stderr, "\n");
1811 }
1812 break;
1813 }
1814 case nir_op_fsin:
1815 case nir_op_fcos: {
1816 Temp src = get_alu_src(ctx, instr->src[0]);
1817 aco_ptr<Instruction> norm;
1818 if (dst.size() == 1) {
1819 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1820 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1821
1822 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1823 if (ctx->options->chip_class < GFX9)
1824 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1825
1826 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1827 bld.vop1(opcode, Definition(dst), tmp);
1828 } else {
1829 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1830 nir_print_instr(&instr->instr, stderr);
1831 fprintf(stderr, "\n");
1832 }
1833 break;
1834 }
1835 case nir_op_ldexp: {
1836 if (dst.size() == 1) {
1837 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1838 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1839 get_alu_src(ctx, instr->src[1]));
1840 } else if (dst.size() == 2) {
1841 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1842 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1843 get_alu_src(ctx, instr->src[1]));
1844 } else {
1845 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1846 nir_print_instr(&instr->instr, stderr);
1847 fprintf(stderr, "\n");
1848 }
1849 break;
1850 }
1851 case nir_op_frexp_sig: {
1852 if (dst.size() == 1) {
1853 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1854 get_alu_src(ctx, instr->src[0]));
1855 } else if (dst.size() == 2) {
1856 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1857 get_alu_src(ctx, instr->src[0]));
1858 } else {
1859 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1860 nir_print_instr(&instr->instr, stderr);
1861 fprintf(stderr, "\n");
1862 }
1863 break;
1864 }
1865 case nir_op_frexp_exp: {
1866 if (instr->src[0].src.ssa->bit_size == 32) {
1867 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1868 get_alu_src(ctx, instr->src[0]));
1869 } else if (instr->src[0].src.ssa->bit_size == 64) {
1870 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1871 get_alu_src(ctx, instr->src[0]));
1872 } else {
1873 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1874 nir_print_instr(&instr->instr, stderr);
1875 fprintf(stderr, "\n");
1876 }
1877 break;
1878 }
1879 case nir_op_fsign: {
1880 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1881 if (dst.size() == 1) {
1882 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1883 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1884 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1885 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1886 } else if (dst.size() == 2) {
1887 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1888 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1889 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1890
1891 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1892 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1893 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1894
1895 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1896 } else {
1897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1898 nir_print_instr(&instr->instr, stderr);
1899 fprintf(stderr, "\n");
1900 }
1901 break;
1902 }
1903 case nir_op_f2f32: {
1904 if (instr->src[0].src.ssa->bit_size == 64) {
1905 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1906 } else {
1907 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1908 nir_print_instr(&instr->instr, stderr);
1909 fprintf(stderr, "\n");
1910 }
1911 break;
1912 }
1913 case nir_op_f2f64: {
1914 if (instr->src[0].src.ssa->bit_size == 32) {
1915 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1916 } else {
1917 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1918 nir_print_instr(&instr->instr, stderr);
1919 fprintf(stderr, "\n");
1920 }
1921 break;
1922 }
1923 case nir_op_i2f32: {
1924 assert(dst.size() == 1);
1925 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1926 break;
1927 }
1928 case nir_op_i2f64: {
1929 if (instr->src[0].src.ssa->bit_size == 32) {
1930 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1931 } else if (instr->src[0].src.ssa->bit_size == 64) {
1932 Temp src = get_alu_src(ctx, instr->src[0]);
1933 RegClass rc = RegClass(src.type(), 1);
1934 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1935 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1936 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1937 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1938 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1939 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1940
1941 } else {
1942 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1943 nir_print_instr(&instr->instr, stderr);
1944 fprintf(stderr, "\n");
1945 }
1946 break;
1947 }
1948 case nir_op_u2f32: {
1949 assert(dst.size() == 1);
1950 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1951 break;
1952 }
1953 case nir_op_u2f64: {
1954 if (instr->src[0].src.ssa->bit_size == 32) {
1955 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1956 } else if (instr->src[0].src.ssa->bit_size == 64) {
1957 Temp src = get_alu_src(ctx, instr->src[0]);
1958 RegClass rc = RegClass(src.type(), 1);
1959 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1960 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1961 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1962 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1963 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1964 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1965 } else {
1966 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1967 nir_print_instr(&instr->instr, stderr);
1968 fprintf(stderr, "\n");
1969 }
1970 break;
1971 }
1972 case nir_op_f2i32: {
1973 Temp src = get_alu_src(ctx, instr->src[0]);
1974 if (instr->src[0].src.ssa->bit_size == 32) {
1975 if (dst.type() == RegType::vgpr)
1976 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1977 else
1978 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1979 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1980
1981 } else if (instr->src[0].src.ssa->bit_size == 64) {
1982 if (dst.type() == RegType::vgpr)
1983 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1984 else
1985 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1986 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1987
1988 } else {
1989 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1990 nir_print_instr(&instr->instr, stderr);
1991 fprintf(stderr, "\n");
1992 }
1993 break;
1994 }
1995 case nir_op_f2u32: {
1996 Temp src = get_alu_src(ctx, instr->src[0]);
1997 if (instr->src[0].src.ssa->bit_size == 32) {
1998 if (dst.type() == RegType::vgpr)
1999 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2000 else
2001 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2002 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2003
2004 } else if (instr->src[0].src.ssa->bit_size == 64) {
2005 if (dst.type() == RegType::vgpr)
2006 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2007 else
2008 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2009 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2010
2011 } else {
2012 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2013 nir_print_instr(&instr->instr, stderr);
2014 fprintf(stderr, "\n");
2015 }
2016 break;
2017 }
2018 case nir_op_f2i64: {
2019 Temp src = get_alu_src(ctx, instr->src[0]);
2020 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2021 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2022 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2023 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2024 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2025 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2026 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2027 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2028 Temp new_exponent = bld.tmp(v1);
2029 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2030 if (ctx->program->chip_class >= GFX8)
2031 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2032 else
2033 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2034 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2035 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2036 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2037 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2038 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2039 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2040 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2041 Temp new_lower = bld.tmp(v1);
2042 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2043 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2045
2046 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2047 if (src.type() == RegType::vgpr)
2048 src = bld.as_uniform(src);
2049 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2050 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2051 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2052 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2053 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2054 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2055 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2056 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2057 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2058 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2059 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2060 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2061 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2062 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2063 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2064 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2065 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2066 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2067 Temp borrow = bld.tmp(s1);
2068 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2069 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2070 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2071
2072 } else if (instr->src[0].src.ssa->bit_size == 64) {
2073 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2074 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2075 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2076 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2077 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2078 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2079 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2080 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2081 if (dst.type() == RegType::sgpr) {
2082 lower = bld.as_uniform(lower);
2083 upper = bld.as_uniform(upper);
2084 }
2085 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2086
2087 } else {
2088 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2089 nir_print_instr(&instr->instr, stderr);
2090 fprintf(stderr, "\n");
2091 }
2092 break;
2093 }
2094 case nir_op_f2u64: {
2095 Temp src = get_alu_src(ctx, instr->src[0]);
2096 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2097 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2098 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2099 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2100 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2101 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2102 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2103 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2104 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2105 Temp new_exponent = bld.tmp(v1);
2106 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2107 if (ctx->program->chip_class >= GFX8)
2108 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2109 else
2110 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2111 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2112 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2113 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2114 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2115 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2116 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2117 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2118
2119 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2120 if (src.type() == RegType::vgpr)
2121 src = bld.as_uniform(src);
2122 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2123 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2124 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2125 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2126 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2127 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2128 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2129 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2130 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2131 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2132 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2133 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2134 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2135 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2136 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2137 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2138 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2139 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2140
2141 } else if (instr->src[0].src.ssa->bit_size == 64) {
2142 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2143 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2144 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2145 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2146 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2147 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2148 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2149 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2150 if (dst.type() == RegType::sgpr) {
2151 lower = bld.as_uniform(lower);
2152 upper = bld.as_uniform(upper);
2153 }
2154 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2155
2156 } else {
2157 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2158 nir_print_instr(&instr->instr, stderr);
2159 fprintf(stderr, "\n");
2160 }
2161 break;
2162 }
2163 case nir_op_b2f32: {
2164 Temp src = get_alu_src(ctx, instr->src[0]);
2165 assert(src.regClass() == bld.lm);
2166
2167 if (dst.regClass() == s1) {
2168 src = bool_to_scalar_condition(ctx, src);
2169 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2170 } else if (dst.regClass() == v1) {
2171 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2172 } else {
2173 unreachable("Wrong destination register class for nir_op_b2f32.");
2174 }
2175 break;
2176 }
2177 case nir_op_b2f64: {
2178 Temp src = get_alu_src(ctx, instr->src[0]);
2179 assert(src.regClass() == bld.lm);
2180
2181 if (dst.regClass() == s2) {
2182 src = bool_to_scalar_condition(ctx, src);
2183 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2184 } else if (dst.regClass() == v2) {
2185 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2186 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2187 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2188 } else {
2189 unreachable("Wrong destination register class for nir_op_b2f64.");
2190 }
2191 break;
2192 }
2193 case nir_op_i2i32: {
2194 Temp src = get_alu_src(ctx, instr->src[0]);
2195 if (instr->src[0].src.ssa->bit_size == 64) {
2196 /* we can actually just say dst = src, as it would map the lower register */
2197 emit_extract_vector(ctx, src, 0, dst);
2198 } else {
2199 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2200 nir_print_instr(&instr->instr, stderr);
2201 fprintf(stderr, "\n");
2202 }
2203 break;
2204 }
2205 case nir_op_u2u32: {
2206 Temp src = get_alu_src(ctx, instr->src[0]);
2207 if (instr->src[0].src.ssa->bit_size == 16) {
2208 if (dst.regClass() == s1) {
2209 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2210 } else {
2211 // TODO: do better with SDWA
2212 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2213 }
2214 } else if (instr->src[0].src.ssa->bit_size == 64) {
2215 /* we can actually just say dst = src, as it would map the lower register */
2216 emit_extract_vector(ctx, src, 0, dst);
2217 } else {
2218 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2219 nir_print_instr(&instr->instr, stderr);
2220 fprintf(stderr, "\n");
2221 }
2222 break;
2223 }
2224 case nir_op_i2i64: {
2225 Temp src = get_alu_src(ctx, instr->src[0]);
2226 if (src.regClass() == s1) {
2227 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2228 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2229 } else if (src.regClass() == v1) {
2230 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2231 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2232 } else {
2233 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2234 nir_print_instr(&instr->instr, stderr);
2235 fprintf(stderr, "\n");
2236 }
2237 break;
2238 }
2239 case nir_op_u2u64: {
2240 Temp src = get_alu_src(ctx, instr->src[0]);
2241 if (instr->src[0].src.ssa->bit_size == 32) {
2242 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2243 } else {
2244 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2245 nir_print_instr(&instr->instr, stderr);
2246 fprintf(stderr, "\n");
2247 }
2248 break;
2249 }
2250 case nir_op_b2i32: {
2251 Temp src = get_alu_src(ctx, instr->src[0]);
2252 assert(src.regClass() == bld.lm);
2253
2254 if (dst.regClass() == s1) {
2255 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2256 bool_to_scalar_condition(ctx, src, dst);
2257 } else if (dst.regClass() == v1) {
2258 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2259 } else {
2260 unreachable("Invalid register class for b2i32");
2261 }
2262 break;
2263 }
2264 case nir_op_i2b1: {
2265 Temp src = get_alu_src(ctx, instr->src[0]);
2266 assert(dst.regClass() == bld.lm);
2267
2268 if (src.type() == RegType::vgpr) {
2269 assert(src.regClass() == v1 || src.regClass() == v2);
2270 assert(dst.regClass() == bld.lm);
2271 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2272 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2273 } else {
2274 assert(src.regClass() == s1 || src.regClass() == s2);
2275 Temp tmp;
2276 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2277 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2278 } else {
2279 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2280 bld.scc(bld.def(s1)), Operand(0u), src);
2281 }
2282 bool_to_vector_condition(ctx, tmp, dst);
2283 }
2284 break;
2285 }
2286 case nir_op_pack_64_2x32_split: {
2287 Temp src0 = get_alu_src(ctx, instr->src[0]);
2288 Temp src1 = get_alu_src(ctx, instr->src[1]);
2289
2290 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2291 break;
2292 }
2293 case nir_op_unpack_64_2x32_split_x:
2294 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2295 break;
2296 case nir_op_unpack_64_2x32_split_y:
2297 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2298 break;
2299 case nir_op_pack_half_2x16: {
2300 Temp src = get_alu_src(ctx, instr->src[0], 2);
2301
2302 if (dst.regClass() == v1) {
2303 Temp src0 = bld.tmp(v1);
2304 Temp src1 = bld.tmp(v1);
2305 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2306 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2307 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2308 else
2309 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2310 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2311 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2312 } else {
2313 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2314 nir_print_instr(&instr->instr, stderr);
2315 fprintf(stderr, "\n");
2316 }
2317 break;
2318 }
2319 case nir_op_unpack_half_2x16_split_x: {
2320 if (dst.regClass() == v1) {
2321 Builder bld(ctx->program, ctx->block);
2322 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2323 } else {
2324 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2325 nir_print_instr(&instr->instr, stderr);
2326 fprintf(stderr, "\n");
2327 }
2328 break;
2329 }
2330 case nir_op_unpack_half_2x16_split_y: {
2331 if (dst.regClass() == v1) {
2332 Builder bld(ctx->program, ctx->block);
2333 /* TODO: use SDWA here */
2334 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2335 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2336 } else {
2337 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2338 nir_print_instr(&instr->instr, stderr);
2339 fprintf(stderr, "\n");
2340 }
2341 break;
2342 }
2343 case nir_op_fquantize2f16: {
2344 Temp src = get_alu_src(ctx, instr->src[0]);
2345 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2346 Temp f32, cmp_res;
2347
2348 if (ctx->program->chip_class >= GFX8) {
2349 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2350 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2351 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2352 } else {
2353 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2354 * so compare the result and flush to 0 if it's smaller.
2355 */
2356 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2357 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2358 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2359 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2360 cmp_res = vop3->definitions[0].getTemp();
2361 }
2362
2363 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2364 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2365 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2366 } else {
2367 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2368 }
2369 break;
2370 }
2371 case nir_op_bfm: {
2372 Temp bits = get_alu_src(ctx, instr->src[0]);
2373 Temp offset = get_alu_src(ctx, instr->src[1]);
2374
2375 if (dst.regClass() == s1) {
2376 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2377 } else if (dst.regClass() == v1) {
2378 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2379 } else {
2380 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2381 nir_print_instr(&instr->instr, stderr);
2382 fprintf(stderr, "\n");
2383 }
2384 break;
2385 }
2386 case nir_op_bitfield_select: {
2387 /* (mask & insert) | (~mask & base) */
2388 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2389 Temp insert = get_alu_src(ctx, instr->src[1]);
2390 Temp base = get_alu_src(ctx, instr->src[2]);
2391
2392 /* dst = (insert & bitmask) | (base & ~bitmask) */
2393 if (dst.regClass() == s1) {
2394 aco_ptr<Instruction> sop2;
2395 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2396 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2397 Operand lhs;
2398 if (const_insert && const_bitmask) {
2399 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2400 } else {
2401 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2402 lhs = Operand(insert);
2403 }
2404
2405 Operand rhs;
2406 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2407 if (const_base && const_bitmask) {
2408 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2409 } else {
2410 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2411 rhs = Operand(base);
2412 }
2413
2414 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2415
2416 } else if (dst.regClass() == v1) {
2417 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2418 base = as_vgpr(ctx, base);
2419 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2420 insert = as_vgpr(ctx, insert);
2421
2422 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2423
2424 } else {
2425 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2426 nir_print_instr(&instr->instr, stderr);
2427 fprintf(stderr, "\n");
2428 }
2429 break;
2430 }
2431 case nir_op_ubfe:
2432 case nir_op_ibfe: {
2433 Temp base = get_alu_src(ctx, instr->src[0]);
2434 Temp offset = get_alu_src(ctx, instr->src[1]);
2435 Temp bits = get_alu_src(ctx, instr->src[2]);
2436
2437 if (dst.type() == RegType::sgpr) {
2438 Operand extract;
2439 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2440 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2441 if (const_offset && const_bits) {
2442 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2443 extract = Operand(const_extract);
2444 } else {
2445 Operand width;
2446 if (const_bits) {
2447 width = Operand(const_bits->u32 << 16);
2448 } else {
2449 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2450 }
2451 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2452 }
2453
2454 aco_opcode opcode;
2455 if (dst.regClass() == s1) {
2456 if (instr->op == nir_op_ubfe)
2457 opcode = aco_opcode::s_bfe_u32;
2458 else
2459 opcode = aco_opcode::s_bfe_i32;
2460 } else if (dst.regClass() == s2) {
2461 if (instr->op == nir_op_ubfe)
2462 opcode = aco_opcode::s_bfe_u64;
2463 else
2464 opcode = aco_opcode::s_bfe_i64;
2465 } else {
2466 unreachable("Unsupported BFE bit size");
2467 }
2468
2469 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2470
2471 } else {
2472 aco_opcode opcode;
2473 if (dst.regClass() == v1) {
2474 if (instr->op == nir_op_ubfe)
2475 opcode = aco_opcode::v_bfe_u32;
2476 else
2477 opcode = aco_opcode::v_bfe_i32;
2478 } else {
2479 unreachable("Unsupported BFE bit size");
2480 }
2481
2482 emit_vop3a_instruction(ctx, instr, opcode, dst);
2483 }
2484 break;
2485 }
2486 case nir_op_bit_count: {
2487 Temp src = get_alu_src(ctx, instr->src[0]);
2488 if (src.regClass() == s1) {
2489 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2490 } else if (src.regClass() == v1) {
2491 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2492 } else if (src.regClass() == v2) {
2493 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2494 emit_extract_vector(ctx, src, 1, v1),
2495 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2496 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2497 } else if (src.regClass() == s2) {
2498 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2499 } else {
2500 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2501 nir_print_instr(&instr->instr, stderr);
2502 fprintf(stderr, "\n");
2503 }
2504 break;
2505 }
2506 case nir_op_flt: {
2507 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2508 break;
2509 }
2510 case nir_op_fge: {
2511 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2512 break;
2513 }
2514 case nir_op_feq: {
2515 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2516 break;
2517 }
2518 case nir_op_fne: {
2519 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2520 break;
2521 }
2522 case nir_op_ilt: {
2523 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2524 break;
2525 }
2526 case nir_op_ige: {
2527 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2528 break;
2529 }
2530 case nir_op_ieq: {
2531 if (instr->src[0].src.ssa->bit_size == 1)
2532 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2533 else
2534 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2535 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2536 break;
2537 }
2538 case nir_op_ine: {
2539 if (instr->src[0].src.ssa->bit_size == 1)
2540 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2541 else
2542 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2543 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2544 break;
2545 }
2546 case nir_op_ult: {
2547 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2548 break;
2549 }
2550 case nir_op_uge: {
2551 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2552 break;
2553 }
2554 case nir_op_fddx:
2555 case nir_op_fddy:
2556 case nir_op_fddx_fine:
2557 case nir_op_fddy_fine:
2558 case nir_op_fddx_coarse:
2559 case nir_op_fddy_coarse: {
2560 Temp src = get_alu_src(ctx, instr->src[0]);
2561 uint16_t dpp_ctrl1, dpp_ctrl2;
2562 if (instr->op == nir_op_fddx_fine) {
2563 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2564 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2565 } else if (instr->op == nir_op_fddy_fine) {
2566 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2567 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2568 } else {
2569 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2570 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2571 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2572 else
2573 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2574 }
2575
2576 Temp tmp;
2577 if (ctx->program->chip_class >= GFX8) {
2578 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2579 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2580 } else {
2581 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2582 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2583 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2584 }
2585 emit_wqm(ctx, tmp, dst, true);
2586 break;
2587 }
2588 default:
2589 fprintf(stderr, "Unknown NIR ALU instr: ");
2590 nir_print_instr(&instr->instr, stderr);
2591 fprintf(stderr, "\n");
2592 }
2593 }
2594
2595 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2596 {
2597 Temp dst = get_ssa_temp(ctx, &instr->def);
2598
2599 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2600 // which get truncated the lsb if double and msb if int
2601 // for now, we only use s_mov_b64 with 64bit inline constants
2602 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2603 assert(dst.type() == RegType::sgpr);
2604
2605 Builder bld(ctx->program, ctx->block);
2606
2607 if (instr->def.bit_size == 1) {
2608 assert(dst.regClass() == bld.lm);
2609 int val = instr->value[0].b ? -1 : 0;
2610 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2611 bld.sop1(Builder::s_mov, Definition(dst), op);
2612 } else if (dst.size() == 1) {
2613 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2614 } else {
2615 assert(dst.size() != 1);
2616 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2617 if (instr->def.bit_size == 64)
2618 for (unsigned i = 0; i < dst.size(); i++)
2619 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2620 else {
2621 for (unsigned i = 0; i < dst.size(); i++)
2622 vec->operands[i] = Operand{instr->value[i].u32};
2623 }
2624 vec->definitions[0] = Definition(dst);
2625 ctx->block->instructions.emplace_back(std::move(vec));
2626 }
2627 }
2628
2629 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2630 {
2631 uint32_t new_mask = 0;
2632 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2633 if (mask & (1u << i))
2634 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2635 return new_mask;
2636 }
2637
2638 Operand load_lds_size_m0(isel_context *ctx)
2639 {
2640 /* TODO: m0 does not need to be initialized on GFX9+ */
2641 Builder bld(ctx->program, ctx->block);
2642 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2643 }
2644
2645 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2646 Temp address, unsigned base_offset, unsigned align)
2647 {
2648 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2649
2650 Builder bld(ctx->program, ctx->block);
2651
2652 Operand m = load_lds_size_m0(ctx);
2653
2654 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2655 unsigned bytes_read = 0;
2656 unsigned result_size = 0;
2657 unsigned total_bytes = num_components * elem_size_bytes;
2658 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2659 bool large_ds_read = ctx->options->chip_class >= GFX7;
2660 bool usable_read2 = ctx->options->chip_class >= GFX7;
2661
2662 while (bytes_read < total_bytes) {
2663 unsigned todo = total_bytes - bytes_read;
2664 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2665 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2666
2667 aco_opcode op = aco_opcode::last_opcode;
2668 bool read2 = false;
2669 if (todo >= 16 && aligned16 && large_ds_read) {
2670 op = aco_opcode::ds_read_b128;
2671 todo = 16;
2672 } else if (todo >= 16 && aligned8 && usable_read2) {
2673 op = aco_opcode::ds_read2_b64;
2674 read2 = true;
2675 todo = 16;
2676 } else if (todo >= 12 && aligned16 && large_ds_read) {
2677 op = aco_opcode::ds_read_b96;
2678 todo = 12;
2679 } else if (todo >= 8 && aligned8) {
2680 op = aco_opcode::ds_read_b64;
2681 todo = 8;
2682 } else if (todo >= 8 && usable_read2) {
2683 op = aco_opcode::ds_read2_b32;
2684 read2 = true;
2685 todo = 8;
2686 } else if (todo >= 4) {
2687 op = aco_opcode::ds_read_b32;
2688 todo = 4;
2689 } else {
2690 assert(false);
2691 }
2692 assert(todo % elem_size_bytes == 0);
2693 unsigned num_elements = todo / elem_size_bytes;
2694 unsigned offset = base_offset + bytes_read;
2695 unsigned max_offset = read2 ? 1019 : 65535;
2696
2697 Temp address_offset = address;
2698 if (offset > max_offset) {
2699 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2700 offset = bytes_read;
2701 }
2702 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2703
2704 Temp res;
2705 if (num_components == 1 && dst.type() == RegType::vgpr)
2706 res = dst;
2707 else
2708 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2709
2710 if (read2)
2711 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
2712 else
2713 res = bld.ds(op, Definition(res), address_offset, m, offset);
2714
2715 if (num_components == 1) {
2716 assert(todo == total_bytes);
2717 if (dst.type() == RegType::sgpr)
2718 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2719 return dst;
2720 }
2721
2722 if (dst.type() == RegType::sgpr) {
2723 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2724 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2725 res = new_res;
2726 }
2727
2728 if (num_elements == 1) {
2729 result[result_size++] = res;
2730 } else {
2731 assert(res != dst && res.size() % num_elements == 0);
2732 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2733 split->operands[0] = Operand(res);
2734 for (unsigned i = 0; i < num_elements; i++)
2735 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2736 ctx->block->instructions.emplace_back(std::move(split));
2737 }
2738
2739 bytes_read += todo;
2740 }
2741
2742 assert(result_size == num_components && result_size > 1);
2743 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2744 for (unsigned i = 0; i < result_size; i++)
2745 vec->operands[i] = Operand(result[i]);
2746 vec->definitions[0] = Definition(dst);
2747 ctx->block->instructions.emplace_back(std::move(vec));
2748 ctx->allocated_vec.emplace(dst.id(), result);
2749
2750 return dst;
2751 }
2752
2753 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2754 {
2755 if (start == 0 && size == data.size())
2756 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2757
2758 unsigned size_hint = 1;
2759 auto it = ctx->allocated_vec.find(data.id());
2760 if (it != ctx->allocated_vec.end())
2761 size_hint = it->second[0].size();
2762 if (size % size_hint || start % size_hint)
2763 size_hint = 1;
2764
2765 start /= size_hint;
2766 size /= size_hint;
2767
2768 Temp elems[size];
2769 for (unsigned i = 0; i < size; i++)
2770 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2771
2772 if (size == 1)
2773 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2774
2775 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2776 for (unsigned i = 0; i < size; i++)
2777 vec->operands[i] = Operand(elems[i]);
2778 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2779 vec->definitions[0] = Definition(res);
2780 ctx->block->instructions.emplace_back(std::move(vec));
2781 return res;
2782 }
2783
2784 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2785 {
2786 Builder bld(ctx->program, ctx->block);
2787 unsigned bytes_written = 0;
2788 bool large_ds_write = ctx->options->chip_class >= GFX7;
2789 bool usable_write2 = ctx->options->chip_class >= GFX7;
2790
2791 while (bytes_written < total_size * 4) {
2792 unsigned todo = total_size * 4 - bytes_written;
2793 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2794 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2795
2796 aco_opcode op = aco_opcode::last_opcode;
2797 bool write2 = false;
2798 unsigned size = 0;
2799 if (todo >= 16 && aligned16 && large_ds_write) {
2800 op = aco_opcode::ds_write_b128;
2801 size = 4;
2802 } else if (todo >= 16 && aligned8 && usable_write2) {
2803 op = aco_opcode::ds_write2_b64;
2804 write2 = true;
2805 size = 4;
2806 } else if (todo >= 12 && aligned16 && large_ds_write) {
2807 op = aco_opcode::ds_write_b96;
2808 size = 3;
2809 } else if (todo >= 8 && aligned8) {
2810 op = aco_opcode::ds_write_b64;
2811 size = 2;
2812 } else if (todo >= 8 && usable_write2) {
2813 op = aco_opcode::ds_write2_b32;
2814 write2 = true;
2815 size = 2;
2816 } else if (todo >= 4) {
2817 op = aco_opcode::ds_write_b32;
2818 size = 1;
2819 } else {
2820 assert(false);
2821 }
2822
2823 unsigned offset = offset0 + offset1 + bytes_written;
2824 unsigned max_offset = write2 ? 1020 : 65535;
2825 Temp address_offset = address;
2826 if (offset > max_offset) {
2827 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2828 offset = offset1 + bytes_written;
2829 }
2830 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2831
2832 if (write2) {
2833 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2834 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2835 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
2836 } else {
2837 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2838 bld.ds(op, address_offset, val, m, offset);
2839 }
2840
2841 bytes_written += size * 4;
2842 }
2843 }
2844
2845 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2846 Temp address, unsigned base_offset, unsigned align)
2847 {
2848 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2849 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2850
2851 Operand m = load_lds_size_m0(ctx);
2852
2853 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
2854 assert(wrmask <= 0x0f);
2855 int start[2], count[2];
2856 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2857 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2858 assert(wrmask == 0);
2859
2860 /* one combined store is sufficient */
2861 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
2862 Builder bld(ctx->program, ctx->block);
2863
2864 Temp address_offset = address;
2865 if ((base_offset / elem_size_bytes) + start[1] > 255) {
2866 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2867 base_offset = 0;
2868 }
2869
2870 assert(count[0] == 1);
2871 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
2872
2873 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
2874 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
2875 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2876 base_offset = base_offset / elem_size_bytes;
2877 bld.ds(op, address_offset, val0, val1, m,
2878 base_offset + start[0], base_offset + start[1]);
2879 return;
2880 }
2881
2882 for (unsigned i = 0; i < 2; i++) {
2883 if (count[i] == 0)
2884 continue;
2885
2886 unsigned elem_size_words = elem_size_bytes / 4;
2887 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2888 base_offset, start[i] * elem_size_bytes, align);
2889 }
2890 return;
2891 }
2892
2893 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
2894 {
2895 unsigned align = 16;
2896 if (const_offset)
2897 align = std::min(align, 1u << (ffs(const_offset) - 1));
2898
2899 return align;
2900 }
2901
2902
2903 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned split_cnt = 0u, Temp dst = Temp())
2904 {
2905 Builder bld(ctx->program, ctx->block);
2906
2907 if (!dst.id())
2908 dst = bld.tmp(RegClass(reg_type, cnt * arr[0].size()));
2909
2910 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
2911 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
2912 instr->definitions[0] = Definition(dst);
2913
2914 for (unsigned i = 0; i < cnt; ++i) {
2915 assert(arr[i].size() == arr[0].size());
2916 allocated_vec[i] = arr[i];
2917 instr->operands[i] = Operand(arr[i]);
2918 }
2919
2920 bld.insert(std::move(instr));
2921
2922 if (split_cnt)
2923 emit_split_vector(ctx, dst, split_cnt);
2924 else
2925 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
2926
2927 return dst;
2928 }
2929
2930 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
2931 {
2932 if (const_offset >= 4096) {
2933 unsigned excess_const_offset = const_offset / 4096u * 4096u;
2934 const_offset %= 4096u;
2935
2936 if (!voffset.id())
2937 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
2938 else if (unlikely(voffset.regClass() == s1))
2939 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
2940 else if (likely(voffset.regClass() == v1))
2941 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
2942 else
2943 unreachable("Unsupported register class of voffset");
2944 }
2945
2946 return const_offset;
2947 }
2948
2949 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
2950 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
2951 {
2952 assert(vdata.id());
2953 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
2954 assert(vdata.size() >= 1 && vdata.size() <= 4);
2955
2956 Builder bld(ctx->program, ctx->block);
2957 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
2958 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
2959
2960 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
2961 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
2962 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
2963 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
2964 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
2965
2966 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
2967 }
2968
2969 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
2970 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
2971 bool allow_combining = true, bool reorder = true, bool slc = false)
2972 {
2973 Builder bld(ctx->program, ctx->block);
2974 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
2975 assert(write_mask);
2976
2977 if (elem_size_bytes == 8) {
2978 elem_size_bytes = 4;
2979 write_mask = widen_mask(write_mask, 2);
2980 }
2981
2982 while (write_mask) {
2983 int start = 0;
2984 int count = 0;
2985 u_bit_scan_consecutive_range(&write_mask, &start, &count);
2986 assert(count > 0);
2987 assert(start >= 0);
2988
2989 while (count > 0) {
2990 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
2991 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
2992
2993 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
2994 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
2995 sub_count = 2;
2996
2997 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
2998 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
2999
3000 count -= sub_count;
3001 start += sub_count;
3002 }
3003
3004 assert(count == 0);
3005 }
3006 }
3007
3008 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3009 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3010 {
3011 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3012 assert(size_dwords >= 1 && size_dwords <= 4);
3013
3014 Builder bld(ctx->program, ctx->block);
3015 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3016 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3017 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3018
3019 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3020 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3021 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3022 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3023 /* disable_wqm */ false, /* glc */ true,
3024 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3025
3026 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3027
3028 return vdata;
3029 }
3030
3031 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3032 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3033 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3034 {
3035 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3036 assert((num_components * elem_size_bytes / 4) == dst.size());
3037 assert(!!stride != allow_combining);
3038
3039 Builder bld(ctx->program, ctx->block);
3040 unsigned split_cnt = num_components;
3041
3042 if (elem_size_bytes == 8) {
3043 elem_size_bytes = 4;
3044 num_components *= 2;
3045 }
3046
3047 if (!stride)
3048 stride = elem_size_bytes;
3049
3050 unsigned load_size = 1;
3051 if (allow_combining) {
3052 if ((num_components % 4) == 0)
3053 load_size = 4;
3054 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3055 load_size = 3;
3056 else if ((num_components % 2) == 0)
3057 load_size = 2;
3058 }
3059
3060 unsigned num_loads = num_components / load_size;
3061 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3062
3063 for (unsigned i = 0; i < num_loads; ++i) {
3064 unsigned const_offset = i * stride * load_size + base_const_offset;
3065 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3066 }
3067
3068 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, split_cnt, dst);
3069 }
3070
3071 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3072 {
3073 Builder bld(ctx->program, ctx->block);
3074 Temp offset = base_offset.first;
3075 unsigned const_offset = base_offset.second;
3076
3077 if (!nir_src_is_const(*off_src)) {
3078 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3079 Temp with_stride;
3080
3081 /* Calculate indirect offset with stride */
3082 if (likely(indirect_offset_arg.regClass() == v1))
3083 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3084 else if (indirect_offset_arg.regClass() == s1)
3085 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3086 else
3087 unreachable("Unsupported register class of indirect offset");
3088
3089 /* Add to the supplied base offset */
3090 if (offset.id() == 0)
3091 offset = with_stride;
3092 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3093 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3094 else if (offset.size() == 1 && with_stride.size() == 1)
3095 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3096 else
3097 unreachable("Unsupported register class of indirect offset");
3098 } else {
3099 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3100 const_offset += const_offset_arg * stride;
3101 }
3102
3103 return std::make_pair(offset, const_offset);
3104 }
3105
3106 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3107 {
3108 Builder bld(ctx->program, ctx->block);
3109 Temp offset;
3110
3111 if (off1.first.id() && off2.first.id()) {
3112 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3113 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3114 else if (off1.first.size() == 1 && off2.first.size() == 1)
3115 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3116 else
3117 unreachable("Unsupported register class of indirect offset");
3118 } else {
3119 offset = off1.first.id() ? off1.first : off2.first;
3120 }
3121
3122 return std::make_pair(offset, off1.second + off2.second);
3123 }
3124
3125 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3126 {
3127 Builder bld(ctx->program, ctx->block);
3128 unsigned const_offset = offs.second * multiplier;
3129
3130 if (!offs.first.id())
3131 return std::make_pair(offs.first, const_offset);
3132
3133 Temp offset = unlikely(offs.first.regClass() == s1)
3134 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3135 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3136
3137 return std::make_pair(offset, const_offset);
3138 }
3139
3140 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3141 {
3142 Builder bld(ctx->program, ctx->block);
3143
3144 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3145 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3146 /* component is in bytes */
3147 const_offset += nir_intrinsic_component(instr) * component_stride;
3148
3149 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3150 nir_src *off_src = nir_get_io_offset_src(instr);
3151 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3152 }
3153
3154 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3155 {
3156 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3157 }
3158
3159 Temp get_tess_rel_patch_id(isel_context *ctx)
3160 {
3161 Builder bld(ctx->program, ctx->block);
3162
3163 switch (ctx->shader->info.stage) {
3164 case MESA_SHADER_TESS_CTRL:
3165 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3166 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3167 case MESA_SHADER_TESS_EVAL:
3168 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3169 default:
3170 unreachable("Unsupported stage in get_tess_rel_patch_id");
3171 }
3172 }
3173
3174 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3175 {
3176 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3177 Builder bld(ctx->program, ctx->block);
3178
3179 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3180 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3181
3182 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3183
3184 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3185 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3186
3187 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3188 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3189 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3190
3191 return offset_mul(ctx, offs, 4u);
3192 }
3193
3194 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3195 {
3196 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3197 Builder bld(ctx->program, ctx->block);
3198
3199 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3200 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3201 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3202 uint32_t output_vertex_size = num_tcs_outputs * 16;
3203 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3204 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3205
3206 std::pair<Temp, unsigned> offs = instr
3207 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3208 : std::make_pair(Temp(), 0u);
3209
3210 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3211 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3212
3213 if (per_vertex) {
3214 assert(instr);
3215
3216 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3217 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3218
3219 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3220 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3221 } else {
3222 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3223 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3224 }
3225
3226 return offs;
3227 }
3228
3229 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3230 {
3231 Builder bld(ctx->program, ctx->block);
3232
3233 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3234 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3235
3236 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3237
3238 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3239 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3240 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3241
3242 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3243 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3244
3245 return offs;
3246 }
3247
3248 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3249 {
3250 Builder bld(ctx->program, ctx->block);
3251
3252 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3253 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3254 : ctx->args->options->key.tes.tcs_num_outputs;
3255
3256 unsigned output_vertex_size = num_tcs_outputs * 16;
3257 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3258 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3259 unsigned attr_stride = ctx->tcs_num_patches;
3260
3261 std::pair<Temp, unsigned> offs = instr
3262 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3263 : std::make_pair(Temp(), 0u);
3264
3265 if (const_base_offset)
3266 offs.second += const_base_offset * attr_stride;
3267
3268 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3269 Temp patch_off = bld.v_mul_imm(bld.def(v1), rel_patch_id, 16u);
3270 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3271
3272 return offs;
3273 }
3274
3275 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
3276 {
3277 unsigned off = nir_intrinsic_base(instr) * 4u;
3278 nir_src *off_src = nir_get_io_offset_src(instr);
3279
3280 if (!nir_src_is_const(*off_src)) {
3281 *indirect = true;
3282 return false;
3283 }
3284
3285 *indirect = false;
3286 off += nir_src_as_uint(*off_src) * 16u;
3287
3288 while (mask) {
3289 unsigned slot = u_bit_scan64(&mask) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
3290 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
3291 return true;
3292 }
3293
3294 return false;
3295 }
3296
3297 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
3298 {
3299 Builder bld(ctx->program, ctx->block);
3300
3301 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
3302 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3303 unsigned write_mask = nir_intrinsic_write_mask(instr);
3304 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3305
3306 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
3307 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
3308 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3309 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
3310 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
3311 } else {
3312 Temp lds_base;
3313
3314 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3315 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
3316 unsigned itemsize = ctx->stage == vertex_geometry_gs
3317 ? ctx->program->info->vs.es_info.esgs_itemsize
3318 : ctx->program->info->tes.es_info.esgs_itemsize;
3319 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
3320 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3321 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
3322 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3323 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3324 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
3325 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
3326 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
3327 */
3328 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
3329 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
3330 lds_base = bld.v_mul_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
3331 } else {
3332 unreachable("Invalid LS or ES stage");
3333 }
3334
3335 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
3336 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3337 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
3338 }
3339 }
3340
3341 bool should_write_tcs_patch_output_to_vmem(isel_context *ctx, nir_intrinsic_instr *instr)
3342 {
3343 unsigned off = nir_intrinsic_base(instr) * 4u;
3344 nir_src *off_src = nir_get_io_offset_src(instr);
3345
3346 /* Indirect offset, we can't be sure if this is a tess factor, always write to VMEM */
3347 if (!nir_src_is_const(*off_src))
3348 return true;
3349
3350 off += nir_src_as_uint(*off_src) * 16u;
3351
3352 const unsigned tess_index_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3353 const unsigned tess_index_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3354
3355 return (off != (tess_index_inner * 16u)) &&
3356 (off != (tess_index_outer * 16u));
3357 }
3358
3359 bool should_write_tcs_output_to_lds(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3360 {
3361 /* When none of the appropriate outputs are read, we are OK to never write to LDS */
3362 if (per_vertex ? ctx->shader->info.outputs_read == 0U : ctx->shader->info.patch_outputs_read == 0u)
3363 return false;
3364
3365 uint64_t mask = per_vertex
3366 ? ctx->shader->info.outputs_read
3367 : ctx->shader->info.patch_outputs_read;
3368 bool indirect_write;
3369 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
3370 return indirect_write || output_read;
3371 }
3372
3373 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3374 {
3375 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3376 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3377
3378 Builder bld(ctx->program, ctx->block);
3379
3380 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
3381 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3382 unsigned write_mask = nir_intrinsic_write_mask(instr);
3383
3384 /* Only write to VMEM if the output is per-vertex or it's per-patch non tess factor */
3385 bool write_to_vmem = per_vertex || should_write_tcs_patch_output_to_vmem(ctx, instr);
3386 /* Only write to LDS if the output is read by the shader, or it's per-patch tess factor */
3387 bool write_to_lds = !write_to_vmem || should_write_tcs_output_to_lds(ctx, instr, per_vertex);
3388
3389 if (write_to_vmem) {
3390 std::pair<Temp, unsigned> vmem_offs = per_vertex
3391 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
3392 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
3393
3394 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3395 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3396 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, false, false);
3397 }
3398
3399 if (write_to_lds) {
3400 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3401 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3402 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
3403 }
3404 }
3405
3406 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3407 {
3408 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3409 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3410
3411 Builder bld(ctx->program, ctx->block);
3412
3413 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3414 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3415 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3416 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3417
3418 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
3419 }
3420
3421 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3422 {
3423 if (ctx->stage == vertex_vs ||
3424 ctx->stage == tess_eval_vs ||
3425 ctx->stage == fragment_fs ||
3426 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3427 unsigned write_mask = nir_intrinsic_write_mask(instr);
3428 unsigned component = nir_intrinsic_component(instr);
3429 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3430 unsigned idx = nir_intrinsic_base(instr) + component;
3431
3432 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3433 if (off_instr->type != nir_instr_type_load_const) {
3434 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3435 nir_print_instr(off_instr, stderr);
3436 fprintf(stderr, "\n");
3437 }
3438 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
3439
3440 if (instr->src[0].ssa->bit_size == 64)
3441 write_mask = widen_mask(write_mask, 2);
3442
3443 for (unsigned i = 0; i < 8; ++i) {
3444 if (write_mask & (1 << i)) {
3445 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3446 ctx->outputs.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
3447 }
3448 idx++;
3449 }
3450 } else if (ctx->stage == vertex_es ||
3451 ctx->stage == vertex_ls ||
3452 ctx->stage == tess_eval_es ||
3453 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3454 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3455 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
3456 visit_store_ls_or_es_output(ctx, instr);
3457 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
3458 visit_store_tcs_output(ctx, instr, false);
3459 } else {
3460 unreachable("Shader stage not implemented");
3461 }
3462 }
3463
3464 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
3465 {
3466 visit_load_tcs_output(ctx, instr, false);
3467 }
3468
3469 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3470 {
3471 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3472 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3473
3474 Builder bld(ctx->program, ctx->block);
3475 Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3476 if (ctx->program->has_16bank_lds)
3477 interp_p1.instr->operands[0].setLateKill(true);
3478 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component);
3479 }
3480
3481 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3482 {
3483 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3484 for (unsigned i = 0; i < num_components; i++)
3485 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3486 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3487 assert(num_components == 4);
3488 Builder bld(ctx->program, ctx->block);
3489 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3490 }
3491
3492 for (Operand& op : vec->operands)
3493 op = op.isUndefined() ? Operand(0u) : op;
3494
3495 vec->definitions[0] = Definition(dst);
3496 ctx->block->instructions.emplace_back(std::move(vec));
3497 emit_split_vector(ctx, dst, num_components);
3498 return;
3499 }
3500
3501 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3502 {
3503 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3504 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3505 unsigned idx = nir_intrinsic_base(instr);
3506 unsigned component = nir_intrinsic_component(instr);
3507 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3508
3509 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3510 if (offset) {
3511 assert(offset->u32 == 0);
3512 } else {
3513 /* the lower 15bit of the prim_mask contain the offset into LDS
3514 * while the upper bits contain the number of prims */
3515 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3516 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3517 Builder bld(ctx->program, ctx->block);
3518 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3519 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3520 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3521 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3522 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3523 }
3524
3525 if (instr->dest.ssa.num_components == 1) {
3526 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3527 } else {
3528 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3529 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3530 {
3531 Temp tmp = {ctx->program->allocateId(), v1};
3532 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3533 vec->operands[i] = Operand(tmp);
3534 }
3535 vec->definitions[0] = Definition(dst);
3536 ctx->block->instructions.emplace_back(std::move(vec));
3537 }
3538 }
3539
3540 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
3541 unsigned offset, unsigned stride, unsigned channels)
3542 {
3543 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
3544 if (vtx_info->chan_byte_size != 4 && channels == 3)
3545 return false;
3546 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
3547 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
3548 }
3549
3550 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
3551 unsigned offset, unsigned stride, unsigned *channels)
3552 {
3553 if (!vtx_info->chan_byte_size) {
3554 *channels = vtx_info->num_channels;
3555 return vtx_info->chan_format;
3556 }
3557
3558 unsigned num_channels = *channels;
3559 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
3560 unsigned new_channels = num_channels + 1;
3561 /* first, assume more loads is worse and try using a larger data format */
3562 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
3563 new_channels++;
3564 /* don't make the attribute potentially out-of-bounds */
3565 if (offset + new_channels * vtx_info->chan_byte_size > stride)
3566 new_channels = 5;
3567 }
3568
3569 if (new_channels == 5) {
3570 /* then try decreasing load size (at the cost of more loads) */
3571 new_channels = *channels;
3572 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
3573 new_channels--;
3574 }
3575
3576 if (new_channels < *channels)
3577 *channels = new_channels;
3578 num_channels = new_channels;
3579 }
3580
3581 switch (vtx_info->chan_format) {
3582 case V_008F0C_BUF_DATA_FORMAT_8:
3583 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
3584 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
3585 case V_008F0C_BUF_DATA_FORMAT_16:
3586 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
3587 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
3588 case V_008F0C_BUF_DATA_FORMAT_32:
3589 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
3590 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
3591 }
3592 unreachable("shouldn't reach here");
3593 return V_008F0C_BUF_DATA_FORMAT_INVALID;
3594 }
3595
3596 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3597 * so we may need to fix it up. */
3598 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3599 {
3600 Builder bld(ctx->program, ctx->block);
3601
3602 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3603 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3604
3605 /* For the integer-like cases, do a natural sign extension.
3606 *
3607 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3608 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3609 * exponent.
3610 */
3611 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3612 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3613
3614 /* Convert back to the right type. */
3615 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3616 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3617 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3618 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3619 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3620 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3621 }
3622
3623 return alpha;
3624 }
3625
3626 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3627 {
3628 Builder bld(ctx->program, ctx->block);
3629 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3630 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
3631
3632 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3633 if (off_instr->type != nir_instr_type_load_const) {
3634 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3635 nir_print_instr(off_instr, stderr);
3636 fprintf(stderr, "\n");
3637 }
3638 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3639
3640 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3641
3642 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3643 unsigned component = nir_intrinsic_component(instr);
3644 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3645 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3646 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3647 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3648
3649 unsigned dfmt = attrib_format & 0xf;
3650 unsigned nfmt = (attrib_format >> 4) & 0x7;
3651 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
3652
3653 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3654 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
3655 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3656 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3657 if (post_shuffle)
3658 num_channels = MAX2(num_channels, 3);
3659
3660 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
3661 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
3662
3663 Temp index;
3664 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3665 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3666 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3667 if (divisor) {
3668 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3669 if (divisor != 1) {
3670 Temp divided = bld.tmp(v1);
3671 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3672 index = bld.vadd32(bld.def(v1), start_instance, divided);
3673 } else {
3674 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3675 }
3676 } else {
3677 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3678 }
3679 } else {
3680 index = bld.vadd32(bld.def(v1),
3681 get_arg(ctx, ctx->args->ac.base_vertex),
3682 get_arg(ctx, ctx->args->ac.vertex_id));
3683 }
3684
3685 Temp channels[num_channels];
3686 unsigned channel_start = 0;
3687 bool direct_fetch = false;
3688
3689 /* skip unused channels at the start */
3690 if (vtx_info->chan_byte_size && !post_shuffle) {
3691 channel_start = ffs(mask) - 1;
3692 for (unsigned i = 0; i < channel_start; i++)
3693 channels[i] = Temp(0, s1);
3694 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
3695 num_channels = 3 - (ffs(mask) - 1);
3696 }
3697
3698 /* load channels */
3699 while (channel_start < num_channels) {
3700 unsigned fetch_size = num_channels - channel_start;
3701 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
3702 bool expanded = false;
3703
3704 /* use MUBUF when possible to avoid possible alignment issues */
3705 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
3706 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
3707 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
3708 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
3709 vtx_info->chan_byte_size == 4;
3710 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
3711 if (!use_mubuf) {
3712 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
3713 } else {
3714 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
3715 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
3716 fetch_size = 4;
3717 expanded = true;
3718 }
3719 }
3720
3721 Temp fetch_index = index;
3722 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
3723 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
3724 fetch_offset = fetch_offset % attrib_stride;
3725 }
3726
3727 Operand soffset(0u);
3728 if (fetch_offset >= 4096) {
3729 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
3730 fetch_offset %= 4096;
3731 }
3732
3733 aco_opcode opcode;
3734 switch (fetch_size) {
3735 case 1:
3736 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
3737 break;
3738 case 2:
3739 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
3740 break;
3741 case 3:
3742 assert(ctx->options->chip_class >= GFX7 ||
3743 (!use_mubuf && ctx->options->chip_class == GFX6));
3744 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
3745 break;
3746 case 4:
3747 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
3748 break;
3749 default:
3750 unreachable("Unimplemented load_input vector size");
3751 }
3752
3753 Temp fetch_dst;
3754 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
3755 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
3756 num_channels <= 3)) {
3757 direct_fetch = true;
3758 fetch_dst = dst;
3759 } else {
3760 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
3761 }
3762
3763 if (use_mubuf) {
3764 Instruction *mubuf = bld.mubuf(opcode,
3765 Definition(fetch_dst), list, fetch_index, soffset,
3766 fetch_offset, false, true).instr;
3767 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
3768 } else {
3769 Instruction *mtbuf = bld.mtbuf(opcode,
3770 Definition(fetch_dst), list, fetch_index, soffset,
3771 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
3772 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
3773 }
3774
3775 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
3776
3777 if (fetch_size == 1) {
3778 channels[channel_start] = fetch_dst;
3779 } else {
3780 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
3781 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
3782 }
3783
3784 channel_start += fetch_size;
3785 }
3786
3787 if (!direct_fetch) {
3788 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3789 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3790
3791 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3792 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3793 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3794
3795 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3796 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3797 unsigned num_temp = 0;
3798 for (unsigned i = 0; i < dst.size(); i++) {
3799 unsigned idx = i + component;
3800 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
3801 Temp channel = channels[swizzle[idx]];
3802 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
3803 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
3804 vec->operands[i] = Operand(channel);
3805
3806 num_temp++;
3807 elems[i] = channel;
3808 } else if (is_float && idx == 3) {
3809 vec->operands[i] = Operand(0x3f800000u);
3810 } else if (!is_float && idx == 3) {
3811 vec->operands[i] = Operand(1u);
3812 } else {
3813 vec->operands[i] = Operand(0u);
3814 }
3815 }
3816 vec->definitions[0] = Definition(dst);
3817 ctx->block->instructions.emplace_back(std::move(vec));
3818 emit_split_vector(ctx, dst, dst.size());
3819
3820 if (num_temp == dst.size())
3821 ctx->allocated_vec.emplace(dst.id(), elems);
3822 }
3823 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
3824 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
3825 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
3826 if (off_instr->type != nir_instr_type_load_const ||
3827 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3828 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3829 nir_print_instr(off_instr, stderr);
3830 fprintf(stderr, "\n");
3831 }
3832
3833 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3834 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
3835 if (offset) {
3836 assert(offset->u32 == 0);
3837 } else {
3838 /* the lower 15bit of the prim_mask contain the offset into LDS
3839 * while the upper bits contain the number of prims */
3840 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
3841 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3842 Builder bld(ctx->program, ctx->block);
3843 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3844 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3845 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3846 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3847 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3848 }
3849
3850 unsigned idx = nir_intrinsic_base(instr);
3851 unsigned component = nir_intrinsic_component(instr);
3852 unsigned vertex_id = 2; /* P0 */
3853
3854 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
3855 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
3856 switch (src0->u32) {
3857 case 0:
3858 vertex_id = 2; /* P0 */
3859 break;
3860 case 1:
3861 vertex_id = 0; /* P10 */
3862 break;
3863 case 2:
3864 vertex_id = 1; /* P20 */
3865 break;
3866 default:
3867 unreachable("invalid vertex index");
3868 }
3869 }
3870
3871 if (dst.size() == 1) {
3872 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
3873 } else {
3874 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3875 for (unsigned i = 0; i < dst.size(); i++)
3876 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
3877 vec->definitions[0] = Definition(dst);
3878 bld.insert(std::move(vec));
3879 }
3880
3881 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3882 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3883 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
3884 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
3885 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
3886
3887 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
3888 } else {
3889 unreachable("Shader stage not implemented");
3890 }
3891 }
3892
3893 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
3894 {
3895 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3896
3897 Builder bld(ctx->program, ctx->block);
3898 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
3899 Temp vertex_offset;
3900
3901 if (!nir_src_is_const(*vertex_src)) {
3902 /* better code could be created, but this case probably doesn't happen
3903 * much in practice */
3904 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
3905 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
3906 Temp elem;
3907
3908 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3909 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
3910 if (i % 2u)
3911 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
3912 } else {
3913 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
3914 }
3915
3916 if (vertex_offset.id()) {
3917 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
3918 Operand(i), indirect_vertex);
3919 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
3920 } else {
3921 vertex_offset = elem;
3922 }
3923 }
3924
3925 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
3926 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
3927 } else {
3928 unsigned vertex = nir_src_as_uint(*vertex_src);
3929 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
3930 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
3931 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
3932 Operand((vertex % 2u) * 16u), Operand(16u));
3933 else
3934 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
3935 }
3936
3937 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
3938 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
3939 return offset_mul(ctx, offs, 4u);
3940 }
3941
3942 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3943 {
3944 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3945
3946 Builder bld(ctx->program, ctx->block);
3947 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3948 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3949
3950 if (ctx->stage == geometry_gs) {
3951 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
3952 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
3953 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
3954 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3955 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
3956 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3957 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
3958 } else {
3959 unreachable("Unsupported GS stage.");
3960 }
3961 }
3962
3963 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3964 {
3965 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3966
3967 Builder bld(ctx->program, ctx->block);
3968 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3969 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
3970 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3971 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3972
3973 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
3974 }
3975
3976 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3977 {
3978 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
3979
3980 Builder bld(ctx->program, ctx->block);
3981
3982 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3983 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3984 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3985
3986 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3987 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
3988
3989 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
3990 }
3991
3992 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3993 {
3994 switch (ctx->shader->info.stage) {
3995 case MESA_SHADER_GEOMETRY:
3996 visit_load_gs_per_vertex_input(ctx, instr);
3997 break;
3998 case MESA_SHADER_TESS_CTRL:
3999 visit_load_tcs_per_vertex_input(ctx, instr);
4000 break;
4001 case MESA_SHADER_TESS_EVAL:
4002 visit_load_tes_per_vertex_input(ctx, instr);
4003 break;
4004 default:
4005 unreachable("Unimplemented shader stage");
4006 }
4007 }
4008
4009 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4010 {
4011 visit_load_tcs_output(ctx, instr, true);
4012 }
4013
4014 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4015 {
4016 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4017 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4018
4019 visit_store_tcs_output(ctx, instr, true);
4020 }
4021
4022 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4023 {
4024 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4025
4026 Builder bld(ctx->program, ctx->block);
4027 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4028
4029 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4030 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4031 Operand tes_w(0u);
4032
4033 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4034 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4035 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4036 tes_w = Operand(tmp);
4037 }
4038
4039 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4040 emit_split_vector(ctx, tess_coord, 3);
4041 }
4042
4043 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4044 {
4045 if (ctx->program->info->need_indirect_descriptor_sets) {
4046 Builder bld(ctx->program, ctx->block);
4047 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4048 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4049 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4050 }
4051
4052 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4053 }
4054
4055
4056 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4057 {
4058 Builder bld(ctx->program, ctx->block);
4059 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4060 if (!ctx->divergent_vals[instr->dest.ssa.index])
4061 index = bld.as_uniform(index);
4062 unsigned desc_set = nir_intrinsic_desc_set(instr);
4063 unsigned binding = nir_intrinsic_binding(instr);
4064
4065 Temp desc_ptr;
4066 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4067 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4068 unsigned offset = layout->binding[binding].offset;
4069 unsigned stride;
4070 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4071 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4072 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4073 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4074 offset = pipeline_layout->push_constant_size + 16 * idx;
4075 stride = 16;
4076 } else {
4077 desc_ptr = load_desc_ptr(ctx, desc_set);
4078 stride = layout->binding[binding].size;
4079 }
4080
4081 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4082 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4083 if (stride != 1) {
4084 if (nir_const_index) {
4085 const_index = const_index * stride;
4086 } else if (index.type() == RegType::vgpr) {
4087 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4088 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4089 } else {
4090 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4091 }
4092 }
4093 if (offset) {
4094 if (nir_const_index) {
4095 const_index = const_index + offset;
4096 } else if (index.type() == RegType::vgpr) {
4097 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4098 } else {
4099 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4100 }
4101 }
4102
4103 if (nir_const_index && const_index == 0) {
4104 index = desc_ptr;
4105 } else if (index.type() == RegType::vgpr) {
4106 index = bld.vadd32(bld.def(v1),
4107 nir_const_index ? Operand(const_index) : Operand(index),
4108 Operand(desc_ptr));
4109 } else {
4110 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4111 nir_const_index ? Operand(const_index) : Operand(index),
4112 Operand(desc_ptr));
4113 }
4114
4115 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4116 }
4117
4118 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
4119 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
4120 {
4121 Builder bld(ctx->program, ctx->block);
4122
4123 unsigned num_bytes = dst.size() * 4;
4124 bool dlc = glc && ctx->options->chip_class >= GFX10;
4125
4126 aco_opcode op;
4127 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
4128 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4129 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4130 unsigned const_offset = 0;
4131
4132 Temp lower = Temp();
4133 if (num_bytes > 16) {
4134 assert(num_components == 3 || num_components == 4);
4135 op = aco_opcode::buffer_load_dwordx4;
4136 lower = bld.tmp(v4);
4137 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4138 mubuf->definitions[0] = Definition(lower);
4139 mubuf->operands[0] = Operand(rsrc);
4140 mubuf->operands[1] = vaddr;
4141 mubuf->operands[2] = soffset;
4142 mubuf->offen = (offset.type() == RegType::vgpr);
4143 mubuf->glc = glc;
4144 mubuf->dlc = dlc;
4145 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4146 mubuf->can_reorder = readonly;
4147 bld.insert(std::move(mubuf));
4148 emit_split_vector(ctx, lower, 2);
4149 num_bytes -= 16;
4150 const_offset = 16;
4151 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4152 /* GFX6 doesn't support loading vec3, expand to vec4. */
4153 num_bytes = 16;
4154 }
4155
4156 switch (num_bytes) {
4157 case 4:
4158 op = aco_opcode::buffer_load_dword;
4159 break;
4160 case 8:
4161 op = aco_opcode::buffer_load_dwordx2;
4162 break;
4163 case 12:
4164 assert(ctx->options->chip_class > GFX6);
4165 op = aco_opcode::buffer_load_dwordx3;
4166 break;
4167 case 16:
4168 op = aco_opcode::buffer_load_dwordx4;
4169 break;
4170 default:
4171 unreachable("Load SSBO not implemented for this size.");
4172 }
4173 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4174 mubuf->operands[0] = Operand(rsrc);
4175 mubuf->operands[1] = vaddr;
4176 mubuf->operands[2] = soffset;
4177 mubuf->offen = (offset.type() == RegType::vgpr);
4178 mubuf->glc = glc;
4179 mubuf->dlc = dlc;
4180 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4181 mubuf->can_reorder = readonly;
4182 mubuf->offset = const_offset;
4183 aco_ptr<Instruction> instr = std::move(mubuf);
4184
4185 if (dst.size() > 4) {
4186 assert(lower != Temp());
4187 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4188 instr->definitions[0] = Definition(upper);
4189 bld.insert(std::move(instr));
4190 if (dst.size() == 8)
4191 emit_split_vector(ctx, upper, 2);
4192 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4193 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4194 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4195 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4196 if (dst.size() == 8)
4197 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4198 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4199 Temp vec = bld.tmp(v4);
4200 instr->definitions[0] = Definition(vec);
4201 bld.insert(std::move(instr));
4202 emit_split_vector(ctx, vec, 4);
4203
4204 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4205 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4206 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4207 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4208 }
4209
4210 if (dst.type() == RegType::sgpr) {
4211 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4212 instr->definitions[0] = Definition(vec);
4213 bld.insert(std::move(instr));
4214 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4215 } else {
4216 instr->definitions[0] = Definition(dst);
4217 bld.insert(std::move(instr));
4218 emit_split_vector(ctx, dst, num_components);
4219 }
4220 } else {
4221 switch (num_bytes) {
4222 case 4:
4223 op = aco_opcode::s_buffer_load_dword;
4224 break;
4225 case 8:
4226 op = aco_opcode::s_buffer_load_dwordx2;
4227 break;
4228 case 12:
4229 case 16:
4230 op = aco_opcode::s_buffer_load_dwordx4;
4231 break;
4232 case 24:
4233 case 32:
4234 op = aco_opcode::s_buffer_load_dwordx8;
4235 break;
4236 default:
4237 unreachable("Load SSBO not implemented for this size.");
4238 }
4239 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4240 load->operands[0] = Operand(rsrc);
4241 load->operands[1] = Operand(bld.as_uniform(offset));
4242 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4243 load->definitions[0] = Definition(dst);
4244 load->glc = glc;
4245 load->dlc = dlc;
4246 load->barrier = readonly ? barrier_none : barrier_buffer;
4247 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4248 assert(ctx->options->chip_class >= GFX8 || !glc);
4249
4250 /* trim vector */
4251 if (dst.size() == 3) {
4252 Temp vec = bld.tmp(s4);
4253 load->definitions[0] = Definition(vec);
4254 bld.insert(std::move(load));
4255 emit_split_vector(ctx, vec, 4);
4256
4257 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4258 emit_extract_vector(ctx, vec, 0, s1),
4259 emit_extract_vector(ctx, vec, 1, s1),
4260 emit_extract_vector(ctx, vec, 2, s1));
4261 } else if (dst.size() == 6) {
4262 Temp vec = bld.tmp(s8);
4263 load->definitions[0] = Definition(vec);
4264 bld.insert(std::move(load));
4265 emit_split_vector(ctx, vec, 4);
4266
4267 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4268 emit_extract_vector(ctx, vec, 0, s2),
4269 emit_extract_vector(ctx, vec, 1, s2),
4270 emit_extract_vector(ctx, vec, 2, s2));
4271 } else {
4272 bld.insert(std::move(load));
4273 }
4274 emit_split_vector(ctx, dst, num_components);
4275 }
4276 }
4277
4278 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4279 {
4280 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4281 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4282
4283 Builder bld(ctx->program, ctx->block);
4284
4285 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4286 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4287 unsigned binding = nir_intrinsic_binding(idx_instr);
4288 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4289
4290 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4291 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4292 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4293 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4294 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4295 if (ctx->options->chip_class >= GFX10) {
4296 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4297 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4298 S_008F0C_RESOURCE_LEVEL(1);
4299 } else {
4300 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4301 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4302 }
4303 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4304 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4305 Operand(0xFFFFFFFFu),
4306 Operand(desc_type));
4307 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4308 rsrc, upper_dwords);
4309 } else {
4310 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4311 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4312 }
4313
4314 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
4315 }
4316
4317 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4318 {
4319 Builder bld(ctx->program, ctx->block);
4320 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4321
4322 unsigned offset = nir_intrinsic_base(instr);
4323 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4324 if (index_cv && instr->dest.ssa.bit_size == 32) {
4325
4326 unsigned count = instr->dest.ssa.num_components;
4327 unsigned start = (offset + index_cv->u32) / 4u;
4328 start -= ctx->args->ac.base_inline_push_consts;
4329 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4330 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4331 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4332 for (unsigned i = 0; i < count; ++i) {
4333 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4334 vec->operands[i] = Operand{elems[i]};
4335 }
4336 vec->definitions[0] = Definition(dst);
4337 ctx->block->instructions.emplace_back(std::move(vec));
4338 ctx->allocated_vec.emplace(dst.id(), elems);
4339 return;
4340 }
4341 }
4342
4343 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4344 if (offset != 0) // TODO check if index != 0 as well
4345 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4346 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4347 Temp vec = dst;
4348 bool trim = false;
4349 aco_opcode op;
4350
4351 switch (dst.size()) {
4352 case 1:
4353 op = aco_opcode::s_load_dword;
4354 break;
4355 case 2:
4356 op = aco_opcode::s_load_dwordx2;
4357 break;
4358 case 3:
4359 vec = bld.tmp(s4);
4360 trim = true;
4361 case 4:
4362 op = aco_opcode::s_load_dwordx4;
4363 break;
4364 case 6:
4365 vec = bld.tmp(s8);
4366 trim = true;
4367 case 8:
4368 op = aco_opcode::s_load_dwordx8;
4369 break;
4370 default:
4371 unreachable("unimplemented or forbidden load_push_constant.");
4372 }
4373
4374 bld.smem(op, Definition(vec), ptr, index);
4375
4376 if (trim) {
4377 emit_split_vector(ctx, vec, 4);
4378 RegClass rc = dst.size() == 3 ? s1 : s2;
4379 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4380 emit_extract_vector(ctx, vec, 0, rc),
4381 emit_extract_vector(ctx, vec, 1, rc),
4382 emit_extract_vector(ctx, vec, 2, rc));
4383
4384 }
4385 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4386 }
4387
4388 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4389 {
4390 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4391
4392 Builder bld(ctx->program, ctx->block);
4393
4394 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4395 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4396 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4397 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4398 if (ctx->options->chip_class >= GFX10) {
4399 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4400 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4401 S_008F0C_RESOURCE_LEVEL(1);
4402 } else {
4403 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4404 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4405 }
4406
4407 unsigned base = nir_intrinsic_base(instr);
4408 unsigned range = nir_intrinsic_range(instr);
4409
4410 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
4411 if (base && offset.type() == RegType::sgpr)
4412 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
4413 else if (base && offset.type() == RegType::vgpr)
4414 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
4415
4416 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4417 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
4418 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
4419 Operand(desc_type));
4420
4421 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
4422 }
4423
4424 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
4425 {
4426 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4427 ctx->cf_info.exec_potentially_empty_discard = true;
4428
4429 ctx->program->needs_exact = true;
4430
4431 // TODO: optimize uniform conditions
4432 Builder bld(ctx->program, ctx->block);
4433 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
4434 assert(src.regClass() == bld.lm);
4435 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
4436 bld.pseudo(aco_opcode::p_discard_if, src);
4437 ctx->block->kind |= block_kind_uses_discard_if;
4438 return;
4439 }
4440
4441 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
4442 {
4443 Builder bld(ctx->program, ctx->block);
4444
4445 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
4446 ctx->cf_info.exec_potentially_empty_discard = true;
4447
4448 bool divergent = ctx->cf_info.parent_if.is_divergent ||
4449 ctx->cf_info.parent_loop.has_divergent_continue;
4450
4451 if (ctx->block->loop_nest_depth &&
4452 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
4453 /* we handle discards the same way as jump instructions */
4454 append_logical_end(ctx->block);
4455
4456 /* in loops, discard behaves like break */
4457 Block *linear_target = ctx->cf_info.parent_loop.exit;
4458 ctx->block->kind |= block_kind_discard;
4459
4460 if (!divergent) {
4461 /* uniform discard - loop ends here */
4462 assert(nir_instr_is_last(&instr->instr));
4463 ctx->block->kind |= block_kind_uniform;
4464 ctx->cf_info.has_branch = true;
4465 bld.branch(aco_opcode::p_branch);
4466 add_linear_edge(ctx->block->index, linear_target);
4467 return;
4468 }
4469
4470 /* we add a break right behind the discard() instructions */
4471 ctx->block->kind |= block_kind_break;
4472 unsigned idx = ctx->block->index;
4473
4474 ctx->cf_info.parent_loop.has_divergent_branch = true;
4475 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
4476
4477 /* remove critical edges from linear CFG */
4478 bld.branch(aco_opcode::p_branch);
4479 Block* break_block = ctx->program->create_and_insert_block();
4480 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4481 break_block->kind |= block_kind_uniform;
4482 add_linear_edge(idx, break_block);
4483 add_linear_edge(break_block->index, linear_target);
4484 bld.reset(break_block);
4485 bld.branch(aco_opcode::p_branch);
4486
4487 Block* continue_block = ctx->program->create_and_insert_block();
4488 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
4489 add_linear_edge(idx, continue_block);
4490 append_logical_start(continue_block);
4491 ctx->block = continue_block;
4492
4493 return;
4494 }
4495
4496 /* it can currently happen that NIR doesn't remove the unreachable code */
4497 if (!nir_instr_is_last(&instr->instr)) {
4498 ctx->program->needs_exact = true;
4499 /* save exec somewhere temporarily so that it doesn't get
4500 * overwritten before the discard from outer exec masks */
4501 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
4502 bld.pseudo(aco_opcode::p_discard_if, cond);
4503 ctx->block->kind |= block_kind_uses_discard_if;
4504 return;
4505 }
4506
4507 /* This condition is incorrect for uniformly branched discards in a loop
4508 * predicated by a divergent condition, but the above code catches that case
4509 * and the discard would end up turning into a discard_if.
4510 * For example:
4511 * if (divergent) {
4512 * while (...) {
4513 * if (uniform) {
4514 * discard;
4515 * }
4516 * }
4517 * }
4518 */
4519 if (!ctx->cf_info.parent_if.is_divergent) {
4520 /* program just ends here */
4521 ctx->block->kind |= block_kind_uniform;
4522 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
4523 0 /* enabled mask */, 9 /* dest */,
4524 false /* compressed */, true/* done */, true /* valid mask */);
4525 bld.sopp(aco_opcode::s_endpgm);
4526 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
4527 } else {
4528 ctx->block->kind |= block_kind_discard;
4529 /* branch and linear edge is added by visit_if() */
4530 }
4531 }
4532
4533 enum aco_descriptor_type {
4534 ACO_DESC_IMAGE,
4535 ACO_DESC_FMASK,
4536 ACO_DESC_SAMPLER,
4537 ACO_DESC_BUFFER,
4538 ACO_DESC_PLANE_0,
4539 ACO_DESC_PLANE_1,
4540 ACO_DESC_PLANE_2,
4541 };
4542
4543 static bool
4544 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
4545 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
4546 return false;
4547 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
4548 return dim == ac_image_cube ||
4549 dim == ac_image_1darray ||
4550 dim == ac_image_2darray ||
4551 dim == ac_image_2darraymsaa;
4552 }
4553
4554 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
4555 enum aco_descriptor_type desc_type,
4556 const nir_tex_instr *tex_instr, bool image, bool write)
4557 {
4558 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
4559 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
4560 if (it != ctx->tex_desc.end())
4561 return it->second;
4562 */
4563 Temp index = Temp();
4564 bool index_set = false;
4565 unsigned constant_index = 0;
4566 unsigned descriptor_set;
4567 unsigned base_index;
4568 Builder bld(ctx->program, ctx->block);
4569
4570 if (!deref_instr) {
4571 assert(tex_instr && !image);
4572 descriptor_set = 0;
4573 base_index = tex_instr->sampler_index;
4574 } else {
4575 while(deref_instr->deref_type != nir_deref_type_var) {
4576 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
4577 if (!array_size)
4578 array_size = 1;
4579
4580 assert(deref_instr->deref_type == nir_deref_type_array);
4581 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
4582 if (const_value) {
4583 constant_index += array_size * const_value->u32;
4584 } else {
4585 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
4586 if (indirect.type() == RegType::vgpr)
4587 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
4588
4589 if (array_size != 1)
4590 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
4591
4592 if (!index_set) {
4593 index = indirect;
4594 index_set = true;
4595 } else {
4596 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
4597 }
4598 }
4599
4600 deref_instr = nir_src_as_deref(deref_instr->parent);
4601 }
4602 descriptor_set = deref_instr->var->data.descriptor_set;
4603 base_index = deref_instr->var->data.binding;
4604 }
4605
4606 Temp list = load_desc_ptr(ctx, descriptor_set);
4607 list = convert_pointer_to_64_bit(ctx, list);
4608
4609 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
4610 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
4611 unsigned offset = binding->offset;
4612 unsigned stride = binding->size;
4613 aco_opcode opcode;
4614 RegClass type;
4615
4616 assert(base_index < layout->binding_count);
4617
4618 switch (desc_type) {
4619 case ACO_DESC_IMAGE:
4620 type = s8;
4621 opcode = aco_opcode::s_load_dwordx8;
4622 break;
4623 case ACO_DESC_FMASK:
4624 type = s8;
4625 opcode = aco_opcode::s_load_dwordx8;
4626 offset += 32;
4627 break;
4628 case ACO_DESC_SAMPLER:
4629 type = s4;
4630 opcode = aco_opcode::s_load_dwordx4;
4631 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4632 offset += radv_combined_image_descriptor_sampler_offset(binding);
4633 break;
4634 case ACO_DESC_BUFFER:
4635 type = s4;
4636 opcode = aco_opcode::s_load_dwordx4;
4637 break;
4638 case ACO_DESC_PLANE_0:
4639 case ACO_DESC_PLANE_1:
4640 type = s8;
4641 opcode = aco_opcode::s_load_dwordx8;
4642 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
4643 break;
4644 case ACO_DESC_PLANE_2:
4645 type = s4;
4646 opcode = aco_opcode::s_load_dwordx4;
4647 offset += 64;
4648 break;
4649 default:
4650 unreachable("invalid desc_type\n");
4651 }
4652
4653 offset += constant_index * stride;
4654
4655 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
4656 (!index_set || binding->immutable_samplers_equal)) {
4657 if (binding->immutable_samplers_equal)
4658 constant_index = 0;
4659
4660 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4661 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4662 Operand(samplers[constant_index * 4 + 0]),
4663 Operand(samplers[constant_index * 4 + 1]),
4664 Operand(samplers[constant_index * 4 + 2]),
4665 Operand(samplers[constant_index * 4 + 3]));
4666 }
4667
4668 Operand off;
4669 if (!index_set) {
4670 off = bld.copy(bld.def(s1), Operand(offset));
4671 } else {
4672 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
4673 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
4674 }
4675
4676 Temp res = bld.smem(opcode, bld.def(type), list, off);
4677
4678 if (desc_type == ACO_DESC_PLANE_2) {
4679 Temp components[8];
4680 for (unsigned i = 0; i < 8; i++)
4681 components[i] = bld.tmp(s1);
4682 bld.pseudo(aco_opcode::p_split_vector,
4683 Definition(components[0]),
4684 Definition(components[1]),
4685 Definition(components[2]),
4686 Definition(components[3]),
4687 res);
4688
4689 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
4690 bld.pseudo(aco_opcode::p_split_vector,
4691 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
4692 Definition(components[4]),
4693 Definition(components[5]),
4694 Definition(components[6]),
4695 Definition(components[7]),
4696 desc2);
4697
4698 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
4699 components[0], components[1], components[2], components[3],
4700 components[4], components[5], components[6], components[7]);
4701 }
4702
4703 return res;
4704 }
4705
4706 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
4707 {
4708 switch (dim) {
4709 case GLSL_SAMPLER_DIM_BUF:
4710 return 1;
4711 case GLSL_SAMPLER_DIM_1D:
4712 return array ? 2 : 1;
4713 case GLSL_SAMPLER_DIM_2D:
4714 return array ? 3 : 2;
4715 case GLSL_SAMPLER_DIM_MS:
4716 return array ? 4 : 3;
4717 case GLSL_SAMPLER_DIM_3D:
4718 case GLSL_SAMPLER_DIM_CUBE:
4719 return 3;
4720 case GLSL_SAMPLER_DIM_RECT:
4721 case GLSL_SAMPLER_DIM_SUBPASS:
4722 return 2;
4723 case GLSL_SAMPLER_DIM_SUBPASS_MS:
4724 return 3;
4725 default:
4726 break;
4727 }
4728 return 0;
4729 }
4730
4731
4732 /* Adjust the sample index according to FMASK.
4733 *
4734 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4735 * which is the identity mapping. Each nibble says which physical sample
4736 * should be fetched to get that sample.
4737 *
4738 * For example, 0x11111100 means there are only 2 samples stored and
4739 * the second sample covers 3/4 of the pixel. When reading samples 0
4740 * and 1, return physical sample 0 (determined by the first two 0s
4741 * in FMASK), otherwise return physical sample 1.
4742 *
4743 * The sample index should be adjusted as follows:
4744 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4745 */
4746 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
4747 {
4748 Builder bld(ctx->program, ctx->block);
4749 Temp fmask = bld.tmp(v1);
4750 unsigned dim = ctx->options->chip_class >= GFX10
4751 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
4752 : 0;
4753
4754 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
4755 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
4756 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
4757 load->operands[0] = Operand(fmask_desc_ptr);
4758 load->operands[1] = Operand(s4); /* no sampler */
4759 load->operands[2] = Operand(coord);
4760 load->definitions[0] = Definition(fmask);
4761 load->glc = false;
4762 load->dlc = false;
4763 load->dmask = 0x1;
4764 load->unrm = true;
4765 load->da = da;
4766 load->dim = dim;
4767 load->can_reorder = true; /* fmask images shouldn't be modified */
4768 ctx->block->instructions.emplace_back(std::move(load));
4769
4770 Operand sample_index4;
4771 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4772 sample_index4 = Operand(sample_index.constantValue() << 2);
4773 } else if (sample_index.regClass() == s1) {
4774 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4775 } else {
4776 assert(sample_index.regClass() == v1);
4777 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4778 }
4779
4780 Temp final_sample;
4781 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4782 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4783 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4784 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4785 else
4786 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4787
4788 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4789 * resource descriptor is 0 (invalid),
4790 */
4791 Temp compare = bld.tmp(bld.lm);
4792 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4793 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4794
4795 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4796
4797 /* Replace the MSAA sample index. */
4798 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4799 }
4800
4801 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4802 {
4803
4804 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4805 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4806 bool is_array = glsl_sampler_type_is_array(type);
4807 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4808 assert(!add_frag_pos && "Input attachments should be lowered.");
4809 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4810 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4811 int count = image_type_to_components_count(dim, is_array);
4812 std::vector<Temp> coords(count);
4813 Builder bld(ctx->program, ctx->block);
4814
4815 if (is_ms) {
4816 count--;
4817 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
4818 /* get sample index */
4819 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4820 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4821 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
4822 std::vector<Temp> fmask_load_address;
4823 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
4824 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
4825
4826 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4827 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
4828 } else {
4829 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
4830 }
4831 }
4832
4833 if (gfx9_1d) {
4834 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
4835 coords.resize(coords.size() + 1);
4836 coords[1] = bld.copy(bld.def(v1), Operand(0u));
4837 if (is_array)
4838 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
4839 } else {
4840 for (int i = 0; i < count; i++)
4841 coords[i] = emit_extract_vector(ctx, src0, i, v1);
4842 }
4843
4844 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4845 instr->intrinsic == nir_intrinsic_image_deref_store) {
4846 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4847 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4848
4849 if (!level_zero)
4850 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
4851 }
4852
4853 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4854 for (unsigned i = 0; i < coords.size(); i++)
4855 vec->operands[i] = Operand(coords[i]);
4856 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4857 vec->definitions[0] = Definition(res);
4858 ctx->block->instructions.emplace_back(std::move(vec));
4859 return res;
4860 }
4861
4862
4863 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4864 {
4865 Builder bld(ctx->program, ctx->block);
4866 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4867 const struct glsl_type *type = glsl_without_array(var->type);
4868 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4869 bool is_array = glsl_sampler_type_is_array(type);
4870 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4871
4872 if (dim == GLSL_SAMPLER_DIM_BUF) {
4873 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4874 unsigned num_channels = util_last_bit(mask);
4875 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4876 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4877
4878 aco_opcode opcode;
4879 switch (num_channels) {
4880 case 1:
4881 opcode = aco_opcode::buffer_load_format_x;
4882 break;
4883 case 2:
4884 opcode = aco_opcode::buffer_load_format_xy;
4885 break;
4886 case 3:
4887 opcode = aco_opcode::buffer_load_format_xyz;
4888 break;
4889 case 4:
4890 opcode = aco_opcode::buffer_load_format_xyzw;
4891 break;
4892 default:
4893 unreachable(">4 channel buffer image load");
4894 }
4895 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4896 load->operands[0] = Operand(rsrc);
4897 load->operands[1] = Operand(vindex);
4898 load->operands[2] = Operand((uint32_t) 0);
4899 Temp tmp;
4900 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4901 tmp = dst;
4902 else
4903 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4904 load->definitions[0] = Definition(tmp);
4905 load->idxen = true;
4906 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4907 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4908 load->barrier = barrier_image;
4909 ctx->block->instructions.emplace_back(std::move(load));
4910
4911 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4912 return;
4913 }
4914
4915 Temp coords = get_image_coords(ctx, instr, type);
4916 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4917
4918 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4919 unsigned num_components = util_bitcount(dmask);
4920 Temp tmp;
4921 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4922 tmp = dst;
4923 else
4924 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4925
4926 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4927 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4928
4929 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
4930 load->operands[0] = Operand(resource);
4931 load->operands[1] = Operand(s4); /* no sampler */
4932 load->operands[2] = Operand(coords);
4933 load->definitions[0] = Definition(tmp);
4934 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4935 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4936 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4937 load->dmask = dmask;
4938 load->unrm = true;
4939 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4940 load->barrier = barrier_image;
4941 ctx->block->instructions.emplace_back(std::move(load));
4942
4943 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4944 return;
4945 }
4946
4947 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4948 {
4949 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4950 const struct glsl_type *type = glsl_without_array(var->type);
4951 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4952 bool is_array = glsl_sampler_type_is_array(type);
4953 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4954
4955 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4956
4957 if (dim == GLSL_SAMPLER_DIM_BUF) {
4958 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4959 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4960 aco_opcode opcode;
4961 switch (data.size()) {
4962 case 1:
4963 opcode = aco_opcode::buffer_store_format_x;
4964 break;
4965 case 2:
4966 opcode = aco_opcode::buffer_store_format_xy;
4967 break;
4968 case 3:
4969 opcode = aco_opcode::buffer_store_format_xyz;
4970 break;
4971 case 4:
4972 opcode = aco_opcode::buffer_store_format_xyzw;
4973 break;
4974 default:
4975 unreachable(">4 channel buffer image store");
4976 }
4977 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4978 store->operands[0] = Operand(rsrc);
4979 store->operands[1] = Operand(vindex);
4980 store->operands[2] = Operand((uint32_t) 0);
4981 store->operands[3] = Operand(data);
4982 store->idxen = true;
4983 store->glc = glc;
4984 store->dlc = false;
4985 store->disable_wqm = true;
4986 store->barrier = barrier_image;
4987 ctx->program->needs_exact = true;
4988 ctx->block->instructions.emplace_back(std::move(store));
4989 return;
4990 }
4991
4992 assert(data.type() == RegType::vgpr);
4993 Temp coords = get_image_coords(ctx, instr, type);
4994 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4995
4996 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
4997 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
4998
4999 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5000 store->operands[0] = Operand(resource);
5001 store->operands[1] = Operand(data);
5002 store->operands[2] = Operand(coords);
5003 store->glc = glc;
5004 store->dlc = false;
5005 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5006 store->dmask = (1 << data.size()) - 1;
5007 store->unrm = true;
5008 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5009 store->disable_wqm = true;
5010 store->barrier = barrier_image;
5011 ctx->program->needs_exact = true;
5012 ctx->block->instructions.emplace_back(std::move(store));
5013 return;
5014 }
5015
5016 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5017 {
5018 /* return the previous value if dest is ever used */
5019 bool return_previous = false;
5020 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5021 return_previous = true;
5022 break;
5023 }
5024 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5025 return_previous = true;
5026 break;
5027 }
5028
5029 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5030 const struct glsl_type *type = glsl_without_array(var->type);
5031 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5032 bool is_array = glsl_sampler_type_is_array(type);
5033 Builder bld(ctx->program, ctx->block);
5034
5035 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5036 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5037
5038 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5039 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5040
5041 aco_opcode buf_op, image_op;
5042 switch (instr->intrinsic) {
5043 case nir_intrinsic_image_deref_atomic_add:
5044 buf_op = aco_opcode::buffer_atomic_add;
5045 image_op = aco_opcode::image_atomic_add;
5046 break;
5047 case nir_intrinsic_image_deref_atomic_umin:
5048 buf_op = aco_opcode::buffer_atomic_umin;
5049 image_op = aco_opcode::image_atomic_umin;
5050 break;
5051 case nir_intrinsic_image_deref_atomic_imin:
5052 buf_op = aco_opcode::buffer_atomic_smin;
5053 image_op = aco_opcode::image_atomic_smin;
5054 break;
5055 case nir_intrinsic_image_deref_atomic_umax:
5056 buf_op = aco_opcode::buffer_atomic_umax;
5057 image_op = aco_opcode::image_atomic_umax;
5058 break;
5059 case nir_intrinsic_image_deref_atomic_imax:
5060 buf_op = aco_opcode::buffer_atomic_smax;
5061 image_op = aco_opcode::image_atomic_smax;
5062 break;
5063 case nir_intrinsic_image_deref_atomic_and:
5064 buf_op = aco_opcode::buffer_atomic_and;
5065 image_op = aco_opcode::image_atomic_and;
5066 break;
5067 case nir_intrinsic_image_deref_atomic_or:
5068 buf_op = aco_opcode::buffer_atomic_or;
5069 image_op = aco_opcode::image_atomic_or;
5070 break;
5071 case nir_intrinsic_image_deref_atomic_xor:
5072 buf_op = aco_opcode::buffer_atomic_xor;
5073 image_op = aco_opcode::image_atomic_xor;
5074 break;
5075 case nir_intrinsic_image_deref_atomic_exchange:
5076 buf_op = aco_opcode::buffer_atomic_swap;
5077 image_op = aco_opcode::image_atomic_swap;
5078 break;
5079 case nir_intrinsic_image_deref_atomic_comp_swap:
5080 buf_op = aco_opcode::buffer_atomic_cmpswap;
5081 image_op = aco_opcode::image_atomic_cmpswap;
5082 break;
5083 default:
5084 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5085 }
5086
5087 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5088
5089 if (dim == GLSL_SAMPLER_DIM_BUF) {
5090 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5091 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5092 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5093 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5094 mubuf->operands[0] = Operand(resource);
5095 mubuf->operands[1] = Operand(vindex);
5096 mubuf->operands[2] = Operand((uint32_t)0);
5097 mubuf->operands[3] = Operand(data);
5098 if (return_previous)
5099 mubuf->definitions[0] = Definition(dst);
5100 mubuf->offset = 0;
5101 mubuf->idxen = true;
5102 mubuf->glc = return_previous;
5103 mubuf->dlc = false; /* Not needed for atomics */
5104 mubuf->disable_wqm = true;
5105 mubuf->barrier = barrier_image;
5106 ctx->program->needs_exact = true;
5107 ctx->block->instructions.emplace_back(std::move(mubuf));
5108 return;
5109 }
5110
5111 Temp coords = get_image_coords(ctx, instr, type);
5112 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5113 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5114 mimg->operands[0] = Operand(resource);
5115 mimg->operands[1] = Operand(data);
5116 mimg->operands[2] = Operand(coords);
5117 if (return_previous)
5118 mimg->definitions[0] = Definition(dst);
5119 mimg->glc = return_previous;
5120 mimg->dlc = false; /* Not needed for atomics */
5121 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5122 mimg->dmask = (1 << data.size()) - 1;
5123 mimg->unrm = true;
5124 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5125 mimg->disable_wqm = true;
5126 mimg->barrier = barrier_image;
5127 ctx->program->needs_exact = true;
5128 ctx->block->instructions.emplace_back(std::move(mimg));
5129 return;
5130 }
5131
5132 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5133 {
5134 if (in_elements && ctx->options->chip_class == GFX8) {
5135 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5136 Builder bld(ctx->program, ctx->block);
5137
5138 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5139
5140 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5141 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5142
5143 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5144 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5145
5146 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5147 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5148
5149 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5150 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5151 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5152 if (dst.type() == RegType::vgpr)
5153 bld.copy(Definition(dst), shr_dst);
5154
5155 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5156 } else {
5157 emit_extract_vector(ctx, desc, 2, dst);
5158 }
5159 }
5160
5161 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5162 {
5163 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5164 const struct glsl_type *type = glsl_without_array(var->type);
5165 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5166 bool is_array = glsl_sampler_type_is_array(type);
5167 Builder bld(ctx->program, ctx->block);
5168
5169 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5170 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5171 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5172 }
5173
5174 /* LOD */
5175 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5176
5177 /* Resource */
5178 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5179
5180 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5181
5182 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5183 mimg->operands[0] = Operand(resource);
5184 mimg->operands[1] = Operand(s4); /* no sampler */
5185 mimg->operands[2] = Operand(lod);
5186 uint8_t& dmask = mimg->dmask;
5187 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5188 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
5189 mimg->da = glsl_sampler_type_is_array(type);
5190 mimg->can_reorder = true;
5191 Definition& def = mimg->definitions[0];
5192 ctx->block->instructions.emplace_back(std::move(mimg));
5193
5194 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
5195 glsl_sampler_type_is_array(type)) {
5196
5197 assert(instr->dest.ssa.num_components == 3);
5198 Temp tmp = {ctx->program->allocateId(), v3};
5199 def = Definition(tmp);
5200 emit_split_vector(ctx, tmp, 3);
5201
5202 /* divide 3rd value by 6 by multiplying with magic number */
5203 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
5204 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
5205
5206 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5207 emit_extract_vector(ctx, tmp, 0, v1),
5208 emit_extract_vector(ctx, tmp, 1, v1),
5209 by_6);
5210
5211 } else if (ctx->options->chip_class == GFX9 &&
5212 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
5213 glsl_sampler_type_is_array(type)) {
5214 assert(instr->dest.ssa.num_components == 2);
5215 def = Definition(dst);
5216 dmask = 0x5;
5217 } else {
5218 def = Definition(dst);
5219 }
5220
5221 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5222 }
5223
5224 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5225 {
5226 Builder bld(ctx->program, ctx->block);
5227 unsigned num_components = instr->num_components;
5228
5229 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5230 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5231 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5232
5233 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5234 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
5235 }
5236
5237 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5238 {
5239 Builder bld(ctx->program, ctx->block);
5240 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5241 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5242 unsigned writemask = nir_intrinsic_write_mask(instr);
5243 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5244
5245 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5246 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5247
5248 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5249 ctx->options->chip_class >= GFX8;
5250 if (smem)
5251 offset = bld.as_uniform(offset);
5252 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5253
5254 while (writemask) {
5255 int start, count;
5256 u_bit_scan_consecutive_range(&writemask, &start, &count);
5257 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5258 /* GFX6 doesn't support storing vec3, split it. */
5259 writemask |= 1u << (start + 2);
5260 count = 2;
5261 }
5262 int num_bytes = count * elem_size_bytes;
5263
5264 if (num_bytes > 16) {
5265 assert(elem_size_bytes == 8);
5266 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5267 count = 2;
5268 num_bytes = 16;
5269 }
5270
5271 // TODO: check alignment of sub-dword stores
5272 // TODO: split 3 bytes. there is no store instruction for that
5273
5274 Temp write_data;
5275 if (count != instr->num_components) {
5276 emit_split_vector(ctx, data, instr->num_components);
5277 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5278 for (int i = 0; i < count; i++) {
5279 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5280 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5281 }
5282 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5283 vec->definitions[0] = Definition(write_data);
5284 ctx->block->instructions.emplace_back(std::move(vec));
5285 } else if (!smem && data.type() != RegType::vgpr) {
5286 assert(num_bytes % 4 == 0);
5287 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5288 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5289 assert(num_bytes % 4 == 0);
5290 write_data = bld.as_uniform(data);
5291 } else {
5292 write_data = data;
5293 }
5294
5295 aco_opcode vmem_op, smem_op;
5296 switch (num_bytes) {
5297 case 4:
5298 vmem_op = aco_opcode::buffer_store_dword;
5299 smem_op = aco_opcode::s_buffer_store_dword;
5300 break;
5301 case 8:
5302 vmem_op = aco_opcode::buffer_store_dwordx2;
5303 smem_op = aco_opcode::s_buffer_store_dwordx2;
5304 break;
5305 case 12:
5306 vmem_op = aco_opcode::buffer_store_dwordx3;
5307 smem_op = aco_opcode::last_opcode;
5308 assert(!smem && ctx->options->chip_class > GFX6);
5309 break;
5310 case 16:
5311 vmem_op = aco_opcode::buffer_store_dwordx4;
5312 smem_op = aco_opcode::s_buffer_store_dwordx4;
5313 break;
5314 default:
5315 unreachable("Store SSBO not implemented for this size.");
5316 }
5317 if (ctx->stage == fragment_fs)
5318 smem_op = aco_opcode::p_fs_buffer_store_smem;
5319
5320 if (smem) {
5321 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5322 store->operands[0] = Operand(rsrc);
5323 if (start) {
5324 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5325 offset, Operand(start * elem_size_bytes));
5326 store->operands[1] = Operand(off);
5327 } else {
5328 store->operands[1] = Operand(offset);
5329 }
5330 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5331 store->operands[1].setFixed(m0);
5332 store->operands[2] = Operand(write_data);
5333 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5334 store->dlc = false;
5335 store->disable_wqm = true;
5336 store->barrier = barrier_buffer;
5337 ctx->block->instructions.emplace_back(std::move(store));
5338 ctx->program->wb_smem_l1_on_end = true;
5339 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
5340 ctx->block->kind |= block_kind_needs_lowering;
5341 ctx->program->needs_exact = true;
5342 }
5343 } else {
5344 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
5345 store->operands[0] = Operand(rsrc);
5346 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5347 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5348 store->operands[3] = Operand(write_data);
5349 store->offset = start * elem_size_bytes;
5350 store->offen = (offset.type() == RegType::vgpr);
5351 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5352 store->dlc = false;
5353 store->disable_wqm = true;
5354 store->barrier = barrier_buffer;
5355 ctx->program->needs_exact = true;
5356 ctx->block->instructions.emplace_back(std::move(store));
5357 }
5358 }
5359 }
5360
5361 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5362 {
5363 /* return the previous value if dest is ever used */
5364 bool return_previous = false;
5365 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5366 return_previous = true;
5367 break;
5368 }
5369 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5370 return_previous = true;
5371 break;
5372 }
5373
5374 Builder bld(ctx->program, ctx->block);
5375 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
5376
5377 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
5378 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5379 get_ssa_temp(ctx, instr->src[3].ssa), data);
5380
5381 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
5382 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5383 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5384
5385 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5386
5387 aco_opcode op32, op64;
5388 switch (instr->intrinsic) {
5389 case nir_intrinsic_ssbo_atomic_add:
5390 op32 = aco_opcode::buffer_atomic_add;
5391 op64 = aco_opcode::buffer_atomic_add_x2;
5392 break;
5393 case nir_intrinsic_ssbo_atomic_imin:
5394 op32 = aco_opcode::buffer_atomic_smin;
5395 op64 = aco_opcode::buffer_atomic_smin_x2;
5396 break;
5397 case nir_intrinsic_ssbo_atomic_umin:
5398 op32 = aco_opcode::buffer_atomic_umin;
5399 op64 = aco_opcode::buffer_atomic_umin_x2;
5400 break;
5401 case nir_intrinsic_ssbo_atomic_imax:
5402 op32 = aco_opcode::buffer_atomic_smax;
5403 op64 = aco_opcode::buffer_atomic_smax_x2;
5404 break;
5405 case nir_intrinsic_ssbo_atomic_umax:
5406 op32 = aco_opcode::buffer_atomic_umax;
5407 op64 = aco_opcode::buffer_atomic_umax_x2;
5408 break;
5409 case nir_intrinsic_ssbo_atomic_and:
5410 op32 = aco_opcode::buffer_atomic_and;
5411 op64 = aco_opcode::buffer_atomic_and_x2;
5412 break;
5413 case nir_intrinsic_ssbo_atomic_or:
5414 op32 = aco_opcode::buffer_atomic_or;
5415 op64 = aco_opcode::buffer_atomic_or_x2;
5416 break;
5417 case nir_intrinsic_ssbo_atomic_xor:
5418 op32 = aco_opcode::buffer_atomic_xor;
5419 op64 = aco_opcode::buffer_atomic_xor_x2;
5420 break;
5421 case nir_intrinsic_ssbo_atomic_exchange:
5422 op32 = aco_opcode::buffer_atomic_swap;
5423 op64 = aco_opcode::buffer_atomic_swap_x2;
5424 break;
5425 case nir_intrinsic_ssbo_atomic_comp_swap:
5426 op32 = aco_opcode::buffer_atomic_cmpswap;
5427 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5428 break;
5429 default:
5430 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
5431 }
5432 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5433 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5434 mubuf->operands[0] = Operand(rsrc);
5435 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
5436 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
5437 mubuf->operands[3] = Operand(data);
5438 if (return_previous)
5439 mubuf->definitions[0] = Definition(dst);
5440 mubuf->offset = 0;
5441 mubuf->offen = (offset.type() == RegType::vgpr);
5442 mubuf->glc = return_previous;
5443 mubuf->dlc = false; /* Not needed for atomics */
5444 mubuf->disable_wqm = true;
5445 mubuf->barrier = barrier_buffer;
5446 ctx->program->needs_exact = true;
5447 ctx->block->instructions.emplace_back(std::move(mubuf));
5448 }
5449
5450 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
5451
5452 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5453 Builder bld(ctx->program, ctx->block);
5454 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
5455 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
5456 }
5457
5458 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
5459 {
5460 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5461 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5462
5463 if (addr.type() == RegType::vgpr)
5464 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
5465 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
5466 }
5467
5468 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
5469 {
5470 Builder bld(ctx->program, ctx->block);
5471 unsigned num_components = instr->num_components;
5472 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
5473
5474 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5475 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5476
5477 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5478 bool dlc = glc && ctx->options->chip_class >= GFX10;
5479 aco_opcode op;
5480 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
5481 bool global = ctx->options->chip_class >= GFX9;
5482
5483 if (ctx->options->chip_class >= GFX7) {
5484 aco_opcode op;
5485 switch (num_bytes) {
5486 case 4:
5487 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
5488 break;
5489 case 8:
5490 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
5491 break;
5492 case 12:
5493 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
5494 break;
5495 case 16:
5496 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
5497 break;
5498 default:
5499 unreachable("load_global not implemented for this size.");
5500 }
5501
5502 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
5503 flat->operands[0] = Operand(addr);
5504 flat->operands[1] = Operand(s1);
5505 flat->glc = glc;
5506 flat->dlc = dlc;
5507 flat->barrier = barrier_buffer;
5508
5509 if (dst.type() == RegType::sgpr) {
5510 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5511 flat->definitions[0] = Definition(vec);
5512 ctx->block->instructions.emplace_back(std::move(flat));
5513 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5514 } else {
5515 flat->definitions[0] = Definition(dst);
5516 ctx->block->instructions.emplace_back(std::move(flat));
5517 }
5518 emit_split_vector(ctx, dst, num_components);
5519 } else {
5520 assert(ctx->options->chip_class == GFX6);
5521
5522 /* GFX6 doesn't support loading vec3, expand to vec4. */
5523 num_bytes = num_bytes == 12 ? 16 : num_bytes;
5524
5525 aco_opcode op;
5526 switch (num_bytes) {
5527 case 4:
5528 op = aco_opcode::buffer_load_dword;
5529 break;
5530 case 8:
5531 op = aco_opcode::buffer_load_dwordx2;
5532 break;
5533 case 16:
5534 op = aco_opcode::buffer_load_dwordx4;
5535 break;
5536 default:
5537 unreachable("load_global not implemented for this size.");
5538 }
5539
5540 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5541
5542 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
5543 mubuf->operands[0] = Operand(rsrc);
5544 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5545 mubuf->operands[2] = Operand(0u);
5546 mubuf->glc = glc;
5547 mubuf->dlc = false;
5548 mubuf->offset = 0;
5549 mubuf->addr64 = addr.type() == RegType::vgpr;
5550 mubuf->disable_wqm = false;
5551 mubuf->barrier = barrier_buffer;
5552 aco_ptr<Instruction> instr = std::move(mubuf);
5553
5554 /* expand vector */
5555 if (dst.size() == 3) {
5556 Temp vec = bld.tmp(v4);
5557 instr->definitions[0] = Definition(vec);
5558 bld.insert(std::move(instr));
5559 emit_split_vector(ctx, vec, 4);
5560
5561 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
5562 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
5563 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
5564 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
5565 }
5566
5567 if (dst.type() == RegType::sgpr) {
5568 Temp vec = bld.tmp(RegType::vgpr, dst.size());
5569 instr->definitions[0] = Definition(vec);
5570 bld.insert(std::move(instr));
5571 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
5572 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
5573 } else {
5574 instr->definitions[0] = Definition(dst);
5575 bld.insert(std::move(instr));
5576 emit_split_vector(ctx, dst, num_components);
5577 }
5578 }
5579 } else {
5580 switch (num_bytes) {
5581 case 4:
5582 op = aco_opcode::s_load_dword;
5583 break;
5584 case 8:
5585 op = aco_opcode::s_load_dwordx2;
5586 break;
5587 case 12:
5588 case 16:
5589 op = aco_opcode::s_load_dwordx4;
5590 break;
5591 default:
5592 unreachable("load_global not implemented for this size.");
5593 }
5594 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
5595 load->operands[0] = Operand(addr);
5596 load->operands[1] = Operand(0u);
5597 load->definitions[0] = Definition(dst);
5598 load->glc = glc;
5599 load->dlc = dlc;
5600 load->barrier = barrier_buffer;
5601 assert(ctx->options->chip_class >= GFX8 || !glc);
5602
5603 if (dst.size() == 3) {
5604 /* trim vector */
5605 Temp vec = bld.tmp(s4);
5606 load->definitions[0] = Definition(vec);
5607 ctx->block->instructions.emplace_back(std::move(load));
5608 emit_split_vector(ctx, vec, 4);
5609
5610 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5611 emit_extract_vector(ctx, vec, 0, s1),
5612 emit_extract_vector(ctx, vec, 1, s1),
5613 emit_extract_vector(ctx, vec, 2, s1));
5614 } else {
5615 ctx->block->instructions.emplace_back(std::move(load));
5616 }
5617 }
5618 }
5619
5620 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
5621 {
5622 Builder bld(ctx->program, ctx->block);
5623 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5624
5625 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5626 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
5627
5628 if (ctx->options->chip_class >= GFX7)
5629 addr = as_vgpr(ctx, addr);
5630
5631 unsigned writemask = nir_intrinsic_write_mask(instr);
5632 while (writemask) {
5633 int start, count;
5634 u_bit_scan_consecutive_range(&writemask, &start, &count);
5635 if (count == 3 && ctx->options->chip_class == GFX6) {
5636 /* GFX6 doesn't support storing vec3, split it. */
5637 writemask |= 1u << (start + 2);
5638 count = 2;
5639 }
5640 unsigned num_bytes = count * elem_size_bytes;
5641
5642 Temp write_data = data;
5643 if (count != instr->num_components) {
5644 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5645 for (int i = 0; i < count; i++)
5646 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
5647 write_data = bld.tmp(RegType::vgpr, count);
5648 vec->definitions[0] = Definition(write_data);
5649 ctx->block->instructions.emplace_back(std::move(vec));
5650 }
5651
5652 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5653 unsigned offset = start * elem_size_bytes;
5654
5655 if (ctx->options->chip_class >= GFX7) {
5656 if (offset > 0 && ctx->options->chip_class < GFX9) {
5657 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
5658 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
5659 Temp carry = bld.tmp(bld.lm);
5660 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
5661
5662 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
5663 Operand(offset), addr0);
5664 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
5665 Operand(0u), addr1,
5666 carry).def(1).setHint(vcc);
5667
5668 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
5669
5670 offset = 0;
5671 }
5672
5673 bool global = ctx->options->chip_class >= GFX9;
5674 aco_opcode op;
5675 switch (num_bytes) {
5676 case 4:
5677 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
5678 break;
5679 case 8:
5680 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
5681 break;
5682 case 12:
5683 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
5684 break;
5685 case 16:
5686 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
5687 break;
5688 default:
5689 unreachable("store_global not implemented for this size.");
5690 }
5691
5692 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
5693 flat->operands[0] = Operand(addr);
5694 flat->operands[1] = Operand(s1);
5695 flat->operands[2] = Operand(data);
5696 flat->glc = glc;
5697 flat->dlc = false;
5698 flat->offset = offset;
5699 flat->disable_wqm = true;
5700 flat->barrier = barrier_buffer;
5701 ctx->program->needs_exact = true;
5702 ctx->block->instructions.emplace_back(std::move(flat));
5703 } else {
5704 assert(ctx->options->chip_class == GFX6);
5705
5706 aco_opcode op;
5707 switch (num_bytes) {
5708 case 4:
5709 op = aco_opcode::buffer_store_dword;
5710 break;
5711 case 8:
5712 op = aco_opcode::buffer_store_dwordx2;
5713 break;
5714 case 16:
5715 op = aco_opcode::buffer_store_dwordx4;
5716 break;
5717 default:
5718 unreachable("store_global not implemented for this size.");
5719 }
5720
5721 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5722
5723 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
5724 mubuf->operands[0] = Operand(rsrc);
5725 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5726 mubuf->operands[2] = Operand(0u);
5727 mubuf->operands[3] = Operand(write_data);
5728 mubuf->glc = glc;
5729 mubuf->dlc = false;
5730 mubuf->offset = offset;
5731 mubuf->addr64 = addr.type() == RegType::vgpr;
5732 mubuf->disable_wqm = true;
5733 mubuf->barrier = barrier_buffer;
5734 ctx->program->needs_exact = true;
5735 ctx->block->instructions.emplace_back(std::move(mubuf));
5736 }
5737 }
5738 }
5739
5740 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5741 {
5742 /* return the previous value if dest is ever used */
5743 bool return_previous = false;
5744 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5745 return_previous = true;
5746 break;
5747 }
5748 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5749 return_previous = true;
5750 break;
5751 }
5752
5753 Builder bld(ctx->program, ctx->block);
5754 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5755 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5756
5757 if (ctx->options->chip_class >= GFX7)
5758 addr = as_vgpr(ctx, addr);
5759
5760 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
5761 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5762 get_ssa_temp(ctx, instr->src[2].ssa), data);
5763
5764 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5765
5766 aco_opcode op32, op64;
5767
5768 if (ctx->options->chip_class >= GFX7) {
5769 bool global = ctx->options->chip_class >= GFX9;
5770 switch (instr->intrinsic) {
5771 case nir_intrinsic_global_atomic_add:
5772 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
5773 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
5774 break;
5775 case nir_intrinsic_global_atomic_imin:
5776 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
5777 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
5778 break;
5779 case nir_intrinsic_global_atomic_umin:
5780 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
5781 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
5782 break;
5783 case nir_intrinsic_global_atomic_imax:
5784 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
5785 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
5786 break;
5787 case nir_intrinsic_global_atomic_umax:
5788 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
5789 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
5790 break;
5791 case nir_intrinsic_global_atomic_and:
5792 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
5793 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
5794 break;
5795 case nir_intrinsic_global_atomic_or:
5796 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
5797 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
5798 break;
5799 case nir_intrinsic_global_atomic_xor:
5800 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
5801 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
5802 break;
5803 case nir_intrinsic_global_atomic_exchange:
5804 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
5805 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
5806 break;
5807 case nir_intrinsic_global_atomic_comp_swap:
5808 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
5809 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
5810 break;
5811 default:
5812 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5813 }
5814
5815 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5816 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
5817 flat->operands[0] = Operand(addr);
5818 flat->operands[1] = Operand(s1);
5819 flat->operands[2] = Operand(data);
5820 if (return_previous)
5821 flat->definitions[0] = Definition(dst);
5822 flat->glc = return_previous;
5823 flat->dlc = false; /* Not needed for atomics */
5824 flat->offset = 0;
5825 flat->disable_wqm = true;
5826 flat->barrier = barrier_buffer;
5827 ctx->program->needs_exact = true;
5828 ctx->block->instructions.emplace_back(std::move(flat));
5829 } else {
5830 assert(ctx->options->chip_class == GFX6);
5831
5832 switch (instr->intrinsic) {
5833 case nir_intrinsic_global_atomic_add:
5834 op32 = aco_opcode::buffer_atomic_add;
5835 op64 = aco_opcode::buffer_atomic_add_x2;
5836 break;
5837 case nir_intrinsic_global_atomic_imin:
5838 op32 = aco_opcode::buffer_atomic_smin;
5839 op64 = aco_opcode::buffer_atomic_smin_x2;
5840 break;
5841 case nir_intrinsic_global_atomic_umin:
5842 op32 = aco_opcode::buffer_atomic_umin;
5843 op64 = aco_opcode::buffer_atomic_umin_x2;
5844 break;
5845 case nir_intrinsic_global_atomic_imax:
5846 op32 = aco_opcode::buffer_atomic_smax;
5847 op64 = aco_opcode::buffer_atomic_smax_x2;
5848 break;
5849 case nir_intrinsic_global_atomic_umax:
5850 op32 = aco_opcode::buffer_atomic_umax;
5851 op64 = aco_opcode::buffer_atomic_umax_x2;
5852 break;
5853 case nir_intrinsic_global_atomic_and:
5854 op32 = aco_opcode::buffer_atomic_and;
5855 op64 = aco_opcode::buffer_atomic_and_x2;
5856 break;
5857 case nir_intrinsic_global_atomic_or:
5858 op32 = aco_opcode::buffer_atomic_or;
5859 op64 = aco_opcode::buffer_atomic_or_x2;
5860 break;
5861 case nir_intrinsic_global_atomic_xor:
5862 op32 = aco_opcode::buffer_atomic_xor;
5863 op64 = aco_opcode::buffer_atomic_xor_x2;
5864 break;
5865 case nir_intrinsic_global_atomic_exchange:
5866 op32 = aco_opcode::buffer_atomic_swap;
5867 op64 = aco_opcode::buffer_atomic_swap_x2;
5868 break;
5869 case nir_intrinsic_global_atomic_comp_swap:
5870 op32 = aco_opcode::buffer_atomic_cmpswap;
5871 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5872 break;
5873 default:
5874 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5875 }
5876
5877 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5878
5879 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5880
5881 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5882 mubuf->operands[0] = Operand(rsrc);
5883 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5884 mubuf->operands[2] = Operand(0u);
5885 mubuf->operands[3] = Operand(data);
5886 if (return_previous)
5887 mubuf->definitions[0] = Definition(dst);
5888 mubuf->glc = return_previous;
5889 mubuf->dlc = false;
5890 mubuf->offset = 0;
5891 mubuf->addr64 = addr.type() == RegType::vgpr;
5892 mubuf->disable_wqm = true;
5893 mubuf->barrier = barrier_buffer;
5894 ctx->program->needs_exact = true;
5895 ctx->block->instructions.emplace_back(std::move(mubuf));
5896 }
5897 }
5898
5899 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
5900 Builder bld(ctx->program, ctx->block);
5901 switch(instr->intrinsic) {
5902 case nir_intrinsic_group_memory_barrier:
5903 case nir_intrinsic_memory_barrier:
5904 bld.barrier(aco_opcode::p_memory_barrier_common);
5905 break;
5906 case nir_intrinsic_memory_barrier_buffer:
5907 bld.barrier(aco_opcode::p_memory_barrier_buffer);
5908 break;
5909 case nir_intrinsic_memory_barrier_image:
5910 bld.barrier(aco_opcode::p_memory_barrier_image);
5911 break;
5912 case nir_intrinsic_memory_barrier_tcs_patch:
5913 case nir_intrinsic_memory_barrier_shared:
5914 bld.barrier(aco_opcode::p_memory_barrier_shared);
5915 break;
5916 default:
5917 unreachable("Unimplemented memory barrier intrinsic");
5918 break;
5919 }
5920 }
5921
5922 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5923 {
5924 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
5925 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5926 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
5927 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5928 Builder bld(ctx->program, ctx->block);
5929
5930 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5931 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5932 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
5933 }
5934
5935 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5936 {
5937 unsigned writemask = nir_intrinsic_write_mask(instr);
5938 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5939 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5940 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5941 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
5942
5943 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5944 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
5945 }
5946
5947 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5948 {
5949 unsigned offset = nir_intrinsic_base(instr);
5950 Operand m = load_lds_size_m0(ctx);
5951 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5952 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5953
5954 unsigned num_operands = 3;
5955 aco_opcode op32, op64, op32_rtn, op64_rtn;
5956 switch(instr->intrinsic) {
5957 case nir_intrinsic_shared_atomic_add:
5958 op32 = aco_opcode::ds_add_u32;
5959 op64 = aco_opcode::ds_add_u64;
5960 op32_rtn = aco_opcode::ds_add_rtn_u32;
5961 op64_rtn = aco_opcode::ds_add_rtn_u64;
5962 break;
5963 case nir_intrinsic_shared_atomic_imin:
5964 op32 = aco_opcode::ds_min_i32;
5965 op64 = aco_opcode::ds_min_i64;
5966 op32_rtn = aco_opcode::ds_min_rtn_i32;
5967 op64_rtn = aco_opcode::ds_min_rtn_i64;
5968 break;
5969 case nir_intrinsic_shared_atomic_umin:
5970 op32 = aco_opcode::ds_min_u32;
5971 op64 = aco_opcode::ds_min_u64;
5972 op32_rtn = aco_opcode::ds_min_rtn_u32;
5973 op64_rtn = aco_opcode::ds_min_rtn_u64;
5974 break;
5975 case nir_intrinsic_shared_atomic_imax:
5976 op32 = aco_opcode::ds_max_i32;
5977 op64 = aco_opcode::ds_max_i64;
5978 op32_rtn = aco_opcode::ds_max_rtn_i32;
5979 op64_rtn = aco_opcode::ds_max_rtn_i64;
5980 break;
5981 case nir_intrinsic_shared_atomic_umax:
5982 op32 = aco_opcode::ds_max_u32;
5983 op64 = aco_opcode::ds_max_u64;
5984 op32_rtn = aco_opcode::ds_max_rtn_u32;
5985 op64_rtn = aco_opcode::ds_max_rtn_u64;
5986 break;
5987 case nir_intrinsic_shared_atomic_and:
5988 op32 = aco_opcode::ds_and_b32;
5989 op64 = aco_opcode::ds_and_b64;
5990 op32_rtn = aco_opcode::ds_and_rtn_b32;
5991 op64_rtn = aco_opcode::ds_and_rtn_b64;
5992 break;
5993 case nir_intrinsic_shared_atomic_or:
5994 op32 = aco_opcode::ds_or_b32;
5995 op64 = aco_opcode::ds_or_b64;
5996 op32_rtn = aco_opcode::ds_or_rtn_b32;
5997 op64_rtn = aco_opcode::ds_or_rtn_b64;
5998 break;
5999 case nir_intrinsic_shared_atomic_xor:
6000 op32 = aco_opcode::ds_xor_b32;
6001 op64 = aco_opcode::ds_xor_b64;
6002 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6003 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6004 break;
6005 case nir_intrinsic_shared_atomic_exchange:
6006 op32 = aco_opcode::ds_write_b32;
6007 op64 = aco_opcode::ds_write_b64;
6008 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6009 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
6010 break;
6011 case nir_intrinsic_shared_atomic_comp_swap:
6012 op32 = aco_opcode::ds_cmpst_b32;
6013 op64 = aco_opcode::ds_cmpst_b64;
6014 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6015 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6016 num_operands = 4;
6017 break;
6018 default:
6019 unreachable("Unhandled shared atomic intrinsic");
6020 }
6021
6022 /* return the previous value if dest is ever used */
6023 bool return_previous = false;
6024 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6025 return_previous = true;
6026 break;
6027 }
6028 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6029 return_previous = true;
6030 break;
6031 }
6032
6033 aco_opcode op;
6034 if (data.size() == 1) {
6035 assert(instr->dest.ssa.bit_size == 32);
6036 op = return_previous ? op32_rtn : op32;
6037 } else {
6038 assert(instr->dest.ssa.bit_size == 64);
6039 op = return_previous ? op64_rtn : op64;
6040 }
6041
6042 if (offset > 65535) {
6043 Builder bld(ctx->program, ctx->block);
6044 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6045 offset = 0;
6046 }
6047
6048 aco_ptr<DS_instruction> ds;
6049 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6050 ds->operands[0] = Operand(address);
6051 ds->operands[1] = Operand(data);
6052 if (num_operands == 4)
6053 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6054 ds->operands[num_operands - 1] = m;
6055 ds->offset0 = offset;
6056 if (return_previous)
6057 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6058 ctx->block->instructions.emplace_back(std::move(ds));
6059 }
6060
6061 Temp get_scratch_resource(isel_context *ctx)
6062 {
6063 Builder bld(ctx->program, ctx->block);
6064 Temp scratch_addr = ctx->program->private_segment_buffer;
6065 if (ctx->stage != compute_cs)
6066 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6067
6068 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6069 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6070
6071 if (ctx->program->chip_class >= GFX10) {
6072 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6073 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6074 S_008F0C_RESOURCE_LEVEL(1);
6075 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6076 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6077 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6078 }
6079
6080 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6081 if (ctx->program->chip_class <= GFX8)
6082 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6083
6084 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6085 }
6086
6087 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6088 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6089 Builder bld(ctx->program, ctx->block);
6090 Temp rsrc = get_scratch_resource(ctx);
6091 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6092 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6093
6094 aco_opcode op;
6095 switch (dst.size()) {
6096 case 1:
6097 op = aco_opcode::buffer_load_dword;
6098 break;
6099 case 2:
6100 op = aco_opcode::buffer_load_dwordx2;
6101 break;
6102 case 3:
6103 op = aco_opcode::buffer_load_dwordx3;
6104 break;
6105 case 4:
6106 op = aco_opcode::buffer_load_dwordx4;
6107 break;
6108 case 6:
6109 case 8: {
6110 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6111 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6112 bld.def(v4), rsrc, offset,
6113 ctx->program->scratch_offset, 0, true);
6114 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6115 aco_opcode::buffer_load_dwordx4,
6116 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6117 rsrc, offset, ctx->program->scratch_offset, 16, true);
6118 emit_split_vector(ctx, lower, 2);
6119 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6120 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6121 if (dst.size() == 8) {
6122 emit_split_vector(ctx, upper, 2);
6123 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6124 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6125 } else {
6126 elems[2] = upper;
6127 }
6128
6129 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6130 Format::PSEUDO, dst.size() / 2, 1)};
6131 for (unsigned i = 0; i < dst.size() / 2; i++)
6132 vec->operands[i] = Operand(elems[i]);
6133 vec->definitions[0] = Definition(dst);
6134 bld.insert(std::move(vec));
6135 ctx->allocated_vec.emplace(dst.id(), elems);
6136 return;
6137 }
6138 default:
6139 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
6140 }
6141
6142 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
6143 emit_split_vector(ctx, dst, instr->num_components);
6144 }
6145
6146 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6147 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6148 Builder bld(ctx->program, ctx->block);
6149 Temp rsrc = get_scratch_resource(ctx);
6150 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6151 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6152
6153 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6154 unsigned writemask = nir_intrinsic_write_mask(instr);
6155
6156 while (writemask) {
6157 int start, count;
6158 u_bit_scan_consecutive_range(&writemask, &start, &count);
6159 int num_bytes = count * elem_size_bytes;
6160
6161 if (num_bytes > 16) {
6162 assert(elem_size_bytes == 8);
6163 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6164 count = 2;
6165 num_bytes = 16;
6166 }
6167
6168 // TODO: check alignment of sub-dword stores
6169 // TODO: split 3 bytes. there is no store instruction for that
6170
6171 Temp write_data;
6172 if (count != instr->num_components) {
6173 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6174 for (int i = 0; i < count; i++) {
6175 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6176 vec->operands[i] = Operand(elem);
6177 }
6178 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6179 vec->definitions[0] = Definition(write_data);
6180 ctx->block->instructions.emplace_back(std::move(vec));
6181 } else {
6182 write_data = data;
6183 }
6184
6185 aco_opcode op;
6186 switch (num_bytes) {
6187 case 4:
6188 op = aco_opcode::buffer_store_dword;
6189 break;
6190 case 8:
6191 op = aco_opcode::buffer_store_dwordx2;
6192 break;
6193 case 12:
6194 op = aco_opcode::buffer_store_dwordx3;
6195 break;
6196 case 16:
6197 op = aco_opcode::buffer_store_dwordx4;
6198 break;
6199 default:
6200 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6201 }
6202
6203 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6204 }
6205 }
6206
6207 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6208 uint8_t log2_ps_iter_samples;
6209 if (ctx->program->info->ps.force_persample) {
6210 log2_ps_iter_samples =
6211 util_logbase2(ctx->options->key.fs.num_samples);
6212 } else {
6213 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6214 }
6215
6216 /* The bit pattern matches that used by fixed function fragment
6217 * processing. */
6218 static const unsigned ps_iter_masks[] = {
6219 0xffff, /* not used */
6220 0x5555,
6221 0x1111,
6222 0x0101,
6223 0x0001,
6224 };
6225 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6226
6227 Builder bld(ctx->program, ctx->block);
6228
6229 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6230 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6231 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6232 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6233 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6234 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6235 }
6236
6237 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6238 Builder bld(ctx->program, ctx->block);
6239
6240 unsigned stream = nir_intrinsic_stream_id(instr);
6241 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6242 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6243 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6244
6245 /* get GSVS ring */
6246 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6247
6248 unsigned num_components =
6249 ctx->program->info->gs.num_stream_output_components[stream];
6250 assert(num_components);
6251
6252 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6253 unsigned stream_offset = 0;
6254 for (unsigned i = 0; i < stream; i++) {
6255 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6256 stream_offset += prev_stride * ctx->program->wave_size;
6257 }
6258
6259 /* Limit on the stride field for <= GFX7. */
6260 assert(stride < (1 << 14));
6261
6262 Temp gsvs_dwords[4];
6263 for (unsigned i = 0; i < 4; i++)
6264 gsvs_dwords[i] = bld.tmp(s1);
6265 bld.pseudo(aco_opcode::p_split_vector,
6266 Definition(gsvs_dwords[0]),
6267 Definition(gsvs_dwords[1]),
6268 Definition(gsvs_dwords[2]),
6269 Definition(gsvs_dwords[3]),
6270 gsvs_ring);
6271
6272 if (stream_offset) {
6273 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6274
6275 Temp carry = bld.tmp(s1);
6276 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6277 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6278 }
6279
6280 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6281 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6282
6283 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6284 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6285
6286 unsigned offset = 0;
6287 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6288 if (ctx->program->info->gs.output_streams[i] != stream)
6289 continue;
6290
6291 for (unsigned j = 0; j < 4; j++) {
6292 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6293 continue;
6294
6295 if (ctx->outputs.mask[i] & (1 << j)) {
6296 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6297 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6298 if (const_offset >= 4096u) {
6299 if (vaddr_offset.isUndefined())
6300 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6301 else
6302 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6303 const_offset %= 4096u;
6304 }
6305
6306 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6307 mtbuf->operands[0] = Operand(gsvs_ring);
6308 mtbuf->operands[1] = vaddr_offset;
6309 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6310 mtbuf->operands[3] = Operand(ctx->outputs.outputs[i][j]);
6311 mtbuf->offen = !vaddr_offset.isUndefined();
6312 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6313 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6314 mtbuf->offset = const_offset;
6315 mtbuf->glc = true;
6316 mtbuf->slc = true;
6317 mtbuf->barrier = barrier_gs_data;
6318 mtbuf->can_reorder = true;
6319 bld.insert(std::move(mtbuf));
6320 }
6321
6322 offset += ctx->shader->info.gs.vertices_out;
6323 }
6324
6325 /* outputs for the next vertex are undefined and keeping them around can
6326 * create invalid IR with control flow */
6327 ctx->outputs.mask[i] = 0;
6328 }
6329
6330 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6331 }
6332
6333 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
6334 {
6335 Builder bld(ctx->program, ctx->block);
6336
6337 if (cluster_size == 1) {
6338 return src;
6339 } if (op == nir_op_iand && cluster_size == 4) {
6340 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
6341 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6342 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
6343 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
6344 } else if (op == nir_op_ior && cluster_size == 4) {
6345 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
6346 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
6347 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
6348 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
6349 //subgroupAnd(val) -> (exec & ~val) == 0
6350 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6351 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6352 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
6353 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
6354 //subgroupOr(val) -> (val & exec) != 0
6355 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
6356 return bool_to_vector_condition(ctx, tmp);
6357 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
6358 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
6359 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6360 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
6361 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
6362 return bool_to_vector_condition(ctx, tmp);
6363 } else {
6364 //subgroupClustered{And,Or,Xor}(val, n) ->
6365 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
6366 //cluster_offset = ~(n - 1) & lane_id
6367 //cluster_mask = ((1 << n) - 1)
6368 //subgroupClusteredAnd():
6369 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
6370 //subgroupClusteredOr():
6371 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
6372 //subgroupClusteredXor():
6373 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
6374 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
6375 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
6376
6377 Temp tmp;
6378 if (op == nir_op_iand)
6379 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6380 else
6381 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6382
6383 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
6384
6385 if (ctx->program->chip_class <= GFX7)
6386 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
6387 else if (ctx->program->wave_size == 64)
6388 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
6389 else
6390 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
6391 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6392 if (cluster_mask != 0xffffffff)
6393 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
6394
6395 Definition cmp_def = Definition();
6396 if (op == nir_op_iand) {
6397 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
6398 } else if (op == nir_op_ior) {
6399 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6400 } else if (op == nir_op_ixor) {
6401 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
6402 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
6403 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
6404 }
6405 cmp_def.setHint(vcc);
6406 return cmp_def.getTemp();
6407 }
6408 }
6409
6410 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
6411 {
6412 Builder bld(ctx->program, ctx->block);
6413
6414 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
6415 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
6416 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
6417 Temp tmp;
6418 if (op == nir_op_iand)
6419 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
6420 else
6421 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
6422
6423 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
6424 Temp lo = lohi.def(0).getTemp();
6425 Temp hi = lohi.def(1).getTemp();
6426 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
6427
6428 Definition cmp_def = Definition();
6429 if (op == nir_op_iand)
6430 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6431 else if (op == nir_op_ior)
6432 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
6433 else if (op == nir_op_ixor)
6434 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
6435 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
6436 cmp_def.setHint(vcc);
6437 return cmp_def.getTemp();
6438 }
6439
6440 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
6441 {
6442 Builder bld(ctx->program, ctx->block);
6443
6444 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
6445 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
6446 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
6447 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
6448 if (op == nir_op_iand)
6449 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6450 else if (op == nir_op_ior)
6451 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6452 else if (op == nir_op_ixor)
6453 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
6454
6455 assert(false);
6456 return Temp();
6457 }
6458
6459 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
6460 {
6461 Builder bld(ctx->program, ctx->block);
6462 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
6463 if (src.regClass().type() == RegType::vgpr) {
6464 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
6465 } else if (src.regClass() == s1) {
6466 bld.sop1(aco_opcode::s_mov_b32, dst, src);
6467 } else if (src.regClass() == s2) {
6468 bld.sop1(aco_opcode::s_mov_b64, dst, src);
6469 } else {
6470 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6471 nir_print_instr(&instr->instr, stderr);
6472 fprintf(stderr, "\n");
6473 }
6474 }
6475
6476 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
6477 {
6478 Builder bld(ctx->program, ctx->block);
6479 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
6480 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
6481 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
6482
6483 Temp ddx_1, ddx_2, ddy_1, ddy_2;
6484 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
6485 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
6486 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
6487
6488 /* Build DD X/Y */
6489 if (ctx->program->chip_class >= GFX8) {
6490 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
6491 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
6492 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
6493 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
6494 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
6495 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
6496 } else {
6497 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
6498 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
6499 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
6500 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
6501 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
6502 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
6503 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
6504 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
6505 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
6506 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
6507 }
6508
6509 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
6510 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
6511 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
6512 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
6513 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
6514 Temp wqm1 = bld.tmp(v1);
6515 emit_wqm(ctx, tmp1, wqm1, true);
6516 Temp wqm2 = bld.tmp(v1);
6517 emit_wqm(ctx, tmp2, wqm2, true);
6518 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
6519 return;
6520 }
6521
6522 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
6523 {
6524 Builder bld(ctx->program, ctx->block);
6525 switch(instr->intrinsic) {
6526 case nir_intrinsic_load_barycentric_sample:
6527 case nir_intrinsic_load_barycentric_pixel:
6528 case nir_intrinsic_load_barycentric_centroid: {
6529 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
6530 Temp bary = Temp(0, s2);
6531 switch (mode) {
6532 case INTERP_MODE_SMOOTH:
6533 case INTERP_MODE_NONE:
6534 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6535 bary = get_arg(ctx, ctx->args->ac.persp_center);
6536 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6537 bary = ctx->persp_centroid;
6538 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6539 bary = get_arg(ctx, ctx->args->ac.persp_sample);
6540 break;
6541 case INTERP_MODE_NOPERSPECTIVE:
6542 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
6543 bary = get_arg(ctx, ctx->args->ac.linear_center);
6544 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
6545 bary = ctx->linear_centroid;
6546 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
6547 bary = get_arg(ctx, ctx->args->ac.linear_sample);
6548 break;
6549 default:
6550 break;
6551 }
6552 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6553 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
6554 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
6555 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6556 Operand(p1), Operand(p2));
6557 emit_split_vector(ctx, dst, 2);
6558 break;
6559 }
6560 case nir_intrinsic_load_barycentric_model: {
6561 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
6562
6563 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6564 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
6565 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
6566 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
6567 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6568 Operand(p1), Operand(p2), Operand(p3));
6569 emit_split_vector(ctx, dst, 3);
6570 break;
6571 }
6572 case nir_intrinsic_load_barycentric_at_sample: {
6573 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
6574 switch (ctx->options->key.fs.num_samples) {
6575 case 2: sample_pos_offset += 1 << 3; break;
6576 case 4: sample_pos_offset += 3 << 3; break;
6577 case 8: sample_pos_offset += 7 << 3; break;
6578 default: break;
6579 }
6580 Temp sample_pos;
6581 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6582 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
6583 Temp private_segment_buffer = ctx->program->private_segment_buffer;
6584 if (addr.type() == RegType::sgpr) {
6585 Operand offset;
6586 if (const_addr) {
6587 sample_pos_offset += const_addr->u32 << 3;
6588 offset = Operand(sample_pos_offset);
6589 } else if (ctx->options->chip_class >= GFX9) {
6590 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6591 } else {
6592 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
6593 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
6594 }
6595
6596 Operand off = bld.copy(bld.def(s1), Operand(offset));
6597 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
6598
6599 } else if (ctx->options->chip_class >= GFX9) {
6600 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6601 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
6602 } else if (ctx->options->chip_class >= GFX7) {
6603 /* addr += private_segment_buffer + sample_pos_offset */
6604 Temp tmp0 = bld.tmp(s1);
6605 Temp tmp1 = bld.tmp(s1);
6606 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
6607 Definition scc_tmp = bld.def(s1, scc);
6608 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
6609 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
6610 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6611 Temp pck0 = bld.tmp(v1);
6612 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
6613 tmp1 = as_vgpr(ctx, tmp1);
6614 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
6615 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
6616
6617 /* sample_pos = flat_load_dwordx2 addr */
6618 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
6619 } else {
6620 assert(ctx->options->chip_class == GFX6);
6621
6622 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6623 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6624 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
6625
6626 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
6627 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
6628
6629 sample_pos = bld.tmp(v2);
6630
6631 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
6632 load->definitions[0] = Definition(sample_pos);
6633 load->operands[0] = Operand(rsrc);
6634 load->operands[1] = Operand(addr);
6635 load->operands[2] = Operand(0u);
6636 load->offset = sample_pos_offset;
6637 load->offen = 0;
6638 load->addr64 = true;
6639 load->glc = false;
6640 load->dlc = false;
6641 load->disable_wqm = false;
6642 load->barrier = barrier_none;
6643 load->can_reorder = true;
6644 ctx->block->instructions.emplace_back(std::move(load));
6645 }
6646
6647 /* sample_pos -= 0.5 */
6648 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
6649 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
6650 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
6651 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
6652 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
6653
6654 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6655 break;
6656 }
6657 case nir_intrinsic_load_barycentric_at_offset: {
6658 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
6659 RegClass rc = RegClass(offset.type(), 1);
6660 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
6661 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
6662 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6663 break;
6664 }
6665 case nir_intrinsic_load_front_face: {
6666 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6667 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
6668 break;
6669 }
6670 case nir_intrinsic_load_view_index: {
6671 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
6672 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6673 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
6674 break;
6675 }
6676
6677 /* fallthrough */
6678 }
6679 case nir_intrinsic_load_layer_id: {
6680 unsigned idx = nir_intrinsic_base(instr);
6681 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6682 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
6683 break;
6684 }
6685 case nir_intrinsic_load_frag_coord: {
6686 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
6687 break;
6688 }
6689 case nir_intrinsic_load_sample_pos: {
6690 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
6691 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
6692 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6693 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
6694 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
6695 break;
6696 }
6697 case nir_intrinsic_load_tess_coord:
6698 visit_load_tess_coord(ctx, instr);
6699 break;
6700 case nir_intrinsic_load_interpolated_input:
6701 visit_load_interpolated_input(ctx, instr);
6702 break;
6703 case nir_intrinsic_store_output:
6704 visit_store_output(ctx, instr);
6705 break;
6706 case nir_intrinsic_load_input:
6707 case nir_intrinsic_load_input_vertex:
6708 visit_load_input(ctx, instr);
6709 break;
6710 case nir_intrinsic_load_output:
6711 visit_load_output(ctx, instr);
6712 break;
6713 case nir_intrinsic_load_per_vertex_input:
6714 visit_load_per_vertex_input(ctx, instr);
6715 break;
6716 case nir_intrinsic_load_per_vertex_output:
6717 visit_load_per_vertex_output(ctx, instr);
6718 break;
6719 case nir_intrinsic_store_per_vertex_output:
6720 visit_store_per_vertex_output(ctx, instr);
6721 break;
6722 case nir_intrinsic_load_ubo:
6723 visit_load_ubo(ctx, instr);
6724 break;
6725 case nir_intrinsic_load_push_constant:
6726 visit_load_push_constant(ctx, instr);
6727 break;
6728 case nir_intrinsic_load_constant:
6729 visit_load_constant(ctx, instr);
6730 break;
6731 case nir_intrinsic_vulkan_resource_index:
6732 visit_load_resource(ctx, instr);
6733 break;
6734 case nir_intrinsic_discard:
6735 visit_discard(ctx, instr);
6736 break;
6737 case nir_intrinsic_discard_if:
6738 visit_discard_if(ctx, instr);
6739 break;
6740 case nir_intrinsic_load_shared:
6741 visit_load_shared(ctx, instr);
6742 break;
6743 case nir_intrinsic_store_shared:
6744 visit_store_shared(ctx, instr);
6745 break;
6746 case nir_intrinsic_shared_atomic_add:
6747 case nir_intrinsic_shared_atomic_imin:
6748 case nir_intrinsic_shared_atomic_umin:
6749 case nir_intrinsic_shared_atomic_imax:
6750 case nir_intrinsic_shared_atomic_umax:
6751 case nir_intrinsic_shared_atomic_and:
6752 case nir_intrinsic_shared_atomic_or:
6753 case nir_intrinsic_shared_atomic_xor:
6754 case nir_intrinsic_shared_atomic_exchange:
6755 case nir_intrinsic_shared_atomic_comp_swap:
6756 visit_shared_atomic(ctx, instr);
6757 break;
6758 case nir_intrinsic_image_deref_load:
6759 visit_image_load(ctx, instr);
6760 break;
6761 case nir_intrinsic_image_deref_store:
6762 visit_image_store(ctx, instr);
6763 break;
6764 case nir_intrinsic_image_deref_atomic_add:
6765 case nir_intrinsic_image_deref_atomic_umin:
6766 case nir_intrinsic_image_deref_atomic_imin:
6767 case nir_intrinsic_image_deref_atomic_umax:
6768 case nir_intrinsic_image_deref_atomic_imax:
6769 case nir_intrinsic_image_deref_atomic_and:
6770 case nir_intrinsic_image_deref_atomic_or:
6771 case nir_intrinsic_image_deref_atomic_xor:
6772 case nir_intrinsic_image_deref_atomic_exchange:
6773 case nir_intrinsic_image_deref_atomic_comp_swap:
6774 visit_image_atomic(ctx, instr);
6775 break;
6776 case nir_intrinsic_image_deref_size:
6777 visit_image_size(ctx, instr);
6778 break;
6779 case nir_intrinsic_load_ssbo:
6780 visit_load_ssbo(ctx, instr);
6781 break;
6782 case nir_intrinsic_store_ssbo:
6783 visit_store_ssbo(ctx, instr);
6784 break;
6785 case nir_intrinsic_load_global:
6786 visit_load_global(ctx, instr);
6787 break;
6788 case nir_intrinsic_store_global:
6789 visit_store_global(ctx, instr);
6790 break;
6791 case nir_intrinsic_global_atomic_add:
6792 case nir_intrinsic_global_atomic_imin:
6793 case nir_intrinsic_global_atomic_umin:
6794 case nir_intrinsic_global_atomic_imax:
6795 case nir_intrinsic_global_atomic_umax:
6796 case nir_intrinsic_global_atomic_and:
6797 case nir_intrinsic_global_atomic_or:
6798 case nir_intrinsic_global_atomic_xor:
6799 case nir_intrinsic_global_atomic_exchange:
6800 case nir_intrinsic_global_atomic_comp_swap:
6801 visit_global_atomic(ctx, instr);
6802 break;
6803 case nir_intrinsic_ssbo_atomic_add:
6804 case nir_intrinsic_ssbo_atomic_imin:
6805 case nir_intrinsic_ssbo_atomic_umin:
6806 case nir_intrinsic_ssbo_atomic_imax:
6807 case nir_intrinsic_ssbo_atomic_umax:
6808 case nir_intrinsic_ssbo_atomic_and:
6809 case nir_intrinsic_ssbo_atomic_or:
6810 case nir_intrinsic_ssbo_atomic_xor:
6811 case nir_intrinsic_ssbo_atomic_exchange:
6812 case nir_intrinsic_ssbo_atomic_comp_swap:
6813 visit_atomic_ssbo(ctx, instr);
6814 break;
6815 case nir_intrinsic_load_scratch:
6816 visit_load_scratch(ctx, instr);
6817 break;
6818 case nir_intrinsic_store_scratch:
6819 visit_store_scratch(ctx, instr);
6820 break;
6821 case nir_intrinsic_get_buffer_size:
6822 visit_get_buffer_size(ctx, instr);
6823 break;
6824 case nir_intrinsic_control_barrier: {
6825 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6826 /* GFX6 only (thanks to a hw bug workaround):
6827 * The real barrier instruction isn’t needed, because an entire patch
6828 * always fits into a single wave.
6829 */
6830 break;
6831 }
6832
6833 if (ctx->shader->info.stage == MESA_SHADER_COMPUTE) {
6834 unsigned* bsize = ctx->program->info->cs.block_size;
6835 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
6836 if (workgroup_size > ctx->program->wave_size)
6837 bld.sopp(aco_opcode::s_barrier);
6838 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
6839 /* For each patch provided during rendering, n​ TCS shader invocations will be processed,
6840 * where n​ is the number of vertices in the output patch.
6841 */
6842 unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
6843 if (workgroup_size > ctx->program->wave_size)
6844 bld.sopp(aco_opcode::s_barrier);
6845 } else {
6846 /* We don't know the workgroup size, so always emit the s_barrier. */
6847 bld.sopp(aco_opcode::s_barrier);
6848 }
6849
6850 break;
6851 }
6852 case nir_intrinsic_memory_barrier_tcs_patch:
6853 case nir_intrinsic_group_memory_barrier:
6854 case nir_intrinsic_memory_barrier:
6855 case nir_intrinsic_memory_barrier_buffer:
6856 case nir_intrinsic_memory_barrier_image:
6857 case nir_intrinsic_memory_barrier_shared:
6858 emit_memory_barrier(ctx, instr);
6859 break;
6860 case nir_intrinsic_load_num_work_groups: {
6861 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6862 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
6863 emit_split_vector(ctx, dst, 3);
6864 break;
6865 }
6866 case nir_intrinsic_load_local_invocation_id: {
6867 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6868 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
6869 emit_split_vector(ctx, dst, 3);
6870 break;
6871 }
6872 case nir_intrinsic_load_work_group_id: {
6873 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6874 struct ac_arg *args = ctx->args->ac.workgroup_ids;
6875 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6876 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
6877 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
6878 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
6879 emit_split_vector(ctx, dst, 3);
6880 break;
6881 }
6882 case nir_intrinsic_load_local_invocation_index: {
6883 Temp id = emit_mbcnt(ctx, bld.def(v1));
6884
6885 /* The tg_size bits [6:11] contain the subgroup id,
6886 * we need this multiplied by the wave size, and then OR the thread id to it.
6887 */
6888 if (ctx->program->wave_size == 64) {
6889 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
6890 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
6891 get_arg(ctx, ctx->args->ac.tg_size));
6892 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
6893 } else {
6894 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
6895 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
6896 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6897 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
6898 }
6899 break;
6900 }
6901 case nir_intrinsic_load_subgroup_id: {
6902 if (ctx->stage == compute_cs) {
6903 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
6904 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6905 } else {
6906 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
6907 }
6908 break;
6909 }
6910 case nir_intrinsic_load_subgroup_invocation: {
6911 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
6912 break;
6913 }
6914 case nir_intrinsic_load_num_subgroups: {
6915 if (ctx->stage == compute_cs)
6916 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
6917 get_arg(ctx, ctx->args->ac.tg_size));
6918 else
6919 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
6920 break;
6921 }
6922 case nir_intrinsic_ballot: {
6923 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6924 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6925 Definition tmp = bld.def(dst.regClass());
6926 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
6927 if (instr->src[0].ssa->bit_size == 1) {
6928 assert(src.regClass() == bld.lm);
6929 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
6930 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
6931 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
6932 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
6933 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
6934 } else {
6935 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6936 nir_print_instr(&instr->instr, stderr);
6937 fprintf(stderr, "\n");
6938 }
6939 if (dst.size() != bld.lm.size()) {
6940 /* Wave32 with ballot size set to 64 */
6941 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
6942 }
6943 emit_wqm(ctx, tmp.getTemp(), dst);
6944 break;
6945 }
6946 case nir_intrinsic_shuffle:
6947 case nir_intrinsic_read_invocation: {
6948 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6949 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
6950 emit_uniform_subgroup(ctx, instr, src);
6951 } else {
6952 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
6953 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
6954 tid = bld.as_uniform(tid);
6955 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6956 if (src.regClass() == v1) {
6957 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
6958 } else if (src.regClass() == v2) {
6959 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6960 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6961 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
6962 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
6963 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6964 emit_split_vector(ctx, dst, 2);
6965 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
6966 assert(src.regClass() == bld.lm);
6967 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
6968 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6969 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
6970 assert(src.regClass() == bld.lm);
6971 Temp tmp;
6972 if (ctx->program->chip_class <= GFX7)
6973 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
6974 else if (ctx->program->wave_size == 64)
6975 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
6976 else
6977 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
6978 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6979 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
6980 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
6981 } else {
6982 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6983 nir_print_instr(&instr->instr, stderr);
6984 fprintf(stderr, "\n");
6985 }
6986 }
6987 break;
6988 }
6989 case nir_intrinsic_load_sample_id: {
6990 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6991 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6992 break;
6993 }
6994 case nir_intrinsic_load_sample_mask_in: {
6995 visit_load_sample_mask_in(ctx, instr);
6996 break;
6997 }
6998 case nir_intrinsic_read_first_invocation: {
6999 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7000 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7001 if (src.regClass() == v1) {
7002 emit_wqm(ctx,
7003 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7004 dst);
7005 } else if (src.regClass() == v2) {
7006 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7007 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7008 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7009 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7010 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7011 emit_split_vector(ctx, dst, 2);
7012 } else if (instr->dest.ssa.bit_size == 1) {
7013 assert(src.regClass() == bld.lm);
7014 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7015 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7016 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7017 } else if (src.regClass() == s1) {
7018 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7019 } else if (src.regClass() == s2) {
7020 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7021 } else {
7022 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7023 nir_print_instr(&instr->instr, stderr);
7024 fprintf(stderr, "\n");
7025 }
7026 break;
7027 }
7028 case nir_intrinsic_vote_all: {
7029 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7030 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7031 assert(src.regClass() == bld.lm);
7032 assert(dst.regClass() == bld.lm);
7033
7034 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7035 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7036 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7037 break;
7038 }
7039 case nir_intrinsic_vote_any: {
7040 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7041 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7042 assert(src.regClass() == bld.lm);
7043 assert(dst.regClass() == bld.lm);
7044
7045 Temp tmp = bool_to_scalar_condition(ctx, src);
7046 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7047 break;
7048 }
7049 case nir_intrinsic_reduce:
7050 case nir_intrinsic_inclusive_scan:
7051 case nir_intrinsic_exclusive_scan: {
7052 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7053 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7054 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7055 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7056 nir_intrinsic_cluster_size(instr) : 0;
7057 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7058
7059 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7060 emit_uniform_subgroup(ctx, instr, src);
7061 } else if (instr->dest.ssa.bit_size == 1) {
7062 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7063 op = nir_op_iand;
7064 else if (op == nir_op_iadd)
7065 op = nir_op_ixor;
7066 else if (op == nir_op_umax || op == nir_op_imax)
7067 op = nir_op_ior;
7068 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7069
7070 switch (instr->intrinsic) {
7071 case nir_intrinsic_reduce:
7072 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7073 break;
7074 case nir_intrinsic_exclusive_scan:
7075 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7076 break;
7077 case nir_intrinsic_inclusive_scan:
7078 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7079 break;
7080 default:
7081 assert(false);
7082 }
7083 } else if (cluster_size == 1) {
7084 bld.copy(Definition(dst), src);
7085 } else {
7086 src = as_vgpr(ctx, src);
7087
7088 ReduceOp reduce_op;
7089 switch (op) {
7090 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7091 CASE(iadd)
7092 CASE(imul)
7093 CASE(fadd)
7094 CASE(fmul)
7095 CASE(imin)
7096 CASE(umin)
7097 CASE(fmin)
7098 CASE(imax)
7099 CASE(umax)
7100 CASE(fmax)
7101 CASE(iand)
7102 CASE(ior)
7103 CASE(ixor)
7104 default:
7105 unreachable("unknown reduction op");
7106 #undef CASE
7107 }
7108
7109 aco_opcode aco_op;
7110 switch (instr->intrinsic) {
7111 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7112 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7113 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7114 default:
7115 unreachable("unknown reduce intrinsic");
7116 }
7117
7118 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7119 reduce->operands[0] = Operand(src);
7120 // filled in by aco_reduce_assign.cpp, used internally as part of the
7121 // reduce sequence
7122 assert(dst.size() == 1 || dst.size() == 2);
7123 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7124 reduce->operands[2] = Operand(v1.as_linear());
7125
7126 Temp tmp_dst = bld.tmp(dst.regClass());
7127 reduce->definitions[0] = Definition(tmp_dst);
7128 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7129 reduce->definitions[2] = Definition();
7130 reduce->definitions[3] = Definition(scc, s1);
7131 reduce->definitions[4] = Definition();
7132 reduce->reduce_op = reduce_op;
7133 reduce->cluster_size = cluster_size;
7134 ctx->block->instructions.emplace_back(std::move(reduce));
7135
7136 emit_wqm(ctx, tmp_dst, dst);
7137 }
7138 break;
7139 }
7140 case nir_intrinsic_quad_broadcast: {
7141 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7142 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7143 emit_uniform_subgroup(ctx, instr, src);
7144 } else {
7145 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7146 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7147 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7148
7149 if (instr->dest.ssa.bit_size == 1) {
7150 assert(src.regClass() == bld.lm);
7151 assert(dst.regClass() == bld.lm);
7152 uint32_t half_mask = 0x11111111u << lane;
7153 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7154 Temp tmp = bld.tmp(bld.lm);
7155 bld.sop1(Builder::s_wqm, Definition(tmp),
7156 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7157 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7158 emit_wqm(ctx, tmp, dst);
7159 } else if (instr->dest.ssa.bit_size == 32) {
7160 if (ctx->program->chip_class >= GFX8)
7161 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7162 else
7163 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7164 } else if (instr->dest.ssa.bit_size == 64) {
7165 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7166 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7167 if (ctx->program->chip_class >= GFX8) {
7168 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7169 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7170 } else {
7171 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7172 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7173 }
7174 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7175 emit_split_vector(ctx, dst, 2);
7176 } else {
7177 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7178 nir_print_instr(&instr->instr, stderr);
7179 fprintf(stderr, "\n");
7180 }
7181 }
7182 break;
7183 }
7184 case nir_intrinsic_quad_swap_horizontal:
7185 case nir_intrinsic_quad_swap_vertical:
7186 case nir_intrinsic_quad_swap_diagonal:
7187 case nir_intrinsic_quad_swizzle_amd: {
7188 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7189 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7190 emit_uniform_subgroup(ctx, instr, src);
7191 break;
7192 }
7193 uint16_t dpp_ctrl = 0;
7194 switch (instr->intrinsic) {
7195 case nir_intrinsic_quad_swap_horizontal:
7196 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7197 break;
7198 case nir_intrinsic_quad_swap_vertical:
7199 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7200 break;
7201 case nir_intrinsic_quad_swap_diagonal:
7202 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7203 break;
7204 case nir_intrinsic_quad_swizzle_amd:
7205 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7206 break;
7207 default:
7208 break;
7209 }
7210 if (ctx->program->chip_class < GFX8)
7211 dpp_ctrl |= (1 << 15);
7212
7213 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7214 if (instr->dest.ssa.bit_size == 1) {
7215 assert(src.regClass() == bld.lm);
7216 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7217 if (ctx->program->chip_class >= GFX8)
7218 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7219 else
7220 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7221 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7222 emit_wqm(ctx, tmp, dst);
7223 } else if (instr->dest.ssa.bit_size == 32) {
7224 Temp tmp;
7225 if (ctx->program->chip_class >= GFX8)
7226 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7227 else
7228 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7229 emit_wqm(ctx, tmp, dst);
7230 } else if (instr->dest.ssa.bit_size == 64) {
7231 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7232 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7233 if (ctx->program->chip_class >= GFX8) {
7234 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7235 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7236 } else {
7237 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7238 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7239 }
7240 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7241 emit_split_vector(ctx, dst, 2);
7242 } else {
7243 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7244 nir_print_instr(&instr->instr, stderr);
7245 fprintf(stderr, "\n");
7246 }
7247 break;
7248 }
7249 case nir_intrinsic_masked_swizzle_amd: {
7250 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7251 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7252 emit_uniform_subgroup(ctx, instr, src);
7253 break;
7254 }
7255 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7256 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7257 if (dst.regClass() == v1) {
7258 emit_wqm(ctx,
7259 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7260 dst);
7261 } else if (dst.regClass() == v2) {
7262 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7263 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7264 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7265 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7266 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7267 emit_split_vector(ctx, dst, 2);
7268 } else {
7269 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7270 nir_print_instr(&instr->instr, stderr);
7271 fprintf(stderr, "\n");
7272 }
7273 break;
7274 }
7275 case nir_intrinsic_write_invocation_amd: {
7276 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7277 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7278 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7279 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7280 if (dst.regClass() == v1) {
7281 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7282 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7283 } else if (dst.regClass() == v2) {
7284 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7285 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7286 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7287 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7288 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7289 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7290 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7291 emit_split_vector(ctx, dst, 2);
7292 } else {
7293 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7294 nir_print_instr(&instr->instr, stderr);
7295 fprintf(stderr, "\n");
7296 }
7297 break;
7298 }
7299 case nir_intrinsic_mbcnt_amd: {
7300 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7301 RegClass rc = RegClass(src.type(), 1);
7302 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7303 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7304 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7305 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7306 emit_wqm(ctx, wqm_tmp, dst);
7307 break;
7308 }
7309 case nir_intrinsic_load_helper_invocation: {
7310 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7311 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7312 ctx->block->kind |= block_kind_needs_lowering;
7313 ctx->program->needs_exact = true;
7314 break;
7315 }
7316 case nir_intrinsic_is_helper_invocation: {
7317 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7318 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7319 ctx->block->kind |= block_kind_needs_lowering;
7320 ctx->program->needs_exact = true;
7321 break;
7322 }
7323 case nir_intrinsic_demote:
7324 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7325
7326 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7327 ctx->cf_info.exec_potentially_empty_discard = true;
7328 ctx->block->kind |= block_kind_uses_demote;
7329 ctx->program->needs_exact = true;
7330 break;
7331 case nir_intrinsic_demote_if: {
7332 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7333 assert(src.regClass() == bld.lm);
7334 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7335 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7336
7337 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7338 ctx->cf_info.exec_potentially_empty_discard = true;
7339 ctx->block->kind |= block_kind_uses_demote;
7340 ctx->program->needs_exact = true;
7341 break;
7342 }
7343 case nir_intrinsic_first_invocation: {
7344 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7345 get_ssa_temp(ctx, &instr->dest.ssa));
7346 break;
7347 }
7348 case nir_intrinsic_shader_clock:
7349 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
7350 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
7351 break;
7352 case nir_intrinsic_load_vertex_id_zero_base: {
7353 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7354 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
7355 break;
7356 }
7357 case nir_intrinsic_load_first_vertex: {
7358 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7359 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
7360 break;
7361 }
7362 case nir_intrinsic_load_base_instance: {
7363 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7364 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
7365 break;
7366 }
7367 case nir_intrinsic_load_instance_id: {
7368 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7369 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
7370 break;
7371 }
7372 case nir_intrinsic_load_draw_id: {
7373 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7374 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
7375 break;
7376 }
7377 case nir_intrinsic_load_invocation_id: {
7378 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7379
7380 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
7381 if (ctx->options->chip_class >= GFX10)
7382 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7383 else
7384 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
7385 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7386 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
7387 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
7388 } else {
7389 unreachable("Unsupported stage for load_invocation_id");
7390 }
7391
7392 break;
7393 }
7394 case nir_intrinsic_load_primitive_id: {
7395 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7396
7397 switch (ctx->shader->info.stage) {
7398 case MESA_SHADER_GEOMETRY:
7399 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
7400 break;
7401 case MESA_SHADER_TESS_CTRL:
7402 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
7403 break;
7404 case MESA_SHADER_TESS_EVAL:
7405 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
7406 break;
7407 default:
7408 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
7409 }
7410
7411 break;
7412 }
7413 case nir_intrinsic_load_patch_vertices_in: {
7414 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
7415 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
7416
7417 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7418 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
7419 break;
7420 }
7421 case nir_intrinsic_emit_vertex_with_counter: {
7422 visit_emit_vertex_with_counter(ctx, instr);
7423 break;
7424 }
7425 case nir_intrinsic_end_primitive_with_counter: {
7426 unsigned stream = nir_intrinsic_stream_id(instr);
7427 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
7428 break;
7429 }
7430 case nir_intrinsic_set_vertex_count: {
7431 /* unused, the HW keeps track of this for us */
7432 break;
7433 }
7434 default:
7435 fprintf(stderr, "Unimplemented intrinsic instr: ");
7436 nir_print_instr(&instr->instr, stderr);
7437 fprintf(stderr, "\n");
7438 abort();
7439
7440 break;
7441 }
7442 }
7443
7444
7445 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
7446 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
7447 enum glsl_base_type *stype)
7448 {
7449 nir_deref_instr *texture_deref_instr = NULL;
7450 nir_deref_instr *sampler_deref_instr = NULL;
7451 int plane = -1;
7452
7453 for (unsigned i = 0; i < instr->num_srcs; i++) {
7454 switch (instr->src[i].src_type) {
7455 case nir_tex_src_texture_deref:
7456 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
7457 break;
7458 case nir_tex_src_sampler_deref:
7459 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
7460 break;
7461 case nir_tex_src_plane:
7462 plane = nir_src_as_int(instr->src[i].src);
7463 break;
7464 default:
7465 break;
7466 }
7467 }
7468
7469 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
7470
7471 if (!sampler_deref_instr)
7472 sampler_deref_instr = texture_deref_instr;
7473
7474 if (plane >= 0) {
7475 assert(instr->op != nir_texop_txf_ms &&
7476 instr->op != nir_texop_samples_identical);
7477 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
7478 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
7479 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7480 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
7481 } else if (instr->op == nir_texop_fragment_mask_fetch) {
7482 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7483 } else {
7484 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
7485 }
7486 if (samp_ptr) {
7487 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
7488
7489 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
7490 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
7491 Builder bld(ctx->program, ctx->block);
7492
7493 /* to avoid unnecessary moves, we split and recombine sampler and image */
7494 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
7495 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7496 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
7497 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
7498 Definition(img[2]), Definition(img[3]), Definition(img[4]),
7499 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
7500 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
7501 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
7502
7503 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
7504 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
7505 img[0], img[1], img[2], img[3],
7506 img[4], img[5], img[6], img[7]);
7507 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
7508 samp[0], samp[1], samp[2], samp[3]);
7509 }
7510 }
7511 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
7512 instr->op == nir_texop_samples_identical))
7513 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
7514 }
7515
7516 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
7517 Temp *out_ma, Temp *out_sc, Temp *out_tc)
7518 {
7519 Builder bld(ctx->program, ctx->block);
7520
7521 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
7522 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
7523 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
7524
7525 Operand neg_one(0xbf800000u);
7526 Operand one(0x3f800000u);
7527 Operand two(0x40000000u);
7528 Operand four(0x40800000u);
7529
7530 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
7531 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
7532 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
7533
7534 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
7535 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
7536 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
7537 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
7538
7539 // select sc
7540 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
7541 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
7542 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
7543 one, is_ma_y);
7544 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7545
7546 // select tc
7547 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
7548 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
7549 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
7550
7551 // select ma
7552 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7553 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
7554 deriv_z, is_ma_z);
7555 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
7556 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
7557 }
7558
7559 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
7560 {
7561 Builder bld(ctx->program, ctx->block);
7562 Temp ma, tc, sc, id;
7563
7564 if (is_array) {
7565 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
7566
7567 // see comment in ac_prepare_cube_coords()
7568 if (ctx->options->chip_class <= GFX8)
7569 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
7570 }
7571
7572 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7573
7574 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
7575 vop3a->operands[0] = Operand(ma);
7576 vop3a->abs[0] = true;
7577 Temp invma = bld.tmp(v1);
7578 vop3a->definitions[0] = Definition(invma);
7579 ctx->block->instructions.emplace_back(std::move(vop3a));
7580
7581 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7582 if (!is_deriv)
7583 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
7584
7585 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7586 if (!is_deriv)
7587 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
7588
7589 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
7590
7591 if (is_deriv) {
7592 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
7593 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
7594
7595 for (unsigned i = 0; i < 2; i++) {
7596 // see comment in ac_prepare_cube_coords()
7597 Temp deriv_ma;
7598 Temp deriv_sc, deriv_tc;
7599 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
7600 &deriv_ma, &deriv_sc, &deriv_tc);
7601
7602 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
7603
7604 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7605 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
7606 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
7607 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
7608 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
7609 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
7610 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
7611 }
7612
7613 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
7614 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
7615 }
7616
7617 if (is_array)
7618 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
7619 coords.resize(3);
7620 coords[0] = sc;
7621 coords[1] = tc;
7622 coords[2] = id;
7623 }
7624
7625 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
7626 {
7627 if (vec->parent_instr->type != nir_instr_type_alu)
7628 return;
7629 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
7630 if (vec_instr->op != nir_op_vec(vec->num_components))
7631 return;
7632
7633 for (unsigned i = 0; i < vec->num_components; i++) {
7634 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
7635 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
7636 }
7637 }
7638
7639 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
7640 {
7641 Builder bld(ctx->program, ctx->block);
7642 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
7643 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
7644 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
7645 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
7646 std::vector<Temp> coords;
7647 std::vector<Temp> derivs;
7648 nir_const_value *sample_index_cv = NULL;
7649 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
7650 enum glsl_base_type stype;
7651 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
7652
7653 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
7654 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
7655 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
7656 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
7657
7658 for (unsigned i = 0; i < instr->num_srcs; i++) {
7659 switch (instr->src[i].src_type) {
7660 case nir_tex_src_coord: {
7661 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
7662 for (unsigned i = 0; i < coord.size(); i++)
7663 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
7664 break;
7665 }
7666 case nir_tex_src_bias:
7667 if (instr->op == nir_texop_txb) {
7668 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
7669 has_bias = true;
7670 }
7671 break;
7672 case nir_tex_src_lod: {
7673 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
7674
7675 if (val && val->f32 <= 0.0) {
7676 level_zero = true;
7677 } else {
7678 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
7679 has_lod = true;
7680 }
7681 break;
7682 }
7683 case nir_tex_src_comparator:
7684 if (instr->is_shadow) {
7685 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
7686 has_compare = true;
7687 }
7688 break;
7689 case nir_tex_src_offset:
7690 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
7691 get_const_vec(instr->src[i].src.ssa, const_offset);
7692 has_offset = true;
7693 break;
7694 case nir_tex_src_ddx:
7695 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
7696 has_ddx = true;
7697 break;
7698 case nir_tex_src_ddy:
7699 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
7700 has_ddy = true;
7701 break;
7702 case nir_tex_src_ms_index:
7703 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
7704 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
7705 has_sample_index = true;
7706 break;
7707 case nir_tex_src_texture_offset:
7708 case nir_tex_src_sampler_offset:
7709 default:
7710 break;
7711 }
7712 }
7713
7714 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
7715 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
7716
7717 if (instr->op == nir_texop_texture_samples) {
7718 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
7719
7720 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
7721 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
7722 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
7723 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
7724
7725 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7726 samples, Operand(1u), bld.scc(is_msaa));
7727 return;
7728 }
7729
7730 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
7731 aco_ptr<Instruction> tmp_instr;
7732 Temp acc, pack = Temp();
7733
7734 uint32_t pack_const = 0;
7735 for (unsigned i = 0; i < offset.size(); i++) {
7736 if (!const_offset[i])
7737 continue;
7738 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
7739 }
7740
7741 if (offset.type() == RegType::sgpr) {
7742 for (unsigned i = 0; i < offset.size(); i++) {
7743 if (const_offset[i])
7744 continue;
7745
7746 acc = emit_extract_vector(ctx, offset, i, s1);
7747 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
7748
7749 if (i) {
7750 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
7751 }
7752
7753 if (pack == Temp()) {
7754 pack = acc;
7755 } else {
7756 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
7757 }
7758 }
7759
7760 if (pack_const && pack != Temp())
7761 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
7762 } else {
7763 for (unsigned i = 0; i < offset.size(); i++) {
7764 if (const_offset[i])
7765 continue;
7766
7767 acc = emit_extract_vector(ctx, offset, i, v1);
7768 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
7769
7770 if (i) {
7771 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
7772 }
7773
7774 if (pack == Temp()) {
7775 pack = acc;
7776 } else {
7777 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
7778 }
7779 }
7780
7781 if (pack_const && pack != Temp())
7782 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
7783 }
7784 if (pack_const && pack == Temp())
7785 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
7786 else if (pack == Temp())
7787 has_offset = false;
7788 else
7789 offset = pack;
7790 }
7791
7792 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
7793 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
7794
7795 /* pack derivatives */
7796 if (has_ddx || has_ddy) {
7797 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
7798 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
7799 Temp zero = bld.copy(bld.def(v1), Operand(0u));
7800 derivs = {ddy, zero, ddy, zero};
7801 } else {
7802 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
7803 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
7804 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
7805 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
7806 }
7807 has_derivs = true;
7808 }
7809
7810 if (instr->coord_components > 1 &&
7811 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7812 instr->is_array &&
7813 instr->op != nir_texop_txf)
7814 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
7815
7816 if (instr->coord_components > 2 &&
7817 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
7818 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7819 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
7820 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7821 instr->is_array &&
7822 instr->op != nir_texop_txf &&
7823 instr->op != nir_texop_txf_ms &&
7824 instr->op != nir_texop_fragment_fetch &&
7825 instr->op != nir_texop_fragment_mask_fetch)
7826 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
7827
7828 if (ctx->options->chip_class == GFX9 &&
7829 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7830 instr->op != nir_texop_lod && instr->coord_components) {
7831 assert(coords.size() > 0 && coords.size() < 3);
7832
7833 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
7834 Operand((uint32_t) 0) :
7835 Operand((uint32_t) 0x3f000000)));
7836 }
7837
7838 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
7839
7840 if (instr->op == nir_texop_samples_identical)
7841 resource = fmask_ptr;
7842
7843 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7844 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7845 instr->op != nir_texop_txs &&
7846 instr->op != nir_texop_fragment_fetch &&
7847 instr->op != nir_texop_fragment_mask_fetch) {
7848 assert(has_sample_index);
7849 Operand op(sample_index);
7850 if (sample_index_cv)
7851 op = Operand(sample_index_cv->u32);
7852 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
7853 }
7854
7855 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
7856 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
7857 Temp off = emit_extract_vector(ctx, offset, i, v1);
7858 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
7859 }
7860 has_offset = false;
7861 }
7862
7863 /* Build tex instruction */
7864 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
7865 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
7866 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
7867 : 0;
7868 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7869 Temp tmp_dst = dst;
7870
7871 /* gather4 selects the component by dmask and always returns vec4 */
7872 if (instr->op == nir_texop_tg4) {
7873 assert(instr->dest.ssa.num_components == 4);
7874 if (instr->is_shadow)
7875 dmask = 1;
7876 else
7877 dmask = 1 << instr->component;
7878 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
7879 tmp_dst = bld.tmp(v4);
7880 } else if (instr->op == nir_texop_samples_identical) {
7881 tmp_dst = bld.tmp(v1);
7882 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
7883 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
7884 }
7885
7886 aco_ptr<MIMG_instruction> tex;
7887 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
7888 if (!has_lod)
7889 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7890
7891 bool div_by_6 = instr->op == nir_texop_txs &&
7892 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
7893 instr->is_array &&
7894 (dmask & (1 << 2));
7895 if (tmp_dst.id() == dst.id() && div_by_6)
7896 tmp_dst = bld.tmp(tmp_dst.regClass());
7897
7898 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7899 tex->operands[0] = Operand(resource);
7900 tex->operands[1] = Operand(s4); /* no sampler */
7901 tex->operands[2] = Operand(as_vgpr(ctx,lod));
7902 if (ctx->options->chip_class == GFX9 &&
7903 instr->op == nir_texop_txs &&
7904 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7905 instr->is_array) {
7906 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
7907 } else if (instr->op == nir_texop_query_levels) {
7908 tex->dmask = 1 << 3;
7909 } else {
7910 tex->dmask = dmask;
7911 }
7912 tex->da = da;
7913 tex->definitions[0] = Definition(tmp_dst);
7914 tex->dim = dim;
7915 tex->can_reorder = true;
7916 ctx->block->instructions.emplace_back(std::move(tex));
7917
7918 if (div_by_6) {
7919 /* divide 3rd value by 6 by multiplying with magic number */
7920 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7921 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
7922 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
7923 assert(instr->dest.ssa.num_components == 3);
7924 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
7925 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7926 emit_extract_vector(ctx, tmp_dst, 0, v1),
7927 emit_extract_vector(ctx, tmp_dst, 1, v1),
7928 by_6);
7929
7930 }
7931
7932 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7933 return;
7934 }
7935
7936 Temp tg4_compare_cube_wa64 = Temp();
7937
7938 if (tg4_integer_workarounds) {
7939 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
7940 tex->operands[0] = Operand(resource);
7941 tex->operands[1] = Operand(s4); /* no sampler */
7942 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7943 tex->dim = dim;
7944 tex->dmask = 0x3;
7945 tex->da = da;
7946 Temp size = bld.tmp(v2);
7947 tex->definitions[0] = Definition(size);
7948 tex->can_reorder = true;
7949 ctx->block->instructions.emplace_back(std::move(tex));
7950 emit_split_vector(ctx, size, size.size());
7951
7952 Temp half_texel[2];
7953 for (unsigned i = 0; i < 2; i++) {
7954 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
7955 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
7956 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
7957 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
7958 }
7959
7960 Temp new_coords[2] = {
7961 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
7962 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
7963 };
7964
7965 if (tg4_integer_cube_workaround) {
7966 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
7967 Temp desc[resource.size()];
7968 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
7969 Format::PSEUDO, 1, resource.size())};
7970 split->operands[0] = Operand(resource);
7971 for (unsigned i = 0; i < resource.size(); i++) {
7972 desc[i] = bld.tmp(s1);
7973 split->definitions[i] = Definition(desc[i]);
7974 }
7975 ctx->block->instructions.emplace_back(std::move(split));
7976
7977 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
7978 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
7979 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
7980
7981 Temp nfmt;
7982 if (stype == GLSL_TYPE_UINT) {
7983 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7984 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
7985 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
7986 bld.scc(compare_cube_wa));
7987 } else {
7988 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7989 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
7990 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
7991 bld.scc(compare_cube_wa));
7992 }
7993 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
7994 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
7995
7996 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
7997
7998 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
7999 Operand((uint32_t)C_008F14_NUM_FORMAT));
8000 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8001
8002 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8003 Format::PSEUDO, resource.size(), 1)};
8004 for (unsigned i = 0; i < resource.size(); i++)
8005 vec->operands[i] = Operand(desc[i]);
8006 resource = bld.tmp(resource.regClass());
8007 vec->definitions[0] = Definition(resource);
8008 ctx->block->instructions.emplace_back(std::move(vec));
8009
8010 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8011 new_coords[0], coords[0], tg4_compare_cube_wa64);
8012 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8013 new_coords[1], coords[1], tg4_compare_cube_wa64);
8014 }
8015 coords[0] = new_coords[0];
8016 coords[1] = new_coords[1];
8017 }
8018
8019 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8020 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8021
8022 assert(coords.size() == 1);
8023 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8024 aco_opcode op;
8025 switch (last_bit) {
8026 case 1:
8027 op = aco_opcode::buffer_load_format_x; break;
8028 case 2:
8029 op = aco_opcode::buffer_load_format_xy; break;
8030 case 3:
8031 op = aco_opcode::buffer_load_format_xyz; break;
8032 case 4:
8033 op = aco_opcode::buffer_load_format_xyzw; break;
8034 default:
8035 unreachable("Tex instruction loads more than 4 components.");
8036 }
8037
8038 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8039 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8040 tmp_dst = dst;
8041 else
8042 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8043
8044 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8045 mubuf->operands[0] = Operand(resource);
8046 mubuf->operands[1] = Operand(coords[0]);
8047 mubuf->operands[2] = Operand((uint32_t) 0);
8048 mubuf->definitions[0] = Definition(tmp_dst);
8049 mubuf->idxen = true;
8050 mubuf->can_reorder = true;
8051 ctx->block->instructions.emplace_back(std::move(mubuf));
8052
8053 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8054 return;
8055 }
8056
8057 /* gather MIMG address components */
8058 std::vector<Temp> args;
8059 if (has_offset)
8060 args.emplace_back(offset);
8061 if (has_bias)
8062 args.emplace_back(bias);
8063 if (has_compare)
8064 args.emplace_back(compare);
8065 if (has_derivs)
8066 args.insert(args.end(), derivs.begin(), derivs.end());
8067
8068 args.insert(args.end(), coords.begin(), coords.end());
8069 if (has_sample_index)
8070 args.emplace_back(sample_index);
8071 if (has_lod)
8072 args.emplace_back(lod);
8073
8074 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8075 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8076 vec->definitions[0] = Definition(arg);
8077 for (unsigned i = 0; i < args.size(); i++)
8078 vec->operands[i] = Operand(args[i]);
8079 ctx->block->instructions.emplace_back(std::move(vec));
8080
8081
8082 if (instr->op == nir_texop_txf ||
8083 instr->op == nir_texop_txf_ms ||
8084 instr->op == nir_texop_samples_identical ||
8085 instr->op == nir_texop_fragment_fetch ||
8086 instr->op == nir_texop_fragment_mask_fetch) {
8087 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8088 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8089 tex->operands[0] = Operand(resource);
8090 tex->operands[1] = Operand(s4); /* no sampler */
8091 tex->operands[2] = Operand(arg);
8092 tex->dim = dim;
8093 tex->dmask = dmask;
8094 tex->unrm = true;
8095 tex->da = da;
8096 tex->definitions[0] = Definition(tmp_dst);
8097 tex->can_reorder = true;
8098 ctx->block->instructions.emplace_back(std::move(tex));
8099
8100 if (instr->op == nir_texop_samples_identical) {
8101 assert(dmask == 1 && dst.regClass() == v1);
8102 assert(dst.id() != tmp_dst.id());
8103
8104 Temp tmp = bld.tmp(bld.lm);
8105 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8106 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8107
8108 } else {
8109 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8110 }
8111 return;
8112 }
8113
8114 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8115 aco_opcode opcode = aco_opcode::image_sample;
8116 if (has_offset) { /* image_sample_*_o */
8117 if (has_compare) {
8118 opcode = aco_opcode::image_sample_c_o;
8119 if (has_derivs)
8120 opcode = aco_opcode::image_sample_c_d_o;
8121 if (has_bias)
8122 opcode = aco_opcode::image_sample_c_b_o;
8123 if (level_zero)
8124 opcode = aco_opcode::image_sample_c_lz_o;
8125 if (has_lod)
8126 opcode = aco_opcode::image_sample_c_l_o;
8127 } else {
8128 opcode = aco_opcode::image_sample_o;
8129 if (has_derivs)
8130 opcode = aco_opcode::image_sample_d_o;
8131 if (has_bias)
8132 opcode = aco_opcode::image_sample_b_o;
8133 if (level_zero)
8134 opcode = aco_opcode::image_sample_lz_o;
8135 if (has_lod)
8136 opcode = aco_opcode::image_sample_l_o;
8137 }
8138 } else { /* no offset */
8139 if (has_compare) {
8140 opcode = aco_opcode::image_sample_c;
8141 if (has_derivs)
8142 opcode = aco_opcode::image_sample_c_d;
8143 if (has_bias)
8144 opcode = aco_opcode::image_sample_c_b;
8145 if (level_zero)
8146 opcode = aco_opcode::image_sample_c_lz;
8147 if (has_lod)
8148 opcode = aco_opcode::image_sample_c_l;
8149 } else {
8150 opcode = aco_opcode::image_sample;
8151 if (has_derivs)
8152 opcode = aco_opcode::image_sample_d;
8153 if (has_bias)
8154 opcode = aco_opcode::image_sample_b;
8155 if (level_zero)
8156 opcode = aco_opcode::image_sample_lz;
8157 if (has_lod)
8158 opcode = aco_opcode::image_sample_l;
8159 }
8160 }
8161
8162 if (instr->op == nir_texop_tg4) {
8163 if (has_offset) {
8164 opcode = aco_opcode::image_gather4_lz_o;
8165 if (has_compare)
8166 opcode = aco_opcode::image_gather4_c_lz_o;
8167 } else {
8168 opcode = aco_opcode::image_gather4_lz;
8169 if (has_compare)
8170 opcode = aco_opcode::image_gather4_c_lz;
8171 }
8172 } else if (instr->op == nir_texop_lod) {
8173 opcode = aco_opcode::image_get_lod;
8174 }
8175
8176 /* we don't need the bias, sample index, compare value or offset to be
8177 * computed in WQM but if the p_create_vector copies the coordinates, then it
8178 * needs to be in WQM */
8179 if (ctx->stage == fragment_fs &&
8180 !has_derivs && !has_lod && !level_zero &&
8181 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8182 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8183 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8184
8185 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8186 tex->operands[0] = Operand(resource);
8187 tex->operands[1] = Operand(sampler);
8188 tex->operands[2] = Operand(arg);
8189 tex->dim = dim;
8190 tex->dmask = dmask;
8191 tex->da = da;
8192 tex->definitions[0] = Definition(tmp_dst);
8193 tex->can_reorder = true;
8194 ctx->block->instructions.emplace_back(std::move(tex));
8195
8196 if (tg4_integer_cube_workaround) {
8197 assert(tmp_dst.id() != dst.id());
8198 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8199
8200 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8201 Temp val[4];
8202 for (unsigned i = 0; i < dst.size(); i++) {
8203 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8204 Temp cvt_val;
8205 if (stype == GLSL_TYPE_UINT)
8206 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8207 else
8208 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8209 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8210 }
8211 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8212 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8213 val[0], val[1], val[2], val[3]);
8214 }
8215 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8216 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8217
8218 }
8219
8220
8221 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8222 {
8223 Temp tmp = get_ssa_temp(ctx, ssa);
8224 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8225 return Operand(tmp.regClass());
8226 else
8227 return Operand(tmp);
8228 }
8229
8230 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8231 {
8232 aco_ptr<Pseudo_instruction> phi;
8233 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8234 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8235
8236 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8237 logical |= ctx->block->kind & block_kind_merge;
8238 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8239
8240 /* we want a sorted list of sources, since the predecessor list is also sorted */
8241 std::map<unsigned, nir_ssa_def*> phi_src;
8242 nir_foreach_phi_src(src, instr)
8243 phi_src[src->pred->index] = src->src.ssa;
8244
8245 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8246 unsigned num_operands = 0;
8247 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8248 unsigned num_defined = 0;
8249 unsigned cur_pred_idx = 0;
8250 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8251 if (cur_pred_idx < preds.size()) {
8252 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8253 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8254 unsigned skipped = 0;
8255 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8256 skipped++;
8257 if (cur_pred_idx + skipped < preds.size()) {
8258 for (unsigned i = 0; i < skipped; i++)
8259 operands[num_operands++] = Operand(dst.regClass());
8260 cur_pred_idx += skipped;
8261 } else {
8262 continue;
8263 }
8264 }
8265 /* Handle missing predecessors at the end. This shouldn't happen with loop
8266 * headers and we can't ignore these sources for loop header phis. */
8267 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8268 continue;
8269 cur_pred_idx++;
8270 Operand op = get_phi_operand(ctx, src.second);
8271 operands[num_operands++] = op;
8272 num_defined += !op.isUndefined();
8273 }
8274 /* handle block_kind_continue_or_break at loop exit blocks */
8275 while (cur_pred_idx++ < preds.size())
8276 operands[num_operands++] = Operand(dst.regClass());
8277
8278 /* If the loop ends with a break, still add a linear continue edge in case
8279 * that break is divergent or continue_or_break is used. We'll either remove
8280 * this operand later in visit_loop() if it's not necessary or replace the
8281 * undef with something correct. */
8282 if (!logical && ctx->block->kind & block_kind_loop_header) {
8283 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
8284 nir_block *last = nir_loop_last_block(loop);
8285 if (last->successors[0] != instr->instr.block)
8286 operands[num_operands++] = Operand(RegClass());
8287 }
8288
8289 if (num_defined == 0) {
8290 Builder bld(ctx->program, ctx->block);
8291 if (dst.regClass() == s1) {
8292 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8293 } else if (dst.regClass() == v1) {
8294 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8295 } else {
8296 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8297 for (unsigned i = 0; i < dst.size(); i++)
8298 vec->operands[i] = Operand(0u);
8299 vec->definitions[0] = Definition(dst);
8300 ctx->block->instructions.emplace_back(std::move(vec));
8301 }
8302 return;
8303 }
8304
8305 /* we can use a linear phi in some cases if one src is undef */
8306 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8307 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8308
8309 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8310 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8311 assert(invert->kind & block_kind_invert);
8312
8313 unsigned then_block = invert->linear_preds[0];
8314
8315 Block* insert_block = NULL;
8316 for (unsigned i = 0; i < num_operands; i++) {
8317 Operand op = operands[i];
8318 if (op.isUndefined())
8319 continue;
8320 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8321 phi->operands[0] = op;
8322 break;
8323 }
8324 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8325 phi->operands[1] = Operand(dst.regClass());
8326 phi->definitions[0] = Definition(dst);
8327 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8328 return;
8329 }
8330
8331 /* try to scalarize vector phis */
8332 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8333 // TODO: scalarize linear phis on divergent ifs
8334 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8335 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8336 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8337 Operand src = operands[i];
8338 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8339 can_scalarize = false;
8340 }
8341 if (can_scalarize) {
8342 unsigned num_components = instr->dest.ssa.num_components;
8343 assert(dst.size() % num_components == 0);
8344 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8345
8346 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
8347 for (unsigned k = 0; k < num_components; k++) {
8348 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8349 for (unsigned i = 0; i < num_operands; i++) {
8350 Operand src = operands[i];
8351 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
8352 }
8353 Temp phi_dst = {ctx->program->allocateId(), rc};
8354 phi->definitions[0] = Definition(phi_dst);
8355 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8356 new_vec[k] = phi_dst;
8357 vec->operands[k] = Operand(phi_dst);
8358 }
8359 vec->definitions[0] = Definition(dst);
8360 ctx->block->instructions.emplace_back(std::move(vec));
8361 ctx->allocated_vec.emplace(dst.id(), new_vec);
8362 return;
8363 }
8364 }
8365
8366 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
8367 for (unsigned i = 0; i < num_operands; i++)
8368 phi->operands[i] = operands[i];
8369 phi->definitions[0] = Definition(dst);
8370 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
8371 }
8372
8373
8374 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
8375 {
8376 Temp dst = get_ssa_temp(ctx, &instr->def);
8377
8378 assert(dst.type() == RegType::sgpr);
8379
8380 if (dst.size() == 1) {
8381 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
8382 } else {
8383 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8384 for (unsigned i = 0; i < dst.size(); i++)
8385 vec->operands[i] = Operand(0u);
8386 vec->definitions[0] = Definition(dst);
8387 ctx->block->instructions.emplace_back(std::move(vec));
8388 }
8389 }
8390
8391 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
8392 {
8393 Builder bld(ctx->program, ctx->block);
8394 Block *logical_target;
8395 append_logical_end(ctx->block);
8396 unsigned idx = ctx->block->index;
8397
8398 switch (instr->type) {
8399 case nir_jump_break:
8400 logical_target = ctx->cf_info.parent_loop.exit;
8401 add_logical_edge(idx, logical_target);
8402 ctx->block->kind |= block_kind_break;
8403
8404 if (!ctx->cf_info.parent_if.is_divergent &&
8405 !ctx->cf_info.parent_loop.has_divergent_continue) {
8406 /* uniform break - directly jump out of the loop */
8407 ctx->block->kind |= block_kind_uniform;
8408 ctx->cf_info.has_branch = true;
8409 bld.branch(aco_opcode::p_branch);
8410 add_linear_edge(idx, logical_target);
8411 return;
8412 }
8413 ctx->cf_info.parent_loop.has_divergent_branch = true;
8414 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8415 break;
8416 case nir_jump_continue:
8417 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8418 add_logical_edge(idx, logical_target);
8419 ctx->block->kind |= block_kind_continue;
8420
8421 if (ctx->cf_info.parent_if.is_divergent) {
8422 /* for potential uniform breaks after this continue,
8423 we must ensure that they are handled correctly */
8424 ctx->cf_info.parent_loop.has_divergent_continue = true;
8425 ctx->cf_info.parent_loop.has_divergent_branch = true;
8426 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
8427 } else {
8428 /* uniform continue - directly jump to the loop header */
8429 ctx->block->kind |= block_kind_uniform;
8430 ctx->cf_info.has_branch = true;
8431 bld.branch(aco_opcode::p_branch);
8432 add_linear_edge(idx, logical_target);
8433 return;
8434 }
8435 break;
8436 default:
8437 fprintf(stderr, "Unknown NIR jump instr: ");
8438 nir_print_instr(&instr->instr, stderr);
8439 fprintf(stderr, "\n");
8440 abort();
8441 }
8442
8443 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
8444 ctx->cf_info.exec_potentially_empty_break = true;
8445 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
8446 }
8447
8448 /* remove critical edges from linear CFG */
8449 bld.branch(aco_opcode::p_branch);
8450 Block* break_block = ctx->program->create_and_insert_block();
8451 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8452 break_block->kind |= block_kind_uniform;
8453 add_linear_edge(idx, break_block);
8454 /* the loop_header pointer might be invalidated by this point */
8455 if (instr->type == nir_jump_continue)
8456 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
8457 add_linear_edge(break_block->index, logical_target);
8458 bld.reset(break_block);
8459 bld.branch(aco_opcode::p_branch);
8460
8461 Block* continue_block = ctx->program->create_and_insert_block();
8462 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8463 add_linear_edge(idx, continue_block);
8464 append_logical_start(continue_block);
8465 ctx->block = continue_block;
8466 return;
8467 }
8468
8469 void visit_block(isel_context *ctx, nir_block *block)
8470 {
8471 nir_foreach_instr(instr, block) {
8472 switch (instr->type) {
8473 case nir_instr_type_alu:
8474 visit_alu_instr(ctx, nir_instr_as_alu(instr));
8475 break;
8476 case nir_instr_type_load_const:
8477 visit_load_const(ctx, nir_instr_as_load_const(instr));
8478 break;
8479 case nir_instr_type_intrinsic:
8480 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
8481 break;
8482 case nir_instr_type_tex:
8483 visit_tex(ctx, nir_instr_as_tex(instr));
8484 break;
8485 case nir_instr_type_phi:
8486 visit_phi(ctx, nir_instr_as_phi(instr));
8487 break;
8488 case nir_instr_type_ssa_undef:
8489 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
8490 break;
8491 case nir_instr_type_deref:
8492 break;
8493 case nir_instr_type_jump:
8494 visit_jump(ctx, nir_instr_as_jump(instr));
8495 break;
8496 default:
8497 fprintf(stderr, "Unknown NIR instr type: ");
8498 nir_print_instr(instr, stderr);
8499 fprintf(stderr, "\n");
8500 //abort();
8501 }
8502 }
8503
8504 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8505 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
8506 }
8507
8508
8509
8510 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
8511 aco_ptr<Instruction>& header_phi, Operand *vals)
8512 {
8513 vals[0] = Operand(header_phi->definitions[0].getTemp());
8514 RegClass rc = vals[0].regClass();
8515
8516 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
8517
8518 unsigned next_pred = 1;
8519
8520 for (unsigned idx = first + 1; idx <= last; idx++) {
8521 Block& block = ctx->program->blocks[idx];
8522 if (block.loop_nest_depth != loop_nest_depth) {
8523 vals[idx - first] = vals[idx - 1 - first];
8524 continue;
8525 }
8526
8527 if (block.kind & block_kind_continue) {
8528 vals[idx - first] = header_phi->operands[next_pred];
8529 next_pred++;
8530 continue;
8531 }
8532
8533 bool all_same = true;
8534 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
8535 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
8536
8537 Operand val;
8538 if (all_same) {
8539 val = vals[block.linear_preds[0] - first];
8540 } else {
8541 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
8542 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
8543 for (unsigned i = 0; i < block.linear_preds.size(); i++)
8544 phi->operands[i] = vals[block.linear_preds[i] - first];
8545 val = Operand(Temp(ctx->program->allocateId(), rc));
8546 phi->definitions[0] = Definition(val.getTemp());
8547 block.instructions.emplace(block.instructions.begin(), std::move(phi));
8548 }
8549 vals[idx - first] = val;
8550 }
8551
8552 return vals[last - first];
8553 }
8554
8555 static void visit_loop(isel_context *ctx, nir_loop *loop)
8556 {
8557 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
8558 append_logical_end(ctx->block);
8559 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
8560 Builder bld(ctx->program, ctx->block);
8561 bld.branch(aco_opcode::p_branch);
8562 unsigned loop_preheader_idx = ctx->block->index;
8563
8564 Block loop_exit = Block();
8565 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8566 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
8567
8568 Block* loop_header = ctx->program->create_and_insert_block();
8569 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
8570 loop_header->kind |= block_kind_loop_header;
8571 add_edge(loop_preheader_idx, loop_header);
8572 ctx->block = loop_header;
8573
8574 /* emit loop body */
8575 unsigned loop_header_idx = loop_header->index;
8576 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
8577 append_logical_start(ctx->block);
8578 bool unreachable = visit_cf_list(ctx, &loop->body);
8579
8580 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
8581 if (!ctx->cf_info.has_branch) {
8582 append_logical_end(ctx->block);
8583 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
8584 /* Discards can result in code running with an empty exec mask.
8585 * This would result in divergent breaks not ever being taken. As a
8586 * workaround, break the loop when the loop mask is empty instead of
8587 * always continuing. */
8588 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
8589 unsigned block_idx = ctx->block->index;
8590
8591 /* create helper blocks to avoid critical edges */
8592 Block *break_block = ctx->program->create_and_insert_block();
8593 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8594 break_block->kind = block_kind_uniform;
8595 bld.reset(break_block);
8596 bld.branch(aco_opcode::p_branch);
8597 add_linear_edge(block_idx, break_block);
8598 add_linear_edge(break_block->index, &loop_exit);
8599
8600 Block *continue_block = ctx->program->create_and_insert_block();
8601 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8602 continue_block->kind = block_kind_uniform;
8603 bld.reset(continue_block);
8604 bld.branch(aco_opcode::p_branch);
8605 add_linear_edge(block_idx, continue_block);
8606 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
8607
8608 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8609 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
8610 ctx->block = &ctx->program->blocks[block_idx];
8611 } else {
8612 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
8613 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8614 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8615 else
8616 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
8617 }
8618
8619 bld.reset(ctx->block);
8620 bld.branch(aco_opcode::p_branch);
8621 }
8622
8623 /* Fixup phis in loop header from unreachable blocks.
8624 * has_branch/has_divergent_branch also indicates if the loop ends with a
8625 * break/continue instruction, but we don't emit those if unreachable=true */
8626 if (unreachable) {
8627 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
8628 bool linear = ctx->cf_info.has_branch;
8629 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
8630 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
8631 if ((logical && instr->opcode == aco_opcode::p_phi) ||
8632 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
8633 /* the last operand should be the one that needs to be removed */
8634 instr->operands.pop_back();
8635 } else if (!is_phi(instr)) {
8636 break;
8637 }
8638 }
8639 }
8640
8641 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
8642 * and the previous one shouldn't both happen at once because a break in the
8643 * merge block would get CSE'd */
8644 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
8645 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
8646 Operand vals[num_vals];
8647 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
8648 if (instr->opcode == aco_opcode::p_linear_phi) {
8649 if (ctx->cf_info.has_branch)
8650 instr->operands.pop_back();
8651 else
8652 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
8653 } else if (!is_phi(instr)) {
8654 break;
8655 }
8656 }
8657 }
8658
8659 ctx->cf_info.has_branch = false;
8660
8661 // TODO: if the loop has not a single exit, we must add one °°
8662 /* emit loop successor block */
8663 ctx->block = ctx->program->insert_block(std::move(loop_exit));
8664 append_logical_start(ctx->block);
8665
8666 #if 0
8667 // TODO: check if it is beneficial to not branch on continues
8668 /* trim linear phis in loop header */
8669 for (auto&& instr : loop_entry->instructions) {
8670 if (instr->opcode == aco_opcode::p_linear_phi) {
8671 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
8672 new_phi->definitions[0] = instr->definitions[0];
8673 for (unsigned i = 0; i < new_phi->operands.size(); i++)
8674 new_phi->operands[i] = instr->operands[i];
8675 /* check that the remaining operands are all the same */
8676 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
8677 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
8678 instr.swap(new_phi);
8679 } else if (instr->opcode == aco_opcode::p_phi) {
8680 continue;
8681 } else {
8682 break;
8683 }
8684 }
8685 #endif
8686 }
8687
8688 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
8689 {
8690 ic->cond = cond;
8691
8692 append_logical_end(ctx->block);
8693 ctx->block->kind |= block_kind_branch;
8694
8695 /* branch to linear then block */
8696 assert(cond.regClass() == ctx->program->lane_mask);
8697 aco_ptr<Pseudo_branch_instruction> branch;
8698 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8699 branch->operands[0] = Operand(cond);
8700 ctx->block->instructions.push_back(std::move(branch));
8701
8702 ic->BB_if_idx = ctx->block->index;
8703 ic->BB_invert = Block();
8704 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8705 /* Invert blocks are intentionally not marked as top level because they
8706 * are not part of the logical cfg. */
8707 ic->BB_invert.kind |= block_kind_invert;
8708 ic->BB_endif = Block();
8709 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8710 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
8711
8712 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
8713 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
8714 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
8715 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
8716 ctx->cf_info.parent_if.is_divergent = true;
8717
8718 /* divergent branches use cbranch_execz */
8719 ctx->cf_info.exec_potentially_empty_discard = false;
8720 ctx->cf_info.exec_potentially_empty_break = false;
8721 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8722
8723 /** emit logical then block */
8724 Block* BB_then_logical = ctx->program->create_and_insert_block();
8725 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8726 add_edge(ic->BB_if_idx, BB_then_logical);
8727 ctx->block = BB_then_logical;
8728 append_logical_start(BB_then_logical);
8729 }
8730
8731 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
8732 {
8733 Block *BB_then_logical = ctx->block;
8734 append_logical_end(BB_then_logical);
8735 /* branch from logical then block to invert block */
8736 aco_ptr<Pseudo_branch_instruction> branch;
8737 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8738 BB_then_logical->instructions.emplace_back(std::move(branch));
8739 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
8740 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8741 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
8742 BB_then_logical->kind |= block_kind_uniform;
8743 assert(!ctx->cf_info.has_branch);
8744 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8745 ctx->cf_info.parent_loop.has_divergent_branch = false;
8746
8747 /** emit linear then block */
8748 Block* BB_then_linear = ctx->program->create_and_insert_block();
8749 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8750 BB_then_linear->kind |= block_kind_uniform;
8751 add_linear_edge(ic->BB_if_idx, BB_then_linear);
8752 /* branch from linear then block to invert block */
8753 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8754 BB_then_linear->instructions.emplace_back(std::move(branch));
8755 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
8756
8757 /** emit invert merge block */
8758 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
8759 ic->invert_idx = ctx->block->index;
8760
8761 /* branch to linear else block (skip else) */
8762 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
8763 branch->operands[0] = Operand(ic->cond);
8764 ctx->block->instructions.push_back(std::move(branch));
8765
8766 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
8767 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
8768 ic->exec_potentially_empty_break_depth_old =
8769 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8770 /* divergent branches use cbranch_execz */
8771 ctx->cf_info.exec_potentially_empty_discard = false;
8772 ctx->cf_info.exec_potentially_empty_break = false;
8773 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8774
8775 /** emit logical else block */
8776 Block* BB_else_logical = ctx->program->create_and_insert_block();
8777 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8778 add_logical_edge(ic->BB_if_idx, BB_else_logical);
8779 add_linear_edge(ic->invert_idx, BB_else_logical);
8780 ctx->block = BB_else_logical;
8781 append_logical_start(BB_else_logical);
8782 }
8783
8784 static void end_divergent_if(isel_context *ctx, if_context *ic)
8785 {
8786 Block *BB_else_logical = ctx->block;
8787 append_logical_end(BB_else_logical);
8788
8789 /* branch from logical else block to endif block */
8790 aco_ptr<Pseudo_branch_instruction> branch;
8791 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8792 BB_else_logical->instructions.emplace_back(std::move(branch));
8793 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
8794 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8795 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
8796 BB_else_logical->kind |= block_kind_uniform;
8797
8798 assert(!ctx->cf_info.has_branch);
8799 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
8800
8801
8802 /** emit linear else block */
8803 Block* BB_else_linear = ctx->program->create_and_insert_block();
8804 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8805 BB_else_linear->kind |= block_kind_uniform;
8806 add_linear_edge(ic->invert_idx, BB_else_linear);
8807
8808 /* branch from linear else block to endif block */
8809 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8810 BB_else_linear->instructions.emplace_back(std::move(branch));
8811 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
8812
8813
8814 /** emit endif merge block */
8815 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
8816 append_logical_start(ctx->block);
8817
8818
8819 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
8820 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
8821 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
8822 ctx->cf_info.exec_potentially_empty_break_depth =
8823 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
8824 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
8825 !ctx->cf_info.parent_if.is_divergent) {
8826 ctx->cf_info.exec_potentially_empty_break = false;
8827 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8828 }
8829 /* uniform control flow never has an empty exec-mask */
8830 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
8831 ctx->cf_info.exec_potentially_empty_discard = false;
8832 ctx->cf_info.exec_potentially_empty_break = false;
8833 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
8834 }
8835 }
8836
8837 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
8838 {
8839 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
8840 Builder bld(ctx->program, ctx->block);
8841 aco_ptr<Pseudo_branch_instruction> branch;
8842
8843 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
8844 /**
8845 * Uniform conditionals are represented in the following way*) :
8846 *
8847 * The linear and logical CFG:
8848 * BB_IF
8849 * / \
8850 * BB_THEN (logical) BB_ELSE (logical)
8851 * \ /
8852 * BB_ENDIF
8853 *
8854 * *) Exceptions may be due to break and continue statements within loops
8855 * If a break/continue happens within uniform control flow, it branches
8856 * to the loop exit/entry block. Otherwise, it branches to the next
8857 * merge block.
8858 **/
8859 append_logical_end(ctx->block);
8860 ctx->block->kind |= block_kind_uniform;
8861
8862 /* emit branch */
8863 assert(cond.regClass() == bld.lm);
8864 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
8865 cond = bool_to_scalar_condition(ctx, cond);
8866
8867 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8868 branch->operands[0] = Operand(cond);
8869 branch->operands[0].setFixed(scc);
8870 ctx->block->instructions.emplace_back(std::move(branch));
8871
8872 unsigned BB_if_idx = ctx->block->index;
8873 Block BB_endif = Block();
8874 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8875 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
8876
8877 /** emit then block */
8878 Block* BB_then = ctx->program->create_and_insert_block();
8879 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8880 add_edge(BB_if_idx, BB_then);
8881 append_logical_start(BB_then);
8882 ctx->block = BB_then;
8883 visit_cf_list(ctx, &if_stmt->then_list);
8884 BB_then = ctx->block;
8885 bool then_branch = ctx->cf_info.has_branch;
8886 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8887
8888 if (!then_branch) {
8889 append_logical_end(BB_then);
8890 /* branch from then block to endif block */
8891 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8892 BB_then->instructions.emplace_back(std::move(branch));
8893 add_linear_edge(BB_then->index, &BB_endif);
8894 if (!then_branch_divergent)
8895 add_logical_edge(BB_then->index, &BB_endif);
8896 BB_then->kind |= block_kind_uniform;
8897 }
8898
8899 ctx->cf_info.has_branch = false;
8900 ctx->cf_info.parent_loop.has_divergent_branch = false;
8901
8902 /** emit else block */
8903 Block* BB_else = ctx->program->create_and_insert_block();
8904 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8905 add_edge(BB_if_idx, BB_else);
8906 append_logical_start(BB_else);
8907 ctx->block = BB_else;
8908 visit_cf_list(ctx, &if_stmt->else_list);
8909 BB_else = ctx->block;
8910
8911 if (!ctx->cf_info.has_branch) {
8912 append_logical_end(BB_else);
8913 /* branch from then block to endif block */
8914 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8915 BB_else->instructions.emplace_back(std::move(branch));
8916 add_linear_edge(BB_else->index, &BB_endif);
8917 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8918 add_logical_edge(BB_else->index, &BB_endif);
8919 BB_else->kind |= block_kind_uniform;
8920 }
8921
8922 ctx->cf_info.has_branch &= then_branch;
8923 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
8924
8925 /** emit endif merge block */
8926 if (!ctx->cf_info.has_branch) {
8927 ctx->block = ctx->program->insert_block(std::move(BB_endif));
8928 append_logical_start(ctx->block);
8929 }
8930 return !ctx->cf_info.has_branch;
8931 } else { /* non-uniform condition */
8932 /**
8933 * To maintain a logical and linear CFG without critical edges,
8934 * non-uniform conditionals are represented in the following way*) :
8935 *
8936 * The linear CFG:
8937 * BB_IF
8938 * / \
8939 * BB_THEN (logical) BB_THEN (linear)
8940 * \ /
8941 * BB_INVERT (linear)
8942 * / \
8943 * BB_ELSE (logical) BB_ELSE (linear)
8944 * \ /
8945 * BB_ENDIF
8946 *
8947 * The logical CFG:
8948 * BB_IF
8949 * / \
8950 * BB_THEN (logical) BB_ELSE (logical)
8951 * \ /
8952 * BB_ENDIF
8953 *
8954 * *) Exceptions may be due to break and continue statements within loops
8955 **/
8956
8957 if_context ic;
8958
8959 begin_divergent_if_then(ctx, &ic, cond);
8960 visit_cf_list(ctx, &if_stmt->then_list);
8961
8962 begin_divergent_if_else(ctx, &ic);
8963 visit_cf_list(ctx, &if_stmt->else_list);
8964
8965 end_divergent_if(ctx, &ic);
8966
8967 return true;
8968 }
8969 }
8970
8971 static bool visit_cf_list(isel_context *ctx,
8972 struct exec_list *list)
8973 {
8974 foreach_list_typed(nir_cf_node, node, node, list) {
8975 switch (node->type) {
8976 case nir_cf_node_block:
8977 visit_block(ctx, nir_cf_node_as_block(node));
8978 break;
8979 case nir_cf_node_if:
8980 if (!visit_if(ctx, nir_cf_node_as_if(node)))
8981 return true;
8982 break;
8983 case nir_cf_node_loop:
8984 visit_loop(ctx, nir_cf_node_as_loop(node));
8985 break;
8986 default:
8987 unreachable("unimplemented cf list type");
8988 }
8989 }
8990 return false;
8991 }
8992
8993 static void create_null_export(isel_context *ctx)
8994 {
8995 /* Some shader stages always need to have exports.
8996 * So when there is none, we need to add a null export.
8997 */
8998
8999 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9000 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9001 Builder bld(ctx->program, ctx->block);
9002 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9003 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9004 }
9005
9006 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9007 {
9008 assert(ctx->stage == vertex_vs ||
9009 ctx->stage == tess_eval_vs ||
9010 ctx->stage == gs_copy_vs);
9011
9012 int offset = ctx->stage == tess_eval_vs
9013 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9014 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9015 uint64_t mask = ctx->outputs.mask[slot];
9016 if (!is_pos && !mask)
9017 return false;
9018 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9019 return false;
9020 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9021 exp->enabled_mask = mask;
9022 for (unsigned i = 0; i < 4; ++i) {
9023 if (mask & (1 << i))
9024 exp->operands[i] = Operand(ctx->outputs.outputs[slot][i]);
9025 else
9026 exp->operands[i] = Operand(v1);
9027 }
9028 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9029 * Setting valid_mask=1 prevents it and has no other effect.
9030 */
9031 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9032 exp->done = false;
9033 exp->compressed = false;
9034 if (is_pos)
9035 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9036 else
9037 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9038 ctx->block->instructions.emplace_back(std::move(exp));
9039
9040 return true;
9041 }
9042
9043 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9044 {
9045 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9046 exp->enabled_mask = 0;
9047 for (unsigned i = 0; i < 4; ++i)
9048 exp->operands[i] = Operand(v1);
9049 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9050 exp->operands[0] = Operand(ctx->outputs.outputs[VARYING_SLOT_PSIZ][0]);
9051 exp->enabled_mask |= 0x1;
9052 }
9053 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9054 exp->operands[2] = Operand(ctx->outputs.outputs[VARYING_SLOT_LAYER][0]);
9055 exp->enabled_mask |= 0x4;
9056 }
9057 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9058 if (ctx->options->chip_class < GFX9) {
9059 exp->operands[3] = Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]);
9060 exp->enabled_mask |= 0x8;
9061 } else {
9062 Builder bld(ctx->program, ctx->block);
9063
9064 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9065 Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]));
9066 if (exp->operands[2].isTemp())
9067 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9068
9069 exp->operands[2] = Operand(out);
9070 exp->enabled_mask |= 0x4;
9071 }
9072 }
9073 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9074 exp->done = false;
9075 exp->compressed = false;
9076 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9077 ctx->block->instructions.emplace_back(std::move(exp));
9078 }
9079
9080 static void create_vs_exports(isel_context *ctx)
9081 {
9082 assert(ctx->stage == vertex_vs ||
9083 ctx->stage == tess_eval_vs ||
9084 ctx->stage == gs_copy_vs);
9085
9086 radv_vs_output_info *outinfo = ctx->stage == tess_eval_vs
9087 ? &ctx->program->info->tes.outinfo
9088 : &ctx->program->info->vs.outinfo;
9089
9090 if (outinfo->export_prim_id) {
9091 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9092 ctx->outputs.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
9093 }
9094
9095 if (ctx->options->key.has_multiview_view_index) {
9096 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9097 ctx->outputs.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9098 }
9099
9100 /* the order these position exports are created is important */
9101 int next_pos = 0;
9102 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9103 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9104 export_vs_psiz_layer_viewport(ctx, &next_pos);
9105 exported_pos = true;
9106 }
9107 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9108 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9109 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9110 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9111
9112 if (ctx->export_clip_dists) {
9113 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9114 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9115 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9116 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9117 }
9118
9119 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9120 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
9121 i != VARYING_SLOT_PRIMITIVE_ID)
9122 continue;
9123
9124 export_vs_varying(ctx, i, false, NULL);
9125 }
9126
9127 if (!exported_pos)
9128 create_null_export(ctx);
9129 }
9130
9131 static bool export_fs_mrt_z(isel_context *ctx)
9132 {
9133 Builder bld(ctx->program, ctx->block);
9134 unsigned enabled_channels = 0;
9135 bool compr = false;
9136 Operand values[4];
9137
9138 for (unsigned i = 0; i < 4; ++i) {
9139 values[i] = Operand(v1);
9140 }
9141
9142 /* Both stencil and sample mask only need 16-bits. */
9143 if (!ctx->program->info->ps.writes_z &&
9144 (ctx->program->info->ps.writes_stencil ||
9145 ctx->program->info->ps.writes_sample_mask)) {
9146 compr = true; /* COMPR flag */
9147
9148 if (ctx->program->info->ps.writes_stencil) {
9149 /* Stencil should be in X[23:16]. */
9150 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
9151 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9152 enabled_channels |= 0x3;
9153 }
9154
9155 if (ctx->program->info->ps.writes_sample_mask) {
9156 /* SampleMask should be in Y[15:0]. */
9157 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
9158 enabled_channels |= 0xc;
9159 }
9160 } else {
9161 if (ctx->program->info->ps.writes_z) {
9162 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_DEPTH][0]);
9163 enabled_channels |= 0x1;
9164 }
9165
9166 if (ctx->program->info->ps.writes_stencil) {
9167 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
9168 enabled_channels |= 0x2;
9169 }
9170
9171 if (ctx->program->info->ps.writes_sample_mask) {
9172 values[2] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
9173 enabled_channels |= 0x4;
9174 }
9175 }
9176
9177 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9178 * writemask component.
9179 */
9180 if (ctx->options->chip_class == GFX6 &&
9181 ctx->options->family != CHIP_OLAND &&
9182 ctx->options->family != CHIP_HAINAN) {
9183 enabled_channels |= 0x1;
9184 }
9185
9186 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9187 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9188
9189 return true;
9190 }
9191
9192 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9193 {
9194 Builder bld(ctx->program, ctx->block);
9195 unsigned write_mask = ctx->outputs.mask[slot];
9196 Operand values[4];
9197
9198 for (unsigned i = 0; i < 4; ++i) {
9199 if (write_mask & (1 << i)) {
9200 values[i] = Operand(ctx->outputs.outputs[slot][i]);
9201 } else {
9202 values[i] = Operand(v1);
9203 }
9204 }
9205
9206 unsigned target, col_format;
9207 unsigned enabled_channels = 0;
9208 aco_opcode compr_op = (aco_opcode)0;
9209
9210 slot -= FRAG_RESULT_DATA0;
9211 target = V_008DFC_SQ_EXP_MRT + slot;
9212 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9213
9214 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9215 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9216
9217 switch (col_format)
9218 {
9219 case V_028714_SPI_SHADER_ZERO:
9220 enabled_channels = 0; /* writemask */
9221 target = V_008DFC_SQ_EXP_NULL;
9222 break;
9223
9224 case V_028714_SPI_SHADER_32_R:
9225 enabled_channels = 1;
9226 break;
9227
9228 case V_028714_SPI_SHADER_32_GR:
9229 enabled_channels = 0x3;
9230 break;
9231
9232 case V_028714_SPI_SHADER_32_AR:
9233 if (ctx->options->chip_class >= GFX10) {
9234 /* Special case: on GFX10, the outputs are different for 32_AR */
9235 enabled_channels = 0x3;
9236 values[1] = values[3];
9237 values[3] = Operand(v1);
9238 } else {
9239 enabled_channels = 0x9;
9240 }
9241 break;
9242
9243 case V_028714_SPI_SHADER_FP16_ABGR:
9244 enabled_channels = 0x5;
9245 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9246 break;
9247
9248 case V_028714_SPI_SHADER_UNORM16_ABGR:
9249 enabled_channels = 0x5;
9250 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9251 break;
9252
9253 case V_028714_SPI_SHADER_SNORM16_ABGR:
9254 enabled_channels = 0x5;
9255 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9256 break;
9257
9258 case V_028714_SPI_SHADER_UINT16_ABGR: {
9259 enabled_channels = 0x5;
9260 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9261 if (is_int8 || is_int10) {
9262 /* clamp */
9263 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9264 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9265
9266 for (unsigned i = 0; i < 4; i++) {
9267 if ((write_mask >> i) & 1) {
9268 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9269 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9270 values[i]);
9271 }
9272 }
9273 }
9274 break;
9275 }
9276
9277 case V_028714_SPI_SHADER_SINT16_ABGR:
9278 enabled_channels = 0x5;
9279 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9280 if (is_int8 || is_int10) {
9281 /* clamp */
9282 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9283 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9284 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9285 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9286
9287 for (unsigned i = 0; i < 4; i++) {
9288 if ((write_mask >> i) & 1) {
9289 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
9290 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
9291 values[i]);
9292 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
9293 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
9294 values[i]);
9295 }
9296 }
9297 }
9298 break;
9299
9300 case V_028714_SPI_SHADER_32_ABGR:
9301 enabled_channels = 0xF;
9302 break;
9303
9304 default:
9305 break;
9306 }
9307
9308 if (target == V_008DFC_SQ_EXP_NULL)
9309 return false;
9310
9311 if ((bool) compr_op) {
9312 for (int i = 0; i < 2; i++) {
9313 /* check if at least one of the values to be compressed is enabled */
9314 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
9315 if (enabled) {
9316 enabled_channels |= enabled << (i*2);
9317 values[i] = bld.vop3(compr_op, bld.def(v1),
9318 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
9319 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
9320 } else {
9321 values[i] = Operand(v1);
9322 }
9323 }
9324 values[2] = Operand(v1);
9325 values[3] = Operand(v1);
9326 } else {
9327 for (int i = 0; i < 4; i++)
9328 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
9329 }
9330
9331 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9332 enabled_channels, target, (bool) compr_op);
9333 return true;
9334 }
9335
9336 static void create_fs_exports(isel_context *ctx)
9337 {
9338 bool exported = false;
9339
9340 /* Export depth, stencil and sample mask. */
9341 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
9342 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
9343 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
9344 exported |= export_fs_mrt_z(ctx);
9345
9346 /* Export all color render targets. */
9347 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
9348 if (ctx->outputs.mask[i])
9349 exported |= export_fs_mrt_color(ctx, i);
9350
9351 if (!exported)
9352 create_null_export(ctx);
9353 }
9354
9355 static void write_tcs_tess_factors(isel_context *ctx)
9356 {
9357 unsigned outer_comps;
9358 unsigned inner_comps;
9359
9360 switch (ctx->args->options->key.tcs.primitive_mode) {
9361 case GL_ISOLINES:
9362 outer_comps = 2;
9363 inner_comps = 0;
9364 break;
9365 case GL_TRIANGLES:
9366 outer_comps = 3;
9367 inner_comps = 1;
9368 break;
9369 case GL_QUADS:
9370 outer_comps = 4;
9371 inner_comps = 2;
9372 break;
9373 default:
9374 return;
9375 }
9376
9377 const unsigned tess_index_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
9378 const unsigned tess_index_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
9379
9380 Builder bld(ctx->program, ctx->block);
9381
9382 bld.barrier(aco_opcode::p_memory_barrier_shared);
9383 unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
9384 if (unlikely(ctx->program->chip_class != GFX6 && workgroup_size > ctx->program->wave_size))
9385 bld.sopp(aco_opcode::s_barrier);
9386
9387 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
9388 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
9389
9390 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
9391 if_context ic_invocation_id_is_zero;
9392 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
9393 bld.reset(ctx->block);
9394
9395 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
9396
9397 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
9398 unsigned stride = inner_comps + outer_comps;
9399 Temp inner[4];
9400 Temp outer[4];
9401 Temp out[6];
9402 assert(inner_comps <= (sizeof(inner) / sizeof(Temp)));
9403 assert(outer_comps <= (sizeof(outer) / sizeof(Temp)));
9404 assert(stride <= (sizeof(out) / sizeof(Temp)));
9405
9406 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
9407 // LINES reversal
9408 outer[0] = out[1] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + 0 * 4, 4);
9409 outer[1] = out[0] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + 1 * 4, 4);
9410 } else {
9411 for (unsigned i = 0; i < outer_comps; ++i)
9412 outer[i] = out[i] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_outer * 16 + i * 4, 4);
9413
9414 for (unsigned i = 0; i < inner_comps; ++i)
9415 inner[i] = out[outer_comps + i] = load_lds(ctx, 4, bld.tmp(v1), lds_base.first, lds_base.second + tess_index_inner * 16 + i * 4, 4);
9416 }
9417
9418 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
9419 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
9420 Temp byte_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, stride * 4u);
9421 unsigned tf_const_offset = 0;
9422
9423 if (ctx->program->chip_class <= GFX8) {
9424 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
9425 if_context ic_rel_patch_id_is_zero;
9426 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
9427 bld.reset(ctx->block);
9428
9429 /* Store the dynamic HS control word. */
9430 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
9431 bld.mubuf(aco_opcode::buffer_store_dword,
9432 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
9433 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
9434 /* disable_wqm */ false, /* glc */ true);
9435 tf_const_offset += 4;
9436
9437 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
9438 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
9439 bld.reset(ctx->block);
9440 }
9441
9442 assert(stride == 2 || stride == 4 || stride == 6);
9443 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr);
9444 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
9445
9446 /* Store to offchip for TES to read - only if TES reads them */
9447 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
9448 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
9449 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
9450
9451 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, tess_index_outer * 16);
9452 Temp outer_vec = create_vec_from_array(ctx, outer, outer_comps, RegType::vgpr);
9453 store_vmem_mubuf(ctx, outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
9454
9455 if (likely(inner_comps)) {
9456 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, tess_index_inner * 16);
9457 Temp inner_vec = create_vec_from_array(ctx, inner, inner_comps, RegType::vgpr);
9458 store_vmem_mubuf(ctx, inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
9459 }
9460 }
9461
9462 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
9463 end_divergent_if(ctx, &ic_invocation_id_is_zero);
9464 }
9465
9466 static void emit_stream_output(isel_context *ctx,
9467 Temp const *so_buffers,
9468 Temp const *so_write_offset,
9469 const struct radv_stream_output *output)
9470 {
9471 unsigned num_comps = util_bitcount(output->component_mask);
9472 unsigned writemask = (1 << num_comps) - 1;
9473 unsigned loc = output->location;
9474 unsigned buf = output->buffer;
9475
9476 assert(num_comps && num_comps <= 4);
9477 if (!num_comps || num_comps > 4)
9478 return;
9479
9480 unsigned start = ffs(output->component_mask) - 1;
9481
9482 Temp out[4];
9483 bool all_undef = true;
9484 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
9485 for (unsigned i = 0; i < num_comps; i++) {
9486 out[i] = ctx->outputs.outputs[loc][start + i];
9487 all_undef = all_undef && !out[i].id();
9488 }
9489 if (all_undef)
9490 return;
9491
9492 while (writemask) {
9493 int start, count;
9494 u_bit_scan_consecutive_range(&writemask, &start, &count);
9495 if (count == 3 && ctx->options->chip_class == GFX6) {
9496 /* GFX6 doesn't support storing vec3, split it. */
9497 writemask |= 1u << (start + 2);
9498 count = 2;
9499 }
9500
9501 unsigned offset = output->offset + start * 4;
9502
9503 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
9504 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
9505 for (int i = 0; i < count; ++i)
9506 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
9507 vec->definitions[0] = Definition(write_data);
9508 ctx->block->instructions.emplace_back(std::move(vec));
9509
9510 aco_opcode opcode;
9511 switch (count) {
9512 case 1:
9513 opcode = aco_opcode::buffer_store_dword;
9514 break;
9515 case 2:
9516 opcode = aco_opcode::buffer_store_dwordx2;
9517 break;
9518 case 3:
9519 opcode = aco_opcode::buffer_store_dwordx3;
9520 break;
9521 case 4:
9522 opcode = aco_opcode::buffer_store_dwordx4;
9523 break;
9524 default:
9525 unreachable("Unsupported dword count.");
9526 }
9527
9528 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
9529 store->operands[0] = Operand(so_buffers[buf]);
9530 store->operands[1] = Operand(so_write_offset[buf]);
9531 store->operands[2] = Operand((uint32_t) 0);
9532 store->operands[3] = Operand(write_data);
9533 if (offset > 4095) {
9534 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
9535 Builder bld(ctx->program, ctx->block);
9536 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
9537 } else {
9538 store->offset = offset;
9539 }
9540 store->offen = true;
9541 store->glc = true;
9542 store->dlc = false;
9543 store->slc = true;
9544 store->can_reorder = true;
9545 ctx->block->instructions.emplace_back(std::move(store));
9546 }
9547 }
9548
9549 static void emit_streamout(isel_context *ctx, unsigned stream)
9550 {
9551 Builder bld(ctx->program, ctx->block);
9552
9553 Temp so_buffers[4];
9554 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
9555 for (unsigned i = 0; i < 4; i++) {
9556 unsigned stride = ctx->program->info->so.strides[i];
9557 if (!stride)
9558 continue;
9559
9560 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
9561 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
9562 }
9563
9564 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9565 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
9566
9567 Temp tid = emit_mbcnt(ctx, bld.def(v1));
9568
9569 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
9570
9571 if_context ic;
9572 begin_divergent_if_then(ctx, &ic, can_emit);
9573
9574 bld.reset(ctx->block);
9575
9576 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
9577
9578 Temp so_write_offset[4];
9579
9580 for (unsigned i = 0; i < 4; i++) {
9581 unsigned stride = ctx->program->info->so.strides[i];
9582 if (!stride)
9583 continue;
9584
9585 if (stride == 1) {
9586 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
9587 get_arg(ctx, ctx->args->streamout_write_idx),
9588 get_arg(ctx, ctx->args->streamout_offset[i]));
9589 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
9590
9591 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
9592 } else {
9593 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
9594 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
9595 get_arg(ctx, ctx->args->streamout_offset[i]));
9596 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
9597 }
9598 }
9599
9600 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
9601 struct radv_stream_output *output =
9602 &ctx->program->info->so.outputs[i];
9603 if (stream != output->stream)
9604 continue;
9605
9606 emit_stream_output(ctx, so_buffers, so_write_offset, output);
9607 }
9608
9609 begin_divergent_if_else(ctx, &ic);
9610 end_divergent_if(ctx, &ic);
9611 }
9612
9613 } /* end namespace */
9614
9615 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
9616 {
9617 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
9618 Builder bld(ctx->program, ctx->block);
9619 constexpr unsigned hs_idx = 1u;
9620 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9621 get_arg(ctx, ctx->args->merged_wave_info),
9622 Operand((8u << 16) | (hs_idx * 8u)));
9623 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
9624
9625 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
9626
9627 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9628 get_arg(ctx, ctx->args->rel_auto_id),
9629 get_arg(ctx, ctx->args->ac.instance_id),
9630 ls_has_nonzero_hs_threads);
9631 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9632 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
9633 get_arg(ctx, ctx->args->rel_auto_id),
9634 ls_has_nonzero_hs_threads);
9635 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9636 get_arg(ctx, ctx->args->ac.tcs_patch_id),
9637 get_arg(ctx, ctx->args->ac.vertex_id),
9638 ls_has_nonzero_hs_threads);
9639
9640 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
9641 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
9642 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
9643 }
9644
9645 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
9646 {
9647 /* Split all arguments except for the first (ring_offsets) and the last
9648 * (exec) so that the dead channels don't stay live throughout the program.
9649 */
9650 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
9651 if (startpgm->definitions[i].regClass().size() > 1) {
9652 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
9653 startpgm->definitions[i].regClass().size());
9654 }
9655 }
9656 }
9657
9658 void handle_bc_optimize(isel_context *ctx)
9659 {
9660 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
9661 Builder bld(ctx->program, ctx->block);
9662 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
9663 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
9664 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
9665 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
9666 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
9667 if (uses_center && uses_centroid) {
9668 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
9669 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
9670
9671 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
9672 Temp new_coord[2];
9673 for (unsigned i = 0; i < 2; i++) {
9674 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
9675 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
9676 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9677 persp_centroid, persp_center, sel);
9678 }
9679 ctx->persp_centroid = bld.tmp(v2);
9680 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
9681 Operand(new_coord[0]), Operand(new_coord[1]));
9682 emit_split_vector(ctx, ctx->persp_centroid, 2);
9683 }
9684
9685 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
9686 Temp new_coord[2];
9687 for (unsigned i = 0; i < 2; i++) {
9688 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
9689 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
9690 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
9691 linear_centroid, linear_center, sel);
9692 }
9693 ctx->linear_centroid = bld.tmp(v2);
9694 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
9695 Operand(new_coord[0]), Operand(new_coord[1]));
9696 emit_split_vector(ctx, ctx->linear_centroid, 2);
9697 }
9698 }
9699 }
9700
9701 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
9702 {
9703 Program *program = ctx->program;
9704
9705 unsigned float_controls = shader->info.float_controls_execution_mode;
9706
9707 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
9708 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
9709 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
9710 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
9711 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
9712
9713 program->next_fp_mode.must_flush_denorms32 =
9714 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
9715 program->next_fp_mode.must_flush_denorms16_64 =
9716 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
9717 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
9718
9719 program->next_fp_mode.care_about_round32 =
9720 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
9721
9722 program->next_fp_mode.care_about_round16_64 =
9723 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
9724 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
9725
9726 /* default to preserving fp16 and fp64 denorms, since it's free */
9727 if (program->next_fp_mode.must_flush_denorms16_64)
9728 program->next_fp_mode.denorm16_64 = 0;
9729 else
9730 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9731
9732 /* preserving fp32 denorms is expensive, so only do it if asked */
9733 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
9734 program->next_fp_mode.denorm32 = fp_denorm_keep;
9735 else
9736 program->next_fp_mode.denorm32 = 0;
9737
9738 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
9739 program->next_fp_mode.round32 = fp_round_tz;
9740 else
9741 program->next_fp_mode.round32 = fp_round_ne;
9742
9743 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
9744 program->next_fp_mode.round16_64 = fp_round_tz;
9745 else
9746 program->next_fp_mode.round16_64 = fp_round_ne;
9747
9748 ctx->block->fp_mode = program->next_fp_mode;
9749 }
9750
9751 void cleanup_cfg(Program *program)
9752 {
9753 /* create linear_succs/logical_succs */
9754 for (Block& BB : program->blocks) {
9755 for (unsigned idx : BB.linear_preds)
9756 program->blocks[idx].linear_succs.emplace_back(BB.index);
9757 for (unsigned idx : BB.logical_preds)
9758 program->blocks[idx].logical_succs.emplace_back(BB.index);
9759 }
9760 }
9761
9762 void select_program(Program *program,
9763 unsigned shader_count,
9764 struct nir_shader *const *shaders,
9765 ac_shader_config* config,
9766 struct radv_shader_args *args)
9767 {
9768 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
9769
9770 for (unsigned i = 0; i < shader_count; i++) {
9771 nir_shader *nir = shaders[i];
9772 init_context(&ctx, nir);
9773
9774 setup_fp_mode(&ctx, nir);
9775
9776 if (!i) {
9777 /* needs to be after init_context() for FS */
9778 Pseudo_instruction *startpgm = add_startpgm(&ctx);
9779 append_logical_start(ctx.block);
9780
9781 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
9782 fix_ls_vgpr_init_bug(&ctx, startpgm);
9783
9784 split_arguments(&ctx, startpgm);
9785 }
9786
9787 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
9788 nir_function_impl *func = nir_shader_get_entrypoint(nir);
9789 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
9790 ((nir->info.stage == MESA_SHADER_VERTEX &&
9791 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
9792 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
9793 ctx.stage == tess_eval_geometry_gs));
9794
9795 if_context ic;
9796 if (shader_count >= 2 && !empty_shader) {
9797 Builder bld(ctx.program, ctx.block);
9798 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | (i * 8u)));
9799 Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
9800 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
9801
9802 begin_divergent_if_then(&ctx, &ic, cond);
9803 }
9804
9805 if (i) {
9806 Builder bld(ctx.program, ctx.block);
9807
9808 bld.barrier(aco_opcode::p_memory_barrier_shared);
9809 bld.sopp(aco_opcode::s_barrier);
9810
9811 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
9812 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
9813 }
9814 } else if (ctx.stage == geometry_gs)
9815 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
9816
9817 if (ctx.stage == fragment_fs)
9818 handle_bc_optimize(&ctx);
9819
9820 visit_cf_list(&ctx, &func->body);
9821
9822 if (ctx.program->info->so.num_outputs && (ctx.stage == vertex_vs || ctx.stage == tess_eval_vs))
9823 emit_streamout(&ctx, 0);
9824
9825 if (ctx.stage == vertex_vs || ctx.stage == tess_eval_vs) {
9826 create_vs_exports(&ctx);
9827 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
9828 Builder bld(ctx.program, ctx.block);
9829 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
9830 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
9831 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
9832 write_tcs_tess_factors(&ctx);
9833 }
9834
9835 if (ctx.stage == fragment_fs)
9836 create_fs_exports(&ctx);
9837
9838 if (shader_count >= 2 && !empty_shader) {
9839 begin_divergent_if_else(&ctx, &ic);
9840 end_divergent_if(&ctx, &ic);
9841 }
9842
9843 ralloc_free(ctx.divergent_vals);
9844 }
9845
9846 program->config->float_mode = program->blocks[0].fp_mode.val;
9847
9848 append_logical_end(ctx.block);
9849 ctx.block->kind |= block_kind_uniform | block_kind_export_end;
9850 Builder bld(ctx.program, ctx.block);
9851 if (ctx.program->wb_smem_l1_on_end)
9852 bld.smem(aco_opcode::s_dcache_wb, false);
9853 bld.sopp(aco_opcode::s_endpgm);
9854
9855 cleanup_cfg(program);
9856 }
9857
9858 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
9859 ac_shader_config* config,
9860 struct radv_shader_args *args)
9861 {
9862 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
9863
9864 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
9865 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
9866 program->next_fp_mode.must_flush_denorms32 = false;
9867 program->next_fp_mode.must_flush_denorms16_64 = false;
9868 program->next_fp_mode.care_about_round32 = false;
9869 program->next_fp_mode.care_about_round16_64 = false;
9870 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
9871 program->next_fp_mode.denorm32 = 0;
9872 program->next_fp_mode.round32 = fp_round_ne;
9873 program->next_fp_mode.round16_64 = fp_round_ne;
9874 ctx.block->fp_mode = program->next_fp_mode;
9875
9876 add_startpgm(&ctx);
9877 append_logical_start(ctx.block);
9878
9879 Builder bld(ctx.program, ctx.block);
9880
9881 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
9882
9883 Operand stream_id(0u);
9884 if (args->shader_info->so.num_outputs)
9885 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
9886 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
9887
9888 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
9889
9890 std::stack<Block> endif_blocks;
9891
9892 for (unsigned stream = 0; stream < 4; stream++) {
9893 if (stream_id.isConstant() && stream != stream_id.constantValue())
9894 continue;
9895
9896 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
9897 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
9898 continue;
9899
9900 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
9901
9902 unsigned BB_if_idx = ctx.block->index;
9903 Block BB_endif = Block();
9904 if (!stream_id.isConstant()) {
9905 /* begin IF */
9906 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
9907 append_logical_end(ctx.block);
9908 ctx.block->kind |= block_kind_uniform;
9909 bld.branch(aco_opcode::p_cbranch_z, cond);
9910
9911 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
9912
9913 ctx.block = ctx.program->create_and_insert_block();
9914 add_edge(BB_if_idx, ctx.block);
9915 bld.reset(ctx.block);
9916 append_logical_start(ctx.block);
9917 }
9918
9919 unsigned offset = 0;
9920 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9921 if (args->shader_info->gs.output_streams[i] != stream)
9922 continue;
9923
9924 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
9925 unsigned length = util_last_bit(output_usage_mask);
9926 for (unsigned j = 0; j < length; ++j) {
9927 if (!(output_usage_mask & (1 << j)))
9928 continue;
9929
9930 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
9931 Temp voffset = vtx_offset;
9932 if (const_offset >= 4096u) {
9933 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
9934 const_offset %= 4096u;
9935 }
9936
9937 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
9938 mubuf->definitions[0] = bld.def(v1);
9939 mubuf->operands[0] = Operand(gsvs_ring);
9940 mubuf->operands[1] = Operand(voffset);
9941 mubuf->operands[2] = Operand(0u);
9942 mubuf->offen = true;
9943 mubuf->offset = const_offset;
9944 mubuf->glc = true;
9945 mubuf->slc = true;
9946 mubuf->dlc = args->options->chip_class >= GFX10;
9947 mubuf->barrier = barrier_none;
9948 mubuf->can_reorder = true;
9949
9950 ctx.outputs.mask[i] |= 1 << j;
9951 ctx.outputs.outputs[i][j] = mubuf->definitions[0].getTemp();
9952
9953 bld.insert(std::move(mubuf));
9954
9955 offset++;
9956 }
9957 }
9958
9959 if (args->shader_info->so.num_outputs) {
9960 emit_streamout(&ctx, stream);
9961 bld.reset(ctx.block);
9962 }
9963
9964 if (stream == 0) {
9965 create_vs_exports(&ctx);
9966 ctx.block->kind |= block_kind_export_end;
9967 }
9968
9969 if (!stream_id.isConstant()) {
9970 append_logical_end(ctx.block);
9971
9972 /* branch from then block to endif block */
9973 bld.branch(aco_opcode::p_branch);
9974 add_edge(ctx.block->index, &BB_endif);
9975 ctx.block->kind |= block_kind_uniform;
9976
9977 /* emit else block */
9978 ctx.block = ctx.program->create_and_insert_block();
9979 add_edge(BB_if_idx, ctx.block);
9980 bld.reset(ctx.block);
9981 append_logical_start(ctx.block);
9982
9983 endif_blocks.push(std::move(BB_endif));
9984 }
9985 }
9986
9987 while (!endif_blocks.empty()) {
9988 Block BB_endif = std::move(endif_blocks.top());
9989 endif_blocks.pop();
9990
9991 Block *BB_else = ctx.block;
9992
9993 append_logical_end(BB_else);
9994 /* branch from else block to endif block */
9995 bld.branch(aco_opcode::p_branch);
9996 add_edge(BB_else->index, &BB_endif);
9997 BB_else->kind |= block_kind_uniform;
9998
9999 /** emit endif merge block */
10000 ctx.block = program->insert_block(std::move(BB_endif));
10001 bld.reset(ctx.block);
10002 append_logical_start(ctx.block);
10003 }
10004
10005 program->config->float_mode = program->blocks[0].fp_mode.val;
10006
10007 append_logical_end(ctx.block);
10008 ctx.block->kind |= block_kind_uniform;
10009 bld.sopp(aco_opcode::s_endpgm);
10010
10011 cleanup_cfg(program);
10012 }
10013 }