v3d: Implement a small immediates optimization, based on VC4's.
[mesa.git] / src / broadcom / compiler / qpu_schedule.c
1 /*
2 * Copyright © 2010 Intel Corporation
3 * Copyright © 2014-2017 Broadcom
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24
25 /**
26 * @file
27 *
28 * The basic model of the list scheduler is to take a basic block, compute a
29 * DAG of the dependencies, and make a list of the DAG heads. Heuristically
30 * pick a DAG head, then put all the children that are now DAG heads into the
31 * list of things to schedule.
32 *
33 * The goal of scheduling here is to pack pairs of operations together in a
34 * single QPU instruction.
35 */
36
37 #include "qpu/qpu_disasm.h"
38 #include "v3d_compiler.h"
39 #include "util/ralloc.h"
40
41 static bool debug;
42
43 struct schedule_node_child;
44
45 struct schedule_node {
46 struct list_head link;
47 struct qinst *inst;
48 struct schedule_node_child *children;
49 uint32_t child_count;
50 uint32_t child_array_size;
51 uint32_t parent_count;
52
53 /* Longest cycles + instruction_latency() of any parent of this node. */
54 uint32_t unblocked_time;
55
56 /**
57 * Minimum number of cycles from scheduling this instruction until the
58 * end of the program, based on the slowest dependency chain through
59 * the children.
60 */
61 uint32_t delay;
62
63 /**
64 * cycles between this instruction being scheduled and when its result
65 * can be consumed.
66 */
67 uint32_t latency;
68 };
69
70 struct schedule_node_child {
71 struct schedule_node *node;
72 bool write_after_read;
73 };
74
75 /* When walking the instructions in reverse, we need to swap before/after in
76 * add_dep().
77 */
78 enum direction { F, R };
79
80 struct schedule_state {
81 const struct v3d_device_info *devinfo;
82 struct schedule_node *last_r[6];
83 struct schedule_node *last_rf[64];
84 struct schedule_node *last_sf;
85 struct schedule_node *last_vpm_read;
86 struct schedule_node *last_tmu_write;
87 struct schedule_node *last_tmu_config;
88 struct schedule_node *last_tlb;
89 struct schedule_node *last_vpm;
90 struct schedule_node *last_unif;
91 struct schedule_node *last_rtop;
92 enum direction dir;
93 /* Estimated cycle when the current instruction would start. */
94 uint32_t time;
95 };
96
97 static void
98 add_dep(struct schedule_state *state,
99 struct schedule_node *before,
100 struct schedule_node *after,
101 bool write)
102 {
103 bool write_after_read = !write && state->dir == R;
104
105 if (!before || !after)
106 return;
107
108 assert(before != after);
109
110 if (state->dir == R) {
111 struct schedule_node *t = before;
112 before = after;
113 after = t;
114 }
115
116 for (int i = 0; i < before->child_count; i++) {
117 if (before->children[i].node == after &&
118 (before->children[i].write_after_read == write_after_read)) {
119 return;
120 }
121 }
122
123 if (before->child_array_size <= before->child_count) {
124 before->child_array_size = MAX2(before->child_array_size * 2, 16);
125 before->children = reralloc(before, before->children,
126 struct schedule_node_child,
127 before->child_array_size);
128 }
129
130 before->children[before->child_count].node = after;
131 before->children[before->child_count].write_after_read =
132 write_after_read;
133 before->child_count++;
134 after->parent_count++;
135 }
136
137 static void
138 add_read_dep(struct schedule_state *state,
139 struct schedule_node *before,
140 struct schedule_node *after)
141 {
142 add_dep(state, before, after, false);
143 }
144
145 static void
146 add_write_dep(struct schedule_state *state,
147 struct schedule_node **before,
148 struct schedule_node *after)
149 {
150 add_dep(state, *before, after, true);
151 *before = after;
152 }
153
154 static bool
155 qpu_inst_is_tlb(const struct v3d_qpu_instr *inst)
156 {
157 if (inst->type != V3D_QPU_INSTR_TYPE_ALU)
158 return false;
159
160 if (inst->alu.add.magic_write &&
161 (inst->alu.add.waddr == V3D_QPU_WADDR_TLB ||
162 inst->alu.add.waddr == V3D_QPU_WADDR_TLBU))
163 return true;
164
165 if (inst->alu.mul.magic_write &&
166 (inst->alu.mul.waddr == V3D_QPU_WADDR_TLB ||
167 inst->alu.mul.waddr == V3D_QPU_WADDR_TLBU))
168 return true;
169
170 return false;
171 }
172
173 static void
174 process_mux_deps(struct schedule_state *state, struct schedule_node *n,
175 enum v3d_qpu_mux mux)
176 {
177 switch (mux) {
178 case V3D_QPU_MUX_A:
179 add_read_dep(state, state->last_rf[n->inst->qpu.raddr_a], n);
180 break;
181 case V3D_QPU_MUX_B:
182 add_read_dep(state, state->last_rf[n->inst->qpu.raddr_b], n);
183 break;
184 default:
185 add_read_dep(state, state->last_r[mux - V3D_QPU_MUX_R0], n);
186 break;
187 }
188 }
189
190
191 static void
192 process_waddr_deps(struct schedule_state *state, struct schedule_node *n,
193 uint32_t waddr, bool magic)
194 {
195 if (!magic) {
196 add_write_dep(state, &state->last_rf[waddr], n);
197 } else if (v3d_qpu_magic_waddr_is_tmu(waddr)) {
198 add_write_dep(state, &state->last_tmu_write, n);
199 switch (waddr) {
200 case V3D_QPU_WADDR_TMUS:
201 case V3D_QPU_WADDR_TMUSCM:
202 case V3D_QPU_WADDR_TMUSF:
203 case V3D_QPU_WADDR_TMUSLOD:
204 add_write_dep(state, &state->last_tmu_config, n);
205 break;
206 default:
207 break;
208 }
209 } else if (v3d_qpu_magic_waddr_is_sfu(waddr)) {
210 /* Handled by v3d_qpu_writes_r4() check. */
211 } else {
212 switch (waddr) {
213 case V3D_QPU_WADDR_R0:
214 case V3D_QPU_WADDR_R1:
215 case V3D_QPU_WADDR_R2:
216 add_write_dep(state,
217 &state->last_r[waddr - V3D_QPU_WADDR_R0],
218 n);
219 break;
220 case V3D_QPU_WADDR_R3:
221 case V3D_QPU_WADDR_R4:
222 case V3D_QPU_WADDR_R5:
223 /* Handled by v3d_qpu_writes_r*() checks below. */
224 break;
225
226 case V3D_QPU_WADDR_VPM:
227 case V3D_QPU_WADDR_VPMU:
228 add_write_dep(state, &state->last_vpm, n);
229 break;
230
231 case V3D_QPU_WADDR_TLB:
232 case V3D_QPU_WADDR_TLBU:
233 add_write_dep(state, &state->last_tlb, n);
234 break;
235
236 case V3D_QPU_WADDR_NOP:
237 break;
238
239 default:
240 fprintf(stderr, "Unknown waddr %d\n", waddr);
241 abort();
242 }
243 }
244 }
245
246 static void
247 process_cond_deps(struct schedule_state *state, struct schedule_node *n,
248 enum v3d_qpu_cond cond)
249 {
250 if (cond != V3D_QPU_COND_NONE)
251 add_read_dep(state, state->last_sf, n);
252 }
253
254 static void
255 process_pf_deps(struct schedule_state *state, struct schedule_node *n,
256 enum v3d_qpu_pf pf)
257 {
258 if (pf != V3D_QPU_PF_NONE)
259 add_write_dep(state, &state->last_sf, n);
260 }
261
262 static void
263 process_uf_deps(struct schedule_state *state, struct schedule_node *n,
264 enum v3d_qpu_uf uf)
265 {
266 if (uf != V3D_QPU_UF_NONE)
267 add_write_dep(state, &state->last_sf, n);
268 }
269
270 /**
271 * Common code for dependencies that need to be tracked both forward and
272 * backward.
273 *
274 * This is for things like "all reads of r4 have to happen between the r4
275 * writes that surround them".
276 */
277 static void
278 calculate_deps(struct schedule_state *state, struct schedule_node *n)
279 {
280 const struct v3d_device_info *devinfo = state->devinfo;
281 struct qinst *qinst = n->inst;
282 struct v3d_qpu_instr *inst = &qinst->qpu;
283
284 if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH) {
285 if (inst->branch.cond != V3D_QPU_BRANCH_COND_ALWAYS)
286 add_read_dep(state, state->last_sf, n);
287
288 /* XXX: BDI */
289 /* XXX: BDU */
290 /* XXX: ub */
291 /* XXX: raddr_a */
292
293 add_write_dep(state, &state->last_unif, n);
294 return;
295 }
296
297 assert(inst->type == V3D_QPU_INSTR_TYPE_ALU);
298
299 /* XXX: LOAD_IMM */
300
301 if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 0)
302 process_mux_deps(state, n, inst->alu.add.a);
303 if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 1)
304 process_mux_deps(state, n, inst->alu.add.b);
305
306 if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 0)
307 process_mux_deps(state, n, inst->alu.mul.a);
308 if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 1)
309 process_mux_deps(state, n, inst->alu.mul.b);
310
311 switch (inst->alu.add.op) {
312 case V3D_QPU_A_VPMSETUP:
313 /* Could distinguish read/write by unpacking the uniform. */
314 add_write_dep(state, &state->last_vpm, n);
315 add_write_dep(state, &state->last_vpm_read, n);
316 break;
317
318 case V3D_QPU_A_STVPMV:
319 case V3D_QPU_A_STVPMD:
320 case V3D_QPU_A_STVPMP:
321 add_write_dep(state, &state->last_vpm, n);
322 break;
323
324 case V3D_QPU_A_VPMWT:
325 add_read_dep(state, state->last_vpm, n);
326 break;
327
328 case V3D_QPU_A_MSF:
329 add_read_dep(state, state->last_tlb, n);
330 break;
331
332 case V3D_QPU_A_SETMSF:
333 case V3D_QPU_A_SETREVF:
334 add_write_dep(state, &state->last_tlb, n);
335 break;
336
337 case V3D_QPU_A_FLAPUSH:
338 case V3D_QPU_A_FLBPUSH:
339 case V3D_QPU_A_VFLA:
340 case V3D_QPU_A_VFLNA:
341 case V3D_QPU_A_VFLB:
342 case V3D_QPU_A_VFLNB:
343 add_read_dep(state, state->last_sf, n);
344 break;
345
346 case V3D_QPU_A_FLPOP:
347 add_write_dep(state, &state->last_sf, n);
348 break;
349
350 default:
351 break;
352 }
353
354 switch (inst->alu.mul.op) {
355 case V3D_QPU_M_MULTOP:
356 case V3D_QPU_M_UMUL24:
357 /* MULTOP sets rtop, and UMUL24 implicitly reads rtop and
358 * resets it to 0. We could possibly reorder umul24s relative
359 * to each other, but for now just keep all the MUL parts in
360 * order.
361 */
362 add_write_dep(state, &state->last_rtop, n);
363 break;
364 default:
365 break;
366 }
367
368 if (inst->alu.add.op != V3D_QPU_A_NOP) {
369 process_waddr_deps(state, n, inst->alu.add.waddr,
370 inst->alu.add.magic_write);
371 }
372 if (inst->alu.mul.op != V3D_QPU_M_NOP) {
373 process_waddr_deps(state, n, inst->alu.mul.waddr,
374 inst->alu.mul.magic_write);
375 }
376 if (v3d_qpu_sig_writes_address(devinfo, &inst->sig)) {
377 process_waddr_deps(state, n, inst->sig_addr,
378 inst->sig_magic);
379 }
380
381 if (v3d_qpu_writes_r3(devinfo, inst))
382 add_write_dep(state, &state->last_r[3], n);
383 if (v3d_qpu_writes_r4(devinfo, inst))
384 add_write_dep(state, &state->last_r[4], n);
385 if (v3d_qpu_writes_r5(devinfo, inst))
386 add_write_dep(state, &state->last_r[5], n);
387
388 if (inst->sig.thrsw) {
389 /* All accumulator contents and flags are undefined after the
390 * switch.
391 */
392 for (int i = 0; i < ARRAY_SIZE(state->last_r); i++)
393 add_write_dep(state, &state->last_r[i], n);
394 add_write_dep(state, &state->last_sf, n);
395
396 /* Scoreboard-locking operations have to stay after the last
397 * thread switch.
398 */
399 add_write_dep(state, &state->last_tlb, n);
400
401 add_write_dep(state, &state->last_tmu_write, n);
402 add_write_dep(state, &state->last_tmu_config, n);
403 }
404
405 if (inst->sig.ldtmu) {
406 /* TMU loads are coming from a FIFO, so ordering is important.
407 */
408 add_write_dep(state, &state->last_tmu_write, n);
409 }
410
411 if (inst->sig.wrtmuc)
412 add_write_dep(state, &state->last_tmu_config, n);
413
414 if (inst->sig.ldtlb | inst->sig.ldtlbu)
415 add_read_dep(state, state->last_tlb, n);
416
417 if (inst->sig.ldvpm)
418 add_write_dep(state, &state->last_vpm_read, n);
419
420 /* inst->sig.ldunif or sideband uniform read */
421 if (qinst->uniform != ~0)
422 add_write_dep(state, &state->last_unif, n);
423
424 process_cond_deps(state, n, inst->flags.ac);
425 process_cond_deps(state, n, inst->flags.mc);
426 process_pf_deps(state, n, inst->flags.apf);
427 process_pf_deps(state, n, inst->flags.mpf);
428 process_uf_deps(state, n, inst->flags.auf);
429 process_uf_deps(state, n, inst->flags.muf);
430 }
431
432 static void
433 calculate_forward_deps(struct v3d_compile *c, struct list_head *schedule_list)
434 {
435 struct schedule_state state;
436
437 memset(&state, 0, sizeof(state));
438 state.devinfo = c->devinfo;
439 state.dir = F;
440
441 list_for_each_entry(struct schedule_node, node, schedule_list, link)
442 calculate_deps(&state, node);
443 }
444
445 static void
446 calculate_reverse_deps(struct v3d_compile *c, struct list_head *schedule_list)
447 {
448 struct list_head *node;
449 struct schedule_state state;
450
451 memset(&state, 0, sizeof(state));
452 state.devinfo = c->devinfo;
453 state.dir = R;
454
455 for (node = schedule_list->prev; schedule_list != node; node = node->prev) {
456 calculate_deps(&state, (struct schedule_node *)node);
457 }
458 }
459
460 struct choose_scoreboard {
461 int tick;
462 int last_magic_sfu_write_tick;
463 int last_ldvary_tick;
464 int last_uniforms_reset_tick;
465 bool tlb_locked;
466 };
467
468 static bool
469 mux_reads_too_soon(struct choose_scoreboard *scoreboard,
470 const struct v3d_qpu_instr *inst, enum v3d_qpu_mux mux)
471 {
472 switch (mux) {
473 case V3D_QPU_MUX_R4:
474 if (scoreboard->tick - scoreboard->last_magic_sfu_write_tick <= 2)
475 return true;
476 break;
477
478 case V3D_QPU_MUX_R5:
479 if (scoreboard->tick - scoreboard->last_ldvary_tick <= 1)
480 return true;
481 break;
482 default:
483 break;
484 }
485
486 return false;
487 }
488
489 static bool
490 reads_too_soon_after_write(struct choose_scoreboard *scoreboard,
491 struct qinst *qinst)
492 {
493 const struct v3d_qpu_instr *inst = &qinst->qpu;
494
495 /* XXX: Branching off of raddr. */
496 if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH)
497 return false;
498
499 assert(inst->type == V3D_QPU_INSTR_TYPE_ALU);
500
501 if (inst->alu.add.op != V3D_QPU_A_NOP) {
502 if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 0 &&
503 mux_reads_too_soon(scoreboard, inst, inst->alu.add.a)) {
504 return true;
505 }
506 if (v3d_qpu_add_op_num_src(inst->alu.add.op) > 1 &&
507 mux_reads_too_soon(scoreboard, inst, inst->alu.add.b)) {
508 return true;
509 }
510 }
511
512 if (inst->alu.mul.op != V3D_QPU_M_NOP) {
513 if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 0 &&
514 mux_reads_too_soon(scoreboard, inst, inst->alu.mul.a)) {
515 return true;
516 }
517 if (v3d_qpu_mul_op_num_src(inst->alu.mul.op) > 1 &&
518 mux_reads_too_soon(scoreboard, inst, inst->alu.mul.b)) {
519 return true;
520 }
521 }
522
523 /* XXX: imm */
524
525 return false;
526 }
527
528 static bool
529 writes_too_soon_after_write(const struct v3d_device_info *devinfo,
530 struct choose_scoreboard *scoreboard,
531 struct qinst *qinst)
532 {
533 const struct v3d_qpu_instr *inst = &qinst->qpu;
534
535 /* Don't schedule any other r4 write too soon after an SFU write.
536 * This would normally be prevented by dependency tracking, but might
537 * occur if a dead SFU computation makes it to scheduling.
538 */
539 if (scoreboard->tick - scoreboard->last_magic_sfu_write_tick < 2 &&
540 v3d_qpu_writes_r4(devinfo, inst))
541 return true;
542
543 return false;
544 }
545
546 static bool
547 pixel_scoreboard_too_soon(struct choose_scoreboard *scoreboard,
548 const struct v3d_qpu_instr *inst)
549 {
550 return (scoreboard->tick == 0 && qpu_inst_is_tlb(inst));
551 }
552
553 static int
554 get_instruction_priority(const struct v3d_qpu_instr *inst)
555 {
556 uint32_t baseline_score;
557 uint32_t next_score = 0;
558
559 /* Schedule TLB operations as late as possible, to get more
560 * parallelism between shaders.
561 */
562 if (qpu_inst_is_tlb(inst))
563 return next_score;
564 next_score++;
565
566 /* Schedule texture read results collection late to hide latency. */
567 if (inst->sig.ldtmu)
568 return next_score;
569 next_score++;
570
571 /* Default score for things that aren't otherwise special. */
572 baseline_score = next_score;
573 next_score++;
574
575 /* Schedule texture read setup early to hide their latency better. */
576 if (v3d_qpu_writes_tmu(inst))
577 return next_score;
578 next_score++;
579
580 return baseline_score;
581 }
582
583 static bool
584 qpu_magic_waddr_is_periph(enum v3d_qpu_waddr waddr)
585 {
586 return (v3d_qpu_magic_waddr_is_tmu(waddr) ||
587 v3d_qpu_magic_waddr_is_sfu(waddr) ||
588 v3d_qpu_magic_waddr_is_tlb(waddr) ||
589 v3d_qpu_magic_waddr_is_vpm(waddr) ||
590 v3d_qpu_magic_waddr_is_tsy(waddr));
591 }
592
593 static bool
594 qpu_accesses_peripheral(const struct v3d_qpu_instr *inst)
595 {
596 if (v3d_qpu_uses_vpm(inst))
597 return true;
598 if (v3d_qpu_uses_sfu(inst))
599 return true;
600
601 if (inst->type == V3D_QPU_INSTR_TYPE_ALU) {
602 if (inst->alu.add.op != V3D_QPU_A_NOP &&
603 inst->alu.add.magic_write &&
604 qpu_magic_waddr_is_periph(inst->alu.add.waddr)) {
605 return true;
606 }
607
608 if (inst->alu.mul.op != V3D_QPU_M_NOP &&
609 inst->alu.mul.magic_write &&
610 qpu_magic_waddr_is_periph(inst->alu.mul.waddr)) {
611 return true;
612 }
613 }
614
615 return (inst->sig.ldvpm ||
616 inst->sig.ldtmu ||
617 inst->sig.ldtlb ||
618 inst->sig.ldtlbu ||
619 inst->sig.wrtmuc);
620 }
621
622 static bool
623 qpu_merge_inst(const struct v3d_device_info *devinfo,
624 struct v3d_qpu_instr *result,
625 const struct v3d_qpu_instr *a,
626 const struct v3d_qpu_instr *b)
627 {
628 if (a->type != V3D_QPU_INSTR_TYPE_ALU ||
629 b->type != V3D_QPU_INSTR_TYPE_ALU) {
630 return false;
631 }
632
633 /* Can't do more than one peripheral access in an instruction.
634 *
635 * XXX: V3D 4.1 allows TMU read along with a VPM read or write, and
636 * WRTMUC with a TMU magic register write (other than tmuc).
637 */
638 if (qpu_accesses_peripheral(a) && qpu_accesses_peripheral(b))
639 return false;
640
641 struct v3d_qpu_instr merge = *a;
642
643 if (b->alu.add.op != V3D_QPU_A_NOP) {
644 if (a->alu.add.op != V3D_QPU_A_NOP)
645 return false;
646 merge.alu.add = b->alu.add;
647
648 merge.flags.ac = b->flags.ac;
649 merge.flags.apf = b->flags.apf;
650 merge.flags.auf = b->flags.auf;
651 }
652
653 if (b->alu.mul.op != V3D_QPU_M_NOP) {
654 if (a->alu.mul.op != V3D_QPU_M_NOP)
655 return false;
656 merge.alu.mul = b->alu.mul;
657
658 merge.flags.mc = b->flags.mc;
659 merge.flags.mpf = b->flags.mpf;
660 merge.flags.muf = b->flags.muf;
661 }
662
663 if (v3d_qpu_uses_mux(b, V3D_QPU_MUX_A)) {
664 if (v3d_qpu_uses_mux(a, V3D_QPU_MUX_A) &&
665 a->raddr_a != b->raddr_a) {
666 return false;
667 }
668 merge.raddr_a = b->raddr_a;
669 }
670
671 if (v3d_qpu_uses_mux(b, V3D_QPU_MUX_B)) {
672 if (v3d_qpu_uses_mux(a, V3D_QPU_MUX_B) &&
673 (a->raddr_b != b->raddr_b ||
674 a->sig.small_imm != b->sig.small_imm)) {
675 return false;
676 }
677 merge.raddr_b = b->raddr_b;
678 }
679
680 merge.sig.thrsw |= b->sig.thrsw;
681 merge.sig.ldunif |= b->sig.ldunif;
682 merge.sig.ldunifrf |= b->sig.ldunifrf;
683 merge.sig.ldunifa |= b->sig.ldunifa;
684 merge.sig.ldunifarf |= b->sig.ldunifarf;
685 merge.sig.ldtmu |= b->sig.ldtmu;
686 merge.sig.ldvary |= b->sig.ldvary;
687 merge.sig.ldvpm |= b->sig.ldvpm;
688 merge.sig.small_imm |= b->sig.small_imm;
689 merge.sig.ldtlb |= b->sig.ldtlb;
690 merge.sig.ldtlbu |= b->sig.ldtlbu;
691 merge.sig.ucb |= b->sig.ucb;
692 merge.sig.rotate |= b->sig.rotate;
693 merge.sig.wrtmuc |= b->sig.wrtmuc;
694
695 if (v3d_qpu_sig_writes_address(devinfo, &a->sig) &&
696 v3d_qpu_sig_writes_address(devinfo, &b->sig))
697 return false;
698 merge.sig_addr |= b->sig_addr;
699 merge.sig_magic |= b->sig_magic;
700
701 uint64_t packed;
702 bool ok = v3d_qpu_instr_pack(devinfo, &merge, &packed);
703
704 *result = merge;
705 /* No modifying the real instructions on failure. */
706 assert(ok || (a != result && b != result));
707
708 return ok;
709 }
710
711 static struct schedule_node *
712 choose_instruction_to_schedule(const struct v3d_device_info *devinfo,
713 struct choose_scoreboard *scoreboard,
714 struct list_head *schedule_list,
715 struct schedule_node *prev_inst)
716 {
717 struct schedule_node *chosen = NULL;
718 int chosen_prio = 0;
719
720 /* Don't pair up anything with a thread switch signal -- emit_thrsw()
721 * will handle pairing it along with filling the delay slots.
722 */
723 if (prev_inst) {
724 if (prev_inst->inst->qpu.sig.thrsw)
725 return NULL;
726 }
727
728 list_for_each_entry(struct schedule_node, n, schedule_list, link) {
729 const struct v3d_qpu_instr *inst = &n->inst->qpu;
730
731 /* Don't choose the branch instruction until it's the last one
732 * left. We'll move it up to fit its delay slots after we
733 * choose it.
734 */
735 if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH &&
736 !list_is_singular(schedule_list)) {
737 continue;
738 }
739
740 /* "An instruction must not read from a location in physical
741 * regfile A or B that was written to by the previous
742 * instruction."
743 */
744 if (reads_too_soon_after_write(scoreboard, n->inst))
745 continue;
746
747 if (writes_too_soon_after_write(devinfo, scoreboard, n->inst))
748 continue;
749
750 /* "A scoreboard wait must not occur in the first two
751 * instructions of a fragment shader. This is either the
752 * explicit Wait for Scoreboard signal or an implicit wait
753 * with the first tile-buffer read or write instruction."
754 */
755 if (pixel_scoreboard_too_soon(scoreboard, inst))
756 continue;
757
758 /* ldunif and ldvary both write r5, but ldunif does so a tick
759 * sooner. If the ldvary's r5 wasn't used, then ldunif might
760 * otherwise get scheduled so ldunif and ldvary try to update
761 * r5 in the same tick.
762 */
763 if ((inst->sig.ldunif || inst->sig.ldunifa) &&
764 scoreboard->tick == scoreboard->last_ldvary_tick + 1) {
765 continue;
766 }
767
768 /* If we're trying to pair with another instruction, check
769 * that they're compatible.
770 */
771 if (prev_inst) {
772 /* Don't pair up a thread switch signal -- we'll
773 * handle pairing it when we pick it on its own.
774 */
775 if (inst->sig.thrsw)
776 continue;
777
778 if (prev_inst->inst->uniform != -1 &&
779 n->inst->uniform != -1)
780 continue;
781
782 /* Don't merge in something that will lock the TLB.
783 * Hopwefully what we have in inst will release some
784 * other instructions, allowing us to delay the
785 * TLB-locking instruction until later.
786 */
787 if (!scoreboard->tlb_locked && qpu_inst_is_tlb(inst))
788 continue;
789
790 struct v3d_qpu_instr merged_inst;
791 if (!qpu_merge_inst(devinfo, &merged_inst,
792 &prev_inst->inst->qpu, inst)) {
793 continue;
794 }
795 }
796
797 int prio = get_instruction_priority(inst);
798
799 /* Found a valid instruction. If nothing better comes along,
800 * this one works.
801 */
802 if (!chosen) {
803 chosen = n;
804 chosen_prio = prio;
805 continue;
806 }
807
808 if (prio > chosen_prio) {
809 chosen = n;
810 chosen_prio = prio;
811 } else if (prio < chosen_prio) {
812 continue;
813 }
814
815 if (n->delay > chosen->delay) {
816 chosen = n;
817 chosen_prio = prio;
818 } else if (n->delay < chosen->delay) {
819 continue;
820 }
821 }
822
823 return chosen;
824 }
825
826 static void
827 update_scoreboard_for_magic_waddr(struct choose_scoreboard *scoreboard,
828 enum v3d_qpu_waddr waddr)
829 {
830 if (v3d_qpu_magic_waddr_is_sfu(waddr))
831 scoreboard->last_magic_sfu_write_tick = scoreboard->tick;
832 }
833
834 static void
835 update_scoreboard_for_chosen(struct choose_scoreboard *scoreboard,
836 const struct v3d_qpu_instr *inst)
837 {
838 if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH)
839 return;
840
841 assert(inst->type == V3D_QPU_INSTR_TYPE_ALU);
842
843 if (inst->alu.add.op != V3D_QPU_A_NOP) {
844 if (inst->alu.add.magic_write) {
845 update_scoreboard_for_magic_waddr(scoreboard,
846 inst->alu.add.waddr);
847 }
848 }
849
850 if (inst->alu.mul.op != V3D_QPU_M_NOP) {
851 if (inst->alu.mul.magic_write) {
852 update_scoreboard_for_magic_waddr(scoreboard,
853 inst->alu.mul.waddr);
854 }
855 }
856
857 if (inst->sig.ldvary)
858 scoreboard->last_ldvary_tick = scoreboard->tick;
859
860 if (qpu_inst_is_tlb(inst))
861 scoreboard->tlb_locked = true;
862 }
863
864 static void
865 dump_state(const struct v3d_device_info *devinfo,
866 struct list_head *schedule_list)
867 {
868 list_for_each_entry(struct schedule_node, n, schedule_list, link) {
869 fprintf(stderr, " t=%4d: ", n->unblocked_time);
870 v3d_qpu_dump(devinfo, &n->inst->qpu);
871 fprintf(stderr, "\n");
872
873 for (int i = 0; i < n->child_count; i++) {
874 struct schedule_node *child = n->children[i].node;
875 if (!child)
876 continue;
877
878 fprintf(stderr, " - ");
879 v3d_qpu_dump(devinfo, &child->inst->qpu);
880 fprintf(stderr, " (%d parents, %c)\n",
881 child->parent_count,
882 n->children[i].write_after_read ? 'w' : 'r');
883 }
884 }
885 }
886
887 static uint32_t magic_waddr_latency(enum v3d_qpu_waddr waddr,
888 const struct v3d_qpu_instr *after)
889 {
890 /* Apply some huge latency between texture fetch requests and getting
891 * their results back.
892 *
893 * FIXME: This is actually pretty bogus. If we do:
894 *
895 * mov tmu0_s, a
896 * <a bit of math>
897 * mov tmu0_s, b
898 * load_tmu0
899 * <more math>
900 * load_tmu0
901 *
902 * we count that as worse than
903 *
904 * mov tmu0_s, a
905 * mov tmu0_s, b
906 * <lots of math>
907 * load_tmu0
908 * <more math>
909 * load_tmu0
910 *
911 * because we associate the first load_tmu0 with the *second* tmu0_s.
912 */
913 if (v3d_qpu_magic_waddr_is_tmu(waddr) && after->sig.ldtmu)
914 return 100;
915
916 /* Assume that anything depending on us is consuming the SFU result. */
917 if (v3d_qpu_magic_waddr_is_sfu(waddr))
918 return 3;
919
920 return 1;
921 }
922
923 static uint32_t
924 instruction_latency(struct schedule_node *before, struct schedule_node *after)
925 {
926 const struct v3d_qpu_instr *before_inst = &before->inst->qpu;
927 const struct v3d_qpu_instr *after_inst = &after->inst->qpu;
928 uint32_t latency = 1;
929
930 if (before_inst->type != V3D_QPU_INSTR_TYPE_ALU ||
931 after_inst->type != V3D_QPU_INSTR_TYPE_ALU)
932 return latency;
933
934 if (before_inst->alu.add.magic_write) {
935 latency = MAX2(latency,
936 magic_waddr_latency(before_inst->alu.add.waddr,
937 after_inst));
938 }
939
940 if (before_inst->alu.mul.magic_write) {
941 latency = MAX2(latency,
942 magic_waddr_latency(before_inst->alu.mul.waddr,
943 after_inst));
944 }
945
946 return latency;
947 }
948
949 /** Recursive computation of the delay member of a node. */
950 static void
951 compute_delay(struct schedule_node *n)
952 {
953 if (!n->child_count) {
954 n->delay = 1;
955 } else {
956 for (int i = 0; i < n->child_count; i++) {
957 if (!n->children[i].node->delay)
958 compute_delay(n->children[i].node);
959 n->delay = MAX2(n->delay,
960 n->children[i].node->delay +
961 instruction_latency(n, n->children[i].node));
962 }
963 }
964 }
965
966 static void
967 mark_instruction_scheduled(struct list_head *schedule_list,
968 uint32_t time,
969 struct schedule_node *node,
970 bool war_only)
971 {
972 if (!node)
973 return;
974
975 for (int i = node->child_count - 1; i >= 0; i--) {
976 struct schedule_node *child =
977 node->children[i].node;
978
979 if (!child)
980 continue;
981
982 if (war_only && !node->children[i].write_after_read)
983 continue;
984
985 /* If the requirement is only that the node not appear before
986 * the last read of its destination, then it can be scheduled
987 * immediately after (or paired with!) the thing reading the
988 * destination.
989 */
990 uint32_t latency = 0;
991 if (!war_only) {
992 latency = instruction_latency(node,
993 node->children[i].node);
994 }
995
996 child->unblocked_time = MAX2(child->unblocked_time,
997 time + latency);
998 child->parent_count--;
999 if (child->parent_count == 0)
1000 list_add(&child->link, schedule_list);
1001
1002 node->children[i].node = NULL;
1003 }
1004 }
1005
1006 static void
1007 insert_scheduled_instruction(struct v3d_compile *c,
1008 struct qblock *block,
1009 struct choose_scoreboard *scoreboard,
1010 struct qinst *inst)
1011 {
1012 list_addtail(&inst->link, &block->instructions);
1013
1014 update_scoreboard_for_chosen(scoreboard, &inst->qpu);
1015 c->qpu_inst_count++;
1016 scoreboard->tick++;
1017 }
1018
1019 static struct qinst *
1020 vir_nop()
1021 {
1022 struct qreg undef = { QFILE_NULL, 0 };
1023 struct qinst *qinst = vir_add_inst(V3D_QPU_A_NOP, undef, undef, undef);
1024
1025 return qinst;
1026 }
1027
1028 static void
1029 emit_nop(struct v3d_compile *c, struct qblock *block,
1030 struct choose_scoreboard *scoreboard)
1031 {
1032 insert_scheduled_instruction(c, block, scoreboard, vir_nop());
1033 }
1034
1035 static bool
1036 qpu_instruction_valid_in_thrend_slot(struct v3d_compile *c,
1037 const struct qinst *qinst, int slot)
1038 {
1039 const struct v3d_qpu_instr *inst = &qinst->qpu;
1040
1041 /* Only TLB Z writes are prohibited in the last slot, but we don't
1042 * have those flagged so prohibit all TLB ops for now.
1043 */
1044 if (slot == 2 && qpu_inst_is_tlb(inst))
1045 return false;
1046
1047 if (slot > 0 && qinst->uniform != ~0)
1048 return false;
1049
1050 if (v3d_qpu_uses_vpm(inst))
1051 return false;
1052
1053 if (inst->sig.ldvary)
1054 return false;
1055
1056 if (inst->type == V3D_QPU_INSTR_TYPE_ALU) {
1057 /* GFXH-1625: TMUWT not allowed in the final instruction. */
1058 if (slot == 2 && inst->alu.add.op == V3D_QPU_A_TMUWT)
1059 return false;
1060
1061 /* No writing physical registers at the end. */
1062 if (!inst->alu.add.magic_write ||
1063 !inst->alu.mul.magic_write) {
1064 return false;
1065 }
1066
1067 if (c->devinfo->ver < 40 && inst->alu.add.op == V3D_QPU_A_SETMSF)
1068 return false;
1069
1070 /* RF0-2 might be overwritten during the delay slots by
1071 * fragment shader setup.
1072 */
1073 if (inst->raddr_a < 3 &&
1074 (inst->alu.add.a == V3D_QPU_MUX_A ||
1075 inst->alu.add.b == V3D_QPU_MUX_A ||
1076 inst->alu.mul.a == V3D_QPU_MUX_A ||
1077 inst->alu.mul.b == V3D_QPU_MUX_A)) {
1078 return false;
1079 }
1080
1081 if (inst->raddr_b < 3 &&
1082 !inst->sig.small_imm &&
1083 (inst->alu.add.a == V3D_QPU_MUX_B ||
1084 inst->alu.add.b == V3D_QPU_MUX_B ||
1085 inst->alu.mul.a == V3D_QPU_MUX_B ||
1086 inst->alu.mul.b == V3D_QPU_MUX_B)) {
1087 return false;
1088 }
1089 }
1090
1091 return true;
1092 }
1093
1094 static bool
1095 valid_thrsw_sequence(struct v3d_compile *c,
1096 struct qinst *qinst, int instructions_in_sequence,
1097 bool is_thrend)
1098 {
1099 for (int slot = 0; slot < instructions_in_sequence; slot++) {
1100 /* No scheduling SFU when the result would land in the other
1101 * thread. The simulator complains for safety, though it
1102 * would only occur for dead code in our case.
1103 */
1104 if (slot > 0 &&
1105 qinst->qpu.type == V3D_QPU_INSTR_TYPE_ALU &&
1106 (v3d_qpu_magic_waddr_is_sfu(qinst->qpu.alu.add.waddr) ||
1107 v3d_qpu_magic_waddr_is_sfu(qinst->qpu.alu.mul.waddr))) {
1108 return false;
1109 }
1110
1111 if (slot > 0 && qinst->qpu.sig.ldvary)
1112 return false;
1113
1114 if (is_thrend &&
1115 !qpu_instruction_valid_in_thrend_slot(c, qinst, slot)) {
1116 return false;
1117 }
1118
1119 /* Note that the list is circular, so we can only do this up
1120 * to instructions_in_sequence.
1121 */
1122 qinst = (struct qinst *)qinst->link.next;
1123 }
1124
1125 return true;
1126 }
1127
1128 /**
1129 * Emits a THRSW signal in the stream, trying to move it up to pair with
1130 * another instruction.
1131 */
1132 static int
1133 emit_thrsw(struct v3d_compile *c,
1134 struct qblock *block,
1135 struct choose_scoreboard *scoreboard,
1136 struct qinst *inst,
1137 bool is_thrend)
1138 {
1139 int time = 0;
1140
1141 /* There should be nothing in a thrsw inst being scheduled other than
1142 * the signal bits.
1143 */
1144 assert(inst->qpu.type == V3D_QPU_INSTR_TYPE_ALU);
1145 assert(inst->qpu.alu.add.op == V3D_QPU_A_NOP);
1146 assert(inst->qpu.alu.mul.op == V3D_QPU_M_NOP);
1147
1148 /* Find how far back into previous instructions we can put the THRSW. */
1149 int slots_filled = 0;
1150 struct qinst *merge_inst = NULL;
1151 vir_for_each_inst_rev(prev_inst, block) {
1152 struct v3d_qpu_sig sig = prev_inst->qpu.sig;
1153 sig.thrsw = true;
1154 uint32_t packed_sig;
1155
1156 if (!v3d_qpu_sig_pack(c->devinfo, &sig, &packed_sig))
1157 break;
1158
1159 if (!valid_thrsw_sequence(c, prev_inst, slots_filled + 1,
1160 is_thrend)) {
1161 break;
1162 }
1163
1164 merge_inst = prev_inst;
1165 if (++slots_filled == 3)
1166 break;
1167 }
1168
1169 bool needs_free = false;
1170 if (merge_inst) {
1171 merge_inst->qpu.sig.thrsw = true;
1172 needs_free = true;
1173 } else {
1174 insert_scheduled_instruction(c, block, scoreboard, inst);
1175 time++;
1176 slots_filled++;
1177 merge_inst = inst;
1178 }
1179
1180 /* Insert any extra delay slot NOPs we need. */
1181 for (int i = 0; i < 3 - slots_filled; i++) {
1182 emit_nop(c, block, scoreboard);
1183 time++;
1184 }
1185
1186 /* If we're emitting the last THRSW (other than program end), then
1187 * signal that to the HW by emitting two THRSWs in a row.
1188 */
1189 if (inst->is_last_thrsw) {
1190 struct qinst *second_inst =
1191 (struct qinst *)merge_inst->link.next;
1192 second_inst->qpu.sig.thrsw = true;
1193 }
1194
1195 /* If we put our THRSW into another instruction, free up the
1196 * instruction that didn't end up scheduled into the list.
1197 */
1198 if (needs_free)
1199 free(inst);
1200
1201 return time;
1202 }
1203
1204 static uint32_t
1205 schedule_instructions(struct v3d_compile *c,
1206 struct choose_scoreboard *scoreboard,
1207 struct qblock *block,
1208 struct list_head *schedule_list,
1209 enum quniform_contents *orig_uniform_contents,
1210 uint32_t *orig_uniform_data,
1211 uint32_t *next_uniform)
1212 {
1213 const struct v3d_device_info *devinfo = c->devinfo;
1214 uint32_t time = 0;
1215
1216 if (debug) {
1217 fprintf(stderr, "initial deps:\n");
1218 dump_state(devinfo, schedule_list);
1219 fprintf(stderr, "\n");
1220 }
1221
1222 /* Remove non-DAG heads from the list. */
1223 list_for_each_entry_safe(struct schedule_node, n, schedule_list, link) {
1224 if (n->parent_count != 0)
1225 list_del(&n->link);
1226 }
1227
1228 while (!list_empty(schedule_list)) {
1229 struct schedule_node *chosen =
1230 choose_instruction_to_schedule(devinfo,
1231 scoreboard,
1232 schedule_list,
1233 NULL);
1234 struct schedule_node *merge = NULL;
1235
1236 /* If there are no valid instructions to schedule, drop a NOP
1237 * in.
1238 */
1239 struct qinst *qinst = chosen ? chosen->inst : vir_nop();
1240 struct v3d_qpu_instr *inst = &qinst->qpu;
1241
1242 if (debug) {
1243 fprintf(stderr, "t=%4d: current list:\n",
1244 time);
1245 dump_state(devinfo, schedule_list);
1246 fprintf(stderr, "t=%4d: chose: ", time);
1247 v3d_qpu_dump(devinfo, inst);
1248 fprintf(stderr, "\n");
1249 }
1250
1251 /* We can't mark_instruction_scheduled() the chosen inst until
1252 * we're done identifying instructions to merge, so put the
1253 * merged instructions on a list for a moment.
1254 */
1255 struct list_head merged_list;
1256 list_inithead(&merged_list);
1257
1258 /* Schedule this instruction onto the QPU list. Also try to
1259 * find an instruction to pair with it.
1260 */
1261 if (chosen) {
1262 time = MAX2(chosen->unblocked_time, time);
1263 list_del(&chosen->link);
1264 mark_instruction_scheduled(schedule_list, time,
1265 chosen, true);
1266
1267 while ((merge =
1268 choose_instruction_to_schedule(devinfo,
1269 scoreboard,
1270 schedule_list,
1271 chosen))) {
1272 time = MAX2(merge->unblocked_time, time);
1273 list_del(&merge->link);
1274 list_addtail(&merge->link, &merged_list);
1275 (void)qpu_merge_inst(devinfo, inst,
1276 inst, &merge->inst->qpu);
1277 if (merge->inst->uniform != -1) {
1278 chosen->inst->uniform =
1279 merge->inst->uniform;
1280 }
1281
1282 if (debug) {
1283 fprintf(stderr, "t=%4d: merging: ",
1284 time);
1285 v3d_qpu_dump(devinfo, &merge->inst->qpu);
1286 fprintf(stderr, "\n");
1287 fprintf(stderr, " result: ");
1288 v3d_qpu_dump(devinfo, inst);
1289 fprintf(stderr, "\n");
1290 }
1291 }
1292 }
1293
1294 /* Update the uniform index for the rewritten location --
1295 * branch target updating will still need to change
1296 * c->uniform_data[] using this index.
1297 */
1298 if (qinst->uniform != -1) {
1299 if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH)
1300 block->branch_uniform = *next_uniform;
1301
1302 c->uniform_data[*next_uniform] =
1303 orig_uniform_data[qinst->uniform];
1304 c->uniform_contents[*next_uniform] =
1305 orig_uniform_contents[qinst->uniform];
1306 qinst->uniform = *next_uniform;
1307 (*next_uniform)++;
1308 }
1309
1310 if (debug) {
1311 fprintf(stderr, "\n");
1312 }
1313
1314 /* Now that we've scheduled a new instruction, some of its
1315 * children can be promoted to the list of instructions ready to
1316 * be scheduled. Update the children's unblocked time for this
1317 * DAG edge as we do so.
1318 */
1319 mark_instruction_scheduled(schedule_list, time, chosen, false);
1320 list_for_each_entry(struct schedule_node, merge, &merged_list,
1321 link) {
1322 mark_instruction_scheduled(schedule_list, time, merge,
1323 false);
1324
1325 /* The merged VIR instruction doesn't get re-added to the
1326 * block, so free it now.
1327 */
1328 free(merge->inst);
1329 }
1330
1331 if (inst->sig.thrsw) {
1332 time += emit_thrsw(c, block, scoreboard, qinst, false);
1333 } else {
1334 insert_scheduled_instruction(c, block,
1335 scoreboard, qinst);
1336
1337 if (inst->type == V3D_QPU_INSTR_TYPE_BRANCH) {
1338 block->branch_qpu_ip = c->qpu_inst_count - 1;
1339 /* Fill the delay slots.
1340 *
1341 * We should fill these with actual instructions,
1342 * instead, but that will probably need to be done
1343 * after this, once we know what the leading
1344 * instructions of the successors are (so we can
1345 * handle A/B register file write latency)
1346 */
1347 for (int i = 0; i < 3; i++)
1348 emit_nop(c, block, scoreboard);
1349 }
1350 }
1351 }
1352
1353 return time;
1354 }
1355
1356 static uint32_t
1357 qpu_schedule_instructions_block(struct v3d_compile *c,
1358 struct choose_scoreboard *scoreboard,
1359 struct qblock *block,
1360 enum quniform_contents *orig_uniform_contents,
1361 uint32_t *orig_uniform_data,
1362 uint32_t *next_uniform)
1363 {
1364 void *mem_ctx = ralloc_context(NULL);
1365 struct list_head schedule_list;
1366
1367 list_inithead(&schedule_list);
1368
1369 /* Wrap each instruction in a scheduler structure. */
1370 while (!list_empty(&block->instructions)) {
1371 struct qinst *qinst = (struct qinst *)block->instructions.next;
1372 struct schedule_node *n =
1373 rzalloc(mem_ctx, struct schedule_node);
1374
1375 n->inst = qinst;
1376
1377 list_del(&qinst->link);
1378 list_addtail(&n->link, &schedule_list);
1379 }
1380
1381 calculate_forward_deps(c, &schedule_list);
1382 calculate_reverse_deps(c, &schedule_list);
1383
1384 list_for_each_entry(struct schedule_node, n, &schedule_list, link) {
1385 compute_delay(n);
1386 }
1387
1388 uint32_t cycles = schedule_instructions(c, scoreboard, block,
1389 &schedule_list,
1390 orig_uniform_contents,
1391 orig_uniform_data,
1392 next_uniform);
1393
1394 ralloc_free(mem_ctx);
1395
1396 return cycles;
1397 }
1398
1399 static void
1400 qpu_set_branch_targets(struct v3d_compile *c)
1401 {
1402 vir_for_each_block(block, c) {
1403 /* The end block of the program has no branch. */
1404 if (!block->successors[0])
1405 continue;
1406
1407 /* If there was no branch instruction, then the successor
1408 * block must follow immediately after this one.
1409 */
1410 if (block->branch_qpu_ip == ~0) {
1411 assert(block->end_qpu_ip + 1 ==
1412 block->successors[0]->start_qpu_ip);
1413 continue;
1414 }
1415
1416 /* Walk back through the delay slots to find the branch
1417 * instr.
1418 */
1419 struct list_head *entry = block->instructions.prev;
1420 for (int i = 0; i < 3; i++)
1421 entry = entry->prev;
1422 struct qinst *branch = container_of(entry, branch, link);
1423 assert(branch->qpu.type == V3D_QPU_INSTR_TYPE_BRANCH);
1424
1425 /* Make sure that the if-we-don't-jump
1426 * successor was scheduled just after the
1427 * delay slots.
1428 */
1429 assert(!block->successors[1] ||
1430 block->successors[1]->start_qpu_ip ==
1431 block->branch_qpu_ip + 4);
1432
1433 branch->qpu.branch.offset =
1434 ((block->successors[0]->start_qpu_ip -
1435 (block->branch_qpu_ip + 4)) *
1436 sizeof(uint64_t));
1437
1438 /* Set up the relative offset to jump in the
1439 * uniform stream.
1440 *
1441 * Use a temporary here, because
1442 * uniform_data[inst->uniform] may be shared
1443 * between multiple instructions.
1444 */
1445 assert(c->uniform_contents[branch->uniform] == QUNIFORM_CONSTANT);
1446 c->uniform_data[branch->uniform] =
1447 (block->successors[0]->start_uniform -
1448 (block->branch_uniform + 1)) * 4;
1449 }
1450 }
1451
1452 uint32_t
1453 v3d_qpu_schedule_instructions(struct v3d_compile *c)
1454 {
1455 const struct v3d_device_info *devinfo = c->devinfo;
1456 struct qblock *end_block = list_last_entry(&c->blocks,
1457 struct qblock, link);
1458
1459 /* We reorder the uniforms as we schedule instructions, so save the
1460 * old data off and replace it.
1461 */
1462 uint32_t *uniform_data = c->uniform_data;
1463 enum quniform_contents *uniform_contents = c->uniform_contents;
1464 c->uniform_contents = ralloc_array(c, enum quniform_contents,
1465 c->num_uniforms);
1466 c->uniform_data = ralloc_array(c, uint32_t, c->num_uniforms);
1467 c->uniform_array_size = c->num_uniforms;
1468 uint32_t next_uniform = 0;
1469
1470 struct choose_scoreboard scoreboard;
1471 memset(&scoreboard, 0, sizeof(scoreboard));
1472 scoreboard.last_ldvary_tick = -10;
1473 scoreboard.last_magic_sfu_write_tick = -10;
1474 scoreboard.last_uniforms_reset_tick = -10;
1475
1476 if (debug) {
1477 fprintf(stderr, "Pre-schedule instructions\n");
1478 vir_for_each_block(block, c) {
1479 fprintf(stderr, "BLOCK %d\n", block->index);
1480 list_for_each_entry(struct qinst, qinst,
1481 &block->instructions, link) {
1482 v3d_qpu_dump(devinfo, &qinst->qpu);
1483 fprintf(stderr, "\n");
1484 }
1485 }
1486 fprintf(stderr, "\n");
1487 }
1488
1489 uint32_t cycles = 0;
1490 vir_for_each_block(block, c) {
1491 block->start_qpu_ip = c->qpu_inst_count;
1492 block->branch_qpu_ip = ~0;
1493 block->start_uniform = next_uniform;
1494
1495 cycles += qpu_schedule_instructions_block(c,
1496 &scoreboard,
1497 block,
1498 uniform_contents,
1499 uniform_data,
1500 &next_uniform);
1501
1502 block->end_qpu_ip = c->qpu_inst_count - 1;
1503 }
1504
1505 /* Emit the program-end THRSW instruction. */;
1506 struct qinst *thrsw = vir_nop();
1507 thrsw->qpu.sig.thrsw = true;
1508 emit_thrsw(c, end_block, &scoreboard, thrsw, true);
1509
1510 qpu_set_branch_targets(c);
1511
1512 assert(next_uniform == c->num_uniforms);
1513
1514 return cycles;
1515 }