glsl: Fix function return typechecking
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/mtypes.h"
58 #include "main/macros.h"
59 #include "main/shaderobj.h"
60 #include "ir.h"
61 #include "ir_builder.h"
62 #include "builtin_functions.h"
63
64 using namespace ir_builder;
65
66 static void
67 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
68 exec_list *instructions);
69 static void
70 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state);
71
72 static void
73 remove_per_vertex_blocks(exec_list *instructions,
74 _mesa_glsl_parse_state *state, ir_variable_mode mode);
75
76 /**
77 * Visitor class that finds the first instance of any write-only variable that
78 * is ever read, if any
79 */
80 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
81 {
82 public:
83 read_from_write_only_variable_visitor() : found(NULL)
84 {
85 }
86
87 virtual ir_visitor_status visit(ir_dereference_variable *ir)
88 {
89 if (this->in_assignee)
90 return visit_continue;
91
92 ir_variable *var = ir->variable_referenced();
93 /* We can have memory_write_only set on both images and buffer variables,
94 * but in the former there is a distinction between reads from
95 * the variable itself (write_only) and from the memory they point to
96 * (memory_write_only), while in the case of buffer variables there is
97 * no such distinction, that is why this check here is limited to
98 * buffer variables alone.
99 */
100 if (!var || var->data.mode != ir_var_shader_storage)
101 return visit_continue;
102
103 if (var->data.memory_write_only) {
104 found = var;
105 return visit_stop;
106 }
107
108 return visit_continue;
109 }
110
111 ir_variable *get_variable() {
112 return found;
113 }
114
115 virtual ir_visitor_status visit_enter(ir_expression *ir)
116 {
117 /* .length() doesn't actually read anything */
118 if (ir->operation == ir_unop_ssbo_unsized_array_length)
119 return visit_continue_with_parent;
120
121 return visit_continue;
122 }
123
124 private:
125 ir_variable *found;
126 };
127
128 void
129 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
130 {
131 _mesa_glsl_initialize_variables(instructions, state);
132
133 state->symbols->separate_function_namespace = state->language_version == 110;
134
135 state->current_function = NULL;
136
137 state->toplevel_ir = instructions;
138
139 state->gs_input_prim_type_specified = false;
140 state->tcs_output_vertices_specified = false;
141 state->cs_input_local_size_specified = false;
142
143 /* Section 4.2 of the GLSL 1.20 specification states:
144 * "The built-in functions are scoped in a scope outside the global scope
145 * users declare global variables in. That is, a shader's global scope,
146 * available for user-defined functions and global variables, is nested
147 * inside the scope containing the built-in functions."
148 *
149 * Since built-in functions like ftransform() access built-in variables,
150 * it follows that those must be in the outer scope as well.
151 *
152 * We push scope here to create this nesting effect...but don't pop.
153 * This way, a shader's globals are still in the symbol table for use
154 * by the linker.
155 */
156 state->symbols->push_scope();
157
158 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
159 ast->hir(instructions, state);
160
161 verify_subroutine_associated_funcs(state);
162 detect_recursion_unlinked(state, instructions);
163 detect_conflicting_assignments(state, instructions);
164
165 state->toplevel_ir = NULL;
166
167 /* Move all of the variable declarations to the front of the IR list, and
168 * reverse the order. This has the (intended!) side effect that vertex
169 * shader inputs and fragment shader outputs will appear in the IR in the
170 * same order that they appeared in the shader code. This results in the
171 * locations being assigned in the declared order. Many (arguably buggy)
172 * applications depend on this behavior, and it matches what nearly all
173 * other drivers do.
174 */
175 foreach_in_list_safe(ir_instruction, node, instructions) {
176 ir_variable *const var = node->as_variable();
177
178 if (var == NULL)
179 continue;
180
181 var->remove();
182 instructions->push_head(var);
183 }
184
185 /* Figure out if gl_FragCoord is actually used in fragment shader */
186 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
187 if (var != NULL)
188 state->fs_uses_gl_fragcoord = var->data.used;
189
190 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
191 *
192 * If multiple shaders using members of a built-in block belonging to
193 * the same interface are linked together in the same program, they
194 * must all redeclare the built-in block in the same way, as described
195 * in section 4.3.7 "Interface Blocks" for interface block matching, or
196 * a link error will result.
197 *
198 * The phrase "using members of a built-in block" implies that if two
199 * shaders are linked together and one of them *does not use* any members
200 * of the built-in block, then that shader does not need to have a matching
201 * redeclaration of the built-in block.
202 *
203 * This appears to be a clarification to the behaviour established for
204 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
205 * version.
206 *
207 * The definition of "interface" in section 4.3.7 that applies here is as
208 * follows:
209 *
210 * The boundary between adjacent programmable pipeline stages: This
211 * spans all the outputs in all compilation units of the first stage
212 * and all the inputs in all compilation units of the second stage.
213 *
214 * Therefore this rule applies to both inter- and intra-stage linking.
215 *
216 * The easiest way to implement this is to check whether the shader uses
217 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
218 * remove all the relevant variable declaration from the IR, so that the
219 * linker won't see them and complain about mismatches.
220 */
221 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
222 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
223
224 /* Check that we don't have reads from write-only variables */
225 read_from_write_only_variable_visitor v;
226 v.run(instructions);
227 ir_variable *error_var = v.get_variable();
228 if (error_var) {
229 /* It would be nice to have proper location information, but for that
230 * we would need to check this as we process each kind of AST node
231 */
232 YYLTYPE loc;
233 memset(&loc, 0, sizeof(loc));
234 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
235 error_var->name);
236 }
237 }
238
239
240 static ir_expression_operation
241 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
242 struct _mesa_glsl_parse_state *state)
243 {
244 switch (to->base_type) {
245 case GLSL_TYPE_FLOAT:
246 switch (from->base_type) {
247 case GLSL_TYPE_INT: return ir_unop_i2f;
248 case GLSL_TYPE_UINT: return ir_unop_u2f;
249 default: return (ir_expression_operation)0;
250 }
251
252 case GLSL_TYPE_UINT:
253 if (!state->has_implicit_uint_to_int_conversion())
254 return (ir_expression_operation)0;
255 switch (from->base_type) {
256 case GLSL_TYPE_INT: return ir_unop_i2u;
257 default: return (ir_expression_operation)0;
258 }
259
260 case GLSL_TYPE_DOUBLE:
261 if (!state->has_double())
262 return (ir_expression_operation)0;
263 switch (from->base_type) {
264 case GLSL_TYPE_INT: return ir_unop_i2d;
265 case GLSL_TYPE_UINT: return ir_unop_u2d;
266 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
267 case GLSL_TYPE_INT64: return ir_unop_i642d;
268 case GLSL_TYPE_UINT64: return ir_unop_u642d;
269 default: return (ir_expression_operation)0;
270 }
271
272 case GLSL_TYPE_UINT64:
273 if (!state->has_int64())
274 return (ir_expression_operation)0;
275 switch (from->base_type) {
276 case GLSL_TYPE_INT: return ir_unop_i2u64;
277 case GLSL_TYPE_UINT: return ir_unop_u2u64;
278 case GLSL_TYPE_INT64: return ir_unop_i642u64;
279 default: return (ir_expression_operation)0;
280 }
281
282 case GLSL_TYPE_INT64:
283 if (!state->has_int64())
284 return (ir_expression_operation)0;
285 switch (from->base_type) {
286 case GLSL_TYPE_INT: return ir_unop_i2i64;
287 default: return (ir_expression_operation)0;
288 }
289
290 default: return (ir_expression_operation)0;
291 }
292 }
293
294
295 /**
296 * If a conversion is available, convert one operand to a different type
297 *
298 * The \c from \c ir_rvalue is converted "in place".
299 *
300 * \param to Type that the operand it to be converted to
301 * \param from Operand that is being converted
302 * \param state GLSL compiler state
303 *
304 * \return
305 * If a conversion is possible (or unnecessary), \c true is returned.
306 * Otherwise \c false is returned.
307 */
308 static bool
309 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
310 struct _mesa_glsl_parse_state *state)
311 {
312 void *ctx = state;
313 if (to->base_type == from->type->base_type)
314 return true;
315
316 /* Prior to GLSL 1.20, there are no implicit conversions */
317 if (!state->has_implicit_conversions())
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->is_float() || type_a->is_double());
448 assert(type_b->is_float() || type_b->is_double());
449
450 /* "* The operator is add (+), subtract (-), or divide (/), and the
451 * operands are matrices with the same number of rows and the same
452 * number of columns. In this case, the operation is done component-
453 * wise resulting in the same size matrix."
454 * * The operator is multiply (*), where both operands are matrices or
455 * one operand is a vector and the other a matrix. A right vector
456 * operand is treated as a column vector and a left vector operand as a
457 * row vector. In all these cases, it is required that the number of
458 * columns of the left operand is equal to the number of rows of the
459 * right operand. Then, the multiply (*) operation does a linear
460 * algebraic multiply, yielding an object that has the same number of
461 * rows as the left operand and the same number of columns as the right
462 * operand. Section 5.10 "Vector and Matrix Operations" explains in
463 * more detail how vectors and matrices are operated on."
464 */
465 if (! multiply) {
466 if (type_a == type_b)
467 return type_a;
468 } else {
469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471 if (type == glsl_type::error_type) {
472 _mesa_glsl_error(loc, state,
473 "size mismatch for matrix multiplication");
474 }
475
476 return type;
477 }
478
479
480 /* "All other cases are illegal."
481 */
482 _mesa_glsl_error(loc, state, "type mismatch");
483 return glsl_type::error_type;
484 }
485
486
487 static const struct glsl_type *
488 unary_arithmetic_result_type(const struct glsl_type *type,
489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491 /* From GLSL 1.50 spec, page 57:
492 *
493 * "The arithmetic unary operators negate (-), post- and pre-increment
494 * and decrement (-- and ++) operate on integer or floating-point
495 * values (including vectors and matrices). All unary operators work
496 * component-wise on their operands. These result with the same type
497 * they operated on."
498 */
499 if (!type->is_numeric()) {
500 _mesa_glsl_error(loc, state,
501 "operands to arithmetic operators must be numeric");
502 return glsl_type::error_type;
503 }
504
505 return type;
506 }
507
508 /**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517 static const struct glsl_type *
518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519 ast_operators op,
520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522 const glsl_type *type_a = value_a->type;
523 const glsl_type *type_b = value_b->type;
524
525 if (!state->check_bitwise_operations_allowed(loc)) {
526 return glsl_type::error_type;
527 }
528
529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530 *
531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532 * (|). The operands must be of type signed or unsigned integers or
533 * integer vectors."
534 */
535 if (!type_a->is_integer_32_64()) {
536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537 ast_expression::operator_string(op));
538 return glsl_type::error_type;
539 }
540 if (!type_b->is_integer_32_64()) {
541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 }
545
546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547 * make sense for bitwise operations, as they don't operate on floats.
548 *
549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550 * here. It wasn't clear whether or not we should apply them to bitwise
551 * operations. However, Khronos has decided that they should in future
552 * language revisions. Applications also rely on this behavior. We opt
553 * to apply them in general, but issue a portability warning.
554 *
555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556 */
557 if (type_a->base_type != type_b->base_type) {
558 if (!apply_implicit_conversion(type_a, value_b, state)
559 && !apply_implicit_conversion(type_b, value_a, state)) {
560 _mesa_glsl_error(loc, state,
561 "could not implicitly convert operands to "
562 "`%s` operator",
563 ast_expression::operator_string(op));
564 return glsl_type::error_type;
565 } else {
566 _mesa_glsl_warning(loc, state,
567 "some implementations may not support implicit "
568 "int -> uint conversions for `%s' operators; "
569 "consider casting explicitly for portability",
570 ast_expression::operator_string(op));
571 }
572 type_a = value_a->type;
573 type_b = value_b->type;
574 }
575
576 /* "The fundamental types of the operands (signed or unsigned) must
577 * match,"
578 */
579 if (type_a->base_type != type_b->base_type) {
580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581 "base type", ast_expression::operator_string(op));
582 return glsl_type::error_type;
583 }
584
585 /* "The operands cannot be vectors of differing size." */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590 "different sizes", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If one operand is a scalar and the other a vector, the scalar is
595 * applied component-wise to the vector, resulting in the same type as
596 * the vector. The fundamental types of the operands [...] will be the
597 * resulting fundamental type."
598 */
599 if (type_a->is_scalar())
600 return type_b;
601 else
602 return type_a;
603 }
604
605 static const struct glsl_type *
606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609 const glsl_type *type_a = value_a->type;
610 const glsl_type *type_b = value_b->type;
611
612 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
613 return glsl_type::error_type;
614 }
615
616 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
617 *
618 * "The operator modulus (%) operates on signed or unsigned integers or
619 * integer vectors."
620 */
621 if (!type_a->is_integer_32_64()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
623 return glsl_type::error_type;
624 }
625 if (!type_b->is_integer_32_64()) {
626 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
627 return glsl_type::error_type;
628 }
629
630 /* "If the fundamental types in the operands do not match, then the
631 * conversions from section 4.1.10 "Implicit Conversions" are applied
632 * to create matching types."
633 *
634 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
635 * int -> uint conversion rules. Prior to that, there were no implicit
636 * conversions. So it's harmless to apply them universally - no implicit
637 * conversions will exist. If the types don't match, we'll receive false,
638 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
639 *
640 * "The operand types must both be signed or unsigned."
641 */
642 if (!apply_implicit_conversion(type_a, value_b, state) &&
643 !apply_implicit_conversion(type_b, value_a, state)) {
644 _mesa_glsl_error(loc, state,
645 "could not implicitly convert operands to "
646 "modulus (%%) operator");
647 return glsl_type::error_type;
648 }
649 type_a = value_a->type;
650 type_b = value_b->type;
651
652 /* "The operands cannot be vectors of differing size. If one operand is
653 * a scalar and the other vector, then the scalar is applied component-
654 * wise to the vector, resulting in the same type as the vector. If both
655 * are vectors of the same size, the result is computed component-wise."
656 */
657 if (type_a->is_vector()) {
658 if (!type_b->is_vector()
659 || (type_a->vector_elements == type_b->vector_elements))
660 return type_a;
661 } else
662 return type_b;
663
664 /* "The operator modulus (%) is not defined for any other data types
665 * (non-integer types)."
666 */
667 _mesa_glsl_error(loc, state, "type mismatch");
668 return glsl_type::error_type;
669 }
670
671
672 static const struct glsl_type *
673 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
674 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
675 {
676 const glsl_type *type_a = value_a->type;
677 const glsl_type *type_b = value_b->type;
678
679 /* From GLSL 1.50 spec, page 56:
680 * "The relational operators greater than (>), less than (<), greater
681 * than or equal (>=), and less than or equal (<=) operate only on
682 * scalar integer and scalar floating-point expressions."
683 */
684 if (!type_a->is_numeric()
685 || !type_b->is_numeric()
686 || !type_a->is_scalar()
687 || !type_b->is_scalar()) {
688 _mesa_glsl_error(loc, state,
689 "operands to relational operators must be scalar and "
690 "numeric");
691 return glsl_type::error_type;
692 }
693
694 /* "Either the operands' types must match, or the conversions from
695 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
696 * operand, after which the types must match."
697 */
698 if (!apply_implicit_conversion(type_a, value_b, state)
699 && !apply_implicit_conversion(type_b, value_a, state)) {
700 _mesa_glsl_error(loc, state,
701 "could not implicitly convert operands to "
702 "relational operator");
703 return glsl_type::error_type;
704 }
705 type_a = value_a->type;
706 type_b = value_b->type;
707
708 if (type_a->base_type != type_b->base_type) {
709 _mesa_glsl_error(loc, state, "base type mismatch");
710 return glsl_type::error_type;
711 }
712
713 /* "The result is scalar Boolean."
714 */
715 return glsl_type::bool_type;
716 }
717
718 /**
719 * \brief Return the result type of a bit-shift operation.
720 *
721 * If the given types to the bit-shift operator are invalid, return
722 * glsl_type::error_type.
723 *
724 * \param type_a Type of LHS of bit-shift op
725 * \param type_b Type of RHS of bit-shift op
726 */
727 static const struct glsl_type *
728 shift_result_type(const struct glsl_type *type_a,
729 const struct glsl_type *type_b,
730 ast_operators op,
731 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
732 {
733 if (!state->check_bitwise_operations_allowed(loc)) {
734 return glsl_type::error_type;
735 }
736
737 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
738 *
739 * "The shift operators (<<) and (>>). For both operators, the operands
740 * must be signed or unsigned integers or integer vectors. One operand
741 * can be signed while the other is unsigned."
742 */
743 if (!type_a->is_integer_32_64()) {
744 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
745 "integer vector", ast_expression::operator_string(op));
746 return glsl_type::error_type;
747
748 }
749 if (!type_b->is_integer()) {
750 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
751 "integer vector", ast_expression::operator_string(op));
752 return glsl_type::error_type;
753 }
754
755 /* "If the first operand is a scalar, the second operand has to be
756 * a scalar as well."
757 */
758 if (type_a->is_scalar() && !type_b->is_scalar()) {
759 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
760 "second must be scalar as well",
761 ast_expression::operator_string(op));
762 return glsl_type::error_type;
763 }
764
765 /* If both operands are vectors, check that they have same number of
766 * elements.
767 */
768 if (type_a->is_vector() &&
769 type_b->is_vector() &&
770 type_a->vector_elements != type_b->vector_elements) {
771 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
772 "have same number of elements",
773 ast_expression::operator_string(op));
774 return glsl_type::error_type;
775 }
776
777 /* "In all cases, the resulting type will be the same type as the left
778 * operand."
779 */
780 return type_a;
781 }
782
783 /**
784 * Returns the innermost array index expression in an rvalue tree.
785 * This is the largest indexing level -- if an array of blocks, then
786 * it is the block index rather than an indexing expression for an
787 * array-typed member of an array of blocks.
788 */
789 static ir_rvalue *
790 find_innermost_array_index(ir_rvalue *rv)
791 {
792 ir_dereference_array *last = NULL;
793 while (rv) {
794 if (rv->as_dereference_array()) {
795 last = rv->as_dereference_array();
796 rv = last->array;
797 } else if (rv->as_dereference_record())
798 rv = rv->as_dereference_record()->record;
799 else if (rv->as_swizzle())
800 rv = rv->as_swizzle()->val;
801 else
802 rv = NULL;
803 }
804
805 if (last)
806 return last->array_index;
807
808 return NULL;
809 }
810
811 /**
812 * Validates that a value can be assigned to a location with a specified type
813 *
814 * Validates that \c rhs can be assigned to some location. If the types are
815 * not an exact match but an automatic conversion is possible, \c rhs will be
816 * converted.
817 *
818 * \return
819 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
820 * Otherwise the actual RHS to be assigned will be returned. This may be
821 * \c rhs, or it may be \c rhs after some type conversion.
822 *
823 * \note
824 * In addition to being used for assignments, this function is used to
825 * type-check return values.
826 */
827 static ir_rvalue *
828 validate_assignment(struct _mesa_glsl_parse_state *state,
829 YYLTYPE loc, ir_rvalue *lhs,
830 ir_rvalue *rhs, bool is_initializer)
831 {
832 /* If there is already some error in the RHS, just return it. Anything
833 * else will lead to an avalanche of error message back to the user.
834 */
835 if (rhs->type->is_error())
836 return rhs;
837
838 /* In the Tessellation Control Shader:
839 * If a per-vertex output variable is used as an l-value, it is an error
840 * if the expression indicating the vertex number is not the identifier
841 * `gl_InvocationID`.
842 */
843 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
844 ir_variable *var = lhs->variable_referenced();
845 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
846 ir_rvalue *index = find_innermost_array_index(lhs);
847 ir_variable *index_var = index ? index->variable_referenced() : NULL;
848 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
849 _mesa_glsl_error(&loc, state,
850 "Tessellation control shader outputs can only "
851 "be indexed by gl_InvocationID");
852 return NULL;
853 }
854 }
855 }
856
857 /* If the types are identical, the assignment can trivially proceed.
858 */
859 if (rhs->type == lhs->type)
860 return rhs;
861
862 /* If the array element types are the same and the LHS is unsized,
863 * the assignment is okay for initializers embedded in variable
864 * declarations.
865 *
866 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
867 * is handled by ir_dereference::is_lvalue.
868 */
869 const glsl_type *lhs_t = lhs->type;
870 const glsl_type *rhs_t = rhs->type;
871 bool unsized_array = false;
872 while(lhs_t->is_array()) {
873 if (rhs_t == lhs_t)
874 break; /* the rest of the inner arrays match so break out early */
875 if (!rhs_t->is_array()) {
876 unsized_array = false;
877 break; /* number of dimensions mismatch */
878 }
879 if (lhs_t->length == rhs_t->length) {
880 lhs_t = lhs_t->fields.array;
881 rhs_t = rhs_t->fields.array;
882 continue;
883 } else if (lhs_t->is_unsized_array()) {
884 unsized_array = true;
885 } else {
886 unsized_array = false;
887 break; /* sized array mismatch */
888 }
889 lhs_t = lhs_t->fields.array;
890 rhs_t = rhs_t->fields.array;
891 }
892 if (unsized_array) {
893 if (is_initializer) {
894 if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type())
895 return rhs;
896 } else {
897 _mesa_glsl_error(&loc, state,
898 "implicitly sized arrays cannot be assigned");
899 return NULL;
900 }
901 }
902
903 /* Check for implicit conversion in GLSL 1.20 */
904 if (apply_implicit_conversion(lhs->type, rhs, state)) {
905 if (rhs->type == lhs->type)
906 return rhs;
907 }
908
909 _mesa_glsl_error(&loc, state,
910 "%s of type %s cannot be assigned to "
911 "variable of type %s",
912 is_initializer ? "initializer" : "value",
913 rhs->type->name, lhs->type->name);
914
915 return NULL;
916 }
917
918 static void
919 mark_whole_array_access(ir_rvalue *access)
920 {
921 ir_dereference_variable *deref = access->as_dereference_variable();
922
923 if (deref && deref->var) {
924 deref->var->data.max_array_access = deref->type->length - 1;
925 }
926 }
927
928 static bool
929 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
930 const char *non_lvalue_description,
931 ir_rvalue *lhs, ir_rvalue *rhs,
932 ir_rvalue **out_rvalue, bool needs_rvalue,
933 bool is_initializer,
934 YYLTYPE lhs_loc)
935 {
936 void *ctx = state;
937 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
938
939 ir_variable *lhs_var = lhs->variable_referenced();
940 if (lhs_var)
941 lhs_var->data.assigned = true;
942
943 if (!error_emitted) {
944 if (non_lvalue_description != NULL) {
945 _mesa_glsl_error(&lhs_loc, state,
946 "assignment to %s",
947 non_lvalue_description);
948 error_emitted = true;
949 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
950 (lhs_var->data.mode == ir_var_shader_storage &&
951 lhs_var->data.memory_read_only))) {
952 /* We can have memory_read_only set on both images and buffer variables,
953 * but in the former there is a distinction between assignments to
954 * the variable itself (read_only) and to the memory they point to
955 * (memory_read_only), while in the case of buffer variables there is
956 * no such distinction, that is why this check here is limited to
957 * buffer variables alone.
958 */
959 _mesa_glsl_error(&lhs_loc, state,
960 "assignment to read-only variable '%s'",
961 lhs_var->name);
962 error_emitted = true;
963 } else if (lhs->type->is_array() &&
964 !state->check_version(120, 300, &lhs_loc,
965 "whole array assignment forbidden")) {
966 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
967 *
968 * "Other binary or unary expressions, non-dereferenced
969 * arrays, function names, swizzles with repeated fields,
970 * and constants cannot be l-values."
971 *
972 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
973 */
974 error_emitted = true;
975 } else if (!lhs->is_lvalue(state)) {
976 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
977 error_emitted = true;
978 }
979 }
980
981 ir_rvalue *new_rhs =
982 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
983 if (new_rhs != NULL) {
984 rhs = new_rhs;
985
986 /* If the LHS array was not declared with a size, it takes it size from
987 * the RHS. If the LHS is an l-value and a whole array, it must be a
988 * dereference of a variable. Any other case would require that the LHS
989 * is either not an l-value or not a whole array.
990 */
991 if (lhs->type->is_unsized_array()) {
992 ir_dereference *const d = lhs->as_dereference();
993
994 assert(d != NULL);
995
996 ir_variable *const var = d->variable_referenced();
997
998 assert(var != NULL);
999
1000 if (var->data.max_array_access >= rhs->type->array_size()) {
1001 /* FINISHME: This should actually log the location of the RHS. */
1002 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1003 "previous access",
1004 var->data.max_array_access);
1005 }
1006
1007 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1008 rhs->type->array_size());
1009 d->type = var->type;
1010 }
1011 if (lhs->type->is_array()) {
1012 mark_whole_array_access(rhs);
1013 mark_whole_array_access(lhs);
1014 }
1015 } else {
1016 error_emitted = true;
1017 }
1018
1019 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1020 * but not post_inc) need the converted assigned value as an rvalue
1021 * to handle things like:
1022 *
1023 * i = j += 1;
1024 */
1025 if (needs_rvalue) {
1026 ir_rvalue *rvalue;
1027 if (!error_emitted) {
1028 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1029 ir_var_temporary);
1030 instructions->push_tail(var);
1031 instructions->push_tail(assign(var, rhs));
1032
1033 ir_dereference_variable *deref_var =
1034 new(ctx) ir_dereference_variable(var);
1035 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1036 rvalue = new(ctx) ir_dereference_variable(var);
1037 } else {
1038 rvalue = ir_rvalue::error_value(ctx);
1039 }
1040 *out_rvalue = rvalue;
1041 } else {
1042 if (!error_emitted)
1043 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1044 *out_rvalue = NULL;
1045 }
1046
1047 return error_emitted;
1048 }
1049
1050 static ir_rvalue *
1051 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1052 {
1053 void *ctx = ralloc_parent(lvalue);
1054 ir_variable *var;
1055
1056 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1057 ir_var_temporary);
1058 instructions->push_tail(var);
1059
1060 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1061 lvalue));
1062
1063 return new(ctx) ir_dereference_variable(var);
1064 }
1065
1066
1067 ir_rvalue *
1068 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1069 {
1070 (void) instructions;
1071 (void) state;
1072
1073 return NULL;
1074 }
1075
1076 bool
1077 ast_node::has_sequence_subexpression() const
1078 {
1079 return false;
1080 }
1081
1082 void
1083 ast_node::set_is_lhs(bool /* new_value */)
1084 {
1085 }
1086
1087 void
1088 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1089 struct _mesa_glsl_parse_state *state)
1090 {
1091 (void)hir(instructions, state);
1092 }
1093
1094 void
1095 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1096 struct _mesa_glsl_parse_state *state)
1097 {
1098 (void)hir(instructions, state);
1099 }
1100
1101 static ir_rvalue *
1102 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1103 {
1104 int join_op;
1105 ir_rvalue *cmp = NULL;
1106
1107 if (operation == ir_binop_all_equal)
1108 join_op = ir_binop_logic_and;
1109 else
1110 join_op = ir_binop_logic_or;
1111
1112 switch (op0->type->base_type) {
1113 case GLSL_TYPE_FLOAT:
1114 case GLSL_TYPE_FLOAT16:
1115 case GLSL_TYPE_UINT:
1116 case GLSL_TYPE_INT:
1117 case GLSL_TYPE_BOOL:
1118 case GLSL_TYPE_DOUBLE:
1119 case GLSL_TYPE_UINT64:
1120 case GLSL_TYPE_INT64:
1121 case GLSL_TYPE_UINT16:
1122 case GLSL_TYPE_INT16:
1123 case GLSL_TYPE_UINT8:
1124 case GLSL_TYPE_INT8:
1125 return new(mem_ctx) ir_expression(operation, op0, op1);
1126
1127 case GLSL_TYPE_ARRAY: {
1128 for (unsigned int i = 0; i < op0->type->length; i++) {
1129 ir_rvalue *e0, *e1, *result;
1130
1131 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1132 new(mem_ctx) ir_constant(i));
1133 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1134 new(mem_ctx) ir_constant(i));
1135 result = do_comparison(mem_ctx, operation, e0, e1);
1136
1137 if (cmp) {
1138 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1139 } else {
1140 cmp = result;
1141 }
1142 }
1143
1144 mark_whole_array_access(op0);
1145 mark_whole_array_access(op1);
1146 break;
1147 }
1148
1149 case GLSL_TYPE_STRUCT: {
1150 for (unsigned int i = 0; i < op0->type->length; i++) {
1151 ir_rvalue *e0, *e1, *result;
1152 const char *field_name = op0->type->fields.structure[i].name;
1153
1154 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1155 field_name);
1156 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1157 field_name);
1158 result = do_comparison(mem_ctx, operation, e0, e1);
1159
1160 if (cmp) {
1161 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1162 } else {
1163 cmp = result;
1164 }
1165 }
1166 break;
1167 }
1168
1169 case GLSL_TYPE_ERROR:
1170 case GLSL_TYPE_VOID:
1171 case GLSL_TYPE_SAMPLER:
1172 case GLSL_TYPE_IMAGE:
1173 case GLSL_TYPE_INTERFACE:
1174 case GLSL_TYPE_ATOMIC_UINT:
1175 case GLSL_TYPE_SUBROUTINE:
1176 case GLSL_TYPE_FUNCTION:
1177 /* I assume a comparison of a struct containing a sampler just
1178 * ignores the sampler present in the type.
1179 */
1180 break;
1181 }
1182
1183 if (cmp == NULL)
1184 cmp = new(mem_ctx) ir_constant(true);
1185
1186 return cmp;
1187 }
1188
1189 /* For logical operations, we want to ensure that the operands are
1190 * scalar booleans. If it isn't, emit an error and return a constant
1191 * boolean to avoid triggering cascading error messages.
1192 */
1193 static ir_rvalue *
1194 get_scalar_boolean_operand(exec_list *instructions,
1195 struct _mesa_glsl_parse_state *state,
1196 ast_expression *parent_expr,
1197 int operand,
1198 const char *operand_name,
1199 bool *error_emitted)
1200 {
1201 ast_expression *expr = parent_expr->subexpressions[operand];
1202 void *ctx = state;
1203 ir_rvalue *val = expr->hir(instructions, state);
1204
1205 if (val->type->is_boolean() && val->type->is_scalar())
1206 return val;
1207
1208 if (!*error_emitted) {
1209 YYLTYPE loc = expr->get_location();
1210 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1211 operand_name,
1212 parent_expr->operator_string(parent_expr->oper));
1213 *error_emitted = true;
1214 }
1215
1216 return new(ctx) ir_constant(true);
1217 }
1218
1219 /**
1220 * If name refers to a builtin array whose maximum allowed size is less than
1221 * size, report an error and return true. Otherwise return false.
1222 */
1223 void
1224 check_builtin_array_max_size(const char *name, unsigned size,
1225 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1226 {
1227 if ((strcmp("gl_TexCoord", name) == 0)
1228 && (size > state->Const.MaxTextureCoords)) {
1229 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1230 *
1231 * "The size [of gl_TexCoord] can be at most
1232 * gl_MaxTextureCoords."
1233 */
1234 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1235 "be larger than gl_MaxTextureCoords (%u)",
1236 state->Const.MaxTextureCoords);
1237 } else if (strcmp("gl_ClipDistance", name) == 0) {
1238 state->clip_dist_size = size;
1239 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1240 /* From section 7.1 (Vertex Shader Special Variables) of the
1241 * GLSL 1.30 spec:
1242 *
1243 * "The gl_ClipDistance array is predeclared as unsized and
1244 * must be sized by the shader either redeclaring it with a
1245 * size or indexing it only with integral constant
1246 * expressions. ... The size can be at most
1247 * gl_MaxClipDistances."
1248 */
1249 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1250 "be larger than gl_MaxClipDistances (%u)",
1251 state->Const.MaxClipPlanes);
1252 }
1253 } else if (strcmp("gl_CullDistance", name) == 0) {
1254 state->cull_dist_size = size;
1255 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1256 /* From the ARB_cull_distance spec:
1257 *
1258 * "The gl_CullDistance array is predeclared as unsized and
1259 * must be sized by the shader either redeclaring it with
1260 * a size or indexing it only with integral constant
1261 * expressions. The size determines the number and set of
1262 * enabled cull distances and can be at most
1263 * gl_MaxCullDistances."
1264 */
1265 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1266 "be larger than gl_MaxCullDistances (%u)",
1267 state->Const.MaxClipPlanes);
1268 }
1269 }
1270 }
1271
1272 /**
1273 * Create the constant 1, of a which is appropriate for incrementing and
1274 * decrementing values of the given GLSL type. For example, if type is vec4,
1275 * this creates a constant value of 1.0 having type float.
1276 *
1277 * If the given type is invalid for increment and decrement operators, return
1278 * a floating point 1--the error will be detected later.
1279 */
1280 static ir_rvalue *
1281 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1282 {
1283 switch (type->base_type) {
1284 case GLSL_TYPE_UINT:
1285 return new(ctx) ir_constant((unsigned) 1);
1286 case GLSL_TYPE_INT:
1287 return new(ctx) ir_constant(1);
1288 case GLSL_TYPE_UINT64:
1289 return new(ctx) ir_constant((uint64_t) 1);
1290 case GLSL_TYPE_INT64:
1291 return new(ctx) ir_constant((int64_t) 1);
1292 default:
1293 case GLSL_TYPE_FLOAT:
1294 return new(ctx) ir_constant(1.0f);
1295 }
1296 }
1297
1298 ir_rvalue *
1299 ast_expression::hir(exec_list *instructions,
1300 struct _mesa_glsl_parse_state *state)
1301 {
1302 return do_hir(instructions, state, true);
1303 }
1304
1305 void
1306 ast_expression::hir_no_rvalue(exec_list *instructions,
1307 struct _mesa_glsl_parse_state *state)
1308 {
1309 do_hir(instructions, state, false);
1310 }
1311
1312 void
1313 ast_expression::set_is_lhs(bool new_value)
1314 {
1315 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1316 * if we lack an identifier we can just skip it.
1317 */
1318 if (this->primary_expression.identifier == NULL)
1319 return;
1320
1321 this->is_lhs = new_value;
1322
1323 /* We need to go through the subexpressions tree to cover cases like
1324 * ast_field_selection
1325 */
1326 if (this->subexpressions[0] != NULL)
1327 this->subexpressions[0]->set_is_lhs(new_value);
1328 }
1329
1330 ir_rvalue *
1331 ast_expression::do_hir(exec_list *instructions,
1332 struct _mesa_glsl_parse_state *state,
1333 bool needs_rvalue)
1334 {
1335 void *ctx = state;
1336 static const int operations[AST_NUM_OPERATORS] = {
1337 -1, /* ast_assign doesn't convert to ir_expression. */
1338 -1, /* ast_plus doesn't convert to ir_expression. */
1339 ir_unop_neg,
1340 ir_binop_add,
1341 ir_binop_sub,
1342 ir_binop_mul,
1343 ir_binop_div,
1344 ir_binop_mod,
1345 ir_binop_lshift,
1346 ir_binop_rshift,
1347 ir_binop_less,
1348 ir_binop_less, /* This is correct. See the ast_greater case below. */
1349 ir_binop_gequal, /* This is correct. See the ast_lequal case below. */
1350 ir_binop_gequal,
1351 ir_binop_all_equal,
1352 ir_binop_any_nequal,
1353 ir_binop_bit_and,
1354 ir_binop_bit_xor,
1355 ir_binop_bit_or,
1356 ir_unop_bit_not,
1357 ir_binop_logic_and,
1358 ir_binop_logic_xor,
1359 ir_binop_logic_or,
1360 ir_unop_logic_not,
1361
1362 /* Note: The following block of expression types actually convert
1363 * to multiple IR instructions.
1364 */
1365 ir_binop_mul, /* ast_mul_assign */
1366 ir_binop_div, /* ast_div_assign */
1367 ir_binop_mod, /* ast_mod_assign */
1368 ir_binop_add, /* ast_add_assign */
1369 ir_binop_sub, /* ast_sub_assign */
1370 ir_binop_lshift, /* ast_ls_assign */
1371 ir_binop_rshift, /* ast_rs_assign */
1372 ir_binop_bit_and, /* ast_and_assign */
1373 ir_binop_bit_xor, /* ast_xor_assign */
1374 ir_binop_bit_or, /* ast_or_assign */
1375
1376 -1, /* ast_conditional doesn't convert to ir_expression. */
1377 ir_binop_add, /* ast_pre_inc. */
1378 ir_binop_sub, /* ast_pre_dec. */
1379 ir_binop_add, /* ast_post_inc. */
1380 ir_binop_sub, /* ast_post_dec. */
1381 -1, /* ast_field_selection doesn't conv to ir_expression. */
1382 -1, /* ast_array_index doesn't convert to ir_expression. */
1383 -1, /* ast_function_call doesn't conv to ir_expression. */
1384 -1, /* ast_identifier doesn't convert to ir_expression. */
1385 -1, /* ast_int_constant doesn't convert to ir_expression. */
1386 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1387 -1, /* ast_float_constant doesn't conv to ir_expression. */
1388 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1389 -1, /* ast_sequence doesn't convert to ir_expression. */
1390 -1, /* ast_aggregate shouldn't ever even get here. */
1391 };
1392 ir_rvalue *result = NULL;
1393 ir_rvalue *op[3];
1394 const struct glsl_type *type, *orig_type;
1395 bool error_emitted = false;
1396 YYLTYPE loc;
1397
1398 loc = this->get_location();
1399
1400 switch (this->oper) {
1401 case ast_aggregate:
1402 unreachable("ast_aggregate: Should never get here.");
1403
1404 case ast_assign: {
1405 this->subexpressions[0]->set_is_lhs(true);
1406 op[0] = this->subexpressions[0]->hir(instructions, state);
1407 op[1] = this->subexpressions[1]->hir(instructions, state);
1408
1409 error_emitted =
1410 do_assignment(instructions, state,
1411 this->subexpressions[0]->non_lvalue_description,
1412 op[0], op[1], &result, needs_rvalue, false,
1413 this->subexpressions[0]->get_location());
1414 break;
1415 }
1416
1417 case ast_plus:
1418 op[0] = this->subexpressions[0]->hir(instructions, state);
1419
1420 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1421
1422 error_emitted = type->is_error();
1423
1424 result = op[0];
1425 break;
1426
1427 case ast_neg:
1428 op[0] = this->subexpressions[0]->hir(instructions, state);
1429
1430 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1431
1432 error_emitted = type->is_error();
1433
1434 result = new(ctx) ir_expression(operations[this->oper], type,
1435 op[0], NULL);
1436 break;
1437
1438 case ast_add:
1439 case ast_sub:
1440 case ast_mul:
1441 case ast_div:
1442 op[0] = this->subexpressions[0]->hir(instructions, state);
1443 op[1] = this->subexpressions[1]->hir(instructions, state);
1444
1445 type = arithmetic_result_type(op[0], op[1],
1446 (this->oper == ast_mul),
1447 state, & loc);
1448 error_emitted = type->is_error();
1449
1450 result = new(ctx) ir_expression(operations[this->oper], type,
1451 op[0], op[1]);
1452 break;
1453
1454 case ast_mod:
1455 op[0] = this->subexpressions[0]->hir(instructions, state);
1456 op[1] = this->subexpressions[1]->hir(instructions, state);
1457
1458 type = modulus_result_type(op[0], op[1], state, &loc);
1459
1460 assert(operations[this->oper] == ir_binop_mod);
1461
1462 result = new(ctx) ir_expression(operations[this->oper], type,
1463 op[0], op[1]);
1464 error_emitted = type->is_error();
1465 break;
1466
1467 case ast_lshift:
1468 case ast_rshift:
1469 if (!state->check_bitwise_operations_allowed(&loc)) {
1470 error_emitted = true;
1471 }
1472
1473 op[0] = this->subexpressions[0]->hir(instructions, state);
1474 op[1] = this->subexpressions[1]->hir(instructions, state);
1475 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1476 &loc);
1477 result = new(ctx) ir_expression(operations[this->oper], type,
1478 op[0], op[1]);
1479 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1480 break;
1481
1482 case ast_less:
1483 case ast_greater:
1484 case ast_lequal:
1485 case ast_gequal:
1486 op[0] = this->subexpressions[0]->hir(instructions, state);
1487 op[1] = this->subexpressions[1]->hir(instructions, state);
1488
1489 type = relational_result_type(op[0], op[1], state, & loc);
1490
1491 /* The relational operators must either generate an error or result
1492 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1493 */
1494 assert(type->is_error()
1495 || (type->is_boolean() && type->is_scalar()));
1496
1497 /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap
1498 * the arguments and use < or >=.
1499 */
1500 if (this->oper == ast_greater || this->oper == ast_lequal) {
1501 ir_rvalue *const tmp = op[0];
1502 op[0] = op[1];
1503 op[1] = tmp;
1504 }
1505
1506 result = new(ctx) ir_expression(operations[this->oper], type,
1507 op[0], op[1]);
1508 error_emitted = type->is_error();
1509 break;
1510
1511 case ast_nequal:
1512 case ast_equal:
1513 op[0] = this->subexpressions[0]->hir(instructions, state);
1514 op[1] = this->subexpressions[1]->hir(instructions, state);
1515
1516 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1517 *
1518 * "The equality operators equal (==), and not equal (!=)
1519 * operate on all types. They result in a scalar Boolean. If
1520 * the operand types do not match, then there must be a
1521 * conversion from Section 4.1.10 "Implicit Conversions"
1522 * applied to one operand that can make them match, in which
1523 * case this conversion is done."
1524 */
1525
1526 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1527 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1528 "no operation `%1$s' exists that takes a left-hand "
1529 "operand of type 'void' or a right operand of type "
1530 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1531 error_emitted = true;
1532 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1533 && !apply_implicit_conversion(op[1]->type, op[0], state))
1534 || (op[0]->type != op[1]->type)) {
1535 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1536 "type", (this->oper == ast_equal) ? "==" : "!=");
1537 error_emitted = true;
1538 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1539 !state->check_version(120, 300, &loc,
1540 "array comparisons forbidden")) {
1541 error_emitted = true;
1542 } else if ((op[0]->type->contains_subroutine() ||
1543 op[1]->type->contains_subroutine())) {
1544 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1545 error_emitted = true;
1546 } else if ((op[0]->type->contains_opaque() ||
1547 op[1]->type->contains_opaque())) {
1548 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1549 error_emitted = true;
1550 }
1551
1552 if (error_emitted) {
1553 result = new(ctx) ir_constant(false);
1554 } else {
1555 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1556 assert(result->type == glsl_type::bool_type);
1557 }
1558 break;
1559
1560 case ast_bit_and:
1561 case ast_bit_xor:
1562 case ast_bit_or:
1563 op[0] = this->subexpressions[0]->hir(instructions, state);
1564 op[1] = this->subexpressions[1]->hir(instructions, state);
1565 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1566 result = new(ctx) ir_expression(operations[this->oper], type,
1567 op[0], op[1]);
1568 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1569 break;
1570
1571 case ast_bit_not:
1572 op[0] = this->subexpressions[0]->hir(instructions, state);
1573
1574 if (!state->check_bitwise_operations_allowed(&loc)) {
1575 error_emitted = true;
1576 }
1577
1578 if (!op[0]->type->is_integer_32_64()) {
1579 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1580 error_emitted = true;
1581 }
1582
1583 type = error_emitted ? glsl_type::error_type : op[0]->type;
1584 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1585 break;
1586
1587 case ast_logic_and: {
1588 exec_list rhs_instructions;
1589 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1590 "LHS", &error_emitted);
1591 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1592 "RHS", &error_emitted);
1593
1594 if (rhs_instructions.is_empty()) {
1595 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1596 } else {
1597 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1598 "and_tmp",
1599 ir_var_temporary);
1600 instructions->push_tail(tmp);
1601
1602 ir_if *const stmt = new(ctx) ir_if(op[0]);
1603 instructions->push_tail(stmt);
1604
1605 stmt->then_instructions.append_list(&rhs_instructions);
1606 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1607 ir_assignment *const then_assign =
1608 new(ctx) ir_assignment(then_deref, op[1]);
1609 stmt->then_instructions.push_tail(then_assign);
1610
1611 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1612 ir_assignment *const else_assign =
1613 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1614 stmt->else_instructions.push_tail(else_assign);
1615
1616 result = new(ctx) ir_dereference_variable(tmp);
1617 }
1618 break;
1619 }
1620
1621 case ast_logic_or: {
1622 exec_list rhs_instructions;
1623 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1624 "LHS", &error_emitted);
1625 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1626 "RHS", &error_emitted);
1627
1628 if (rhs_instructions.is_empty()) {
1629 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1630 } else {
1631 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1632 "or_tmp",
1633 ir_var_temporary);
1634 instructions->push_tail(tmp);
1635
1636 ir_if *const stmt = new(ctx) ir_if(op[0]);
1637 instructions->push_tail(stmt);
1638
1639 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1640 ir_assignment *const then_assign =
1641 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1642 stmt->then_instructions.push_tail(then_assign);
1643
1644 stmt->else_instructions.append_list(&rhs_instructions);
1645 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1646 ir_assignment *const else_assign =
1647 new(ctx) ir_assignment(else_deref, op[1]);
1648 stmt->else_instructions.push_tail(else_assign);
1649
1650 result = new(ctx) ir_dereference_variable(tmp);
1651 }
1652 break;
1653 }
1654
1655 case ast_logic_xor:
1656 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1657 *
1658 * "The logical binary operators and (&&), or ( | | ), and
1659 * exclusive or (^^). They operate only on two Boolean
1660 * expressions and result in a Boolean expression."
1661 */
1662 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1663 &error_emitted);
1664 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1665 &error_emitted);
1666
1667 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1668 op[0], op[1]);
1669 break;
1670
1671 case ast_logic_not:
1672 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1673 "operand", &error_emitted);
1674
1675 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1676 op[0], NULL);
1677 break;
1678
1679 case ast_mul_assign:
1680 case ast_div_assign:
1681 case ast_add_assign:
1682 case ast_sub_assign: {
1683 this->subexpressions[0]->set_is_lhs(true);
1684 op[0] = this->subexpressions[0]->hir(instructions, state);
1685 op[1] = this->subexpressions[1]->hir(instructions, state);
1686
1687 orig_type = op[0]->type;
1688
1689 /* Break out if operand types were not parsed successfully. */
1690 if ((op[0]->type == glsl_type::error_type ||
1691 op[1]->type == glsl_type::error_type))
1692 break;
1693
1694 type = arithmetic_result_type(op[0], op[1],
1695 (this->oper == ast_mul_assign),
1696 state, & loc);
1697
1698 if (type != orig_type) {
1699 _mesa_glsl_error(& loc, state,
1700 "could not implicitly convert "
1701 "%s to %s", type->name, orig_type->name);
1702 type = glsl_type::error_type;
1703 }
1704
1705 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1706 op[0], op[1]);
1707
1708 error_emitted =
1709 do_assignment(instructions, state,
1710 this->subexpressions[0]->non_lvalue_description,
1711 op[0]->clone(ctx, NULL), temp_rhs,
1712 &result, needs_rvalue, false,
1713 this->subexpressions[0]->get_location());
1714
1715 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1716 * explicitly test for this because none of the binary expression
1717 * operators allow array operands either.
1718 */
1719
1720 break;
1721 }
1722
1723 case ast_mod_assign: {
1724 this->subexpressions[0]->set_is_lhs(true);
1725 op[0] = this->subexpressions[0]->hir(instructions, state);
1726 op[1] = this->subexpressions[1]->hir(instructions, state);
1727
1728 orig_type = op[0]->type;
1729 type = modulus_result_type(op[0], op[1], state, &loc);
1730
1731 if (type != orig_type) {
1732 _mesa_glsl_error(& loc, state,
1733 "could not implicitly convert "
1734 "%s to %s", type->name, orig_type->name);
1735 type = glsl_type::error_type;
1736 }
1737
1738 assert(operations[this->oper] == ir_binop_mod);
1739
1740 ir_rvalue *temp_rhs;
1741 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1742 op[0], op[1]);
1743
1744 error_emitted =
1745 do_assignment(instructions, state,
1746 this->subexpressions[0]->non_lvalue_description,
1747 op[0]->clone(ctx, NULL), temp_rhs,
1748 &result, needs_rvalue, false,
1749 this->subexpressions[0]->get_location());
1750 break;
1751 }
1752
1753 case ast_ls_assign:
1754 case ast_rs_assign: {
1755 this->subexpressions[0]->set_is_lhs(true);
1756 op[0] = this->subexpressions[0]->hir(instructions, state);
1757 op[1] = this->subexpressions[1]->hir(instructions, state);
1758 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1759 &loc);
1760 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1761 type, op[0], op[1]);
1762 error_emitted =
1763 do_assignment(instructions, state,
1764 this->subexpressions[0]->non_lvalue_description,
1765 op[0]->clone(ctx, NULL), temp_rhs,
1766 &result, needs_rvalue, false,
1767 this->subexpressions[0]->get_location());
1768 break;
1769 }
1770
1771 case ast_and_assign:
1772 case ast_xor_assign:
1773 case ast_or_assign: {
1774 this->subexpressions[0]->set_is_lhs(true);
1775 op[0] = this->subexpressions[0]->hir(instructions, state);
1776 op[1] = this->subexpressions[1]->hir(instructions, state);
1777
1778 orig_type = op[0]->type;
1779 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1780
1781 if (type != orig_type) {
1782 _mesa_glsl_error(& loc, state,
1783 "could not implicitly convert "
1784 "%s to %s", type->name, orig_type->name);
1785 type = glsl_type::error_type;
1786 }
1787
1788 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1789 type, op[0], op[1]);
1790 error_emitted =
1791 do_assignment(instructions, state,
1792 this->subexpressions[0]->non_lvalue_description,
1793 op[0]->clone(ctx, NULL), temp_rhs,
1794 &result, needs_rvalue, false,
1795 this->subexpressions[0]->get_location());
1796 break;
1797 }
1798
1799 case ast_conditional: {
1800 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1801 *
1802 * "The ternary selection operator (?:). It operates on three
1803 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1804 * first expression, which must result in a scalar Boolean."
1805 */
1806 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1807 "condition", &error_emitted);
1808
1809 /* The :? operator is implemented by generating an anonymous temporary
1810 * followed by an if-statement. The last instruction in each branch of
1811 * the if-statement assigns a value to the anonymous temporary. This
1812 * temporary is the r-value of the expression.
1813 */
1814 exec_list then_instructions;
1815 exec_list else_instructions;
1816
1817 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1818 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1819
1820 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1821 *
1822 * "The second and third expressions can be any type, as
1823 * long their types match, or there is a conversion in
1824 * Section 4.1.10 "Implicit Conversions" that can be applied
1825 * to one of the expressions to make their types match. This
1826 * resulting matching type is the type of the entire
1827 * expression."
1828 */
1829 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1830 && !apply_implicit_conversion(op[2]->type, op[1], state))
1831 || (op[1]->type != op[2]->type)) {
1832 YYLTYPE loc = this->subexpressions[1]->get_location();
1833
1834 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1835 "operator must have matching types");
1836 error_emitted = true;
1837 type = glsl_type::error_type;
1838 } else {
1839 type = op[1]->type;
1840 }
1841
1842 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1843 *
1844 * "The second and third expressions must be the same type, but can
1845 * be of any type other than an array."
1846 */
1847 if (type->is_array() &&
1848 !state->check_version(120, 300, &loc,
1849 "second and third operands of ?: operator "
1850 "cannot be arrays")) {
1851 error_emitted = true;
1852 }
1853
1854 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1855 *
1856 * "Except for array indexing, structure member selection, and
1857 * parentheses, opaque variables are not allowed to be operands in
1858 * expressions; such use results in a compile-time error."
1859 */
1860 if (type->contains_opaque()) {
1861 if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) {
1862 _mesa_glsl_error(&loc, state, "variables of type %s cannot be "
1863 "operands of the ?: operator", type->name);
1864 error_emitted = true;
1865 }
1866 }
1867
1868 ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1869
1870 if (then_instructions.is_empty()
1871 && else_instructions.is_empty()
1872 && cond_val != NULL) {
1873 result = cond_val->value.b[0] ? op[1] : op[2];
1874 } else {
1875 /* The copy to conditional_tmp reads the whole array. */
1876 if (type->is_array()) {
1877 mark_whole_array_access(op[1]);
1878 mark_whole_array_access(op[2]);
1879 }
1880
1881 ir_variable *const tmp =
1882 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1883 instructions->push_tail(tmp);
1884
1885 ir_if *const stmt = new(ctx) ir_if(op[0]);
1886 instructions->push_tail(stmt);
1887
1888 then_instructions.move_nodes_to(& stmt->then_instructions);
1889 ir_dereference *const then_deref =
1890 new(ctx) ir_dereference_variable(tmp);
1891 ir_assignment *const then_assign =
1892 new(ctx) ir_assignment(then_deref, op[1]);
1893 stmt->then_instructions.push_tail(then_assign);
1894
1895 else_instructions.move_nodes_to(& stmt->else_instructions);
1896 ir_dereference *const else_deref =
1897 new(ctx) ir_dereference_variable(tmp);
1898 ir_assignment *const else_assign =
1899 new(ctx) ir_assignment(else_deref, op[2]);
1900 stmt->else_instructions.push_tail(else_assign);
1901
1902 result = new(ctx) ir_dereference_variable(tmp);
1903 }
1904 break;
1905 }
1906
1907 case ast_pre_inc:
1908 case ast_pre_dec: {
1909 this->non_lvalue_description = (this->oper == ast_pre_inc)
1910 ? "pre-increment operation" : "pre-decrement operation";
1911
1912 op[0] = this->subexpressions[0]->hir(instructions, state);
1913 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1914
1915 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1916
1917 ir_rvalue *temp_rhs;
1918 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1919 op[0], op[1]);
1920
1921 error_emitted =
1922 do_assignment(instructions, state,
1923 this->subexpressions[0]->non_lvalue_description,
1924 op[0]->clone(ctx, NULL), temp_rhs,
1925 &result, needs_rvalue, false,
1926 this->subexpressions[0]->get_location());
1927 break;
1928 }
1929
1930 case ast_post_inc:
1931 case ast_post_dec: {
1932 this->non_lvalue_description = (this->oper == ast_post_inc)
1933 ? "post-increment operation" : "post-decrement operation";
1934 op[0] = this->subexpressions[0]->hir(instructions, state);
1935 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1936
1937 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1938
1939 if (error_emitted) {
1940 result = ir_rvalue::error_value(ctx);
1941 break;
1942 }
1943
1944 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1945
1946 ir_rvalue *temp_rhs;
1947 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1948 op[0], op[1]);
1949
1950 /* Get a temporary of a copy of the lvalue before it's modified.
1951 * This may get thrown away later.
1952 */
1953 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1954
1955 ir_rvalue *junk_rvalue;
1956 error_emitted =
1957 do_assignment(instructions, state,
1958 this->subexpressions[0]->non_lvalue_description,
1959 op[0]->clone(ctx, NULL), temp_rhs,
1960 &junk_rvalue, false, false,
1961 this->subexpressions[0]->get_location());
1962
1963 break;
1964 }
1965
1966 case ast_field_selection:
1967 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1968 break;
1969
1970 case ast_array_index: {
1971 YYLTYPE index_loc = subexpressions[1]->get_location();
1972
1973 /* Getting if an array is being used uninitialized is beyond what we get
1974 * from ir_value.data.assigned. Setting is_lhs as true would force to
1975 * not raise a uninitialized warning when using an array
1976 */
1977 subexpressions[0]->set_is_lhs(true);
1978 op[0] = subexpressions[0]->hir(instructions, state);
1979 op[1] = subexpressions[1]->hir(instructions, state);
1980
1981 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1982 loc, index_loc);
1983
1984 if (result->type->is_error())
1985 error_emitted = true;
1986
1987 break;
1988 }
1989
1990 case ast_unsized_array_dim:
1991 unreachable("ast_unsized_array_dim: Should never get here.");
1992
1993 case ast_function_call:
1994 /* Should *NEVER* get here. ast_function_call should always be handled
1995 * by ast_function_expression::hir.
1996 */
1997 unreachable("ast_function_call: handled elsewhere ");
1998
1999 case ast_identifier: {
2000 /* ast_identifier can appear several places in a full abstract syntax
2001 * tree. This particular use must be at location specified in the grammar
2002 * as 'variable_identifier'.
2003 */
2004 ir_variable *var =
2005 state->symbols->get_variable(this->primary_expression.identifier);
2006
2007 if (var == NULL) {
2008 /* the identifier might be a subroutine name */
2009 char *sub_name;
2010 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
2011 var = state->symbols->get_variable(sub_name);
2012 ralloc_free(sub_name);
2013 }
2014
2015 if (var != NULL) {
2016 var->data.used = true;
2017 result = new(ctx) ir_dereference_variable(var);
2018
2019 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2020 && !this->is_lhs
2021 && result->variable_referenced()->data.assigned != true
2022 && !is_gl_identifier(var->name)) {
2023 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2024 this->primary_expression.identifier);
2025 }
2026
2027 /* From the EXT_shader_framebuffer_fetch spec:
2028 *
2029 * "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2030 * enabled in addition, it's an error to use gl_LastFragData if it
2031 * hasn't been explicitly redeclared with layout(noncoherent)."
2032 */
2033 if (var->data.fb_fetch_output && var->data.memory_coherent &&
2034 !state->EXT_shader_framebuffer_fetch_enable) {
2035 _mesa_glsl_error(&loc, state,
2036 "invalid use of framebuffer fetch output not "
2037 "qualified with layout(noncoherent)");
2038 }
2039
2040 } else {
2041 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2042 this->primary_expression.identifier);
2043
2044 result = ir_rvalue::error_value(ctx);
2045 error_emitted = true;
2046 }
2047 break;
2048 }
2049
2050 case ast_int_constant:
2051 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2052 break;
2053
2054 case ast_uint_constant:
2055 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2056 break;
2057
2058 case ast_float_constant:
2059 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2060 break;
2061
2062 case ast_bool_constant:
2063 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2064 break;
2065
2066 case ast_double_constant:
2067 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2068 break;
2069
2070 case ast_uint64_constant:
2071 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2072 break;
2073
2074 case ast_int64_constant:
2075 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2076 break;
2077
2078 case ast_sequence: {
2079 /* It should not be possible to generate a sequence in the AST without
2080 * any expressions in it.
2081 */
2082 assert(!this->expressions.is_empty());
2083
2084 /* The r-value of a sequence is the last expression in the sequence. If
2085 * the other expressions in the sequence do not have side-effects (and
2086 * therefore add instructions to the instruction list), they get dropped
2087 * on the floor.
2088 */
2089 exec_node *previous_tail = NULL;
2090 YYLTYPE previous_operand_loc = loc;
2091
2092 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2093 /* If one of the operands of comma operator does not generate any
2094 * code, we want to emit a warning. At each pass through the loop
2095 * previous_tail will point to the last instruction in the stream
2096 * *before* processing the previous operand. Naturally,
2097 * instructions->get_tail_raw() will point to the last instruction in
2098 * the stream *after* processing the previous operand. If the two
2099 * pointers match, then the previous operand had no effect.
2100 *
2101 * The warning behavior here differs slightly from GCC. GCC will
2102 * only emit a warning if none of the left-hand operands have an
2103 * effect. However, it will emit a warning for each. I believe that
2104 * there are some cases in C (especially with GCC extensions) where
2105 * it is useful to have an intermediate step in a sequence have no
2106 * effect, but I don't think these cases exist in GLSL. Either way,
2107 * it would be a giant hassle to replicate that behavior.
2108 */
2109 if (previous_tail == instructions->get_tail_raw()) {
2110 _mesa_glsl_warning(&previous_operand_loc, state,
2111 "left-hand operand of comma expression has "
2112 "no effect");
2113 }
2114
2115 /* The tail is directly accessed instead of using the get_tail()
2116 * method for performance reasons. get_tail() has extra code to
2117 * return NULL when the list is empty. We don't care about that
2118 * here, so using get_tail_raw() is fine.
2119 */
2120 previous_tail = instructions->get_tail_raw();
2121 previous_operand_loc = ast->get_location();
2122
2123 result = ast->hir(instructions, state);
2124 }
2125
2126 /* Any errors should have already been emitted in the loop above.
2127 */
2128 error_emitted = true;
2129 break;
2130 }
2131 }
2132 type = NULL; /* use result->type, not type. */
2133 assert(result != NULL || !needs_rvalue);
2134
2135 if (result && result->type->is_error() && !error_emitted)
2136 _mesa_glsl_error(& loc, state, "type mismatch");
2137
2138 return result;
2139 }
2140
2141 bool
2142 ast_expression::has_sequence_subexpression() const
2143 {
2144 switch (this->oper) {
2145 case ast_plus:
2146 case ast_neg:
2147 case ast_bit_not:
2148 case ast_logic_not:
2149 case ast_pre_inc:
2150 case ast_pre_dec:
2151 case ast_post_inc:
2152 case ast_post_dec:
2153 return this->subexpressions[0]->has_sequence_subexpression();
2154
2155 case ast_assign:
2156 case ast_add:
2157 case ast_sub:
2158 case ast_mul:
2159 case ast_div:
2160 case ast_mod:
2161 case ast_lshift:
2162 case ast_rshift:
2163 case ast_less:
2164 case ast_greater:
2165 case ast_lequal:
2166 case ast_gequal:
2167 case ast_nequal:
2168 case ast_equal:
2169 case ast_bit_and:
2170 case ast_bit_xor:
2171 case ast_bit_or:
2172 case ast_logic_and:
2173 case ast_logic_or:
2174 case ast_logic_xor:
2175 case ast_array_index:
2176 case ast_mul_assign:
2177 case ast_div_assign:
2178 case ast_add_assign:
2179 case ast_sub_assign:
2180 case ast_mod_assign:
2181 case ast_ls_assign:
2182 case ast_rs_assign:
2183 case ast_and_assign:
2184 case ast_xor_assign:
2185 case ast_or_assign:
2186 return this->subexpressions[0]->has_sequence_subexpression() ||
2187 this->subexpressions[1]->has_sequence_subexpression();
2188
2189 case ast_conditional:
2190 return this->subexpressions[0]->has_sequence_subexpression() ||
2191 this->subexpressions[1]->has_sequence_subexpression() ||
2192 this->subexpressions[2]->has_sequence_subexpression();
2193
2194 case ast_sequence:
2195 return true;
2196
2197 case ast_field_selection:
2198 case ast_identifier:
2199 case ast_int_constant:
2200 case ast_uint_constant:
2201 case ast_float_constant:
2202 case ast_bool_constant:
2203 case ast_double_constant:
2204 case ast_int64_constant:
2205 case ast_uint64_constant:
2206 return false;
2207
2208 case ast_aggregate:
2209 return false;
2210
2211 case ast_function_call:
2212 unreachable("should be handled by ast_function_expression::hir");
2213
2214 case ast_unsized_array_dim:
2215 unreachable("ast_unsized_array_dim: Should never get here.");
2216 }
2217
2218 return false;
2219 }
2220
2221 ir_rvalue *
2222 ast_expression_statement::hir(exec_list *instructions,
2223 struct _mesa_glsl_parse_state *state)
2224 {
2225 /* It is possible to have expression statements that don't have an
2226 * expression. This is the solitary semicolon:
2227 *
2228 * for (i = 0; i < 5; i++)
2229 * ;
2230 *
2231 * In this case the expression will be NULL. Test for NULL and don't do
2232 * anything in that case.
2233 */
2234 if (expression != NULL)
2235 expression->hir_no_rvalue(instructions, state);
2236
2237 /* Statements do not have r-values.
2238 */
2239 return NULL;
2240 }
2241
2242
2243 ir_rvalue *
2244 ast_compound_statement::hir(exec_list *instructions,
2245 struct _mesa_glsl_parse_state *state)
2246 {
2247 if (new_scope)
2248 state->symbols->push_scope();
2249
2250 foreach_list_typed (ast_node, ast, link, &this->statements)
2251 ast->hir(instructions, state);
2252
2253 if (new_scope)
2254 state->symbols->pop_scope();
2255
2256 /* Compound statements do not have r-values.
2257 */
2258 return NULL;
2259 }
2260
2261 /**
2262 * Evaluate the given exec_node (which should be an ast_node representing
2263 * a single array dimension) and return its integer value.
2264 */
2265 static unsigned
2266 process_array_size(exec_node *node,
2267 struct _mesa_glsl_parse_state *state)
2268 {
2269 void *mem_ctx = state;
2270
2271 exec_list dummy_instructions;
2272
2273 ast_node *array_size = exec_node_data(ast_node, node, link);
2274
2275 /**
2276 * Dimensions other than the outermost dimension can by unsized if they
2277 * are immediately sized by a constructor or initializer.
2278 */
2279 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2280 return 0;
2281
2282 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2283 YYLTYPE loc = array_size->get_location();
2284
2285 if (ir == NULL) {
2286 _mesa_glsl_error(& loc, state,
2287 "array size could not be resolved");
2288 return 0;
2289 }
2290
2291 if (!ir->type->is_integer()) {
2292 _mesa_glsl_error(& loc, state,
2293 "array size must be integer type");
2294 return 0;
2295 }
2296
2297 if (!ir->type->is_scalar()) {
2298 _mesa_glsl_error(& loc, state,
2299 "array size must be scalar type");
2300 return 0;
2301 }
2302
2303 ir_constant *const size = ir->constant_expression_value(mem_ctx);
2304 if (size == NULL ||
2305 (state->is_version(120, 300) &&
2306 array_size->has_sequence_subexpression())) {
2307 _mesa_glsl_error(& loc, state, "array size must be a "
2308 "constant valued expression");
2309 return 0;
2310 }
2311
2312 if (size->value.i[0] <= 0) {
2313 _mesa_glsl_error(& loc, state, "array size must be > 0");
2314 return 0;
2315 }
2316
2317 assert(size->type == ir->type);
2318
2319 /* If the array size is const (and we've verified that
2320 * it is) then no instructions should have been emitted
2321 * when we converted it to HIR. If they were emitted,
2322 * then either the array size isn't const after all, or
2323 * we are emitting unnecessary instructions.
2324 */
2325 assert(dummy_instructions.is_empty());
2326
2327 return size->value.u[0];
2328 }
2329
2330 static const glsl_type *
2331 process_array_type(YYLTYPE *loc, const glsl_type *base,
2332 ast_array_specifier *array_specifier,
2333 struct _mesa_glsl_parse_state *state)
2334 {
2335 const glsl_type *array_type = base;
2336
2337 if (array_specifier != NULL) {
2338 if (base->is_array()) {
2339
2340 /* From page 19 (page 25) of the GLSL 1.20 spec:
2341 *
2342 * "Only one-dimensional arrays may be declared."
2343 */
2344 if (!state->check_arrays_of_arrays_allowed(loc)) {
2345 return glsl_type::error_type;
2346 }
2347 }
2348
2349 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2350 !node->is_head_sentinel(); node = node->prev) {
2351 unsigned array_size = process_array_size(node, state);
2352 array_type = glsl_type::get_array_instance(array_type, array_size);
2353 }
2354 }
2355
2356 return array_type;
2357 }
2358
2359 static bool
2360 precision_qualifier_allowed(const glsl_type *type)
2361 {
2362 /* Precision qualifiers apply to floating point, integer and opaque
2363 * types.
2364 *
2365 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2366 * "Any floating point or any integer declaration can have the type
2367 * preceded by one of these precision qualifiers [...] Literal
2368 * constants do not have precision qualifiers. Neither do Boolean
2369 * variables.
2370 *
2371 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2372 * spec also says:
2373 *
2374 * "Precision qualifiers are added for code portability with OpenGL
2375 * ES, not for functionality. They have the same syntax as in OpenGL
2376 * ES."
2377 *
2378 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2379 *
2380 * "uniform lowp sampler2D sampler;
2381 * highp vec2 coord;
2382 * ...
2383 * lowp vec4 col = texture2D (sampler, coord);
2384 * // texture2D returns lowp"
2385 *
2386 * From this, we infer that GLSL 1.30 (and later) should allow precision
2387 * qualifiers on sampler types just like float and integer types.
2388 */
2389 const glsl_type *const t = type->without_array();
2390
2391 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2392 !t->is_record();
2393 }
2394
2395 const glsl_type *
2396 ast_type_specifier::glsl_type(const char **name,
2397 struct _mesa_glsl_parse_state *state) const
2398 {
2399 const struct glsl_type *type;
2400
2401 if (this->type != NULL)
2402 type = this->type;
2403 else if (structure)
2404 type = structure->type;
2405 else
2406 type = state->symbols->get_type(this->type_name);
2407 *name = this->type_name;
2408
2409 YYLTYPE loc = this->get_location();
2410 type = process_array_type(&loc, type, this->array_specifier, state);
2411
2412 return type;
2413 }
2414
2415 /**
2416 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2417 *
2418 * "The precision statement
2419 *
2420 * precision precision-qualifier type;
2421 *
2422 * can be used to establish a default precision qualifier. The type field can
2423 * be either int or float or any of the sampler types, (...) If type is float,
2424 * the directive applies to non-precision-qualified floating point type
2425 * (scalar, vector, and matrix) declarations. If type is int, the directive
2426 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2427 * and unsigned) declarations."
2428 *
2429 * We use the symbol table to keep the values of the default precisions for
2430 * each 'type' in each scope and we use the 'type' string from the precision
2431 * statement as key in the symbol table. When we want to retrieve the default
2432 * precision associated with a given glsl_type we need to know the type string
2433 * associated with it. This is what this function returns.
2434 */
2435 static const char *
2436 get_type_name_for_precision_qualifier(const glsl_type *type)
2437 {
2438 switch (type->base_type) {
2439 case GLSL_TYPE_FLOAT:
2440 return "float";
2441 case GLSL_TYPE_UINT:
2442 case GLSL_TYPE_INT:
2443 return "int";
2444 case GLSL_TYPE_ATOMIC_UINT:
2445 return "atomic_uint";
2446 case GLSL_TYPE_IMAGE:
2447 /* fallthrough */
2448 case GLSL_TYPE_SAMPLER: {
2449 const unsigned type_idx =
2450 type->sampler_array + 2 * type->sampler_shadow;
2451 const unsigned offset = type->is_sampler() ? 0 : 4;
2452 assert(type_idx < 4);
2453 switch (type->sampled_type) {
2454 case GLSL_TYPE_FLOAT:
2455 switch (type->sampler_dimensionality) {
2456 case GLSL_SAMPLER_DIM_1D: {
2457 assert(type->is_sampler());
2458 static const char *const names[4] = {
2459 "sampler1D", "sampler1DArray",
2460 "sampler1DShadow", "sampler1DArrayShadow"
2461 };
2462 return names[type_idx];
2463 }
2464 case GLSL_SAMPLER_DIM_2D: {
2465 static const char *const names[8] = {
2466 "sampler2D", "sampler2DArray",
2467 "sampler2DShadow", "sampler2DArrayShadow",
2468 "image2D", "image2DArray", NULL, NULL
2469 };
2470 return names[offset + type_idx];
2471 }
2472 case GLSL_SAMPLER_DIM_3D: {
2473 static const char *const names[8] = {
2474 "sampler3D", NULL, NULL, NULL,
2475 "image3D", NULL, NULL, NULL
2476 };
2477 return names[offset + type_idx];
2478 }
2479 case GLSL_SAMPLER_DIM_CUBE: {
2480 static const char *const names[8] = {
2481 "samplerCube", "samplerCubeArray",
2482 "samplerCubeShadow", "samplerCubeArrayShadow",
2483 "imageCube", NULL, NULL, NULL
2484 };
2485 return names[offset + type_idx];
2486 }
2487 case GLSL_SAMPLER_DIM_MS: {
2488 assert(type->is_sampler());
2489 static const char *const names[4] = {
2490 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2491 };
2492 return names[type_idx];
2493 }
2494 case GLSL_SAMPLER_DIM_RECT: {
2495 assert(type->is_sampler());
2496 static const char *const names[4] = {
2497 "samplerRect", NULL, "samplerRectShadow", NULL
2498 };
2499 return names[type_idx];
2500 }
2501 case GLSL_SAMPLER_DIM_BUF: {
2502 static const char *const names[8] = {
2503 "samplerBuffer", NULL, NULL, NULL,
2504 "imageBuffer", NULL, NULL, NULL
2505 };
2506 return names[offset + type_idx];
2507 }
2508 case GLSL_SAMPLER_DIM_EXTERNAL: {
2509 assert(type->is_sampler());
2510 static const char *const names[4] = {
2511 "samplerExternalOES", NULL, NULL, NULL
2512 };
2513 return names[type_idx];
2514 }
2515 default:
2516 unreachable("Unsupported sampler/image dimensionality");
2517 } /* sampler/image float dimensionality */
2518 break;
2519 case GLSL_TYPE_INT:
2520 switch (type->sampler_dimensionality) {
2521 case GLSL_SAMPLER_DIM_1D: {
2522 assert(type->is_sampler());
2523 static const char *const names[4] = {
2524 "isampler1D", "isampler1DArray", NULL, NULL
2525 };
2526 return names[type_idx];
2527 }
2528 case GLSL_SAMPLER_DIM_2D: {
2529 static const char *const names[8] = {
2530 "isampler2D", "isampler2DArray", NULL, NULL,
2531 "iimage2D", "iimage2DArray", NULL, NULL
2532 };
2533 return names[offset + type_idx];
2534 }
2535 case GLSL_SAMPLER_DIM_3D: {
2536 static const char *const names[8] = {
2537 "isampler3D", NULL, NULL, NULL,
2538 "iimage3D", NULL, NULL, NULL
2539 };
2540 return names[offset + type_idx];
2541 }
2542 case GLSL_SAMPLER_DIM_CUBE: {
2543 static const char *const names[8] = {
2544 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2545 "iimageCube", NULL, NULL, NULL
2546 };
2547 return names[offset + type_idx];
2548 }
2549 case GLSL_SAMPLER_DIM_MS: {
2550 assert(type->is_sampler());
2551 static const char *const names[4] = {
2552 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2553 };
2554 return names[type_idx];
2555 }
2556 case GLSL_SAMPLER_DIM_RECT: {
2557 assert(type->is_sampler());
2558 static const char *const names[4] = {
2559 "isamplerRect", NULL, "isamplerRectShadow", NULL
2560 };
2561 return names[type_idx];
2562 }
2563 case GLSL_SAMPLER_DIM_BUF: {
2564 static const char *const names[8] = {
2565 "isamplerBuffer", NULL, NULL, NULL,
2566 "iimageBuffer", NULL, NULL, NULL
2567 };
2568 return names[offset + type_idx];
2569 }
2570 default:
2571 unreachable("Unsupported isampler/iimage dimensionality");
2572 } /* sampler/image int dimensionality */
2573 break;
2574 case GLSL_TYPE_UINT:
2575 switch (type->sampler_dimensionality) {
2576 case GLSL_SAMPLER_DIM_1D: {
2577 assert(type->is_sampler());
2578 static const char *const names[4] = {
2579 "usampler1D", "usampler1DArray", NULL, NULL
2580 };
2581 return names[type_idx];
2582 }
2583 case GLSL_SAMPLER_DIM_2D: {
2584 static const char *const names[8] = {
2585 "usampler2D", "usampler2DArray", NULL, NULL,
2586 "uimage2D", "uimage2DArray", NULL, NULL
2587 };
2588 return names[offset + type_idx];
2589 }
2590 case GLSL_SAMPLER_DIM_3D: {
2591 static const char *const names[8] = {
2592 "usampler3D", NULL, NULL, NULL,
2593 "uimage3D", NULL, NULL, NULL
2594 };
2595 return names[offset + type_idx];
2596 }
2597 case GLSL_SAMPLER_DIM_CUBE: {
2598 static const char *const names[8] = {
2599 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2600 "uimageCube", NULL, NULL, NULL
2601 };
2602 return names[offset + type_idx];
2603 }
2604 case GLSL_SAMPLER_DIM_MS: {
2605 assert(type->is_sampler());
2606 static const char *const names[4] = {
2607 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2608 };
2609 return names[type_idx];
2610 }
2611 case GLSL_SAMPLER_DIM_RECT: {
2612 assert(type->is_sampler());
2613 static const char *const names[4] = {
2614 "usamplerRect", NULL, "usamplerRectShadow", NULL
2615 };
2616 return names[type_idx];
2617 }
2618 case GLSL_SAMPLER_DIM_BUF: {
2619 static const char *const names[8] = {
2620 "usamplerBuffer", NULL, NULL, NULL,
2621 "uimageBuffer", NULL, NULL, NULL
2622 };
2623 return names[offset + type_idx];
2624 }
2625 default:
2626 unreachable("Unsupported usampler/uimage dimensionality");
2627 } /* sampler/image uint dimensionality */
2628 break;
2629 default:
2630 unreachable("Unsupported sampler/image type");
2631 } /* sampler/image type */
2632 break;
2633 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2634 break;
2635 default:
2636 unreachable("Unsupported type");
2637 } /* base type */
2638 }
2639
2640 static unsigned
2641 select_gles_precision(unsigned qual_precision,
2642 const glsl_type *type,
2643 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2644 {
2645 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2646 * In GLES we take the precision from the type qualifier if present,
2647 * otherwise, if the type of the variable allows precision qualifiers at
2648 * all, we look for the default precision qualifier for that type in the
2649 * current scope.
2650 */
2651 assert(state->es_shader);
2652
2653 unsigned precision = GLSL_PRECISION_NONE;
2654 if (qual_precision) {
2655 precision = qual_precision;
2656 } else if (precision_qualifier_allowed(type)) {
2657 const char *type_name =
2658 get_type_name_for_precision_qualifier(type->without_array());
2659 assert(type_name != NULL);
2660
2661 precision =
2662 state->symbols->get_default_precision_qualifier(type_name);
2663 if (precision == ast_precision_none) {
2664 _mesa_glsl_error(loc, state,
2665 "No precision specified in this scope for type `%s'",
2666 type->name);
2667 }
2668 }
2669
2670
2671 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2672 *
2673 * "The default precision of all atomic types is highp. It is an error to
2674 * declare an atomic type with a different precision or to specify the
2675 * default precision for an atomic type to be lowp or mediump."
2676 */
2677 if (type->is_atomic_uint() && precision != ast_precision_high) {
2678 _mesa_glsl_error(loc, state,
2679 "atomic_uint can only have highp precision qualifier");
2680 }
2681
2682 return precision;
2683 }
2684
2685 const glsl_type *
2686 ast_fully_specified_type::glsl_type(const char **name,
2687 struct _mesa_glsl_parse_state *state) const
2688 {
2689 return this->specifier->glsl_type(name, state);
2690 }
2691
2692 /**
2693 * Determine whether a toplevel variable declaration declares a varying. This
2694 * function operates by examining the variable's mode and the shader target,
2695 * so it correctly identifies linkage variables regardless of whether they are
2696 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2697 *
2698 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2699 * this function will produce undefined results.
2700 */
2701 static bool
2702 is_varying_var(ir_variable *var, gl_shader_stage target)
2703 {
2704 switch (target) {
2705 case MESA_SHADER_VERTEX:
2706 return var->data.mode == ir_var_shader_out;
2707 case MESA_SHADER_FRAGMENT:
2708 return var->data.mode == ir_var_shader_in;
2709 default:
2710 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2711 }
2712 }
2713
2714 static bool
2715 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2716 {
2717 if (is_varying_var(var, state->stage))
2718 return true;
2719
2720 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2721 * "Only variables output from a vertex shader can be candidates
2722 * for invariance".
2723 */
2724 if (!state->is_version(130, 100))
2725 return false;
2726
2727 /*
2728 * Later specs remove this language - so allowed invariant
2729 * on fragment shader outputs as well.
2730 */
2731 if (state->stage == MESA_SHADER_FRAGMENT &&
2732 var->data.mode == ir_var_shader_out)
2733 return true;
2734 return false;
2735 }
2736
2737 /**
2738 * Matrix layout qualifiers are only allowed on certain types
2739 */
2740 static void
2741 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2742 YYLTYPE *loc,
2743 const glsl_type *type,
2744 ir_variable *var)
2745 {
2746 if (var && !var->is_in_buffer_block()) {
2747 /* Layout qualifiers may only apply to interface blocks and fields in
2748 * them.
2749 */
2750 _mesa_glsl_error(loc, state,
2751 "uniform block layout qualifiers row_major and "
2752 "column_major may not be applied to variables "
2753 "outside of uniform blocks");
2754 } else if (!type->without_array()->is_matrix()) {
2755 /* The OpenGL ES 3.0 conformance tests did not originally allow
2756 * matrix layout qualifiers on non-matrices. However, the OpenGL
2757 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2758 * amended to specifically allow these layouts on all types. Emit
2759 * a warning so that people know their code may not be portable.
2760 */
2761 _mesa_glsl_warning(loc, state,
2762 "uniform block layout qualifiers row_major and "
2763 "column_major applied to non-matrix types may "
2764 "be rejected by older compilers");
2765 }
2766 }
2767
2768 static bool
2769 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2770 struct _mesa_glsl_parse_state *state,
2771 unsigned xfb_buffer) {
2772 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2773 _mesa_glsl_error(loc, state,
2774 "invalid xfb_buffer specified %d is larger than "
2775 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2776 xfb_buffer,
2777 state->Const.MaxTransformFeedbackBuffers - 1);
2778 return false;
2779 }
2780
2781 return true;
2782 }
2783
2784 /* From the ARB_enhanced_layouts spec:
2785 *
2786 * "Variables and block members qualified with *xfb_offset* can be
2787 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2788 * The offset must be a multiple of the size of the first component of
2789 * the first qualified variable or block member, or a compile-time error
2790 * results. Further, if applied to an aggregate containing a double,
2791 * the offset must also be a multiple of 8, and the space taken in the
2792 * buffer will be a multiple of 8.
2793 */
2794 static bool
2795 validate_xfb_offset_qualifier(YYLTYPE *loc,
2796 struct _mesa_glsl_parse_state *state,
2797 int xfb_offset, const glsl_type *type,
2798 unsigned component_size) {
2799 const glsl_type *t_without_array = type->without_array();
2800
2801 if (xfb_offset != -1 && type->is_unsized_array()) {
2802 _mesa_glsl_error(loc, state,
2803 "xfb_offset can't be used with unsized arrays.");
2804 return false;
2805 }
2806
2807 /* Make sure nested structs don't contain unsized arrays, and validate
2808 * any xfb_offsets on interface members.
2809 */
2810 if (t_without_array->is_record() || t_without_array->is_interface())
2811 for (unsigned int i = 0; i < t_without_array->length; i++) {
2812 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2813
2814 /* When the interface block doesn't have an xfb_offset qualifier then
2815 * we apply the component size rules at the member level.
2816 */
2817 if (xfb_offset == -1)
2818 component_size = member_t->contains_double() ? 8 : 4;
2819
2820 int xfb_offset = t_without_array->fields.structure[i].offset;
2821 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2822 component_size);
2823 }
2824
2825 /* Nested structs or interface block without offset may not have had an
2826 * offset applied yet so return.
2827 */
2828 if (xfb_offset == -1) {
2829 return true;
2830 }
2831
2832 if (xfb_offset % component_size) {
2833 _mesa_glsl_error(loc, state,
2834 "invalid qualifier xfb_offset=%d must be a multiple "
2835 "of the first component size of the first qualified "
2836 "variable or block member. Or double if an aggregate "
2837 "that contains a double (%d).",
2838 xfb_offset, component_size);
2839 return false;
2840 }
2841
2842 return true;
2843 }
2844
2845 static bool
2846 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2847 unsigned stream)
2848 {
2849 if (stream >= state->ctx->Const.MaxVertexStreams) {
2850 _mesa_glsl_error(loc, state,
2851 "invalid stream specified %d is larger than "
2852 "MAX_VERTEX_STREAMS - 1 (%d).",
2853 stream, state->ctx->Const.MaxVertexStreams - 1);
2854 return false;
2855 }
2856
2857 return true;
2858 }
2859
2860 static void
2861 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2862 YYLTYPE *loc,
2863 ir_variable *var,
2864 const glsl_type *type,
2865 const ast_type_qualifier *qual)
2866 {
2867 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2868 _mesa_glsl_error(loc, state,
2869 "the \"binding\" qualifier only applies to uniforms and "
2870 "shader storage buffer objects");
2871 return;
2872 }
2873
2874 unsigned qual_binding;
2875 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2876 &qual_binding)) {
2877 return;
2878 }
2879
2880 const struct gl_context *const ctx = state->ctx;
2881 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2882 unsigned max_index = qual_binding + elements - 1;
2883 const glsl_type *base_type = type->without_array();
2884
2885 if (base_type->is_interface()) {
2886 /* UBOs. From page 60 of the GLSL 4.20 specification:
2887 * "If the binding point for any uniform block instance is less than zero,
2888 * or greater than or equal to the implementation-dependent maximum
2889 * number of uniform buffer bindings, a compilation error will occur.
2890 * When the binding identifier is used with a uniform block instanced as
2891 * an array of size N, all elements of the array from binding through
2892 * binding + N – 1 must be within this range."
2893 *
2894 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2895 */
2896 if (qual->flags.q.uniform &&
2897 max_index >= ctx->Const.MaxUniformBufferBindings) {
2898 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2899 "the maximum number of UBO binding points (%d)",
2900 qual_binding, elements,
2901 ctx->Const.MaxUniformBufferBindings);
2902 return;
2903 }
2904
2905 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2906 * "If the binding point for any uniform or shader storage block instance
2907 * is less than zero, or greater than or equal to the
2908 * implementation-dependent maximum number of uniform buffer bindings, a
2909 * compile-time error will occur. When the binding identifier is used
2910 * with a uniform or shader storage block instanced as an array of size
2911 * N, all elements of the array from binding through binding + N – 1 must
2912 * be within this range."
2913 */
2914 if (qual->flags.q.buffer &&
2915 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2916 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2917 "the maximum number of SSBO binding points (%d)",
2918 qual_binding, elements,
2919 ctx->Const.MaxShaderStorageBufferBindings);
2920 return;
2921 }
2922 } else if (base_type->is_sampler()) {
2923 /* Samplers. From page 63 of the GLSL 4.20 specification:
2924 * "If the binding is less than zero, or greater than or equal to the
2925 * implementation-dependent maximum supported number of units, a
2926 * compilation error will occur. When the binding identifier is used
2927 * with an array of size N, all elements of the array from binding
2928 * through binding + N - 1 must be within this range."
2929 */
2930 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2931
2932 if (max_index >= limit) {
2933 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2934 "exceeds the maximum number of texture image units "
2935 "(%u)", qual_binding, elements, limit);
2936
2937 return;
2938 }
2939 } else if (base_type->contains_atomic()) {
2940 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2941 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2942 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2943 "maximum number of atomic counter buffer bindings "
2944 "(%u)", qual_binding,
2945 ctx->Const.MaxAtomicBufferBindings);
2946
2947 return;
2948 }
2949 } else if ((state->is_version(420, 310) ||
2950 state->ARB_shading_language_420pack_enable) &&
2951 base_type->is_image()) {
2952 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2953 if (max_index >= ctx->Const.MaxImageUnits) {
2954 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2955 "maximum number of image units (%d)", max_index,
2956 ctx->Const.MaxImageUnits);
2957 return;
2958 }
2959
2960 } else {
2961 _mesa_glsl_error(loc, state,
2962 "the \"binding\" qualifier only applies to uniform "
2963 "blocks, storage blocks, opaque variables, or arrays "
2964 "thereof");
2965 return;
2966 }
2967
2968 var->data.explicit_binding = true;
2969 var->data.binding = qual_binding;
2970
2971 return;
2972 }
2973
2974 static void
2975 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2976 YYLTYPE *loc,
2977 const glsl_interp_mode interpolation,
2978 const struct glsl_type *var_type,
2979 ir_variable_mode mode)
2980 {
2981 if (state->stage != MESA_SHADER_FRAGMENT ||
2982 interpolation == INTERP_MODE_FLAT ||
2983 mode != ir_var_shader_in)
2984 return;
2985
2986 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2987 * so must integer vertex outputs.
2988 *
2989 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2990 * "Fragment shader inputs that are signed or unsigned integers or
2991 * integer vectors must be qualified with the interpolation qualifier
2992 * flat."
2993 *
2994 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2995 * "Fragment shader inputs that are, or contain, signed or unsigned
2996 * integers or integer vectors must be qualified with the
2997 * interpolation qualifier flat."
2998 *
2999 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3000 * "Vertex shader outputs that are, or contain, signed or unsigned
3001 * integers or integer vectors must be qualified with the
3002 * interpolation qualifier flat."
3003 *
3004 * Note that prior to GLSL 1.50, this requirement applied to vertex
3005 * outputs rather than fragment inputs. That creates problems in the
3006 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3007 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3008 * apply the restriction to both vertex outputs and fragment inputs.
3009 *
3010 * Note also that the desktop GLSL specs are missing the text "or
3011 * contain"; this is presumably an oversight, since there is no
3012 * reasonable way to interpolate a fragment shader input that contains
3013 * an integer. See Khronos bug #15671.
3014 */
3015 if (state->is_version(130, 300)
3016 && var_type->contains_integer()) {
3017 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3018 "an integer, then it must be qualified with 'flat'");
3019 }
3020
3021 /* Double fragment inputs must be qualified with 'flat'.
3022 *
3023 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3024 * "This extension does not support interpolation of double-precision
3025 * values; doubles used as fragment shader inputs must be qualified as
3026 * "flat"."
3027 *
3028 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3029 * "Fragment shader inputs that are signed or unsigned integers, integer
3030 * vectors, or any double-precision floating-point type must be
3031 * qualified with the interpolation qualifier flat."
3032 *
3033 * Note that the GLSL specs are missing the text "or contain"; this is
3034 * presumably an oversight. See Khronos bug #15671.
3035 *
3036 * The 'double' type does not exist in GLSL ES so far.
3037 */
3038 if (state->has_double()
3039 && var_type->contains_double()) {
3040 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3041 "a double, then it must be qualified with 'flat'");
3042 }
3043
3044 /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3045 *
3046 * From section 4.3.4 of the ARB_bindless_texture spec:
3047 *
3048 * "(modify last paragraph, p. 35, allowing samplers and images as
3049 * fragment shader inputs) ... Fragment inputs can only be signed and
3050 * unsigned integers and integer vectors, floating point scalars,
3051 * floating-point vectors, matrices, sampler and image types, or arrays
3052 * or structures of these. Fragment shader inputs that are signed or
3053 * unsigned integers, integer vectors, or any double-precision floating-
3054 * point type, or any sampler or image type must be qualified with the
3055 * interpolation qualifier "flat"."
3056 */
3057 if (state->has_bindless()
3058 && (var_type->contains_sampler() || var_type->contains_image())) {
3059 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3060 "a bindless sampler (or image), then it must be "
3061 "qualified with 'flat'");
3062 }
3063 }
3064
3065 static void
3066 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3067 YYLTYPE *loc,
3068 const glsl_interp_mode interpolation,
3069 const struct ast_type_qualifier *qual,
3070 const struct glsl_type *var_type,
3071 ir_variable_mode mode)
3072 {
3073 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3074 * not to vertex shader inputs nor fragment shader outputs.
3075 *
3076 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3077 * "Outputs from a vertex shader (out) and inputs to a fragment
3078 * shader (in) can be further qualified with one or more of these
3079 * interpolation qualifiers"
3080 * ...
3081 * "These interpolation qualifiers may only precede the qualifiers in,
3082 * centroid in, out, or centroid out in a declaration. They do not apply
3083 * to the deprecated storage qualifiers varying or centroid
3084 * varying. They also do not apply to inputs into a vertex shader or
3085 * outputs from a fragment shader."
3086 *
3087 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3088 * "Outputs from a shader (out) and inputs to a shader (in) can be
3089 * further qualified with one of these interpolation qualifiers."
3090 * ...
3091 * "These interpolation qualifiers may only precede the qualifiers
3092 * in, centroid in, out, or centroid out in a declaration. They do
3093 * not apply to inputs into a vertex shader or outputs from a
3094 * fragment shader."
3095 */
3096 if (state->is_version(130, 300)
3097 && interpolation != INTERP_MODE_NONE) {
3098 const char *i = interpolation_string(interpolation);
3099 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3100 _mesa_glsl_error(loc, state,
3101 "interpolation qualifier `%s' can only be applied to "
3102 "shader inputs or outputs.", i);
3103
3104 switch (state->stage) {
3105 case MESA_SHADER_VERTEX:
3106 if (mode == ir_var_shader_in) {
3107 _mesa_glsl_error(loc, state,
3108 "interpolation qualifier '%s' cannot be applied to "
3109 "vertex shader inputs", i);
3110 }
3111 break;
3112 case MESA_SHADER_FRAGMENT:
3113 if (mode == ir_var_shader_out) {
3114 _mesa_glsl_error(loc, state,
3115 "interpolation qualifier '%s' cannot be applied to "
3116 "fragment shader outputs", i);
3117 }
3118 break;
3119 default:
3120 break;
3121 }
3122 }
3123
3124 /* Interpolation qualifiers cannot be applied to 'centroid' and
3125 * 'centroid varying'.
3126 *
3127 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3128 * "interpolation qualifiers may only precede the qualifiers in,
3129 * centroid in, out, or centroid out in a declaration. They do not apply
3130 * to the deprecated storage qualifiers varying or centroid varying."
3131 *
3132 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3133 */
3134 if (state->is_version(130, 0)
3135 && interpolation != INTERP_MODE_NONE
3136 && qual->flags.q.varying) {
3137
3138 const char *i = interpolation_string(interpolation);
3139 const char *s;
3140 if (qual->flags.q.centroid)
3141 s = "centroid varying";
3142 else
3143 s = "varying";
3144
3145 _mesa_glsl_error(loc, state,
3146 "qualifier '%s' cannot be applied to the "
3147 "deprecated storage qualifier '%s'", i, s);
3148 }
3149
3150 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3151 var_type, mode);
3152 }
3153
3154 static glsl_interp_mode
3155 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3156 const struct glsl_type *var_type,
3157 ir_variable_mode mode,
3158 struct _mesa_glsl_parse_state *state,
3159 YYLTYPE *loc)
3160 {
3161 glsl_interp_mode interpolation;
3162 if (qual->flags.q.flat)
3163 interpolation = INTERP_MODE_FLAT;
3164 else if (qual->flags.q.noperspective)
3165 interpolation = INTERP_MODE_NOPERSPECTIVE;
3166 else if (qual->flags.q.smooth)
3167 interpolation = INTERP_MODE_SMOOTH;
3168 else
3169 interpolation = INTERP_MODE_NONE;
3170
3171 validate_interpolation_qualifier(state, loc,
3172 interpolation,
3173 qual, var_type, mode);
3174
3175 return interpolation;
3176 }
3177
3178
3179 static void
3180 apply_explicit_location(const struct ast_type_qualifier *qual,
3181 ir_variable *var,
3182 struct _mesa_glsl_parse_state *state,
3183 YYLTYPE *loc)
3184 {
3185 bool fail = false;
3186
3187 unsigned qual_location;
3188 if (!process_qualifier_constant(state, loc, "location", qual->location,
3189 &qual_location)) {
3190 return;
3191 }
3192
3193 /* Checks for GL_ARB_explicit_uniform_location. */
3194 if (qual->flags.q.uniform) {
3195 if (!state->check_explicit_uniform_location_allowed(loc, var))
3196 return;
3197
3198 const struct gl_context *const ctx = state->ctx;
3199 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3200
3201 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3202 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3203 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3204 ctx->Const.MaxUserAssignableUniformLocations);
3205 return;
3206 }
3207
3208 var->data.explicit_location = true;
3209 var->data.location = qual_location;
3210 return;
3211 }
3212
3213 /* Between GL_ARB_explicit_attrib_location an
3214 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3215 * stage can be assigned explicit locations. The checking here associates
3216 * the correct extension with the correct stage's input / output:
3217 *
3218 * input output
3219 * ----- ------
3220 * vertex explicit_loc sso
3221 * tess control sso sso
3222 * tess eval sso sso
3223 * geometry sso sso
3224 * fragment sso explicit_loc
3225 */
3226 switch (state->stage) {
3227 case MESA_SHADER_VERTEX:
3228 if (var->data.mode == ir_var_shader_in) {
3229 if (!state->check_explicit_attrib_location_allowed(loc, var))
3230 return;
3231
3232 break;
3233 }
3234
3235 if (var->data.mode == ir_var_shader_out) {
3236 if (!state->check_separate_shader_objects_allowed(loc, var))
3237 return;
3238
3239 break;
3240 }
3241
3242 fail = true;
3243 break;
3244
3245 case MESA_SHADER_TESS_CTRL:
3246 case MESA_SHADER_TESS_EVAL:
3247 case MESA_SHADER_GEOMETRY:
3248 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3249 if (!state->check_separate_shader_objects_allowed(loc, var))
3250 return;
3251
3252 break;
3253 }
3254
3255 fail = true;
3256 break;
3257
3258 case MESA_SHADER_FRAGMENT:
3259 if (var->data.mode == ir_var_shader_in) {
3260 if (!state->check_separate_shader_objects_allowed(loc, var))
3261 return;
3262
3263 break;
3264 }
3265
3266 if (var->data.mode == ir_var_shader_out) {
3267 if (!state->check_explicit_attrib_location_allowed(loc, var))
3268 return;
3269
3270 break;
3271 }
3272
3273 fail = true;
3274 break;
3275
3276 case MESA_SHADER_COMPUTE:
3277 _mesa_glsl_error(loc, state,
3278 "compute shader variables cannot be given "
3279 "explicit locations");
3280 return;
3281 default:
3282 fail = true;
3283 break;
3284 };
3285
3286 if (fail) {
3287 _mesa_glsl_error(loc, state,
3288 "%s cannot be given an explicit location in %s shader",
3289 mode_string(var),
3290 _mesa_shader_stage_to_string(state->stage));
3291 } else {
3292 var->data.explicit_location = true;
3293
3294 switch (state->stage) {
3295 case MESA_SHADER_VERTEX:
3296 var->data.location = (var->data.mode == ir_var_shader_in)
3297 ? (qual_location + VERT_ATTRIB_GENERIC0)
3298 : (qual_location + VARYING_SLOT_VAR0);
3299 break;
3300
3301 case MESA_SHADER_TESS_CTRL:
3302 case MESA_SHADER_TESS_EVAL:
3303 case MESA_SHADER_GEOMETRY:
3304 if (var->data.patch)
3305 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3306 else
3307 var->data.location = qual_location + VARYING_SLOT_VAR0;
3308 break;
3309
3310 case MESA_SHADER_FRAGMENT:
3311 var->data.location = (var->data.mode == ir_var_shader_out)
3312 ? (qual_location + FRAG_RESULT_DATA0)
3313 : (qual_location + VARYING_SLOT_VAR0);
3314 break;
3315 default:
3316 assert(!"Unexpected shader type");
3317 break;
3318 }
3319
3320 /* Check if index was set for the uniform instead of the function */
3321 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3322 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3323 "used with subroutine functions");
3324 return;
3325 }
3326
3327 unsigned qual_index;
3328 if (qual->flags.q.explicit_index &&
3329 process_qualifier_constant(state, loc, "index", qual->index,
3330 &qual_index)) {
3331 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3332 * Layout Qualifiers):
3333 *
3334 * "It is also a compile-time error if a fragment shader
3335 * sets a layout index to less than 0 or greater than 1."
3336 *
3337 * Older specifications don't mandate a behavior; we take
3338 * this as a clarification and always generate the error.
3339 */
3340 if (qual_index > 1) {
3341 _mesa_glsl_error(loc, state,
3342 "explicit index may only be 0 or 1");
3343 } else {
3344 var->data.explicit_index = true;
3345 var->data.index = qual_index;
3346 }
3347 }
3348 }
3349 }
3350
3351 static bool
3352 validate_storage_for_sampler_image_types(ir_variable *var,
3353 struct _mesa_glsl_parse_state *state,
3354 YYLTYPE *loc)
3355 {
3356 /* From section 4.1.7 of the GLSL 4.40 spec:
3357 *
3358 * "[Opaque types] can only be declared as function
3359 * parameters or uniform-qualified variables."
3360 *
3361 * From section 4.1.7 of the ARB_bindless_texture spec:
3362 *
3363 * "Samplers may be declared as shader inputs and outputs, as uniform
3364 * variables, as temporary variables, and as function parameters."
3365 *
3366 * From section 4.1.X of the ARB_bindless_texture spec:
3367 *
3368 * "Images may be declared as shader inputs and outputs, as uniform
3369 * variables, as temporary variables, and as function parameters."
3370 */
3371 if (state->has_bindless()) {
3372 if (var->data.mode != ir_var_auto &&
3373 var->data.mode != ir_var_uniform &&
3374 var->data.mode != ir_var_shader_in &&
3375 var->data.mode != ir_var_shader_out &&
3376 var->data.mode != ir_var_function_in &&
3377 var->data.mode != ir_var_function_out &&
3378 var->data.mode != ir_var_function_inout) {
3379 _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3380 "only be declared as shader inputs and outputs, as "
3381 "uniform variables, as temporary variables and as "
3382 "function parameters");
3383 return false;
3384 }
3385 } else {
3386 if (var->data.mode != ir_var_uniform &&
3387 var->data.mode != ir_var_function_in) {
3388 _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3389 "declared as function parameters or "
3390 "uniform-qualified global variables");
3391 return false;
3392 }
3393 }
3394 return true;
3395 }
3396
3397 static bool
3398 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3399 YYLTYPE *loc,
3400 const struct ast_type_qualifier *qual,
3401 const glsl_type *type)
3402 {
3403 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3404 *
3405 * "Memory qualifiers are only supported in the declarations of image
3406 * variables, buffer variables, and shader storage blocks; it is an error
3407 * to use such qualifiers in any other declarations.
3408 */
3409 if (!type->is_image() && !qual->flags.q.buffer) {
3410 if (qual->flags.q.read_only ||
3411 qual->flags.q.write_only ||
3412 qual->flags.q.coherent ||
3413 qual->flags.q._volatile ||
3414 qual->flags.q.restrict_flag) {
3415 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3416 "in the declarations of image variables, buffer "
3417 "variables, and shader storage blocks");
3418 return false;
3419 }
3420 }
3421 return true;
3422 }
3423
3424 static bool
3425 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3426 YYLTYPE *loc,
3427 const struct ast_type_qualifier *qual,
3428 const glsl_type *type)
3429 {
3430 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3431 *
3432 * "Format layout qualifiers can be used on image variable declarations
3433 * (those declared with a basic type having “image ” in its keyword)."
3434 */
3435 if (!type->is_image() && qual->flags.q.explicit_image_format) {
3436 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3437 "applied to images");
3438 return false;
3439 }
3440 return true;
3441 }
3442
3443 static void
3444 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3445 ir_variable *var,
3446 struct _mesa_glsl_parse_state *state,
3447 YYLTYPE *loc)
3448 {
3449 const glsl_type *base_type = var->type->without_array();
3450
3451 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3452 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3453 return;
3454
3455 if (!base_type->is_image())
3456 return;
3457
3458 if (!validate_storage_for_sampler_image_types(var, state, loc))
3459 return;
3460
3461 var->data.memory_read_only |= qual->flags.q.read_only;
3462 var->data.memory_write_only |= qual->flags.q.write_only;
3463 var->data.memory_coherent |= qual->flags.q.coherent;
3464 var->data.memory_volatile |= qual->flags.q._volatile;
3465 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3466
3467 if (qual->flags.q.explicit_image_format) {
3468 if (var->data.mode == ir_var_function_in) {
3469 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3470 "image function parameters");
3471 }
3472
3473 if (qual->image_base_type != base_type->sampled_type) {
3474 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3475 "data type of the image");
3476 }
3477
3478 var->data.image_format = qual->image_format;
3479 } else {
3480 if (var->data.mode == ir_var_uniform) {
3481 if (state->es_shader) {
3482 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3483 "format layout qualifier");
3484 } else if (!qual->flags.q.write_only) {
3485 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3486 "`writeonly' must have a format layout qualifier");
3487 }
3488 }
3489 var->data.image_format = GL_NONE;
3490 }
3491
3492 /* From page 70 of the GLSL ES 3.1 specification:
3493 *
3494 * "Except for image variables qualified with the format qualifiers r32f,
3495 * r32i, and r32ui, image variables must specify either memory qualifier
3496 * readonly or the memory qualifier writeonly."
3497 */
3498 if (state->es_shader &&
3499 var->data.image_format != GL_R32F &&
3500 var->data.image_format != GL_R32I &&
3501 var->data.image_format != GL_R32UI &&
3502 !var->data.memory_read_only &&
3503 !var->data.memory_write_only) {
3504 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3505 "r32i or r32ui must be qualified `readonly' or "
3506 "`writeonly'");
3507 }
3508 }
3509
3510 static inline const char*
3511 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3512 {
3513 if (origin_upper_left && pixel_center_integer)
3514 return "origin_upper_left, pixel_center_integer";
3515 else if (origin_upper_left)
3516 return "origin_upper_left";
3517 else if (pixel_center_integer)
3518 return "pixel_center_integer";
3519 else
3520 return " ";
3521 }
3522
3523 static inline bool
3524 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3525 const struct ast_type_qualifier *qual)
3526 {
3527 /* If gl_FragCoord was previously declared, and the qualifiers were
3528 * different in any way, return true.
3529 */
3530 if (state->fs_redeclares_gl_fragcoord) {
3531 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3532 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3533 }
3534
3535 return false;
3536 }
3537
3538 static inline void
3539 validate_array_dimensions(const glsl_type *t,
3540 struct _mesa_glsl_parse_state *state,
3541 YYLTYPE *loc) {
3542 if (t->is_array()) {
3543 t = t->fields.array;
3544 while (t->is_array()) {
3545 if (t->is_unsized_array()) {
3546 _mesa_glsl_error(loc, state,
3547 "only the outermost array dimension can "
3548 "be unsized",
3549 t->name);
3550 break;
3551 }
3552 t = t->fields.array;
3553 }
3554 }
3555 }
3556
3557 static void
3558 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3559 ir_variable *var,
3560 struct _mesa_glsl_parse_state *state,
3561 YYLTYPE *loc)
3562 {
3563 bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3564 qual->flags.q.bindless_image ||
3565 qual->flags.q.bound_sampler ||
3566 qual->flags.q.bound_image;
3567
3568 /* The ARB_bindless_texture spec says:
3569 *
3570 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3571 * spec"
3572 *
3573 * "If these layout qualifiers are applied to other types of default block
3574 * uniforms, or variables with non-uniform storage, a compile-time error
3575 * will be generated."
3576 */
3577 if (has_local_qualifiers && !qual->flags.q.uniform) {
3578 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3579 "can only be applied to default block uniforms or "
3580 "variables with uniform storage");
3581 return;
3582 }
3583
3584 /* The ARB_bindless_texture spec doesn't state anything in this situation,
3585 * but it makes sense to only allow bindless_sampler/bound_sampler for
3586 * sampler types, and respectively bindless_image/bound_image for image
3587 * types.
3588 */
3589 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3590 !var->type->contains_sampler()) {
3591 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3592 "be applied to sampler types");
3593 return;
3594 }
3595
3596 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3597 !var->type->contains_image()) {
3598 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3599 "applied to image types");
3600 return;
3601 }
3602
3603 /* The bindless_sampler/bindless_image (and respectively
3604 * bound_sampler/bound_image) layout qualifiers can be set at global and at
3605 * local scope.
3606 */
3607 if (var->type->contains_sampler() || var->type->contains_image()) {
3608 var->data.bindless = qual->flags.q.bindless_sampler ||
3609 qual->flags.q.bindless_image ||
3610 state->bindless_sampler_specified ||
3611 state->bindless_image_specified;
3612
3613 var->data.bound = qual->flags.q.bound_sampler ||
3614 qual->flags.q.bound_image ||
3615 state->bound_sampler_specified ||
3616 state->bound_image_specified;
3617 }
3618 }
3619
3620 static void
3621 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3622 ir_variable *var,
3623 struct _mesa_glsl_parse_state *state,
3624 YYLTYPE *loc)
3625 {
3626 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3627
3628 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3629 *
3630 * "Within any shader, the first redeclarations of gl_FragCoord
3631 * must appear before any use of gl_FragCoord."
3632 *
3633 * Generate a compiler error if above condition is not met by the
3634 * fragment shader.
3635 */
3636 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3637 if (earlier != NULL &&
3638 earlier->data.used &&
3639 !state->fs_redeclares_gl_fragcoord) {
3640 _mesa_glsl_error(loc, state,
3641 "gl_FragCoord used before its first redeclaration "
3642 "in fragment shader");
3643 }
3644
3645 /* Make sure all gl_FragCoord redeclarations specify the same layout
3646 * qualifiers.
3647 */
3648 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3649 const char *const qual_string =
3650 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3651 qual->flags.q.pixel_center_integer);
3652
3653 const char *const state_string =
3654 get_layout_qualifier_string(state->fs_origin_upper_left,
3655 state->fs_pixel_center_integer);
3656
3657 _mesa_glsl_error(loc, state,
3658 "gl_FragCoord redeclared with different layout "
3659 "qualifiers (%s) and (%s) ",
3660 state_string,
3661 qual_string);
3662 }
3663 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3664 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3665 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3666 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3667 state->fs_redeclares_gl_fragcoord =
3668 state->fs_origin_upper_left ||
3669 state->fs_pixel_center_integer ||
3670 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3671 }
3672
3673 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3674 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3675 const char *const qual_string = (qual->flags.q.origin_upper_left)
3676 ? "origin_upper_left" : "pixel_center_integer";
3677
3678 _mesa_glsl_error(loc, state,
3679 "layout qualifier `%s' can only be applied to "
3680 "fragment shader input `gl_FragCoord'",
3681 qual_string);
3682 }
3683
3684 if (qual->flags.q.explicit_location) {
3685 apply_explicit_location(qual, var, state, loc);
3686
3687 if (qual->flags.q.explicit_component) {
3688 unsigned qual_component;
3689 if (process_qualifier_constant(state, loc, "component",
3690 qual->component, &qual_component)) {
3691 const glsl_type *type = var->type->without_array();
3692 unsigned components = type->component_slots();
3693
3694 if (type->is_matrix() || type->is_record()) {
3695 _mesa_glsl_error(loc, state, "component layout qualifier "
3696 "cannot be applied to a matrix, a structure, "
3697 "a block, or an array containing any of "
3698 "these.");
3699 } else if (qual_component != 0 &&
3700 (qual_component + components - 1) > 3) {
3701 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3702 (qual_component + components - 1));
3703 } else if (qual_component == 1 && type->is_64bit()) {
3704 /* We don't bother checking for 3 as it should be caught by the
3705 * overflow check above.
3706 */
3707 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3708 "component 1 or 3");
3709 } else {
3710 var->data.explicit_component = true;
3711 var->data.location_frac = qual_component;
3712 }
3713 }
3714 }
3715 } else if (qual->flags.q.explicit_index) {
3716 if (!qual->subroutine_list)
3717 _mesa_glsl_error(loc, state,
3718 "explicit index requires explicit location");
3719 } else if (qual->flags.q.explicit_component) {
3720 _mesa_glsl_error(loc, state,
3721 "explicit component requires explicit location");
3722 }
3723
3724 if (qual->flags.q.explicit_binding) {
3725 apply_explicit_binding(state, loc, var, var->type, qual);
3726 }
3727
3728 if (state->stage == MESA_SHADER_GEOMETRY &&
3729 qual->flags.q.out && qual->flags.q.stream) {
3730 unsigned qual_stream;
3731 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3732 &qual_stream) &&
3733 validate_stream_qualifier(loc, state, qual_stream)) {
3734 var->data.stream = qual_stream;
3735 }
3736 }
3737
3738 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3739 unsigned qual_xfb_buffer;
3740 if (process_qualifier_constant(state, loc, "xfb_buffer",
3741 qual->xfb_buffer, &qual_xfb_buffer) &&
3742 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3743 var->data.xfb_buffer = qual_xfb_buffer;
3744 if (qual->flags.q.explicit_xfb_buffer)
3745 var->data.explicit_xfb_buffer = true;
3746 }
3747 }
3748
3749 if (qual->flags.q.explicit_xfb_offset) {
3750 unsigned qual_xfb_offset;
3751 unsigned component_size = var->type->contains_double() ? 8 : 4;
3752
3753 if (process_qualifier_constant(state, loc, "xfb_offset",
3754 qual->offset, &qual_xfb_offset) &&
3755 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3756 var->type, component_size)) {
3757 var->data.offset = qual_xfb_offset;
3758 var->data.explicit_xfb_offset = true;
3759 }
3760 }
3761
3762 if (qual->flags.q.explicit_xfb_stride) {
3763 unsigned qual_xfb_stride;
3764 if (process_qualifier_constant(state, loc, "xfb_stride",
3765 qual->xfb_stride, &qual_xfb_stride)) {
3766 var->data.xfb_stride = qual_xfb_stride;
3767 var->data.explicit_xfb_stride = true;
3768 }
3769 }
3770
3771 if (var->type->contains_atomic()) {
3772 if (var->data.mode == ir_var_uniform) {
3773 if (var->data.explicit_binding) {
3774 unsigned *offset =
3775 &state->atomic_counter_offsets[var->data.binding];
3776
3777 if (*offset % ATOMIC_COUNTER_SIZE)
3778 _mesa_glsl_error(loc, state,
3779 "misaligned atomic counter offset");
3780
3781 var->data.offset = *offset;
3782 *offset += var->type->atomic_size();
3783
3784 } else {
3785 _mesa_glsl_error(loc, state,
3786 "atomic counters require explicit binding point");
3787 }
3788 } else if (var->data.mode != ir_var_function_in) {
3789 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3790 "function parameters or uniform-qualified "
3791 "global variables");
3792 }
3793 }
3794
3795 if (var->type->contains_sampler() &&
3796 !validate_storage_for_sampler_image_types(var, state, loc))
3797 return;
3798
3799 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3800 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3801 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3802 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3803 * These extensions and all following extensions that add the 'layout'
3804 * keyword have been modified to require the use of 'in' or 'out'.
3805 *
3806 * The following extension do not allow the deprecated keywords:
3807 *
3808 * GL_AMD_conservative_depth
3809 * GL_ARB_conservative_depth
3810 * GL_ARB_gpu_shader5
3811 * GL_ARB_separate_shader_objects
3812 * GL_ARB_tessellation_shader
3813 * GL_ARB_transform_feedback3
3814 * GL_ARB_uniform_buffer_object
3815 *
3816 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3817 * allow layout with the deprecated keywords.
3818 */
3819 const bool relaxed_layout_qualifier_checking =
3820 state->ARB_fragment_coord_conventions_enable;
3821
3822 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3823 || qual->flags.q.varying;
3824 if (qual->has_layout() && uses_deprecated_qualifier) {
3825 if (relaxed_layout_qualifier_checking) {
3826 _mesa_glsl_warning(loc, state,
3827 "`layout' qualifier may not be used with "
3828 "`attribute' or `varying'");
3829 } else {
3830 _mesa_glsl_error(loc, state,
3831 "`layout' qualifier may not be used with "
3832 "`attribute' or `varying'");
3833 }
3834 }
3835
3836 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3837 * AMD_conservative_depth.
3838 */
3839 if (qual->flags.q.depth_type
3840 && !state->is_version(420, 0)
3841 && !state->AMD_conservative_depth_enable
3842 && !state->ARB_conservative_depth_enable) {
3843 _mesa_glsl_error(loc, state,
3844 "extension GL_AMD_conservative_depth or "
3845 "GL_ARB_conservative_depth must be enabled "
3846 "to use depth layout qualifiers");
3847 } else if (qual->flags.q.depth_type
3848 && strcmp(var->name, "gl_FragDepth") != 0) {
3849 _mesa_glsl_error(loc, state,
3850 "depth layout qualifiers can be applied only to "
3851 "gl_FragDepth");
3852 }
3853
3854 switch (qual->depth_type) {
3855 case ast_depth_any:
3856 var->data.depth_layout = ir_depth_layout_any;
3857 break;
3858 case ast_depth_greater:
3859 var->data.depth_layout = ir_depth_layout_greater;
3860 break;
3861 case ast_depth_less:
3862 var->data.depth_layout = ir_depth_layout_less;
3863 break;
3864 case ast_depth_unchanged:
3865 var->data.depth_layout = ir_depth_layout_unchanged;
3866 break;
3867 default:
3868 var->data.depth_layout = ir_depth_layout_none;
3869 break;
3870 }
3871
3872 if (qual->flags.q.std140 ||
3873 qual->flags.q.std430 ||
3874 qual->flags.q.packed ||
3875 qual->flags.q.shared) {
3876 _mesa_glsl_error(loc, state,
3877 "uniform and shader storage block layout qualifiers "
3878 "std140, std430, packed, and shared can only be "
3879 "applied to uniform or shader storage blocks, not "
3880 "members");
3881 }
3882
3883 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3884 validate_matrix_layout_for_type(state, loc, var->type, var);
3885 }
3886
3887 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3888 * Inputs):
3889 *
3890 * "Fragment shaders also allow the following layout qualifier on in only
3891 * (not with variable declarations)
3892 * layout-qualifier-id
3893 * early_fragment_tests
3894 * [...]"
3895 */
3896 if (qual->flags.q.early_fragment_tests) {
3897 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3898 "valid in fragment shader input layout declaration.");
3899 }
3900
3901 if (qual->flags.q.inner_coverage) {
3902 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3903 "valid in fragment shader input layout declaration.");
3904 }
3905
3906 if (qual->flags.q.post_depth_coverage) {
3907 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3908 "valid in fragment shader input layout declaration.");
3909 }
3910
3911 if (state->has_bindless())
3912 apply_bindless_qualifier_to_variable(qual, var, state, loc);
3913
3914 if (qual->flags.q.pixel_interlock_ordered ||
3915 qual->flags.q.pixel_interlock_unordered ||
3916 qual->flags.q.sample_interlock_ordered ||
3917 qual->flags.q.sample_interlock_unordered) {
3918 _mesa_glsl_error(loc, state, "interlock layout qualifiers: "
3919 "pixel_interlock_ordered, pixel_interlock_unordered, "
3920 "sample_interlock_ordered and sample_interlock_unordered, "
3921 "only valid in fragment shader input layout declaration.");
3922 }
3923 }
3924
3925 static void
3926 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3927 ir_variable *var,
3928 struct _mesa_glsl_parse_state *state,
3929 YYLTYPE *loc,
3930 bool is_parameter)
3931 {
3932 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3933
3934 if (qual->flags.q.invariant) {
3935 if (var->data.used) {
3936 _mesa_glsl_error(loc, state,
3937 "variable `%s' may not be redeclared "
3938 "`invariant' after being used",
3939 var->name);
3940 } else {
3941 var->data.invariant = 1;
3942 }
3943 }
3944
3945 if (qual->flags.q.precise) {
3946 if (var->data.used) {
3947 _mesa_glsl_error(loc, state,
3948 "variable `%s' may not be redeclared "
3949 "`precise' after being used",
3950 var->name);
3951 } else {
3952 var->data.precise = 1;
3953 }
3954 }
3955
3956 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3957 _mesa_glsl_error(loc, state,
3958 "`subroutine' may only be applied to uniforms, "
3959 "subroutine type declarations, or function definitions");
3960 }
3961
3962 if (qual->flags.q.constant || qual->flags.q.attribute
3963 || qual->flags.q.uniform
3964 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3965 var->data.read_only = 1;
3966
3967 if (qual->flags.q.centroid)
3968 var->data.centroid = 1;
3969
3970 if (qual->flags.q.sample)
3971 var->data.sample = 1;
3972
3973 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3974 if (state->es_shader) {
3975 var->data.precision =
3976 select_gles_precision(qual->precision, var->type, state, loc);
3977 }
3978
3979 if (qual->flags.q.patch)
3980 var->data.patch = 1;
3981
3982 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3983 var->type = glsl_type::error_type;
3984 _mesa_glsl_error(loc, state,
3985 "`attribute' variables may not be declared in the "
3986 "%s shader",
3987 _mesa_shader_stage_to_string(state->stage));
3988 }
3989
3990 /* Disallow layout qualifiers which may only appear on layout declarations. */
3991 if (qual->flags.q.prim_type) {
3992 _mesa_glsl_error(loc, state,
3993 "Primitive type may only be specified on GS input or output "
3994 "layout declaration, not on variables.");
3995 }
3996
3997 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3998 *
3999 * "However, the const qualifier cannot be used with out or inout."
4000 *
4001 * The same section of the GLSL 4.40 spec further clarifies this saying:
4002 *
4003 * "The const qualifier cannot be used with out or inout, or a
4004 * compile-time error results."
4005 */
4006 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
4007 _mesa_glsl_error(loc, state,
4008 "`const' may not be applied to `out' or `inout' "
4009 "function parameters");
4010 }
4011
4012 /* If there is no qualifier that changes the mode of the variable, leave
4013 * the setting alone.
4014 */
4015 assert(var->data.mode != ir_var_temporary);
4016 if (qual->flags.q.in && qual->flags.q.out)
4017 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
4018 else if (qual->flags.q.in)
4019 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
4020 else if (qual->flags.q.attribute
4021 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4022 var->data.mode = ir_var_shader_in;
4023 else if (qual->flags.q.out)
4024 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4025 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4026 var->data.mode = ir_var_shader_out;
4027 else if (qual->flags.q.uniform)
4028 var->data.mode = ir_var_uniform;
4029 else if (qual->flags.q.buffer)
4030 var->data.mode = ir_var_shader_storage;
4031 else if (qual->flags.q.shared_storage)
4032 var->data.mode = ir_var_shader_shared;
4033
4034 if (!is_parameter && state->has_framebuffer_fetch() &&
4035 state->stage == MESA_SHADER_FRAGMENT) {
4036 if (state->is_version(130, 300))
4037 var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4038 else
4039 var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4040 }
4041
4042 if (var->data.fb_fetch_output) {
4043 var->data.assigned = true;
4044 var->data.memory_coherent = !qual->flags.q.non_coherent;
4045
4046 /* From the EXT_shader_framebuffer_fetch spec:
4047 *
4048 * "It is an error to declare an inout fragment output not qualified
4049 * with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4050 * extension hasn't been enabled."
4051 */
4052 if (var->data.memory_coherent &&
4053 !state->EXT_shader_framebuffer_fetch_enable)
4054 _mesa_glsl_error(loc, state,
4055 "invalid declaration of framebuffer fetch output not "
4056 "qualified with layout(noncoherent)");
4057
4058 } else {
4059 /* From the EXT_shader_framebuffer_fetch spec:
4060 *
4061 * "Fragment outputs declared inout may specify the following layout
4062 * qualifier: [...] noncoherent"
4063 */
4064 if (qual->flags.q.non_coherent)
4065 _mesa_glsl_error(loc, state,
4066 "invalid layout(noncoherent) qualifier not part of "
4067 "framebuffer fetch output declaration");
4068 }
4069
4070 if (!is_parameter && is_varying_var(var, state->stage)) {
4071 /* User-defined ins/outs are not permitted in compute shaders. */
4072 if (state->stage == MESA_SHADER_COMPUTE) {
4073 _mesa_glsl_error(loc, state,
4074 "user-defined input and output variables are not "
4075 "permitted in compute shaders");
4076 }
4077
4078 /* This variable is being used to link data between shader stages (in
4079 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
4080 * that is allowed for such purposes.
4081 *
4082 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4083 *
4084 * "The varying qualifier can be used only with the data types
4085 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4086 * these."
4087 *
4088 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
4089 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4090 *
4091 * "Fragment inputs can only be signed and unsigned integers and
4092 * integer vectors, float, floating-point vectors, matrices, or
4093 * arrays of these. Structures cannot be input.
4094 *
4095 * Similar text exists in the section on vertex shader outputs.
4096 *
4097 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4098 * 3.00 spec allows structs as well. Varying structs are also allowed
4099 * in GLSL 1.50.
4100 *
4101 * From section 4.3.4 of the ARB_bindless_texture spec:
4102 *
4103 * "(modify third paragraph of the section to allow sampler and image
4104 * types) ... Vertex shader inputs can only be float,
4105 * single-precision floating-point scalars, single-precision
4106 * floating-point vectors, matrices, signed and unsigned integers
4107 * and integer vectors, sampler and image types."
4108 *
4109 * From section 4.3.6 of the ARB_bindless_texture spec:
4110 *
4111 * "Output variables can only be floating-point scalars,
4112 * floating-point vectors, matrices, signed or unsigned integers or
4113 * integer vectors, sampler or image types, or arrays or structures
4114 * of any these."
4115 */
4116 switch (var->type->without_array()->base_type) {
4117 case GLSL_TYPE_FLOAT:
4118 /* Ok in all GLSL versions */
4119 break;
4120 case GLSL_TYPE_UINT:
4121 case GLSL_TYPE_INT:
4122 if (state->is_version(130, 300))
4123 break;
4124 _mesa_glsl_error(loc, state,
4125 "varying variables must be of base type float in %s",
4126 state->get_version_string());
4127 break;
4128 case GLSL_TYPE_STRUCT:
4129 if (state->is_version(150, 300))
4130 break;
4131 _mesa_glsl_error(loc, state,
4132 "varying variables may not be of type struct");
4133 break;
4134 case GLSL_TYPE_DOUBLE:
4135 case GLSL_TYPE_UINT64:
4136 case GLSL_TYPE_INT64:
4137 break;
4138 case GLSL_TYPE_SAMPLER:
4139 case GLSL_TYPE_IMAGE:
4140 if (state->has_bindless())
4141 break;
4142 /* fallthrough */
4143 default:
4144 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4145 break;
4146 }
4147 }
4148
4149 if (state->all_invariant && var->data.mode == ir_var_shader_out)
4150 var->data.invariant = true;
4151
4152 var->data.interpolation =
4153 interpret_interpolation_qualifier(qual, var->type,
4154 (ir_variable_mode) var->data.mode,
4155 state, loc);
4156
4157 /* Does the declaration use the deprecated 'attribute' or 'varying'
4158 * keywords?
4159 */
4160 const bool uses_deprecated_qualifier = qual->flags.q.attribute
4161 || qual->flags.q.varying;
4162
4163
4164 /* Validate auxiliary storage qualifiers */
4165
4166 /* From section 4.3.4 of the GLSL 1.30 spec:
4167 * "It is an error to use centroid in in a vertex shader."
4168 *
4169 * From section 4.3.4 of the GLSL ES 3.00 spec:
4170 * "It is an error to use centroid in or interpolation qualifiers in
4171 * a vertex shader input."
4172 */
4173
4174 /* Section 4.3.6 of the GLSL 1.30 specification states:
4175 * "It is an error to use centroid out in a fragment shader."
4176 *
4177 * The GL_ARB_shading_language_420pack extension specification states:
4178 * "It is an error to use auxiliary storage qualifiers or interpolation
4179 * qualifiers on an output in a fragment shader."
4180 */
4181 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4182 _mesa_glsl_error(loc, state,
4183 "sample qualifier may only be used on `in` or `out` "
4184 "variables between shader stages");
4185 }
4186 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4187 _mesa_glsl_error(loc, state,
4188 "centroid qualifier may only be used with `in', "
4189 "`out' or `varying' variables between shader stages");
4190 }
4191
4192 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4193 _mesa_glsl_error(loc, state,
4194 "the shared storage qualifiers can only be used with "
4195 "compute shaders");
4196 }
4197
4198 apply_image_qualifier_to_variable(qual, var, state, loc);
4199 }
4200
4201 /**
4202 * Get the variable that is being redeclared by this declaration or if it
4203 * does not exist, the current declared variable.
4204 *
4205 * Semantic checks to verify the validity of the redeclaration are also
4206 * performed. If semantic checks fail, compilation error will be emitted via
4207 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4208 *
4209 * \returns
4210 * A pointer to an existing variable in the current scope if the declaration
4211 * is a redeclaration, current variable otherwise. \c is_declared boolean
4212 * will return \c true if the declaration is a redeclaration, \c false
4213 * otherwise.
4214 */
4215 static ir_variable *
4216 get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4217 struct _mesa_glsl_parse_state *state,
4218 bool allow_all_redeclarations,
4219 bool *is_redeclaration)
4220 {
4221 ir_variable *var = *var_ptr;
4222
4223 /* Check if this declaration is actually a re-declaration, either to
4224 * resize an array or add qualifiers to an existing variable.
4225 *
4226 * This is allowed for variables in the current scope, or when at
4227 * global scope (for built-ins in the implicit outer scope).
4228 */
4229 ir_variable *earlier = state->symbols->get_variable(var->name);
4230 if (earlier == NULL ||
4231 (state->current_function != NULL &&
4232 !state->symbols->name_declared_this_scope(var->name))) {
4233 *is_redeclaration = false;
4234 return var;
4235 }
4236
4237 *is_redeclaration = true;
4238
4239 if (earlier->data.how_declared == ir_var_declared_implicitly) {
4240 /* Verify that the redeclaration of a built-in does not change the
4241 * storage qualifier. There are a couple special cases.
4242 *
4243 * 1. Some built-in variables that are defined as 'in' in the
4244 * specification are implemented as system values. Allow
4245 * ir_var_system_value -> ir_var_shader_in.
4246 *
4247 * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the
4248 * specification requires that redeclarations omit any qualifier.
4249 * Allow ir_var_shader_out -> ir_var_auto for this one variable.
4250 */
4251 if (earlier->data.mode != var->data.mode &&
4252 !(earlier->data.mode == ir_var_system_value &&
4253 var->data.mode == ir_var_shader_in) &&
4254 !(strcmp(var->name, "gl_LastFragData") == 0 &&
4255 var->data.mode == ir_var_auto)) {
4256 _mesa_glsl_error(&loc, state,
4257 "redeclaration cannot change qualification of `%s'",
4258 var->name);
4259 }
4260 }
4261
4262 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4263 *
4264 * "It is legal to declare an array without a size and then
4265 * later re-declare the same name as an array of the same
4266 * type and specify a size."
4267 */
4268 if (earlier->type->is_unsized_array() && var->type->is_array()
4269 && (var->type->fields.array == earlier->type->fields.array)) {
4270 const int size = var->type->array_size();
4271 check_builtin_array_max_size(var->name, size, loc, state);
4272 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4273 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4274 "previous access",
4275 earlier->data.max_array_access);
4276 }
4277
4278 earlier->type = var->type;
4279 delete var;
4280 var = NULL;
4281 *var_ptr = NULL;
4282 } else if (earlier->type != var->type) {
4283 _mesa_glsl_error(&loc, state,
4284 "redeclaration of `%s' has incorrect type",
4285 var->name);
4286 } else if ((state->ARB_fragment_coord_conventions_enable ||
4287 state->is_version(150, 0))
4288 && strcmp(var->name, "gl_FragCoord") == 0) {
4289 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4290 * qualifiers.
4291 *
4292 * We don't really need to do anything here, just allow the
4293 * redeclaration. Any error on the gl_FragCoord is handled on the ast
4294 * level at apply_layout_qualifier_to_variable using the
4295 * ast_type_qualifier and _mesa_glsl_parse_state, or later at
4296 * linker.cpp.
4297 */
4298 /* According to section 4.3.7 of the GLSL 1.30 spec,
4299 * the following built-in varaibles can be redeclared with an
4300 * interpolation qualifier:
4301 * * gl_FrontColor
4302 * * gl_BackColor
4303 * * gl_FrontSecondaryColor
4304 * * gl_BackSecondaryColor
4305 * * gl_Color
4306 * * gl_SecondaryColor
4307 */
4308 } else if (state->is_version(130, 0)
4309 && (strcmp(var->name, "gl_FrontColor") == 0
4310 || strcmp(var->name, "gl_BackColor") == 0
4311 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4312 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4313 || strcmp(var->name, "gl_Color") == 0
4314 || strcmp(var->name, "gl_SecondaryColor") == 0)) {
4315 earlier->data.interpolation = var->data.interpolation;
4316
4317 /* Layout qualifiers for gl_FragDepth. */
4318 } else if ((state->is_version(420, 0) ||
4319 state->AMD_conservative_depth_enable ||
4320 state->ARB_conservative_depth_enable)
4321 && strcmp(var->name, "gl_FragDepth") == 0) {
4322
4323 /** From the AMD_conservative_depth spec:
4324 * Within any shader, the first redeclarations of gl_FragDepth
4325 * must appear before any use of gl_FragDepth.
4326 */
4327 if (earlier->data.used) {
4328 _mesa_glsl_error(&loc, state,
4329 "the first redeclaration of gl_FragDepth "
4330 "must appear before any use of gl_FragDepth");
4331 }
4332
4333 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4334 if (earlier->data.depth_layout != ir_depth_layout_none
4335 && earlier->data.depth_layout != var->data.depth_layout) {
4336 _mesa_glsl_error(&loc, state,
4337 "gl_FragDepth: depth layout is declared here "
4338 "as '%s, but it was previously declared as "
4339 "'%s'",
4340 depth_layout_string(var->data.depth_layout),
4341 depth_layout_string(earlier->data.depth_layout));
4342 }
4343
4344 earlier->data.depth_layout = var->data.depth_layout;
4345
4346 } else if (state->has_framebuffer_fetch() &&
4347 strcmp(var->name, "gl_LastFragData") == 0 &&
4348 var->data.mode == ir_var_auto) {
4349 /* According to the EXT_shader_framebuffer_fetch spec:
4350 *
4351 * "By default, gl_LastFragData is declared with the mediump precision
4352 * qualifier. This can be changed by redeclaring the corresponding
4353 * variables with the desired precision qualifier."
4354 *
4355 * "Fragment shaders may specify the following layout qualifier only for
4356 * redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4357 */
4358 earlier->data.precision = var->data.precision;
4359 earlier->data.memory_coherent = var->data.memory_coherent;
4360
4361 } else if ((earlier->data.how_declared == ir_var_declared_implicitly &&
4362 state->allow_builtin_variable_redeclaration) ||
4363 allow_all_redeclarations) {
4364 /* Allow verbatim redeclarations of built-in variables. Not explicitly
4365 * valid, but some applications do it.
4366 */
4367 } else {
4368 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4369 }
4370
4371 return earlier;
4372 }
4373
4374 /**
4375 * Generate the IR for an initializer in a variable declaration
4376 */
4377 static ir_rvalue *
4378 process_initializer(ir_variable *var, ast_declaration *decl,
4379 ast_fully_specified_type *type,
4380 exec_list *initializer_instructions,
4381 struct _mesa_glsl_parse_state *state)
4382 {
4383 void *mem_ctx = state;
4384 ir_rvalue *result = NULL;
4385
4386 YYLTYPE initializer_loc = decl->initializer->get_location();
4387
4388 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4389 *
4390 * "All uniform variables are read-only and are initialized either
4391 * directly by an application via API commands, or indirectly by
4392 * OpenGL."
4393 */
4394 if (var->data.mode == ir_var_uniform) {
4395 state->check_version(120, 0, &initializer_loc,
4396 "cannot initialize uniform %s",
4397 var->name);
4398 }
4399
4400 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4401 *
4402 * "Buffer variables cannot have initializers."
4403 */
4404 if (var->data.mode == ir_var_shader_storage) {
4405 _mesa_glsl_error(&initializer_loc, state,
4406 "cannot initialize buffer variable %s",
4407 var->name);
4408 }
4409
4410 /* From section 4.1.7 of the GLSL 4.40 spec:
4411 *
4412 * "Opaque variables [...] are initialized only through the
4413 * OpenGL API; they cannot be declared with an initializer in a
4414 * shader."
4415 *
4416 * From section 4.1.7 of the ARB_bindless_texture spec:
4417 *
4418 * "Samplers may be declared as shader inputs and outputs, as uniform
4419 * variables, as temporary variables, and as function parameters."
4420 *
4421 * From section 4.1.X of the ARB_bindless_texture spec:
4422 *
4423 * "Images may be declared as shader inputs and outputs, as uniform
4424 * variables, as temporary variables, and as function parameters."
4425 */
4426 if (var->type->contains_atomic() ||
4427 (!state->has_bindless() && var->type->contains_opaque())) {
4428 _mesa_glsl_error(&initializer_loc, state,
4429 "cannot initialize %s variable %s",
4430 var->name, state->has_bindless() ? "atomic" : "opaque");
4431 }
4432
4433 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4434 _mesa_glsl_error(&initializer_loc, state,
4435 "cannot initialize %s shader input / %s %s",
4436 _mesa_shader_stage_to_string(state->stage),
4437 (state->stage == MESA_SHADER_VERTEX)
4438 ? "attribute" : "varying",
4439 var->name);
4440 }
4441
4442 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4443 _mesa_glsl_error(&initializer_loc, state,
4444 "cannot initialize %s shader output %s",
4445 _mesa_shader_stage_to_string(state->stage),
4446 var->name);
4447 }
4448
4449 /* If the initializer is an ast_aggregate_initializer, recursively store
4450 * type information from the LHS into it, so that its hir() function can do
4451 * type checking.
4452 */
4453 if (decl->initializer->oper == ast_aggregate)
4454 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4455
4456 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4457 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4458
4459 /* Calculate the constant value if this is a const or uniform
4460 * declaration.
4461 *
4462 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4463 *
4464 * "Declarations of globals without a storage qualifier, or with
4465 * just the const qualifier, may include initializers, in which case
4466 * they will be initialized before the first line of main() is
4467 * executed. Such initializers must be a constant expression."
4468 *
4469 * The same section of the GLSL ES 3.00.4 spec has similar language.
4470 */
4471 if (type->qualifier.flags.q.constant
4472 || type->qualifier.flags.q.uniform
4473 || (state->es_shader && state->current_function == NULL)) {
4474 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4475 lhs, rhs, true);
4476 if (new_rhs != NULL) {
4477 rhs = new_rhs;
4478
4479 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4480 * says:
4481 *
4482 * "A constant expression is one of
4483 *
4484 * ...
4485 *
4486 * - an expression formed by an operator on operands that are
4487 * all constant expressions, including getting an element of
4488 * a constant array, or a field of a constant structure, or
4489 * components of a constant vector. However, the sequence
4490 * operator ( , ) and the assignment operators ( =, +=, ...)
4491 * are not included in the operators that can create a
4492 * constant expression."
4493 *
4494 * Section 12.43 (Sequence operator and constant expressions) says:
4495 *
4496 * "Should the following construct be allowed?
4497 *
4498 * float a[2,3];
4499 *
4500 * The expression within the brackets uses the sequence operator
4501 * (',') and returns the integer 3 so the construct is declaring
4502 * a single-dimensional array of size 3. In some languages, the
4503 * construct declares a two-dimensional array. It would be
4504 * preferable to make this construct illegal to avoid confusion.
4505 *
4506 * One possibility is to change the definition of the sequence
4507 * operator so that it does not return a constant-expression and
4508 * hence cannot be used to declare an array size.
4509 *
4510 * RESOLUTION: The result of a sequence operator is not a
4511 * constant-expression."
4512 *
4513 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4514 * contains language almost identical to the section 4.3.3 in the
4515 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4516 * versions.
4517 */
4518 ir_constant *constant_value =
4519 rhs->constant_expression_value(mem_ctx);
4520
4521 if (!constant_value ||
4522 (state->is_version(430, 300) &&
4523 decl->initializer->has_sequence_subexpression())) {
4524 const char *const variable_mode =
4525 (type->qualifier.flags.q.constant)
4526 ? "const"
4527 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4528
4529 /* If ARB_shading_language_420pack is enabled, initializers of
4530 * const-qualified local variables do not have to be constant
4531 * expressions. Const-qualified global variables must still be
4532 * initialized with constant expressions.
4533 */
4534 if (!state->has_420pack()
4535 || state->current_function == NULL) {
4536 _mesa_glsl_error(& initializer_loc, state,
4537 "initializer of %s variable `%s' must be a "
4538 "constant expression",
4539 variable_mode,
4540 decl->identifier);
4541 if (var->type->is_numeric()) {
4542 /* Reduce cascading errors. */
4543 var->constant_value = type->qualifier.flags.q.constant
4544 ? ir_constant::zero(state, var->type) : NULL;
4545 }
4546 }
4547 } else {
4548 rhs = constant_value;
4549 var->constant_value = type->qualifier.flags.q.constant
4550 ? constant_value : NULL;
4551 }
4552 } else {
4553 if (var->type->is_numeric()) {
4554 /* Reduce cascading errors. */
4555 rhs = var->constant_value = type->qualifier.flags.q.constant
4556 ? ir_constant::zero(state, var->type) : NULL;
4557 }
4558 }
4559 }
4560
4561 if (rhs && !rhs->type->is_error()) {
4562 bool temp = var->data.read_only;
4563 if (type->qualifier.flags.q.constant)
4564 var->data.read_only = false;
4565
4566 /* Never emit code to initialize a uniform.
4567 */
4568 const glsl_type *initializer_type;
4569 bool error_emitted = false;
4570 if (!type->qualifier.flags.q.uniform) {
4571 error_emitted =
4572 do_assignment(initializer_instructions, state,
4573 NULL, lhs, rhs,
4574 &result, true, true,
4575 type->get_location());
4576 initializer_type = result->type;
4577 } else
4578 initializer_type = rhs->type;
4579
4580 if (!error_emitted) {
4581 var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4582 var->data.has_initializer = true;
4583
4584 /* If the declared variable is an unsized array, it must inherrit
4585 * its full type from the initializer. A declaration such as
4586 *
4587 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4588 *
4589 * becomes
4590 *
4591 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4592 *
4593 * The assignment generated in the if-statement (below) will also
4594 * automatically handle this case for non-uniforms.
4595 *
4596 * If the declared variable is not an array, the types must
4597 * already match exactly. As a result, the type assignment
4598 * here can be done unconditionally. For non-uniforms the call
4599 * to do_assignment can change the type of the initializer (via
4600 * the implicit conversion rules). For uniforms the initializer
4601 * must be a constant expression, and the type of that expression
4602 * was validated above.
4603 */
4604 var->type = initializer_type;
4605 }
4606
4607 var->data.read_only = temp;
4608 }
4609
4610 return result;
4611 }
4612
4613 static void
4614 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4615 YYLTYPE loc, ir_variable *var,
4616 unsigned num_vertices,
4617 unsigned *size,
4618 const char *var_category)
4619 {
4620 if (var->type->is_unsized_array()) {
4621 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4622 *
4623 * All geometry shader input unsized array declarations will be
4624 * sized by an earlier input layout qualifier, when present, as per
4625 * the following table.
4626 *
4627 * Followed by a table mapping each allowed input layout qualifier to
4628 * the corresponding input length.
4629 *
4630 * Similarly for tessellation control shader outputs.
4631 */
4632 if (num_vertices != 0)
4633 var->type = glsl_type::get_array_instance(var->type->fields.array,
4634 num_vertices);
4635 } else {
4636 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4637 * includes the following examples of compile-time errors:
4638 *
4639 * // code sequence within one shader...
4640 * in vec4 Color1[]; // size unknown
4641 * ...Color1.length()...// illegal, length() unknown
4642 * in vec4 Color2[2]; // size is 2
4643 * ...Color1.length()...// illegal, Color1 still has no size
4644 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4645 * layout(lines) in; // legal, input size is 2, matching
4646 * in vec4 Color4[3]; // illegal, contradicts layout
4647 * ...
4648 *
4649 * To detect the case illustrated by Color3, we verify that the size of
4650 * an explicitly-sized array matches the size of any previously declared
4651 * explicitly-sized array. To detect the case illustrated by Color4, we
4652 * verify that the size of an explicitly-sized array is consistent with
4653 * any previously declared input layout.
4654 */
4655 if (num_vertices != 0 && var->type->length != num_vertices) {
4656 _mesa_glsl_error(&loc, state,
4657 "%s size contradicts previously declared layout "
4658 "(size is %u, but layout requires a size of %u)",
4659 var_category, var->type->length, num_vertices);
4660 } else if (*size != 0 && var->type->length != *size) {
4661 _mesa_glsl_error(&loc, state,
4662 "%s sizes are inconsistent (size is %u, but a "
4663 "previous declaration has size %u)",
4664 var_category, var->type->length, *size);
4665 } else {
4666 *size = var->type->length;
4667 }
4668 }
4669 }
4670
4671 static void
4672 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4673 YYLTYPE loc, ir_variable *var)
4674 {
4675 unsigned num_vertices = 0;
4676
4677 if (state->tcs_output_vertices_specified) {
4678 if (!state->out_qualifier->vertices->
4679 process_qualifier_constant(state, "vertices",
4680 &num_vertices, false)) {
4681 return;
4682 }
4683
4684 if (num_vertices > state->Const.MaxPatchVertices) {
4685 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4686 "GL_MAX_PATCH_VERTICES", num_vertices);
4687 return;
4688 }
4689 }
4690
4691 if (!var->type->is_array() && !var->data.patch) {
4692 _mesa_glsl_error(&loc, state,
4693 "tessellation control shader outputs must be arrays");
4694
4695 /* To avoid cascading failures, short circuit the checks below. */
4696 return;
4697 }
4698
4699 if (var->data.patch)
4700 return;
4701
4702 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4703 &state->tcs_output_size,
4704 "tessellation control shader output");
4705 }
4706
4707 /**
4708 * Do additional processing necessary for tessellation control/evaluation shader
4709 * input declarations. This covers both interface block arrays and bare input
4710 * variables.
4711 */
4712 static void
4713 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4714 YYLTYPE loc, ir_variable *var)
4715 {
4716 if (!var->type->is_array() && !var->data.patch) {
4717 _mesa_glsl_error(&loc, state,
4718 "per-vertex tessellation shader inputs must be arrays");
4719 /* Avoid cascading failures. */
4720 return;
4721 }
4722
4723 if (var->data.patch)
4724 return;
4725
4726 /* The ARB_tessellation_shader spec says:
4727 *
4728 * "Declaring an array size is optional. If no size is specified, it
4729 * will be taken from the implementation-dependent maximum patch size
4730 * (gl_MaxPatchVertices). If a size is specified, it must match the
4731 * maximum patch size; otherwise, a compile or link error will occur."
4732 *
4733 * This text appears twice, once for TCS inputs, and again for TES inputs.
4734 */
4735 if (var->type->is_unsized_array()) {
4736 var->type = glsl_type::get_array_instance(var->type->fields.array,
4737 state->Const.MaxPatchVertices);
4738 } else if (var->type->length != state->Const.MaxPatchVertices) {
4739 _mesa_glsl_error(&loc, state,
4740 "per-vertex tessellation shader input arrays must be "
4741 "sized to gl_MaxPatchVertices (%d).",
4742 state->Const.MaxPatchVertices);
4743 }
4744 }
4745
4746
4747 /**
4748 * Do additional processing necessary for geometry shader input declarations
4749 * (this covers both interface blocks arrays and bare input variables).
4750 */
4751 static void
4752 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4753 YYLTYPE loc, ir_variable *var)
4754 {
4755 unsigned num_vertices = 0;
4756
4757 if (state->gs_input_prim_type_specified) {
4758 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4759 }
4760
4761 /* Geometry shader input variables must be arrays. Caller should have
4762 * reported an error for this.
4763 */
4764 if (!var->type->is_array()) {
4765 assert(state->error);
4766
4767 /* To avoid cascading failures, short circuit the checks below. */
4768 return;
4769 }
4770
4771 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4772 &state->gs_input_size,
4773 "geometry shader input");
4774 }
4775
4776 static void
4777 validate_identifier(const char *identifier, YYLTYPE loc,
4778 struct _mesa_glsl_parse_state *state)
4779 {
4780 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4781 *
4782 * "Identifiers starting with "gl_" are reserved for use by
4783 * OpenGL, and may not be declared in a shader as either a
4784 * variable or a function."
4785 */
4786 if (is_gl_identifier(identifier)) {
4787 _mesa_glsl_error(&loc, state,
4788 "identifier `%s' uses reserved `gl_' prefix",
4789 identifier);
4790 } else if (strstr(identifier, "__")) {
4791 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4792 * spec:
4793 *
4794 * "In addition, all identifiers containing two
4795 * consecutive underscores (__) are reserved as
4796 * possible future keywords."
4797 *
4798 * The intention is that names containing __ are reserved for internal
4799 * use by the implementation, and names prefixed with GL_ are reserved
4800 * for use by Khronos. Names simply containing __ are dangerous to use,
4801 * but should be allowed.
4802 *
4803 * A future version of the GLSL specification will clarify this.
4804 */
4805 _mesa_glsl_warning(&loc, state,
4806 "identifier `%s' uses reserved `__' string",
4807 identifier);
4808 }
4809 }
4810
4811 ir_rvalue *
4812 ast_declarator_list::hir(exec_list *instructions,
4813 struct _mesa_glsl_parse_state *state)
4814 {
4815 void *ctx = state;
4816 const struct glsl_type *decl_type;
4817 const char *type_name = NULL;
4818 ir_rvalue *result = NULL;
4819 YYLTYPE loc = this->get_location();
4820
4821 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4822 *
4823 * "To ensure that a particular output variable is invariant, it is
4824 * necessary to use the invariant qualifier. It can either be used to
4825 * qualify a previously declared variable as being invariant
4826 *
4827 * invariant gl_Position; // make existing gl_Position be invariant"
4828 *
4829 * In these cases the parser will set the 'invariant' flag in the declarator
4830 * list, and the type will be NULL.
4831 */
4832 if (this->invariant) {
4833 assert(this->type == NULL);
4834
4835 if (state->current_function != NULL) {
4836 _mesa_glsl_error(& loc, state,
4837 "all uses of `invariant' keyword must be at global "
4838 "scope");
4839 }
4840
4841 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4842 assert(decl->array_specifier == NULL);
4843 assert(decl->initializer == NULL);
4844
4845 ir_variable *const earlier =
4846 state->symbols->get_variable(decl->identifier);
4847 if (earlier == NULL) {
4848 _mesa_glsl_error(& loc, state,
4849 "undeclared variable `%s' cannot be marked "
4850 "invariant", decl->identifier);
4851 } else if (!is_allowed_invariant(earlier, state)) {
4852 _mesa_glsl_error(&loc, state,
4853 "`%s' cannot be marked invariant; interfaces between "
4854 "shader stages only.", decl->identifier);
4855 } else if (earlier->data.used) {
4856 _mesa_glsl_error(& loc, state,
4857 "variable `%s' may not be redeclared "
4858 "`invariant' after being used",
4859 earlier->name);
4860 } else {
4861 earlier->data.invariant = true;
4862 }
4863 }
4864
4865 /* Invariant redeclarations do not have r-values.
4866 */
4867 return NULL;
4868 }
4869
4870 if (this->precise) {
4871 assert(this->type == NULL);
4872
4873 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4874 assert(decl->array_specifier == NULL);
4875 assert(decl->initializer == NULL);
4876
4877 ir_variable *const earlier =
4878 state->symbols->get_variable(decl->identifier);
4879 if (earlier == NULL) {
4880 _mesa_glsl_error(& loc, state,
4881 "undeclared variable `%s' cannot be marked "
4882 "precise", decl->identifier);
4883 } else if (state->current_function != NULL &&
4884 !state->symbols->name_declared_this_scope(decl->identifier)) {
4885 /* Note: we have to check if we're in a function, since
4886 * builtins are treated as having come from another scope.
4887 */
4888 _mesa_glsl_error(& loc, state,
4889 "variable `%s' from an outer scope may not be "
4890 "redeclared `precise' in this scope",
4891 earlier->name);
4892 } else if (earlier->data.used) {
4893 _mesa_glsl_error(& loc, state,
4894 "variable `%s' may not be redeclared "
4895 "`precise' after being used",
4896 earlier->name);
4897 } else {
4898 earlier->data.precise = true;
4899 }
4900 }
4901
4902 /* Precise redeclarations do not have r-values either. */
4903 return NULL;
4904 }
4905
4906 assert(this->type != NULL);
4907 assert(!this->invariant);
4908 assert(!this->precise);
4909
4910 /* The type specifier may contain a structure definition. Process that
4911 * before any of the variable declarations.
4912 */
4913 (void) this->type->specifier->hir(instructions, state);
4914
4915 decl_type = this->type->glsl_type(& type_name, state);
4916
4917 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4918 * "Buffer variables may only be declared inside interface blocks
4919 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4920 * shader storage blocks. It is a compile-time error to declare buffer
4921 * variables at global scope (outside a block)."
4922 */
4923 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4924 _mesa_glsl_error(&loc, state,
4925 "buffer variables cannot be declared outside "
4926 "interface blocks");
4927 }
4928
4929 /* An offset-qualified atomic counter declaration sets the default
4930 * offset for the next declaration within the same atomic counter
4931 * buffer.
4932 */
4933 if (decl_type && decl_type->contains_atomic()) {
4934 if (type->qualifier.flags.q.explicit_binding &&
4935 type->qualifier.flags.q.explicit_offset) {
4936 unsigned qual_binding;
4937 unsigned qual_offset;
4938 if (process_qualifier_constant(state, &loc, "binding",
4939 type->qualifier.binding,
4940 &qual_binding)
4941 && process_qualifier_constant(state, &loc, "offset",
4942 type->qualifier.offset,
4943 &qual_offset)) {
4944 if (qual_binding < ARRAY_SIZE(state->atomic_counter_offsets))
4945 state->atomic_counter_offsets[qual_binding] = qual_offset;
4946 }
4947 }
4948
4949 ast_type_qualifier allowed_atomic_qual_mask;
4950 allowed_atomic_qual_mask.flags.i = 0;
4951 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4952 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4953 allowed_atomic_qual_mask.flags.q.uniform = 1;
4954
4955 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4956 "invalid layout qualifier for",
4957 "atomic_uint");
4958 }
4959
4960 if (this->declarations.is_empty()) {
4961 /* If there is no structure involved in the program text, there are two
4962 * possible scenarios:
4963 *
4964 * - The program text contained something like 'vec4;'. This is an
4965 * empty declaration. It is valid but weird. Emit a warning.
4966 *
4967 * - The program text contained something like 'S;' and 'S' is not the
4968 * name of a known structure type. This is both invalid and weird.
4969 * Emit an error.
4970 *
4971 * - The program text contained something like 'mediump float;'
4972 * when the programmer probably meant 'precision mediump
4973 * float;' Emit a warning with a description of what they
4974 * probably meant to do.
4975 *
4976 * Note that if decl_type is NULL and there is a structure involved,
4977 * there must have been some sort of error with the structure. In this
4978 * case we assume that an error was already generated on this line of
4979 * code for the structure. There is no need to generate an additional,
4980 * confusing error.
4981 */
4982 assert(this->type->specifier->structure == NULL || decl_type != NULL
4983 || state->error);
4984
4985 if (decl_type == NULL) {
4986 _mesa_glsl_error(&loc, state,
4987 "invalid type `%s' in empty declaration",
4988 type_name);
4989 } else {
4990 if (decl_type->is_array()) {
4991 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4992 * spec:
4993 *
4994 * "... any declaration that leaves the size undefined is
4995 * disallowed as this would add complexity and there are no
4996 * use-cases."
4997 */
4998 if (state->es_shader && decl_type->is_unsized_array()) {
4999 _mesa_glsl_error(&loc, state, "array size must be explicitly "
5000 "or implicitly defined");
5001 }
5002
5003 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
5004 *
5005 * "The combinations of types and qualifiers that cause
5006 * compile-time or link-time errors are the same whether or not
5007 * the declaration is empty."
5008 */
5009 validate_array_dimensions(decl_type, state, &loc);
5010 }
5011
5012 if (decl_type->is_atomic_uint()) {
5013 /* Empty atomic counter declarations are allowed and useful
5014 * to set the default offset qualifier.
5015 */
5016 return NULL;
5017 } else if (this->type->qualifier.precision != ast_precision_none) {
5018 if (this->type->specifier->structure != NULL) {
5019 _mesa_glsl_error(&loc, state,
5020 "precision qualifiers can't be applied "
5021 "to structures");
5022 } else {
5023 static const char *const precision_names[] = {
5024 "highp",
5025 "highp",
5026 "mediump",
5027 "lowp"
5028 };
5029
5030 _mesa_glsl_warning(&loc, state,
5031 "empty declaration with precision "
5032 "qualifier, to set the default precision, "
5033 "use `precision %s %s;'",
5034 precision_names[this->type->
5035 qualifier.precision],
5036 type_name);
5037 }
5038 } else if (this->type->specifier->structure == NULL) {
5039 _mesa_glsl_warning(&loc, state, "empty declaration");
5040 }
5041 }
5042 }
5043
5044 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5045 const struct glsl_type *var_type;
5046 ir_variable *var;
5047 const char *identifier = decl->identifier;
5048 /* FINISHME: Emit a warning if a variable declaration shadows a
5049 * FINISHME: declaration at a higher scope.
5050 */
5051
5052 if ((decl_type == NULL) || decl_type->is_void()) {
5053 if (type_name != NULL) {
5054 _mesa_glsl_error(& loc, state,
5055 "invalid type `%s' in declaration of `%s'",
5056 type_name, decl->identifier);
5057 } else {
5058 _mesa_glsl_error(& loc, state,
5059 "invalid type in declaration of `%s'",
5060 decl->identifier);
5061 }
5062 continue;
5063 }
5064
5065 if (this->type->qualifier.is_subroutine_decl()) {
5066 const glsl_type *t;
5067 const char *name;
5068
5069 t = state->symbols->get_type(this->type->specifier->type_name);
5070 if (!t)
5071 _mesa_glsl_error(& loc, state,
5072 "invalid type in declaration of `%s'",
5073 decl->identifier);
5074 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5075
5076 identifier = name;
5077
5078 }
5079 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5080 state);
5081
5082 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5083
5084 /* The 'varying in' and 'varying out' qualifiers can only be used with
5085 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5086 * yet.
5087 */
5088 if (this->type->qualifier.flags.q.varying) {
5089 if (this->type->qualifier.flags.q.in) {
5090 _mesa_glsl_error(& loc, state,
5091 "`varying in' qualifier in declaration of "
5092 "`%s' only valid for geometry shaders using "
5093 "ARB_geometry_shader4 or EXT_geometry_shader4",
5094 decl->identifier);
5095 } else if (this->type->qualifier.flags.q.out) {
5096 _mesa_glsl_error(& loc, state,
5097 "`varying out' qualifier in declaration of "
5098 "`%s' only valid for geometry shaders using "
5099 "ARB_geometry_shader4 or EXT_geometry_shader4",
5100 decl->identifier);
5101 }
5102 }
5103
5104 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5105 *
5106 * "Global variables can only use the qualifiers const,
5107 * attribute, uniform, or varying. Only one may be
5108 * specified.
5109 *
5110 * Local variables can only use the qualifier const."
5111 *
5112 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
5113 * any extension that adds the 'layout' keyword.
5114 */
5115 if (!state->is_version(130, 300)
5116 && !state->has_explicit_attrib_location()
5117 && !state->has_separate_shader_objects()
5118 && !state->ARB_fragment_coord_conventions_enable) {
5119 if (this->type->qualifier.flags.q.out) {
5120 _mesa_glsl_error(& loc, state,
5121 "`out' qualifier in declaration of `%s' "
5122 "only valid for function parameters in %s",
5123 decl->identifier, state->get_version_string());
5124 }
5125 if (this->type->qualifier.flags.q.in) {
5126 _mesa_glsl_error(& loc, state,
5127 "`in' qualifier in declaration of `%s' "
5128 "only valid for function parameters in %s",
5129 decl->identifier, state->get_version_string());
5130 }
5131 /* FINISHME: Test for other invalid qualifiers. */
5132 }
5133
5134 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5135 & loc, false);
5136 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5137 &loc);
5138
5139 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5140 && (var->type->is_numeric() || var->type->is_boolean())
5141 && state->zero_init) {
5142 const ir_constant_data data = { { 0 } };
5143 var->data.has_initializer = true;
5144 var->constant_initializer = new(var) ir_constant(var->type, &data);
5145 }
5146
5147 if (this->type->qualifier.flags.q.invariant) {
5148 if (!is_allowed_invariant(var, state)) {
5149 _mesa_glsl_error(&loc, state,
5150 "`%s' cannot be marked invariant; interfaces between "
5151 "shader stages only", var->name);
5152 }
5153 }
5154
5155 if (state->current_function != NULL) {
5156 const char *mode = NULL;
5157 const char *extra = "";
5158
5159 /* There is no need to check for 'inout' here because the parser will
5160 * only allow that in function parameter lists.
5161 */
5162 if (this->type->qualifier.flags.q.attribute) {
5163 mode = "attribute";
5164 } else if (this->type->qualifier.is_subroutine_decl()) {
5165 mode = "subroutine uniform";
5166 } else if (this->type->qualifier.flags.q.uniform) {
5167 mode = "uniform";
5168 } else if (this->type->qualifier.flags.q.varying) {
5169 mode = "varying";
5170 } else if (this->type->qualifier.flags.q.in) {
5171 mode = "in";
5172 extra = " or in function parameter list";
5173 } else if (this->type->qualifier.flags.q.out) {
5174 mode = "out";
5175 extra = " or in function parameter list";
5176 }
5177
5178 if (mode) {
5179 _mesa_glsl_error(& loc, state,
5180 "%s variable `%s' must be declared at "
5181 "global scope%s",
5182 mode, var->name, extra);
5183 }
5184 } else if (var->data.mode == ir_var_shader_in) {
5185 var->data.read_only = true;
5186
5187 if (state->stage == MESA_SHADER_VERTEX) {
5188 bool error_emitted = false;
5189
5190 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5191 *
5192 * "Vertex shader inputs can only be float, floating-point
5193 * vectors, matrices, signed and unsigned integers and integer
5194 * vectors. Vertex shader inputs can also form arrays of these
5195 * types, but not structures."
5196 *
5197 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5198 *
5199 * "Vertex shader inputs can only be float, floating-point
5200 * vectors, matrices, signed and unsigned integers and integer
5201 * vectors. They cannot be arrays or structures."
5202 *
5203 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5204 *
5205 * "The attribute qualifier can be used only with float,
5206 * floating-point vectors, and matrices. Attribute variables
5207 * cannot be declared as arrays or structures."
5208 *
5209 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5210 *
5211 * "Vertex shader inputs can only be float, floating-point
5212 * vectors, matrices, signed and unsigned integers and integer
5213 * vectors. Vertex shader inputs cannot be arrays or
5214 * structures."
5215 *
5216 * From section 4.3.4 of the ARB_bindless_texture spec:
5217 *
5218 * "(modify third paragraph of the section to allow sampler and
5219 * image types) ... Vertex shader inputs can only be float,
5220 * single-precision floating-point scalars, single-precision
5221 * floating-point vectors, matrices, signed and unsigned
5222 * integers and integer vectors, sampler and image types."
5223 */
5224 const glsl_type *check_type = var->type->without_array();
5225
5226 switch (check_type->base_type) {
5227 case GLSL_TYPE_FLOAT:
5228 break;
5229 case GLSL_TYPE_UINT64:
5230 case GLSL_TYPE_INT64:
5231 break;
5232 case GLSL_TYPE_UINT:
5233 case GLSL_TYPE_INT:
5234 if (state->is_version(120, 300))
5235 break;
5236 case GLSL_TYPE_DOUBLE:
5237 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5238 break;
5239 case GLSL_TYPE_SAMPLER:
5240 if (check_type->is_sampler() && state->has_bindless())
5241 break;
5242 case GLSL_TYPE_IMAGE:
5243 if (check_type->is_image() && state->has_bindless())
5244 break;
5245 /* FALLTHROUGH */
5246 default:
5247 _mesa_glsl_error(& loc, state,
5248 "vertex shader input / attribute cannot have "
5249 "type %s`%s'",
5250 var->type->is_array() ? "array of " : "",
5251 check_type->name);
5252 error_emitted = true;
5253 }
5254
5255 if (!error_emitted && var->type->is_array() &&
5256 !state->check_version(150, 0, &loc,
5257 "vertex shader input / attribute "
5258 "cannot have array type")) {
5259 error_emitted = true;
5260 }
5261 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5262 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5263 *
5264 * Geometry shader input variables get the per-vertex values
5265 * written out by vertex shader output variables of the same
5266 * names. Since a geometry shader operates on a set of
5267 * vertices, each input varying variable (or input block, see
5268 * interface blocks below) needs to be declared as an array.
5269 */
5270 if (!var->type->is_array()) {
5271 _mesa_glsl_error(&loc, state,
5272 "geometry shader inputs must be arrays");
5273 }
5274
5275 handle_geometry_shader_input_decl(state, loc, var);
5276 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5277 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5278 *
5279 * It is a compile-time error to declare a fragment shader
5280 * input with, or that contains, any of the following types:
5281 *
5282 * * A boolean type
5283 * * An opaque type
5284 * * An array of arrays
5285 * * An array of structures
5286 * * A structure containing an array
5287 * * A structure containing a structure
5288 */
5289 if (state->es_shader) {
5290 const glsl_type *check_type = var->type->without_array();
5291 if (check_type->is_boolean() ||
5292 check_type->contains_opaque()) {
5293 _mesa_glsl_error(&loc, state,
5294 "fragment shader input cannot have type %s",
5295 check_type->name);
5296 }
5297 if (var->type->is_array() &&
5298 var->type->fields.array->is_array()) {
5299 _mesa_glsl_error(&loc, state,
5300 "%s shader output "
5301 "cannot have an array of arrays",
5302 _mesa_shader_stage_to_string(state->stage));
5303 }
5304 if (var->type->is_array() &&
5305 var->type->fields.array->is_record()) {
5306 _mesa_glsl_error(&loc, state,
5307 "fragment shader input "
5308 "cannot have an array of structs");
5309 }
5310 if (var->type->is_record()) {
5311 for (unsigned i = 0; i < var->type->length; i++) {
5312 if (var->type->fields.structure[i].type->is_array() ||
5313 var->type->fields.structure[i].type->is_record())
5314 _mesa_glsl_error(&loc, state,
5315 "fragment shader input cannot have "
5316 "a struct that contains an "
5317 "array or struct");
5318 }
5319 }
5320 }
5321 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5322 state->stage == MESA_SHADER_TESS_EVAL) {
5323 handle_tess_shader_input_decl(state, loc, var);
5324 }
5325 } else if (var->data.mode == ir_var_shader_out) {
5326 const glsl_type *check_type = var->type->without_array();
5327
5328 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5329 *
5330 * It is a compile-time error to declare a fragment shader output
5331 * that contains any of the following:
5332 *
5333 * * A Boolean type (bool, bvec2 ...)
5334 * * A double-precision scalar or vector (double, dvec2 ...)
5335 * * An opaque type
5336 * * Any matrix type
5337 * * A structure
5338 */
5339 if (state->stage == MESA_SHADER_FRAGMENT) {
5340 if (check_type->is_record() || check_type->is_matrix())
5341 _mesa_glsl_error(&loc, state,
5342 "fragment shader output "
5343 "cannot have struct or matrix type");
5344 switch (check_type->base_type) {
5345 case GLSL_TYPE_UINT:
5346 case GLSL_TYPE_INT:
5347 case GLSL_TYPE_FLOAT:
5348 break;
5349 default:
5350 _mesa_glsl_error(&loc, state,
5351 "fragment shader output cannot have "
5352 "type %s", check_type->name);
5353 }
5354 }
5355
5356 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5357 *
5358 * It is a compile-time error to declare a vertex shader output
5359 * with, or that contains, any of the following types:
5360 *
5361 * * A boolean type
5362 * * An opaque type
5363 * * An array of arrays
5364 * * An array of structures
5365 * * A structure containing an array
5366 * * A structure containing a structure
5367 *
5368 * It is a compile-time error to declare a fragment shader output
5369 * with, or that contains, any of the following types:
5370 *
5371 * * A boolean type
5372 * * An opaque type
5373 * * A matrix
5374 * * A structure
5375 * * An array of array
5376 *
5377 * ES 3.20 updates this to apply to tessellation and geometry shaders
5378 * as well. Because there are per-vertex arrays in the new stages,
5379 * it strikes the "array of..." rules and replaces them with these:
5380 *
5381 * * For per-vertex-arrayed variables (applies to tessellation
5382 * control, tessellation evaluation and geometry shaders):
5383 *
5384 * * Per-vertex-arrayed arrays of arrays
5385 * * Per-vertex-arrayed arrays of structures
5386 *
5387 * * For non-per-vertex-arrayed variables:
5388 *
5389 * * An array of arrays
5390 * * An array of structures
5391 *
5392 * which basically says to unwrap the per-vertex aspect and apply
5393 * the old rules.
5394 */
5395 if (state->es_shader) {
5396 if (var->type->is_array() &&
5397 var->type->fields.array->is_array()) {
5398 _mesa_glsl_error(&loc, state,
5399 "%s shader output "
5400 "cannot have an array of arrays",
5401 _mesa_shader_stage_to_string(state->stage));
5402 }
5403 if (state->stage <= MESA_SHADER_GEOMETRY) {
5404 const glsl_type *type = var->type;
5405
5406 if (state->stage == MESA_SHADER_TESS_CTRL &&
5407 !var->data.patch && var->type->is_array()) {
5408 type = var->type->fields.array;
5409 }
5410
5411 if (type->is_array() && type->fields.array->is_record()) {
5412 _mesa_glsl_error(&loc, state,
5413 "%s shader output cannot have "
5414 "an array of structs",
5415 _mesa_shader_stage_to_string(state->stage));
5416 }
5417 if (type->is_record()) {
5418 for (unsigned i = 0; i < type->length; i++) {
5419 if (type->fields.structure[i].type->is_array() ||
5420 type->fields.structure[i].type->is_record())
5421 _mesa_glsl_error(&loc, state,
5422 "%s shader output cannot have a "
5423 "struct that contains an "
5424 "array or struct",
5425 _mesa_shader_stage_to_string(state->stage));
5426 }
5427 }
5428 }
5429 }
5430
5431 if (state->stage == MESA_SHADER_TESS_CTRL) {
5432 handle_tess_ctrl_shader_output_decl(state, loc, var);
5433 }
5434 } else if (var->type->contains_subroutine()) {
5435 /* declare subroutine uniforms as hidden */
5436 var->data.how_declared = ir_var_hidden;
5437 }
5438
5439 /* From section 4.3.4 of the GLSL 4.00 spec:
5440 * "Input variables may not be declared using the patch in qualifier
5441 * in tessellation control or geometry shaders."
5442 *
5443 * From section 4.3.6 of the GLSL 4.00 spec:
5444 * "It is an error to use patch out in a vertex, tessellation
5445 * evaluation, or geometry shader."
5446 *
5447 * This doesn't explicitly forbid using them in a fragment shader, but
5448 * that's probably just an oversight.
5449 */
5450 if (state->stage != MESA_SHADER_TESS_EVAL
5451 && this->type->qualifier.flags.q.patch
5452 && this->type->qualifier.flags.q.in) {
5453
5454 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5455 "tessellation evaluation shader");
5456 }
5457
5458 if (state->stage != MESA_SHADER_TESS_CTRL
5459 && this->type->qualifier.flags.q.patch
5460 && this->type->qualifier.flags.q.out) {
5461
5462 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5463 "tessellation control shader");
5464 }
5465
5466 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5467 */
5468 if (this->type->qualifier.precision != ast_precision_none) {
5469 state->check_precision_qualifiers_allowed(&loc);
5470 }
5471
5472 if (this->type->qualifier.precision != ast_precision_none &&
5473 !precision_qualifier_allowed(var->type)) {
5474 _mesa_glsl_error(&loc, state,
5475 "precision qualifiers apply only to floating point"
5476 ", integer and opaque types");
5477 }
5478
5479 /* From section 4.1.7 of the GLSL 4.40 spec:
5480 *
5481 * "[Opaque types] can only be declared as function
5482 * parameters or uniform-qualified variables."
5483 *
5484 * From section 4.1.7 of the ARB_bindless_texture spec:
5485 *
5486 * "Samplers may be declared as shader inputs and outputs, as uniform
5487 * variables, as temporary variables, and as function parameters."
5488 *
5489 * From section 4.1.X of the ARB_bindless_texture spec:
5490 *
5491 * "Images may be declared as shader inputs and outputs, as uniform
5492 * variables, as temporary variables, and as function parameters."
5493 */
5494 if (!this->type->qualifier.flags.q.uniform &&
5495 (var_type->contains_atomic() ||
5496 (!state->has_bindless() && var_type->contains_opaque()))) {
5497 _mesa_glsl_error(&loc, state,
5498 "%s variables must be declared uniform",
5499 state->has_bindless() ? "atomic" : "opaque");
5500 }
5501
5502 /* Process the initializer and add its instructions to a temporary
5503 * list. This list will be added to the instruction stream (below) after
5504 * the declaration is added. This is done because in some cases (such as
5505 * redeclarations) the declaration may not actually be added to the
5506 * instruction stream.
5507 */
5508 exec_list initializer_instructions;
5509
5510 /* Examine var name here since var may get deleted in the next call */
5511 bool var_is_gl_id = is_gl_identifier(var->name);
5512
5513 bool is_redeclaration;
5514 var = get_variable_being_redeclared(&var, decl->get_location(), state,
5515 false /* allow_all_redeclarations */,
5516 &is_redeclaration);
5517 if (is_redeclaration) {
5518 if (var_is_gl_id &&
5519 var->data.how_declared == ir_var_declared_in_block) {
5520 _mesa_glsl_error(&loc, state,
5521 "`%s' has already been redeclared using "
5522 "gl_PerVertex", var->name);
5523 }
5524 var->data.how_declared = ir_var_declared_normally;
5525 }
5526
5527 if (decl->initializer != NULL) {
5528 result = process_initializer(var,
5529 decl, this->type,
5530 &initializer_instructions, state);
5531 } else {
5532 validate_array_dimensions(var_type, state, &loc);
5533 }
5534
5535 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5536 *
5537 * "It is an error to write to a const variable outside of
5538 * its declaration, so they must be initialized when
5539 * declared."
5540 */
5541 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5542 _mesa_glsl_error(& loc, state,
5543 "const declaration of `%s' must be initialized",
5544 decl->identifier);
5545 }
5546
5547 if (state->es_shader) {
5548 const glsl_type *const t = var->type;
5549
5550 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5551 *
5552 * The GL_OES_tessellation_shader spec says about inputs:
5553 *
5554 * "Declaring an array size is optional. If no size is specified,
5555 * it will be taken from the implementation-dependent maximum
5556 * patch size (gl_MaxPatchVertices)."
5557 *
5558 * and about TCS outputs:
5559 *
5560 * "If no size is specified, it will be taken from output patch
5561 * size declared in the shader."
5562 *
5563 * The GL_OES_geometry_shader spec says:
5564 *
5565 * "All geometry shader input unsized array declarations will be
5566 * sized by an earlier input primitive layout qualifier, when
5567 * present, as per the following table."
5568 */
5569 const bool implicitly_sized =
5570 (var->data.mode == ir_var_shader_in &&
5571 state->stage >= MESA_SHADER_TESS_CTRL &&
5572 state->stage <= MESA_SHADER_GEOMETRY) ||
5573 (var->data.mode == ir_var_shader_out &&
5574 state->stage == MESA_SHADER_TESS_CTRL);
5575
5576 if (t->is_unsized_array() && !implicitly_sized)
5577 /* Section 10.17 of the GLSL ES 1.00 specification states that
5578 * unsized array declarations have been removed from the language.
5579 * Arrays that are sized using an initializer are still explicitly
5580 * sized. However, GLSL ES 1.00 does not allow array
5581 * initializers. That is only allowed in GLSL ES 3.00.
5582 *
5583 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5584 *
5585 * "An array type can also be formed without specifying a size
5586 * if the definition includes an initializer:
5587 *
5588 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5589 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5590 *
5591 * float a[5];
5592 * float b[] = a;"
5593 */
5594 _mesa_glsl_error(& loc, state,
5595 "unsized array declarations are not allowed in "
5596 "GLSL ES");
5597 }
5598
5599 /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5600 *
5601 * "It is a compile-time error to declare an unsized array of
5602 * atomic_uint"
5603 */
5604 if (var->type->is_unsized_array() &&
5605 var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5606 _mesa_glsl_error(& loc, state,
5607 "Unsized array of atomic_uint is not allowed");
5608 }
5609
5610 /* If the declaration is not a redeclaration, there are a few additional
5611 * semantic checks that must be applied. In addition, variable that was
5612 * created for the declaration should be added to the IR stream.
5613 */
5614 if (!is_redeclaration) {
5615 validate_identifier(decl->identifier, loc, state);
5616
5617 /* Add the variable to the symbol table. Note that the initializer's
5618 * IR was already processed earlier (though it hasn't been emitted
5619 * yet), without the variable in scope.
5620 *
5621 * This differs from most C-like languages, but it follows the GLSL
5622 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5623 * spec:
5624 *
5625 * "Within a declaration, the scope of a name starts immediately
5626 * after the initializer if present or immediately after the name
5627 * being declared if not."
5628 */
5629 if (!state->symbols->add_variable(var)) {
5630 YYLTYPE loc = this->get_location();
5631 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5632 "current scope", decl->identifier);
5633 continue;
5634 }
5635
5636 /* Push the variable declaration to the top. It means that all the
5637 * variable declarations will appear in a funny last-to-first order,
5638 * but otherwise we run into trouble if a function is prototyped, a
5639 * global var is decled, then the function is defined with usage of
5640 * the global var. See glslparsertest's CorrectModule.frag.
5641 */
5642 instructions->push_head(var);
5643 }
5644
5645 instructions->append_list(&initializer_instructions);
5646 }
5647
5648
5649 /* Generally, variable declarations do not have r-values. However,
5650 * one is used for the declaration in
5651 *
5652 * while (bool b = some_condition()) {
5653 * ...
5654 * }
5655 *
5656 * so we return the rvalue from the last seen declaration here.
5657 */
5658 return result;
5659 }
5660
5661
5662 ir_rvalue *
5663 ast_parameter_declarator::hir(exec_list *instructions,
5664 struct _mesa_glsl_parse_state *state)
5665 {
5666 void *ctx = state;
5667 const struct glsl_type *type;
5668 const char *name = NULL;
5669 YYLTYPE loc = this->get_location();
5670
5671 type = this->type->glsl_type(& name, state);
5672
5673 if (type == NULL) {
5674 if (name != NULL) {
5675 _mesa_glsl_error(& loc, state,
5676 "invalid type `%s' in declaration of `%s'",
5677 name, this->identifier);
5678 } else {
5679 _mesa_glsl_error(& loc, state,
5680 "invalid type in declaration of `%s'",
5681 this->identifier);
5682 }
5683
5684 type = glsl_type::error_type;
5685 }
5686
5687 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5688 *
5689 * "Functions that accept no input arguments need not use void in the
5690 * argument list because prototypes (or definitions) are required and
5691 * therefore there is no ambiguity when an empty argument list "( )" is
5692 * declared. The idiom "(void)" as a parameter list is provided for
5693 * convenience."
5694 *
5695 * Placing this check here prevents a void parameter being set up
5696 * for a function, which avoids tripping up checks for main taking
5697 * parameters and lookups of an unnamed symbol.
5698 */
5699 if (type->is_void()) {
5700 if (this->identifier != NULL)
5701 _mesa_glsl_error(& loc, state,
5702 "named parameter cannot have type `void'");
5703
5704 is_void = true;
5705 return NULL;
5706 }
5707
5708 if (formal_parameter && (this->identifier == NULL)) {
5709 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5710 return NULL;
5711 }
5712
5713 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5714 * call already handled the "vec4[..] foo" case.
5715 */
5716 type = process_array_type(&loc, type, this->array_specifier, state);
5717
5718 if (!type->is_error() && type->is_unsized_array()) {
5719 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5720 "a declared size");
5721 type = glsl_type::error_type;
5722 }
5723
5724 is_void = false;
5725 ir_variable *var = new(ctx)
5726 ir_variable(type, this->identifier, ir_var_function_in);
5727
5728 /* Apply any specified qualifiers to the parameter declaration. Note that
5729 * for function parameters the default mode is 'in'.
5730 */
5731 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5732 true);
5733
5734 /* From section 4.1.7 of the GLSL 4.40 spec:
5735 *
5736 * "Opaque variables cannot be treated as l-values; hence cannot
5737 * be used as out or inout function parameters, nor can they be
5738 * assigned into."
5739 *
5740 * From section 4.1.7 of the ARB_bindless_texture spec:
5741 *
5742 * "Samplers can be used as l-values, so can be assigned into and used
5743 * as "out" and "inout" function parameters."
5744 *
5745 * From section 4.1.X of the ARB_bindless_texture spec:
5746 *
5747 * "Images can be used as l-values, so can be assigned into and used as
5748 * "out" and "inout" function parameters."
5749 */
5750 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5751 && (type->contains_atomic() ||
5752 (!state->has_bindless() && type->contains_opaque()))) {
5753 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5754 "contain %s variables",
5755 state->has_bindless() ? "atomic" : "opaque");
5756 type = glsl_type::error_type;
5757 }
5758
5759 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5760 *
5761 * "When calling a function, expressions that do not evaluate to
5762 * l-values cannot be passed to parameters declared as out or inout."
5763 *
5764 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5765 *
5766 * "Other binary or unary expressions, non-dereferenced arrays,
5767 * function names, swizzles with repeated fields, and constants
5768 * cannot be l-values."
5769 *
5770 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5771 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5772 */
5773 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5774 && type->is_array()
5775 && !state->check_version(120, 100, &loc,
5776 "arrays cannot be out or inout parameters")) {
5777 type = glsl_type::error_type;
5778 }
5779
5780 instructions->push_tail(var);
5781
5782 /* Parameter declarations do not have r-values.
5783 */
5784 return NULL;
5785 }
5786
5787
5788 void
5789 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5790 bool formal,
5791 exec_list *ir_parameters,
5792 _mesa_glsl_parse_state *state)
5793 {
5794 ast_parameter_declarator *void_param = NULL;
5795 unsigned count = 0;
5796
5797 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5798 param->formal_parameter = formal;
5799 param->hir(ir_parameters, state);
5800
5801 if (param->is_void)
5802 void_param = param;
5803
5804 count++;
5805 }
5806
5807 if ((void_param != NULL) && (count > 1)) {
5808 YYLTYPE loc = void_param->get_location();
5809
5810 _mesa_glsl_error(& loc, state,
5811 "`void' parameter must be only parameter");
5812 }
5813 }
5814
5815
5816 void
5817 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5818 {
5819 /* IR invariants disallow function declarations or definitions
5820 * nested within other function definitions. But there is no
5821 * requirement about the relative order of function declarations
5822 * and definitions with respect to one another. So simply insert
5823 * the new ir_function block at the end of the toplevel instruction
5824 * list.
5825 */
5826 state->toplevel_ir->push_tail(f);
5827 }
5828
5829
5830 ir_rvalue *
5831 ast_function::hir(exec_list *instructions,
5832 struct _mesa_glsl_parse_state *state)
5833 {
5834 void *ctx = state;
5835 ir_function *f = NULL;
5836 ir_function_signature *sig = NULL;
5837 exec_list hir_parameters;
5838 YYLTYPE loc = this->get_location();
5839
5840 const char *const name = identifier;
5841
5842 /* New functions are always added to the top-level IR instruction stream,
5843 * so this instruction list pointer is ignored. See also emit_function
5844 * (called below).
5845 */
5846 (void) instructions;
5847
5848 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5849 *
5850 * "Function declarations (prototypes) cannot occur inside of functions;
5851 * they must be at global scope, or for the built-in functions, outside
5852 * the global scope."
5853 *
5854 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5855 *
5856 * "User defined functions may only be defined within the global scope."
5857 *
5858 * Note that this language does not appear in GLSL 1.10.
5859 */
5860 if ((state->current_function != NULL) &&
5861 state->is_version(120, 100)) {
5862 YYLTYPE loc = this->get_location();
5863 _mesa_glsl_error(&loc, state,
5864 "declaration of function `%s' not allowed within "
5865 "function body", name);
5866 }
5867
5868 validate_identifier(name, this->get_location(), state);
5869
5870 /* Convert the list of function parameters to HIR now so that they can be
5871 * used below to compare this function's signature with previously seen
5872 * signatures for functions with the same name.
5873 */
5874 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5875 is_definition,
5876 & hir_parameters, state);
5877
5878 const char *return_type_name;
5879 const glsl_type *return_type =
5880 this->return_type->glsl_type(& return_type_name, state);
5881
5882 if (!return_type) {
5883 YYLTYPE loc = this->get_location();
5884 _mesa_glsl_error(&loc, state,
5885 "function `%s' has undeclared return type `%s'",
5886 name, return_type_name);
5887 return_type = glsl_type::error_type;
5888 }
5889
5890 /* ARB_shader_subroutine states:
5891 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5892 * subroutine(...) to a function declaration."
5893 */
5894 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5895 YYLTYPE loc = this->get_location();
5896 _mesa_glsl_error(&loc, state,
5897 "function declaration `%s' cannot have subroutine prepended",
5898 name);
5899 }
5900
5901 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5902 * "No qualifier is allowed on the return type of a function."
5903 */
5904 if (this->return_type->has_qualifiers(state)) {
5905 YYLTYPE loc = this->get_location();
5906 _mesa_glsl_error(& loc, state,
5907 "function `%s' return type has qualifiers", name);
5908 }
5909
5910 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5911 *
5912 * "Arrays are allowed as arguments and as the return type. In both
5913 * cases, the array must be explicitly sized."
5914 */
5915 if (return_type->is_unsized_array()) {
5916 YYLTYPE loc = this->get_location();
5917 _mesa_glsl_error(& loc, state,
5918 "function `%s' return type array must be explicitly "
5919 "sized", name);
5920 }
5921
5922 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
5923 *
5924 * "Arrays are allowed as arguments, but not as the return type. [...]
5925 * The return type can also be a structure if the structure does not
5926 * contain an array."
5927 */
5928 if (state->language_version == 100 && return_type->contains_array()) {
5929 YYLTYPE loc = this->get_location();
5930 _mesa_glsl_error(& loc, state,
5931 "function `%s' return type contains an array", name);
5932 }
5933
5934 /* From section 4.1.7 of the GLSL 4.40 spec:
5935 *
5936 * "[Opaque types] can only be declared as function parameters
5937 * or uniform-qualified variables."
5938 *
5939 * The ARB_bindless_texture spec doesn't clearly state this, but as it says
5940 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
5941 * (Images)", this should be allowed.
5942 */
5943 if (return_type->contains_atomic() ||
5944 (!state->has_bindless() && return_type->contains_opaque())) {
5945 YYLTYPE loc = this->get_location();
5946 _mesa_glsl_error(&loc, state,
5947 "function `%s' return type can't contain an %s type",
5948 name, state->has_bindless() ? "atomic" : "opaque");
5949 }
5950
5951 /**/
5952 if (return_type->is_subroutine()) {
5953 YYLTYPE loc = this->get_location();
5954 _mesa_glsl_error(&loc, state,
5955 "function `%s' return type can't be a subroutine type",
5956 name);
5957 }
5958
5959
5960 /* Create an ir_function if one doesn't already exist. */
5961 f = state->symbols->get_function(name);
5962 if (f == NULL) {
5963 f = new(ctx) ir_function(name);
5964 if (!this->return_type->qualifier.is_subroutine_decl()) {
5965 if (!state->symbols->add_function(f)) {
5966 /* This function name shadows a non-function use of the same name. */
5967 YYLTYPE loc = this->get_location();
5968 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5969 "non-function", name);
5970 return NULL;
5971 }
5972 }
5973 emit_function(state, f);
5974 }
5975
5976 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5977 *
5978 * "A shader cannot redefine or overload built-in functions."
5979 *
5980 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5981 *
5982 * "User code can overload the built-in functions but cannot redefine
5983 * them."
5984 */
5985 if (state->es_shader) {
5986 /* Local shader has no exact candidates; check the built-ins. */
5987 _mesa_glsl_initialize_builtin_functions();
5988 if (state->language_version >= 300 &&
5989 _mesa_glsl_has_builtin_function(state, name)) {
5990 YYLTYPE loc = this->get_location();
5991 _mesa_glsl_error(& loc, state,
5992 "A shader cannot redefine or overload built-in "
5993 "function `%s' in GLSL ES 3.00", name);
5994 return NULL;
5995 }
5996
5997 if (state->language_version == 100) {
5998 ir_function_signature *sig =
5999 _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
6000 if (sig && sig->is_builtin()) {
6001 _mesa_glsl_error(& loc, state,
6002 "A shader cannot redefine built-in "
6003 "function `%s' in GLSL ES 1.00", name);
6004 }
6005 }
6006 }
6007
6008 /* Verify that this function's signature either doesn't match a previously
6009 * seen signature for a function with the same name, or, if a match is found,
6010 * that the previously seen signature does not have an associated definition.
6011 */
6012 if (state->es_shader || f->has_user_signature()) {
6013 sig = f->exact_matching_signature(state, &hir_parameters);
6014 if (sig != NULL) {
6015 const char *badvar = sig->qualifiers_match(&hir_parameters);
6016 if (badvar != NULL) {
6017 YYLTYPE loc = this->get_location();
6018
6019 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
6020 "qualifiers don't match prototype", name, badvar);
6021 }
6022
6023 if (sig->return_type != return_type) {
6024 YYLTYPE loc = this->get_location();
6025
6026 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6027 "match prototype", name);
6028 }
6029
6030 if (sig->is_defined) {
6031 if (is_definition) {
6032 YYLTYPE loc = this->get_location();
6033 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6034 } else {
6035 /* We just encountered a prototype that exactly matches a
6036 * function that's already been defined. This is redundant,
6037 * and we should ignore it.
6038 */
6039 return NULL;
6040 }
6041 } else if (state->language_version == 100 && !is_definition) {
6042 /* From the GLSL 1.00 spec, section 4.2.7:
6043 *
6044 * "A particular variable, structure or function declaration
6045 * may occur at most once within a scope with the exception
6046 * that a single function prototype plus the corresponding
6047 * function definition are allowed."
6048 */
6049 YYLTYPE loc = this->get_location();
6050 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6051 }
6052 }
6053 }
6054
6055 /* Verify the return type of main() */
6056 if (strcmp(name, "main") == 0) {
6057 if (! return_type->is_void()) {
6058 YYLTYPE loc = this->get_location();
6059
6060 _mesa_glsl_error(& loc, state, "main() must return void");
6061 }
6062
6063 if (!hir_parameters.is_empty()) {
6064 YYLTYPE loc = this->get_location();
6065
6066 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6067 }
6068 }
6069
6070 /* Finish storing the information about this new function in its signature.
6071 */
6072 if (sig == NULL) {
6073 sig = new(ctx) ir_function_signature(return_type);
6074 f->add_signature(sig);
6075 }
6076
6077 sig->replace_parameters(&hir_parameters);
6078 signature = sig;
6079
6080 if (this->return_type->qualifier.subroutine_list) {
6081 int idx;
6082
6083 if (this->return_type->qualifier.flags.q.explicit_index) {
6084 unsigned qual_index;
6085 if (process_qualifier_constant(state, &loc, "index",
6086 this->return_type->qualifier.index,
6087 &qual_index)) {
6088 if (!state->has_explicit_uniform_location()) {
6089 _mesa_glsl_error(&loc, state, "subroutine index requires "
6090 "GL_ARB_explicit_uniform_location or "
6091 "GLSL 4.30");
6092 } else if (qual_index >= MAX_SUBROUTINES) {
6093 _mesa_glsl_error(&loc, state,
6094 "invalid subroutine index (%d) index must "
6095 "be a number between 0 and "
6096 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6097 MAX_SUBROUTINES - 1);
6098 } else {
6099 f->subroutine_index = qual_index;
6100 }
6101 }
6102 }
6103
6104 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6105 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6106 f->num_subroutine_types);
6107 idx = 0;
6108 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6109 const struct glsl_type *type;
6110 /* the subroutine type must be already declared */
6111 type = state->symbols->get_type(decl->identifier);
6112 if (!type) {
6113 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6114 }
6115
6116 for (int i = 0; i < state->num_subroutine_types; i++) {
6117 ir_function *fn = state->subroutine_types[i];
6118 ir_function_signature *tsig = NULL;
6119
6120 if (strcmp(fn->name, decl->identifier))
6121 continue;
6122
6123 tsig = fn->matching_signature(state, &sig->parameters,
6124 false);
6125 if (!tsig) {
6126 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6127 } else {
6128 if (tsig->return_type != sig->return_type) {
6129 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6130 }
6131 }
6132 }
6133 f->subroutine_types[idx++] = type;
6134 }
6135 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6136 ir_function *,
6137 state->num_subroutines + 1);
6138 state->subroutines[state->num_subroutines] = f;
6139 state->num_subroutines++;
6140
6141 }
6142
6143 if (this->return_type->qualifier.is_subroutine_decl()) {
6144 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6145 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6146 return NULL;
6147 }
6148 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6149 ir_function *,
6150 state->num_subroutine_types + 1);
6151 state->subroutine_types[state->num_subroutine_types] = f;
6152 state->num_subroutine_types++;
6153
6154 f->is_subroutine = true;
6155 }
6156
6157 /* Function declarations (prototypes) do not have r-values.
6158 */
6159 return NULL;
6160 }
6161
6162
6163 ir_rvalue *
6164 ast_function_definition::hir(exec_list *instructions,
6165 struct _mesa_glsl_parse_state *state)
6166 {
6167 prototype->is_definition = true;
6168 prototype->hir(instructions, state);
6169
6170 ir_function_signature *signature = prototype->signature;
6171 if (signature == NULL)
6172 return NULL;
6173
6174 assert(state->current_function == NULL);
6175 state->current_function = signature;
6176 state->found_return = false;
6177
6178 /* Duplicate parameters declared in the prototype as concrete variables.
6179 * Add these to the symbol table.
6180 */
6181 state->symbols->push_scope();
6182 foreach_in_list(ir_variable, var, &signature->parameters) {
6183 assert(var->as_variable() != NULL);
6184
6185 /* The only way a parameter would "exist" is if two parameters have
6186 * the same name.
6187 */
6188 if (state->symbols->name_declared_this_scope(var->name)) {
6189 YYLTYPE loc = this->get_location();
6190
6191 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6192 } else {
6193 state->symbols->add_variable(var);
6194 }
6195 }
6196
6197 /* Convert the body of the function to HIR. */
6198 this->body->hir(&signature->body, state);
6199 signature->is_defined = true;
6200
6201 state->symbols->pop_scope();
6202
6203 assert(state->current_function == signature);
6204 state->current_function = NULL;
6205
6206 if (!signature->return_type->is_void() && !state->found_return) {
6207 YYLTYPE loc = this->get_location();
6208 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6209 "%s, but no return statement",
6210 signature->function_name(),
6211 signature->return_type->name);
6212 }
6213
6214 /* Function definitions do not have r-values.
6215 */
6216 return NULL;
6217 }
6218
6219
6220 ir_rvalue *
6221 ast_jump_statement::hir(exec_list *instructions,
6222 struct _mesa_glsl_parse_state *state)
6223 {
6224 void *ctx = state;
6225
6226 switch (mode) {
6227 case ast_return: {
6228 ir_return *inst;
6229 assert(state->current_function);
6230
6231 if (opt_return_value) {
6232 ir_rvalue *ret = opt_return_value->hir(instructions, state);
6233
6234 /* The value of the return type can be NULL if the shader says
6235 * 'return foo();' and foo() is a function that returns void.
6236 *
6237 * NOTE: The GLSL spec doesn't say that this is an error. The type
6238 * of the return value is void. If the return type of the function is
6239 * also void, then this should compile without error. Seriously.
6240 */
6241 const glsl_type *const ret_type =
6242 (ret == NULL) ? glsl_type::void_type : ret->type;
6243
6244 /* Implicit conversions are not allowed for return values prior to
6245 * ARB_shading_language_420pack.
6246 */
6247 if (state->current_function->return_type != ret_type) {
6248 YYLTYPE loc = this->get_location();
6249
6250 if (state->has_420pack()) {
6251 if (!apply_implicit_conversion(state->current_function->return_type,
6252 ret, state)
6253 || (ret->type != state->current_function->return_type)) {
6254 _mesa_glsl_error(& loc, state,
6255 "could not implicitly convert return value "
6256 "to %s, in function `%s'",
6257 state->current_function->return_type->name,
6258 state->current_function->function_name());
6259 }
6260 } else {
6261 _mesa_glsl_error(& loc, state,
6262 "`return' with wrong type %s, in function `%s' "
6263 "returning %s",
6264 ret_type->name,
6265 state->current_function->function_name(),
6266 state->current_function->return_type->name);
6267 }
6268 } else if (state->current_function->return_type->base_type ==
6269 GLSL_TYPE_VOID) {
6270 YYLTYPE loc = this->get_location();
6271
6272 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6273 * specs add a clarification:
6274 *
6275 * "A void function can only use return without a return argument, even if
6276 * the return argument has void type. Return statements only accept values:
6277 *
6278 * void func1() { }
6279 * void func2() { return func1(); } // illegal return statement"
6280 */
6281 _mesa_glsl_error(& loc, state,
6282 "void functions can only use `return' without a "
6283 "return argument");
6284 }
6285
6286 inst = new(ctx) ir_return(ret);
6287 } else {
6288 if (state->current_function->return_type->base_type !=
6289 GLSL_TYPE_VOID) {
6290 YYLTYPE loc = this->get_location();
6291
6292 _mesa_glsl_error(& loc, state,
6293 "`return' with no value, in function %s returning "
6294 "non-void",
6295 state->current_function->function_name());
6296 }
6297 inst = new(ctx) ir_return;
6298 }
6299
6300 state->found_return = true;
6301 instructions->push_tail(inst);
6302 break;
6303 }
6304
6305 case ast_discard:
6306 if (state->stage != MESA_SHADER_FRAGMENT) {
6307 YYLTYPE loc = this->get_location();
6308
6309 _mesa_glsl_error(& loc, state,
6310 "`discard' may only appear in a fragment shader");
6311 }
6312 instructions->push_tail(new(ctx) ir_discard);
6313 break;
6314
6315 case ast_break:
6316 case ast_continue:
6317 if (mode == ast_continue &&
6318 state->loop_nesting_ast == NULL) {
6319 YYLTYPE loc = this->get_location();
6320
6321 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6322 } else if (mode == ast_break &&
6323 state->loop_nesting_ast == NULL &&
6324 state->switch_state.switch_nesting_ast == NULL) {
6325 YYLTYPE loc = this->get_location();
6326
6327 _mesa_glsl_error(& loc, state,
6328 "break may only appear in a loop or a switch");
6329 } else {
6330 /* For a loop, inline the for loop expression again, since we don't
6331 * know where near the end of the loop body the normal copy of it is
6332 * going to be placed. Same goes for the condition for a do-while
6333 * loop.
6334 */
6335 if (state->loop_nesting_ast != NULL &&
6336 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6337 if (state->loop_nesting_ast->rest_expression) {
6338 state->loop_nesting_ast->rest_expression->hir(instructions,
6339 state);
6340 }
6341 if (state->loop_nesting_ast->mode ==
6342 ast_iteration_statement::ast_do_while) {
6343 state->loop_nesting_ast->condition_to_hir(instructions, state);
6344 }
6345 }
6346
6347 if (state->switch_state.is_switch_innermost &&
6348 mode == ast_continue) {
6349 /* Set 'continue_inside' to true. */
6350 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6351 ir_dereference_variable *deref_continue_inside_var =
6352 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6353 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6354 true_val));
6355
6356 /* Break out from the switch, continue for the loop will
6357 * be called right after switch. */
6358 ir_loop_jump *const jump =
6359 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6360 instructions->push_tail(jump);
6361
6362 } else if (state->switch_state.is_switch_innermost &&
6363 mode == ast_break) {
6364 /* Force break out of switch by inserting a break. */
6365 ir_loop_jump *const jump =
6366 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6367 instructions->push_tail(jump);
6368 } else {
6369 ir_loop_jump *const jump =
6370 new(ctx) ir_loop_jump((mode == ast_break)
6371 ? ir_loop_jump::jump_break
6372 : ir_loop_jump::jump_continue);
6373 instructions->push_tail(jump);
6374 }
6375 }
6376
6377 break;
6378 }
6379
6380 /* Jump instructions do not have r-values.
6381 */
6382 return NULL;
6383 }
6384
6385
6386 ir_rvalue *
6387 ast_selection_statement::hir(exec_list *instructions,
6388 struct _mesa_glsl_parse_state *state)
6389 {
6390 void *ctx = state;
6391
6392 ir_rvalue *const condition = this->condition->hir(instructions, state);
6393
6394 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6395 *
6396 * "Any expression whose type evaluates to a Boolean can be used as the
6397 * conditional expression bool-expression. Vector types are not accepted
6398 * as the expression to if."
6399 *
6400 * The checks are separated so that higher quality diagnostics can be
6401 * generated for cases where both rules are violated.
6402 */
6403 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6404 YYLTYPE loc = this->condition->get_location();
6405
6406 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6407 "boolean");
6408 }
6409
6410 ir_if *const stmt = new(ctx) ir_if(condition);
6411
6412 if (then_statement != NULL) {
6413 state->symbols->push_scope();
6414 then_statement->hir(& stmt->then_instructions, state);
6415 state->symbols->pop_scope();
6416 }
6417
6418 if (else_statement != NULL) {
6419 state->symbols->push_scope();
6420 else_statement->hir(& stmt->else_instructions, state);
6421 state->symbols->pop_scope();
6422 }
6423
6424 instructions->push_tail(stmt);
6425
6426 /* if-statements do not have r-values.
6427 */
6428 return NULL;
6429 }
6430
6431
6432 struct case_label {
6433 /** Value of the case label. */
6434 unsigned value;
6435
6436 /** Does this label occur after the default? */
6437 bool after_default;
6438
6439 /**
6440 * AST for the case label.
6441 *
6442 * This is only used to generate error messages for duplicate labels.
6443 */
6444 ast_expression *ast;
6445 };
6446
6447 /* Used for detection of duplicate case values, compare
6448 * given contents directly.
6449 */
6450 static bool
6451 compare_case_value(const void *a, const void *b)
6452 {
6453 return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6454 }
6455
6456
6457 /* Used for detection of duplicate case values, just
6458 * returns key contents as is.
6459 */
6460 static unsigned
6461 key_contents(const void *key)
6462 {
6463 return ((struct case_label *) key)->value;
6464 }
6465
6466
6467 ir_rvalue *
6468 ast_switch_statement::hir(exec_list *instructions,
6469 struct _mesa_glsl_parse_state *state)
6470 {
6471 void *ctx = state;
6472
6473 ir_rvalue *const test_expression =
6474 this->test_expression->hir(instructions, state);
6475
6476 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6477 *
6478 * "The type of init-expression in a switch statement must be a
6479 * scalar integer."
6480 */
6481 if (!test_expression->type->is_scalar() ||
6482 !test_expression->type->is_integer()) {
6483 YYLTYPE loc = this->test_expression->get_location();
6484
6485 _mesa_glsl_error(& loc,
6486 state,
6487 "switch-statement expression must be scalar "
6488 "integer");
6489 return NULL;
6490 }
6491
6492 /* Track the switch-statement nesting in a stack-like manner.
6493 */
6494 struct glsl_switch_state saved = state->switch_state;
6495
6496 state->switch_state.is_switch_innermost = true;
6497 state->switch_state.switch_nesting_ast = this;
6498 state->switch_state.labels_ht =
6499 _mesa_hash_table_create(NULL, key_contents,
6500 compare_case_value);
6501 state->switch_state.previous_default = NULL;
6502
6503 /* Initalize is_fallthru state to false.
6504 */
6505 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6506 state->switch_state.is_fallthru_var =
6507 new(ctx) ir_variable(glsl_type::bool_type,
6508 "switch_is_fallthru_tmp",
6509 ir_var_temporary);
6510 instructions->push_tail(state->switch_state.is_fallthru_var);
6511
6512 ir_dereference_variable *deref_is_fallthru_var =
6513 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6514 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6515 is_fallthru_val));
6516
6517 /* Initialize continue_inside state to false.
6518 */
6519 state->switch_state.continue_inside =
6520 new(ctx) ir_variable(glsl_type::bool_type,
6521 "continue_inside_tmp",
6522 ir_var_temporary);
6523 instructions->push_tail(state->switch_state.continue_inside);
6524
6525 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6526 ir_dereference_variable *deref_continue_inside_var =
6527 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6528 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6529 false_val));
6530
6531 state->switch_state.run_default =
6532 new(ctx) ir_variable(glsl_type::bool_type,
6533 "run_default_tmp",
6534 ir_var_temporary);
6535 instructions->push_tail(state->switch_state.run_default);
6536
6537 /* Loop around the switch is used for flow control. */
6538 ir_loop * loop = new(ctx) ir_loop();
6539 instructions->push_tail(loop);
6540
6541 /* Cache test expression.
6542 */
6543 test_to_hir(&loop->body_instructions, state);
6544
6545 /* Emit code for body of switch stmt.
6546 */
6547 body->hir(&loop->body_instructions, state);
6548
6549 /* Insert a break at the end to exit loop. */
6550 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6551 loop->body_instructions.push_tail(jump);
6552
6553 /* If we are inside loop, check if continue got called inside switch. */
6554 if (state->loop_nesting_ast != NULL) {
6555 ir_dereference_variable *deref_continue_inside =
6556 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6557 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6558 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6559
6560 if (state->loop_nesting_ast != NULL) {
6561 if (state->loop_nesting_ast->rest_expression) {
6562 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6563 state);
6564 }
6565 if (state->loop_nesting_ast->mode ==
6566 ast_iteration_statement::ast_do_while) {
6567 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6568 }
6569 }
6570 irif->then_instructions.push_tail(jump);
6571 instructions->push_tail(irif);
6572 }
6573
6574 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6575
6576 state->switch_state = saved;
6577
6578 /* Switch statements do not have r-values. */
6579 return NULL;
6580 }
6581
6582
6583 void
6584 ast_switch_statement::test_to_hir(exec_list *instructions,
6585 struct _mesa_glsl_parse_state *state)
6586 {
6587 void *ctx = state;
6588
6589 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6590 * on the switch test case. The first one would be already raised when
6591 * getting the test_expression at ast_switch_statement::hir
6592 */
6593 test_expression->set_is_lhs(true);
6594 /* Cache value of test expression. */
6595 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6596
6597 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6598 "switch_test_tmp",
6599 ir_var_temporary);
6600 ir_dereference_variable *deref_test_var =
6601 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6602
6603 instructions->push_tail(state->switch_state.test_var);
6604 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6605 }
6606
6607
6608 ir_rvalue *
6609 ast_switch_body::hir(exec_list *instructions,
6610 struct _mesa_glsl_parse_state *state)
6611 {
6612 if (stmts != NULL)
6613 stmts->hir(instructions, state);
6614
6615 /* Switch bodies do not have r-values. */
6616 return NULL;
6617 }
6618
6619 ir_rvalue *
6620 ast_case_statement_list::hir(exec_list *instructions,
6621 struct _mesa_glsl_parse_state *state)
6622 {
6623 exec_list default_case, after_default, tmp;
6624
6625 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6626 case_stmt->hir(&tmp, state);
6627
6628 /* Default case. */
6629 if (state->switch_state.previous_default && default_case.is_empty()) {
6630 default_case.append_list(&tmp);
6631 continue;
6632 }
6633
6634 /* If default case found, append 'after_default' list. */
6635 if (!default_case.is_empty())
6636 after_default.append_list(&tmp);
6637 else
6638 instructions->append_list(&tmp);
6639 }
6640
6641 /* Handle the default case. This is done here because default might not be
6642 * the last case. We need to add checks against following cases first to see
6643 * if default should be chosen or not.
6644 */
6645 if (!default_case.is_empty()) {
6646 ir_factory body(instructions, state);
6647
6648 ir_expression *cmp = NULL;
6649
6650 hash_table_foreach(state->switch_state.labels_ht, entry) {
6651 const struct case_label *const l = (struct case_label *) entry->data;
6652
6653 /* If the switch init-value is the value of one of the labels that
6654 * occurs after the default case, disable execution of the default
6655 * case.
6656 */
6657 if (l->after_default) {
6658 ir_constant *const cnst =
6659 state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6660 ? body.constant(unsigned(l->value))
6661 : body.constant(int(l->value));
6662
6663 cmp = cmp == NULL
6664 ? equal(cnst, state->switch_state.test_var)
6665 : logic_or(cmp, equal(cnst, state->switch_state.test_var));
6666 }
6667 }
6668
6669 if (cmp != NULL)
6670 body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
6671 else
6672 body.emit(assign(state->switch_state.run_default, body.constant(true)));
6673
6674 /* Append default case and all cases after it. */
6675 instructions->append_list(&default_case);
6676 instructions->append_list(&after_default);
6677 }
6678
6679 /* Case statements do not have r-values. */
6680 return NULL;
6681 }
6682
6683 ir_rvalue *
6684 ast_case_statement::hir(exec_list *instructions,
6685 struct _mesa_glsl_parse_state *state)
6686 {
6687 labels->hir(instructions, state);
6688
6689 /* Guard case statements depending on fallthru state. */
6690 ir_dereference_variable *const deref_fallthru_guard =
6691 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6692 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6693
6694 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6695 stmt->hir(& test_fallthru->then_instructions, state);
6696
6697 instructions->push_tail(test_fallthru);
6698
6699 /* Case statements do not have r-values. */
6700 return NULL;
6701 }
6702
6703
6704 ir_rvalue *
6705 ast_case_label_list::hir(exec_list *instructions,
6706 struct _mesa_glsl_parse_state *state)
6707 {
6708 foreach_list_typed (ast_case_label, label, link, & this->labels)
6709 label->hir(instructions, state);
6710
6711 /* Case labels do not have r-values. */
6712 return NULL;
6713 }
6714
6715 ir_rvalue *
6716 ast_case_label::hir(exec_list *instructions,
6717 struct _mesa_glsl_parse_state *state)
6718 {
6719 ir_factory body(instructions, state);
6720
6721 ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6722
6723 /* If not default case, ... */
6724 if (this->test_value != NULL) {
6725 /* Conditionally set fallthru state based on
6726 * comparison of cached test expression value to case label.
6727 */
6728 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6729 ir_constant *label_const =
6730 label_rval->constant_expression_value(body.mem_ctx);
6731
6732 if (!label_const) {
6733 YYLTYPE loc = this->test_value->get_location();
6734
6735 _mesa_glsl_error(& loc, state,
6736 "switch statement case label must be a "
6737 "constant expression");
6738
6739 /* Stuff a dummy value in to allow processing to continue. */
6740 label_const = body.constant(0);
6741 } else {
6742 hash_entry *entry =
6743 _mesa_hash_table_search(state->switch_state.labels_ht,
6744 &label_const->value.u[0]);
6745
6746 if (entry) {
6747 const struct case_label *const l =
6748 (struct case_label *) entry->data;
6749 const ast_expression *const previous_label = l->ast;
6750 YYLTYPE loc = this->test_value->get_location();
6751
6752 _mesa_glsl_error(& loc, state, "duplicate case value");
6753
6754 loc = previous_label->get_location();
6755 _mesa_glsl_error(& loc, state, "this is the previous case label");
6756 } else {
6757 struct case_label *l = ralloc(state->switch_state.labels_ht,
6758 struct case_label);
6759
6760 l->value = label_const->value.u[0];
6761 l->after_default = state->switch_state.previous_default != NULL;
6762 l->ast = this->test_value;
6763
6764 _mesa_hash_table_insert(state->switch_state.labels_ht,
6765 &label_const->value.u[0],
6766 l);
6767 }
6768 }
6769
6770 /* Create an r-value version of the ir_constant label here (after we may
6771 * have created a fake one in error cases) that can be passed to
6772 * apply_implicit_conversion below.
6773 */
6774 ir_rvalue *label = label_const;
6775
6776 ir_rvalue *deref_test_var =
6777 new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
6778
6779 /*
6780 * From GLSL 4.40 specification section 6.2 ("Selection"):
6781 *
6782 * "The type of the init-expression value in a switch statement must
6783 * be a scalar int or uint. The type of the constant-expression value
6784 * in a case label also must be a scalar int or uint. When any pair
6785 * of these values is tested for "equal value" and the types do not
6786 * match, an implicit conversion will be done to convert the int to a
6787 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6788 * is done."
6789 */
6790 if (label->type != state->switch_state.test_var->type) {
6791 YYLTYPE loc = this->test_value->get_location();
6792
6793 const glsl_type *type_a = label->type;
6794 const glsl_type *type_b = state->switch_state.test_var->type;
6795
6796 /* Check if int->uint implicit conversion is supported. */
6797 bool integer_conversion_supported =
6798 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6799 state);
6800
6801 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6802 !integer_conversion_supported) {
6803 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6804 "init-expression and case label (%s != %s)",
6805 type_a->name, type_b->name);
6806 } else {
6807 /* Conversion of the case label. */
6808 if (type_a->base_type == GLSL_TYPE_INT) {
6809 if (!apply_implicit_conversion(glsl_type::uint_type,
6810 label, state))
6811 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6812 } else {
6813 /* Conversion of the init-expression value. */
6814 if (!apply_implicit_conversion(glsl_type::uint_type,
6815 deref_test_var, state))
6816 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6817 }
6818 }
6819
6820 /* If the implicit conversion was allowed, the types will already be
6821 * the same. If the implicit conversion wasn't allowed, smash the
6822 * type of the label anyway. This will prevent the expression
6823 * constructor (below) from failing an assertion.
6824 */
6825 label->type = deref_test_var->type;
6826 }
6827
6828 body.emit(assign(fallthru_var,
6829 logic_or(fallthru_var, equal(label, deref_test_var))));
6830 } else { /* default case */
6831 if (state->switch_state.previous_default) {
6832 YYLTYPE loc = this->get_location();
6833 _mesa_glsl_error(& loc, state,
6834 "multiple default labels in one switch");
6835
6836 loc = state->switch_state.previous_default->get_location();
6837 _mesa_glsl_error(& loc, state, "this is the first default label");
6838 }
6839 state->switch_state.previous_default = this;
6840
6841 /* Set fallthru condition on 'run_default' bool. */
6842 body.emit(assign(fallthru_var,
6843 logic_or(fallthru_var,
6844 state->switch_state.run_default)));
6845 }
6846
6847 /* Case statements do not have r-values. */
6848 return NULL;
6849 }
6850
6851 void
6852 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6853 struct _mesa_glsl_parse_state *state)
6854 {
6855 void *ctx = state;
6856
6857 if (condition != NULL) {
6858 ir_rvalue *const cond =
6859 condition->hir(instructions, state);
6860
6861 if ((cond == NULL)
6862 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6863 YYLTYPE loc = condition->get_location();
6864
6865 _mesa_glsl_error(& loc, state,
6866 "loop condition must be scalar boolean");
6867 } else {
6868 /* As the first code in the loop body, generate a block that looks
6869 * like 'if (!condition) break;' as the loop termination condition.
6870 */
6871 ir_rvalue *const not_cond =
6872 new(ctx) ir_expression(ir_unop_logic_not, cond);
6873
6874 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6875
6876 ir_jump *const break_stmt =
6877 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6878
6879 if_stmt->then_instructions.push_tail(break_stmt);
6880 instructions->push_tail(if_stmt);
6881 }
6882 }
6883 }
6884
6885
6886 ir_rvalue *
6887 ast_iteration_statement::hir(exec_list *instructions,
6888 struct _mesa_glsl_parse_state *state)
6889 {
6890 void *ctx = state;
6891
6892 /* For-loops and while-loops start a new scope, but do-while loops do not.
6893 */
6894 if (mode != ast_do_while)
6895 state->symbols->push_scope();
6896
6897 if (init_statement != NULL)
6898 init_statement->hir(instructions, state);
6899
6900 ir_loop *const stmt = new(ctx) ir_loop();
6901 instructions->push_tail(stmt);
6902
6903 /* Track the current loop nesting. */
6904 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6905
6906 state->loop_nesting_ast = this;
6907
6908 /* Likewise, indicate that following code is closest to a loop,
6909 * NOT closest to a switch.
6910 */
6911 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6912 state->switch_state.is_switch_innermost = false;
6913
6914 if (mode != ast_do_while)
6915 condition_to_hir(&stmt->body_instructions, state);
6916
6917 if (body != NULL)
6918 body->hir(& stmt->body_instructions, state);
6919
6920 if (rest_expression != NULL)
6921 rest_expression->hir(& stmt->body_instructions, state);
6922
6923 if (mode == ast_do_while)
6924 condition_to_hir(&stmt->body_instructions, state);
6925
6926 if (mode != ast_do_while)
6927 state->symbols->pop_scope();
6928
6929 /* Restore previous nesting before returning. */
6930 state->loop_nesting_ast = nesting_ast;
6931 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6932
6933 /* Loops do not have r-values.
6934 */
6935 return NULL;
6936 }
6937
6938
6939 /**
6940 * Determine if the given type is valid for establishing a default precision
6941 * qualifier.
6942 *
6943 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6944 *
6945 * "The precision statement
6946 *
6947 * precision precision-qualifier type;
6948 *
6949 * can be used to establish a default precision qualifier. The type field
6950 * can be either int or float or any of the sampler types, and the
6951 * precision-qualifier can be lowp, mediump, or highp."
6952 *
6953 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6954 * qualifiers on sampler types, but this seems like an oversight (since the
6955 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6956 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6957 * version.
6958 */
6959 static bool
6960 is_valid_default_precision_type(const struct glsl_type *const type)
6961 {
6962 if (type == NULL)
6963 return false;
6964
6965 switch (type->base_type) {
6966 case GLSL_TYPE_INT:
6967 case GLSL_TYPE_FLOAT:
6968 /* "int" and "float" are valid, but vectors and matrices are not. */
6969 return type->vector_elements == 1 && type->matrix_columns == 1;
6970 case GLSL_TYPE_SAMPLER:
6971 case GLSL_TYPE_IMAGE:
6972 case GLSL_TYPE_ATOMIC_UINT:
6973 return true;
6974 default:
6975 return false;
6976 }
6977 }
6978
6979
6980 ir_rvalue *
6981 ast_type_specifier::hir(exec_list *instructions,
6982 struct _mesa_glsl_parse_state *state)
6983 {
6984 if (this->default_precision == ast_precision_none && this->structure == NULL)
6985 return NULL;
6986
6987 YYLTYPE loc = this->get_location();
6988
6989 /* If this is a precision statement, check that the type to which it is
6990 * applied is either float or int.
6991 *
6992 * From section 4.5.3 of the GLSL 1.30 spec:
6993 * "The precision statement
6994 * precision precision-qualifier type;
6995 * can be used to establish a default precision qualifier. The type
6996 * field can be either int or float [...]. Any other types or
6997 * qualifiers will result in an error.
6998 */
6999 if (this->default_precision != ast_precision_none) {
7000 if (!state->check_precision_qualifiers_allowed(&loc))
7001 return NULL;
7002
7003 if (this->structure != NULL) {
7004 _mesa_glsl_error(&loc, state,
7005 "precision qualifiers do not apply to structures");
7006 return NULL;
7007 }
7008
7009 if (this->array_specifier != NULL) {
7010 _mesa_glsl_error(&loc, state,
7011 "default precision statements do not apply to "
7012 "arrays");
7013 return NULL;
7014 }
7015
7016 const struct glsl_type *const type =
7017 state->symbols->get_type(this->type_name);
7018 if (!is_valid_default_precision_type(type)) {
7019 _mesa_glsl_error(&loc, state,
7020 "default precision statements apply only to "
7021 "float, int, and opaque types");
7022 return NULL;
7023 }
7024
7025 if (state->es_shader) {
7026 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7027 * spec says:
7028 *
7029 * "Non-precision qualified declarations will use the precision
7030 * qualifier specified in the most recent precision statement
7031 * that is still in scope. The precision statement has the same
7032 * scoping rules as variable declarations. If it is declared
7033 * inside a compound statement, its effect stops at the end of
7034 * the innermost statement it was declared in. Precision
7035 * statements in nested scopes override precision statements in
7036 * outer scopes. Multiple precision statements for the same basic
7037 * type can appear inside the same scope, with later statements
7038 * overriding earlier statements within that scope."
7039 *
7040 * Default precision specifications follow the same scope rules as
7041 * variables. So, we can track the state of the default precision
7042 * qualifiers in the symbol table, and the rules will just work. This
7043 * is a slight abuse of the symbol table, but it has the semantics
7044 * that we want.
7045 */
7046 state->symbols->add_default_precision_qualifier(this->type_name,
7047 this->default_precision);
7048 }
7049
7050 /* FINISHME: Translate precision statements into IR. */
7051 return NULL;
7052 }
7053
7054 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7055 * process_record_constructor() can do type-checking on C-style initializer
7056 * expressions of structs, but ast_struct_specifier should only be translated
7057 * to HIR if it is declaring the type of a structure.
7058 *
7059 * The ->is_declaration field is false for initializers of variables
7060 * declared separately from the struct's type definition.
7061 *
7062 * struct S { ... }; (is_declaration = true)
7063 * struct T { ... } t = { ... }; (is_declaration = true)
7064 * S s = { ... }; (is_declaration = false)
7065 */
7066 if (this->structure != NULL && this->structure->is_declaration)
7067 return this->structure->hir(instructions, state);
7068
7069 return NULL;
7070 }
7071
7072
7073 /**
7074 * Process a structure or interface block tree into an array of structure fields
7075 *
7076 * After parsing, where there are some syntax differnces, structures and
7077 * interface blocks are almost identical. They are similar enough that the
7078 * AST for each can be processed the same way into a set of
7079 * \c glsl_struct_field to describe the members.
7080 *
7081 * If we're processing an interface block, var_mode should be the type of the
7082 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7083 * ir_var_shader_storage). If we're processing a structure, var_mode should be
7084 * ir_var_auto.
7085 *
7086 * \return
7087 * The number of fields processed. A pointer to the array structure fields is
7088 * stored in \c *fields_ret.
7089 */
7090 static unsigned
7091 ast_process_struct_or_iface_block_members(exec_list *instructions,
7092 struct _mesa_glsl_parse_state *state,
7093 exec_list *declarations,
7094 glsl_struct_field **fields_ret,
7095 bool is_interface,
7096 enum glsl_matrix_layout matrix_layout,
7097 bool allow_reserved_names,
7098 ir_variable_mode var_mode,
7099 ast_type_qualifier *layout,
7100 unsigned block_stream,
7101 unsigned block_xfb_buffer,
7102 unsigned block_xfb_offset,
7103 unsigned expl_location,
7104 unsigned expl_align)
7105 {
7106 unsigned decl_count = 0;
7107 unsigned next_offset = 0;
7108
7109 /* Make an initial pass over the list of fields to determine how
7110 * many there are. Each element in this list is an ast_declarator_list.
7111 * This means that we actually need to count the number of elements in the
7112 * 'declarations' list in each of the elements.
7113 */
7114 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7115 decl_count += decl_list->declarations.length();
7116 }
7117
7118 /* Allocate storage for the fields and process the field
7119 * declarations. As the declarations are processed, try to also convert
7120 * the types to HIR. This ensures that structure definitions embedded in
7121 * other structure definitions or in interface blocks are processed.
7122 */
7123 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7124 decl_count);
7125
7126 bool first_member = true;
7127 bool first_member_has_explicit_location = false;
7128
7129 unsigned i = 0;
7130 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7131 const char *type_name;
7132 YYLTYPE loc = decl_list->get_location();
7133
7134 decl_list->type->specifier->hir(instructions, state);
7135
7136 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7137 *
7138 * "Anonymous structures are not supported; so embedded structures
7139 * must have a declarator. A name given to an embedded struct is
7140 * scoped at the same level as the struct it is embedded in."
7141 *
7142 * The same section of the GLSL 1.20 spec says:
7143 *
7144 * "Anonymous structures are not supported. Embedded structures are
7145 * not supported."
7146 *
7147 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7148 * embedded structures in 1.10 only.
7149 */
7150 if (state->language_version != 110 &&
7151 decl_list->type->specifier->structure != NULL)
7152 _mesa_glsl_error(&loc, state,
7153 "embedded structure declarations are not allowed");
7154
7155 const glsl_type *decl_type =
7156 decl_list->type->glsl_type(& type_name, state);
7157
7158 const struct ast_type_qualifier *const qual =
7159 &decl_list->type->qualifier;
7160
7161 /* From section 4.3.9 of the GLSL 4.40 spec:
7162 *
7163 * "[In interface blocks] opaque types are not allowed."
7164 *
7165 * It should be impossible for decl_type to be NULL here. Cases that
7166 * might naturally lead to decl_type being NULL, especially for the
7167 * is_interface case, will have resulted in compilation having
7168 * already halted due to a syntax error.
7169 */
7170 assert(decl_type);
7171
7172 if (is_interface) {
7173 /* From section 4.3.7 of the ARB_bindless_texture spec:
7174 *
7175 * "(remove the following bullet from the last list on p. 39,
7176 * thereby permitting sampler types in interface blocks; image
7177 * types are also permitted in blocks by this extension)"
7178 *
7179 * * sampler types are not allowed
7180 */
7181 if (decl_type->contains_atomic() ||
7182 (!state->has_bindless() && decl_type->contains_opaque())) {
7183 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7184 "interface block contains %s variable",
7185 state->has_bindless() ? "atomic" : "opaque");
7186 }
7187 } else {
7188 if (decl_type->contains_atomic()) {
7189 /* From section 4.1.7.3 of the GLSL 4.40 spec:
7190 *
7191 * "Members of structures cannot be declared as atomic counter
7192 * types."
7193 */
7194 _mesa_glsl_error(&loc, state, "atomic counter in structure");
7195 }
7196
7197 if (!state->has_bindless() && decl_type->contains_image()) {
7198 /* FINISHME: Same problem as with atomic counters.
7199 * FINISHME: Request clarification from Khronos and add
7200 * FINISHME: spec quotation here.
7201 */
7202 _mesa_glsl_error(&loc, state, "image in structure");
7203 }
7204 }
7205
7206 if (qual->flags.q.explicit_binding) {
7207 _mesa_glsl_error(&loc, state,
7208 "binding layout qualifier cannot be applied "
7209 "to struct or interface block members");
7210 }
7211
7212 if (is_interface) {
7213 if (!first_member) {
7214 if (!layout->flags.q.explicit_location &&
7215 ((first_member_has_explicit_location &&
7216 !qual->flags.q.explicit_location) ||
7217 (!first_member_has_explicit_location &&
7218 qual->flags.q.explicit_location))) {
7219 _mesa_glsl_error(&loc, state,
7220 "when block-level location layout qualifier "
7221 "is not supplied either all members must "
7222 "have a location layout qualifier or all "
7223 "members must not have a location layout "
7224 "qualifier");
7225 }
7226 } else {
7227 first_member = false;
7228 first_member_has_explicit_location =
7229 qual->flags.q.explicit_location;
7230 }
7231 }
7232
7233 if (qual->flags.q.std140 ||
7234 qual->flags.q.std430 ||
7235 qual->flags.q.packed ||
7236 qual->flags.q.shared) {
7237 _mesa_glsl_error(&loc, state,
7238 "uniform/shader storage block layout qualifiers "
7239 "std140, std430, packed, and shared can only be "
7240 "applied to uniform/shader storage blocks, not "
7241 "members");
7242 }
7243
7244 if (qual->flags.q.constant) {
7245 _mesa_glsl_error(&loc, state,
7246 "const storage qualifier cannot be applied "
7247 "to struct or interface block members");
7248 }
7249
7250 validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7251 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7252
7253 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7254 *
7255 * "A block member may be declared with a stream identifier, but
7256 * the specified stream must match the stream associated with the
7257 * containing block."
7258 */
7259 if (qual->flags.q.explicit_stream) {
7260 unsigned qual_stream;
7261 if (process_qualifier_constant(state, &loc, "stream",
7262 qual->stream, &qual_stream) &&
7263 qual_stream != block_stream) {
7264 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7265 "interface block member does not match "
7266 "the interface block (%u vs %u)", qual_stream,
7267 block_stream);
7268 }
7269 }
7270
7271 int xfb_buffer;
7272 unsigned explicit_xfb_buffer = 0;
7273 if (qual->flags.q.explicit_xfb_buffer) {
7274 unsigned qual_xfb_buffer;
7275 if (process_qualifier_constant(state, &loc, "xfb_buffer",
7276 qual->xfb_buffer, &qual_xfb_buffer)) {
7277 explicit_xfb_buffer = 1;
7278 if (qual_xfb_buffer != block_xfb_buffer)
7279 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7280 "interface block member does not match "
7281 "the interface block (%u vs %u)",
7282 qual_xfb_buffer, block_xfb_buffer);
7283 }
7284 xfb_buffer = (int) qual_xfb_buffer;
7285 } else {
7286 if (layout)
7287 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7288 xfb_buffer = (int) block_xfb_buffer;
7289 }
7290
7291 int xfb_stride = -1;
7292 if (qual->flags.q.explicit_xfb_stride) {
7293 unsigned qual_xfb_stride;
7294 if (process_qualifier_constant(state, &loc, "xfb_stride",
7295 qual->xfb_stride, &qual_xfb_stride)) {
7296 xfb_stride = (int) qual_xfb_stride;
7297 }
7298 }
7299
7300 if (qual->flags.q.uniform && qual->has_interpolation()) {
7301 _mesa_glsl_error(&loc, state,
7302 "interpolation qualifiers cannot be used "
7303 "with uniform interface blocks");
7304 }
7305
7306 if ((qual->flags.q.uniform || !is_interface) &&
7307 qual->has_auxiliary_storage()) {
7308 _mesa_glsl_error(&loc, state,
7309 "auxiliary storage qualifiers cannot be used "
7310 "in uniform blocks or structures.");
7311 }
7312
7313 if (qual->flags.q.row_major || qual->flags.q.column_major) {
7314 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7315 _mesa_glsl_error(&loc, state,
7316 "row_major and column_major can only be "
7317 "applied to interface blocks");
7318 } else
7319 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7320 }
7321
7322 foreach_list_typed (ast_declaration, decl, link,
7323 &decl_list->declarations) {
7324 YYLTYPE loc = decl->get_location();
7325
7326 if (!allow_reserved_names)
7327 validate_identifier(decl->identifier, loc, state);
7328
7329 const struct glsl_type *field_type =
7330 process_array_type(&loc, decl_type, decl->array_specifier, state);
7331 validate_array_dimensions(field_type, state, &loc);
7332 fields[i].type = field_type;
7333 fields[i].name = decl->identifier;
7334 fields[i].interpolation =
7335 interpret_interpolation_qualifier(qual, field_type,
7336 var_mode, state, &loc);
7337 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7338 fields[i].sample = qual->flags.q.sample ? 1 : 0;
7339 fields[i].patch = qual->flags.q.patch ? 1 : 0;
7340 fields[i].precision = qual->precision;
7341 fields[i].offset = -1;
7342 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7343 fields[i].xfb_buffer = xfb_buffer;
7344 fields[i].xfb_stride = xfb_stride;
7345
7346 if (qual->flags.q.explicit_location) {
7347 unsigned qual_location;
7348 if (process_qualifier_constant(state, &loc, "location",
7349 qual->location, &qual_location)) {
7350 fields[i].location = qual_location +
7351 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7352 expl_location = fields[i].location +
7353 fields[i].type->count_attribute_slots(false);
7354 }
7355 } else {
7356 if (layout && layout->flags.q.explicit_location) {
7357 fields[i].location = expl_location;
7358 expl_location += fields[i].type->count_attribute_slots(false);
7359 } else {
7360 fields[i].location = -1;
7361 }
7362 }
7363
7364 /* Offset can only be used with std430 and std140 layouts an initial
7365 * value of 0 is used for error detection.
7366 */
7367 unsigned align = 0;
7368 unsigned size = 0;
7369 if (layout) {
7370 bool row_major;
7371 if (qual->flags.q.row_major ||
7372 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7373 row_major = true;
7374 } else {
7375 row_major = false;
7376 }
7377
7378 if(layout->flags.q.std140) {
7379 align = field_type->std140_base_alignment(row_major);
7380 size = field_type->std140_size(row_major);
7381 } else if (layout->flags.q.std430) {
7382 align = field_type->std430_base_alignment(row_major);
7383 size = field_type->std430_size(row_major);
7384 }
7385 }
7386
7387 if (qual->flags.q.explicit_offset) {
7388 unsigned qual_offset;
7389 if (process_qualifier_constant(state, &loc, "offset",
7390 qual->offset, &qual_offset)) {
7391 if (align != 0 && size != 0) {
7392 if (next_offset > qual_offset)
7393 _mesa_glsl_error(&loc, state, "layout qualifier "
7394 "offset overlaps previous member");
7395
7396 if (qual_offset % align) {
7397 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7398 "must be a multiple of the base "
7399 "alignment of %s", field_type->name);
7400 }
7401 fields[i].offset = qual_offset;
7402 next_offset = qual_offset + size;
7403 } else {
7404 _mesa_glsl_error(&loc, state, "offset can only be used "
7405 "with std430 and std140 layouts");
7406 }
7407 }
7408 }
7409
7410 if (qual->flags.q.explicit_align || expl_align != 0) {
7411 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7412 next_offset;
7413 if (align == 0 || size == 0) {
7414 _mesa_glsl_error(&loc, state, "align can only be used with "
7415 "std430 and std140 layouts");
7416 } else if (qual->flags.q.explicit_align) {
7417 unsigned member_align;
7418 if (process_qualifier_constant(state, &loc, "align",
7419 qual->align, &member_align)) {
7420 if (member_align == 0 ||
7421 member_align & (member_align - 1)) {
7422 _mesa_glsl_error(&loc, state, "align layout qualifier "
7423 "is not a power of 2");
7424 } else {
7425 fields[i].offset = glsl_align(offset, member_align);
7426 next_offset = fields[i].offset + size;
7427 }
7428 }
7429 } else {
7430 fields[i].offset = glsl_align(offset, expl_align);
7431 next_offset = fields[i].offset + size;
7432 }
7433 } else if (!qual->flags.q.explicit_offset) {
7434 if (align != 0 && size != 0)
7435 next_offset = glsl_align(next_offset, align) + size;
7436 }
7437
7438 /* From the ARB_enhanced_layouts spec:
7439 *
7440 * "The given offset applies to the first component of the first
7441 * member of the qualified entity. Then, within the qualified
7442 * entity, subsequent components are each assigned, in order, to
7443 * the next available offset aligned to a multiple of that
7444 * component's size. Aggregate types are flattened down to the
7445 * component level to get this sequence of components."
7446 */
7447 if (qual->flags.q.explicit_xfb_offset) {
7448 unsigned xfb_offset;
7449 if (process_qualifier_constant(state, &loc, "xfb_offset",
7450 qual->offset, &xfb_offset)) {
7451 fields[i].offset = xfb_offset;
7452 block_xfb_offset = fields[i].offset +
7453 4 * field_type->component_slots();
7454 }
7455 } else {
7456 if (layout && layout->flags.q.explicit_xfb_offset) {
7457 unsigned align = field_type->is_64bit() ? 8 : 4;
7458 fields[i].offset = glsl_align(block_xfb_offset, align);
7459 block_xfb_offset += 4 * field_type->component_slots();
7460 }
7461 }
7462
7463 /* Propogate row- / column-major information down the fields of the
7464 * structure or interface block. Structures need this data because
7465 * the structure may contain a structure that contains ... a matrix
7466 * that need the proper layout.
7467 */
7468 if (is_interface && layout &&
7469 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7470 (field_type->without_array()->is_matrix()
7471 || field_type->without_array()->is_record())) {
7472 /* If no layout is specified for the field, inherit the layout
7473 * from the block.
7474 */
7475 fields[i].matrix_layout = matrix_layout;
7476
7477 if (qual->flags.q.row_major)
7478 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7479 else if (qual->flags.q.column_major)
7480 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7481
7482 /* If we're processing an uniform or buffer block, the matrix
7483 * layout must be decided by this point.
7484 */
7485 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7486 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7487 }
7488
7489 /* Memory qualifiers are allowed on buffer and image variables, while
7490 * the format qualifier is only accepted for images.
7491 */
7492 if (var_mode == ir_var_shader_storage ||
7493 field_type->without_array()->is_image()) {
7494 /* For readonly and writeonly qualifiers the field definition,
7495 * if set, overwrites the layout qualifier.
7496 */
7497 if (qual->flags.q.read_only || qual->flags.q.write_only) {
7498 fields[i].memory_read_only = qual->flags.q.read_only;
7499 fields[i].memory_write_only = qual->flags.q.write_only;
7500 } else {
7501 fields[i].memory_read_only =
7502 layout ? layout->flags.q.read_only : 0;
7503 fields[i].memory_write_only =
7504 layout ? layout->flags.q.write_only : 0;
7505 }
7506
7507 /* For other qualifiers, we set the flag if either the layout
7508 * qualifier or the field qualifier are set
7509 */
7510 fields[i].memory_coherent = qual->flags.q.coherent ||
7511 (layout && layout->flags.q.coherent);
7512 fields[i].memory_volatile = qual->flags.q._volatile ||
7513 (layout && layout->flags.q._volatile);
7514 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7515 (layout && layout->flags.q.restrict_flag);
7516
7517 if (field_type->without_array()->is_image()) {
7518 if (qual->flags.q.explicit_image_format) {
7519 if (qual->image_base_type !=
7520 field_type->without_array()->sampled_type) {
7521 _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7522 "match the base data type of the image");
7523 }
7524
7525 fields[i].image_format = qual->image_format;
7526 } else {
7527 if (!qual->flags.q.write_only) {
7528 _mesa_glsl_error(&loc, state, "image not qualified with "
7529 "`writeonly' must have a format layout "
7530 "qualifier");
7531 }
7532
7533 fields[i].image_format = GL_NONE;
7534 }
7535 }
7536 }
7537
7538 i++;
7539 }
7540 }
7541
7542 assert(i == decl_count);
7543
7544 *fields_ret = fields;
7545 return decl_count;
7546 }
7547
7548
7549 ir_rvalue *
7550 ast_struct_specifier::hir(exec_list *instructions,
7551 struct _mesa_glsl_parse_state *state)
7552 {
7553 YYLTYPE loc = this->get_location();
7554
7555 unsigned expl_location = 0;
7556 if (layout && layout->flags.q.explicit_location) {
7557 if (!process_qualifier_constant(state, &loc, "location",
7558 layout->location, &expl_location)) {
7559 return NULL;
7560 } else {
7561 expl_location = VARYING_SLOT_VAR0 + expl_location;
7562 }
7563 }
7564
7565 glsl_struct_field *fields;
7566 unsigned decl_count =
7567 ast_process_struct_or_iface_block_members(instructions,
7568 state,
7569 &this->declarations,
7570 &fields,
7571 false,
7572 GLSL_MATRIX_LAYOUT_INHERITED,
7573 false /* allow_reserved_names */,
7574 ir_var_auto,
7575 layout,
7576 0, /* for interface only */
7577 0, /* for interface only */
7578 0, /* for interface only */
7579 expl_location,
7580 0 /* for interface only */);
7581
7582 validate_identifier(this->name, loc, state);
7583
7584 type = glsl_type::get_record_instance(fields, decl_count, this->name);
7585
7586 if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7587 const glsl_type *match = state->symbols->get_type(name);
7588 /* allow struct matching for desktop GL - older UE4 does this */
7589 if (match != NULL && state->is_version(130, 0) && match->record_compare(type, false))
7590 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7591 else
7592 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7593 } else {
7594 const glsl_type **s = reralloc(state, state->user_structures,
7595 const glsl_type *,
7596 state->num_user_structures + 1);
7597 if (s != NULL) {
7598 s[state->num_user_structures] = type;
7599 state->user_structures = s;
7600 state->num_user_structures++;
7601 }
7602 }
7603
7604 /* Structure type definitions do not have r-values.
7605 */
7606 return NULL;
7607 }
7608
7609
7610 /**
7611 * Visitor class which detects whether a given interface block has been used.
7612 */
7613 class interface_block_usage_visitor : public ir_hierarchical_visitor
7614 {
7615 public:
7616 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7617 : mode(mode), block(block), found(false)
7618 {
7619 }
7620
7621 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7622 {
7623 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7624 found = true;
7625 return visit_stop;
7626 }
7627 return visit_continue;
7628 }
7629
7630 bool usage_found() const
7631 {
7632 return this->found;
7633 }
7634
7635 private:
7636 ir_variable_mode mode;
7637 const glsl_type *block;
7638 bool found;
7639 };
7640
7641 static bool
7642 is_unsized_array_last_element(ir_variable *v)
7643 {
7644 const glsl_type *interface_type = v->get_interface_type();
7645 int length = interface_type->length;
7646
7647 assert(v->type->is_unsized_array());
7648
7649 /* Check if it is the last element of the interface */
7650 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7651 return true;
7652 return false;
7653 }
7654
7655 static void
7656 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7657 {
7658 var->data.memory_read_only = field.memory_read_only;
7659 var->data.memory_write_only = field.memory_write_only;
7660 var->data.memory_coherent = field.memory_coherent;
7661 var->data.memory_volatile = field.memory_volatile;
7662 var->data.memory_restrict = field.memory_restrict;
7663 }
7664
7665 ir_rvalue *
7666 ast_interface_block::hir(exec_list *instructions,
7667 struct _mesa_glsl_parse_state *state)
7668 {
7669 YYLTYPE loc = this->get_location();
7670
7671 /* Interface blocks must be declared at global scope */
7672 if (state->current_function != NULL) {
7673 _mesa_glsl_error(&loc, state,
7674 "Interface block `%s' must be declared "
7675 "at global scope",
7676 this->block_name);
7677 }
7678
7679 /* Validate qualifiers:
7680 *
7681 * - Layout Qualifiers as per the table in Section 4.4
7682 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7683 *
7684 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7685 * GLSL 4.50 spec:
7686 *
7687 * "Additionally, memory qualifiers may also be used in the declaration
7688 * of shader storage blocks"
7689 *
7690 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7691 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7692 * Layout Qualifiers) of the GLSL 4.50 spec says:
7693 *
7694 * "The std430 qualifier is supported only for shader storage blocks;
7695 * using std430 on a uniform block will result in a compile-time error."
7696 */
7697 ast_type_qualifier allowed_blk_qualifiers;
7698 allowed_blk_qualifiers.flags.i = 0;
7699 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7700 allowed_blk_qualifiers.flags.q.shared = 1;
7701 allowed_blk_qualifiers.flags.q.packed = 1;
7702 allowed_blk_qualifiers.flags.q.std140 = 1;
7703 allowed_blk_qualifiers.flags.q.row_major = 1;
7704 allowed_blk_qualifiers.flags.q.column_major = 1;
7705 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7706 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7707 if (this->layout.flags.q.buffer) {
7708 allowed_blk_qualifiers.flags.q.buffer = 1;
7709 allowed_blk_qualifiers.flags.q.std430 = 1;
7710 allowed_blk_qualifiers.flags.q.coherent = 1;
7711 allowed_blk_qualifiers.flags.q._volatile = 1;
7712 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7713 allowed_blk_qualifiers.flags.q.read_only = 1;
7714 allowed_blk_qualifiers.flags.q.write_only = 1;
7715 } else {
7716 allowed_blk_qualifiers.flags.q.uniform = 1;
7717 }
7718 } else {
7719 /* Interface block */
7720 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7721
7722 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7723 if (this->layout.flags.q.out) {
7724 allowed_blk_qualifiers.flags.q.out = 1;
7725 if (state->stage == MESA_SHADER_GEOMETRY ||
7726 state->stage == MESA_SHADER_TESS_CTRL ||
7727 state->stage == MESA_SHADER_TESS_EVAL ||
7728 state->stage == MESA_SHADER_VERTEX ) {
7729 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7730 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7731 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7732 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7733 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7734 if (state->stage == MESA_SHADER_GEOMETRY) {
7735 allowed_blk_qualifiers.flags.q.stream = 1;
7736 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7737 }
7738 if (state->stage == MESA_SHADER_TESS_CTRL) {
7739 allowed_blk_qualifiers.flags.q.patch = 1;
7740 }
7741 }
7742 } else {
7743 allowed_blk_qualifiers.flags.q.in = 1;
7744 if (state->stage == MESA_SHADER_TESS_EVAL) {
7745 allowed_blk_qualifiers.flags.q.patch = 1;
7746 }
7747 }
7748 }
7749
7750 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7751 "invalid qualifier for block",
7752 this->block_name);
7753
7754 enum glsl_interface_packing packing;
7755 if (this->layout.flags.q.std140) {
7756 packing = GLSL_INTERFACE_PACKING_STD140;
7757 } else if (this->layout.flags.q.packed) {
7758 packing = GLSL_INTERFACE_PACKING_PACKED;
7759 } else if (this->layout.flags.q.std430) {
7760 packing = GLSL_INTERFACE_PACKING_STD430;
7761 } else {
7762 /* The default layout is shared.
7763 */
7764 packing = GLSL_INTERFACE_PACKING_SHARED;
7765 }
7766
7767 ir_variable_mode var_mode;
7768 const char *iface_type_name;
7769 if (this->layout.flags.q.in) {
7770 var_mode = ir_var_shader_in;
7771 iface_type_name = "in";
7772 } else if (this->layout.flags.q.out) {
7773 var_mode = ir_var_shader_out;
7774 iface_type_name = "out";
7775 } else if (this->layout.flags.q.uniform) {
7776 var_mode = ir_var_uniform;
7777 iface_type_name = "uniform";
7778 } else if (this->layout.flags.q.buffer) {
7779 var_mode = ir_var_shader_storage;
7780 iface_type_name = "buffer";
7781 } else {
7782 var_mode = ir_var_auto;
7783 iface_type_name = "UNKNOWN";
7784 assert(!"interface block layout qualifier not found!");
7785 }
7786
7787 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7788 if (this->layout.flags.q.row_major)
7789 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7790 else if (this->layout.flags.q.column_major)
7791 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7792
7793 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7794 exec_list declared_variables;
7795 glsl_struct_field *fields;
7796
7797 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7798 * that we don't have incompatible qualifiers
7799 */
7800 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7801 _mesa_glsl_error(&loc, state,
7802 "Interface block sets both readonly and writeonly");
7803 }
7804
7805 unsigned qual_stream;
7806 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7807 &qual_stream) ||
7808 !validate_stream_qualifier(&loc, state, qual_stream)) {
7809 /* If the stream qualifier is invalid it doesn't make sense to continue
7810 * on and try to compare stream layouts on member variables against it
7811 * so just return early.
7812 */
7813 return NULL;
7814 }
7815
7816 unsigned qual_xfb_buffer;
7817 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7818 layout.xfb_buffer, &qual_xfb_buffer) ||
7819 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7820 return NULL;
7821 }
7822
7823 unsigned qual_xfb_offset;
7824 if (layout.flags.q.explicit_xfb_offset) {
7825 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7826 layout.offset, &qual_xfb_offset)) {
7827 return NULL;
7828 }
7829 }
7830
7831 unsigned qual_xfb_stride;
7832 if (layout.flags.q.explicit_xfb_stride) {
7833 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7834 layout.xfb_stride, &qual_xfb_stride)) {
7835 return NULL;
7836 }
7837 }
7838
7839 unsigned expl_location = 0;
7840 if (layout.flags.q.explicit_location) {
7841 if (!process_qualifier_constant(state, &loc, "location",
7842 layout.location, &expl_location)) {
7843 return NULL;
7844 } else {
7845 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7846 : VARYING_SLOT_VAR0;
7847 }
7848 }
7849
7850 unsigned expl_align = 0;
7851 if (layout.flags.q.explicit_align) {
7852 if (!process_qualifier_constant(state, &loc, "align",
7853 layout.align, &expl_align)) {
7854 return NULL;
7855 } else {
7856 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7857 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7858 "power of 2.");
7859 return NULL;
7860 }
7861 }
7862 }
7863
7864 unsigned int num_variables =
7865 ast_process_struct_or_iface_block_members(&declared_variables,
7866 state,
7867 &this->declarations,
7868 &fields,
7869 true,
7870 matrix_layout,
7871 redeclaring_per_vertex,
7872 var_mode,
7873 &this->layout,
7874 qual_stream,
7875 qual_xfb_buffer,
7876 qual_xfb_offset,
7877 expl_location,
7878 expl_align);
7879
7880 if (!redeclaring_per_vertex) {
7881 validate_identifier(this->block_name, loc, state);
7882
7883 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7884 *
7885 * "Block names have no other use within a shader beyond interface
7886 * matching; it is a compile-time error to use a block name at global
7887 * scope for anything other than as a block name."
7888 */
7889 ir_variable *var = state->symbols->get_variable(this->block_name);
7890 if (var && !var->type->is_interface()) {
7891 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7892 "already used in the scope.",
7893 this->block_name);
7894 }
7895 }
7896
7897 const glsl_type *earlier_per_vertex = NULL;
7898 if (redeclaring_per_vertex) {
7899 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7900 * the named interface block gl_in, we can find it by looking at the
7901 * previous declaration of gl_in. Otherwise we can find it by looking
7902 * at the previous decalartion of any of the built-in outputs,
7903 * e.g. gl_Position.
7904 *
7905 * Also check that the instance name and array-ness of the redeclaration
7906 * are correct.
7907 */
7908 switch (var_mode) {
7909 case ir_var_shader_in:
7910 if (ir_variable *earlier_gl_in =
7911 state->symbols->get_variable("gl_in")) {
7912 earlier_per_vertex = earlier_gl_in->get_interface_type();
7913 } else {
7914 _mesa_glsl_error(&loc, state,
7915 "redeclaration of gl_PerVertex input not allowed "
7916 "in the %s shader",
7917 _mesa_shader_stage_to_string(state->stage));
7918 }
7919 if (this->instance_name == NULL ||
7920 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7921 !this->array_specifier->is_single_dimension()) {
7922 _mesa_glsl_error(&loc, state,
7923 "gl_PerVertex input must be redeclared as "
7924 "gl_in[]");
7925 }
7926 break;
7927 case ir_var_shader_out:
7928 if (ir_variable *earlier_gl_Position =
7929 state->symbols->get_variable("gl_Position")) {
7930 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7931 } else if (ir_variable *earlier_gl_out =
7932 state->symbols->get_variable("gl_out")) {
7933 earlier_per_vertex = earlier_gl_out->get_interface_type();
7934 } else {
7935 _mesa_glsl_error(&loc, state,
7936 "redeclaration of gl_PerVertex output not "
7937 "allowed in the %s shader",
7938 _mesa_shader_stage_to_string(state->stage));
7939 }
7940 if (state->stage == MESA_SHADER_TESS_CTRL) {
7941 if (this->instance_name == NULL ||
7942 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7943 _mesa_glsl_error(&loc, state,
7944 "gl_PerVertex output must be redeclared as "
7945 "gl_out[]");
7946 }
7947 } else {
7948 if (this->instance_name != NULL) {
7949 _mesa_glsl_error(&loc, state,
7950 "gl_PerVertex output may not be redeclared with "
7951 "an instance name");
7952 }
7953 }
7954 break;
7955 default:
7956 _mesa_glsl_error(&loc, state,
7957 "gl_PerVertex must be declared as an input or an "
7958 "output");
7959 break;
7960 }
7961
7962 if (earlier_per_vertex == NULL) {
7963 /* An error has already been reported. Bail out to avoid null
7964 * dereferences later in this function.
7965 */
7966 return NULL;
7967 }
7968
7969 /* Copy locations from the old gl_PerVertex interface block. */
7970 for (unsigned i = 0; i < num_variables; i++) {
7971 int j = earlier_per_vertex->field_index(fields[i].name);
7972 if (j == -1) {
7973 _mesa_glsl_error(&loc, state,
7974 "redeclaration of gl_PerVertex must be a subset "
7975 "of the built-in members of gl_PerVertex");
7976 } else {
7977 fields[i].location =
7978 earlier_per_vertex->fields.structure[j].location;
7979 fields[i].offset =
7980 earlier_per_vertex->fields.structure[j].offset;
7981 fields[i].interpolation =
7982 earlier_per_vertex->fields.structure[j].interpolation;
7983 fields[i].centroid =
7984 earlier_per_vertex->fields.structure[j].centroid;
7985 fields[i].sample =
7986 earlier_per_vertex->fields.structure[j].sample;
7987 fields[i].patch =
7988 earlier_per_vertex->fields.structure[j].patch;
7989 fields[i].precision =
7990 earlier_per_vertex->fields.structure[j].precision;
7991 fields[i].explicit_xfb_buffer =
7992 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7993 fields[i].xfb_buffer =
7994 earlier_per_vertex->fields.structure[j].xfb_buffer;
7995 fields[i].xfb_stride =
7996 earlier_per_vertex->fields.structure[j].xfb_stride;
7997 }
7998 }
7999
8000 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
8001 * spec:
8002 *
8003 * If a built-in interface block is redeclared, it must appear in
8004 * the shader before any use of any member included in the built-in
8005 * declaration, or a compilation error will result.
8006 *
8007 * This appears to be a clarification to the behaviour established for
8008 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
8009 * regardless of GLSL version.
8010 */
8011 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
8012 v.run(instructions);
8013 if (v.usage_found()) {
8014 _mesa_glsl_error(&loc, state,
8015 "redeclaration of a built-in interface block must "
8016 "appear before any use of any member of the "
8017 "interface block");
8018 }
8019 }
8020
8021 const glsl_type *block_type =
8022 glsl_type::get_interface_instance(fields,
8023 num_variables,
8024 packing,
8025 matrix_layout ==
8026 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8027 this->block_name);
8028
8029 unsigned component_size = block_type->contains_double() ? 8 : 4;
8030 int xfb_offset =
8031 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8032 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8033 component_size);
8034
8035 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
8036 YYLTYPE loc = this->get_location();
8037 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8038 "already taken in the current scope",
8039 this->block_name, iface_type_name);
8040 }
8041
8042 /* Since interface blocks cannot contain statements, it should be
8043 * impossible for the block to generate any instructions.
8044 */
8045 assert(declared_variables.is_empty());
8046
8047 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8048 *
8049 * Geometry shader input variables get the per-vertex values written
8050 * out by vertex shader output variables of the same names. Since a
8051 * geometry shader operates on a set of vertices, each input varying
8052 * variable (or input block, see interface blocks below) needs to be
8053 * declared as an array.
8054 */
8055 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8056 var_mode == ir_var_shader_in) {
8057 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8058 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8059 state->stage == MESA_SHADER_TESS_EVAL) &&
8060 !this->layout.flags.q.patch &&
8061 this->array_specifier == NULL &&
8062 var_mode == ir_var_shader_in) {
8063 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8064 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8065 !this->layout.flags.q.patch &&
8066 this->array_specifier == NULL &&
8067 var_mode == ir_var_shader_out) {
8068 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8069 }
8070
8071
8072 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8073 * says:
8074 *
8075 * "If an instance name (instance-name) is used, then it puts all the
8076 * members inside a scope within its own name space, accessed with the
8077 * field selector ( . ) operator (analogously to structures)."
8078 */
8079 if (this->instance_name) {
8080 if (redeclaring_per_vertex) {
8081 /* When a built-in in an unnamed interface block is redeclared,
8082 * get_variable_being_redeclared() calls
8083 * check_builtin_array_max_size() to make sure that built-in array
8084 * variables aren't redeclared to illegal sizes. But we're looking
8085 * at a redeclaration of a named built-in interface block. So we
8086 * have to manually call check_builtin_array_max_size() for all parts
8087 * of the interface that are arrays.
8088 */
8089 for (unsigned i = 0; i < num_variables; i++) {
8090 if (fields[i].type->is_array()) {
8091 const unsigned size = fields[i].type->array_size();
8092 check_builtin_array_max_size(fields[i].name, size, loc, state);
8093 }
8094 }
8095 } else {
8096 validate_identifier(this->instance_name, loc, state);
8097 }
8098
8099 ir_variable *var;
8100
8101 if (this->array_specifier != NULL) {
8102 const glsl_type *block_array_type =
8103 process_array_type(&loc, block_type, this->array_specifier, state);
8104
8105 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8106 *
8107 * For uniform blocks declared an array, each individual array
8108 * element corresponds to a separate buffer object backing one
8109 * instance of the block. As the array size indicates the number
8110 * of buffer objects needed, uniform block array declarations
8111 * must specify an array size.
8112 *
8113 * And a few paragraphs later:
8114 *
8115 * Geometry shader input blocks must be declared as arrays and
8116 * follow the array declaration and linking rules for all
8117 * geometry shader inputs. All other input and output block
8118 * arrays must specify an array size.
8119 *
8120 * The same applies to tessellation shaders.
8121 *
8122 * The upshot of this is that the only circumstance where an
8123 * interface array size *doesn't* need to be specified is on a
8124 * geometry shader input, tessellation control shader input,
8125 * tessellation control shader output, and tessellation evaluation
8126 * shader input.
8127 */
8128 if (block_array_type->is_unsized_array()) {
8129 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8130 state->stage == MESA_SHADER_TESS_CTRL ||
8131 state->stage == MESA_SHADER_TESS_EVAL;
8132 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8133
8134 if (this->layout.flags.q.in) {
8135 if (!allow_inputs)
8136 _mesa_glsl_error(&loc, state,
8137 "unsized input block arrays not allowed in "
8138 "%s shader",
8139 _mesa_shader_stage_to_string(state->stage));
8140 } else if (this->layout.flags.q.out) {
8141 if (!allow_outputs)
8142 _mesa_glsl_error(&loc, state,
8143 "unsized output block arrays not allowed in "
8144 "%s shader",
8145 _mesa_shader_stage_to_string(state->stage));
8146 } else {
8147 /* by elimination, this is a uniform block array */
8148 _mesa_glsl_error(&loc, state,
8149 "unsized uniform block arrays not allowed in "
8150 "%s shader",
8151 _mesa_shader_stage_to_string(state->stage));
8152 }
8153 }
8154
8155 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8156 *
8157 * * Arrays of arrays of blocks are not allowed
8158 */
8159 if (state->es_shader && block_array_type->is_array() &&
8160 block_array_type->fields.array->is_array()) {
8161 _mesa_glsl_error(&loc, state,
8162 "arrays of arrays interface blocks are "
8163 "not allowed");
8164 }
8165
8166 var = new(state) ir_variable(block_array_type,
8167 this->instance_name,
8168 var_mode);
8169 } else {
8170 var = new(state) ir_variable(block_type,
8171 this->instance_name,
8172 var_mode);
8173 }
8174
8175 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8176 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8177
8178 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8179 var->data.read_only = true;
8180
8181 var->data.patch = this->layout.flags.q.patch;
8182
8183 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8184 handle_geometry_shader_input_decl(state, loc, var);
8185 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8186 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8187 handle_tess_shader_input_decl(state, loc, var);
8188 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8189 handle_tess_ctrl_shader_output_decl(state, loc, var);
8190
8191 for (unsigned i = 0; i < num_variables; i++) {
8192 if (var->data.mode == ir_var_shader_storage)
8193 apply_memory_qualifiers(var, fields[i]);
8194 }
8195
8196 if (ir_variable *earlier =
8197 state->symbols->get_variable(this->instance_name)) {
8198 if (!redeclaring_per_vertex) {
8199 _mesa_glsl_error(&loc, state, "`%s' redeclared",
8200 this->instance_name);
8201 }
8202 earlier->data.how_declared = ir_var_declared_normally;
8203 earlier->type = var->type;
8204 earlier->reinit_interface_type(block_type);
8205 delete var;
8206 } else {
8207 if (this->layout.flags.q.explicit_binding) {
8208 apply_explicit_binding(state, &loc, var, var->type,
8209 &this->layout);
8210 }
8211
8212 var->data.stream = qual_stream;
8213 if (layout.flags.q.explicit_location) {
8214 var->data.location = expl_location;
8215 var->data.explicit_location = true;
8216 }
8217
8218 state->symbols->add_variable(var);
8219 instructions->push_tail(var);
8220 }
8221 } else {
8222 /* In order to have an array size, the block must also be declared with
8223 * an instance name.
8224 */
8225 assert(this->array_specifier == NULL);
8226
8227 for (unsigned i = 0; i < num_variables; i++) {
8228 ir_variable *var =
8229 new(state) ir_variable(fields[i].type,
8230 ralloc_strdup(state, fields[i].name),
8231 var_mode);
8232 var->data.interpolation = fields[i].interpolation;
8233 var->data.centroid = fields[i].centroid;
8234 var->data.sample = fields[i].sample;
8235 var->data.patch = fields[i].patch;
8236 var->data.stream = qual_stream;
8237 var->data.location = fields[i].location;
8238
8239 if (fields[i].location != -1)
8240 var->data.explicit_location = true;
8241
8242 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8243 var->data.xfb_buffer = fields[i].xfb_buffer;
8244
8245 if (fields[i].offset != -1)
8246 var->data.explicit_xfb_offset = true;
8247 var->data.offset = fields[i].offset;
8248
8249 var->init_interface_type(block_type);
8250
8251 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8252 var->data.read_only = true;
8253
8254 /* Precision qualifiers do not have any meaning in Desktop GLSL */
8255 if (state->es_shader) {
8256 var->data.precision =
8257 select_gles_precision(fields[i].precision, fields[i].type,
8258 state, &loc);
8259 }
8260
8261 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8262 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8263 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8264 } else {
8265 var->data.matrix_layout = fields[i].matrix_layout;
8266 }
8267
8268 if (var->data.mode == ir_var_shader_storage)
8269 apply_memory_qualifiers(var, fields[i]);
8270
8271 /* Examine var name here since var may get deleted in the next call */
8272 bool var_is_gl_id = is_gl_identifier(var->name);
8273
8274 if (redeclaring_per_vertex) {
8275 bool is_redeclaration;
8276 var =
8277 get_variable_being_redeclared(&var, loc, state,
8278 true /* allow_all_redeclarations */,
8279 &is_redeclaration);
8280 if (!var_is_gl_id || !is_redeclaration) {
8281 _mesa_glsl_error(&loc, state,
8282 "redeclaration of gl_PerVertex can only "
8283 "include built-in variables");
8284 } else if (var->data.how_declared == ir_var_declared_normally) {
8285 _mesa_glsl_error(&loc, state,
8286 "`%s' has already been redeclared",
8287 var->name);
8288 } else {
8289 var->data.how_declared = ir_var_declared_in_block;
8290 var->reinit_interface_type(block_type);
8291 }
8292 continue;
8293 }
8294
8295 if (state->symbols->get_variable(var->name) != NULL)
8296 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8297
8298 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8299 * The UBO declaration itself doesn't get an ir_variable unless it
8300 * has an instance name. This is ugly.
8301 */
8302 if (this->layout.flags.q.explicit_binding) {
8303 apply_explicit_binding(state, &loc, var,
8304 var->get_interface_type(), &this->layout);
8305 }
8306
8307 if (var->type->is_unsized_array()) {
8308 if (var->is_in_shader_storage_block() &&
8309 is_unsized_array_last_element(var)) {
8310 var->data.from_ssbo_unsized_array = true;
8311 } else {
8312 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8313 *
8314 * "If an array is declared as the last member of a shader storage
8315 * block and the size is not specified at compile-time, it is
8316 * sized at run-time. In all other cases, arrays are sized only
8317 * at compile-time."
8318 *
8319 * In desktop GLSL it is allowed to have unsized-arrays that are
8320 * not last, as long as we can determine that they are implicitly
8321 * sized.
8322 */
8323 if (state->es_shader) {
8324 _mesa_glsl_error(&loc, state, "unsized array `%s' "
8325 "definition: only last member of a shader "
8326 "storage block can be defined as unsized "
8327 "array", fields[i].name);
8328 }
8329 }
8330 }
8331
8332 state->symbols->add_variable(var);
8333 instructions->push_tail(var);
8334 }
8335
8336 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8337 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8338 *
8339 * It is also a compilation error ... to redeclare a built-in
8340 * block and then use a member from that built-in block that was
8341 * not included in the redeclaration.
8342 *
8343 * This appears to be a clarification to the behaviour established
8344 * for gl_PerVertex by GLSL 1.50, therefore we implement this
8345 * behaviour regardless of GLSL version.
8346 *
8347 * To prevent the shader from using a member that was not included in
8348 * the redeclaration, we disable any ir_variables that are still
8349 * associated with the old declaration of gl_PerVertex (since we've
8350 * already updated all of the variables contained in the new
8351 * gl_PerVertex to point to it).
8352 *
8353 * As a side effect this will prevent
8354 * validate_intrastage_interface_blocks() from getting confused and
8355 * thinking there are conflicting definitions of gl_PerVertex in the
8356 * shader.
8357 */
8358 foreach_in_list_safe(ir_instruction, node, instructions) {
8359 ir_variable *const var = node->as_variable();
8360 if (var != NULL &&
8361 var->get_interface_type() == earlier_per_vertex &&
8362 var->data.mode == var_mode) {
8363 if (var->data.how_declared == ir_var_declared_normally) {
8364 _mesa_glsl_error(&loc, state,
8365 "redeclaration of gl_PerVertex cannot "
8366 "follow a redeclaration of `%s'",
8367 var->name);
8368 }
8369 state->symbols->disable_variable(var->name);
8370 var->remove();
8371 }
8372 }
8373 }
8374 }
8375
8376 return NULL;
8377 }
8378
8379
8380 ir_rvalue *
8381 ast_tcs_output_layout::hir(exec_list *instructions,
8382 struct _mesa_glsl_parse_state *state)
8383 {
8384 YYLTYPE loc = this->get_location();
8385
8386 unsigned num_vertices;
8387 if (!state->out_qualifier->vertices->
8388 process_qualifier_constant(state, "vertices", &num_vertices,
8389 false)) {
8390 /* return here to stop cascading incorrect error messages */
8391 return NULL;
8392 }
8393
8394 /* If any shader outputs occurred before this declaration and specified an
8395 * array size, make sure the size they specified is consistent with the
8396 * primitive type.
8397 */
8398 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8399 _mesa_glsl_error(&loc, state,
8400 "this tessellation control shader output layout "
8401 "specifies %u vertices, but a previous output "
8402 "is declared with size %u",
8403 num_vertices, state->tcs_output_size);
8404 return NULL;
8405 }
8406
8407 state->tcs_output_vertices_specified = true;
8408
8409 /* If any shader outputs occurred before this declaration and did not
8410 * specify an array size, their size is determined now.
8411 */
8412 foreach_in_list (ir_instruction, node, instructions) {
8413 ir_variable *var = node->as_variable();
8414 if (var == NULL || var->data.mode != ir_var_shader_out)
8415 continue;
8416
8417 /* Note: Not all tessellation control shader output are arrays. */
8418 if (!var->type->is_unsized_array() || var->data.patch)
8419 continue;
8420
8421 if (var->data.max_array_access >= (int)num_vertices) {
8422 _mesa_glsl_error(&loc, state,
8423 "this tessellation control shader output layout "
8424 "specifies %u vertices, but an access to element "
8425 "%u of output `%s' already exists", num_vertices,
8426 var->data.max_array_access, var->name);
8427 } else {
8428 var->type = glsl_type::get_array_instance(var->type->fields.array,
8429 num_vertices);
8430 }
8431 }
8432
8433 return NULL;
8434 }
8435
8436
8437 ir_rvalue *
8438 ast_gs_input_layout::hir(exec_list *instructions,
8439 struct _mesa_glsl_parse_state *state)
8440 {
8441 YYLTYPE loc = this->get_location();
8442
8443 /* Should have been prevented by the parser. */
8444 assert(!state->gs_input_prim_type_specified
8445 || state->in_qualifier->prim_type == this->prim_type);
8446
8447 /* If any shader inputs occurred before this declaration and specified an
8448 * array size, make sure the size they specified is consistent with the
8449 * primitive type.
8450 */
8451 unsigned num_vertices = vertices_per_prim(this->prim_type);
8452 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8453 _mesa_glsl_error(&loc, state,
8454 "this geometry shader input layout implies %u vertices"
8455 " per primitive, but a previous input is declared"
8456 " with size %u", num_vertices, state->gs_input_size);
8457 return NULL;
8458 }
8459
8460 state->gs_input_prim_type_specified = true;
8461
8462 /* If any shader inputs occurred before this declaration and did not
8463 * specify an array size, their size is determined now.
8464 */
8465 foreach_in_list(ir_instruction, node, instructions) {
8466 ir_variable *var = node->as_variable();
8467 if (var == NULL || var->data.mode != ir_var_shader_in)
8468 continue;
8469
8470 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8471 * array; skip it.
8472 */
8473
8474 if (var->type->is_unsized_array()) {
8475 if (var->data.max_array_access >= (int)num_vertices) {
8476 _mesa_glsl_error(&loc, state,
8477 "this geometry shader input layout implies %u"
8478 " vertices, but an access to element %u of input"
8479 " `%s' already exists", num_vertices,
8480 var->data.max_array_access, var->name);
8481 } else {
8482 var->type = glsl_type::get_array_instance(var->type->fields.array,
8483 num_vertices);
8484 }
8485 }
8486 }
8487
8488 return NULL;
8489 }
8490
8491
8492 ir_rvalue *
8493 ast_cs_input_layout::hir(exec_list *instructions,
8494 struct _mesa_glsl_parse_state *state)
8495 {
8496 YYLTYPE loc = this->get_location();
8497
8498 /* From the ARB_compute_shader specification:
8499 *
8500 * If the local size of the shader in any dimension is greater
8501 * than the maximum size supported by the implementation for that
8502 * dimension, a compile-time error results.
8503 *
8504 * It is not clear from the spec how the error should be reported if
8505 * the total size of the work group exceeds
8506 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8507 * report it at compile time as well.
8508 */
8509 GLuint64 total_invocations = 1;
8510 unsigned qual_local_size[3];
8511 for (int i = 0; i < 3; i++) {
8512
8513 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8514 'x' + i);
8515 /* Infer a local_size of 1 for unspecified dimensions */
8516 if (this->local_size[i] == NULL) {
8517 qual_local_size[i] = 1;
8518 } else if (!this->local_size[i]->
8519 process_qualifier_constant(state, local_size_str,
8520 &qual_local_size[i], false)) {
8521 ralloc_free(local_size_str);
8522 return NULL;
8523 }
8524 ralloc_free(local_size_str);
8525
8526 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8527 _mesa_glsl_error(&loc, state,
8528 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8529 " (%d)", 'x' + i,
8530 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8531 break;
8532 }
8533 total_invocations *= qual_local_size[i];
8534 if (total_invocations >
8535 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8536 _mesa_glsl_error(&loc, state,
8537 "product of local_sizes exceeds "
8538 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8539 state->ctx->Const.MaxComputeWorkGroupInvocations);
8540 break;
8541 }
8542 }
8543
8544 /* If any compute input layout declaration preceded this one, make sure it
8545 * was consistent with this one.
8546 */
8547 if (state->cs_input_local_size_specified) {
8548 for (int i = 0; i < 3; i++) {
8549 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8550 _mesa_glsl_error(&loc, state,
8551 "compute shader input layout does not match"
8552 " previous declaration");
8553 return NULL;
8554 }
8555 }
8556 }
8557
8558 /* The ARB_compute_variable_group_size spec says:
8559 *
8560 * If a compute shader including a *local_size_variable* qualifier also
8561 * declares a fixed local group size using the *local_size_x*,
8562 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8563 * results
8564 */
8565 if (state->cs_input_local_size_variable_specified) {
8566 _mesa_glsl_error(&loc, state,
8567 "compute shader can't include both a variable and a "
8568 "fixed local group size");
8569 return NULL;
8570 }
8571
8572 state->cs_input_local_size_specified = true;
8573 for (int i = 0; i < 3; i++)
8574 state->cs_input_local_size[i] = qual_local_size[i];
8575
8576 /* We may now declare the built-in constant gl_WorkGroupSize (see
8577 * builtin_variable_generator::generate_constants() for why we didn't
8578 * declare it earlier).
8579 */
8580 ir_variable *var = new(state->symbols)
8581 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8582 var->data.how_declared = ir_var_declared_implicitly;
8583 var->data.read_only = true;
8584 instructions->push_tail(var);
8585 state->symbols->add_variable(var);
8586 ir_constant_data data;
8587 memset(&data, 0, sizeof(data));
8588 for (int i = 0; i < 3; i++)
8589 data.u[i] = qual_local_size[i];
8590 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8591 var->constant_initializer =
8592 new(var) ir_constant(glsl_type::uvec3_type, &data);
8593 var->data.has_initializer = true;
8594
8595 return NULL;
8596 }
8597
8598
8599 static void
8600 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8601 exec_list *instructions)
8602 {
8603 bool gl_FragColor_assigned = false;
8604 bool gl_FragData_assigned = false;
8605 bool gl_FragSecondaryColor_assigned = false;
8606 bool gl_FragSecondaryData_assigned = false;
8607 bool user_defined_fs_output_assigned = false;
8608 ir_variable *user_defined_fs_output = NULL;
8609
8610 /* It would be nice to have proper location information. */
8611 YYLTYPE loc;
8612 memset(&loc, 0, sizeof(loc));
8613
8614 foreach_in_list(ir_instruction, node, instructions) {
8615 ir_variable *var = node->as_variable();
8616
8617 if (!var || !var->data.assigned)
8618 continue;
8619
8620 if (strcmp(var->name, "gl_FragColor") == 0)
8621 gl_FragColor_assigned = true;
8622 else if (strcmp(var->name, "gl_FragData") == 0)
8623 gl_FragData_assigned = true;
8624 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8625 gl_FragSecondaryColor_assigned = true;
8626 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8627 gl_FragSecondaryData_assigned = true;
8628 else if (!is_gl_identifier(var->name)) {
8629 if (state->stage == MESA_SHADER_FRAGMENT &&
8630 var->data.mode == ir_var_shader_out) {
8631 user_defined_fs_output_assigned = true;
8632 user_defined_fs_output = var;
8633 }
8634 }
8635 }
8636
8637 /* From the GLSL 1.30 spec:
8638 *
8639 * "If a shader statically assigns a value to gl_FragColor, it
8640 * may not assign a value to any element of gl_FragData. If a
8641 * shader statically writes a value to any element of
8642 * gl_FragData, it may not assign a value to
8643 * gl_FragColor. That is, a shader may assign values to either
8644 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8645 * linked together must also consistently write just one of
8646 * these variables. Similarly, if user declared output
8647 * variables are in use (statically assigned to), then the
8648 * built-in variables gl_FragColor and gl_FragData may not be
8649 * assigned to. These incorrect usages all generate compile
8650 * time errors."
8651 */
8652 if (gl_FragColor_assigned && gl_FragData_assigned) {
8653 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8654 "`gl_FragColor' and `gl_FragData'");
8655 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8656 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8657 "`gl_FragColor' and `%s'",
8658 user_defined_fs_output->name);
8659 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8660 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8661 "`gl_FragSecondaryColorEXT' and"
8662 " `gl_FragSecondaryDataEXT'");
8663 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8664 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8665 "`gl_FragColor' and"
8666 " `gl_FragSecondaryDataEXT'");
8667 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8668 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8669 "`gl_FragData' and"
8670 " `gl_FragSecondaryColorEXT'");
8671 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8672 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8673 "`gl_FragData' and `%s'",
8674 user_defined_fs_output->name);
8675 }
8676
8677 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8678 !state->EXT_blend_func_extended_enable) {
8679 _mesa_glsl_error(&loc, state,
8680 "Dual source blending requires EXT_blend_func_extended");
8681 }
8682 }
8683
8684 static void
8685 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state)
8686 {
8687 YYLTYPE loc;
8688 memset(&loc, 0, sizeof(loc));
8689
8690 /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
8691 *
8692 * "A program will fail to compile or link if any shader
8693 * or stage contains two or more functions with the same
8694 * name if the name is associated with a subroutine type."
8695 */
8696
8697 for (int i = 0; i < state->num_subroutines; i++) {
8698 unsigned definitions = 0;
8699 ir_function *fn = state->subroutines[i];
8700 /* Calculate number of function definitions with the same name */
8701 foreach_in_list(ir_function_signature, sig, &fn->signatures) {
8702 if (sig->is_defined) {
8703 if (++definitions > 1) {
8704 _mesa_glsl_error(&loc, state,
8705 "%s shader contains two or more function "
8706 "definitions with name `%s', which is "
8707 "associated with a subroutine type.\n",
8708 _mesa_shader_stage_to_string(state->stage),
8709 fn->name);
8710 return;
8711 }
8712 }
8713 }
8714 }
8715 }
8716
8717 static void
8718 remove_per_vertex_blocks(exec_list *instructions,
8719 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8720 {
8721 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8722 * if it exists in this shader type.
8723 */
8724 const glsl_type *per_vertex = NULL;
8725 switch (mode) {
8726 case ir_var_shader_in:
8727 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8728 per_vertex = gl_in->get_interface_type();
8729 break;
8730 case ir_var_shader_out:
8731 if (ir_variable *gl_Position =
8732 state->symbols->get_variable("gl_Position")) {
8733 per_vertex = gl_Position->get_interface_type();
8734 }
8735 break;
8736 default:
8737 assert(!"Unexpected mode");
8738 break;
8739 }
8740
8741 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8742 * need to do anything.
8743 */
8744 if (per_vertex == NULL)
8745 return;
8746
8747 /* If the interface block is used by the shader, then we don't need to do
8748 * anything.
8749 */
8750 interface_block_usage_visitor v(mode, per_vertex);
8751 v.run(instructions);
8752 if (v.usage_found())
8753 return;
8754
8755 /* Remove any ir_variable declarations that refer to the interface block
8756 * we're removing.
8757 */
8758 foreach_in_list_safe(ir_instruction, node, instructions) {
8759 ir_variable *const var = node->as_variable();
8760 if (var != NULL && var->get_interface_type() == per_vertex &&
8761 var->data.mode == mode) {
8762 state->symbols->disable_variable(var->name);
8763 var->remove();
8764 }
8765 }
8766 }
8767
8768 ir_rvalue *
8769 ast_warnings_toggle::hir(exec_list *,
8770 struct _mesa_glsl_parse_state *state)
8771 {
8772 state->warnings_enabled = enable;
8773 return NULL;
8774 }