spirv: Replace assert with vtn_assert
[mesa.git] / src / compiler / spirv / vtn_alu.c
1 /*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "vtn_private.h"
25
26 /*
27 * Normally, column vectors in SPIR-V correspond to a single NIR SSA
28 * definition. But for matrix multiplies, we want to do one routine for
29 * multiplying a matrix by a matrix and then pretend that vectors are matrices
30 * with one column. So we "wrap" these things, and unwrap the result before we
31 * send it off.
32 */
33
34 static struct vtn_ssa_value *
35 wrap_matrix(struct vtn_builder *b, struct vtn_ssa_value *val)
36 {
37 if (val == NULL)
38 return NULL;
39
40 if (glsl_type_is_matrix(val->type))
41 return val;
42
43 struct vtn_ssa_value *dest = rzalloc(b, struct vtn_ssa_value);
44 dest->type = val->type;
45 dest->elems = ralloc_array(b, struct vtn_ssa_value *, 1);
46 dest->elems[0] = val;
47
48 return dest;
49 }
50
51 static struct vtn_ssa_value *
52 unwrap_matrix(struct vtn_ssa_value *val)
53 {
54 if (glsl_type_is_matrix(val->type))
55 return val;
56
57 return val->elems[0];
58 }
59
60 static struct vtn_ssa_value *
61 matrix_multiply(struct vtn_builder *b,
62 struct vtn_ssa_value *_src0, struct vtn_ssa_value *_src1)
63 {
64
65 struct vtn_ssa_value *src0 = wrap_matrix(b, _src0);
66 struct vtn_ssa_value *src1 = wrap_matrix(b, _src1);
67 struct vtn_ssa_value *src0_transpose = wrap_matrix(b, _src0->transposed);
68 struct vtn_ssa_value *src1_transpose = wrap_matrix(b, _src1->transposed);
69
70 unsigned src0_rows = glsl_get_vector_elements(src0->type);
71 unsigned src0_columns = glsl_get_matrix_columns(src0->type);
72 unsigned src1_columns = glsl_get_matrix_columns(src1->type);
73
74 const struct glsl_type *dest_type;
75 if (src1_columns > 1) {
76 dest_type = glsl_matrix_type(glsl_get_base_type(src0->type),
77 src0_rows, src1_columns);
78 } else {
79 dest_type = glsl_vector_type(glsl_get_base_type(src0->type), src0_rows);
80 }
81 struct vtn_ssa_value *dest = vtn_create_ssa_value(b, dest_type);
82
83 dest = wrap_matrix(b, dest);
84
85 bool transpose_result = false;
86 if (src0_transpose && src1_transpose) {
87 /* transpose(A) * transpose(B) = transpose(B * A) */
88 src1 = src0_transpose;
89 src0 = src1_transpose;
90 src0_transpose = NULL;
91 src1_transpose = NULL;
92 transpose_result = true;
93 }
94
95 if (src0_transpose && !src1_transpose &&
96 glsl_get_base_type(src0->type) == GLSL_TYPE_FLOAT) {
97 /* We already have the rows of src0 and the columns of src1 available,
98 * so we can just take the dot product of each row with each column to
99 * get the result.
100 */
101
102 for (unsigned i = 0; i < src1_columns; i++) {
103 nir_ssa_def *vec_src[4];
104 for (unsigned j = 0; j < src0_rows; j++) {
105 vec_src[j] = nir_fdot(&b->nb, src0_transpose->elems[j]->def,
106 src1->elems[i]->def);
107 }
108 dest->elems[i]->def = nir_vec(&b->nb, vec_src, src0_rows);
109 }
110 } else {
111 /* We don't handle the case where src1 is transposed but not src0, since
112 * the general case only uses individual components of src1 so the
113 * optimizer should chew through the transpose we emitted for src1.
114 */
115
116 for (unsigned i = 0; i < src1_columns; i++) {
117 /* dest[i] = sum(src0[j] * src1[i][j] for all j) */
118 dest->elems[i]->def =
119 nir_fmul(&b->nb, src0->elems[0]->def,
120 nir_channel(&b->nb, src1->elems[i]->def, 0));
121 for (unsigned j = 1; j < src0_columns; j++) {
122 dest->elems[i]->def =
123 nir_fadd(&b->nb, dest->elems[i]->def,
124 nir_fmul(&b->nb, src0->elems[j]->def,
125 nir_channel(&b->nb, src1->elems[i]->def, j)));
126 }
127 }
128 }
129
130 dest = unwrap_matrix(dest);
131
132 if (transpose_result)
133 dest = vtn_ssa_transpose(b, dest);
134
135 return dest;
136 }
137
138 static struct vtn_ssa_value *
139 mat_times_scalar(struct vtn_builder *b,
140 struct vtn_ssa_value *mat,
141 nir_ssa_def *scalar)
142 {
143 struct vtn_ssa_value *dest = vtn_create_ssa_value(b, mat->type);
144 for (unsigned i = 0; i < glsl_get_matrix_columns(mat->type); i++) {
145 if (glsl_get_base_type(mat->type) == GLSL_TYPE_FLOAT)
146 dest->elems[i]->def = nir_fmul(&b->nb, mat->elems[i]->def, scalar);
147 else
148 dest->elems[i]->def = nir_imul(&b->nb, mat->elems[i]->def, scalar);
149 }
150
151 return dest;
152 }
153
154 static void
155 vtn_handle_matrix_alu(struct vtn_builder *b, SpvOp opcode,
156 struct vtn_value *dest,
157 struct vtn_ssa_value *src0, struct vtn_ssa_value *src1)
158 {
159 switch (opcode) {
160 case SpvOpFNegate: {
161 dest->ssa = vtn_create_ssa_value(b, src0->type);
162 unsigned cols = glsl_get_matrix_columns(src0->type);
163 for (unsigned i = 0; i < cols; i++)
164 dest->ssa->elems[i]->def = nir_fneg(&b->nb, src0->elems[i]->def);
165 break;
166 }
167
168 case SpvOpFAdd: {
169 dest->ssa = vtn_create_ssa_value(b, src0->type);
170 unsigned cols = glsl_get_matrix_columns(src0->type);
171 for (unsigned i = 0; i < cols; i++)
172 dest->ssa->elems[i]->def =
173 nir_fadd(&b->nb, src0->elems[i]->def, src1->elems[i]->def);
174 break;
175 }
176
177 case SpvOpFSub: {
178 dest->ssa = vtn_create_ssa_value(b, src0->type);
179 unsigned cols = glsl_get_matrix_columns(src0->type);
180 for (unsigned i = 0; i < cols; i++)
181 dest->ssa->elems[i]->def =
182 nir_fsub(&b->nb, src0->elems[i]->def, src1->elems[i]->def);
183 break;
184 }
185
186 case SpvOpTranspose:
187 dest->ssa = vtn_ssa_transpose(b, src0);
188 break;
189
190 case SpvOpMatrixTimesScalar:
191 if (src0->transposed) {
192 dest->ssa = vtn_ssa_transpose(b, mat_times_scalar(b, src0->transposed,
193 src1->def));
194 } else {
195 dest->ssa = mat_times_scalar(b, src0, src1->def);
196 }
197 break;
198
199 case SpvOpVectorTimesMatrix:
200 case SpvOpMatrixTimesVector:
201 case SpvOpMatrixTimesMatrix:
202 if (opcode == SpvOpVectorTimesMatrix) {
203 dest->ssa = matrix_multiply(b, vtn_ssa_transpose(b, src1), src0);
204 } else {
205 dest->ssa = matrix_multiply(b, src0, src1);
206 }
207 break;
208
209 default: unreachable("unknown matrix opcode");
210 }
211 }
212
213 static void
214 vtn_handle_bitcast(struct vtn_builder *b, struct vtn_ssa_value *dest,
215 struct nir_ssa_def *src)
216 {
217 if (glsl_get_vector_elements(dest->type) == src->num_components) {
218 /* From the definition of OpBitcast in the SPIR-V 1.2 spec:
219 *
220 * "If Result Type has the same number of components as Operand, they
221 * must also have the same component width, and results are computed per
222 * component."
223 */
224 dest->def = nir_imov(&b->nb, src);
225 return;
226 }
227
228 /* From the definition of OpBitcast in the SPIR-V 1.2 spec:
229 *
230 * "If Result Type has a different number of components than Operand, the
231 * total number of bits in Result Type must equal the total number of bits
232 * in Operand. Let L be the type, either Result Type or Operand’s type, that
233 * has the larger number of components. Let S be the other type, with the
234 * smaller number of components. The number of components in L must be an
235 * integer multiple of the number of components in S. The first component
236 * (that is, the only or lowest-numbered component) of S maps to the first
237 * components of L, and so on, up to the last component of S mapping to the
238 * last components of L. Within this mapping, any single component of S
239 * (mapping to multiple components of L) maps its lower-ordered bits to the
240 * lower-numbered components of L."
241 */
242 unsigned src_bit_size = src->bit_size;
243 unsigned dest_bit_size = glsl_get_bit_size(dest->type);
244 unsigned src_components = src->num_components;
245 unsigned dest_components = glsl_get_vector_elements(dest->type);
246 vtn_assert(src_bit_size * src_components == dest_bit_size * dest_components);
247
248 nir_ssa_def *dest_chan[4];
249 if (src_bit_size > dest_bit_size) {
250 vtn_assert(src_bit_size % dest_bit_size == 0);
251 unsigned divisor = src_bit_size / dest_bit_size;
252 for (unsigned comp = 0; comp < src_components; comp++) {
253 vtn_assert(src_bit_size == 64);
254 vtn_assert(dest_bit_size == 32);
255 nir_ssa_def *split =
256 nir_unpack_64_2x32(&b->nb, nir_channel(&b->nb, src, comp));
257 for (unsigned i = 0; i < divisor; i++)
258 dest_chan[divisor * comp + i] = nir_channel(&b->nb, split, i);
259 }
260 } else {
261 vtn_assert(dest_bit_size % src_bit_size == 0);
262 unsigned divisor = dest_bit_size / src_bit_size;
263 for (unsigned comp = 0; comp < dest_components; comp++) {
264 unsigned channels = ((1 << divisor) - 1) << (comp * divisor);
265 nir_ssa_def *src_chan =
266 nir_channels(&b->nb, src, channels);
267 vtn_assert(dest_bit_size == 64);
268 vtn_assert(src_bit_size == 32);
269 dest_chan[comp] = nir_pack_64_2x32(&b->nb, src_chan);
270 }
271 }
272 dest->def = nir_vec(&b->nb, dest_chan, dest_components);
273 }
274
275 nir_op
276 vtn_nir_alu_op_for_spirv_opcode(SpvOp opcode, bool *swap,
277 nir_alu_type src, nir_alu_type dst)
278 {
279 /* Indicates that the first two arguments should be swapped. This is
280 * used for implementing greater-than and less-than-or-equal.
281 */
282 *swap = false;
283
284 switch (opcode) {
285 case SpvOpSNegate: return nir_op_ineg;
286 case SpvOpFNegate: return nir_op_fneg;
287 case SpvOpNot: return nir_op_inot;
288 case SpvOpIAdd: return nir_op_iadd;
289 case SpvOpFAdd: return nir_op_fadd;
290 case SpvOpISub: return nir_op_isub;
291 case SpvOpFSub: return nir_op_fsub;
292 case SpvOpIMul: return nir_op_imul;
293 case SpvOpFMul: return nir_op_fmul;
294 case SpvOpUDiv: return nir_op_udiv;
295 case SpvOpSDiv: return nir_op_idiv;
296 case SpvOpFDiv: return nir_op_fdiv;
297 case SpvOpUMod: return nir_op_umod;
298 case SpvOpSMod: return nir_op_imod;
299 case SpvOpFMod: return nir_op_fmod;
300 case SpvOpSRem: return nir_op_irem;
301 case SpvOpFRem: return nir_op_frem;
302
303 case SpvOpShiftRightLogical: return nir_op_ushr;
304 case SpvOpShiftRightArithmetic: return nir_op_ishr;
305 case SpvOpShiftLeftLogical: return nir_op_ishl;
306 case SpvOpLogicalOr: return nir_op_ior;
307 case SpvOpLogicalEqual: return nir_op_ieq;
308 case SpvOpLogicalNotEqual: return nir_op_ine;
309 case SpvOpLogicalAnd: return nir_op_iand;
310 case SpvOpLogicalNot: return nir_op_inot;
311 case SpvOpBitwiseOr: return nir_op_ior;
312 case SpvOpBitwiseXor: return nir_op_ixor;
313 case SpvOpBitwiseAnd: return nir_op_iand;
314 case SpvOpSelect: return nir_op_bcsel;
315 case SpvOpIEqual: return nir_op_ieq;
316
317 case SpvOpBitFieldInsert: return nir_op_bitfield_insert;
318 case SpvOpBitFieldSExtract: return nir_op_ibitfield_extract;
319 case SpvOpBitFieldUExtract: return nir_op_ubitfield_extract;
320 case SpvOpBitReverse: return nir_op_bitfield_reverse;
321 case SpvOpBitCount: return nir_op_bit_count;
322
323 /* The ordered / unordered operators need special implementation besides
324 * the logical operator to use since they also need to check if operands are
325 * ordered.
326 */
327 case SpvOpFOrdEqual: return nir_op_feq;
328 case SpvOpFUnordEqual: return nir_op_feq;
329 case SpvOpINotEqual: return nir_op_ine;
330 case SpvOpFOrdNotEqual: return nir_op_fne;
331 case SpvOpFUnordNotEqual: return nir_op_fne;
332 case SpvOpULessThan: return nir_op_ult;
333 case SpvOpSLessThan: return nir_op_ilt;
334 case SpvOpFOrdLessThan: return nir_op_flt;
335 case SpvOpFUnordLessThan: return nir_op_flt;
336 case SpvOpUGreaterThan: *swap = true; return nir_op_ult;
337 case SpvOpSGreaterThan: *swap = true; return nir_op_ilt;
338 case SpvOpFOrdGreaterThan: *swap = true; return nir_op_flt;
339 case SpvOpFUnordGreaterThan: *swap = true; return nir_op_flt;
340 case SpvOpULessThanEqual: *swap = true; return nir_op_uge;
341 case SpvOpSLessThanEqual: *swap = true; return nir_op_ige;
342 case SpvOpFOrdLessThanEqual: *swap = true; return nir_op_fge;
343 case SpvOpFUnordLessThanEqual: *swap = true; return nir_op_fge;
344 case SpvOpUGreaterThanEqual: return nir_op_uge;
345 case SpvOpSGreaterThanEqual: return nir_op_ige;
346 case SpvOpFOrdGreaterThanEqual: return nir_op_fge;
347 case SpvOpFUnordGreaterThanEqual: return nir_op_fge;
348
349 /* Conversions: */
350 case SpvOpQuantizeToF16: return nir_op_fquantize2f16;
351 case SpvOpUConvert:
352 case SpvOpConvertFToU:
353 case SpvOpConvertFToS:
354 case SpvOpConvertSToF:
355 case SpvOpConvertUToF:
356 case SpvOpSConvert:
357 case SpvOpFConvert:
358 return nir_type_conversion_op(src, dst);
359
360 /* Derivatives: */
361 case SpvOpDPdx: return nir_op_fddx;
362 case SpvOpDPdy: return nir_op_fddy;
363 case SpvOpDPdxFine: return nir_op_fddx_fine;
364 case SpvOpDPdyFine: return nir_op_fddy_fine;
365 case SpvOpDPdxCoarse: return nir_op_fddx_coarse;
366 case SpvOpDPdyCoarse: return nir_op_fddy_coarse;
367
368 default:
369 unreachable("No NIR equivalent");
370 }
371 }
372
373 static void
374 handle_no_contraction(struct vtn_builder *b, struct vtn_value *val, int member,
375 const struct vtn_decoration *dec, void *_void)
376 {
377 vtn_assert(dec->scope == VTN_DEC_DECORATION);
378 if (dec->decoration != SpvDecorationNoContraction)
379 return;
380
381 b->nb.exact = true;
382 }
383
384 void
385 vtn_handle_alu(struct vtn_builder *b, SpvOp opcode,
386 const uint32_t *w, unsigned count)
387 {
388 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
389 const struct glsl_type *type =
390 vtn_value(b, w[1], vtn_value_type_type)->type->type;
391
392 vtn_foreach_decoration(b, val, handle_no_contraction, NULL);
393
394 /* Collect the various SSA sources */
395 const unsigned num_inputs = count - 3;
396 struct vtn_ssa_value *vtn_src[4] = { NULL, };
397 for (unsigned i = 0; i < num_inputs; i++)
398 vtn_src[i] = vtn_ssa_value(b, w[i + 3]);
399
400 if (glsl_type_is_matrix(vtn_src[0]->type) ||
401 (num_inputs >= 2 && glsl_type_is_matrix(vtn_src[1]->type))) {
402 vtn_handle_matrix_alu(b, opcode, val, vtn_src[0], vtn_src[1]);
403 b->nb.exact = false;
404 return;
405 }
406
407 val->ssa = vtn_create_ssa_value(b, type);
408 nir_ssa_def *src[4] = { NULL, };
409 for (unsigned i = 0; i < num_inputs; i++) {
410 vtn_assert(glsl_type_is_vector_or_scalar(vtn_src[i]->type));
411 src[i] = vtn_src[i]->def;
412 }
413
414 switch (opcode) {
415 case SpvOpAny:
416 if (src[0]->num_components == 1) {
417 val->ssa->def = nir_imov(&b->nb, src[0]);
418 } else {
419 nir_op op;
420 switch (src[0]->num_components) {
421 case 2: op = nir_op_bany_inequal2; break;
422 case 3: op = nir_op_bany_inequal3; break;
423 case 4: op = nir_op_bany_inequal4; break;
424 default: unreachable("invalid number of components");
425 }
426 val->ssa->def = nir_build_alu(&b->nb, op, src[0],
427 nir_imm_int(&b->nb, NIR_FALSE),
428 NULL, NULL);
429 }
430 break;
431
432 case SpvOpAll:
433 if (src[0]->num_components == 1) {
434 val->ssa->def = nir_imov(&b->nb, src[0]);
435 } else {
436 nir_op op;
437 switch (src[0]->num_components) {
438 case 2: op = nir_op_ball_iequal2; break;
439 case 3: op = nir_op_ball_iequal3; break;
440 case 4: op = nir_op_ball_iequal4; break;
441 default: unreachable("invalid number of components");
442 }
443 val->ssa->def = nir_build_alu(&b->nb, op, src[0],
444 nir_imm_int(&b->nb, NIR_TRUE),
445 NULL, NULL);
446 }
447 break;
448
449 case SpvOpOuterProduct: {
450 for (unsigned i = 0; i < src[1]->num_components; i++) {
451 val->ssa->elems[i]->def =
452 nir_fmul(&b->nb, src[0], nir_channel(&b->nb, src[1], i));
453 }
454 break;
455 }
456
457 case SpvOpDot:
458 val->ssa->def = nir_fdot(&b->nb, src[0], src[1]);
459 break;
460
461 case SpvOpIAddCarry:
462 vtn_assert(glsl_type_is_struct(val->ssa->type));
463 val->ssa->elems[0]->def = nir_iadd(&b->nb, src[0], src[1]);
464 val->ssa->elems[1]->def = nir_uadd_carry(&b->nb, src[0], src[1]);
465 break;
466
467 case SpvOpISubBorrow:
468 vtn_assert(glsl_type_is_struct(val->ssa->type));
469 val->ssa->elems[0]->def = nir_isub(&b->nb, src[0], src[1]);
470 val->ssa->elems[1]->def = nir_usub_borrow(&b->nb, src[0], src[1]);
471 break;
472
473 case SpvOpUMulExtended:
474 vtn_assert(glsl_type_is_struct(val->ssa->type));
475 val->ssa->elems[0]->def = nir_imul(&b->nb, src[0], src[1]);
476 val->ssa->elems[1]->def = nir_umul_high(&b->nb, src[0], src[1]);
477 break;
478
479 case SpvOpSMulExtended:
480 vtn_assert(glsl_type_is_struct(val->ssa->type));
481 val->ssa->elems[0]->def = nir_imul(&b->nb, src[0], src[1]);
482 val->ssa->elems[1]->def = nir_imul_high(&b->nb, src[0], src[1]);
483 break;
484
485 case SpvOpFwidth:
486 val->ssa->def = nir_fadd(&b->nb,
487 nir_fabs(&b->nb, nir_fddx(&b->nb, src[0])),
488 nir_fabs(&b->nb, nir_fddy(&b->nb, src[0])));
489 break;
490 case SpvOpFwidthFine:
491 val->ssa->def = nir_fadd(&b->nb,
492 nir_fabs(&b->nb, nir_fddx_fine(&b->nb, src[0])),
493 nir_fabs(&b->nb, nir_fddy_fine(&b->nb, src[0])));
494 break;
495 case SpvOpFwidthCoarse:
496 val->ssa->def = nir_fadd(&b->nb,
497 nir_fabs(&b->nb, nir_fddx_coarse(&b->nb, src[0])),
498 nir_fabs(&b->nb, nir_fddy_coarse(&b->nb, src[0])));
499 break;
500
501 case SpvOpVectorTimesScalar:
502 /* The builder will take care of splatting for us. */
503 val->ssa->def = nir_fmul(&b->nb, src[0], src[1]);
504 break;
505
506 case SpvOpIsNan:
507 val->ssa->def = nir_fne(&b->nb, src[0], src[0]);
508 break;
509
510 case SpvOpIsInf:
511 val->ssa->def = nir_ieq(&b->nb, nir_fabs(&b->nb, src[0]),
512 nir_imm_float(&b->nb, INFINITY));
513 break;
514
515 case SpvOpFUnordEqual:
516 case SpvOpFUnordNotEqual:
517 case SpvOpFUnordLessThan:
518 case SpvOpFUnordGreaterThan:
519 case SpvOpFUnordLessThanEqual:
520 case SpvOpFUnordGreaterThanEqual: {
521 bool swap;
522 nir_alu_type src_alu_type = nir_get_nir_type_for_glsl_type(vtn_src[0]->type);
523 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(type);
524 nir_op op = vtn_nir_alu_op_for_spirv_opcode(opcode, &swap, src_alu_type, dst_alu_type);
525
526 if (swap) {
527 nir_ssa_def *tmp = src[0];
528 src[0] = src[1];
529 src[1] = tmp;
530 }
531
532 val->ssa->def =
533 nir_ior(&b->nb,
534 nir_build_alu(&b->nb, op, src[0], src[1], NULL, NULL),
535 nir_ior(&b->nb,
536 nir_fne(&b->nb, src[0], src[0]),
537 nir_fne(&b->nb, src[1], src[1])));
538 break;
539 }
540
541 case SpvOpFOrdEqual:
542 case SpvOpFOrdNotEqual:
543 case SpvOpFOrdLessThan:
544 case SpvOpFOrdGreaterThan:
545 case SpvOpFOrdLessThanEqual:
546 case SpvOpFOrdGreaterThanEqual: {
547 bool swap;
548 nir_alu_type src_alu_type = nir_get_nir_type_for_glsl_type(vtn_src[0]->type);
549 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(type);
550 nir_op op = vtn_nir_alu_op_for_spirv_opcode(opcode, &swap, src_alu_type, dst_alu_type);
551
552 if (swap) {
553 nir_ssa_def *tmp = src[0];
554 src[0] = src[1];
555 src[1] = tmp;
556 }
557
558 val->ssa->def =
559 nir_iand(&b->nb,
560 nir_build_alu(&b->nb, op, src[0], src[1], NULL, NULL),
561 nir_iand(&b->nb,
562 nir_feq(&b->nb, src[0], src[0]),
563 nir_feq(&b->nb, src[1], src[1])));
564 break;
565 }
566
567 case SpvOpBitcast:
568 vtn_handle_bitcast(b, val->ssa, src[0]);
569 break;
570
571 default: {
572 bool swap;
573 nir_alu_type src_alu_type = nir_get_nir_type_for_glsl_type(vtn_src[0]->type);
574 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(type);
575 nir_op op = vtn_nir_alu_op_for_spirv_opcode(opcode, &swap, src_alu_type, dst_alu_type);
576
577 if (swap) {
578 nir_ssa_def *tmp = src[0];
579 src[0] = src[1];
580 src[1] = tmp;
581 }
582
583 val->ssa->def = nir_build_alu(&b->nb, op, src[0], src[1], src[2], src[3]);
584 break;
585 } /* default */
586 }
587
588 b->nb.exact = false;
589 }