glsl: tidy up PostDepthCoverage shader field
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/set.h"
77 #include "util/string_to_uint_map.h"
78 #include "linker.h"
79 #include "link_varyings.h"
80 #include "ir_optimization.h"
81 #include "ir_rvalue_visitor.h"
82 #include "ir_uniform.h"
83
84 #include "main/shaderobj.h"
85 #include "main/enums.h"
86
87
88 namespace {
89
90 /**
91 * Visitor that determines whether or not a variable is ever written.
92 */
93 class find_assignment_visitor : public ir_hierarchical_visitor {
94 public:
95 find_assignment_visitor(const char *name)
96 : name(name), found(false)
97 {
98 /* empty */
99 }
100
101 virtual ir_visitor_status visit_enter(ir_assignment *ir)
102 {
103 ir_variable *const var = ir->lhs->variable_referenced();
104
105 if (strcmp(name, var->name) == 0) {
106 found = true;
107 return visit_stop;
108 }
109
110 return visit_continue_with_parent;
111 }
112
113 virtual ir_visitor_status visit_enter(ir_call *ir)
114 {
115 foreach_two_lists(formal_node, &ir->callee->parameters,
116 actual_node, &ir->actual_parameters) {
117 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
118 ir_variable *sig_param = (ir_variable *) formal_node;
119
120 if (sig_param->data.mode == ir_var_function_out ||
121 sig_param->data.mode == ir_var_function_inout) {
122 ir_variable *var = param_rval->variable_referenced();
123 if (var && strcmp(name, var->name) == 0) {
124 found = true;
125 return visit_stop;
126 }
127 }
128 }
129
130 if (ir->return_deref != NULL) {
131 ir_variable *const var = ir->return_deref->variable_referenced();
132
133 if (strcmp(name, var->name) == 0) {
134 found = true;
135 return visit_stop;
136 }
137 }
138
139 return visit_continue_with_parent;
140 }
141
142 bool variable_found()
143 {
144 return found;
145 }
146
147 private:
148 const char *name; /**< Find writes to a variable with this name. */
149 bool found; /**< Was a write to the variable found? */
150 };
151
152
153 /**
154 * Visitor that determines whether or not a variable is ever read.
155 */
156 class find_deref_visitor : public ir_hierarchical_visitor {
157 public:
158 find_deref_visitor(const char *name)
159 : name(name), found(false)
160 {
161 /* empty */
162 }
163
164 virtual ir_visitor_status visit(ir_dereference_variable *ir)
165 {
166 if (strcmp(this->name, ir->var->name) == 0) {
167 this->found = true;
168 return visit_stop;
169 }
170
171 return visit_continue;
172 }
173
174 bool variable_found() const
175 {
176 return this->found;
177 }
178
179 private:
180 const char *name; /**< Find writes to a variable with this name. */
181 bool found; /**< Was a write to the variable found? */
182 };
183
184
185 /**
186 * A visitor helper that provides methods for updating the types of
187 * ir_dereferences. Classes that update variable types (say, updating
188 * array sizes) will want to use this so that dereference types stay in sync.
189 */
190 class deref_type_updater : public ir_hierarchical_visitor {
191 public:
192 virtual ir_visitor_status visit(ir_dereference_variable *ir)
193 {
194 ir->type = ir->var->type;
195 return visit_continue;
196 }
197
198 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
199 {
200 const glsl_type *const vt = ir->array->type;
201 if (vt->is_array())
202 ir->type = vt->fields.array;
203 return visit_continue;
204 }
205
206 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
207 {
208 for (unsigned i = 0; i < ir->record->type->length; i++) {
209 const struct glsl_struct_field *field =
210 &ir->record->type->fields.structure[i];
211 if (strcmp(field->name, ir->field) == 0) {
212 ir->type = field->type;
213 break;
214 }
215 }
216 return visit_continue;
217 }
218 };
219
220
221 class array_resize_visitor : public deref_type_updater {
222 public:
223 unsigned num_vertices;
224 gl_shader_program *prog;
225 gl_shader_stage stage;
226
227 array_resize_visitor(unsigned num_vertices,
228 gl_shader_program *prog,
229 gl_shader_stage stage)
230 {
231 this->num_vertices = num_vertices;
232 this->prog = prog;
233 this->stage = stage;
234 }
235
236 virtual ~array_resize_visitor()
237 {
238 /* empty */
239 }
240
241 virtual ir_visitor_status visit(ir_variable *var)
242 {
243 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
244 var->data.patch)
245 return visit_continue;
246
247 unsigned size = var->type->length;
248
249 if (stage == MESA_SHADER_GEOMETRY) {
250 /* Generate a link error if the shader has declared this array with
251 * an incorrect size.
252 */
253 if (!var->data.implicit_sized_array &&
254 size && size != this->num_vertices) {
255 linker_error(this->prog, "size of array %s declared as %u, "
256 "but number of input vertices is %u\n",
257 var->name, size, this->num_vertices);
258 return visit_continue;
259 }
260
261 /* Generate a link error if the shader attempts to access an input
262 * array using an index too large for its actual size assigned at
263 * link time.
264 */
265 if (var->data.max_array_access >= (int)this->num_vertices) {
266 linker_error(this->prog, "%s shader accesses element %i of "
267 "%s, but only %i input vertices\n",
268 _mesa_shader_stage_to_string(this->stage),
269 var->data.max_array_access, var->name, this->num_vertices);
270 return visit_continue;
271 }
272 }
273
274 var->type = glsl_type::get_array_instance(var->type->fields.array,
275 this->num_vertices);
276 var->data.max_array_access = this->num_vertices - 1;
277
278 return visit_continue;
279 }
280 };
281
282 /**
283 * Visitor that determines the highest stream id to which a (geometry) shader
284 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
285 */
286 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
287 public:
288 find_emit_vertex_visitor(int max_allowed)
289 : max_stream_allowed(max_allowed),
290 invalid_stream_id(0),
291 invalid_stream_id_from_emit_vertex(false),
292 end_primitive_found(false),
293 uses_non_zero_stream(false)
294 {
295 /* empty */
296 }
297
298 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
299 {
300 int stream_id = ir->stream_id();
301
302 if (stream_id < 0) {
303 invalid_stream_id = stream_id;
304 invalid_stream_id_from_emit_vertex = true;
305 return visit_stop;
306 }
307
308 if (stream_id > max_stream_allowed) {
309 invalid_stream_id = stream_id;
310 invalid_stream_id_from_emit_vertex = true;
311 return visit_stop;
312 }
313
314 if (stream_id != 0)
315 uses_non_zero_stream = true;
316
317 return visit_continue;
318 }
319
320 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
321 {
322 end_primitive_found = true;
323
324 int stream_id = ir->stream_id();
325
326 if (stream_id < 0) {
327 invalid_stream_id = stream_id;
328 invalid_stream_id_from_emit_vertex = false;
329 return visit_stop;
330 }
331
332 if (stream_id > max_stream_allowed) {
333 invalid_stream_id = stream_id;
334 invalid_stream_id_from_emit_vertex = false;
335 return visit_stop;
336 }
337
338 if (stream_id != 0)
339 uses_non_zero_stream = true;
340
341 return visit_continue;
342 }
343
344 bool error()
345 {
346 return invalid_stream_id != 0;
347 }
348
349 const char *error_func()
350 {
351 return invalid_stream_id_from_emit_vertex ?
352 "EmitStreamVertex" : "EndStreamPrimitive";
353 }
354
355 int error_stream()
356 {
357 return invalid_stream_id;
358 }
359
360 bool uses_streams()
361 {
362 return uses_non_zero_stream;
363 }
364
365 bool uses_end_primitive()
366 {
367 return end_primitive_found;
368 }
369
370 private:
371 int max_stream_allowed;
372 int invalid_stream_id;
373 bool invalid_stream_id_from_emit_vertex;
374 bool end_primitive_found;
375 bool uses_non_zero_stream;
376 };
377
378 /* Class that finds array derefs and check if indexes are dynamic. */
379 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
380 {
381 public:
382 dynamic_sampler_array_indexing_visitor() :
383 dynamic_sampler_array_indexing(false)
384 {
385 }
386
387 ir_visitor_status visit_enter(ir_dereference_array *ir)
388 {
389 if (!ir->variable_referenced())
390 return visit_continue;
391
392 if (!ir->variable_referenced()->type->contains_sampler())
393 return visit_continue;
394
395 if (!ir->array_index->constant_expression_value()) {
396 dynamic_sampler_array_indexing = true;
397 return visit_stop;
398 }
399 return visit_continue;
400 }
401
402 bool uses_dynamic_sampler_array_indexing()
403 {
404 return dynamic_sampler_array_indexing;
405 }
406
407 private:
408 bool dynamic_sampler_array_indexing;
409 };
410
411 } /* anonymous namespace */
412
413 void
414 linker_error(gl_shader_program *prog, const char *fmt, ...)
415 {
416 va_list ap;
417
418 ralloc_strcat(&prog->data->InfoLog, "error: ");
419 va_start(ap, fmt);
420 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
421 va_end(ap);
422
423 prog->data->LinkStatus = false;
424 }
425
426
427 void
428 linker_warning(gl_shader_program *prog, const char *fmt, ...)
429 {
430 va_list ap;
431
432 ralloc_strcat(&prog->data->InfoLog, "warning: ");
433 va_start(ap, fmt);
434 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
435 va_end(ap);
436
437 }
438
439
440 /**
441 * Given a string identifying a program resource, break it into a base name
442 * and an optional array index in square brackets.
443 *
444 * If an array index is present, \c out_base_name_end is set to point to the
445 * "[" that precedes the array index, and the array index itself is returned
446 * as a long.
447 *
448 * If no array index is present (or if the array index is negative or
449 * mal-formed), \c out_base_name_end, is set to point to the null terminator
450 * at the end of the input string, and -1 is returned.
451 *
452 * Only the final array index is parsed; if the string contains other array
453 * indices (or structure field accesses), they are left in the base name.
454 *
455 * No attempt is made to check that the base name is properly formed;
456 * typically the caller will look up the base name in a hash table, so
457 * ill-formed base names simply turn into hash table lookup failures.
458 */
459 long
460 parse_program_resource_name(const GLchar *name,
461 const GLchar **out_base_name_end)
462 {
463 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
464 *
465 * "When an integer array element or block instance number is part of
466 * the name string, it will be specified in decimal form without a "+"
467 * or "-" sign or any extra leading zeroes. Additionally, the name
468 * string will not include white space anywhere in the string."
469 */
470
471 const size_t len = strlen(name);
472 *out_base_name_end = name + len;
473
474 if (len == 0 || name[len-1] != ']')
475 return -1;
476
477 /* Walk backwards over the string looking for a non-digit character. This
478 * had better be the opening bracket for an array index.
479 *
480 * Initially, i specifies the location of the ']'. Since the string may
481 * contain only the ']' charcater, walk backwards very carefully.
482 */
483 unsigned i;
484 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
485 /* empty */ ;
486
487 if ((i == 0) || name[i-1] != '[')
488 return -1;
489
490 long array_index = strtol(&name[i], NULL, 10);
491 if (array_index < 0)
492 return -1;
493
494 /* Check for leading zero */
495 if (name[i] == '0' && name[i+1] != ']')
496 return -1;
497
498 *out_base_name_end = name + (i - 1);
499 return array_index;
500 }
501
502
503 void
504 link_invalidate_variable_locations(exec_list *ir)
505 {
506 foreach_in_list(ir_instruction, node, ir) {
507 ir_variable *const var = node->as_variable();
508
509 if (var == NULL)
510 continue;
511
512 /* Only assign locations for variables that lack an explicit location.
513 * Explicit locations are set for all built-in variables, generic vertex
514 * shader inputs (via layout(location=...)), and generic fragment shader
515 * outputs (also via layout(location=...)).
516 */
517 if (!var->data.explicit_location) {
518 var->data.location = -1;
519 var->data.location_frac = 0;
520 }
521
522 /* ir_variable::is_unmatched_generic_inout is used by the linker while
523 * connecting outputs from one stage to inputs of the next stage.
524 */
525 if (var->data.explicit_location &&
526 var->data.location < VARYING_SLOT_VAR0) {
527 var->data.is_unmatched_generic_inout = 0;
528 } else {
529 var->data.is_unmatched_generic_inout = 1;
530 }
531 }
532 }
533
534
535 /**
536 * Set clip_distance_array_size based and cull_distance_array_size on the given
537 * shader.
538 *
539 * Also check for errors based on incorrect usage of gl_ClipVertex and
540 * gl_ClipDistance and gl_CullDistance.
541 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
542 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
543 *
544 * Return false if an error was reported.
545 */
546 static void
547 analyze_clip_cull_usage(struct gl_shader_program *prog,
548 struct gl_linked_shader *shader,
549 struct gl_context *ctx,
550 GLuint *clip_distance_array_size,
551 GLuint *cull_distance_array_size)
552 {
553 *clip_distance_array_size = 0;
554 *cull_distance_array_size = 0;
555
556 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
557 /* From section 7.1 (Vertex Shader Special Variables) of the
558 * GLSL 1.30 spec:
559 *
560 * "It is an error for a shader to statically write both
561 * gl_ClipVertex and gl_ClipDistance."
562 *
563 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
564 * gl_ClipVertex nor gl_ClipDistance. However with
565 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
566 */
567 find_assignment_visitor clip_distance("gl_ClipDistance");
568 find_assignment_visitor cull_distance("gl_CullDistance");
569
570 clip_distance.run(shader->ir);
571 cull_distance.run(shader->ir);
572
573 /* From the ARB_cull_distance spec:
574 *
575 * It is a compile-time or link-time error for the set of shaders forming
576 * a program to statically read or write both gl_ClipVertex and either
577 * gl_ClipDistance or gl_CullDistance.
578 *
579 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
580 * gl_ClipVertex.
581 */
582 if (!prog->IsES) {
583 find_assignment_visitor clip_vertex("gl_ClipVertex");
584
585 clip_vertex.run(shader->ir);
586
587 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
588 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
589 "and `gl_ClipDistance'\n",
590 _mesa_shader_stage_to_string(shader->Stage));
591 return;
592 }
593 if (clip_vertex.variable_found() && cull_distance.variable_found()) {
594 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
595 "and `gl_CullDistance'\n",
596 _mesa_shader_stage_to_string(shader->Stage));
597 return;
598 }
599 }
600
601 if (clip_distance.variable_found()) {
602 ir_variable *clip_distance_var =
603 shader->symbols->get_variable("gl_ClipDistance");
604 assert(clip_distance_var);
605 *clip_distance_array_size = clip_distance_var->type->length;
606 }
607 if (cull_distance.variable_found()) {
608 ir_variable *cull_distance_var =
609 shader->symbols->get_variable("gl_CullDistance");
610 assert(cull_distance_var);
611 *cull_distance_array_size = cull_distance_var->type->length;
612 }
613 /* From the ARB_cull_distance spec:
614 *
615 * It is a compile-time or link-time error for the set of shaders forming
616 * a program to have the sum of the sizes of the gl_ClipDistance and
617 * gl_CullDistance arrays to be larger than
618 * gl_MaxCombinedClipAndCullDistances.
619 */
620 if ((*clip_distance_array_size + *cull_distance_array_size) >
621 ctx->Const.MaxClipPlanes) {
622 linker_error(prog, "%s shader: the combined size of "
623 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
624 "be larger than "
625 "gl_MaxCombinedClipAndCullDistances (%u)",
626 _mesa_shader_stage_to_string(shader->Stage),
627 ctx->Const.MaxClipPlanes);
628 }
629 }
630 }
631
632
633 /**
634 * Verify that a vertex shader executable meets all semantic requirements.
635 *
636 * Also sets prog->Vert.ClipDistanceArraySize and
637 * prog->Vert.CullDistanceArraySize as a side effect.
638 *
639 * \param shader Vertex shader executable to be verified
640 */
641 void
642 validate_vertex_shader_executable(struct gl_shader_program *prog,
643 struct gl_linked_shader *shader,
644 struct gl_context *ctx)
645 {
646 if (shader == NULL)
647 return;
648
649 /* From the GLSL 1.10 spec, page 48:
650 *
651 * "The variable gl_Position is available only in the vertex
652 * language and is intended for writing the homogeneous vertex
653 * position. All executions of a well-formed vertex shader
654 * executable must write a value into this variable. [...] The
655 * variable gl_Position is available only in the vertex
656 * language and is intended for writing the homogeneous vertex
657 * position. All executions of a well-formed vertex shader
658 * executable must write a value into this variable."
659 *
660 * while in GLSL 1.40 this text is changed to:
661 *
662 * "The variable gl_Position is available only in the vertex
663 * language and is intended for writing the homogeneous vertex
664 * position. It can be written at any time during shader
665 * execution. It may also be read back by a vertex shader
666 * after being written. This value will be used by primitive
667 * assembly, clipping, culling, and other fixed functionality
668 * operations, if present, that operate on primitives after
669 * vertex processing has occurred. Its value is undefined if
670 * the vertex shader executable does not write gl_Position."
671 *
672 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
673 * gl_Position is not an error.
674 */
675 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
676 find_assignment_visitor find("gl_Position");
677 find.run(shader->ir);
678 if (!find.variable_found()) {
679 if (prog->IsES) {
680 linker_warning(prog,
681 "vertex shader does not write to `gl_Position'. "
682 "Its value is undefined. \n");
683 } else {
684 linker_error(prog,
685 "vertex shader does not write to `gl_Position'. \n");
686 }
687 return;
688 }
689 }
690
691 analyze_clip_cull_usage(prog, shader, ctx,
692 &prog->Vert.ClipDistanceArraySize,
693 &prog->Vert.CullDistanceArraySize);
694 }
695
696 void
697 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
698 struct gl_linked_shader *shader,
699 struct gl_context *ctx)
700 {
701 if (shader == NULL)
702 return;
703
704 analyze_clip_cull_usage(prog, shader, ctx,
705 &prog->TessEval.ClipDistanceArraySize,
706 &prog->TessEval.CullDistanceArraySize);
707 }
708
709
710 /**
711 * Verify that a fragment shader executable meets all semantic requirements
712 *
713 * \param shader Fragment shader executable to be verified
714 */
715 void
716 validate_fragment_shader_executable(struct gl_shader_program *prog,
717 struct gl_linked_shader *shader)
718 {
719 if (shader == NULL)
720 return;
721
722 find_assignment_visitor frag_color("gl_FragColor");
723 find_assignment_visitor frag_data("gl_FragData");
724
725 frag_color.run(shader->ir);
726 frag_data.run(shader->ir);
727
728 if (frag_color.variable_found() && frag_data.variable_found()) {
729 linker_error(prog, "fragment shader writes to both "
730 "`gl_FragColor' and `gl_FragData'\n");
731 }
732 }
733
734 /**
735 * Verify that a geometry shader executable meets all semantic requirements
736 *
737 * Also sets prog->Geom.VerticesIn, and prog->Geom.ClipDistanceArraySize and
738 * prog->Geom.CullDistanceArraySize as a side effect.
739 *
740 * \param shader Geometry shader executable to be verified
741 */
742 void
743 validate_geometry_shader_executable(struct gl_shader_program *prog,
744 struct gl_linked_shader *shader,
745 struct gl_context *ctx)
746 {
747 if (shader == NULL)
748 return;
749
750 unsigned num_vertices = vertices_per_prim(shader->info.Geom.InputType);
751 prog->Geom.VerticesIn = num_vertices;
752
753 analyze_clip_cull_usage(prog, shader, ctx,
754 &prog->Geom.ClipDistanceArraySize,
755 &prog->Geom.CullDistanceArraySize);
756 }
757
758 /**
759 * Check if geometry shaders emit to non-zero streams and do corresponding
760 * validations.
761 */
762 static void
763 validate_geometry_shader_emissions(struct gl_context *ctx,
764 struct gl_shader_program *prog)
765 {
766 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
767
768 if (sh != NULL) {
769 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
770 emit_vertex.run(sh->ir);
771 if (emit_vertex.error()) {
772 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
773 "stream parameter are in the range [0, %d].\n",
774 emit_vertex.error_func(),
775 emit_vertex.error_stream(),
776 ctx->Const.MaxVertexStreams - 1);
777 }
778 prog->Geom.UsesStreams = emit_vertex.uses_streams();
779 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
780
781 /* From the ARB_gpu_shader5 spec:
782 *
783 * "Multiple vertex streams are supported only if the output primitive
784 * type is declared to be "points". A program will fail to link if it
785 * contains a geometry shader calling EmitStreamVertex() or
786 * EndStreamPrimitive() if its output primitive type is not "points".
787 *
788 * However, in the same spec:
789 *
790 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
791 * with <stream> set to zero."
792 *
793 * And:
794 *
795 * "The function EndPrimitive() is equivalent to calling
796 * EndStreamPrimitive() with <stream> set to zero."
797 *
798 * Since we can call EmitVertex() and EndPrimitive() when we output
799 * primitives other than points, calling EmitStreamVertex(0) or
800 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
801 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
802 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
803 * stream.
804 */
805 if (prog->Geom.UsesStreams && sh->info.Geom.OutputType != GL_POINTS) {
806 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
807 "with n>0 requires point output\n");
808 }
809 }
810 }
811
812 bool
813 validate_intrastage_arrays(struct gl_shader_program *prog,
814 ir_variable *const var,
815 ir_variable *const existing)
816 {
817 /* Consider the types to be "the same" if both types are arrays
818 * of the same type and one of the arrays is implicitly sized.
819 * In addition, set the type of the linked variable to the
820 * explicitly sized array.
821 */
822 if (var->type->is_array() && existing->type->is_array()) {
823 if ((var->type->fields.array == existing->type->fields.array) &&
824 ((var->type->length == 0)|| (existing->type->length == 0))) {
825 if (var->type->length != 0) {
826 if ((int)var->type->length <= existing->data.max_array_access) {
827 linker_error(prog, "%s `%s' declared as type "
828 "`%s' but outermost dimension has an index"
829 " of `%i'\n",
830 mode_string(var),
831 var->name, var->type->name,
832 existing->data.max_array_access);
833 }
834 existing->type = var->type;
835 return true;
836 } else if (existing->type->length != 0) {
837 if((int)existing->type->length <= var->data.max_array_access &&
838 !existing->data.from_ssbo_unsized_array) {
839 linker_error(prog, "%s `%s' declared as type "
840 "`%s' but outermost dimension has an index"
841 " of `%i'\n",
842 mode_string(var),
843 var->name, existing->type->name,
844 var->data.max_array_access);
845 }
846 return true;
847 }
848 } else {
849 /* The arrays of structs could have different glsl_type pointers but
850 * they are actually the same type. Use record_compare() to check that.
851 */
852 if (existing->type->fields.array->is_record() &&
853 var->type->fields.array->is_record() &&
854 existing->type->fields.array->record_compare(var->type->fields.array))
855 return true;
856 }
857 }
858 return false;
859 }
860
861
862 /**
863 * Perform validation of global variables used across multiple shaders
864 */
865 void
866 cross_validate_globals(struct gl_shader_program *prog,
867 struct exec_list *ir, glsl_symbol_table *variables,
868 bool uniforms_only)
869 {
870 foreach_in_list(ir_instruction, node, ir) {
871 ir_variable *const var = node->as_variable();
872
873 if (var == NULL)
874 continue;
875
876 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
877 continue;
878
879 /* don't cross validate subroutine uniforms */
880 if (var->type->contains_subroutine())
881 continue;
882
883 /* Don't cross validate temporaries that are at global scope. These
884 * will eventually get pulled into the shaders 'main'.
885 */
886 if (var->data.mode == ir_var_temporary)
887 continue;
888
889 /* If a global with this name has already been seen, verify that the
890 * new instance has the same type. In addition, if the globals have
891 * initializers, the values of the initializers must be the same.
892 */
893 ir_variable *const existing = variables->get_variable(var->name);
894 if (existing != NULL) {
895 /* Check if types match. Interface blocks have some special
896 * rules so we handle those elsewhere.
897 */
898 if (var->type != existing->type &&
899 !var->is_interface_instance()) {
900 if (!validate_intrastage_arrays(prog, var, existing)) {
901 if (var->type->is_record() && existing->type->is_record()
902 && existing->type->record_compare(var->type)) {
903 existing->type = var->type;
904 } else {
905 /* If it is an unsized array in a Shader Storage Block,
906 * two different shaders can access to different elements.
907 * Because of that, they might be converted to different
908 * sized arrays, then check that they are compatible but
909 * ignore the array size.
910 */
911 if (!(var->data.mode == ir_var_shader_storage &&
912 var->data.from_ssbo_unsized_array &&
913 existing->data.mode == ir_var_shader_storage &&
914 existing->data.from_ssbo_unsized_array &&
915 var->type->gl_type == existing->type->gl_type)) {
916 linker_error(prog, "%s `%s' declared as type "
917 "`%s' and type `%s'\n",
918 mode_string(var),
919 var->name, var->type->name,
920 existing->type->name);
921 return;
922 }
923 }
924 }
925 }
926
927 if (var->data.explicit_location) {
928 if (existing->data.explicit_location
929 && (var->data.location != existing->data.location)) {
930 linker_error(prog, "explicit locations for %s "
931 "`%s' have differing values\n",
932 mode_string(var), var->name);
933 return;
934 }
935
936 if (var->data.location_frac != existing->data.location_frac) {
937 linker_error(prog, "explicit components for %s `%s' have "
938 "differing values\n", mode_string(var), var->name);
939 return;
940 }
941
942 existing->data.location = var->data.location;
943 existing->data.explicit_location = true;
944 } else {
945 /* Check if uniform with implicit location was marked explicit
946 * by earlier shader stage. If so, mark it explicit in this stage
947 * too to make sure later processing does not treat it as
948 * implicit one.
949 */
950 if (existing->data.explicit_location) {
951 var->data.location = existing->data.location;
952 var->data.explicit_location = true;
953 }
954 }
955
956 /* From the GLSL 4.20 specification:
957 * "A link error will result if two compilation units in a program
958 * specify different integer-constant bindings for the same
959 * opaque-uniform name. However, it is not an error to specify a
960 * binding on some but not all declarations for the same name"
961 */
962 if (var->data.explicit_binding) {
963 if (existing->data.explicit_binding &&
964 var->data.binding != existing->data.binding) {
965 linker_error(prog, "explicit bindings for %s "
966 "`%s' have differing values\n",
967 mode_string(var), var->name);
968 return;
969 }
970
971 existing->data.binding = var->data.binding;
972 existing->data.explicit_binding = true;
973 }
974
975 if (var->type->contains_atomic() &&
976 var->data.offset != existing->data.offset) {
977 linker_error(prog, "offset specifications for %s "
978 "`%s' have differing values\n",
979 mode_string(var), var->name);
980 return;
981 }
982
983 /* Validate layout qualifiers for gl_FragDepth.
984 *
985 * From the AMD/ARB_conservative_depth specs:
986 *
987 * "If gl_FragDepth is redeclared in any fragment shader in a
988 * program, it must be redeclared in all fragment shaders in
989 * that program that have static assignments to
990 * gl_FragDepth. All redeclarations of gl_FragDepth in all
991 * fragment shaders in a single program must have the same set
992 * of qualifiers."
993 */
994 if (strcmp(var->name, "gl_FragDepth") == 0) {
995 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
996 bool layout_differs =
997 var->data.depth_layout != existing->data.depth_layout;
998
999 if (layout_declared && layout_differs) {
1000 linker_error(prog,
1001 "All redeclarations of gl_FragDepth in all "
1002 "fragment shaders in a single program must have "
1003 "the same set of qualifiers.\n");
1004 }
1005
1006 if (var->data.used && layout_differs) {
1007 linker_error(prog,
1008 "If gl_FragDepth is redeclared with a layout "
1009 "qualifier in any fragment shader, it must be "
1010 "redeclared with the same layout qualifier in "
1011 "all fragment shaders that have assignments to "
1012 "gl_FragDepth\n");
1013 }
1014 }
1015
1016 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1017 *
1018 * "If a shared global has multiple initializers, the
1019 * initializers must all be constant expressions, and they
1020 * must all have the same value. Otherwise, a link error will
1021 * result. (A shared global having only one initializer does
1022 * not require that initializer to be a constant expression.)"
1023 *
1024 * Previous to 4.20 the GLSL spec simply said that initializers
1025 * must have the same value. In this case of non-constant
1026 * initializers, this was impossible to determine. As a result,
1027 * no vendor actually implemented that behavior. The 4.20
1028 * behavior matches the implemented behavior of at least one other
1029 * vendor, so we'll implement that for all GLSL versions.
1030 */
1031 if (var->constant_initializer != NULL) {
1032 if (existing->constant_initializer != NULL) {
1033 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1034 linker_error(prog, "initializers for %s "
1035 "`%s' have differing values\n",
1036 mode_string(var), var->name);
1037 return;
1038 }
1039 } else {
1040 /* If the first-seen instance of a particular uniform did
1041 * not have an initializer but a later instance does,
1042 * replace the former with the later.
1043 */
1044 variables->replace_variable(existing->name, var);
1045 }
1046 }
1047
1048 if (var->data.has_initializer) {
1049 if (existing->data.has_initializer
1050 && (var->constant_initializer == NULL
1051 || existing->constant_initializer == NULL)) {
1052 linker_error(prog,
1053 "shared global variable `%s' has multiple "
1054 "non-constant initializers.\n",
1055 var->name);
1056 return;
1057 }
1058 }
1059
1060 if (existing->data.invariant != var->data.invariant) {
1061 linker_error(prog, "declarations for %s `%s' have "
1062 "mismatching invariant qualifiers\n",
1063 mode_string(var), var->name);
1064 return;
1065 }
1066 if (existing->data.centroid != var->data.centroid) {
1067 linker_error(prog, "declarations for %s `%s' have "
1068 "mismatching centroid qualifiers\n",
1069 mode_string(var), var->name);
1070 return;
1071 }
1072 if (existing->data.sample != var->data.sample) {
1073 linker_error(prog, "declarations for %s `%s` have "
1074 "mismatching sample qualifiers\n",
1075 mode_string(var), var->name);
1076 return;
1077 }
1078 if (existing->data.image_format != var->data.image_format) {
1079 linker_error(prog, "declarations for %s `%s` have "
1080 "mismatching image format qualifiers\n",
1081 mode_string(var), var->name);
1082 return;
1083 }
1084
1085 /* Only in GLSL ES 3.10, the precision qualifier should not match
1086 * between block members defined in matched block names within a
1087 * shader interface.
1088 *
1089 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1090 * member should match.
1091 */
1092 if (prog->IsES && (prog->data->Version != 310 ||
1093 !var->get_interface_type()) &&
1094 existing->data.precision != var->data.precision) {
1095 linker_error(prog, "declarations for %s `%s` have "
1096 "mismatching precision qualifiers\n",
1097 mode_string(var), var->name);
1098 return;
1099 }
1100 } else
1101 variables->add_variable(var);
1102 }
1103 }
1104
1105
1106 /**
1107 * Perform validation of uniforms used across multiple shader stages
1108 */
1109 void
1110 cross_validate_uniforms(struct gl_shader_program *prog)
1111 {
1112 glsl_symbol_table variables;
1113 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1114 if (prog->_LinkedShaders[i] == NULL)
1115 continue;
1116
1117 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1118 true);
1119 }
1120 }
1121
1122 /**
1123 * Accumulates the array of buffer blocks and checks that all definitions of
1124 * blocks agree on their contents.
1125 */
1126 static bool
1127 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1128 bool validate_ssbo)
1129 {
1130 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1131 struct gl_uniform_block *blks = NULL;
1132 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1133 &prog->data->NumUniformBlocks;
1134
1135 unsigned max_num_buffer_blocks = 0;
1136 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1137 if (prog->_LinkedShaders[i]) {
1138 if (validate_ssbo) {
1139 max_num_buffer_blocks +=
1140 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1141 } else {
1142 max_num_buffer_blocks +=
1143 prog->_LinkedShaders[i]->Program->info.num_ubos;
1144 }
1145 }
1146 }
1147
1148 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1149 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1150
1151 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1152 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1153 InterfaceBlockStageIndex[i][j] = -1;
1154
1155 if (sh == NULL)
1156 continue;
1157
1158 unsigned sh_num_blocks;
1159 struct gl_uniform_block **sh_blks;
1160 if (validate_ssbo) {
1161 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1162 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1163 } else {
1164 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1165 sh_blks = sh->Program->sh.UniformBlocks;
1166 }
1167
1168 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1169 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1170 sh_blks[j]);
1171
1172 if (index == -1) {
1173 linker_error(prog, "buffer block `%s' has mismatching "
1174 "definitions\n", sh_blks[j]->Name);
1175
1176 for (unsigned k = 0; k <= i; k++) {
1177 delete[] InterfaceBlockStageIndex[k];
1178 }
1179 return false;
1180 }
1181
1182 InterfaceBlockStageIndex[i][index] = j;
1183 }
1184 }
1185
1186 /* Update per stage block pointers to point to the program list.
1187 * FIXME: We should be able to free the per stage blocks here.
1188 */
1189 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1190 for (unsigned j = 0; j < *num_blks; j++) {
1191 int stage_index = InterfaceBlockStageIndex[i][j];
1192
1193 if (stage_index != -1) {
1194 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1195
1196 struct gl_uniform_block **sh_blks = validate_ssbo ?
1197 sh->Program->sh.ShaderStorageBlocks :
1198 sh->Program->sh.UniformBlocks;
1199
1200 blks[j].stageref |= sh_blks[stage_index]->stageref;
1201 sh_blks[stage_index] = &blks[j];
1202 }
1203 }
1204 }
1205
1206 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1207 delete[] InterfaceBlockStageIndex[i];
1208 }
1209
1210 if (validate_ssbo)
1211 prog->data->ShaderStorageBlocks = blks;
1212 else
1213 prog->data->UniformBlocks = blks;
1214
1215 return true;
1216 }
1217
1218
1219 /**
1220 * Populates a shaders symbol table with all global declarations
1221 */
1222 static void
1223 populate_symbol_table(gl_linked_shader *sh)
1224 {
1225 sh->symbols = new(sh) glsl_symbol_table;
1226
1227 foreach_in_list(ir_instruction, inst, sh->ir) {
1228 ir_variable *var;
1229 ir_function *func;
1230
1231 if ((func = inst->as_function()) != NULL) {
1232 sh->symbols->add_function(func);
1233 } else if ((var = inst->as_variable()) != NULL) {
1234 if (var->data.mode != ir_var_temporary)
1235 sh->symbols->add_variable(var);
1236 }
1237 }
1238 }
1239
1240
1241 /**
1242 * Remap variables referenced in an instruction tree
1243 *
1244 * This is used when instruction trees are cloned from one shader and placed in
1245 * another. These trees will contain references to \c ir_variable nodes that
1246 * do not exist in the target shader. This function finds these \c ir_variable
1247 * references and replaces the references with matching variables in the target
1248 * shader.
1249 *
1250 * If there is no matching variable in the target shader, a clone of the
1251 * \c ir_variable is made and added to the target shader. The new variable is
1252 * added to \b both the instruction stream and the symbol table.
1253 *
1254 * \param inst IR tree that is to be processed.
1255 * \param symbols Symbol table containing global scope symbols in the
1256 * linked shader.
1257 * \param instructions Instruction stream where new variable declarations
1258 * should be added.
1259 */
1260 void
1261 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1262 hash_table *temps)
1263 {
1264 class remap_visitor : public ir_hierarchical_visitor {
1265 public:
1266 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1267 {
1268 this->target = target;
1269 this->symbols = target->symbols;
1270 this->instructions = target->ir;
1271 this->temps = temps;
1272 }
1273
1274 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1275 {
1276 if (ir->var->data.mode == ir_var_temporary) {
1277 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1278 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1279
1280 assert(var != NULL);
1281 ir->var = var;
1282 return visit_continue;
1283 }
1284
1285 ir_variable *const existing =
1286 this->symbols->get_variable(ir->var->name);
1287 if (existing != NULL)
1288 ir->var = existing;
1289 else {
1290 ir_variable *copy = ir->var->clone(this->target, NULL);
1291
1292 this->symbols->add_variable(copy);
1293 this->instructions->push_head(copy);
1294 ir->var = copy;
1295 }
1296
1297 return visit_continue;
1298 }
1299
1300 private:
1301 struct gl_linked_shader *target;
1302 glsl_symbol_table *symbols;
1303 exec_list *instructions;
1304 hash_table *temps;
1305 };
1306
1307 remap_visitor v(target, temps);
1308
1309 inst->accept(&v);
1310 }
1311
1312
1313 /**
1314 * Move non-declarations from one instruction stream to another
1315 *
1316 * The intended usage pattern of this function is to pass the pointer to the
1317 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1318 * pointer) for \c last and \c false for \c make_copies on the first
1319 * call. Successive calls pass the return value of the previous call for
1320 * \c last and \c true for \c make_copies.
1321 *
1322 * \param instructions Source instruction stream
1323 * \param last Instruction after which new instructions should be
1324 * inserted in the target instruction stream
1325 * \param make_copies Flag selecting whether instructions in \c instructions
1326 * should be copied (via \c ir_instruction::clone) into the
1327 * target list or moved.
1328 *
1329 * \return
1330 * The new "last" instruction in the target instruction stream. This pointer
1331 * is suitable for use as the \c last parameter of a later call to this
1332 * function.
1333 */
1334 exec_node *
1335 move_non_declarations(exec_list *instructions, exec_node *last,
1336 bool make_copies, gl_linked_shader *target)
1337 {
1338 hash_table *temps = NULL;
1339
1340 if (make_copies)
1341 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1342 _mesa_key_pointer_equal);
1343
1344 foreach_in_list_safe(ir_instruction, inst, instructions) {
1345 if (inst->as_function())
1346 continue;
1347
1348 ir_variable *var = inst->as_variable();
1349 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1350 continue;
1351
1352 assert(inst->as_assignment()
1353 || inst->as_call()
1354 || inst->as_if() /* for initializers with the ?: operator */
1355 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1356
1357 if (make_copies) {
1358 inst = inst->clone(target, NULL);
1359
1360 if (var != NULL)
1361 _mesa_hash_table_insert(temps, var, inst);
1362 else
1363 remap_variables(inst, target, temps);
1364 } else {
1365 inst->remove();
1366 }
1367
1368 last->insert_after(inst);
1369 last = inst;
1370 }
1371
1372 if (make_copies)
1373 _mesa_hash_table_destroy(temps, NULL);
1374
1375 return last;
1376 }
1377
1378
1379 /**
1380 * This class is only used in link_intrastage_shaders() below but declaring
1381 * it inside that function leads to compiler warnings with some versions of
1382 * gcc.
1383 */
1384 class array_sizing_visitor : public deref_type_updater {
1385 public:
1386 array_sizing_visitor()
1387 : mem_ctx(ralloc_context(NULL)),
1388 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1389 _mesa_key_pointer_equal))
1390 {
1391 }
1392
1393 ~array_sizing_visitor()
1394 {
1395 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1396 ralloc_free(this->mem_ctx);
1397 }
1398
1399 virtual ir_visitor_status visit(ir_variable *var)
1400 {
1401 const glsl_type *type_without_array;
1402 bool implicit_sized_array = var->data.implicit_sized_array;
1403 fixup_type(&var->type, var->data.max_array_access,
1404 var->data.from_ssbo_unsized_array,
1405 &implicit_sized_array);
1406 var->data.implicit_sized_array = implicit_sized_array;
1407 type_without_array = var->type->without_array();
1408 if (var->type->is_interface()) {
1409 if (interface_contains_unsized_arrays(var->type)) {
1410 const glsl_type *new_type =
1411 resize_interface_members(var->type,
1412 var->get_max_ifc_array_access(),
1413 var->is_in_shader_storage_block());
1414 var->type = new_type;
1415 var->change_interface_type(new_type);
1416 }
1417 } else if (type_without_array->is_interface()) {
1418 if (interface_contains_unsized_arrays(type_without_array)) {
1419 const glsl_type *new_type =
1420 resize_interface_members(type_without_array,
1421 var->get_max_ifc_array_access(),
1422 var->is_in_shader_storage_block());
1423 var->change_interface_type(new_type);
1424 var->type = update_interface_members_array(var->type, new_type);
1425 }
1426 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1427 /* Store a pointer to the variable in the unnamed_interfaces
1428 * hashtable.
1429 */
1430 hash_entry *entry =
1431 _mesa_hash_table_search(this->unnamed_interfaces,
1432 ifc_type);
1433
1434 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1435
1436 if (interface_vars == NULL) {
1437 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1438 ifc_type->length);
1439 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1440 interface_vars);
1441 }
1442 unsigned index = ifc_type->field_index(var->name);
1443 assert(index < ifc_type->length);
1444 assert(interface_vars[index] == NULL);
1445 interface_vars[index] = var;
1446 }
1447 return visit_continue;
1448 }
1449
1450 /**
1451 * For each unnamed interface block that was discovered while running the
1452 * visitor, adjust the interface type to reflect the newly assigned array
1453 * sizes, and fix up the ir_variable nodes to point to the new interface
1454 * type.
1455 */
1456 void fixup_unnamed_interface_types()
1457 {
1458 hash_table_call_foreach(this->unnamed_interfaces,
1459 fixup_unnamed_interface_type, NULL);
1460 }
1461
1462 private:
1463 /**
1464 * If the type pointed to by \c type represents an unsized array, replace
1465 * it with a sized array whose size is determined by max_array_access.
1466 */
1467 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1468 bool from_ssbo_unsized_array, bool *implicit_sized)
1469 {
1470 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1471 *type = glsl_type::get_array_instance((*type)->fields.array,
1472 max_array_access + 1);
1473 *implicit_sized = true;
1474 assert(*type != NULL);
1475 }
1476 }
1477
1478 static const glsl_type *
1479 update_interface_members_array(const glsl_type *type,
1480 const glsl_type *new_interface_type)
1481 {
1482 const glsl_type *element_type = type->fields.array;
1483 if (element_type->is_array()) {
1484 const glsl_type *new_array_type =
1485 update_interface_members_array(element_type, new_interface_type);
1486 return glsl_type::get_array_instance(new_array_type, type->length);
1487 } else {
1488 return glsl_type::get_array_instance(new_interface_type,
1489 type->length);
1490 }
1491 }
1492
1493 /**
1494 * Determine whether the given interface type contains unsized arrays (if
1495 * it doesn't, array_sizing_visitor doesn't need to process it).
1496 */
1497 static bool interface_contains_unsized_arrays(const glsl_type *type)
1498 {
1499 for (unsigned i = 0; i < type->length; i++) {
1500 const glsl_type *elem_type = type->fields.structure[i].type;
1501 if (elem_type->is_unsized_array())
1502 return true;
1503 }
1504 return false;
1505 }
1506
1507 /**
1508 * Create a new interface type based on the given type, with unsized arrays
1509 * replaced by sized arrays whose size is determined by
1510 * max_ifc_array_access.
1511 */
1512 static const glsl_type *
1513 resize_interface_members(const glsl_type *type,
1514 const int *max_ifc_array_access,
1515 bool is_ssbo)
1516 {
1517 unsigned num_fields = type->length;
1518 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1519 memcpy(fields, type->fields.structure,
1520 num_fields * sizeof(*fields));
1521 for (unsigned i = 0; i < num_fields; i++) {
1522 bool implicit_sized_array = fields[i].implicit_sized_array;
1523 /* If SSBO last member is unsized array, we don't replace it by a sized
1524 * array.
1525 */
1526 if (is_ssbo && i == (num_fields - 1))
1527 fixup_type(&fields[i].type, max_ifc_array_access[i],
1528 true, &implicit_sized_array);
1529 else
1530 fixup_type(&fields[i].type, max_ifc_array_access[i],
1531 false, &implicit_sized_array);
1532 fields[i].implicit_sized_array = implicit_sized_array;
1533 }
1534 glsl_interface_packing packing =
1535 (glsl_interface_packing) type->interface_packing;
1536 bool row_major = (bool) type->interface_row_major;
1537 const glsl_type *new_ifc_type =
1538 glsl_type::get_interface_instance(fields, num_fields,
1539 packing, row_major, type->name);
1540 delete [] fields;
1541 return new_ifc_type;
1542 }
1543
1544 static void fixup_unnamed_interface_type(const void *key, void *data,
1545 void *)
1546 {
1547 const glsl_type *ifc_type = (const glsl_type *) key;
1548 ir_variable **interface_vars = (ir_variable **) data;
1549 unsigned num_fields = ifc_type->length;
1550 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1551 memcpy(fields, ifc_type->fields.structure,
1552 num_fields * sizeof(*fields));
1553 bool interface_type_changed = false;
1554 for (unsigned i = 0; i < num_fields; i++) {
1555 if (interface_vars[i] != NULL &&
1556 fields[i].type != interface_vars[i]->type) {
1557 fields[i].type = interface_vars[i]->type;
1558 interface_type_changed = true;
1559 }
1560 }
1561 if (!interface_type_changed) {
1562 delete [] fields;
1563 return;
1564 }
1565 glsl_interface_packing packing =
1566 (glsl_interface_packing) ifc_type->interface_packing;
1567 bool row_major = (bool) ifc_type->interface_row_major;
1568 const glsl_type *new_ifc_type =
1569 glsl_type::get_interface_instance(fields, num_fields, packing,
1570 row_major, ifc_type->name);
1571 delete [] fields;
1572 for (unsigned i = 0; i < num_fields; i++) {
1573 if (interface_vars[i] != NULL)
1574 interface_vars[i]->change_interface_type(new_ifc_type);
1575 }
1576 }
1577
1578 /**
1579 * Memory context used to allocate the data in \c unnamed_interfaces.
1580 */
1581 void *mem_ctx;
1582
1583 /**
1584 * Hash table from const glsl_type * to an array of ir_variable *'s
1585 * pointing to the ir_variables constituting each unnamed interface block.
1586 */
1587 hash_table *unnamed_interfaces;
1588 };
1589
1590 /**
1591 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1592 * for later use.
1593 */
1594 static void
1595 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1596 struct gl_shader_program *prog,
1597 struct gl_linked_shader *linked_shader,
1598 struct gl_shader **shader_list,
1599 unsigned num_shaders)
1600 {
1601 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1602 linked_shader->info.TransformFeedback.BufferStride[i] = 0;
1603 }
1604
1605 for (unsigned i = 0; i < num_shaders; i++) {
1606 struct gl_shader *shader = shader_list[i];
1607
1608 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1609 if (shader->info.TransformFeedback.BufferStride[j]) {
1610 if (linked_shader->info.TransformFeedback.BufferStride[j] != 0 &&
1611 shader->info.TransformFeedback.BufferStride[j] != 0 &&
1612 linked_shader->info.TransformFeedback.BufferStride[j] !=
1613 shader->info.TransformFeedback.BufferStride[j]) {
1614 linker_error(prog,
1615 "intrastage shaders defined with conflicting "
1616 "xfb_stride for buffer %d (%d and %d)\n", j,
1617 linked_shader->
1618 info.TransformFeedback.BufferStride[j],
1619 shader->info.TransformFeedback.BufferStride[j]);
1620 return;
1621 }
1622
1623 if (shader->info.TransformFeedback.BufferStride[j])
1624 linked_shader->info.TransformFeedback.BufferStride[j] =
1625 shader->info.TransformFeedback.BufferStride[j];
1626 }
1627 }
1628 }
1629
1630 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1631 if (linked_shader->info.TransformFeedback.BufferStride[j]) {
1632 prog->TransformFeedback.BufferStride[j] =
1633 linked_shader->info.TransformFeedback.BufferStride[j];
1634
1635 /* We will validate doubles at a later stage */
1636 if (prog->TransformFeedback.BufferStride[j] % 4) {
1637 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1638 "multiple of 4 or if its applied to a type that is "
1639 "or contains a double a multiple of 8.",
1640 prog->TransformFeedback.BufferStride[j]);
1641 return;
1642 }
1643
1644 if (prog->TransformFeedback.BufferStride[j] / 4 >
1645 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1646 linker_error(prog,
1647 "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1648 "limit has been exceeded.");
1649 return;
1650 }
1651 }
1652 }
1653 }
1654
1655 /**
1656 * Performs the cross-validation of tessellation control shader vertices and
1657 * layout qualifiers for the attached tessellation control shaders,
1658 * and propagates them to the linked TCS and linked shader program.
1659 */
1660 static void
1661 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1662 struct gl_program *gl_prog,
1663 struct gl_shader **shader_list,
1664 unsigned num_shaders)
1665 {
1666 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1667 return;
1668
1669 gl_prog->info.tess.tcs_vertices_out = 0;
1670
1671 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1672 *
1673 * "All tessellation control shader layout declarations in a program
1674 * must specify the same output patch vertex count. There must be at
1675 * least one layout qualifier specifying an output patch vertex count
1676 * in any program containing tessellation control shaders; however,
1677 * such a declaration is not required in all tessellation control
1678 * shaders."
1679 */
1680
1681 for (unsigned i = 0; i < num_shaders; i++) {
1682 struct gl_shader *shader = shader_list[i];
1683
1684 if (shader->info.TessCtrl.VerticesOut != 0) {
1685 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1686 gl_prog->info.tess.tcs_vertices_out !=
1687 (unsigned) shader->info.TessCtrl.VerticesOut) {
1688 linker_error(prog, "tessellation control shader defined with "
1689 "conflicting output vertex count (%d and %d)\n",
1690 gl_prog->info.tess.tcs_vertices_out,
1691 shader->info.TessCtrl.VerticesOut);
1692 return;
1693 }
1694 gl_prog->info.tess.tcs_vertices_out =
1695 shader->info.TessCtrl.VerticesOut;
1696 }
1697 }
1698
1699 /* Just do the intrastage -> interstage propagation right now,
1700 * since we already know we're in the right type of shader program
1701 * for doing it.
1702 */
1703 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1704 linker_error(prog, "tessellation control shader didn't declare "
1705 "vertices out layout qualifier\n");
1706 return;
1707 }
1708 }
1709
1710
1711 /**
1712 * Performs the cross-validation of tessellation evaluation shader
1713 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1714 * for the attached tessellation evaluation shaders, and propagates them
1715 * to the linked TES and linked shader program.
1716 */
1717 static void
1718 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1719 struct gl_linked_shader *linked_shader,
1720 struct gl_shader **shader_list,
1721 unsigned num_shaders)
1722 {
1723 linked_shader->info.TessEval.PrimitiveMode = PRIM_UNKNOWN;
1724 linked_shader->info.TessEval.Spacing = TESS_SPACING_UNSPECIFIED;
1725 linked_shader->info.TessEval.VertexOrder = 0;
1726 linked_shader->info.TessEval.PointMode = -1;
1727
1728 if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
1729 return;
1730
1731 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1732 *
1733 * "At least one tessellation evaluation shader (compilation unit) in
1734 * a program must declare a primitive mode in its input layout.
1735 * Declaration vertex spacing, ordering, and point mode identifiers is
1736 * optional. It is not required that all tessellation evaluation
1737 * shaders in a program declare a primitive mode. If spacing or
1738 * vertex ordering declarations are omitted, the tessellation
1739 * primitive generator will use equal spacing or counter-clockwise
1740 * vertex ordering, respectively. If a point mode declaration is
1741 * omitted, the tessellation primitive generator will produce lines or
1742 * triangles according to the primitive mode."
1743 */
1744
1745 for (unsigned i = 0; i < num_shaders; i++) {
1746 struct gl_shader *shader = shader_list[i];
1747
1748 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1749 if (linked_shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN &&
1750 linked_shader->info.TessEval.PrimitiveMode !=
1751 shader->info.TessEval.PrimitiveMode) {
1752 linker_error(prog, "tessellation evaluation shader defined with "
1753 "conflicting input primitive modes.\n");
1754 return;
1755 }
1756 linked_shader->info.TessEval.PrimitiveMode = shader->info.TessEval.PrimitiveMode;
1757 }
1758
1759 if (shader->info.TessEval.Spacing != 0) {
1760 if (linked_shader->info.TessEval.Spacing != 0 &&
1761 linked_shader->info.TessEval.Spacing !=
1762 shader->info.TessEval.Spacing) {
1763 linker_error(prog, "tessellation evaluation shader defined with "
1764 "conflicting vertex spacing.\n");
1765 return;
1766 }
1767 linked_shader->info.TessEval.Spacing = shader->info.TessEval.Spacing;
1768 }
1769
1770 if (shader->info.TessEval.VertexOrder != 0) {
1771 if (linked_shader->info.TessEval.VertexOrder != 0 &&
1772 linked_shader->info.TessEval.VertexOrder !=
1773 shader->info.TessEval.VertexOrder) {
1774 linker_error(prog, "tessellation evaluation shader defined with "
1775 "conflicting ordering.\n");
1776 return;
1777 }
1778 linked_shader->info.TessEval.VertexOrder =
1779 shader->info.TessEval.VertexOrder;
1780 }
1781
1782 if (shader->info.TessEval.PointMode != -1) {
1783 if (linked_shader->info.TessEval.PointMode != -1 &&
1784 linked_shader->info.TessEval.PointMode !=
1785 shader->info.TessEval.PointMode) {
1786 linker_error(prog, "tessellation evaluation shader defined with "
1787 "conflicting point modes.\n");
1788 return;
1789 }
1790 linked_shader->info.TessEval.PointMode =
1791 shader->info.TessEval.PointMode;
1792 }
1793
1794 }
1795
1796 /* Just do the intrastage -> interstage propagation right now,
1797 * since we already know we're in the right type of shader program
1798 * for doing it.
1799 */
1800 if (linked_shader->info.TessEval.PrimitiveMode == PRIM_UNKNOWN) {
1801 linker_error(prog,
1802 "tessellation evaluation shader didn't declare input "
1803 "primitive modes.\n");
1804 return;
1805 }
1806
1807 if (linked_shader->info.TessEval.Spacing == TESS_SPACING_UNSPECIFIED)
1808 linked_shader->info.TessEval.Spacing = TESS_SPACING_EQUAL;
1809
1810 if (linked_shader->info.TessEval.VertexOrder == 0)
1811 linked_shader->info.TessEval.VertexOrder = GL_CCW;
1812
1813 if (linked_shader->info.TessEval.PointMode == -1)
1814 linked_shader->info.TessEval.PointMode = GL_FALSE;
1815 }
1816
1817
1818 /**
1819 * Performs the cross-validation of layout qualifiers specified in
1820 * redeclaration of gl_FragCoord for the attached fragment shaders,
1821 * and propagates them to the linked FS and linked shader program.
1822 */
1823 static void
1824 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1825 struct gl_linked_shader *linked_shader,
1826 struct gl_shader **shader_list,
1827 unsigned num_shaders)
1828 {
1829 bool redeclares_gl_fragcoord = false;
1830 bool uses_gl_fragcoord = false;
1831 bool origin_upper_left = false;
1832 bool pixel_center_integer = false;
1833
1834 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1835 (prog->data->Version < 150 &&
1836 !prog->ARB_fragment_coord_conventions_enable))
1837 return;
1838
1839 for (unsigned i = 0; i < num_shaders; i++) {
1840 struct gl_shader *shader = shader_list[i];
1841 /* From the GLSL 1.50 spec, page 39:
1842 *
1843 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1844 * it must be redeclared in all the fragment shaders in that program
1845 * that have a static use gl_FragCoord."
1846 */
1847 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1848 shader->uses_gl_fragcoord)
1849 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1850 uses_gl_fragcoord)) {
1851 linker_error(prog, "fragment shader defined with conflicting "
1852 "layout qualifiers for gl_FragCoord\n");
1853 }
1854
1855 /* From the GLSL 1.50 spec, page 39:
1856 *
1857 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1858 * single program must have the same set of qualifiers."
1859 */
1860 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1861 (shader->origin_upper_left != origin_upper_left ||
1862 shader->pixel_center_integer != pixel_center_integer)) {
1863 linker_error(prog, "fragment shader defined with conflicting "
1864 "layout qualifiers for gl_FragCoord\n");
1865 }
1866
1867 /* Update the linked shader state. Note that uses_gl_fragcoord should
1868 * accumulate the results. The other values should replace. If there
1869 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1870 * are already known to be the same.
1871 */
1872 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1873 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1874 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1875 origin_upper_left = shader->origin_upper_left;
1876 pixel_center_integer = shader->pixel_center_integer;
1877 }
1878
1879 linked_shader->Program->info.fs.early_fragment_tests |=
1880 shader->EarlyFragmentTests;
1881 linked_shader->info.InnerCoverage |=
1882 shader->info.InnerCoverage;
1883 linked_shader->Program->info.fs.post_depth_coverage |=
1884 shader->PostDepthCoverage;
1885
1886 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1887 }
1888 }
1889
1890 /**
1891 * Performs the cross-validation of geometry shader max_vertices and
1892 * primitive type layout qualifiers for the attached geometry shaders,
1893 * and propagates them to the linked GS and linked shader program.
1894 */
1895 static void
1896 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1897 struct gl_linked_shader *linked_shader,
1898 struct gl_shader **shader_list,
1899 unsigned num_shaders)
1900 {
1901 linked_shader->info.Geom.VerticesOut = -1;
1902 linked_shader->info.Geom.Invocations = 0;
1903 linked_shader->info.Geom.InputType = PRIM_UNKNOWN;
1904 linked_shader->info.Geom.OutputType = PRIM_UNKNOWN;
1905
1906 /* No in/out qualifiers defined for anything but GLSL 1.50+
1907 * geometry shaders so far.
1908 */
1909 if (linked_shader->Stage != MESA_SHADER_GEOMETRY ||
1910 prog->data->Version < 150)
1911 return;
1912
1913 /* From the GLSL 1.50 spec, page 46:
1914 *
1915 * "All geometry shader output layout declarations in a program
1916 * must declare the same layout and same value for
1917 * max_vertices. There must be at least one geometry output
1918 * layout declaration somewhere in a program, but not all
1919 * geometry shaders (compilation units) are required to
1920 * declare it."
1921 */
1922
1923 for (unsigned i = 0; i < num_shaders; i++) {
1924 struct gl_shader *shader = shader_list[i];
1925
1926 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
1927 if (linked_shader->info.Geom.InputType != PRIM_UNKNOWN &&
1928 linked_shader->info.Geom.InputType !=
1929 shader->info.Geom.InputType) {
1930 linker_error(prog, "geometry shader defined with conflicting "
1931 "input types\n");
1932 return;
1933 }
1934 linked_shader->info.Geom.InputType = shader->info.Geom.InputType;
1935 }
1936
1937 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
1938 if (linked_shader->info.Geom.OutputType != PRIM_UNKNOWN &&
1939 linked_shader->info.Geom.OutputType !=
1940 shader->info.Geom.OutputType) {
1941 linker_error(prog, "geometry shader defined with conflicting "
1942 "output types\n");
1943 return;
1944 }
1945 linked_shader->info.Geom.OutputType = shader->info.Geom.OutputType;
1946 }
1947
1948 if (shader->info.Geom.VerticesOut != -1) {
1949 if (linked_shader->info.Geom.VerticesOut != -1 &&
1950 linked_shader->info.Geom.VerticesOut !=
1951 shader->info.Geom.VerticesOut) {
1952 linker_error(prog, "geometry shader defined with conflicting "
1953 "output vertex count (%d and %d)\n",
1954 linked_shader->info.Geom.VerticesOut,
1955 shader->info.Geom.VerticesOut);
1956 return;
1957 }
1958 linked_shader->info.Geom.VerticesOut = shader->info.Geom.VerticesOut;
1959 }
1960
1961 if (shader->info.Geom.Invocations != 0) {
1962 if (linked_shader->info.Geom.Invocations != 0 &&
1963 linked_shader->info.Geom.Invocations !=
1964 shader->info.Geom.Invocations) {
1965 linker_error(prog, "geometry shader defined with conflicting "
1966 "invocation count (%d and %d)\n",
1967 linked_shader->info.Geom.Invocations,
1968 shader->info.Geom.Invocations);
1969 return;
1970 }
1971 linked_shader->info.Geom.Invocations = shader->info.Geom.Invocations;
1972 }
1973 }
1974
1975 /* Just do the intrastage -> interstage propagation right now,
1976 * since we already know we're in the right type of shader program
1977 * for doing it.
1978 */
1979 if (linked_shader->info.Geom.InputType == PRIM_UNKNOWN) {
1980 linker_error(prog,
1981 "geometry shader didn't declare primitive input type\n");
1982 return;
1983 }
1984
1985 if (linked_shader->info.Geom.OutputType == PRIM_UNKNOWN) {
1986 linker_error(prog,
1987 "geometry shader didn't declare primitive output type\n");
1988 return;
1989 }
1990
1991 if (linked_shader->info.Geom.VerticesOut == -1) {
1992 linker_error(prog,
1993 "geometry shader didn't declare max_vertices\n");
1994 return;
1995 }
1996
1997 if (linked_shader->info.Geom.Invocations == 0)
1998 linked_shader->info.Geom.Invocations = 1;
1999 }
2000
2001
2002 /**
2003 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2004 * qualifiers for the attached compute shaders, and propagate them to the
2005 * linked CS and linked shader program.
2006 */
2007 static void
2008 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2009 struct gl_linked_shader *linked_shader,
2010 struct gl_shader **shader_list,
2011 unsigned num_shaders)
2012 {
2013 for (int i = 0; i < 3; i++)
2014 linked_shader->info.Comp.LocalSize[i] = 0;
2015
2016 linked_shader->info.Comp.LocalSizeVariable = false;
2017
2018 /* This function is called for all shader stages, but it only has an effect
2019 * for compute shaders.
2020 */
2021 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
2022 return;
2023
2024 /* From the ARB_compute_shader spec, in the section describing local size
2025 * declarations:
2026 *
2027 * If multiple compute shaders attached to a single program object
2028 * declare local work-group size, the declarations must be identical;
2029 * otherwise a link-time error results. Furthermore, if a program
2030 * object contains any compute shaders, at least one must contain an
2031 * input layout qualifier specifying the local work sizes of the
2032 * program, or a link-time error will occur.
2033 */
2034 for (unsigned sh = 0; sh < num_shaders; sh++) {
2035 struct gl_shader *shader = shader_list[sh];
2036
2037 if (shader->info.Comp.LocalSize[0] != 0) {
2038 if (linked_shader->info.Comp.LocalSize[0] != 0) {
2039 for (int i = 0; i < 3; i++) {
2040 if (linked_shader->info.Comp.LocalSize[i] !=
2041 shader->info.Comp.LocalSize[i]) {
2042 linker_error(prog, "compute shader defined with conflicting "
2043 "local sizes\n");
2044 return;
2045 }
2046 }
2047 }
2048 for (int i = 0; i < 3; i++) {
2049 linked_shader->info.Comp.LocalSize[i] =
2050 shader->info.Comp.LocalSize[i];
2051 }
2052 } else if (shader->info.Comp.LocalSizeVariable) {
2053 if (linked_shader->info.Comp.LocalSize[0] != 0) {
2054 /* The ARB_compute_variable_group_size spec says:
2055 *
2056 * If one compute shader attached to a program declares a
2057 * variable local group size and a second compute shader
2058 * attached to the same program declares a fixed local group
2059 * size, a link-time error results.
2060 */
2061 linker_error(prog, "compute shader defined with both fixed and "
2062 "variable local group size\n");
2063 return;
2064 }
2065 linked_shader->info.Comp.LocalSizeVariable = true;
2066 }
2067 }
2068
2069 /* Just do the intrastage -> interstage propagation right now,
2070 * since we already know we're in the right type of shader program
2071 * for doing it.
2072 */
2073 if (linked_shader->info.Comp.LocalSize[0] == 0 &&
2074 !linked_shader->info.Comp.LocalSizeVariable) {
2075 linker_error(prog, "compute shader must contain a fixed or a variable "
2076 "local group size\n");
2077 return;
2078 }
2079 for (int i = 0; i < 3; i++)
2080 prog->Comp.LocalSize[i] = linked_shader->info.Comp.LocalSize[i];
2081
2082 prog->Comp.LocalSizeVariable =
2083 linked_shader->info.Comp.LocalSizeVariable;
2084 }
2085
2086
2087 /**
2088 * Combine a group of shaders for a single stage to generate a linked shader
2089 *
2090 * \note
2091 * If this function is supplied a single shader, it is cloned, and the new
2092 * shader is returned.
2093 */
2094 struct gl_linked_shader *
2095 link_intrastage_shaders(void *mem_ctx,
2096 struct gl_context *ctx,
2097 struct gl_shader_program *prog,
2098 struct gl_shader **shader_list,
2099 unsigned num_shaders,
2100 bool allow_missing_main)
2101 {
2102 struct gl_uniform_block *ubo_blocks = NULL;
2103 struct gl_uniform_block *ssbo_blocks = NULL;
2104 unsigned num_ubo_blocks = 0;
2105 unsigned num_ssbo_blocks = 0;
2106
2107 /* Check that global variables defined in multiple shaders are consistent.
2108 */
2109 glsl_symbol_table variables;
2110 for (unsigned i = 0; i < num_shaders; i++) {
2111 if (shader_list[i] == NULL)
2112 continue;
2113 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2114 }
2115
2116 if (!prog->data->LinkStatus)
2117 return NULL;
2118
2119 /* Check that interface blocks defined in multiple shaders are consistent.
2120 */
2121 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2122 num_shaders);
2123 if (!prog->data->LinkStatus)
2124 return NULL;
2125
2126 /* Check that there is only a single definition of each function signature
2127 * across all shaders.
2128 */
2129 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2130 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2131 ir_function *const f = node->as_function();
2132
2133 if (f == NULL)
2134 continue;
2135
2136 for (unsigned j = i + 1; j < num_shaders; j++) {
2137 ir_function *const other =
2138 shader_list[j]->symbols->get_function(f->name);
2139
2140 /* If the other shader has no function (and therefore no function
2141 * signatures) with the same name, skip to the next shader.
2142 */
2143 if (other == NULL)
2144 continue;
2145
2146 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2147 if (!sig->is_defined)
2148 continue;
2149
2150 ir_function_signature *other_sig =
2151 other->exact_matching_signature(NULL, &sig->parameters);
2152
2153 if (other_sig != NULL && other_sig->is_defined) {
2154 linker_error(prog, "function `%s' is multiply defined\n",
2155 f->name);
2156 return NULL;
2157 }
2158 }
2159 }
2160 }
2161 }
2162
2163 /* Find the shader that defines main, and make a clone of it.
2164 *
2165 * Starting with the clone, search for undefined references. If one is
2166 * found, find the shader that defines it. Clone the reference and add
2167 * it to the shader. Repeat until there are no undefined references or
2168 * until a reference cannot be resolved.
2169 */
2170 gl_shader *main = NULL;
2171 for (unsigned i = 0; i < num_shaders; i++) {
2172 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2173 main = shader_list[i];
2174 break;
2175 }
2176 }
2177
2178 if (main == NULL && allow_missing_main)
2179 main = shader_list[0];
2180
2181 if (main == NULL) {
2182 linker_error(prog, "%s shader lacks `main'\n",
2183 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2184 return NULL;
2185 }
2186
2187 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2188 linked->Stage = shader_list[0]->Stage;
2189
2190 /* Create program and attach it to the linked shader */
2191 struct gl_program *gl_prog =
2192 ctx->Driver.NewProgram(ctx,
2193 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2194 prog->Name, false);
2195 if (!gl_prog) {
2196 prog->data->LinkStatus = false;
2197 _mesa_delete_linked_shader(ctx, linked);
2198 return NULL;
2199 }
2200
2201 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2202
2203 /* Don't use _mesa_reference_program() just take ownership */
2204 linked->Program = gl_prog;
2205
2206 linked->ir = new(linked) exec_list;
2207 clone_ir_list(mem_ctx, linked->ir, main->ir);
2208
2209 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2210 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2211 link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
2212 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2213 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2214 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2215 num_shaders);
2216
2217 populate_symbol_table(linked);
2218
2219 /* The pointer to the main function in the final linked shader (i.e., the
2220 * copy of the original shader that contained the main function).
2221 */
2222 ir_function_signature *const main_sig =
2223 _mesa_get_main_function_signature(linked->symbols);
2224
2225 /* Move any instructions other than variable declarations or function
2226 * declarations into main.
2227 */
2228 if (main_sig != NULL) {
2229 exec_node *insertion_point =
2230 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2231 linked);
2232
2233 for (unsigned i = 0; i < num_shaders; i++) {
2234 if (shader_list[i] == main)
2235 continue;
2236
2237 insertion_point = move_non_declarations(shader_list[i]->ir,
2238 insertion_point, true, linked);
2239 }
2240 }
2241
2242 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2243 _mesa_delete_linked_shader(ctx, linked);
2244 return NULL;
2245 }
2246
2247 /* Make a pass over all variable declarations to ensure that arrays with
2248 * unspecified sizes have a size specified. The size is inferred from the
2249 * max_array_access field.
2250 */
2251 array_sizing_visitor v;
2252 v.run(linked->ir);
2253 v.fixup_unnamed_interface_types();
2254
2255 /* Link up uniform blocks defined within this stage. */
2256 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2257 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2258
2259 if (!prog->data->LinkStatus) {
2260 _mesa_delete_linked_shader(ctx, linked);
2261 return NULL;
2262 }
2263
2264 /* Copy ubo blocks to linked shader list */
2265 linked->Program->sh.UniformBlocks =
2266 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2267 ralloc_steal(linked, ubo_blocks);
2268 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2269 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2270 }
2271 linked->Program->info.num_ubos = num_ubo_blocks;
2272
2273 /* Copy ssbo blocks to linked shader list */
2274 linked->Program->sh.ShaderStorageBlocks =
2275 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2276 ralloc_steal(linked, ssbo_blocks);
2277 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2278 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2279 }
2280 linked->Program->info.num_ssbos = num_ssbo_blocks;
2281
2282 /* At this point linked should contain all of the linked IR, so
2283 * validate it to make sure nothing went wrong.
2284 */
2285 validate_ir_tree(linked->ir);
2286
2287 /* Set the size of geometry shader input arrays */
2288 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2289 unsigned num_vertices = vertices_per_prim(linked->info.Geom.InputType);
2290 array_resize_visitor input_resize_visitor(num_vertices, prog,
2291 MESA_SHADER_GEOMETRY);
2292 foreach_in_list(ir_instruction, ir, linked->ir) {
2293 ir->accept(&input_resize_visitor);
2294 }
2295 }
2296
2297 if (ctx->Const.VertexID_is_zero_based)
2298 lower_vertex_id(linked);
2299
2300 #ifdef DEBUG
2301 /* Compute the source checksum. */
2302 linked->SourceChecksum = 0;
2303 for (unsigned i = 0; i < num_shaders; i++) {
2304 if (shader_list[i] == NULL)
2305 continue;
2306 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2307 }
2308 #endif
2309
2310 return linked;
2311 }
2312
2313 /**
2314 * Update the sizes of linked shader uniform arrays to the maximum
2315 * array index used.
2316 *
2317 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2318 *
2319 * If one or more elements of an array are active,
2320 * GetActiveUniform will return the name of the array in name,
2321 * subject to the restrictions listed above. The type of the array
2322 * is returned in type. The size parameter contains the highest
2323 * array element index used, plus one. The compiler or linker
2324 * determines the highest index used. There will be only one
2325 * active uniform reported by the GL per uniform array.
2326
2327 */
2328 static void
2329 update_array_sizes(struct gl_shader_program *prog)
2330 {
2331 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2332 if (prog->_LinkedShaders[i] == NULL)
2333 continue;
2334
2335 bool types_were_updated = false;
2336
2337 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2338 ir_variable *const var = node->as_variable();
2339
2340 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2341 !var->type->is_array())
2342 continue;
2343
2344 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2345 * will not be eliminated. Since we always do std140, just
2346 * don't resize arrays in UBOs.
2347 *
2348 * Atomic counters are supposed to get deterministic
2349 * locations assigned based on the declaration ordering and
2350 * sizes, array compaction would mess that up.
2351 *
2352 * Subroutine uniforms are not removed.
2353 */
2354 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2355 var->type->contains_subroutine() || var->constant_initializer)
2356 continue;
2357
2358 int size = var->data.max_array_access;
2359 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2360 if (prog->_LinkedShaders[j] == NULL)
2361 continue;
2362
2363 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2364 ir_variable *other_var = node2->as_variable();
2365 if (!other_var)
2366 continue;
2367
2368 if (strcmp(var->name, other_var->name) == 0 &&
2369 other_var->data.max_array_access > size) {
2370 size = other_var->data.max_array_access;
2371 }
2372 }
2373 }
2374
2375 if (size + 1 != (int)var->type->length) {
2376 /* If this is a built-in uniform (i.e., it's backed by some
2377 * fixed-function state), adjust the number of state slots to
2378 * match the new array size. The number of slots per array entry
2379 * is not known. It seems safe to assume that the total number of
2380 * slots is an integer multiple of the number of array elements.
2381 * Determine the number of slots per array element by dividing by
2382 * the old (total) size.
2383 */
2384 const unsigned num_slots = var->get_num_state_slots();
2385 if (num_slots > 0) {
2386 var->set_num_state_slots((size + 1)
2387 * (num_slots / var->type->length));
2388 }
2389
2390 var->type = glsl_type::get_array_instance(var->type->fields.array,
2391 size + 1);
2392 types_were_updated = true;
2393 }
2394 }
2395
2396 /* Update the types of dereferences in case we changed any. */
2397 if (types_were_updated) {
2398 deref_type_updater v;
2399 v.run(prog->_LinkedShaders[i]->ir);
2400 }
2401 }
2402 }
2403
2404 /**
2405 * Resize tessellation evaluation per-vertex inputs to the size of
2406 * tessellation control per-vertex outputs.
2407 */
2408 static void
2409 resize_tes_inputs(struct gl_context *ctx,
2410 struct gl_shader_program *prog)
2411 {
2412 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2413 return;
2414
2415 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2416 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2417
2418 /* If no control shader is present, then the TES inputs are statically
2419 * sized to MaxPatchVertices; the actual size of the arrays won't be
2420 * known until draw time.
2421 */
2422 const int num_vertices = tcs
2423 ? tcs->Program->info.tess.tcs_vertices_out
2424 : ctx->Const.MaxPatchVertices;
2425
2426 array_resize_visitor input_resize_visitor(num_vertices, prog,
2427 MESA_SHADER_TESS_EVAL);
2428 foreach_in_list(ir_instruction, ir, tes->ir) {
2429 ir->accept(&input_resize_visitor);
2430 }
2431
2432 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2433 /* Convert the gl_PatchVerticesIn system value into a constant, since
2434 * the value is known at this point.
2435 */
2436 foreach_in_list(ir_instruction, ir, tes->ir) {
2437 ir_variable *var = ir->as_variable();
2438 if (var && var->data.mode == ir_var_system_value &&
2439 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2440 void *mem_ctx = ralloc_parent(var);
2441 var->data.location = 0;
2442 var->data.explicit_location = false;
2443 if (tcs) {
2444 var->data.mode = ir_var_auto;
2445 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2446 } else {
2447 var->data.mode = ir_var_uniform;
2448 var->data.how_declared = ir_var_hidden;
2449 var->allocate_state_slots(1);
2450 ir_state_slot *slot0 = &var->get_state_slots()[0];
2451 slot0->swizzle = SWIZZLE_XXXX;
2452 slot0->tokens[0] = STATE_INTERNAL;
2453 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2454 for (int i = 2; i < STATE_LENGTH; i++)
2455 slot0->tokens[i] = 0;
2456 }
2457 }
2458 }
2459 }
2460 }
2461
2462 /**
2463 * Find a contiguous set of available bits in a bitmask.
2464 *
2465 * \param used_mask Bits representing used (1) and unused (0) locations
2466 * \param needed_count Number of contiguous bits needed.
2467 *
2468 * \return
2469 * Base location of the available bits on success or -1 on failure.
2470 */
2471 int
2472 find_available_slots(unsigned used_mask, unsigned needed_count)
2473 {
2474 unsigned needed_mask = (1 << needed_count) - 1;
2475 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2476
2477 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2478 * cannot optimize possibly infinite loops" for the loop below.
2479 */
2480 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2481 return -1;
2482
2483 for (int i = 0; i <= max_bit_to_test; i++) {
2484 if ((needed_mask & ~used_mask) == needed_mask)
2485 return i;
2486
2487 needed_mask <<= 1;
2488 }
2489
2490 return -1;
2491 }
2492
2493
2494 /**
2495 * Assign locations for either VS inputs or FS outputs
2496 *
2497 * \param mem_ctx Temporary ralloc context used for linking
2498 * \param prog Shader program whose variables need locations assigned
2499 * \param constants Driver specific constant values for the program.
2500 * \param target_index Selector for the program target to receive location
2501 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2502 * \c MESA_SHADER_FRAGMENT.
2503 *
2504 * \return
2505 * If locations are successfully assigned, true is returned. Otherwise an
2506 * error is emitted to the shader link log and false is returned.
2507 */
2508 bool
2509 assign_attribute_or_color_locations(void *mem_ctx,
2510 gl_shader_program *prog,
2511 struct gl_constants *constants,
2512 unsigned target_index)
2513 {
2514 /* Maximum number of generic locations. This corresponds to either the
2515 * maximum number of draw buffers or the maximum number of generic
2516 * attributes.
2517 */
2518 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2519 constants->Program[target_index].MaxAttribs :
2520 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2521
2522 /* Mark invalid locations as being used.
2523 */
2524 unsigned used_locations = (max_index >= 32)
2525 ? ~0 : ~((1 << max_index) - 1);
2526 unsigned double_storage_locations = 0;
2527
2528 assert((target_index == MESA_SHADER_VERTEX)
2529 || (target_index == MESA_SHADER_FRAGMENT));
2530
2531 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2532 if (sh == NULL)
2533 return true;
2534
2535 /* Operate in a total of four passes.
2536 *
2537 * 1. Invalidate the location assignments for all vertex shader inputs.
2538 *
2539 * 2. Assign locations for inputs that have user-defined (via
2540 * glBindVertexAttribLocation) locations and outputs that have
2541 * user-defined locations (via glBindFragDataLocation).
2542 *
2543 * 3. Sort the attributes without assigned locations by number of slots
2544 * required in decreasing order. Fragmentation caused by attribute
2545 * locations assigned by the application may prevent large attributes
2546 * from having enough contiguous space.
2547 *
2548 * 4. Assign locations to any inputs without assigned locations.
2549 */
2550
2551 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2552 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2553
2554 const enum ir_variable_mode direction =
2555 (target_index == MESA_SHADER_VERTEX)
2556 ? ir_var_shader_in : ir_var_shader_out;
2557
2558
2559 /* Temporary storage for the set of attributes that need locations assigned.
2560 */
2561 struct temp_attr {
2562 unsigned slots;
2563 ir_variable *var;
2564
2565 /* Used below in the call to qsort. */
2566 static int compare(const void *a, const void *b)
2567 {
2568 const temp_attr *const l = (const temp_attr *) a;
2569 const temp_attr *const r = (const temp_attr *) b;
2570
2571 /* Reversed because we want a descending order sort below. */
2572 return r->slots - l->slots;
2573 }
2574 } to_assign[32];
2575 assert(max_index <= 32);
2576
2577 /* Temporary array for the set of attributes that have locations assigned.
2578 */
2579 ir_variable *assigned[16];
2580
2581 unsigned num_attr = 0;
2582 unsigned assigned_attr = 0;
2583
2584 foreach_in_list(ir_instruction, node, sh->ir) {
2585 ir_variable *const var = node->as_variable();
2586
2587 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2588 continue;
2589
2590 if (var->data.explicit_location) {
2591 var->data.is_unmatched_generic_inout = 0;
2592 if ((var->data.location >= (int)(max_index + generic_base))
2593 || (var->data.location < 0)) {
2594 linker_error(prog,
2595 "invalid explicit location %d specified for `%s'\n",
2596 (var->data.location < 0)
2597 ? var->data.location
2598 : var->data.location - generic_base,
2599 var->name);
2600 return false;
2601 }
2602 } else if (target_index == MESA_SHADER_VERTEX) {
2603 unsigned binding;
2604
2605 if (prog->AttributeBindings->get(binding, var->name)) {
2606 assert(binding >= VERT_ATTRIB_GENERIC0);
2607 var->data.location = binding;
2608 var->data.is_unmatched_generic_inout = 0;
2609 }
2610 } else if (target_index == MESA_SHADER_FRAGMENT) {
2611 unsigned binding;
2612 unsigned index;
2613 const char *name = var->name;
2614 const glsl_type *type = var->type;
2615
2616 while (type) {
2617 /* Check if there's a binding for the variable name */
2618 if (prog->FragDataBindings->get(binding, name)) {
2619 assert(binding >= FRAG_RESULT_DATA0);
2620 var->data.location = binding;
2621 var->data.is_unmatched_generic_inout = 0;
2622
2623 if (prog->FragDataIndexBindings->get(index, name)) {
2624 var->data.index = index;
2625 }
2626 break;
2627 }
2628
2629 /* If not, but it's an array type, look for name[0] */
2630 if (type->is_array()) {
2631 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2632 type = type->fields.array;
2633 continue;
2634 }
2635
2636 break;
2637 }
2638 }
2639
2640 if (strcmp(var->name, "gl_LastFragData") == 0)
2641 continue;
2642
2643 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2644 *
2645 * "Output binding assignments will cause LinkProgram to fail:
2646 * ...
2647 * If the program has an active output assigned to a location greater
2648 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2649 * an active output assigned an index greater than or equal to one;"
2650 */
2651 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2652 var->data.location - generic_base >=
2653 (int) constants->MaxDualSourceDrawBuffers) {
2654 linker_error(prog,
2655 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2656 "with index %u for %s\n",
2657 var->data.location - generic_base, var->data.index,
2658 var->name);
2659 return false;
2660 }
2661
2662 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2663
2664 /* If the variable is not a built-in and has a location statically
2665 * assigned in the shader (presumably via a layout qualifier), make sure
2666 * that it doesn't collide with other assigned locations. Otherwise,
2667 * add it to the list of variables that need linker-assigned locations.
2668 */
2669 if (var->data.location != -1) {
2670 if (var->data.location >= generic_base && var->data.index < 1) {
2671 /* From page 61 of the OpenGL 4.0 spec:
2672 *
2673 * "LinkProgram will fail if the attribute bindings assigned
2674 * by BindAttribLocation do not leave not enough space to
2675 * assign a location for an active matrix attribute or an
2676 * active attribute array, both of which require multiple
2677 * contiguous generic attributes."
2678 *
2679 * I think above text prohibits the aliasing of explicit and
2680 * automatic assignments. But, aliasing is allowed in manual
2681 * assignments of attribute locations. See below comments for
2682 * the details.
2683 *
2684 * From OpenGL 4.0 spec, page 61:
2685 *
2686 * "It is possible for an application to bind more than one
2687 * attribute name to the same location. This is referred to as
2688 * aliasing. This will only work if only one of the aliased
2689 * attributes is active in the executable program, or if no
2690 * path through the shader consumes more than one attribute of
2691 * a set of attributes aliased to the same location. A link
2692 * error can occur if the linker determines that every path
2693 * through the shader consumes multiple aliased attributes,
2694 * but implementations are not required to generate an error
2695 * in this case."
2696 *
2697 * From GLSL 4.30 spec, page 54:
2698 *
2699 * "A program will fail to link if any two non-vertex shader
2700 * input variables are assigned to the same location. For
2701 * vertex shaders, multiple input variables may be assigned
2702 * to the same location using either layout qualifiers or via
2703 * the OpenGL API. However, such aliasing is intended only to
2704 * support vertex shaders where each execution path accesses
2705 * at most one input per each location. Implementations are
2706 * permitted, but not required, to generate link-time errors
2707 * if they detect that every path through the vertex shader
2708 * executable accesses multiple inputs assigned to any single
2709 * location. For all shader types, a program will fail to link
2710 * if explicit location assignments leave the linker unable
2711 * to find space for other variables without explicit
2712 * assignments."
2713 *
2714 * From OpenGL ES 3.0 spec, page 56:
2715 *
2716 * "Binding more than one attribute name to the same location
2717 * is referred to as aliasing, and is not permitted in OpenGL
2718 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2719 * fail when this condition exists. However, aliasing is
2720 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2721 * This will only work if only one of the aliased attributes
2722 * is active in the executable program, or if no path through
2723 * the shader consumes more than one attribute of a set of
2724 * attributes aliased to the same location. A link error can
2725 * occur if the linker determines that every path through the
2726 * shader consumes multiple aliased attributes, but implemen-
2727 * tations are not required to generate an error in this case."
2728 *
2729 * After looking at above references from OpenGL, OpenGL ES and
2730 * GLSL specifications, we allow aliasing of vertex input variables
2731 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2732 *
2733 * NOTE: This is not required by the spec but its worth mentioning
2734 * here that we're not doing anything to make sure that no path
2735 * through the vertex shader executable accesses multiple inputs
2736 * assigned to any single location.
2737 */
2738
2739 /* Mask representing the contiguous slots that will be used by
2740 * this attribute.
2741 */
2742 const unsigned attr = var->data.location - generic_base;
2743 const unsigned use_mask = (1 << slots) - 1;
2744 const char *const string = (target_index == MESA_SHADER_VERTEX)
2745 ? "vertex shader input" : "fragment shader output";
2746
2747 /* Generate a link error if the requested locations for this
2748 * attribute exceed the maximum allowed attribute location.
2749 */
2750 if (attr + slots > max_index) {
2751 linker_error(prog,
2752 "insufficient contiguous locations "
2753 "available for %s `%s' %d %d %d\n", string,
2754 var->name, used_locations, use_mask, attr);
2755 return false;
2756 }
2757
2758 /* Generate a link error if the set of bits requested for this
2759 * attribute overlaps any previously allocated bits.
2760 */
2761 if ((~(use_mask << attr) & used_locations) != used_locations) {
2762 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2763 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2764 * 4.40 spec:
2765 *
2766 * "Additionally, for fragment shader outputs, if two
2767 * variables are placed within the same location, they
2768 * must have the same underlying type (floating-point or
2769 * integer). No component aliasing of output variables or
2770 * members is allowed.
2771 */
2772 for (unsigned i = 0; i < assigned_attr; i++) {
2773 unsigned assigned_slots =
2774 assigned[i]->type->count_attribute_slots(false);
2775 unsigned assig_attr =
2776 assigned[i]->data.location - generic_base;
2777 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2778
2779 if ((assigned_use_mask << assig_attr) &
2780 (use_mask << attr)) {
2781
2782 const glsl_type *assigned_type =
2783 assigned[i]->type->without_array();
2784 const glsl_type *type = var->type->without_array();
2785 if (assigned_type->base_type != type->base_type) {
2786 linker_error(prog, "types do not match for aliased"
2787 " %ss %s and %s\n", string,
2788 assigned[i]->name, var->name);
2789 return false;
2790 }
2791
2792 unsigned assigned_component_mask =
2793 ((1 << assigned_type->vector_elements) - 1) <<
2794 assigned[i]->data.location_frac;
2795 unsigned component_mask =
2796 ((1 << type->vector_elements) - 1) <<
2797 var->data.location_frac;
2798 if (assigned_component_mask & component_mask) {
2799 linker_error(prog, "overlapping component is "
2800 "assigned to %ss %s and %s "
2801 "(component=%d)\n",
2802 string, assigned[i]->name, var->name,
2803 var->data.location_frac);
2804 return false;
2805 }
2806 }
2807 }
2808 } else if (target_index == MESA_SHADER_FRAGMENT ||
2809 (prog->IsES && prog->data->Version >= 300)) {
2810 linker_error(prog, "overlapping location is assigned "
2811 "to %s `%s' %d %d %d\n", string, var->name,
2812 used_locations, use_mask, attr);
2813 return false;
2814 } else {
2815 linker_warning(prog, "overlapping location is assigned "
2816 "to %s `%s' %d %d %d\n", string, var->name,
2817 used_locations, use_mask, attr);
2818 }
2819 }
2820
2821 used_locations |= (use_mask << attr);
2822
2823 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2824 *
2825 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2826 * active attribute variables may fail to link, unless
2827 * device-dependent optimizations are able to make the program
2828 * fit within available hardware resources. For the purposes
2829 * of this test, attribute variables of the type dvec3, dvec4,
2830 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2831 * count as consuming twice as many attributes as equivalent
2832 * single-precision types. While these types use the same number
2833 * of generic attributes as their single-precision equivalents,
2834 * implementations are permitted to consume two single-precision
2835 * vectors of internal storage for each three- or four-component
2836 * double-precision vector."
2837 *
2838 * Mark this attribute slot as taking up twice as much space
2839 * so we can count it properly against limits. According to
2840 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2841 * is optional behavior, but it seems preferable.
2842 */
2843 if (var->type->without_array()->is_dual_slot())
2844 double_storage_locations |= (use_mask << attr);
2845 }
2846
2847 assigned[assigned_attr] = var;
2848 assigned_attr++;
2849
2850 continue;
2851 }
2852
2853 if (num_attr >= max_index) {
2854 linker_error(prog, "too many %s (max %u)",
2855 target_index == MESA_SHADER_VERTEX ?
2856 "vertex shader inputs" : "fragment shader outputs",
2857 max_index);
2858 return false;
2859 }
2860 to_assign[num_attr].slots = slots;
2861 to_assign[num_attr].var = var;
2862 num_attr++;
2863 }
2864
2865 if (target_index == MESA_SHADER_VERTEX) {
2866 unsigned total_attribs_size =
2867 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2868 _mesa_bitcount(double_storage_locations);
2869 if (total_attribs_size > max_index) {
2870 linker_error(prog,
2871 "attempt to use %d vertex attribute slots only %d available ",
2872 total_attribs_size, max_index);
2873 return false;
2874 }
2875 }
2876
2877 /* If all of the attributes were assigned locations by the application (or
2878 * are built-in attributes with fixed locations), return early. This should
2879 * be the common case.
2880 */
2881 if (num_attr == 0)
2882 return true;
2883
2884 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2885
2886 if (target_index == MESA_SHADER_VERTEX) {
2887 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2888 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2889 * reserved to prevent it from being automatically allocated below.
2890 */
2891 find_deref_visitor find("gl_Vertex");
2892 find.run(sh->ir);
2893 if (find.variable_found())
2894 used_locations |= (1 << 0);
2895 }
2896
2897 for (unsigned i = 0; i < num_attr; i++) {
2898 /* Mask representing the contiguous slots that will be used by this
2899 * attribute.
2900 */
2901 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2902
2903 int location = find_available_slots(used_locations, to_assign[i].slots);
2904
2905 if (location < 0) {
2906 const char *const string = (target_index == MESA_SHADER_VERTEX)
2907 ? "vertex shader input" : "fragment shader output";
2908
2909 linker_error(prog,
2910 "insufficient contiguous locations "
2911 "available for %s `%s'\n",
2912 string, to_assign[i].var->name);
2913 return false;
2914 }
2915
2916 to_assign[i].var->data.location = generic_base + location;
2917 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2918 used_locations |= (use_mask << location);
2919
2920 if (to_assign[i].var->type->without_array()->is_dual_slot())
2921 double_storage_locations |= (use_mask << location);
2922 }
2923
2924 /* Now that we have all the locations, from the GL 4.5 core spec, section
2925 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
2926 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
2927 * as equivalent single-precision types.
2928 */
2929 if (target_index == MESA_SHADER_VERTEX) {
2930 unsigned total_attribs_size =
2931 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2932 _mesa_bitcount(double_storage_locations);
2933 if (total_attribs_size > max_index) {
2934 linker_error(prog,
2935 "attempt to use %d vertex attribute slots only %d available ",
2936 total_attribs_size, max_index);
2937 return false;
2938 }
2939 }
2940
2941 return true;
2942 }
2943
2944 /**
2945 * Match explicit locations of outputs to inputs and deactivate the
2946 * unmatch flag if found so we don't optimise them away.
2947 */
2948 static void
2949 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
2950 gl_linked_shader *consumer)
2951 {
2952 glsl_symbol_table parameters;
2953 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
2954 { {NULL, NULL} };
2955
2956 /* Find all shader outputs in the "producer" stage.
2957 */
2958 foreach_in_list(ir_instruction, node, producer->ir) {
2959 ir_variable *const var = node->as_variable();
2960
2961 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2962 continue;
2963
2964 if (var->data.explicit_location &&
2965 var->data.location >= VARYING_SLOT_VAR0) {
2966 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2967 if (explicit_locations[idx][var->data.location_frac] == NULL)
2968 explicit_locations[idx][var->data.location_frac] = var;
2969 }
2970 }
2971
2972 /* Match inputs to outputs */
2973 foreach_in_list(ir_instruction, node, consumer->ir) {
2974 ir_variable *const input = node->as_variable();
2975
2976 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
2977 continue;
2978
2979 ir_variable *output = NULL;
2980 if (input->data.explicit_location
2981 && input->data.location >= VARYING_SLOT_VAR0) {
2982 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
2983 [input->data.location_frac];
2984
2985 if (output != NULL){
2986 input->data.is_unmatched_generic_inout = 0;
2987 output->data.is_unmatched_generic_inout = 0;
2988 }
2989 }
2990 }
2991 }
2992
2993 /**
2994 * Store the gl_FragDepth layout in the gl_shader_program struct.
2995 */
2996 static void
2997 store_fragdepth_layout(struct gl_shader_program *prog)
2998 {
2999 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3000 return;
3001 }
3002
3003 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3004
3005 /* We don't look up the gl_FragDepth symbol directly because if
3006 * gl_FragDepth is not used in the shader, it's removed from the IR.
3007 * However, the symbol won't be removed from the symbol table.
3008 *
3009 * We're only interested in the cases where the variable is NOT removed
3010 * from the IR.
3011 */
3012 foreach_in_list(ir_instruction, node, ir) {
3013 ir_variable *const var = node->as_variable();
3014
3015 if (var == NULL || var->data.mode != ir_var_shader_out) {
3016 continue;
3017 }
3018
3019 if (strcmp(var->name, "gl_FragDepth") == 0) {
3020 switch (var->data.depth_layout) {
3021 case ir_depth_layout_none:
3022 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3023 return;
3024 case ir_depth_layout_any:
3025 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3026 return;
3027 case ir_depth_layout_greater:
3028 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3029 return;
3030 case ir_depth_layout_less:
3031 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3032 return;
3033 case ir_depth_layout_unchanged:
3034 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3035 return;
3036 default:
3037 assert(0);
3038 return;
3039 }
3040 }
3041 }
3042 }
3043
3044 /**
3045 * Validate the resources used by a program versus the implementation limits
3046 */
3047 static void
3048 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3049 {
3050 unsigned total_uniform_blocks = 0;
3051 unsigned total_shader_storage_blocks = 0;
3052
3053 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3054 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3055
3056 if (sh == NULL)
3057 continue;
3058
3059 if (sh->Program->info.num_textures >
3060 ctx->Const.Program[i].MaxTextureImageUnits) {
3061 linker_error(prog, "Too many %s shader texture samplers\n",
3062 _mesa_shader_stage_to_string(i));
3063 }
3064
3065 if (sh->num_uniform_components >
3066 ctx->Const.Program[i].MaxUniformComponents) {
3067 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3068 linker_warning(prog, "Too many %s shader default uniform block "
3069 "components, but the driver will try to optimize "
3070 "them out; this is non-portable out-of-spec "
3071 "behavior\n",
3072 _mesa_shader_stage_to_string(i));
3073 } else {
3074 linker_error(prog, "Too many %s shader default uniform block "
3075 "components\n",
3076 _mesa_shader_stage_to_string(i));
3077 }
3078 }
3079
3080 if (sh->num_combined_uniform_components >
3081 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3082 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3083 linker_warning(prog, "Too many %s shader uniform components, "
3084 "but the driver will try to optimize them out; "
3085 "this is non-portable out-of-spec behavior\n",
3086 _mesa_shader_stage_to_string(i));
3087 } else {
3088 linker_error(prog, "Too many %s shader uniform components\n",
3089 _mesa_shader_stage_to_string(i));
3090 }
3091 }
3092
3093 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3094 total_uniform_blocks += sh->Program->info.num_ubos;
3095
3096 const unsigned max_uniform_blocks =
3097 ctx->Const.Program[i].MaxUniformBlocks;
3098 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3099 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3100 _mesa_shader_stage_to_string(i),
3101 sh->Program->info.num_ubos, max_uniform_blocks);
3102 }
3103
3104 const unsigned max_shader_storage_blocks =
3105 ctx->Const.Program[i].MaxShaderStorageBlocks;
3106 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3107 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3108 _mesa_shader_stage_to_string(i),
3109 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3110 }
3111 }
3112
3113 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3114 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3115 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3116 }
3117
3118 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3119 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3120 total_shader_storage_blocks,
3121 ctx->Const.MaxCombinedShaderStorageBlocks);
3122 }
3123
3124 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3125 if (prog->data->UniformBlocks[i].UniformBufferSize >
3126 ctx->Const.MaxUniformBlockSize) {
3127 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3128 prog->data->UniformBlocks[i].Name,
3129 prog->data->UniformBlocks[i].UniformBufferSize,
3130 ctx->Const.MaxUniformBlockSize);
3131 }
3132 }
3133
3134 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3135 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3136 ctx->Const.MaxShaderStorageBlockSize) {
3137 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3138 prog->data->ShaderStorageBlocks[i].Name,
3139 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3140 ctx->Const.MaxShaderStorageBlockSize);
3141 }
3142 }
3143 }
3144
3145 static void
3146 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3147 {
3148 unsigned mask = prog->data->linked_stages;
3149 while (mask) {
3150 const int i = u_bit_scan(&mask);
3151 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3152
3153 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3154 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3155 continue;
3156
3157 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3158
3159 if (!uni)
3160 continue;
3161
3162 int count = 0;
3163 if (p->sh.NumSubroutineFunctions == 0) {
3164 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3165 continue;
3166 }
3167 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3168 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3169 for (int k = 0; k < fn->num_compat_types; k++) {
3170 if (fn->types[k] == uni->type) {
3171 count++;
3172 break;
3173 }
3174 }
3175 }
3176 uni->num_compatible_subroutines = count;
3177 }
3178 }
3179 }
3180
3181 static void
3182 check_subroutine_resources(struct gl_shader_program *prog)
3183 {
3184 unsigned mask = prog->data->linked_stages;
3185 while (mask) {
3186 const int i = u_bit_scan(&mask);
3187 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3188
3189 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3190 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3191 _mesa_shader_stage_to_string(i));
3192 }
3193 }
3194 }
3195 /**
3196 * Validate shader image resources.
3197 */
3198 static void
3199 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3200 {
3201 unsigned total_image_units = 0;
3202 unsigned fragment_outputs = 0;
3203 unsigned total_shader_storage_blocks = 0;
3204
3205 if (!ctx->Extensions.ARB_shader_image_load_store)
3206 return;
3207
3208 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3209 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3210
3211 if (sh) {
3212 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3213 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3214 _mesa_shader_stage_to_string(i),
3215 sh->Program->info.num_images,
3216 ctx->Const.Program[i].MaxImageUniforms);
3217
3218 total_image_units += sh->Program->info.num_images;
3219 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3220
3221 if (i == MESA_SHADER_FRAGMENT) {
3222 foreach_in_list(ir_instruction, node, sh->ir) {
3223 ir_variable *var = node->as_variable();
3224 if (var && var->data.mode == ir_var_shader_out)
3225 /* since there are no double fs outputs - pass false */
3226 fragment_outputs += var->type->count_attribute_slots(false);
3227 }
3228 }
3229 }
3230 }
3231
3232 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3233 linker_error(prog, "Too many combined image uniforms\n");
3234
3235 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3236 ctx->Const.MaxCombinedShaderOutputResources)
3237 linker_error(prog, "Too many combined image uniforms, shader storage "
3238 " buffers and fragment outputs\n");
3239 }
3240
3241
3242 /**
3243 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3244 * for a variable, checks for overlaps between other uniforms using explicit
3245 * locations.
3246 */
3247 static int
3248 reserve_explicit_locations(struct gl_shader_program *prog,
3249 string_to_uint_map *map, ir_variable *var)
3250 {
3251 unsigned slots = var->type->uniform_locations();
3252 unsigned max_loc = var->data.location + slots - 1;
3253 unsigned return_value = slots;
3254
3255 /* Resize remap table if locations do not fit in the current one. */
3256 if (max_loc + 1 > prog->NumUniformRemapTable) {
3257 prog->UniformRemapTable =
3258 reralloc(prog, prog->UniformRemapTable,
3259 gl_uniform_storage *,
3260 max_loc + 1);
3261
3262 if (!prog->UniformRemapTable) {
3263 linker_error(prog, "Out of memory during linking.\n");
3264 return -1;
3265 }
3266
3267 /* Initialize allocated space. */
3268 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3269 prog->UniformRemapTable[i] = NULL;
3270
3271 prog->NumUniformRemapTable = max_loc + 1;
3272 }
3273
3274 for (unsigned i = 0; i < slots; i++) {
3275 unsigned loc = var->data.location + i;
3276
3277 /* Check if location is already used. */
3278 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3279
3280 /* Possibly same uniform from a different stage, this is ok. */
3281 unsigned hash_loc;
3282 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3283 return_value = 0;
3284 continue;
3285 }
3286
3287 /* ARB_explicit_uniform_location specification states:
3288 *
3289 * "No two default-block uniform variables in the program can have
3290 * the same location, even if they are unused, otherwise a compiler
3291 * or linker error will be generated."
3292 */
3293 linker_error(prog,
3294 "location qualifier for uniform %s overlaps "
3295 "previously used location\n",
3296 var->name);
3297 return -1;
3298 }
3299
3300 /* Initialize location as inactive before optimization
3301 * rounds and location assignment.
3302 */
3303 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3304 }
3305
3306 /* Note, base location used for arrays. */
3307 map->put(var->data.location, var->name);
3308
3309 return return_value;
3310 }
3311
3312 static bool
3313 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3314 struct gl_program *p,
3315 ir_variable *var)
3316 {
3317 unsigned slots = var->type->uniform_locations();
3318 unsigned max_loc = var->data.location + slots - 1;
3319
3320 /* Resize remap table if locations do not fit in the current one. */
3321 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3322 p->sh.SubroutineUniformRemapTable =
3323 reralloc(p, p->sh.SubroutineUniformRemapTable,
3324 gl_uniform_storage *,
3325 max_loc + 1);
3326
3327 if (!p->sh.SubroutineUniformRemapTable) {
3328 linker_error(prog, "Out of memory during linking.\n");
3329 return false;
3330 }
3331
3332 /* Initialize allocated space. */
3333 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3334 p->sh.SubroutineUniformRemapTable[i] = NULL;
3335
3336 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3337 }
3338
3339 for (unsigned i = 0; i < slots; i++) {
3340 unsigned loc = var->data.location + i;
3341
3342 /* Check if location is already used. */
3343 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3344
3345 /* ARB_explicit_uniform_location specification states:
3346 * "No two subroutine uniform variables can have the same location
3347 * in the same shader stage, otherwise a compiler or linker error
3348 * will be generated."
3349 */
3350 linker_error(prog,
3351 "location qualifier for uniform %s overlaps "
3352 "previously used location\n",
3353 var->name);
3354 return false;
3355 }
3356
3357 /* Initialize location as inactive before optimization
3358 * rounds and location assignment.
3359 */
3360 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3361 }
3362
3363 return true;
3364 }
3365 /**
3366 * Check and reserve all explicit uniform locations, called before
3367 * any optimizations happen to handle also inactive uniforms and
3368 * inactive array elements that may get trimmed away.
3369 */
3370 static void
3371 check_explicit_uniform_locations(struct gl_context *ctx,
3372 struct gl_shader_program *prog)
3373 {
3374 prog->NumExplicitUniformLocations = 0;
3375
3376 if (!ctx->Extensions.ARB_explicit_uniform_location)
3377 return;
3378
3379 /* This map is used to detect if overlapping explicit locations
3380 * occur with the same uniform (from different stage) or a different one.
3381 */
3382 string_to_uint_map *uniform_map = new string_to_uint_map;
3383
3384 if (!uniform_map) {
3385 linker_error(prog, "Out of memory during linking.\n");
3386 return;
3387 }
3388
3389 unsigned entries_total = 0;
3390 unsigned mask = prog->data->linked_stages;
3391 while (mask) {
3392 const int i = u_bit_scan(&mask);
3393 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3394
3395 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3396 ir_variable *var = node->as_variable();
3397 if (!var || var->data.mode != ir_var_uniform)
3398 continue;
3399
3400 if (var->data.explicit_location) {
3401 bool ret = false;
3402 if (var->type->without_array()->is_subroutine())
3403 ret = reserve_subroutine_explicit_locations(prog, p, var);
3404 else {
3405 int slots = reserve_explicit_locations(prog, uniform_map,
3406 var);
3407 if (slots != -1) {
3408 ret = true;
3409 entries_total += slots;
3410 }
3411 }
3412 if (!ret) {
3413 delete uniform_map;
3414 return;
3415 }
3416 }
3417 }
3418 }
3419
3420 struct empty_uniform_block *current_block = NULL;
3421
3422 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3423 /* We found empty space in UniformRemapTable. */
3424 if (prog->UniformRemapTable[i] == NULL) {
3425 /* We've found the beginning of a new continous block of empty slots */
3426 if (!current_block || current_block->start + current_block->slots != i) {
3427 current_block = rzalloc(prog, struct empty_uniform_block);
3428 current_block->start = i;
3429 exec_list_push_tail(&prog->EmptyUniformLocations,
3430 &current_block->link);
3431 }
3432
3433 /* The current block continues, so we simply increment its slots */
3434 current_block->slots++;
3435 }
3436 }
3437
3438 delete uniform_map;
3439 prog->NumExplicitUniformLocations = entries_total;
3440 }
3441
3442 static bool
3443 should_add_buffer_variable(struct gl_shader_program *shProg,
3444 GLenum type, const char *name)
3445 {
3446 bool found_interface = false;
3447 unsigned block_name_len = 0;
3448 const char *block_name_dot = strchr(name, '.');
3449
3450 /* These rules only apply to buffer variables. So we return
3451 * true for the rest of types.
3452 */
3453 if (type != GL_BUFFER_VARIABLE)
3454 return true;
3455
3456 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3457 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3458 block_name_len = strlen(block_name);
3459
3460 const char *block_square_bracket = strchr(block_name, '[');
3461 if (block_square_bracket) {
3462 /* The block is part of an array of named interfaces,
3463 * for the name comparison we ignore the "[x]" part.
3464 */
3465 block_name_len -= strlen(block_square_bracket);
3466 }
3467
3468 if (block_name_dot) {
3469 /* Check if the variable name starts with the interface
3470 * name. The interface name (if present) should have the
3471 * length than the interface block name we are comparing to.
3472 */
3473 unsigned len = strlen(name) - strlen(block_name_dot);
3474 if (len != block_name_len)
3475 continue;
3476 }
3477
3478 if (strncmp(block_name, name, block_name_len) == 0) {
3479 found_interface = true;
3480 break;
3481 }
3482 }
3483
3484 /* We remove the interface name from the buffer variable name,
3485 * including the dot that follows it.
3486 */
3487 if (found_interface)
3488 name = name + block_name_len + 1;
3489
3490 /* The ARB_program_interface_query spec says:
3491 *
3492 * "For an active shader storage block member declared as an array, an
3493 * entry will be generated only for the first array element, regardless
3494 * of its type. For arrays of aggregate types, the enumeration rules
3495 * are applied recursively for the single enumerated array element."
3496 */
3497 const char *struct_first_dot = strchr(name, '.');
3498 const char *first_square_bracket = strchr(name, '[');
3499
3500 /* The buffer variable is on top level and it is not an array */
3501 if (!first_square_bracket) {
3502 return true;
3503 /* The shader storage block member is a struct, then generate the entry */
3504 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3505 return true;
3506 } else {
3507 /* Shader storage block member is an array, only generate an entry for the
3508 * first array element.
3509 */
3510 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3511 return true;
3512 }
3513
3514 return false;
3515 }
3516
3517 static bool
3518 add_program_resource(struct gl_shader_program *prog,
3519 struct set *resource_set,
3520 GLenum type, const void *data, uint8_t stages)
3521 {
3522 assert(data);
3523
3524 /* If resource already exists, do not add it again. */
3525 if (_mesa_set_search(resource_set, data))
3526 return true;
3527
3528 prog->data->ProgramResourceList =
3529 reralloc(prog,
3530 prog->data->ProgramResourceList,
3531 gl_program_resource,
3532 prog->data->NumProgramResourceList + 1);
3533
3534 if (!prog->data->ProgramResourceList) {
3535 linker_error(prog, "Out of memory during linking.\n");
3536 return false;
3537 }
3538
3539 struct gl_program_resource *res =
3540 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3541
3542 res->Type = type;
3543 res->Data = data;
3544 res->StageReferences = stages;
3545
3546 prog->data->NumProgramResourceList++;
3547
3548 _mesa_set_add(resource_set, data);
3549
3550 return true;
3551 }
3552
3553 /* Function checks if a variable var is a packed varying and
3554 * if given name is part of packed varying's list.
3555 *
3556 * If a variable is a packed varying, it has a name like
3557 * 'packed:a,b,c' where a, b and c are separate variables.
3558 */
3559 static bool
3560 included_in_packed_varying(ir_variable *var, const char *name)
3561 {
3562 if (strncmp(var->name, "packed:", 7) != 0)
3563 return false;
3564
3565 char *list = strdup(var->name + 7);
3566 assert(list);
3567
3568 bool found = false;
3569 char *saveptr;
3570 char *token = strtok_r(list, ",", &saveptr);
3571 while (token) {
3572 if (strcmp(token, name) == 0) {
3573 found = true;
3574 break;
3575 }
3576 token = strtok_r(NULL, ",", &saveptr);
3577 }
3578 free(list);
3579 return found;
3580 }
3581
3582 /**
3583 * Function builds a stage reference bitmask from variable name.
3584 */
3585 static uint8_t
3586 build_stageref(struct gl_shader_program *shProg, const char *name,
3587 unsigned mode)
3588 {
3589 uint8_t stages = 0;
3590
3591 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3592 * used for reference mask in gl_program_resource will need to be changed.
3593 */
3594 assert(MESA_SHADER_STAGES < 8);
3595
3596 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3597 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3598 if (!sh)
3599 continue;
3600
3601 /* Shader symbol table may contain variables that have
3602 * been optimized away. Search IR for the variable instead.
3603 */
3604 foreach_in_list(ir_instruction, node, sh->ir) {
3605 ir_variable *var = node->as_variable();
3606 if (var) {
3607 unsigned baselen = strlen(var->name);
3608
3609 if (included_in_packed_varying(var, name)) {
3610 stages |= (1 << i);
3611 break;
3612 }
3613
3614 /* Type needs to match if specified, otherwise we might
3615 * pick a variable with same name but different interface.
3616 */
3617 if (var->data.mode != mode)
3618 continue;
3619
3620 if (strncmp(var->name, name, baselen) == 0) {
3621 /* Check for exact name matches but also check for arrays and
3622 * structs.
3623 */
3624 if (name[baselen] == '\0' ||
3625 name[baselen] == '[' ||
3626 name[baselen] == '.') {
3627 stages |= (1 << i);
3628 break;
3629 }
3630 }
3631 }
3632 }
3633 }
3634 return stages;
3635 }
3636
3637 /**
3638 * Create gl_shader_variable from ir_variable class.
3639 */
3640 static gl_shader_variable *
3641 create_shader_variable(struct gl_shader_program *shProg,
3642 const ir_variable *in,
3643 const char *name, const glsl_type *type,
3644 const glsl_type *interface_type,
3645 bool use_implicit_location, int location,
3646 const glsl_type *outermost_struct_type)
3647 {
3648 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3649 if (!out)
3650 return NULL;
3651
3652 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3653 * expect to see gl_VertexID in the program resource list. Pretend.
3654 */
3655 if (in->data.mode == ir_var_system_value &&
3656 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3657 out->name = ralloc_strdup(shProg, "gl_VertexID");
3658 } else if ((in->data.mode == ir_var_shader_out &&
3659 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3660 (in->data.mode == ir_var_system_value &&
3661 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3662 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3663 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3664 } else if ((in->data.mode == ir_var_shader_out &&
3665 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3666 (in->data.mode == ir_var_system_value &&
3667 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3668 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3669 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3670 } else {
3671 out->name = ralloc_strdup(shProg, name);
3672 }
3673
3674 if (!out->name)
3675 return NULL;
3676
3677 /* The ARB_program_interface_query spec says:
3678 *
3679 * "Not all active variables are assigned valid locations; the
3680 * following variables will have an effective location of -1:
3681 *
3682 * * uniforms declared as atomic counters;
3683 *
3684 * * members of a uniform block;
3685 *
3686 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3687 *
3688 * * inputs or outputs not declared with a "location" layout
3689 * qualifier, except for vertex shader inputs and fragment shader
3690 * outputs."
3691 */
3692 if (in->type->base_type == GLSL_TYPE_ATOMIC_UINT ||
3693 is_gl_identifier(in->name) ||
3694 !(in->data.explicit_location || use_implicit_location)) {
3695 out->location = -1;
3696 } else {
3697 out->location = location;
3698 }
3699
3700 out->type = type;
3701 out->outermost_struct_type = outermost_struct_type;
3702 out->interface_type = interface_type;
3703 out->component = in->data.location_frac;
3704 out->index = in->data.index;
3705 out->patch = in->data.patch;
3706 out->mode = in->data.mode;
3707 out->interpolation = in->data.interpolation;
3708 out->explicit_location = in->data.explicit_location;
3709 out->precision = in->data.precision;
3710
3711 return out;
3712 }
3713
3714 static const glsl_type *
3715 resize_to_max_patch_vertices(const struct gl_context *ctx,
3716 const glsl_type *type)
3717 {
3718 if (!type)
3719 return NULL;
3720
3721 return glsl_type::get_array_instance(type->fields.array,
3722 ctx->Const.MaxPatchVertices);
3723 }
3724
3725 static bool
3726 add_shader_variable(const struct gl_context *ctx,
3727 struct gl_shader_program *shProg,
3728 struct set *resource_set,
3729 unsigned stage_mask,
3730 GLenum programInterface, ir_variable *var,
3731 const char *name, const glsl_type *type,
3732 bool use_implicit_location, int location,
3733 const glsl_type *outermost_struct_type = NULL)
3734 {
3735 const glsl_type *interface_type = var->get_interface_type();
3736
3737 if (outermost_struct_type == NULL) {
3738 /* Unsized (non-patch) TCS output/TES input arrays are implicitly
3739 * sized to gl_MaxPatchVertices. Internally, we shrink them to a
3740 * smaller size.
3741 *
3742 * This can cause trouble with SSO programs. Since the TCS declares
3743 * the number of output vertices, we can always shrink TCS output
3744 * arrays. However, the TES might not be linked with a TCS, in
3745 * which case it won't know the size of the patch. In other words,
3746 * the TCS and TES may disagree on the (smaller) array sizes. This
3747 * can result in the resource names differing across stages, causing
3748 * SSO validation failures and other cascading issues.
3749 *
3750 * Expanding the array size to the full gl_MaxPatchVertices fixes
3751 * these issues. It's also what program interface queries expect,
3752 * as that is the official size of the array.
3753 */
3754 if (var->data.tess_varying_implicit_sized_array) {
3755 type = resize_to_max_patch_vertices(ctx, type);
3756 interface_type = resize_to_max_patch_vertices(ctx, interface_type);
3757 }
3758
3759 if (var->data.from_named_ifc_block) {
3760 const char *interface_name = interface_type->name;
3761
3762 if (interface_type->is_array()) {
3763 /* Issue #16 of the ARB_program_interface_query spec says:
3764 *
3765 * "* If a variable is a member of an interface block without an
3766 * instance name, it is enumerated using just the variable name.
3767 *
3768 * * If a variable is a member of an interface block with an
3769 * instance name, it is enumerated as "BlockName.Member", where
3770 * "BlockName" is the name of the interface block (not the
3771 * instance name) and "Member" is the name of the variable."
3772 *
3773 * In particular, it indicates that it should be "BlockName",
3774 * not "BlockName[array length]". The conformance suite and
3775 * dEQP both require this behavior.
3776 *
3777 * Here, we unwrap the extra array level added by named interface
3778 * block array lowering so we have the correct variable type. We
3779 * also unwrap the interface type when constructing the name.
3780 *
3781 * We leave interface_type the same so that ES 3.x SSO pipeline
3782 * validation can enforce the rules requiring array length to
3783 * match on interface blocks.
3784 */
3785 type = type->fields.array;
3786
3787 interface_name = interface_type->fields.array->name;
3788 }
3789
3790 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3791 }
3792 }
3793
3794 switch (type->base_type) {
3795 case GLSL_TYPE_STRUCT: {
3796 /* The ARB_program_interface_query spec says:
3797 *
3798 * "For an active variable declared as a structure, a separate entry
3799 * will be generated for each active structure member. The name of
3800 * each entry is formed by concatenating the name of the structure,
3801 * the "." character, and the name of the structure member. If a
3802 * structure member to enumerate is itself a structure or array,
3803 * these enumeration rules are applied recursively."
3804 */
3805 if (outermost_struct_type == NULL)
3806 outermost_struct_type = type;
3807
3808 unsigned field_location = location;
3809 for (unsigned i = 0; i < type->length; i++) {
3810 const struct glsl_struct_field *field = &type->fields.structure[i];
3811 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3812 if (!add_shader_variable(ctx, shProg, resource_set,
3813 stage_mask, programInterface,
3814 var, field_name, field->type,
3815 use_implicit_location, field_location,
3816 outermost_struct_type))
3817 return false;
3818
3819 field_location += field->type->count_attribute_slots(false);
3820 }
3821 return true;
3822 }
3823
3824 default: {
3825 /* The ARB_program_interface_query spec says:
3826 *
3827 * "For an active variable declared as a single instance of a basic
3828 * type, a single entry will be generated, using the variable name
3829 * from the shader source."
3830 */
3831 gl_shader_variable *sha_v =
3832 create_shader_variable(shProg, var, name, type, interface_type,
3833 use_implicit_location, location,
3834 outermost_struct_type);
3835 if (!sha_v)
3836 return false;
3837
3838 return add_program_resource(shProg, resource_set,
3839 programInterface, sha_v, stage_mask);
3840 }
3841 }
3842 }
3843
3844 static bool
3845 add_interface_variables(const struct gl_context *ctx,
3846 struct gl_shader_program *shProg,
3847 struct set *resource_set,
3848 unsigned stage, GLenum programInterface)
3849 {
3850 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3851
3852 foreach_in_list(ir_instruction, node, ir) {
3853 ir_variable *var = node->as_variable();
3854
3855 if (!var || var->data.how_declared == ir_var_hidden)
3856 continue;
3857
3858 int loc_bias;
3859
3860 switch (var->data.mode) {
3861 case ir_var_system_value:
3862 case ir_var_shader_in:
3863 if (programInterface != GL_PROGRAM_INPUT)
3864 continue;
3865 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3866 : int(VARYING_SLOT_VAR0);
3867 break;
3868 case ir_var_shader_out:
3869 if (programInterface != GL_PROGRAM_OUTPUT)
3870 continue;
3871 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3872 : int(VARYING_SLOT_VAR0);
3873 break;
3874 default:
3875 continue;
3876 };
3877
3878 if (var->data.patch)
3879 loc_bias = int(VARYING_SLOT_PATCH0);
3880
3881 /* Skip packed varyings, packed varyings are handled separately
3882 * by add_packed_varyings.
3883 */
3884 if (strncmp(var->name, "packed:", 7) == 0)
3885 continue;
3886
3887 /* Skip fragdata arrays, these are handled separately
3888 * by add_fragdata_arrays.
3889 */
3890 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3891 continue;
3892
3893 const bool vs_input_or_fs_output =
3894 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3895 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3896
3897 if (!add_shader_variable(ctx, shProg, resource_set,
3898 1 << stage, programInterface,
3899 var, var->name, var->type, vs_input_or_fs_output,
3900 var->data.location - loc_bias))
3901 return false;
3902 }
3903 return true;
3904 }
3905
3906 static bool
3907 add_packed_varyings(const struct gl_context *ctx,
3908 struct gl_shader_program *shProg,
3909 struct set *resource_set,
3910 int stage, GLenum type)
3911 {
3912 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3913 GLenum iface;
3914
3915 if (!sh || !sh->packed_varyings)
3916 return true;
3917
3918 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3919 ir_variable *var = node->as_variable();
3920 if (var) {
3921 switch (var->data.mode) {
3922 case ir_var_shader_in:
3923 iface = GL_PROGRAM_INPUT;
3924 break;
3925 case ir_var_shader_out:
3926 iface = GL_PROGRAM_OUTPUT;
3927 break;
3928 default:
3929 unreachable("unexpected type");
3930 }
3931
3932 if (type == iface) {
3933 const int stage_mask =
3934 build_stageref(shProg, var->name, var->data.mode);
3935 if (!add_shader_variable(ctx, shProg, resource_set,
3936 stage_mask,
3937 iface, var, var->name, var->type, false,
3938 var->data.location - VARYING_SLOT_VAR0))
3939 return false;
3940 }
3941 }
3942 }
3943 return true;
3944 }
3945
3946 static bool
3947 add_fragdata_arrays(const struct gl_context *ctx,
3948 struct gl_shader_program *shProg,
3949 struct set *resource_set)
3950 {
3951 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3952
3953 if (!sh || !sh->fragdata_arrays)
3954 return true;
3955
3956 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3957 ir_variable *var = node->as_variable();
3958 if (var) {
3959 assert(var->data.mode == ir_var_shader_out);
3960
3961 if (!add_shader_variable(ctx, shProg, resource_set,
3962 1 << MESA_SHADER_FRAGMENT,
3963 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3964 true, var->data.location - FRAG_RESULT_DATA0))
3965 return false;
3966 }
3967 }
3968 return true;
3969 }
3970
3971 static char*
3972 get_top_level_name(const char *name)
3973 {
3974 const char *first_dot = strchr(name, '.');
3975 const char *first_square_bracket = strchr(name, '[');
3976 int name_size = 0;
3977
3978 /* The ARB_program_interface_query spec says:
3979 *
3980 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3981 * the number of active array elements of the top-level shader storage
3982 * block member containing to the active variable is written to
3983 * <params>. If the top-level block member is not declared as an
3984 * array, the value one is written to <params>. If the top-level block
3985 * member is an array with no declared size, the value zero is written
3986 * to <params>."
3987 */
3988
3989 /* The buffer variable is on top level.*/
3990 if (!first_square_bracket && !first_dot)
3991 name_size = strlen(name);
3992 else if ((!first_square_bracket ||
3993 (first_dot && first_dot < first_square_bracket)))
3994 name_size = first_dot - name;
3995 else
3996 name_size = first_square_bracket - name;
3997
3998 return strndup(name, name_size);
3999 }
4000
4001 static char*
4002 get_var_name(const char *name)
4003 {
4004 const char *first_dot = strchr(name, '.');
4005
4006 if (!first_dot)
4007 return strdup(name);
4008
4009 return strndup(first_dot+1, strlen(first_dot) - 1);
4010 }
4011
4012 static bool
4013 is_top_level_shader_storage_block_member(const char* name,
4014 const char* interface_name,
4015 const char* field_name)
4016 {
4017 bool result = false;
4018
4019 /* If the given variable is already a top-level shader storage
4020 * block member, then return array_size = 1.
4021 * We could have two possibilities: if we have an instanced
4022 * shader storage block or not instanced.
4023 *
4024 * For the first, we check create a name as it was in top level and
4025 * compare it with the real name. If they are the same, then
4026 * the variable is already at top-level.
4027 *
4028 * Full instanced name is: interface name + '.' + var name +
4029 * NULL character
4030 */
4031 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4032 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4033 if (!full_instanced_name) {
4034 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4035 return false;
4036 }
4037
4038 snprintf(full_instanced_name, name_length, "%s.%s",
4039 interface_name, field_name);
4040
4041 /* Check if its top-level shader storage block member of an
4042 * instanced interface block, or of a unnamed interface block.
4043 */
4044 if (strcmp(name, full_instanced_name) == 0 ||
4045 strcmp(name, field_name) == 0)
4046 result = true;
4047
4048 free(full_instanced_name);
4049 return result;
4050 }
4051
4052 static int
4053 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4054 char *interface_name, char *var_name)
4055 {
4056 /* The ARB_program_interface_query spec says:
4057 *
4058 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4059 * the number of active array elements of the top-level shader storage
4060 * block member containing to the active variable is written to
4061 * <params>. If the top-level block member is not declared as an
4062 * array, the value one is written to <params>. If the top-level block
4063 * member is an array with no declared size, the value zero is written
4064 * to <params>."
4065 */
4066 if (is_top_level_shader_storage_block_member(uni->name,
4067 interface_name,
4068 var_name))
4069 return 1;
4070 else if (field->type->is_unsized_array())
4071 return 0;
4072 else if (field->type->is_array())
4073 return field->type->length;
4074
4075 return 1;
4076 }
4077
4078 static int
4079 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
4080 const glsl_struct_field *field, char *interface_name,
4081 char *var_name)
4082 {
4083 /* The ARB_program_interface_query spec says:
4084 *
4085 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4086 * identifying the stride between array elements of the top-level
4087 * shader storage block member containing the active variable is
4088 * written to <params>. For top-level block members declared as
4089 * arrays, the value written is the difference, in basic machine units,
4090 * between the offsets of the active variable for consecutive elements
4091 * in the top-level array. For top-level block members not declared as
4092 * an array, zero is written to <params>."
4093 */
4094 if (field->type->is_array()) {
4095 const enum glsl_matrix_layout matrix_layout =
4096 glsl_matrix_layout(field->matrix_layout);
4097 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4098 const glsl_type *array_type = field->type->fields.array;
4099
4100 if (is_top_level_shader_storage_block_member(uni->name,
4101 interface_name,
4102 var_name))
4103 return 0;
4104
4105 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
4106 if (array_type->is_record() || array_type->is_array())
4107 return glsl_align(array_type->std140_size(row_major), 16);
4108 else
4109 return MAX2(array_type->std140_base_alignment(row_major), 16);
4110 } else {
4111 return array_type->std430_array_stride(row_major);
4112 }
4113 }
4114 return 0;
4115 }
4116
4117 static void
4118 calculate_array_size_and_stride(struct gl_shader_program *shProg,
4119 struct gl_uniform_storage *uni)
4120 {
4121 int block_index = uni->block_index;
4122 int array_size = -1;
4123 int array_stride = -1;
4124 char *var_name = get_top_level_name(uni->name);
4125 char *interface_name =
4126 get_top_level_name(uni->is_shader_storage ?
4127 shProg->data->ShaderStorageBlocks[block_index].Name :
4128 shProg->data->UniformBlocks[block_index].Name);
4129
4130 if (strcmp(var_name, interface_name) == 0) {
4131 /* Deal with instanced array of SSBOs */
4132 char *temp_name = get_var_name(uni->name);
4133 if (!temp_name) {
4134 linker_error(shProg, "Out of memory during linking.\n");
4135 goto write_top_level_array_size_and_stride;
4136 }
4137 free(var_name);
4138 var_name = get_top_level_name(temp_name);
4139 free(temp_name);
4140 if (!var_name) {
4141 linker_error(shProg, "Out of memory during linking.\n");
4142 goto write_top_level_array_size_and_stride;
4143 }
4144 }
4145
4146 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4147 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4148 if (sh == NULL)
4149 continue;
4150
4151 foreach_in_list(ir_instruction, node, sh->ir) {
4152 ir_variable *var = node->as_variable();
4153 if (!var || !var->get_interface_type() ||
4154 var->data.mode != ir_var_shader_storage)
4155 continue;
4156
4157 const glsl_type *interface = var->get_interface_type();
4158
4159 if (strcmp(interface_name, interface->name) != 0)
4160 continue;
4161
4162 for (unsigned i = 0; i < interface->length; i++) {
4163 const glsl_struct_field *field = &interface->fields.structure[i];
4164 if (strcmp(field->name, var_name) != 0)
4165 continue;
4166
4167 array_stride = get_array_stride(uni, interface, field,
4168 interface_name, var_name);
4169 array_size = get_array_size(uni, field, interface_name, var_name);
4170 goto write_top_level_array_size_and_stride;
4171 }
4172 }
4173 }
4174 write_top_level_array_size_and_stride:
4175 free(interface_name);
4176 free(var_name);
4177 uni->top_level_array_stride = array_stride;
4178 uni->top_level_array_size = array_size;
4179 }
4180
4181 /**
4182 * Builds up a list of program resources that point to existing
4183 * resource data.
4184 */
4185 void
4186 build_program_resource_list(struct gl_context *ctx,
4187 struct gl_shader_program *shProg)
4188 {
4189 /* Rebuild resource list. */
4190 if (shProg->data->ProgramResourceList) {
4191 ralloc_free(shProg->data->ProgramResourceList);
4192 shProg->data->ProgramResourceList = NULL;
4193 shProg->data->NumProgramResourceList = 0;
4194 }
4195
4196 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4197
4198 /* Determine first input and final output stage. These are used to
4199 * detect which variables should be enumerated in the resource list
4200 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4201 */
4202 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4203 if (!shProg->_LinkedShaders[i])
4204 continue;
4205 if (input_stage == MESA_SHADER_STAGES)
4206 input_stage = i;
4207 output_stage = i;
4208 }
4209
4210 /* Empty shader, no resources. */
4211 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4212 return;
4213
4214 struct set *resource_set = _mesa_set_create(NULL,
4215 _mesa_hash_pointer,
4216 _mesa_key_pointer_equal);
4217
4218 /* Program interface needs to expose varyings in case of SSO. */
4219 if (shProg->SeparateShader) {
4220 if (!add_packed_varyings(ctx, shProg, resource_set,
4221 input_stage, GL_PROGRAM_INPUT))
4222 return;
4223
4224 if (!add_packed_varyings(ctx, shProg, resource_set,
4225 output_stage, GL_PROGRAM_OUTPUT))
4226 return;
4227 }
4228
4229 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4230 return;
4231
4232 /* Add inputs and outputs to the resource list. */
4233 if (!add_interface_variables(ctx, shProg, resource_set,
4234 input_stage, GL_PROGRAM_INPUT))
4235 return;
4236
4237 if (!add_interface_variables(ctx, shProg, resource_set,
4238 output_stage, GL_PROGRAM_OUTPUT))
4239 return;
4240
4241 struct gl_transform_feedback_info *linked_xfb =
4242 shProg->xfb_program->sh.LinkedTransformFeedback;
4243
4244 /* Add transform feedback varyings. */
4245 if (linked_xfb->NumVarying > 0) {
4246 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4247 if (!add_program_resource(shProg, resource_set,
4248 GL_TRANSFORM_FEEDBACK_VARYING,
4249 &linked_xfb->Varyings[i], 0))
4250 return;
4251 }
4252 }
4253
4254 /* Add transform feedback buffers. */
4255 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4256 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4257 linked_xfb->Buffers[i].Binding = i;
4258 if (!add_program_resource(shProg, resource_set,
4259 GL_TRANSFORM_FEEDBACK_BUFFER,
4260 &linked_xfb->Buffers[i], 0))
4261 return;
4262 }
4263 }
4264
4265 /* Add uniforms from uniform storage. */
4266 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4267 /* Do not add uniforms internally used by Mesa. */
4268 if (shProg->data->UniformStorage[i].hidden)
4269 continue;
4270
4271 uint8_t stageref =
4272 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4273 ir_var_uniform);
4274
4275 /* Add stagereferences for uniforms in a uniform block. */
4276 bool is_shader_storage =
4277 shProg->data->UniformStorage[i].is_shader_storage;
4278 int block_index = shProg->data->UniformStorage[i].block_index;
4279 if (block_index != -1) {
4280 stageref |= is_shader_storage ?
4281 shProg->data->ShaderStorageBlocks[block_index].stageref :
4282 shProg->data->UniformBlocks[block_index].stageref;
4283 }
4284
4285 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4286 if (!should_add_buffer_variable(shProg, type,
4287 shProg->data->UniformStorage[i].name))
4288 continue;
4289
4290 if (is_shader_storage) {
4291 calculate_array_size_and_stride(shProg,
4292 &shProg->data->UniformStorage[i]);
4293 }
4294
4295 if (!add_program_resource(shProg, resource_set, type,
4296 &shProg->data->UniformStorage[i], stageref))
4297 return;
4298 }
4299
4300 /* Add program uniform blocks. */
4301 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4302 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4303 &shProg->data->UniformBlocks[i], 0))
4304 return;
4305 }
4306
4307 /* Add program shader storage blocks. */
4308 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4309 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4310 &shProg->data->ShaderStorageBlocks[i], 0))
4311 return;
4312 }
4313
4314 /* Add atomic counter buffers. */
4315 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4316 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4317 &shProg->data->AtomicBuffers[i], 0))
4318 return;
4319 }
4320
4321 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4322 GLenum type;
4323 if (!shProg->data->UniformStorage[i].hidden)
4324 continue;
4325
4326 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4327 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4328 !shProg->data->UniformStorage[i].type->is_subroutine())
4329 continue;
4330
4331 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4332 /* add shader subroutines */
4333 if (!add_program_resource(shProg, resource_set,
4334 type, &shProg->data->UniformStorage[i], 0))
4335 return;
4336 }
4337 }
4338
4339 unsigned mask = shProg->data->linked_stages;
4340 while (mask) {
4341 const int i = u_bit_scan(&mask);
4342 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4343
4344 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4345 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4346 if (!add_program_resource(shProg, resource_set,
4347 type, &p->sh.SubroutineFunctions[j], 0))
4348 return;
4349 }
4350 }
4351
4352 _mesa_set_destroy(resource_set, NULL);
4353 }
4354
4355 /**
4356 * This check is done to make sure we allow only constant expression
4357 * indexing and "constant-index-expression" (indexing with an expression
4358 * that includes loop induction variable).
4359 */
4360 static bool
4361 validate_sampler_array_indexing(struct gl_context *ctx,
4362 struct gl_shader_program *prog)
4363 {
4364 dynamic_sampler_array_indexing_visitor v;
4365 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4366 if (prog->_LinkedShaders[i] == NULL)
4367 continue;
4368
4369 bool no_dynamic_indexing =
4370 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4371
4372 /* Search for array derefs in shader. */
4373 v.run(prog->_LinkedShaders[i]->ir);
4374 if (v.uses_dynamic_sampler_array_indexing()) {
4375 const char *msg = "sampler arrays indexed with non-constant "
4376 "expressions is forbidden in GLSL %s %u";
4377 /* Backend has indicated that it has no dynamic indexing support. */
4378 if (no_dynamic_indexing) {
4379 linker_error(prog, msg, prog->IsES ? "ES" : "",
4380 prog->data->Version);
4381 return false;
4382 } else {
4383 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4384 prog->data->Version);
4385 }
4386 }
4387 }
4388 return true;
4389 }
4390
4391 static void
4392 link_assign_subroutine_types(struct gl_shader_program *prog)
4393 {
4394 unsigned mask = prog->data->linked_stages;
4395 while (mask) {
4396 const int i = u_bit_scan(&mask);
4397 gl_program *p = prog->_LinkedShaders[i]->Program;
4398
4399 p->sh.MaxSubroutineFunctionIndex = 0;
4400 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4401 ir_function *fn = node->as_function();
4402 if (!fn)
4403 continue;
4404
4405 if (fn->is_subroutine)
4406 p->sh.NumSubroutineUniformTypes++;
4407
4408 if (!fn->num_subroutine_types)
4409 continue;
4410
4411 /* these should have been calculated earlier. */
4412 assert(fn->subroutine_index != -1);
4413 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4414 linker_error(prog, "Too many subroutine functions declared.\n");
4415 return;
4416 }
4417 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4418 struct gl_subroutine_function,
4419 p->sh.NumSubroutineFunctions + 1);
4420 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4421 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4422 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4423 ralloc_array(p, const struct glsl_type *,
4424 fn->num_subroutine_types);
4425
4426 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4427 * GLSL 4.5 spec:
4428 *
4429 * "Each subroutine with an index qualifier in the shader must be
4430 * given a unique index, otherwise a compile or link error will be
4431 * generated."
4432 */
4433 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4434 if (p->sh.SubroutineFunctions[j].index != -1 &&
4435 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4436 linker_error(prog, "each subroutine index qualifier in the "
4437 "shader must be unique\n");
4438 return;
4439 }
4440 }
4441 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4442 fn->subroutine_index;
4443
4444 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4445 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4446
4447 for (int j = 0; j < fn->num_subroutine_types; j++)
4448 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4449 p->sh.NumSubroutineFunctions++;
4450 }
4451 }
4452 }
4453
4454 static void
4455 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4456 {
4457 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4458
4459 foreach_in_list(ir_instruction, node, ir) {
4460 ir_variable *const var = node->as_variable();
4461
4462 if (var == NULL || var->data.mode != io_mode)
4463 continue;
4464
4465 /* Don't set always active on builtins that haven't been redeclared */
4466 if (var->data.how_declared == ir_var_declared_implicitly)
4467 continue;
4468
4469 var->data.always_active_io = true;
4470 }
4471 }
4472
4473 /**
4474 * When separate shader programs are enabled, only input/outputs between
4475 * the stages of a multi-stage separate program can be safely removed
4476 * from the shader interface. Other inputs/outputs must remain active.
4477 */
4478 static void
4479 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4480 {
4481 unsigned first, last;
4482 assert(prog->SeparateShader);
4483
4484 first = MESA_SHADER_STAGES;
4485 last = 0;
4486
4487 /* Determine first and last stage. Excluding the compute stage */
4488 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4489 if (!prog->_LinkedShaders[i])
4490 continue;
4491 if (first == MESA_SHADER_STAGES)
4492 first = i;
4493 last = i;
4494 }
4495
4496 if (first == MESA_SHADER_STAGES)
4497 return;
4498
4499 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4500 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4501 if (!sh)
4502 continue;
4503
4504 if (first == last) {
4505 /* For a single shader program only allow inputs to the vertex shader
4506 * and outputs from the fragment shader to be removed.
4507 */
4508 if (stage != MESA_SHADER_VERTEX)
4509 set_always_active_io(sh->ir, ir_var_shader_in);
4510 if (stage != MESA_SHADER_FRAGMENT)
4511 set_always_active_io(sh->ir, ir_var_shader_out);
4512 } else {
4513 /* For multi-stage separate shader programs only allow inputs and
4514 * outputs between the shader stages to be removed as well as inputs
4515 * to the vertex shader and outputs from the fragment shader.
4516 */
4517 if (stage == first && stage != MESA_SHADER_VERTEX)
4518 set_always_active_io(sh->ir, ir_var_shader_in);
4519 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4520 set_always_active_io(sh->ir, ir_var_shader_out);
4521 }
4522 }
4523 }
4524
4525 static void
4526 link_and_validate_uniforms(struct gl_context *ctx,
4527 struct gl_shader_program *prog)
4528 {
4529 update_array_sizes(prog);
4530 link_assign_uniform_locations(prog, ctx);
4531
4532 link_assign_atomic_counter_resources(ctx, prog);
4533 link_calculate_subroutine_compat(prog);
4534 check_resources(ctx, prog);
4535 check_subroutine_resources(prog);
4536 check_image_resources(ctx, prog);
4537 link_check_atomic_counter_resources(ctx, prog);
4538 }
4539
4540 static bool
4541 link_varyings_and_uniforms(unsigned first, unsigned last,
4542 struct gl_context *ctx,
4543 struct gl_shader_program *prog, void *mem_ctx)
4544 {
4545 /* Mark all generic shader inputs and outputs as unpaired. */
4546 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4547 if (prog->_LinkedShaders[i] != NULL) {
4548 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4549 }
4550 }
4551
4552 unsigned prev = first;
4553 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4554 if (prog->_LinkedShaders[i] == NULL)
4555 continue;
4556
4557 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4558 prog->_LinkedShaders[i]);
4559 prev = i;
4560 }
4561
4562 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4563 MESA_SHADER_VERTEX)) {
4564 return false;
4565 }
4566
4567 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4568 MESA_SHADER_FRAGMENT)) {
4569 return false;
4570 }
4571
4572 /* Find the program used for xfb. Even if we don't use xfb we still want to
4573 * set this so we can fill the default values for program interface query.
4574 */
4575 prog->xfb_program = prog->_LinkedShaders[last]->Program;
4576 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4577 if (prog->_LinkedShaders[i] == NULL)
4578 continue;
4579
4580 prog->xfb_program = prog->_LinkedShaders[i]->Program;
4581 break;
4582 }
4583
4584 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4585 return false;
4586
4587 link_and_validate_uniforms(ctx, prog);
4588
4589 if (!prog->data->LinkStatus)
4590 return false;
4591
4592 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4593 if (prog->_LinkedShaders[i] == NULL)
4594 continue;
4595
4596 const struct gl_shader_compiler_options *options =
4597 &ctx->Const.ShaderCompilerOptions[i];
4598
4599 if (options->LowerBufferInterfaceBlocks)
4600 lower_ubo_reference(prog->_LinkedShaders[i],
4601 options->ClampBlockIndicesToArrayBounds);
4602
4603 if (i == MESA_SHADER_COMPUTE)
4604 lower_shared_reference(prog->_LinkedShaders[i],
4605 &prog->Comp.SharedSize);
4606
4607 lower_vector_derefs(prog->_LinkedShaders[i]);
4608 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4609 }
4610
4611 return true;
4612 }
4613
4614 void
4615 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4616 {
4617 prog->data->LinkStatus = true; /* All error paths will set this to false */
4618 prog->data->Validated = false;
4619
4620 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4621 *
4622 * "Linking can fail for a variety of reasons as specified in the
4623 * OpenGL Shading Language Specification, as well as any of the
4624 * following reasons:
4625 *
4626 * - No shader objects are attached to program."
4627 *
4628 * The Compatibility Profile specification does not list the error. In
4629 * Compatibility Profile missing shader stages are replaced by
4630 * fixed-function. This applies to the case where all stages are
4631 * missing.
4632 */
4633 if (prog->NumShaders == 0) {
4634 if (ctx->API != API_OPENGL_COMPAT)
4635 linker_error(prog, "no shaders attached to the program\n");
4636 return;
4637 }
4638
4639 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4640
4641 prog->ARB_fragment_coord_conventions_enable = false;
4642
4643 /* Separate the shaders into groups based on their type.
4644 */
4645 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4646 unsigned num_shaders[MESA_SHADER_STAGES];
4647
4648 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4649 shader_list[i] = (struct gl_shader **)
4650 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4651 num_shaders[i] = 0;
4652 }
4653
4654 unsigned min_version = UINT_MAX;
4655 unsigned max_version = 0;
4656 for (unsigned i = 0; i < prog->NumShaders; i++) {
4657 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4658 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4659
4660 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4661 linker_error(prog, "all shaders must use same shading "
4662 "language version\n");
4663 goto done;
4664 }
4665
4666 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4667 prog->ARB_fragment_coord_conventions_enable = true;
4668 }
4669
4670 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4671 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4672 num_shaders[shader_type]++;
4673 }
4674
4675 /* In desktop GLSL, different shader versions may be linked together. In
4676 * GLSL ES, all shader versions must be the same.
4677 */
4678 if (prog->Shaders[0]->IsES && min_version != max_version) {
4679 linker_error(prog, "all shaders must use same shading "
4680 "language version\n");
4681 goto done;
4682 }
4683
4684 prog->data->Version = max_version;
4685 prog->IsES = prog->Shaders[0]->IsES;
4686
4687 /* Some shaders have to be linked with some other shaders present.
4688 */
4689 if (!prog->SeparateShader) {
4690 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4691 num_shaders[MESA_SHADER_VERTEX] == 0) {
4692 linker_error(prog, "Geometry shader must be linked with "
4693 "vertex shader\n");
4694 goto done;
4695 }
4696 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4697 num_shaders[MESA_SHADER_VERTEX] == 0) {
4698 linker_error(prog, "Tessellation evaluation shader must be linked "
4699 "with vertex shader\n");
4700 goto done;
4701 }
4702 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4703 num_shaders[MESA_SHADER_VERTEX] == 0) {
4704 linker_error(prog, "Tessellation control shader must be linked with "
4705 "vertex shader\n");
4706 goto done;
4707 }
4708
4709 /* The spec is self-contradictory here. It allows linking without a tess
4710 * eval shader, but that can only be used with transform feedback and
4711 * rasterization disabled. However, transform feedback isn't allowed
4712 * with GL_PATCHES, so it can't be used.
4713 *
4714 * More investigation showed that the idea of transform feedback after
4715 * a tess control shader was dropped, because some hw vendors couldn't
4716 * support tessellation without a tess eval shader, but the linker
4717 * section wasn't updated to reflect that.
4718 *
4719 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4720 * spec bug.
4721 *
4722 * Do what's reasonable and always require a tess eval shader if a tess
4723 * control shader is present.
4724 */
4725 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4726 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4727 linker_error(prog, "Tessellation control shader must be linked with "
4728 "tessellation evaluation shader\n");
4729 goto done;
4730 }
4731 }
4732
4733 /* Compute shaders have additional restrictions. */
4734 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4735 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4736 linker_error(prog, "Compute shaders may not be linked with any other "
4737 "type of shader\n");
4738 }
4739
4740 /* Link all shaders for a particular stage and validate the result.
4741 */
4742 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4743 if (num_shaders[stage] > 0) {
4744 gl_linked_shader *const sh =
4745 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4746 num_shaders[stage], false);
4747
4748 if (!prog->data->LinkStatus) {
4749 if (sh)
4750 _mesa_delete_linked_shader(ctx, sh);
4751 goto done;
4752 }
4753
4754 switch (stage) {
4755 case MESA_SHADER_VERTEX:
4756 validate_vertex_shader_executable(prog, sh, ctx);
4757 break;
4758 case MESA_SHADER_TESS_CTRL:
4759 /* nothing to be done */
4760 break;
4761 case MESA_SHADER_TESS_EVAL:
4762 validate_tess_eval_shader_executable(prog, sh, ctx);
4763 break;
4764 case MESA_SHADER_GEOMETRY:
4765 validate_geometry_shader_executable(prog, sh, ctx);
4766 break;
4767 case MESA_SHADER_FRAGMENT:
4768 validate_fragment_shader_executable(prog, sh);
4769 break;
4770 }
4771 if (!prog->data->LinkStatus) {
4772 if (sh)
4773 _mesa_delete_linked_shader(ctx, sh);
4774 goto done;
4775 }
4776
4777 prog->_LinkedShaders[stage] = sh;
4778 prog->data->linked_stages |= 1 << stage;
4779 }
4780 }
4781
4782 if (num_shaders[MESA_SHADER_GEOMETRY] > 0) {
4783 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
4784 prog->LastCullDistanceArraySize = prog->Geom.CullDistanceArraySize;
4785 } else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0) {
4786 prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
4787 prog->LastCullDistanceArraySize = prog->TessEval.CullDistanceArraySize;
4788 } else if (num_shaders[MESA_SHADER_VERTEX] > 0) {
4789 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
4790 prog->LastCullDistanceArraySize = prog->Vert.CullDistanceArraySize;
4791 } else {
4792 prog->LastClipDistanceArraySize = 0; /* Not used */
4793 prog->LastCullDistanceArraySize = 0; /* Not used */
4794 }
4795
4796 /* Here begins the inter-stage linking phase. Some initial validation is
4797 * performed, then locations are assigned for uniforms, attributes, and
4798 * varyings.
4799 */
4800 cross_validate_uniforms(prog);
4801 if (!prog->data->LinkStatus)
4802 goto done;
4803
4804 unsigned first, last, prev;
4805
4806 first = MESA_SHADER_STAGES;
4807 last = 0;
4808
4809 /* Determine first and last stage. */
4810 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4811 if (!prog->_LinkedShaders[i])
4812 continue;
4813 if (first == MESA_SHADER_STAGES)
4814 first = i;
4815 last = i;
4816 }
4817
4818 check_explicit_uniform_locations(ctx, prog);
4819 link_assign_subroutine_types(prog);
4820
4821 if (!prog->data->LinkStatus)
4822 goto done;
4823
4824 resize_tes_inputs(ctx, prog);
4825
4826 /* Validate the inputs of each stage with the output of the preceding
4827 * stage.
4828 */
4829 prev = first;
4830 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4831 if (prog->_LinkedShaders[i] == NULL)
4832 continue;
4833
4834 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4835 prog->_LinkedShaders[i]);
4836 if (!prog->data->LinkStatus)
4837 goto done;
4838
4839 cross_validate_outputs_to_inputs(prog,
4840 prog->_LinkedShaders[prev],
4841 prog->_LinkedShaders[i]);
4842 if (!prog->data->LinkStatus)
4843 goto done;
4844
4845 prev = i;
4846 }
4847
4848 /* Cross-validate uniform blocks between shader stages */
4849 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4850 if (!prog->data->LinkStatus)
4851 goto done;
4852
4853 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4854 if (prog->_LinkedShaders[i] != NULL)
4855 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4856 }
4857
4858 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4859 * it before optimization because we want most of the checks to get
4860 * dropped thanks to constant propagation.
4861 *
4862 * This rule also applies to GLSL ES 3.00.
4863 */
4864 if (max_version >= (prog->IsES ? 300 : 130)) {
4865 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4866 if (sh) {
4867 lower_discard_flow(sh->ir);
4868 }
4869 }
4870
4871 if (prog->SeparateShader)
4872 disable_varying_optimizations_for_sso(prog);
4873
4874 /* Process UBOs */
4875 if (!interstage_cross_validate_uniform_blocks(prog, false))
4876 goto done;
4877
4878 /* Process SSBOs */
4879 if (!interstage_cross_validate_uniform_blocks(prog, true))
4880 goto done;
4881
4882 /* Do common optimization before assigning storage for attributes,
4883 * uniforms, and varyings. Later optimization could possibly make
4884 * some of that unused.
4885 */
4886 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4887 if (prog->_LinkedShaders[i] == NULL)
4888 continue;
4889
4890 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4891 if (!prog->data->LinkStatus)
4892 goto done;
4893
4894 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4895 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4896 }
4897
4898 if (ctx->Const.LowerTessLevel) {
4899 lower_tess_level(prog->_LinkedShaders[i]);
4900 }
4901
4902 if (ctx->Const.GLSLOptimizeConservatively) {
4903 /* Run it just once. */
4904 do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
4905 &ctx->Const.ShaderCompilerOptions[i],
4906 ctx->Const.NativeIntegers);
4907 } else {
4908 /* Repeat it until it stops making changes. */
4909 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
4910 &ctx->Const.ShaderCompilerOptions[i],
4911 ctx->Const.NativeIntegers))
4912 ;
4913 }
4914
4915 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i);
4916 propagate_invariance(prog->_LinkedShaders[i]->ir);
4917 }
4918
4919 /* Validation for special cases where we allow sampler array indexing
4920 * with loop induction variable. This check emits a warning or error
4921 * depending if backend can handle dynamic indexing.
4922 */
4923 if ((!prog->IsES && prog->data->Version < 130) ||
4924 (prog->IsES && prog->data->Version < 300)) {
4925 if (!validate_sampler_array_indexing(ctx, prog))
4926 goto done;
4927 }
4928
4929 /* Check and validate stream emissions in geometry shaders */
4930 validate_geometry_shader_emissions(ctx, prog);
4931
4932 store_fragdepth_layout(prog);
4933
4934 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
4935 goto done;
4936
4937 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4938 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4939 * anything about shader linking when one of the shaders (vertex or
4940 * fragment shader) is absent. So, the extension shouldn't change the
4941 * behavior specified in GLSL specification.
4942 *
4943 * From OpenGL ES 3.1 specification (7.3 Program Objects):
4944 * "Linking can fail for a variety of reasons as specified in the
4945 * OpenGL ES Shading Language Specification, as well as any of the
4946 * following reasons:
4947 *
4948 * ...
4949 *
4950 * * program contains objects to form either a vertex shader or
4951 * fragment shader, and program is not separable, and does not
4952 * contain objects to form both a vertex shader and fragment
4953 * shader."
4954 *
4955 * However, the only scenario in 3.1+ where we don't require them both is
4956 * when we have a compute shader. For example:
4957 *
4958 * - No shaders is a link error.
4959 * - Geom or Tess without a Vertex shader is a link error which means we
4960 * always require a Vertex shader and hence a Fragment shader.
4961 * - Finally a Compute shader linked with any other stage is a link error.
4962 */
4963 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
4964 num_shaders[MESA_SHADER_COMPUTE] == 0) {
4965 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4966 linker_error(prog, "program lacks a vertex shader\n");
4967 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
4968 linker_error(prog, "program lacks a fragment shader\n");
4969 }
4970 }
4971
4972 done:
4973 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4974 free(shader_list[i]);
4975 if (prog->_LinkedShaders[i] == NULL)
4976 continue;
4977
4978 /* Do a final validation step to make sure that the IR wasn't
4979 * invalidated by any modifications performed after intrastage linking.
4980 */
4981 validate_ir_tree(prog->_LinkedShaders[i]->ir);
4982
4983 /* Retain any live IR, but trash the rest. */
4984 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
4985
4986 /* The symbol table in the linked shaders may contain references to
4987 * variables that were removed (e.g., unused uniforms). Since it may
4988 * contain junk, there is no possible valid use. Delete it and set the
4989 * pointer to NULL.
4990 */
4991 delete prog->_LinkedShaders[i]->symbols;
4992 prog->_LinkedShaders[i]->symbols = NULL;
4993 }
4994
4995 ralloc_free(mem_ctx);
4996 }