iris: Fix TES gl_PatchVerticesIn handling.
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "drm-uapi/i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_defines.h"
105 #include "iris_pipe.h"
106 #include "iris_resource.h"
107
108 #define __gen_address_type struct iris_address
109 #define __gen_user_data struct iris_batch
110
111 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
112
113 static uint64_t
114 __gen_combine_address(struct iris_batch *batch, void *location,
115 struct iris_address addr, uint32_t delta)
116 {
117 uint64_t result = addr.offset + delta;
118
119 if (addr.bo) {
120 iris_use_pinned_bo(batch, addr.bo, addr.write);
121 /* Assume this is a general address, not relative to a base. */
122 result += addr.bo->gtt_offset;
123 }
124
125 return result;
126 }
127
128 #define __genxml_cmd_length(cmd) cmd ## _length
129 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
130 #define __genxml_cmd_header(cmd) cmd ## _header
131 #define __genxml_cmd_pack(cmd) cmd ## _pack
132
133 #define _iris_pack_command(batch, cmd, dst, name) \
134 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
135 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
136 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
137 _dst = NULL; \
138 }))
139
140 #define iris_pack_command(cmd, dst, name) \
141 _iris_pack_command(NULL, cmd, dst, name)
142
143 #define iris_pack_state(cmd, dst, name) \
144 for (struct cmd name = {}, \
145 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
146 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
147 _dst = NULL)
148
149 #define iris_emit_cmd(batch, cmd, name) \
150 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
151
152 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
153 do { \
154 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
155 for (uint32_t i = 0; i < num_dwords; i++) \
156 dw[i] = (dwords0)[i] | (dwords1)[i]; \
157 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
158 } while (0)
159
160 #include "genxml/genX_pack.h"
161 #include "genxml/gen_macros.h"
162 #include "genxml/genX_bits.h"
163
164 #if GEN_GEN == 8
165 #define MOCS_PTE 0x18
166 #define MOCS_WB 0x78
167 #else
168 #define MOCS_PTE (1 << 1)
169 #define MOCS_WB (2 << 1)
170 #endif
171
172 static uint32_t
173 mocs(const struct iris_bo *bo)
174 {
175 return bo && bo->external ? MOCS_PTE : MOCS_WB;
176 }
177
178 /**
179 * Statically assert that PIPE_* enums match the hardware packets.
180 * (As long as they match, we don't need to translate them.)
181 */
182 UNUSED static void pipe_asserts()
183 {
184 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
185
186 /* pipe_logicop happens to match the hardware. */
187 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
188 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
189 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
190 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
191 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
192 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
193 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
194 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
195 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
196 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
197 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
198 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
199 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
200 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
201 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
202 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
203
204 /* pipe_blend_func happens to match the hardware. */
205 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
212 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
213 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
214 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
215 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
216 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
217 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
218 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
219 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
220 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
221 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
222 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
223 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
224
225 /* pipe_blend_func happens to match the hardware. */
226 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
227 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
228 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
229 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
230 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
231
232 /* pipe_stencil_op happens to match the hardware. */
233 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
234 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
235 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
236 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
237 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
238 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
239 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
240 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
241
242 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
243 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
244 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
245 #undef PIPE_ASSERT
246 }
247
248 static unsigned
249 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
250 {
251 static const unsigned map[] = {
252 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
253 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
254 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
255 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
256 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
257 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
258 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
259 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
260 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
261 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
262 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
263 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
264 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
265 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
266 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
267 };
268
269 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
270 }
271
272 static unsigned
273 translate_compare_func(enum pipe_compare_func pipe_func)
274 {
275 static const unsigned map[] = {
276 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
277 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
278 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
279 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
280 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
281 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
282 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
283 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
284 };
285 return map[pipe_func];
286 }
287
288 static unsigned
289 translate_shadow_func(enum pipe_compare_func pipe_func)
290 {
291 /* Gallium specifies the result of shadow comparisons as:
292 *
293 * 1 if ref <op> texel,
294 * 0 otherwise.
295 *
296 * The hardware does:
297 *
298 * 0 if texel <op> ref,
299 * 1 otherwise.
300 *
301 * So we need to flip the operator and also negate.
302 */
303 static const unsigned map[] = {
304 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
305 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
306 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
307 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
308 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
309 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
310 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
311 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
312 };
313 return map[pipe_func];
314 }
315
316 static unsigned
317 translate_cull_mode(unsigned pipe_face)
318 {
319 static const unsigned map[4] = {
320 [PIPE_FACE_NONE] = CULLMODE_NONE,
321 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
322 [PIPE_FACE_BACK] = CULLMODE_BACK,
323 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
324 };
325 return map[pipe_face];
326 }
327
328 static unsigned
329 translate_fill_mode(unsigned pipe_polymode)
330 {
331 static const unsigned map[4] = {
332 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
333 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
334 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
335 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
336 };
337 return map[pipe_polymode];
338 }
339
340 static unsigned
341 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
342 {
343 static const unsigned map[] = {
344 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
345 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
346 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
347 };
348 return map[pipe_mip];
349 }
350
351 static uint32_t
352 translate_wrap(unsigned pipe_wrap)
353 {
354 static const unsigned map[] = {
355 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
356 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
357 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
358 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
359 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
360 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
361
362 /* These are unsupported. */
363 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
364 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
365 };
366 return map[pipe_wrap];
367 }
368
369 static struct iris_address
370 ro_bo(struct iris_bo *bo, uint64_t offset)
371 {
372 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
373 * validation list at CSO creation time, instead of draw time.
374 */
375 return (struct iris_address) { .bo = bo, .offset = offset };
376 }
377
378 static struct iris_address
379 rw_bo(struct iris_bo *bo, uint64_t offset)
380 {
381 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
382 * validation list at CSO creation time, instead of draw time.
383 */
384 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
385 }
386
387 /**
388 * Allocate space for some indirect state.
389 *
390 * Return a pointer to the map (to fill it out) and a state ref (for
391 * referring to the state in GPU commands).
392 */
393 static void *
394 upload_state(struct u_upload_mgr *uploader,
395 struct iris_state_ref *ref,
396 unsigned size,
397 unsigned alignment)
398 {
399 void *p = NULL;
400 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
401 return p;
402 }
403
404 /**
405 * Stream out temporary/short-lived state.
406 *
407 * This allocates space, pins the BO, and includes the BO address in the
408 * returned offset (which works because all state lives in 32-bit memory
409 * zones).
410 */
411 static uint32_t *
412 stream_state(struct iris_batch *batch,
413 struct u_upload_mgr *uploader,
414 struct pipe_resource **out_res,
415 unsigned size,
416 unsigned alignment,
417 uint32_t *out_offset)
418 {
419 void *ptr = NULL;
420
421 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
422
423 struct iris_bo *bo = iris_resource_bo(*out_res);
424 iris_use_pinned_bo(batch, bo, false);
425
426 *out_offset += iris_bo_offset_from_base_address(bo);
427
428 return ptr;
429 }
430
431 /**
432 * stream_state() + memcpy.
433 */
434 static uint32_t
435 emit_state(struct iris_batch *batch,
436 struct u_upload_mgr *uploader,
437 struct pipe_resource **out_res,
438 const void *data,
439 unsigned size,
440 unsigned alignment)
441 {
442 unsigned offset = 0;
443 uint32_t *map =
444 stream_state(batch, uploader, out_res, size, alignment, &offset);
445
446 if (map)
447 memcpy(map, data, size);
448
449 return offset;
450 }
451
452 /**
453 * Did field 'x' change between 'old_cso' and 'new_cso'?
454 *
455 * (If so, we may want to set some dirty flags.)
456 */
457 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
458 #define cso_changed_memcmp(x) \
459 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
460
461 static void
462 flush_for_state_base_change(struct iris_batch *batch)
463 {
464 /* Flush before emitting STATE_BASE_ADDRESS.
465 *
466 * This isn't documented anywhere in the PRM. However, it seems to be
467 * necessary prior to changing the surface state base adress. We've
468 * seen issues in Vulkan where we get GPU hangs when using multi-level
469 * command buffers which clear depth, reset state base address, and then
470 * go render stuff.
471 *
472 * Normally, in GL, we would trust the kernel to do sufficient stalls
473 * and flushes prior to executing our batch. However, it doesn't seem
474 * as if the kernel's flushing is always sufficient and we don't want to
475 * rely on it.
476 *
477 * We make this an end-of-pipe sync instead of a normal flush because we
478 * do not know the current status of the GPU. On Haswell at least,
479 * having a fast-clear operation in flight at the same time as a normal
480 * rendering operation can cause hangs. Since the kernel's flushing is
481 * insufficient, we need to ensure that any rendering operations from
482 * other processes are definitely complete before we try to do our own
483 * rendering. It's a bit of a big hammer but it appears to work.
484 */
485 iris_emit_end_of_pipe_sync(batch,
486 PIPE_CONTROL_RENDER_TARGET_FLUSH |
487 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
488 PIPE_CONTROL_DATA_CACHE_FLUSH);
489 }
490
491 static void
492 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
493 {
494 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
495 lri.RegisterOffset = reg;
496 lri.DataDWord = val;
497 }
498 }
499 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
500
501 static void
502 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
503 {
504 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
505 lrr.SourceRegisterAddress = src;
506 lrr.DestinationRegisterAddress = dst;
507 }
508 }
509
510 static void
511 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
512 {
513 #if GEN_GEN >= 8 && GEN_GEN < 10
514 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
515 *
516 * Software must clear the COLOR_CALC_STATE Valid field in
517 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
518 * with Pipeline Select set to GPGPU.
519 *
520 * The internal hardware docs recommend the same workaround for Gen9
521 * hardware too.
522 */
523 if (pipeline == GPGPU)
524 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
525 #endif
526
527
528 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
529 * PIPELINE_SELECT [DevBWR+]":
530 *
531 * "Project: DEVSNB+
532 *
533 * Software must ensure all the write caches are flushed through a
534 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
535 * command to invalidate read only caches prior to programming
536 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
537 */
538 iris_emit_pipe_control_flush(batch,
539 PIPE_CONTROL_RENDER_TARGET_FLUSH |
540 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
541 PIPE_CONTROL_DATA_CACHE_FLUSH |
542 PIPE_CONTROL_CS_STALL);
543
544 iris_emit_pipe_control_flush(batch,
545 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
546 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
547 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
548 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
549
550 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
551 #if GEN_GEN >= 9
552 sel.MaskBits = 3;
553 #endif
554 sel.PipelineSelection = pipeline;
555 }
556 }
557
558 UNUSED static void
559 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
560 {
561 #if GEN_GEN == 9
562 /* Project: DevGLK
563 *
564 * "This chicken bit works around a hardware issue with barrier
565 * logic encountered when switching between GPGPU and 3D pipelines.
566 * To workaround the issue, this mode bit should be set after a
567 * pipeline is selected."
568 */
569 uint32_t reg_val;
570 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
571 reg.GLKBarrierMode = value;
572 reg.GLKBarrierModeMask = 1;
573 }
574 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
575 #endif
576 }
577
578 static void
579 init_state_base_address(struct iris_batch *batch)
580 {
581 flush_for_state_base_change(batch);
582
583 /* We program most base addresses once at context initialization time.
584 * Each base address points at a 4GB memory zone, and never needs to
585 * change. See iris_bufmgr.h for a description of the memory zones.
586 *
587 * The one exception is Surface State Base Address, which needs to be
588 * updated occasionally. See iris_binder.c for the details there.
589 */
590 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
591 sba.GeneralStateMOCS = MOCS_WB;
592 sba.StatelessDataPortAccessMOCS = MOCS_WB;
593 sba.DynamicStateMOCS = MOCS_WB;
594 sba.IndirectObjectMOCS = MOCS_WB;
595 sba.InstructionMOCS = MOCS_WB;
596
597 sba.GeneralStateBaseAddressModifyEnable = true;
598 sba.DynamicStateBaseAddressModifyEnable = true;
599 sba.IndirectObjectBaseAddressModifyEnable = true;
600 sba.InstructionBaseAddressModifyEnable = true;
601 sba.GeneralStateBufferSizeModifyEnable = true;
602 sba.DynamicStateBufferSizeModifyEnable = true;
603 #if (GEN_GEN >= 9)
604 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
605 sba.BindlessSurfaceStateMOCS = MOCS_WB;
606 #endif
607 sba.IndirectObjectBufferSizeModifyEnable = true;
608 sba.InstructionBuffersizeModifyEnable = true;
609
610 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
611 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
612
613 sba.GeneralStateBufferSize = 0xfffff;
614 sba.IndirectObjectBufferSize = 0xfffff;
615 sba.InstructionBufferSize = 0xfffff;
616 sba.DynamicStateBufferSize = 0xfffff;
617 }
618 }
619
620 static void
621 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
622 bool has_slm, bool wants_dc_cache)
623 {
624 uint32_t reg_val;
625 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
626 reg.SLMEnable = has_slm;
627 #if GEN_GEN == 11
628 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
629 * in L3CNTLREG register. The default setting of the bit is not the
630 * desirable behavior.
631 */
632 reg.ErrorDetectionBehaviorControl = true;
633 #endif
634 reg.URBAllocation = cfg->n[GEN_L3P_URB];
635 reg.ROAllocation = cfg->n[GEN_L3P_RO];
636 reg.DCAllocation = cfg->n[GEN_L3P_DC];
637 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
638 }
639 iris_emit_lri(batch, L3CNTLREG, reg_val);
640 }
641
642 static void
643 iris_emit_default_l3_config(struct iris_batch *batch,
644 const struct gen_device_info *devinfo,
645 bool compute)
646 {
647 bool wants_dc_cache = true;
648 bool has_slm = compute;
649 const struct gen_l3_weights w =
650 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
651 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
652 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
653 }
654
655 /**
656 * Upload the initial GPU state for a render context.
657 *
658 * This sets some invariant state that needs to be programmed a particular
659 * way, but we never actually change.
660 */
661 static void
662 iris_init_render_context(struct iris_screen *screen,
663 struct iris_batch *batch,
664 struct iris_vtable *vtbl,
665 struct pipe_debug_callback *dbg)
666 {
667 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
668 uint32_t reg_val;
669
670 emit_pipeline_select(batch, _3D);
671
672 iris_emit_default_l3_config(batch, devinfo, false);
673
674 init_state_base_address(batch);
675
676 #if GEN_GEN >= 9
677 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
678 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
679 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
680 }
681 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
682 #else
683 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
684 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
685 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
686 }
687 iris_emit_lri(batch, INSTPM, reg_val);
688 #endif
689
690 #if GEN_GEN == 9
691 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
692 reg.FloatBlendOptimizationEnable = true;
693 reg.FloatBlendOptimizationEnableMask = true;
694 reg.PartialResolveDisableInVC = true;
695 reg.PartialResolveDisableInVCMask = true;
696 }
697 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
698
699 if (devinfo->is_geminilake)
700 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
701 #endif
702
703 #if GEN_GEN == 11
704 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
705 reg.HeaderlessMessageforPreemptableContexts = 1;
706 reg.HeaderlessMessageforPreemptableContextsMask = 1;
707 }
708 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
709
710 // XXX: 3D_MODE?
711 #endif
712
713 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
714 * changing it dynamically. We set it to the maximum size here, and
715 * instead include the render target dimensions in the viewport, so
716 * viewport extents clipping takes care of pruning stray geometry.
717 */
718 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
719 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
720 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
721 }
722
723 /* Set the initial MSAA sample positions. */
724 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
725 GEN_SAMPLE_POS_1X(pat._1xSample);
726 GEN_SAMPLE_POS_2X(pat._2xSample);
727 GEN_SAMPLE_POS_4X(pat._4xSample);
728 GEN_SAMPLE_POS_8X(pat._8xSample);
729 #if GEN_GEN >= 9
730 GEN_SAMPLE_POS_16X(pat._16xSample);
731 #endif
732 }
733
734 /* Use the legacy AA line coverage computation. */
735 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
736
737 /* Disable chromakeying (it's for media) */
738 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
739
740 /* We want regular rendering, not special HiZ operations. */
741 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
742
743 /* No polygon stippling offsets are necessary. */
744 /* TODO: may need to set an offset for origin-UL framebuffers */
745 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
746
747 /* Set a static partitioning of the push constant area. */
748 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
749 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
750 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
751 alloc._3DCommandSubOpcode = 18 + i;
752 alloc.ConstantBufferOffset = 6 * i;
753 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
754 }
755 }
756 }
757
758 static void
759 iris_init_compute_context(struct iris_screen *screen,
760 struct iris_batch *batch,
761 struct iris_vtable *vtbl,
762 struct pipe_debug_callback *dbg)
763 {
764 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
765
766 emit_pipeline_select(batch, GPGPU);
767
768 iris_emit_default_l3_config(batch, devinfo, true);
769
770 init_state_base_address(batch);
771
772 #if GEN_GEN == 9
773 if (devinfo->is_geminilake)
774 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
775 #endif
776 }
777
778 struct iris_vertex_buffer_state {
779 /** The VERTEX_BUFFER_STATE hardware structure. */
780 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
781
782 /** The resource to source vertex data from. */
783 struct pipe_resource *resource;
784 };
785
786 struct iris_depth_buffer_state {
787 /* Depth/HiZ/Stencil related hardware packets. */
788 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
789 GENX(3DSTATE_STENCIL_BUFFER_length) +
790 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
791 GENX(3DSTATE_CLEAR_PARAMS_length)];
792 };
793
794 /**
795 * Generation-specific context state (ice->state.genx->...).
796 *
797 * Most state can go in iris_context directly, but these encode hardware
798 * packets which vary by generation.
799 */
800 struct iris_genx_state {
801 struct iris_vertex_buffer_state vertex_buffers[33];
802
803 struct iris_depth_buffer_state depth_buffer;
804
805 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
806 };
807
808 /**
809 * The pipe->set_blend_color() driver hook.
810 *
811 * This corresponds to our COLOR_CALC_STATE.
812 */
813 static void
814 iris_set_blend_color(struct pipe_context *ctx,
815 const struct pipe_blend_color *state)
816 {
817 struct iris_context *ice = (struct iris_context *) ctx;
818
819 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
820 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
821 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
822 }
823
824 /**
825 * Gallium CSO for blend state (see pipe_blend_state).
826 */
827 struct iris_blend_state {
828 /** Partial 3DSTATE_PS_BLEND */
829 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
830
831 /** Partial BLEND_STATE */
832 uint32_t blend_state[GENX(BLEND_STATE_length) +
833 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
834
835 bool alpha_to_coverage; /* for shader key */
836
837 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
838 uint8_t blend_enables;
839
840 /** Bitfield of whether color writes are enabled for RT[i] */
841 uint8_t color_write_enables;
842 };
843
844 static enum pipe_blendfactor
845 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
846 {
847 if (alpha_to_one) {
848 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
849 return PIPE_BLENDFACTOR_ONE;
850
851 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
852 return PIPE_BLENDFACTOR_ZERO;
853 }
854
855 return f;
856 }
857
858 /**
859 * The pipe->create_blend_state() driver hook.
860 *
861 * Translates a pipe_blend_state into iris_blend_state.
862 */
863 static void *
864 iris_create_blend_state(struct pipe_context *ctx,
865 const struct pipe_blend_state *state)
866 {
867 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
868 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
869
870 cso->blend_enables = 0;
871 cso->color_write_enables = 0;
872 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
873
874 cso->alpha_to_coverage = state->alpha_to_coverage;
875
876 bool indep_alpha_blend = false;
877
878 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
879 const struct pipe_rt_blend_state *rt =
880 &state->rt[state->independent_blend_enable ? i : 0];
881
882 enum pipe_blendfactor src_rgb =
883 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
884 enum pipe_blendfactor src_alpha =
885 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
886 enum pipe_blendfactor dst_rgb =
887 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
888 enum pipe_blendfactor dst_alpha =
889 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
890
891 if (rt->rgb_func != rt->alpha_func ||
892 src_rgb != src_alpha || dst_rgb != dst_alpha)
893 indep_alpha_blend = true;
894
895 if (rt->blend_enable)
896 cso->blend_enables |= 1u << i;
897
898 if (rt->colormask)
899 cso->color_write_enables |= 1u << i;
900
901 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
902 be.LogicOpEnable = state->logicop_enable;
903 be.LogicOpFunction = state->logicop_func;
904
905 be.PreBlendSourceOnlyClampEnable = false;
906 be.ColorClampRange = COLORCLAMP_RTFORMAT;
907 be.PreBlendColorClampEnable = true;
908 be.PostBlendColorClampEnable = true;
909
910 be.ColorBufferBlendEnable = rt->blend_enable;
911
912 be.ColorBlendFunction = rt->rgb_func;
913 be.AlphaBlendFunction = rt->alpha_func;
914 be.SourceBlendFactor = src_rgb;
915 be.SourceAlphaBlendFactor = src_alpha;
916 be.DestinationBlendFactor = dst_rgb;
917 be.DestinationAlphaBlendFactor = dst_alpha;
918
919 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
920 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
921 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
922 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
923 }
924 blend_entry += GENX(BLEND_STATE_ENTRY_length);
925 }
926
927 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
928 /* pb.HasWriteableRT is filled in at draw time. */
929 /* pb.AlphaTestEnable is filled in at draw time. */
930 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
931 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
932
933 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
934
935 pb.SourceBlendFactor =
936 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
937 pb.SourceAlphaBlendFactor =
938 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
939 pb.DestinationBlendFactor =
940 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
941 pb.DestinationAlphaBlendFactor =
942 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
943 }
944
945 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
946 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
947 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
948 bs.AlphaToOneEnable = state->alpha_to_one;
949 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
950 bs.ColorDitherEnable = state->dither;
951 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
952 }
953
954
955 return cso;
956 }
957
958 /**
959 * The pipe->bind_blend_state() driver hook.
960 *
961 * Bind a blending CSO and flag related dirty bits.
962 */
963 static void
964 iris_bind_blend_state(struct pipe_context *ctx, void *state)
965 {
966 struct iris_context *ice = (struct iris_context *) ctx;
967 struct iris_blend_state *cso = state;
968
969 ice->state.cso_blend = cso;
970 ice->state.blend_enables = cso ? cso->blend_enables : 0;
971
972 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
973 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
974 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
975 }
976
977 /**
978 * Return true if the FS writes to any color outputs which are not disabled
979 * via color masking.
980 */
981 static bool
982 has_writeable_rt(const struct iris_blend_state *cso_blend,
983 const struct shader_info *fs_info)
984 {
985 if (!fs_info)
986 return false;
987
988 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
989
990 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
991 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
992
993 return cso_blend->color_write_enables & rt_outputs;
994 }
995
996 /**
997 * Gallium CSO for depth, stencil, and alpha testing state.
998 */
999 struct iris_depth_stencil_alpha_state {
1000 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1001 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1002
1003 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1004 struct pipe_alpha_state alpha;
1005
1006 /** Outbound to resolve and cache set tracking. */
1007 bool depth_writes_enabled;
1008 bool stencil_writes_enabled;
1009 };
1010
1011 /**
1012 * The pipe->create_depth_stencil_alpha_state() driver hook.
1013 *
1014 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1015 * testing state since we need pieces of it in a variety of places.
1016 */
1017 static void *
1018 iris_create_zsa_state(struct pipe_context *ctx,
1019 const struct pipe_depth_stencil_alpha_state *state)
1020 {
1021 struct iris_depth_stencil_alpha_state *cso =
1022 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1023
1024 bool two_sided_stencil = state->stencil[1].enabled;
1025
1026 cso->alpha = state->alpha;
1027 cso->depth_writes_enabled = state->depth.writemask;
1028 cso->stencil_writes_enabled =
1029 state->stencil[0].writemask != 0 ||
1030 (two_sided_stencil && state->stencil[1].writemask != 0);
1031
1032 /* The state tracker needs to optimize away EQUAL writes for us. */
1033 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1034
1035 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1036 wmds.StencilFailOp = state->stencil[0].fail_op;
1037 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1038 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1039 wmds.StencilTestFunction =
1040 translate_compare_func(state->stencil[0].func);
1041 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1042 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1043 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1044 wmds.BackfaceStencilTestFunction =
1045 translate_compare_func(state->stencil[1].func);
1046 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1047 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1048 wmds.StencilTestEnable = state->stencil[0].enabled;
1049 wmds.StencilBufferWriteEnable =
1050 state->stencil[0].writemask != 0 ||
1051 (two_sided_stencil && state->stencil[1].writemask != 0);
1052 wmds.DepthTestEnable = state->depth.enabled;
1053 wmds.DepthBufferWriteEnable = state->depth.writemask;
1054 wmds.StencilTestMask = state->stencil[0].valuemask;
1055 wmds.StencilWriteMask = state->stencil[0].writemask;
1056 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1057 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1058 /* wmds.[Backface]StencilReferenceValue are merged later */
1059 }
1060
1061 return cso;
1062 }
1063
1064 /**
1065 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1066 *
1067 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1068 */
1069 static void
1070 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1071 {
1072 struct iris_context *ice = (struct iris_context *) ctx;
1073 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1074 struct iris_depth_stencil_alpha_state *new_cso = state;
1075
1076 if (new_cso) {
1077 if (cso_changed(alpha.ref_value))
1078 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1079
1080 if (cso_changed(alpha.enabled))
1081 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1082
1083 if (cso_changed(alpha.func))
1084 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1085
1086 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1087 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1088 }
1089
1090 ice->state.cso_zsa = new_cso;
1091 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1092 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1093 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1094 }
1095
1096 /**
1097 * Gallium CSO for rasterizer state.
1098 */
1099 struct iris_rasterizer_state {
1100 uint32_t sf[GENX(3DSTATE_SF_length)];
1101 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1102 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1103 uint32_t wm[GENX(3DSTATE_WM_length)];
1104 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1105
1106 uint8_t num_clip_plane_consts;
1107 bool clip_halfz; /* for CC_VIEWPORT */
1108 bool depth_clip_near; /* for CC_VIEWPORT */
1109 bool depth_clip_far; /* for CC_VIEWPORT */
1110 bool flatshade; /* for shader state */
1111 bool flatshade_first; /* for stream output */
1112 bool clamp_fragment_color; /* for shader state */
1113 bool light_twoside; /* for shader state */
1114 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1115 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1116 bool line_stipple_enable;
1117 bool poly_stipple_enable;
1118 bool multisample;
1119 bool force_persample_interp;
1120 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1121 uint16_t sprite_coord_enable;
1122 };
1123
1124 static float
1125 get_line_width(const struct pipe_rasterizer_state *state)
1126 {
1127 float line_width = state->line_width;
1128
1129 /* From the OpenGL 4.4 spec:
1130 *
1131 * "The actual width of non-antialiased lines is determined by rounding
1132 * the supplied width to the nearest integer, then clamping it to the
1133 * implementation-dependent maximum non-antialiased line width."
1134 */
1135 if (!state->multisample && !state->line_smooth)
1136 line_width = roundf(state->line_width);
1137
1138 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1139 /* For 1 pixel line thickness or less, the general anti-aliasing
1140 * algorithm gives up, and a garbage line is generated. Setting a
1141 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1142 * (one-pixel-wide), non-antialiased lines.
1143 *
1144 * Lines rendered with zero Line Width are rasterized using the
1145 * "Grid Intersection Quantization" rules as specified by the
1146 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1147 */
1148 line_width = 0.0f;
1149 }
1150
1151 return line_width;
1152 }
1153
1154 /**
1155 * The pipe->create_rasterizer_state() driver hook.
1156 */
1157 static void *
1158 iris_create_rasterizer_state(struct pipe_context *ctx,
1159 const struct pipe_rasterizer_state *state)
1160 {
1161 struct iris_rasterizer_state *cso =
1162 malloc(sizeof(struct iris_rasterizer_state));
1163
1164 cso->multisample = state->multisample;
1165 cso->force_persample_interp = state->force_persample_interp;
1166 cso->clip_halfz = state->clip_halfz;
1167 cso->depth_clip_near = state->depth_clip_near;
1168 cso->depth_clip_far = state->depth_clip_far;
1169 cso->flatshade = state->flatshade;
1170 cso->flatshade_first = state->flatshade_first;
1171 cso->clamp_fragment_color = state->clamp_fragment_color;
1172 cso->light_twoside = state->light_twoside;
1173 cso->rasterizer_discard = state->rasterizer_discard;
1174 cso->half_pixel_center = state->half_pixel_center;
1175 cso->sprite_coord_mode = state->sprite_coord_mode;
1176 cso->sprite_coord_enable = state->sprite_coord_enable;
1177 cso->line_stipple_enable = state->line_stipple_enable;
1178 cso->poly_stipple_enable = state->poly_stipple_enable;
1179
1180 if (state->clip_plane_enable != 0)
1181 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1182 else
1183 cso->num_clip_plane_consts = 0;
1184
1185 float line_width = get_line_width(state);
1186
1187 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1188 sf.StatisticsEnable = true;
1189 sf.ViewportTransformEnable = true;
1190 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1191 sf.LineEndCapAntialiasingRegionWidth =
1192 state->line_smooth ? _10pixels : _05pixels;
1193 sf.LastPixelEnable = state->line_last_pixel;
1194 sf.LineWidth = line_width;
1195 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1196 !state->point_quad_rasterization;
1197 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1198 sf.PointWidth = state->point_size;
1199
1200 if (state->flatshade_first) {
1201 sf.TriangleFanProvokingVertexSelect = 1;
1202 } else {
1203 sf.TriangleStripListProvokingVertexSelect = 2;
1204 sf.TriangleFanProvokingVertexSelect = 2;
1205 sf.LineStripListProvokingVertexSelect = 1;
1206 }
1207 }
1208
1209 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1210 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1211 rr.CullMode = translate_cull_mode(state->cull_face);
1212 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1213 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1214 rr.DXMultisampleRasterizationEnable = state->multisample;
1215 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1216 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1217 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1218 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1219 rr.GlobalDepthOffsetScale = state->offset_scale;
1220 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1221 rr.SmoothPointEnable = state->point_smooth;
1222 rr.AntialiasingEnable = state->line_smooth;
1223 rr.ScissorRectangleEnable = state->scissor;
1224 #if GEN_GEN >= 9
1225 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1226 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1227 #else
1228 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1229 #endif
1230 /* TODO: ConservativeRasterizationEnable */
1231 }
1232
1233 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1234 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1235 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1236 */
1237 cl.EarlyCullEnable = true;
1238 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1239 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1240 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1241 cl.GuardbandClipTestEnable = true;
1242 cl.ClipEnable = true;
1243 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1244 cl.MinimumPointWidth = 0.125;
1245 cl.MaximumPointWidth = 255.875;
1246
1247 if (state->flatshade_first) {
1248 cl.TriangleFanProvokingVertexSelect = 1;
1249 } else {
1250 cl.TriangleStripListProvokingVertexSelect = 2;
1251 cl.TriangleFanProvokingVertexSelect = 2;
1252 cl.LineStripListProvokingVertexSelect = 1;
1253 }
1254 }
1255
1256 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1257 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1258 * filled in at draw time from the FS program.
1259 */
1260 wm.LineAntialiasingRegionWidth = _10pixels;
1261 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1262 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1263 wm.LineStippleEnable = state->line_stipple_enable;
1264 wm.PolygonStippleEnable = state->poly_stipple_enable;
1265 }
1266
1267 /* Remap from 0..255 back to 1..256 */
1268 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1269
1270 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1271 line.LineStipplePattern = state->line_stipple_pattern;
1272 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1273 line.LineStippleRepeatCount = line_stipple_factor;
1274 }
1275
1276 return cso;
1277 }
1278
1279 /**
1280 * The pipe->bind_rasterizer_state() driver hook.
1281 *
1282 * Bind a rasterizer CSO and flag related dirty bits.
1283 */
1284 static void
1285 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1286 {
1287 struct iris_context *ice = (struct iris_context *) ctx;
1288 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1289 struct iris_rasterizer_state *new_cso = state;
1290
1291 if (new_cso) {
1292 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1293 if (cso_changed_memcmp(line_stipple))
1294 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1295
1296 if (cso_changed(half_pixel_center))
1297 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1298
1299 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1300 ice->state.dirty |= IRIS_DIRTY_WM;
1301
1302 if (cso_changed(rasterizer_discard))
1303 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1304
1305 if (cso_changed(flatshade_first))
1306 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1307
1308 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1309 cso_changed(clip_halfz))
1310 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1311
1312 if (cso_changed(sprite_coord_enable) ||
1313 cso_changed(sprite_coord_mode) ||
1314 cso_changed(light_twoside))
1315 ice->state.dirty |= IRIS_DIRTY_SBE;
1316 }
1317
1318 ice->state.cso_rast = new_cso;
1319 ice->state.dirty |= IRIS_DIRTY_RASTER;
1320 ice->state.dirty |= IRIS_DIRTY_CLIP;
1321 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1322 }
1323
1324 /**
1325 * Return true if the given wrap mode requires the border color to exist.
1326 *
1327 * (We can skip uploading it if the sampler isn't going to use it.)
1328 */
1329 static bool
1330 wrap_mode_needs_border_color(unsigned wrap_mode)
1331 {
1332 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1333 }
1334
1335 /**
1336 * Gallium CSO for sampler state.
1337 */
1338 struct iris_sampler_state {
1339 union pipe_color_union border_color;
1340 bool needs_border_color;
1341
1342 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1343 };
1344
1345 /**
1346 * The pipe->create_sampler_state() driver hook.
1347 *
1348 * We fill out SAMPLER_STATE (except for the border color pointer), and
1349 * store that on the CPU. It doesn't make sense to upload it to a GPU
1350 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1351 * all bound sampler states to be in contiguous memor.
1352 */
1353 static void *
1354 iris_create_sampler_state(struct pipe_context *ctx,
1355 const struct pipe_sampler_state *state)
1356 {
1357 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1358
1359 if (!cso)
1360 return NULL;
1361
1362 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1363 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1364
1365 unsigned wrap_s = translate_wrap(state->wrap_s);
1366 unsigned wrap_t = translate_wrap(state->wrap_t);
1367 unsigned wrap_r = translate_wrap(state->wrap_r);
1368
1369 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1370
1371 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1372 wrap_mode_needs_border_color(wrap_t) ||
1373 wrap_mode_needs_border_color(wrap_r);
1374
1375 float min_lod = state->min_lod;
1376 unsigned mag_img_filter = state->mag_img_filter;
1377
1378 // XXX: explain this code ported from ilo...I don't get it at all...
1379 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1380 state->min_lod > 0.0f) {
1381 min_lod = 0.0f;
1382 mag_img_filter = state->min_img_filter;
1383 }
1384
1385 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1386 samp.TCXAddressControlMode = wrap_s;
1387 samp.TCYAddressControlMode = wrap_t;
1388 samp.TCZAddressControlMode = wrap_r;
1389 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1390 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1391 samp.MinModeFilter = state->min_img_filter;
1392 samp.MagModeFilter = mag_img_filter;
1393 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1394 samp.MaximumAnisotropy = RATIO21;
1395
1396 if (state->max_anisotropy >= 2) {
1397 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1398 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1399 samp.AnisotropicAlgorithm = EWAApproximation;
1400 }
1401
1402 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1403 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1404
1405 samp.MaximumAnisotropy =
1406 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1407 }
1408
1409 /* Set address rounding bits if not using nearest filtering. */
1410 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1411 samp.UAddressMinFilterRoundingEnable = true;
1412 samp.VAddressMinFilterRoundingEnable = true;
1413 samp.RAddressMinFilterRoundingEnable = true;
1414 }
1415
1416 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1417 samp.UAddressMagFilterRoundingEnable = true;
1418 samp.VAddressMagFilterRoundingEnable = true;
1419 samp.RAddressMagFilterRoundingEnable = true;
1420 }
1421
1422 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1423 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1424
1425 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1426
1427 samp.LODPreClampMode = CLAMP_MODE_OGL;
1428 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1429 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1430 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1431
1432 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1433 }
1434
1435 return cso;
1436 }
1437
1438 /**
1439 * The pipe->bind_sampler_states() driver hook.
1440 */
1441 static void
1442 iris_bind_sampler_states(struct pipe_context *ctx,
1443 enum pipe_shader_type p_stage,
1444 unsigned start, unsigned count,
1445 void **states)
1446 {
1447 struct iris_context *ice = (struct iris_context *) ctx;
1448 gl_shader_stage stage = stage_from_pipe(p_stage);
1449 struct iris_shader_state *shs = &ice->state.shaders[stage];
1450
1451 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1452
1453 for (int i = 0; i < count; i++) {
1454 shs->samplers[start + i] = states[i];
1455 }
1456
1457 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1458 }
1459
1460 /**
1461 * Upload the sampler states into a contiguous area of GPU memory, for
1462 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1463 *
1464 * Also fill out the border color state pointers.
1465 */
1466 static void
1467 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1468 {
1469 struct iris_shader_state *shs = &ice->state.shaders[stage];
1470 const struct shader_info *info = iris_get_shader_info(ice, stage);
1471
1472 /* We assume the state tracker will call pipe->bind_sampler_states()
1473 * if the program's number of textures changes.
1474 */
1475 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1476
1477 if (!count)
1478 return;
1479
1480 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1481 * in the dynamic state memory zone, so we can point to it via the
1482 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1483 */
1484 uint32_t *map =
1485 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1486 count * 4 * GENX(SAMPLER_STATE_length), 32);
1487 if (unlikely(!map))
1488 return;
1489
1490 struct pipe_resource *res = shs->sampler_table.res;
1491 shs->sampler_table.offset +=
1492 iris_bo_offset_from_base_address(iris_resource_bo(res));
1493
1494 /* Make sure all land in the same BO */
1495 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1496
1497 ice->state.need_border_colors &= ~(1 << stage);
1498
1499 for (int i = 0; i < count; i++) {
1500 struct iris_sampler_state *state = shs->samplers[i];
1501 struct iris_sampler_view *tex = shs->textures[i];
1502
1503 if (!state) {
1504 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1505 } else if (!state->needs_border_color) {
1506 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1507 } else {
1508 ice->state.need_border_colors |= 1 << stage;
1509
1510 /* We may need to swizzle the border color for format faking.
1511 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
1512 * This means we need to move the border color's A channel into
1513 * the R or G channels so that those read swizzles will move it
1514 * back into A.
1515 */
1516 union pipe_color_union *color = &state->border_color;
1517 if (tex) {
1518 union pipe_color_union tmp;
1519 enum pipe_format internal_format = tex->res->internal_format;
1520
1521 if (util_format_is_alpha(internal_format)) {
1522 unsigned char swz[4] = {
1523 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
1524 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1525 };
1526 util_format_apply_color_swizzle(&tmp, color, swz, true);
1527 color = &tmp;
1528 } else if (util_format_is_luminance_alpha(internal_format) &&
1529 internal_format != PIPE_FORMAT_L8A8_SRGB) {
1530 unsigned char swz[4] = {
1531 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
1532 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1533 };
1534 util_format_apply_color_swizzle(&tmp, color, swz, true);
1535 color = &tmp;
1536 }
1537 }
1538
1539 /* Stream out the border color and merge the pointer. */
1540 uint32_t offset = iris_upload_border_color(ice, color);
1541
1542 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1543 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1544 dyns.BorderColorPointer = offset;
1545 }
1546
1547 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1548 map[j] = state->sampler_state[j] | dynamic[j];
1549 }
1550
1551 map += GENX(SAMPLER_STATE_length);
1552 }
1553 }
1554
1555 static enum isl_channel_select
1556 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1557 {
1558 switch (swz) {
1559 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1560 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1561 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1562 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1563 case PIPE_SWIZZLE_1: return SCS_ONE;
1564 case PIPE_SWIZZLE_0: return SCS_ZERO;
1565 default: unreachable("invalid swizzle");
1566 }
1567 }
1568
1569 static void
1570 fill_buffer_surface_state(struct isl_device *isl_dev,
1571 struct iris_bo *bo,
1572 void *map,
1573 enum isl_format format,
1574 struct isl_swizzle swizzle,
1575 unsigned offset,
1576 unsigned size)
1577 {
1578 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1579 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1580
1581 /* The ARB_texture_buffer_specification says:
1582 *
1583 * "The number of texels in the buffer texture's texel array is given by
1584 *
1585 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1586 *
1587 * where <buffer_size> is the size of the buffer object, in basic
1588 * machine units and <components> and <base_type> are the element count
1589 * and base data type for elements, as specified in Table X.1. The
1590 * number of texels in the texel array is then clamped to the
1591 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1592 *
1593 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1594 * so that when ISL divides by stride to obtain the number of texels, that
1595 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1596 */
1597 unsigned final_size =
1598 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1599
1600 isl_buffer_fill_state(isl_dev, map,
1601 .address = bo->gtt_offset + offset,
1602 .size_B = final_size,
1603 .format = format,
1604 .swizzle = swizzle,
1605 .stride_B = cpp,
1606 .mocs = mocs(bo));
1607 }
1608
1609 #define SURFACE_STATE_ALIGNMENT 64
1610
1611 /**
1612 * Allocate several contiguous SURFACE_STATE structures, one for each
1613 * supported auxiliary surface mode.
1614 */
1615 static void *
1616 alloc_surface_states(struct u_upload_mgr *mgr,
1617 struct iris_state_ref *ref,
1618 unsigned aux_usages)
1619 {
1620 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1621
1622 /* If this changes, update this to explicitly align pointers */
1623 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1624
1625 assert(aux_usages != 0);
1626
1627 void *map =
1628 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1629 SURFACE_STATE_ALIGNMENT);
1630
1631 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1632
1633 return map;
1634 }
1635
1636 static void
1637 fill_surface_state(struct isl_device *isl_dev,
1638 void *map,
1639 struct iris_resource *res,
1640 struct isl_view *view,
1641 unsigned aux_usage)
1642 {
1643 struct isl_surf_fill_state_info f = {
1644 .surf = &res->surf,
1645 .view = view,
1646 .mocs = mocs(res->bo),
1647 .address = res->bo->gtt_offset,
1648 };
1649
1650 if (aux_usage != ISL_AUX_USAGE_NONE) {
1651 f.aux_surf = &res->aux.surf;
1652 f.aux_usage = aux_usage;
1653 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1654 // XXX: clear color
1655 }
1656
1657 isl_surf_fill_state_s(isl_dev, map, &f);
1658 }
1659
1660 /**
1661 * The pipe->create_sampler_view() driver hook.
1662 */
1663 static struct pipe_sampler_view *
1664 iris_create_sampler_view(struct pipe_context *ctx,
1665 struct pipe_resource *tex,
1666 const struct pipe_sampler_view *tmpl)
1667 {
1668 struct iris_context *ice = (struct iris_context *) ctx;
1669 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1670 const struct gen_device_info *devinfo = &screen->devinfo;
1671 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1672
1673 if (!isv)
1674 return NULL;
1675
1676 /* initialize base object */
1677 isv->base = *tmpl;
1678 isv->base.context = ctx;
1679 isv->base.texture = NULL;
1680 pipe_reference_init(&isv->base.reference, 1);
1681 pipe_resource_reference(&isv->base.texture, tex);
1682
1683 if (util_format_is_depth_or_stencil(tmpl->format)) {
1684 struct iris_resource *zres, *sres;
1685 const struct util_format_description *desc =
1686 util_format_description(tmpl->format);
1687
1688 iris_get_depth_stencil_resources(tex, &zres, &sres);
1689
1690 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1691 }
1692
1693 isv->res = (struct iris_resource *) tex;
1694
1695 void *map = alloc_surface_states(ice->state.surface_uploader,
1696 &isv->surface_state,
1697 isv->res->aux.possible_usages);
1698 if (!unlikely(map))
1699 return NULL;
1700
1701 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1702
1703 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1704 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1705 usage |= ISL_SURF_USAGE_CUBE_BIT;
1706
1707 const struct iris_format_info fmt =
1708 iris_format_for_usage(devinfo, tmpl->format, usage);
1709
1710 isv->view = (struct isl_view) {
1711 .format = fmt.fmt,
1712 .swizzle = (struct isl_swizzle) {
1713 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1714 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1715 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1716 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1717 },
1718 .usage = usage,
1719 };
1720
1721 /* Fill out SURFACE_STATE for this view. */
1722 if (tmpl->target != PIPE_BUFFER) {
1723 isv->view.base_level = tmpl->u.tex.first_level;
1724 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1725 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1726 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1727 isv->view.array_len =
1728 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1729
1730 unsigned aux_modes = isv->res->aux.possible_usages;
1731 while (aux_modes) {
1732 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1733
1734 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view,
1735 aux_usage);
1736
1737 map += SURFACE_STATE_ALIGNMENT;
1738 }
1739 } else {
1740 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1741 isv->view.format, isv->view.swizzle,
1742 tmpl->u.buf.offset, tmpl->u.buf.size);
1743 }
1744
1745 return &isv->base;
1746 }
1747
1748 static void
1749 iris_sampler_view_destroy(struct pipe_context *ctx,
1750 struct pipe_sampler_view *state)
1751 {
1752 struct iris_sampler_view *isv = (void *) state;
1753 pipe_resource_reference(&state->texture, NULL);
1754 pipe_resource_reference(&isv->surface_state.res, NULL);
1755 free(isv);
1756 }
1757
1758 /**
1759 * The pipe->create_surface() driver hook.
1760 *
1761 * In Gallium nomenclature, "surfaces" are a view of a resource that
1762 * can be bound as a render target or depth/stencil buffer.
1763 */
1764 static struct pipe_surface *
1765 iris_create_surface(struct pipe_context *ctx,
1766 struct pipe_resource *tex,
1767 const struct pipe_surface *tmpl)
1768 {
1769 struct iris_context *ice = (struct iris_context *) ctx;
1770 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1771 const struct gen_device_info *devinfo = &screen->devinfo;
1772 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1773 struct pipe_surface *psurf = &surf->base;
1774 struct iris_resource *res = (struct iris_resource *) tex;
1775
1776 if (!surf)
1777 return NULL;
1778
1779 pipe_reference_init(&psurf->reference, 1);
1780 pipe_resource_reference(&psurf->texture, tex);
1781 psurf->context = ctx;
1782 psurf->format = tmpl->format;
1783 psurf->width = tex->width0;
1784 psurf->height = tex->height0;
1785 psurf->texture = tex;
1786 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1787 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1788 psurf->u.tex.level = tmpl->u.tex.level;
1789
1790 isl_surf_usage_flags_t usage = 0;
1791 if (tmpl->writable)
1792 usage = ISL_SURF_USAGE_STORAGE_BIT;
1793 else if (util_format_is_depth_or_stencil(tmpl->format))
1794 usage = ISL_SURF_USAGE_DEPTH_BIT;
1795 else
1796 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1797
1798 const struct iris_format_info fmt =
1799 iris_format_for_usage(devinfo, psurf->format, usage);
1800
1801 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1802 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1803 /* Framebuffer validation will reject this invalid case, but it
1804 * hasn't had the opportunity yet. In the meantime, we need to
1805 * avoid hitting ISL asserts about unsupported formats below.
1806 */
1807 free(surf);
1808 return NULL;
1809 }
1810
1811 surf->view = (struct isl_view) {
1812 .format = fmt.fmt,
1813 .base_level = tmpl->u.tex.level,
1814 .levels = 1,
1815 .base_array_layer = tmpl->u.tex.first_layer,
1816 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1817 .swizzle = ISL_SWIZZLE_IDENTITY,
1818 .usage = usage,
1819 };
1820
1821 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1822 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1823 ISL_SURF_USAGE_STENCIL_BIT))
1824 return psurf;
1825
1826
1827 void *map = alloc_surface_states(ice->state.surface_uploader,
1828 &surf->surface_state,
1829 res->aux.possible_usages);
1830 if (!unlikely(map))
1831 return NULL;
1832
1833 unsigned aux_modes = res->aux.possible_usages;
1834 while (aux_modes) {
1835 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1836
1837 fill_surface_state(&screen->isl_dev, map, res, &surf->view, aux_usage);
1838
1839 map += SURFACE_STATE_ALIGNMENT;
1840 }
1841
1842 return psurf;
1843 }
1844
1845 #if GEN_GEN < 9
1846 static void
1847 fill_default_image_param(struct brw_image_param *param)
1848 {
1849 memset(param, 0, sizeof(*param));
1850 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
1851 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
1852 * detailed explanation of these parameters.
1853 */
1854 param->swizzling[0] = 0xff;
1855 param->swizzling[1] = 0xff;
1856 }
1857
1858 static void
1859 fill_buffer_image_param(struct brw_image_param *param,
1860 enum pipe_format pfmt,
1861 unsigned size)
1862 {
1863 const unsigned cpp = util_format_get_blocksize(pfmt);
1864
1865 fill_default_image_param(param);
1866 param->size[0] = size / cpp;
1867 param->stride[0] = cpp;
1868 }
1869 #else
1870 #define isl_surf_fill_image_param(x, ...)
1871 #define fill_default_image_param(x, ...)
1872 #define fill_buffer_image_param(x, ...)
1873 #endif
1874
1875 /**
1876 * The pipe->set_shader_images() driver hook.
1877 */
1878 static void
1879 iris_set_shader_images(struct pipe_context *ctx,
1880 enum pipe_shader_type p_stage,
1881 unsigned start_slot, unsigned count,
1882 const struct pipe_image_view *p_images)
1883 {
1884 struct iris_context *ice = (struct iris_context *) ctx;
1885 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1886 const struct gen_device_info *devinfo = &screen->devinfo;
1887 gl_shader_stage stage = stage_from_pipe(p_stage);
1888 struct iris_shader_state *shs = &ice->state.shaders[stage];
1889
1890 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
1891
1892 for (unsigned i = 0; i < count; i++) {
1893 if (p_images && p_images[i].resource) {
1894 const struct pipe_image_view *img = &p_images[i];
1895 struct iris_resource *res = (void *) img->resource;
1896 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1897
1898 shs->bound_image_views |= 1 << (start_slot + i);
1899
1900 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1901
1902 // XXX: these are not retained forever, use a separate uploader?
1903 void *map =
1904 alloc_surface_states(ice->state.surface_uploader,
1905 &shs->image[start_slot + i].surface_state,
1906 1 << ISL_AUX_USAGE_NONE);
1907 if (!unlikely(map)) {
1908 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1909 return;
1910 }
1911
1912 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1913 enum isl_format isl_fmt =
1914 iris_format_for_usage(devinfo, img->format, usage).fmt;
1915
1916 bool untyped_fallback = false;
1917
1918 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
1919 /* On Gen8, try to use typed surfaces reads (which support a
1920 * limited number of formats), and if not possible, fall back
1921 * to untyped reads.
1922 */
1923 untyped_fallback = GEN_GEN == 8 &&
1924 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
1925
1926 if (untyped_fallback)
1927 isl_fmt = ISL_FORMAT_RAW;
1928 else
1929 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
1930 }
1931
1932 shs->image[start_slot + i].access = img->shader_access;
1933
1934 if (res->base.target != PIPE_BUFFER) {
1935 struct isl_view view = {
1936 .format = isl_fmt,
1937 .base_level = img->u.tex.level,
1938 .levels = 1,
1939 .base_array_layer = img->u.tex.first_layer,
1940 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1941 .swizzle = ISL_SWIZZLE_IDENTITY,
1942 .usage = usage,
1943 };
1944
1945 if (untyped_fallback) {
1946 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1947 isl_fmt, ISL_SWIZZLE_IDENTITY,
1948 0, res->bo->size);
1949 } else {
1950 /* Images don't support compression */
1951 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
1952 while (aux_modes) {
1953 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
1954
1955 fill_surface_state(&screen->isl_dev, map, res, &view, usage);
1956
1957 map += SURFACE_STATE_ALIGNMENT;
1958 }
1959 }
1960
1961 isl_surf_fill_image_param(&screen->isl_dev,
1962 &shs->image[start_slot + i].param,
1963 &res->surf, &view);
1964 } else {
1965 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1966 isl_fmt, ISL_SWIZZLE_IDENTITY,
1967 img->u.buf.offset, img->u.buf.size);
1968 fill_buffer_image_param(&shs->image[start_slot + i].param,
1969 img->format, img->u.buf.size);
1970 }
1971 } else {
1972 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1973 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1974 NULL);
1975 fill_default_image_param(&shs->image[start_slot + i].param);
1976 }
1977 }
1978
1979 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1980
1981 /* Broadwell also needs brw_image_params re-uploaded */
1982 if (GEN_GEN < 9) {
1983 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
1984 shs->cbuf0_needs_upload = true;
1985 }
1986 }
1987
1988
1989 /**
1990 * The pipe->set_sampler_views() driver hook.
1991 */
1992 static void
1993 iris_set_sampler_views(struct pipe_context *ctx,
1994 enum pipe_shader_type p_stage,
1995 unsigned start, unsigned count,
1996 struct pipe_sampler_view **views)
1997 {
1998 struct iris_context *ice = (struct iris_context *) ctx;
1999 gl_shader_stage stage = stage_from_pipe(p_stage);
2000 struct iris_shader_state *shs = &ice->state.shaders[stage];
2001
2002 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2003
2004 for (unsigned i = 0; i < count; i++) {
2005 pipe_sampler_view_reference((struct pipe_sampler_view **)
2006 &shs->textures[start + i], views[i]);
2007 struct iris_sampler_view *view = (void *) views[i];
2008 if (view) {
2009 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2010 shs->bound_sampler_views |= 1 << (start + i);
2011 }
2012 }
2013
2014 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2015 }
2016
2017 /**
2018 * The pipe->set_tess_state() driver hook.
2019 */
2020 static void
2021 iris_set_tess_state(struct pipe_context *ctx,
2022 const float default_outer_level[4],
2023 const float default_inner_level[2])
2024 {
2025 struct iris_context *ice = (struct iris_context *) ctx;
2026 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2027
2028 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2029 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2030
2031 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2032 shs->cbuf0_needs_upload = true;
2033 }
2034
2035 static void
2036 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2037 {
2038 struct iris_surface *surf = (void *) p_surf;
2039 pipe_resource_reference(&p_surf->texture, NULL);
2040 pipe_resource_reference(&surf->surface_state.res, NULL);
2041 free(surf);
2042 }
2043
2044 static void
2045 iris_set_clip_state(struct pipe_context *ctx,
2046 const struct pipe_clip_state *state)
2047 {
2048 struct iris_context *ice = (struct iris_context *) ctx;
2049 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2050
2051 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2052
2053 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
2054 shs->cbuf0_needs_upload = true;
2055 }
2056
2057 /**
2058 * The pipe->set_polygon_stipple() driver hook.
2059 */
2060 static void
2061 iris_set_polygon_stipple(struct pipe_context *ctx,
2062 const struct pipe_poly_stipple *state)
2063 {
2064 struct iris_context *ice = (struct iris_context *) ctx;
2065 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2066 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2067 }
2068
2069 /**
2070 * The pipe->set_sample_mask() driver hook.
2071 */
2072 static void
2073 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2074 {
2075 struct iris_context *ice = (struct iris_context *) ctx;
2076
2077 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2078 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2079 */
2080 ice->state.sample_mask = sample_mask & 0xffff;
2081 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2082 }
2083
2084 /**
2085 * The pipe->set_scissor_states() driver hook.
2086 *
2087 * This corresponds to our SCISSOR_RECT state structures. It's an
2088 * exact match, so we just store them, and memcpy them out later.
2089 */
2090 static void
2091 iris_set_scissor_states(struct pipe_context *ctx,
2092 unsigned start_slot,
2093 unsigned num_scissors,
2094 const struct pipe_scissor_state *rects)
2095 {
2096 struct iris_context *ice = (struct iris_context *) ctx;
2097
2098 for (unsigned i = 0; i < num_scissors; i++) {
2099 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2100 /* If the scissor was out of bounds and got clamped to 0 width/height
2101 * at the bounds, the subtraction of 1 from maximums could produce a
2102 * negative number and thus not clip anything. Instead, just provide
2103 * a min > max scissor inside the bounds, which produces the expected
2104 * no rendering.
2105 */
2106 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2107 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2108 };
2109 } else {
2110 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2111 .minx = rects[i].minx, .miny = rects[i].miny,
2112 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2113 };
2114 }
2115 }
2116
2117 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2118 }
2119
2120 /**
2121 * The pipe->set_stencil_ref() driver hook.
2122 *
2123 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2124 */
2125 static void
2126 iris_set_stencil_ref(struct pipe_context *ctx,
2127 const struct pipe_stencil_ref *state)
2128 {
2129 struct iris_context *ice = (struct iris_context *) ctx;
2130 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2131 if (GEN_GEN == 8)
2132 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2133 else
2134 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2135 }
2136
2137 static float
2138 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2139 {
2140 return copysignf(state->scale[axis], sign) + state->translate[axis];
2141 }
2142
2143 static void
2144 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2145 float m00, float m11, float m30, float m31,
2146 float *xmin, float *xmax,
2147 float *ymin, float *ymax)
2148 {
2149 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2150 * Strips and Fans documentation:
2151 *
2152 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2153 * fixed-point "guardband" range supported by the rasterization hardware"
2154 *
2155 * and
2156 *
2157 * "In almost all circumstances, if an object’s vertices are actually
2158 * modified by this clamping (i.e., had X or Y coordinates outside of
2159 * the guardband extent the rendered object will not match the intended
2160 * result. Therefore software should take steps to ensure that this does
2161 * not happen - e.g., by clipping objects such that they do not exceed
2162 * these limits after the Drawing Rectangle is applied."
2163 *
2164 * I believe the fundamental restriction is that the rasterizer (in
2165 * the SF/WM stages) have a limit on the number of pixels that can be
2166 * rasterized. We need to ensure any coordinates beyond the rasterizer
2167 * limit are handled by the clipper. So effectively that limit becomes
2168 * the clipper's guardband size.
2169 *
2170 * It goes on to say:
2171 *
2172 * "In addition, in order to be correctly rendered, objects must have a
2173 * screenspace bounding box not exceeding 8K in the X or Y direction.
2174 * This additional restriction must also be comprehended by software,
2175 * i.e., enforced by use of clipping."
2176 *
2177 * This makes no sense. Gen7+ hardware supports 16K render targets,
2178 * and you definitely need to be able to draw polygons that fill the
2179 * surface. Our assumption is that the rasterizer was limited to 8K
2180 * on Sandybridge, which only supports 8K surfaces, and it was actually
2181 * increased to 16K on Ivybridge and later.
2182 *
2183 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2184 */
2185 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2186
2187 if (m00 != 0 && m11 != 0) {
2188 /* First, we compute the screen-space render area */
2189 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2190 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2191 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2192 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2193
2194 /* We want the guardband to be centered on that */
2195 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2196 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2197 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2198 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2199
2200 /* Now we need it in native device coordinates */
2201 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2202 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2203 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2204 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2205
2206 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2207 * flipped upside-down. X should be fine though.
2208 */
2209 assert(ndc_gb_xmin <= ndc_gb_xmax);
2210 *xmin = ndc_gb_xmin;
2211 *xmax = ndc_gb_xmax;
2212 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2213 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2214 } else {
2215 /* The viewport scales to 0, so nothing will be rendered. */
2216 *xmin = 0.0f;
2217 *xmax = 0.0f;
2218 *ymin = 0.0f;
2219 *ymax = 0.0f;
2220 }
2221 }
2222
2223 /**
2224 * The pipe->set_viewport_states() driver hook.
2225 *
2226 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2227 * the guardband yet, as we need the framebuffer dimensions, but we can
2228 * at least fill out the rest.
2229 */
2230 static void
2231 iris_set_viewport_states(struct pipe_context *ctx,
2232 unsigned start_slot,
2233 unsigned count,
2234 const struct pipe_viewport_state *states)
2235 {
2236 struct iris_context *ice = (struct iris_context *) ctx;
2237
2238 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2239
2240 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2241
2242 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2243 !ice->state.cso_rast->depth_clip_far))
2244 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2245 }
2246
2247 /**
2248 * The pipe->set_framebuffer_state() driver hook.
2249 *
2250 * Sets the current draw FBO, including color render targets, depth,
2251 * and stencil buffers.
2252 */
2253 static void
2254 iris_set_framebuffer_state(struct pipe_context *ctx,
2255 const struct pipe_framebuffer_state *state)
2256 {
2257 struct iris_context *ice = (struct iris_context *) ctx;
2258 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2259 struct isl_device *isl_dev = &screen->isl_dev;
2260 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2261 struct iris_resource *zres;
2262 struct iris_resource *stencil_res;
2263
2264 unsigned samples = util_framebuffer_get_num_samples(state);
2265 unsigned layers = util_framebuffer_get_num_layers(state);
2266
2267 if (cso->samples != samples) {
2268 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2269 }
2270
2271 if (cso->nr_cbufs != state->nr_cbufs) {
2272 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2273 }
2274
2275 if ((cso->layers == 0) != (layers == 0)) {
2276 ice->state.dirty |= IRIS_DIRTY_CLIP;
2277 }
2278
2279 if (cso->width != state->width || cso->height != state->height) {
2280 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2281 }
2282
2283 util_copy_framebuffer_state(cso, state);
2284 cso->samples = samples;
2285 cso->layers = layers;
2286
2287 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2288
2289 struct isl_view view = {
2290 .base_level = 0,
2291 .levels = 1,
2292 .base_array_layer = 0,
2293 .array_len = 1,
2294 .swizzle = ISL_SWIZZLE_IDENTITY,
2295 };
2296
2297 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2298
2299 if (cso->zsbuf) {
2300 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2301 &stencil_res);
2302
2303 view.base_level = cso->zsbuf->u.tex.level;
2304 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2305 view.array_len =
2306 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2307
2308 if (zres) {
2309 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2310
2311 info.depth_surf = &zres->surf;
2312 info.depth_address = zres->bo->gtt_offset;
2313 info.mocs = mocs(zres->bo);
2314
2315 view.format = zres->surf.format;
2316
2317 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2318 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2319 info.hiz_surf = &zres->aux.surf;
2320 info.hiz_address = zres->aux.bo->gtt_offset;
2321 }
2322 }
2323
2324 if (stencil_res) {
2325 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2326 info.stencil_surf = &stencil_res->surf;
2327 info.stencil_address = stencil_res->bo->gtt_offset;
2328 if (!zres) {
2329 view.format = stencil_res->surf.format;
2330 info.mocs = mocs(stencil_res->bo);
2331 }
2332 }
2333 }
2334
2335 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2336
2337 /* Make a null surface for unbound buffers */
2338 void *null_surf_map =
2339 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2340 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2341 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2342 isl_extent3d(MAX2(cso->width, 1),
2343 MAX2(cso->height, 1),
2344 cso->layers ? cso->layers : 1));
2345 ice->state.null_fb.offset +=
2346 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2347
2348 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2349
2350 /* Render target change */
2351 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2352
2353 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2354
2355 #if GEN_GEN == 11
2356 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2357 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2358
2359 /* The PIPE_CONTROL command description says:
2360 *
2361 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2362 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2363 * Target Cache Flush by enabling this bit. When render target flush
2364 * is set due to new association of BTI, PS Scoreboard Stall bit must
2365 * be set in this packet."
2366 */
2367 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2368 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2369 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2370 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2371 #endif
2372 }
2373
2374 static void
2375 upload_ubo_surf_state(struct iris_context *ice,
2376 struct iris_const_buffer *cbuf,
2377 unsigned buffer_size)
2378 {
2379 struct pipe_context *ctx = &ice->ctx;
2380 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2381
2382 // XXX: these are not retained forever, use a separate uploader?
2383 void *map =
2384 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2385 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2386 if (!unlikely(map)) {
2387 pipe_resource_reference(&cbuf->data.res, NULL);
2388 return;
2389 }
2390
2391 struct iris_resource *res = (void *) cbuf->data.res;
2392 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2393 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2394
2395 isl_buffer_fill_state(&screen->isl_dev, map,
2396 .address = res->bo->gtt_offset + cbuf->data.offset,
2397 .size_B = MIN2(buffer_size,
2398 res->bo->size - cbuf->data.offset),
2399 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2400 .swizzle = ISL_SWIZZLE_IDENTITY,
2401 .stride_B = 1,
2402 .mocs = mocs(res->bo))
2403 }
2404
2405 /**
2406 * The pipe->set_constant_buffer() driver hook.
2407 *
2408 * This uploads any constant data in user buffers, and references
2409 * any UBO resources containing constant data.
2410 */
2411 static void
2412 iris_set_constant_buffer(struct pipe_context *ctx,
2413 enum pipe_shader_type p_stage, unsigned index,
2414 const struct pipe_constant_buffer *input)
2415 {
2416 struct iris_context *ice = (struct iris_context *) ctx;
2417 gl_shader_stage stage = stage_from_pipe(p_stage);
2418 struct iris_shader_state *shs = &ice->state.shaders[stage];
2419 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2420
2421 if (input && input->buffer) {
2422 assert(index > 0);
2423
2424 pipe_resource_reference(&cbuf->data.res, input->buffer);
2425 cbuf->data.offset = input->buffer_offset;
2426
2427 struct iris_resource *res = (void *) cbuf->data.res;
2428 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2429
2430 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2431 } else {
2432 pipe_resource_reference(&cbuf->data.res, NULL);
2433 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2434 }
2435
2436 if (index == 0) {
2437 if (input)
2438 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2439 else
2440 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2441
2442 shs->cbuf0_needs_upload = true;
2443 }
2444
2445 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2446 // XXX: maybe not necessary all the time...?
2447 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2448 // XXX: pull model we may need actual new bindings...
2449 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2450 }
2451
2452 static void
2453 upload_uniforms(struct iris_context *ice,
2454 gl_shader_stage stage)
2455 {
2456 struct iris_shader_state *shs = &ice->state.shaders[stage];
2457 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2458 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2459
2460 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2461 shs->cbuf0.buffer_size;
2462
2463 if (upload_size == 0)
2464 return;
2465
2466 uint32_t *map =
2467 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2468
2469 for (int i = 0; i < shader->num_system_values; i++) {
2470 uint32_t sysval = shader->system_values[i];
2471 uint32_t value = 0;
2472
2473 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2474 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2475 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2476 struct brw_image_param *param = &shs->image[img].param;
2477
2478 assert(offset < sizeof(struct brw_image_param));
2479 value = ((uint32_t *) param)[offset];
2480 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2481 value = 0;
2482 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2483 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2484 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2485 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2486 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2487 if (stage == MESA_SHADER_TESS_CTRL) {
2488 value = ice->state.vertices_per_patch;
2489 } else {
2490 assert(stage == MESA_SHADER_TESS_EVAL);
2491 const struct shader_info *tcs_info =
2492 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2493 if (tcs_info)
2494 value = tcs_info->tess.tcs_vertices_out;
2495 else
2496 value = ice->state.vertices_per_patch;
2497 }
2498 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
2499 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
2500 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
2501 value = fui(ice->state.default_outer_level[i]);
2502 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
2503 value = fui(ice->state.default_inner_level[0]);
2504 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
2505 value = fui(ice->state.default_inner_level[1]);
2506 } else {
2507 assert(!"unhandled system value");
2508 }
2509
2510 *map++ = value;
2511 }
2512
2513 if (shs->cbuf0.user_buffer) {
2514 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2515 }
2516
2517 upload_ubo_surf_state(ice, cbuf, upload_size);
2518 }
2519
2520 /**
2521 * The pipe->set_shader_buffers() driver hook.
2522 *
2523 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2524 * SURFACE_STATE here, as the buffer offset may change each time.
2525 */
2526 static void
2527 iris_set_shader_buffers(struct pipe_context *ctx,
2528 enum pipe_shader_type p_stage,
2529 unsigned start_slot, unsigned count,
2530 const struct pipe_shader_buffer *buffers)
2531 {
2532 struct iris_context *ice = (struct iris_context *) ctx;
2533 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2534 gl_shader_stage stage = stage_from_pipe(p_stage);
2535 struct iris_shader_state *shs = &ice->state.shaders[stage];
2536
2537 for (unsigned i = 0; i < count; i++) {
2538 if (buffers && buffers[i].buffer) {
2539 const struct pipe_shader_buffer *buffer = &buffers[i];
2540 struct iris_resource *res = (void *) buffer->buffer;
2541 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2542
2543 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2544
2545 // XXX: these are not retained forever, use a separate uploader?
2546 void *map =
2547 upload_state(ice->state.surface_uploader,
2548 &shs->ssbo_surface_state[start_slot + i],
2549 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2550 if (!unlikely(map)) {
2551 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2552 return;
2553 }
2554
2555 struct iris_bo *surf_state_bo =
2556 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2557 shs->ssbo_surface_state[start_slot + i].offset +=
2558 iris_bo_offset_from_base_address(surf_state_bo);
2559
2560 isl_buffer_fill_state(&screen->isl_dev, map,
2561 .address =
2562 res->bo->gtt_offset + buffer->buffer_offset,
2563 .size_B =
2564 MIN2(buffer->buffer_size,
2565 res->bo->size - buffer->buffer_offset),
2566 .format = ISL_FORMAT_RAW,
2567 .swizzle = ISL_SWIZZLE_IDENTITY,
2568 .stride_B = 1,
2569 .mocs = mocs(res->bo));
2570 } else {
2571 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2572 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2573 NULL);
2574 }
2575 }
2576
2577 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2578 }
2579
2580 static void
2581 iris_delete_state(struct pipe_context *ctx, void *state)
2582 {
2583 free(state);
2584 }
2585
2586 /**
2587 * The pipe->set_vertex_buffers() driver hook.
2588 *
2589 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2590 */
2591 static void
2592 iris_set_vertex_buffers(struct pipe_context *ctx,
2593 unsigned start_slot, unsigned count,
2594 const struct pipe_vertex_buffer *buffers)
2595 {
2596 struct iris_context *ice = (struct iris_context *) ctx;
2597 struct iris_genx_state *genx = ice->state.genx;
2598
2599 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2600
2601 for (unsigned i = 0; i < count; i++) {
2602 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2603 struct iris_vertex_buffer_state *state =
2604 &genx->vertex_buffers[start_slot + i];
2605
2606 if (!buffer) {
2607 pipe_resource_reference(&state->resource, NULL);
2608 continue;
2609 }
2610
2611 assert(!buffer->is_user_buffer);
2612
2613 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2614 struct iris_resource *res = (void *) state->resource;
2615
2616 if (res) {
2617 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2618 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2619 }
2620
2621 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2622 vb.VertexBufferIndex = start_slot + i;
2623 vb.AddressModifyEnable = true;
2624 vb.BufferPitch = buffer->stride;
2625 if (res) {
2626 vb.BufferSize = res->bo->size;
2627 vb.BufferStartingAddress =
2628 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2629 vb.MOCS = mocs(res->bo);
2630 } else {
2631 vb.NullVertexBuffer = true;
2632 }
2633 }
2634 }
2635
2636 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2637 }
2638
2639 /**
2640 * Gallium CSO for vertex elements.
2641 */
2642 struct iris_vertex_element_state {
2643 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2644 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2645 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2646 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2647 unsigned count;
2648 };
2649
2650 /**
2651 * The pipe->create_vertex_elements() driver hook.
2652 *
2653 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2654 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2655 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2656 * needed. In these cases we will need information available at draw time.
2657 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2658 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2659 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2660 */
2661 static void *
2662 iris_create_vertex_elements(struct pipe_context *ctx,
2663 unsigned count,
2664 const struct pipe_vertex_element *state)
2665 {
2666 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2667 const struct gen_device_info *devinfo = &screen->devinfo;
2668 struct iris_vertex_element_state *cso =
2669 malloc(sizeof(struct iris_vertex_element_state));
2670
2671 cso->count = count;
2672
2673 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2674 ve.DWordLength =
2675 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2676 }
2677
2678 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2679 uint32_t *vfi_pack_dest = cso->vf_instancing;
2680
2681 if (count == 0) {
2682 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2683 ve.Valid = true;
2684 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2685 ve.Component0Control = VFCOMP_STORE_0;
2686 ve.Component1Control = VFCOMP_STORE_0;
2687 ve.Component2Control = VFCOMP_STORE_0;
2688 ve.Component3Control = VFCOMP_STORE_1_FP;
2689 }
2690
2691 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2692 }
2693 }
2694
2695 for (int i = 0; i < count; i++) {
2696 const struct iris_format_info fmt =
2697 iris_format_for_usage(devinfo, state[i].src_format, 0);
2698 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2699 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2700
2701 switch (isl_format_get_num_channels(fmt.fmt)) {
2702 case 0: comp[0] = VFCOMP_STORE_0;
2703 case 1: comp[1] = VFCOMP_STORE_0;
2704 case 2: comp[2] = VFCOMP_STORE_0;
2705 case 3:
2706 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2707 : VFCOMP_STORE_1_FP;
2708 break;
2709 }
2710 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2711 ve.EdgeFlagEnable = false;
2712 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2713 ve.Valid = true;
2714 ve.SourceElementOffset = state[i].src_offset;
2715 ve.SourceElementFormat = fmt.fmt;
2716 ve.Component0Control = comp[0];
2717 ve.Component1Control = comp[1];
2718 ve.Component2Control = comp[2];
2719 ve.Component3Control = comp[3];
2720 }
2721
2722 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2723 vi.VertexElementIndex = i;
2724 vi.InstancingEnable = state[i].instance_divisor > 0;
2725 vi.InstanceDataStepRate = state[i].instance_divisor;
2726 }
2727
2728 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2729 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2730 }
2731
2732 /* An alternative version of the last VE and VFI is stored so it
2733 * can be used at draw time in case Vertex Shader uses EdgeFlag
2734 */
2735 if (count) {
2736 const unsigned edgeflag_index = count - 1;
2737 const struct iris_format_info fmt =
2738 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
2739 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
2740 ve.EdgeFlagEnable = true ;
2741 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
2742 ve.Valid = true;
2743 ve.SourceElementOffset = state[edgeflag_index].src_offset;
2744 ve.SourceElementFormat = fmt.fmt;
2745 ve.Component0Control = VFCOMP_STORE_SRC;
2746 ve.Component1Control = VFCOMP_STORE_0;
2747 ve.Component2Control = VFCOMP_STORE_0;
2748 ve.Component3Control = VFCOMP_STORE_0;
2749 }
2750 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
2751 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
2752 * at draw time, as it should change if SGVs are emitted.
2753 */
2754 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
2755 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
2756 }
2757 }
2758
2759 return cso;
2760 }
2761
2762 /**
2763 * The pipe->bind_vertex_elements_state() driver hook.
2764 */
2765 static void
2766 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2767 {
2768 struct iris_context *ice = (struct iris_context *) ctx;
2769 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2770 struct iris_vertex_element_state *new_cso = state;
2771
2772 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2773 * we need to re-emit it to ensure we're overriding the right one.
2774 */
2775 if (new_cso && cso_changed(count))
2776 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2777
2778 ice->state.cso_vertex_elements = state;
2779 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2780 }
2781
2782 /**
2783 * The pipe->create_stream_output_target() driver hook.
2784 *
2785 * "Target" here refers to a destination buffer. We translate this into
2786 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2787 * know which buffer this represents, or whether we ought to zero the
2788 * write-offsets, or append. Those are handled in the set() hook.
2789 */
2790 static struct pipe_stream_output_target *
2791 iris_create_stream_output_target(struct pipe_context *ctx,
2792 struct pipe_resource *p_res,
2793 unsigned buffer_offset,
2794 unsigned buffer_size)
2795 {
2796 struct iris_resource *res = (void *) p_res;
2797 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2798 if (!cso)
2799 return NULL;
2800
2801 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2802
2803 pipe_reference_init(&cso->base.reference, 1);
2804 pipe_resource_reference(&cso->base.buffer, p_res);
2805 cso->base.buffer_offset = buffer_offset;
2806 cso->base.buffer_size = buffer_size;
2807 cso->base.context = ctx;
2808
2809 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2810
2811 return &cso->base;
2812 }
2813
2814 static void
2815 iris_stream_output_target_destroy(struct pipe_context *ctx,
2816 struct pipe_stream_output_target *state)
2817 {
2818 struct iris_stream_output_target *cso = (void *) state;
2819
2820 pipe_resource_reference(&cso->base.buffer, NULL);
2821 pipe_resource_reference(&cso->offset.res, NULL);
2822
2823 free(cso);
2824 }
2825
2826 /**
2827 * The pipe->set_stream_output_targets() driver hook.
2828 *
2829 * At this point, we know which targets are bound to a particular index,
2830 * and also whether we want to append or start over. We can finish the
2831 * 3DSTATE_SO_BUFFER packets we started earlier.
2832 */
2833 static void
2834 iris_set_stream_output_targets(struct pipe_context *ctx,
2835 unsigned num_targets,
2836 struct pipe_stream_output_target **targets,
2837 const unsigned *offsets)
2838 {
2839 struct iris_context *ice = (struct iris_context *) ctx;
2840 struct iris_genx_state *genx = ice->state.genx;
2841 uint32_t *so_buffers = genx->so_buffers;
2842
2843 const bool active = num_targets > 0;
2844 if (ice->state.streamout_active != active) {
2845 ice->state.streamout_active = active;
2846 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2847
2848 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2849 * it's a non-pipelined command. If we're switching streamout on, we
2850 * may have missed emitting it earlier, so do so now. (We're already
2851 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2852 */
2853 if (active)
2854 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2855 }
2856
2857 for (int i = 0; i < 4; i++) {
2858 pipe_so_target_reference(&ice->state.so_target[i],
2859 i < num_targets ? targets[i] : NULL);
2860 }
2861
2862 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2863 if (!active)
2864 return;
2865
2866 for (unsigned i = 0; i < 4; i++,
2867 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2868
2869 if (i >= num_targets || !targets[i]) {
2870 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2871 sob.SOBufferIndex = i;
2872 continue;
2873 }
2874
2875 struct iris_stream_output_target *tgt = (void *) targets[i];
2876 struct iris_resource *res = (void *) tgt->base.buffer;
2877
2878 /* Note that offsets[i] will either be 0, causing us to zero
2879 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2880 * "continue appending at the existing offset."
2881 */
2882 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2883
2884 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2885 sob.SurfaceBaseAddress =
2886 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2887 sob.SOBufferEnable = true;
2888 sob.StreamOffsetWriteEnable = true;
2889 sob.StreamOutputBufferOffsetAddressEnable = true;
2890 sob.MOCS = mocs(res->bo);
2891
2892 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2893
2894 sob.SOBufferIndex = i;
2895 sob.StreamOffset = offsets[i];
2896 sob.StreamOutputBufferOffsetAddress =
2897 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2898 tgt->offset.offset);
2899 }
2900 }
2901
2902 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2903 }
2904
2905 /**
2906 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2907 * 3DSTATE_STREAMOUT packets.
2908 *
2909 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2910 * hardware to record. We can create it entirely based on the shader, with
2911 * no dynamic state dependencies.
2912 *
2913 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2914 * state-based settings. We capture the shader-related ones here, and merge
2915 * the rest in at draw time.
2916 */
2917 static uint32_t *
2918 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2919 const struct brw_vue_map *vue_map)
2920 {
2921 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2922 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2923 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2924 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2925 int max_decls = 0;
2926 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2927
2928 memset(so_decl, 0, sizeof(so_decl));
2929
2930 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2931 * command feels strange -- each dword pair contains a SO_DECL per stream.
2932 */
2933 for (unsigned i = 0; i < info->num_outputs; i++) {
2934 const struct pipe_stream_output *output = &info->output[i];
2935 const int buffer = output->output_buffer;
2936 const int varying = output->register_index;
2937 const unsigned stream_id = output->stream;
2938 assert(stream_id < MAX_VERTEX_STREAMS);
2939
2940 buffer_mask[stream_id] |= 1 << buffer;
2941
2942 assert(vue_map->varying_to_slot[varying] >= 0);
2943
2944 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2945 * array. Instead, it simply increments DstOffset for the following
2946 * input by the number of components that should be skipped.
2947 *
2948 * Our hardware is unusual in that it requires us to program SO_DECLs
2949 * for fake "hole" components, rather than simply taking the offset
2950 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2951 * program as many size = 4 holes as we can, then a final hole to
2952 * accommodate the final 1, 2, or 3 remaining.
2953 */
2954 int skip_components = output->dst_offset - next_offset[buffer];
2955
2956 while (skip_components > 0) {
2957 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2958 .HoleFlag = 1,
2959 .OutputBufferSlot = output->output_buffer,
2960 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2961 };
2962 skip_components -= 4;
2963 }
2964
2965 next_offset[buffer] = output->dst_offset + output->num_components;
2966
2967 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2968 .OutputBufferSlot = output->output_buffer,
2969 .RegisterIndex = vue_map->varying_to_slot[varying],
2970 .ComponentMask =
2971 ((1 << output->num_components) - 1) << output->start_component,
2972 };
2973
2974 if (decls[stream_id] > max_decls)
2975 max_decls = decls[stream_id];
2976 }
2977
2978 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2979 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2980 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2981
2982 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2983 int urb_entry_read_offset = 0;
2984 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2985 urb_entry_read_offset;
2986
2987 /* We always read the whole vertex. This could be reduced at some
2988 * point by reading less and offsetting the register index in the
2989 * SO_DECLs.
2990 */
2991 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2992 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2993 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2994 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2995 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2996 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2997 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2998 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2999
3000 /* Set buffer pitches; 0 means unbound. */
3001 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3002 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3003 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3004 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3005 }
3006
3007 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3008 list.DWordLength = 3 + 2 * max_decls - 2;
3009 list.StreamtoBufferSelects0 = buffer_mask[0];
3010 list.StreamtoBufferSelects1 = buffer_mask[1];
3011 list.StreamtoBufferSelects2 = buffer_mask[2];
3012 list.StreamtoBufferSelects3 = buffer_mask[3];
3013 list.NumEntries0 = decls[0];
3014 list.NumEntries1 = decls[1];
3015 list.NumEntries2 = decls[2];
3016 list.NumEntries3 = decls[3];
3017 }
3018
3019 for (int i = 0; i < max_decls; i++) {
3020 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3021 entry.Stream0Decl = so_decl[0][i];
3022 entry.Stream1Decl = so_decl[1][i];
3023 entry.Stream2Decl = so_decl[2][i];
3024 entry.Stream3Decl = so_decl[3][i];
3025 }
3026 }
3027
3028 return map;
3029 }
3030
3031 static void
3032 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3033 const struct brw_vue_map *last_vue_map,
3034 bool two_sided_color,
3035 unsigned *out_offset,
3036 unsigned *out_length)
3037 {
3038 /* The compiler computes the first URB slot without considering COL/BFC
3039 * swizzling (because it doesn't know whether it's enabled), so we need
3040 * to do that here too. This may result in a smaller offset, which
3041 * should be safe.
3042 */
3043 const unsigned first_slot =
3044 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3045
3046 /* This becomes the URB read offset (counted in pairs of slots). */
3047 assert(first_slot % 2 == 0);
3048 *out_offset = first_slot / 2;
3049
3050 /* We need to adjust the inputs read to account for front/back color
3051 * swizzling, as it can make the URB length longer.
3052 */
3053 for (int c = 0; c <= 1; c++) {
3054 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3055 /* If two sided color is enabled, the fragment shader's gl_Color
3056 * (COL0) input comes from either the gl_FrontColor (COL0) or
3057 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3058 */
3059 if (two_sided_color)
3060 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3061
3062 /* If front color isn't written, we opt to give them back color
3063 * instead of an undefined value. Switch from COL to BFC.
3064 */
3065 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3066 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3067 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3068 }
3069 }
3070 }
3071
3072 /* Compute the minimum URB Read Length necessary for the FS inputs.
3073 *
3074 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3075 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3076 *
3077 * "This field should be set to the minimum length required to read the
3078 * maximum source attribute. The maximum source attribute is indicated
3079 * by the maximum value of the enabled Attribute # Source Attribute if
3080 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3081 * enable is not set.
3082 * read_length = ceiling((max_source_attr + 1) / 2)
3083 *
3084 * [errata] Corruption/Hang possible if length programmed larger than
3085 * recommended"
3086 *
3087 * Similar text exists for Ivy Bridge.
3088 *
3089 * We find the last URB slot that's actually read by the FS.
3090 */
3091 unsigned last_read_slot = last_vue_map->num_slots - 1;
3092 while (last_read_slot > first_slot && !(fs_input_slots &
3093 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3094 --last_read_slot;
3095
3096 /* The URB read length is the difference of the two, counted in pairs. */
3097 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3098 }
3099
3100 static void
3101 iris_emit_sbe_swiz(struct iris_batch *batch,
3102 const struct iris_context *ice,
3103 unsigned urb_read_offset,
3104 unsigned sprite_coord_enables)
3105 {
3106 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3107 const struct brw_wm_prog_data *wm_prog_data = (void *)
3108 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3109 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3110 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3111
3112 /* XXX: this should be generated when putting programs in place */
3113
3114 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3115 const int input_index = wm_prog_data->urb_setup[fs_attr];
3116 if (input_index < 0 || input_index >= 16)
3117 continue;
3118
3119 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3120 &attr_overrides[input_index];
3121 int slot = vue_map->varying_to_slot[fs_attr];
3122
3123 /* Viewport and Layer are stored in the VUE header. We need to override
3124 * them to zero if earlier stages didn't write them, as GL requires that
3125 * they read back as zero when not explicitly set.
3126 */
3127 switch (fs_attr) {
3128 case VARYING_SLOT_VIEWPORT:
3129 case VARYING_SLOT_LAYER:
3130 attr->ComponentOverrideX = true;
3131 attr->ComponentOverrideW = true;
3132 attr->ConstantSource = CONST_0000;
3133
3134 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3135 attr->ComponentOverrideY = true;
3136 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3137 attr->ComponentOverrideZ = true;
3138 continue;
3139
3140 case VARYING_SLOT_PRIMITIVE_ID:
3141 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3142 if (slot == -1) {
3143 attr->ComponentOverrideX = true;
3144 attr->ComponentOverrideY = true;
3145 attr->ComponentOverrideZ = true;
3146 attr->ComponentOverrideW = true;
3147 attr->ConstantSource = PRIM_ID;
3148 continue;
3149 }
3150
3151 default:
3152 break;
3153 }
3154
3155 if (sprite_coord_enables & (1 << input_index))
3156 continue;
3157
3158 /* If there was only a back color written but not front, use back
3159 * as the color instead of undefined.
3160 */
3161 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3162 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3163 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3164 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3165
3166 /* Not written by the previous stage - undefined. */
3167 if (slot == -1) {
3168 attr->ComponentOverrideX = true;
3169 attr->ComponentOverrideY = true;
3170 attr->ComponentOverrideZ = true;
3171 attr->ComponentOverrideW = true;
3172 attr->ConstantSource = CONST_0001_FLOAT;
3173 continue;
3174 }
3175
3176 /* Compute the location of the attribute relative to the read offset,
3177 * which is counted in 256-bit increments (two 128-bit VUE slots).
3178 */
3179 const int source_attr = slot - 2 * urb_read_offset;
3180 assert(source_attr >= 0 && source_attr <= 32);
3181 attr->SourceAttribute = source_attr;
3182
3183 /* If we are doing two-sided color, and the VUE slot following this one
3184 * represents a back-facing color, then we need to instruct the SF unit
3185 * to do back-facing swizzling.
3186 */
3187 if (cso_rast->light_twoside &&
3188 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3189 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3190 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3191 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3192 attr->SwizzleSelect = INPUTATTR_FACING;
3193 }
3194
3195 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3196 for (int i = 0; i < 16; i++)
3197 sbes.Attribute[i] = attr_overrides[i];
3198 }
3199 }
3200
3201 static unsigned
3202 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3203 const struct iris_rasterizer_state *cso)
3204 {
3205 unsigned overrides = 0;
3206
3207 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3208 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3209
3210 for (int i = 0; i < 8; i++) {
3211 if ((cso->sprite_coord_enable & (1 << i)) &&
3212 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3213 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3214 }
3215
3216 return overrides;
3217 }
3218
3219 static void
3220 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3221 {
3222 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3223 const struct brw_wm_prog_data *wm_prog_data = (void *)
3224 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3225 const struct shader_info *fs_info =
3226 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3227
3228 unsigned urb_read_offset, urb_read_length;
3229 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3230 ice->shaders.last_vue_map,
3231 cso_rast->light_twoside,
3232 &urb_read_offset, &urb_read_length);
3233
3234 unsigned sprite_coord_overrides =
3235 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3236
3237 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3238 sbe.AttributeSwizzleEnable = true;
3239 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3240 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3241 sbe.VertexURBEntryReadOffset = urb_read_offset;
3242 sbe.VertexURBEntryReadLength = urb_read_length;
3243 sbe.ForceVertexURBEntryReadOffset = true;
3244 sbe.ForceVertexURBEntryReadLength = true;
3245 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3246 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3247 #if GEN_GEN >= 9
3248 for (int i = 0; i < 32; i++) {
3249 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3250 }
3251 #endif
3252 }
3253
3254 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3255 }
3256
3257 /* ------------------------------------------------------------------- */
3258
3259 /**
3260 * Populate VS program key fields based on the current state.
3261 */
3262 static void
3263 iris_populate_vs_key(const struct iris_context *ice,
3264 const struct shader_info *info,
3265 struct brw_vs_prog_key *key)
3266 {
3267 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3268
3269 if (info->clip_distance_array_size == 0 &&
3270 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3271 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3272 }
3273
3274 /**
3275 * Populate TCS program key fields based on the current state.
3276 */
3277 static void
3278 iris_populate_tcs_key(const struct iris_context *ice,
3279 struct brw_tcs_prog_key *key)
3280 {
3281 }
3282
3283 /**
3284 * Populate TES program key fields based on the current state.
3285 */
3286 static void
3287 iris_populate_tes_key(const struct iris_context *ice,
3288 struct brw_tes_prog_key *key)
3289 {
3290 }
3291
3292 /**
3293 * Populate GS program key fields based on the current state.
3294 */
3295 static void
3296 iris_populate_gs_key(const struct iris_context *ice,
3297 struct brw_gs_prog_key *key)
3298 {
3299 }
3300
3301 /**
3302 * Populate FS program key fields based on the current state.
3303 */
3304 static void
3305 iris_populate_fs_key(const struct iris_context *ice,
3306 struct brw_wm_prog_key *key)
3307 {
3308 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3309 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3310 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3311 const struct iris_blend_state *blend = ice->state.cso_blend;
3312
3313 key->nr_color_regions = fb->nr_cbufs;
3314
3315 key->clamp_fragment_color = rast->clamp_fragment_color;
3316
3317 key->replicate_alpha = fb->nr_cbufs > 1 &&
3318 (zsa->alpha.enabled || blend->alpha_to_coverage);
3319
3320 /* XXX: only bother if COL0/1 are read */
3321 key->flat_shade = rast->flatshade;
3322
3323 key->persample_interp = rast->force_persample_interp;
3324 key->multisample_fbo = rast->multisample && fb->samples > 1;
3325
3326 key->coherent_fb_fetch = true;
3327
3328 /* TODO: support key->force_dual_color_blend for Unigine */
3329 /* TODO: Respect glHint for key->high_quality_derivatives */
3330 }
3331
3332 static void
3333 iris_populate_cs_key(const struct iris_context *ice,
3334 struct brw_cs_prog_key *key)
3335 {
3336 }
3337
3338 static uint64_t
3339 KSP(const struct iris_compiled_shader *shader)
3340 {
3341 struct iris_resource *res = (void *) shader->assembly.res;
3342 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3343 }
3344
3345 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3346 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3347 * this WA on C0 stepping.
3348 *
3349 * TODO: Fill out SamplerCount for prefetching?
3350 */
3351
3352 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3353 pkt.KernelStartPointer = KSP(shader); \
3354 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3355 prog_data->binding_table.size_bytes / 4; \
3356 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3357 \
3358 pkt.DispatchGRFStartRegisterForURBData = \
3359 prog_data->dispatch_grf_start_reg; \
3360 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3361 pkt.prefix##URBEntryReadOffset = 0; \
3362 \
3363 pkt.StatisticsEnable = true; \
3364 pkt.Enable = true; \
3365 \
3366 if (prog_data->total_scratch) { \
3367 struct iris_bo *bo = \
3368 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3369 uint32_t scratch_addr = bo->gtt_offset; \
3370 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3371 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3372 }
3373
3374 /**
3375 * Encode most of 3DSTATE_VS based on the compiled shader.
3376 */
3377 static void
3378 iris_store_vs_state(struct iris_context *ice,
3379 const struct gen_device_info *devinfo,
3380 struct iris_compiled_shader *shader)
3381 {
3382 struct brw_stage_prog_data *prog_data = shader->prog_data;
3383 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3384
3385 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3386 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3387 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3388 vs.SIMD8DispatchEnable = true;
3389 vs.UserClipDistanceCullTestEnableBitmask =
3390 vue_prog_data->cull_distance_mask;
3391 }
3392 }
3393
3394 /**
3395 * Encode most of 3DSTATE_HS based on the compiled shader.
3396 */
3397 static void
3398 iris_store_tcs_state(struct iris_context *ice,
3399 const struct gen_device_info *devinfo,
3400 struct iris_compiled_shader *shader)
3401 {
3402 struct brw_stage_prog_data *prog_data = shader->prog_data;
3403 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3404 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3405
3406 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3407 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3408
3409 hs.InstanceCount = tcs_prog_data->instances - 1;
3410 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3411 hs.IncludeVertexHandles = true;
3412 }
3413 }
3414
3415 /**
3416 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3417 */
3418 static void
3419 iris_store_tes_state(struct iris_context *ice,
3420 const struct gen_device_info *devinfo,
3421 struct iris_compiled_shader *shader)
3422 {
3423 struct brw_stage_prog_data *prog_data = shader->prog_data;
3424 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3425 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3426
3427 uint32_t *te_state = (void *) shader->derived_data;
3428 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3429
3430 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3431 te.Partitioning = tes_prog_data->partitioning;
3432 te.OutputTopology = tes_prog_data->output_topology;
3433 te.TEDomain = tes_prog_data->domain;
3434 te.TEEnable = true;
3435 te.MaximumTessellationFactorOdd = 63.0;
3436 te.MaximumTessellationFactorNotOdd = 64.0;
3437 }
3438
3439 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3440 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3441
3442 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3443 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3444 ds.ComputeWCoordinateEnable =
3445 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3446
3447 ds.UserClipDistanceCullTestEnableBitmask =
3448 vue_prog_data->cull_distance_mask;
3449 }
3450
3451 }
3452
3453 /**
3454 * Encode most of 3DSTATE_GS based on the compiled shader.
3455 */
3456 static void
3457 iris_store_gs_state(struct iris_context *ice,
3458 const struct gen_device_info *devinfo,
3459 struct iris_compiled_shader *shader)
3460 {
3461 struct brw_stage_prog_data *prog_data = shader->prog_data;
3462 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3463 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3464
3465 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3466 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3467
3468 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3469 gs.OutputTopology = gs_prog_data->output_topology;
3470 gs.ControlDataHeaderSize =
3471 gs_prog_data->control_data_header_size_hwords;
3472 gs.InstanceControl = gs_prog_data->invocations - 1;
3473 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3474 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3475 gs.ControlDataFormat = gs_prog_data->control_data_format;
3476 gs.ReorderMode = TRAILING;
3477 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3478 gs.MaximumNumberofThreads =
3479 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3480 : (devinfo->max_gs_threads - 1);
3481
3482 if (gs_prog_data->static_vertex_count != -1) {
3483 gs.StaticOutput = true;
3484 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3485 }
3486 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3487
3488 gs.UserClipDistanceCullTestEnableBitmask =
3489 vue_prog_data->cull_distance_mask;
3490
3491 const int urb_entry_write_offset = 1;
3492 const uint32_t urb_entry_output_length =
3493 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3494 urb_entry_write_offset;
3495
3496 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3497 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3498 }
3499 }
3500
3501 /**
3502 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3503 */
3504 static void
3505 iris_store_fs_state(struct iris_context *ice,
3506 const struct gen_device_info *devinfo,
3507 struct iris_compiled_shader *shader)
3508 {
3509 struct brw_stage_prog_data *prog_data = shader->prog_data;
3510 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3511
3512 uint32_t *ps_state = (void *) shader->derived_data;
3513 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3514
3515 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3516 ps.VectorMaskEnable = true;
3517 // XXX: WABTPPrefetchDisable, see above, drop at C0
3518 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3519 prog_data->binding_table.size_bytes / 4;
3520 ps.FloatingPointMode = prog_data->use_alt_mode;
3521 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3522
3523 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3524
3525 /* From the documentation for this packet:
3526 * "If the PS kernel does not need the Position XY Offsets to
3527 * compute a Position Value, then this field should be programmed
3528 * to POSOFFSET_NONE."
3529 *
3530 * "SW Recommendation: If the PS kernel needs the Position Offsets
3531 * to compute a Position XY value, this field should match Position
3532 * ZW Interpolation Mode to ensure a consistent position.xyzw
3533 * computation."
3534 *
3535 * We only require XY sample offsets. So, this recommendation doesn't
3536 * look useful at the moment. We might need this in future.
3537 */
3538 ps.PositionXYOffsetSelect =
3539 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3540 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3541 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3542 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3543
3544 // XXX: Disable SIMD32 with 16x MSAA
3545
3546 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3547 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3548 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3549 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3550 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3551 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3552
3553 ps.KernelStartPointer0 =
3554 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3555 ps.KernelStartPointer1 =
3556 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3557 ps.KernelStartPointer2 =
3558 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3559
3560 if (prog_data->total_scratch) {
3561 struct iris_bo *bo =
3562 iris_get_scratch_space(ice, prog_data->total_scratch,
3563 MESA_SHADER_FRAGMENT);
3564 uint32_t scratch_addr = bo->gtt_offset;
3565 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3566 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3567 }
3568 }
3569
3570 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3571 psx.PixelShaderValid = true;
3572 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3573 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3574 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3575 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3576 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3577 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3578 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3579
3580 #if GEN_GEN >= 9
3581 if (wm_prog_data->uses_sample_mask) {
3582 /* TODO: conservative rasterization */
3583 if (wm_prog_data->post_depth_coverage)
3584 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3585 else
3586 psx.InputCoverageMaskState = ICMS_NORMAL;
3587 }
3588
3589 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3590 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3591 #else
3592 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3593 #endif
3594 // XXX: UAV bit
3595 }
3596 }
3597
3598 /**
3599 * Compute the size of the derived data (shader command packets).
3600 *
3601 * This must match the data written by the iris_store_xs_state() functions.
3602 */
3603 static void
3604 iris_store_cs_state(struct iris_context *ice,
3605 const struct gen_device_info *devinfo,
3606 struct iris_compiled_shader *shader)
3607 {
3608 struct brw_stage_prog_data *prog_data = shader->prog_data;
3609 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3610 void *map = shader->derived_data;
3611
3612 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3613 desc.KernelStartPointer = KSP(shader);
3614 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3615 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3616 desc.SharedLocalMemorySize =
3617 encode_slm_size(GEN_GEN, prog_data->total_shared);
3618 desc.BarrierEnable = cs_prog_data->uses_barrier;
3619 desc.CrossThreadConstantDataReadLength =
3620 cs_prog_data->push.cross_thread.regs;
3621 }
3622 }
3623
3624 static unsigned
3625 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3626 {
3627 assert(cache_id <= IRIS_CACHE_BLORP);
3628
3629 static const unsigned dwords[] = {
3630 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3631 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3632 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3633 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3634 [IRIS_CACHE_FS] =
3635 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3636 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3637 [IRIS_CACHE_BLORP] = 0,
3638 };
3639
3640 return sizeof(uint32_t) * dwords[cache_id];
3641 }
3642
3643 /**
3644 * Create any state packets corresponding to the given shader stage
3645 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3646 * This means that we can look up a program in the in-memory cache and
3647 * get most of the state packet without having to reconstruct it.
3648 */
3649 static void
3650 iris_store_derived_program_state(struct iris_context *ice,
3651 enum iris_program_cache_id cache_id,
3652 struct iris_compiled_shader *shader)
3653 {
3654 struct iris_screen *screen = (void *) ice->ctx.screen;
3655 const struct gen_device_info *devinfo = &screen->devinfo;
3656
3657 switch (cache_id) {
3658 case IRIS_CACHE_VS:
3659 iris_store_vs_state(ice, devinfo, shader);
3660 break;
3661 case IRIS_CACHE_TCS:
3662 iris_store_tcs_state(ice, devinfo, shader);
3663 break;
3664 case IRIS_CACHE_TES:
3665 iris_store_tes_state(ice, devinfo, shader);
3666 break;
3667 case IRIS_CACHE_GS:
3668 iris_store_gs_state(ice, devinfo, shader);
3669 break;
3670 case IRIS_CACHE_FS:
3671 iris_store_fs_state(ice, devinfo, shader);
3672 break;
3673 case IRIS_CACHE_CS:
3674 iris_store_cs_state(ice, devinfo, shader);
3675 case IRIS_CACHE_BLORP:
3676 break;
3677 default:
3678 break;
3679 }
3680 }
3681
3682 /* ------------------------------------------------------------------- */
3683
3684 static const uint32_t push_constant_opcodes[] = {
3685 [MESA_SHADER_VERTEX] = 21,
3686 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3687 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3688 [MESA_SHADER_GEOMETRY] = 22,
3689 [MESA_SHADER_FRAGMENT] = 23,
3690 [MESA_SHADER_COMPUTE] = 0,
3691 };
3692
3693 static uint32_t
3694 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3695 {
3696 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3697
3698 iris_use_pinned_bo(batch, state_bo, false);
3699
3700 return ice->state.unbound_tex.offset;
3701 }
3702
3703 static uint32_t
3704 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3705 {
3706 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3707 if (!ice->state.null_fb.res)
3708 return use_null_surface(batch, ice);
3709
3710 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3711
3712 iris_use_pinned_bo(batch, state_bo, false);
3713
3714 return ice->state.null_fb.offset;
3715 }
3716
3717 static uint32_t
3718 surf_state_offset_for_aux(struct iris_resource *res,
3719 enum isl_aux_usage aux_usage)
3720 {
3721 return SURFACE_STATE_ALIGNMENT *
3722 util_bitcount(res->aux.possible_usages & ((1 << aux_usage) - 1));
3723 }
3724
3725 /**
3726 * Add a surface to the validation list, as well as the buffer containing
3727 * the corresponding SURFACE_STATE.
3728 *
3729 * Returns the binding table entry (offset to SURFACE_STATE).
3730 */
3731 static uint32_t
3732 use_surface(struct iris_batch *batch,
3733 struct pipe_surface *p_surf,
3734 bool writeable,
3735 enum isl_aux_usage aux_usage)
3736 {
3737 struct iris_surface *surf = (void *) p_surf;
3738 struct iris_resource *res = (void *) p_surf->texture;
3739
3740 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3741 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3742
3743 if (res->aux.bo)
3744 iris_use_pinned_bo(batch, res->aux.bo, writeable);
3745
3746 return surf->surface_state.offset +
3747 surf_state_offset_for_aux(res, aux_usage);
3748 }
3749
3750 static uint32_t
3751 use_sampler_view(struct iris_context *ice,
3752 struct iris_batch *batch,
3753 struct iris_sampler_view *isv)
3754 {
3755 // XXX: ASTC hacks
3756 enum isl_aux_usage aux_usage =
3757 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
3758
3759 iris_use_pinned_bo(batch, isv->res->bo, false);
3760 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3761
3762 if (isv->res->aux.bo)
3763 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
3764
3765 return isv->surface_state.offset +
3766 surf_state_offset_for_aux(isv->res, aux_usage);
3767 }
3768
3769 static uint32_t
3770 use_const_buffer(struct iris_batch *batch,
3771 struct iris_context *ice,
3772 struct iris_const_buffer *cbuf)
3773 {
3774 if (!cbuf->surface_state.res)
3775 return use_null_surface(batch, ice);
3776
3777 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3778 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3779
3780 return cbuf->surface_state.offset;
3781 }
3782
3783 static uint32_t
3784 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3785 struct iris_shader_state *shs, int i)
3786 {
3787 if (!shs->ssbo[i])
3788 return use_null_surface(batch, ice);
3789
3790 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3791
3792 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3793 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3794
3795 return surf_state->offset;
3796 }
3797
3798 static uint32_t
3799 use_image(struct iris_batch *batch, struct iris_context *ice,
3800 struct iris_shader_state *shs, int i)
3801 {
3802 if (!shs->image[i].res)
3803 return use_null_surface(batch, ice);
3804
3805 struct iris_resource *res = (void *) shs->image[i].res;
3806 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3807 bool write = shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE;
3808
3809 iris_use_pinned_bo(batch, res->bo, write);
3810 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3811
3812 if (res->aux.bo)
3813 iris_use_pinned_bo(batch, res->aux.bo, write);
3814
3815 return surf_state->offset;
3816 }
3817
3818 #define push_bt_entry(addr) \
3819 assert(addr >= binder_addr); \
3820 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3821 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3822
3823 #define bt_assert(section, exists) \
3824 if (!pin_only) assert(prog_data->binding_table.section == \
3825 (exists) ? s : 0xd0d0d0d0)
3826
3827 /**
3828 * Populate the binding table for a given shader stage.
3829 *
3830 * This fills out the table of pointers to surfaces required by the shader,
3831 * and also adds those buffers to the validation list so the kernel can make
3832 * resident before running our batch.
3833 */
3834 static void
3835 iris_populate_binding_table(struct iris_context *ice,
3836 struct iris_batch *batch,
3837 gl_shader_stage stage,
3838 bool pin_only)
3839 {
3840 const struct iris_binder *binder = &ice->state.binder;
3841 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3842 if (!shader)
3843 return;
3844
3845 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3846 struct iris_shader_state *shs = &ice->state.shaders[stage];
3847 uint32_t binder_addr = binder->bo->gtt_offset;
3848
3849 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3850 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3851 int s = 0;
3852
3853 const struct shader_info *info = iris_get_shader_info(ice, stage);
3854 if (!info) {
3855 /* TCS passthrough doesn't need a binding table. */
3856 assert(stage == MESA_SHADER_TESS_CTRL);
3857 return;
3858 }
3859
3860 if (stage == MESA_SHADER_COMPUTE) {
3861 /* surface for gl_NumWorkGroups */
3862 struct iris_state_ref *grid_data = &ice->state.grid_size;
3863 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3864 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3865 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3866 push_bt_entry(grid_state->offset);
3867 }
3868
3869 if (stage == MESA_SHADER_FRAGMENT) {
3870 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3871 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3872 if (cso_fb->nr_cbufs) {
3873 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3874 uint32_t addr;
3875 if (cso_fb->cbufs[i]) {
3876 addr = use_surface(batch, cso_fb->cbufs[i], true,
3877 ice->state.draw_aux_usage[i]);
3878 } else {
3879 addr = use_null_fb_surface(batch, ice);
3880 }
3881 push_bt_entry(addr);
3882 }
3883 } else {
3884 uint32_t addr = use_null_fb_surface(batch, ice);
3885 push_bt_entry(addr);
3886 }
3887 }
3888
3889 unsigned num_textures = util_last_bit(info->textures_used);
3890
3891 bt_assert(texture_start, num_textures > 0);
3892
3893 for (int i = 0; i < num_textures; i++) {
3894 struct iris_sampler_view *view = shs->textures[i];
3895 uint32_t addr = view ? use_sampler_view(ice, batch, view)
3896 : use_null_surface(batch, ice);
3897 push_bt_entry(addr);
3898 }
3899
3900 bt_assert(image_start, info->num_images > 0);
3901
3902 for (int i = 0; i < info->num_images; i++) {
3903 uint32_t addr = use_image(batch, ice, shs, i);
3904 push_bt_entry(addr);
3905 }
3906
3907 bt_assert(ubo_start, shader->num_cbufs > 0);
3908
3909 for (int i = 0; i < shader->num_cbufs; i++) {
3910 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3911 push_bt_entry(addr);
3912 }
3913
3914 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
3915
3916 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3917 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3918 * in st_atom_storagebuf.c so it'll compact them into one range, with
3919 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3920 */
3921 if (info->num_abos + info->num_ssbos > 0) {
3922 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3923 uint32_t addr = use_ssbo(batch, ice, shs, i);
3924 push_bt_entry(addr);
3925 }
3926 }
3927
3928 #if 0
3929 /* XXX: YUV surfaces not implemented yet */
3930 bt_assert(plane_start[1], ...);
3931 bt_assert(plane_start[2], ...);
3932 #endif
3933 }
3934
3935 static void
3936 iris_use_optional_res(struct iris_batch *batch,
3937 struct pipe_resource *res,
3938 bool writeable)
3939 {
3940 if (res) {
3941 struct iris_bo *bo = iris_resource_bo(res);
3942 iris_use_pinned_bo(batch, bo, writeable);
3943 }
3944 }
3945
3946 /* ------------------------------------------------------------------- */
3947
3948 /**
3949 * Pin any BOs which were installed by a previous batch, and restored
3950 * via the hardware logical context mechanism.
3951 *
3952 * We don't need to re-emit all state every batch - the hardware context
3953 * mechanism will save and restore it for us. This includes pointers to
3954 * various BOs...which won't exist unless we ask the kernel to pin them
3955 * by adding them to the validation list.
3956 *
3957 * We can skip buffers if we've re-emitted those packets, as we're
3958 * overwriting those stale pointers with new ones, and don't actually
3959 * refer to the old BOs.
3960 */
3961 static void
3962 iris_restore_render_saved_bos(struct iris_context *ice,
3963 struct iris_batch *batch,
3964 const struct pipe_draw_info *draw)
3965 {
3966 struct iris_genx_state *genx = ice->state.genx;
3967
3968 const uint64_t clean = ~ice->state.dirty;
3969
3970 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3971 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3972 }
3973
3974 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3975 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3976 }
3977
3978 if (clean & IRIS_DIRTY_BLEND_STATE) {
3979 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3980 }
3981
3982 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3983 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3984 }
3985
3986 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3987 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3988 }
3989
3990 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
3991 for (int i = 0; i < 4; i++) {
3992 struct iris_stream_output_target *tgt =
3993 (void *) ice->state.so_target[i];
3994 if (tgt) {
3995 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
3996 true);
3997 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
3998 true);
3999 }
4000 }
4001 }
4002
4003 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4004 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4005 continue;
4006
4007 struct iris_shader_state *shs = &ice->state.shaders[stage];
4008 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4009
4010 if (!shader)
4011 continue;
4012
4013 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4014
4015 for (int i = 0; i < 4; i++) {
4016 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4017
4018 if (range->length == 0)
4019 continue;
4020
4021 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4022 struct iris_resource *res = (void *) cbuf->data.res;
4023
4024 if (res)
4025 iris_use_pinned_bo(batch, res->bo, false);
4026 else
4027 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4028 }
4029 }
4030
4031 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4032 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4033 /* Re-pin any buffers referred to by the binding table. */
4034 iris_populate_binding_table(ice, batch, stage, true);
4035 }
4036 }
4037
4038 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4039 struct iris_shader_state *shs = &ice->state.shaders[stage];
4040 struct pipe_resource *res = shs->sampler_table.res;
4041 if (res)
4042 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4043 }
4044
4045 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4046 if (clean & (IRIS_DIRTY_VS << stage)) {
4047 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4048
4049 if (shader) {
4050 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4051 iris_use_pinned_bo(batch, bo, false);
4052
4053 struct brw_stage_prog_data *prog_data = shader->prog_data;
4054
4055 if (prog_data->total_scratch > 0) {
4056 struct iris_bo *bo =
4057 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4058 iris_use_pinned_bo(batch, bo, true);
4059 }
4060 }
4061 }
4062 }
4063
4064 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
4065 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4066
4067 if (cso_fb->zsbuf) {
4068 struct iris_resource *zres, *sres;
4069 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4070 &zres, &sres);
4071 if (zres) {
4072 iris_cache_flush_for_depth(batch, zres->bo);
4073
4074 iris_use_pinned_bo(batch, zres->bo,
4075 ice->state.depth_writes_enabled);
4076 if (zres->aux.bo) {
4077 iris_use_pinned_bo(batch, zres->aux.bo,
4078 ice->state.depth_writes_enabled);
4079 }
4080 }
4081
4082 if (sres) {
4083 iris_cache_flush_for_depth(batch, sres->bo);
4084
4085 iris_use_pinned_bo(batch, sres->bo,
4086 ice->state.stencil_writes_enabled);
4087 }
4088 }
4089 }
4090
4091 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
4092 /* This draw didn't emit a new index buffer, so we are inheriting the
4093 * older index buffer. This draw didn't need it, but future ones may.
4094 */
4095 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4096 iris_use_pinned_bo(batch, bo, false);
4097 }
4098
4099 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4100 uint64_t bound = ice->state.bound_vertex_buffers;
4101 while (bound) {
4102 const int i = u_bit_scan64(&bound);
4103 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4104 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4105 }
4106 }
4107 }
4108
4109 static void
4110 iris_restore_compute_saved_bos(struct iris_context *ice,
4111 struct iris_batch *batch,
4112 const struct pipe_grid_info *grid)
4113 {
4114 const uint64_t clean = ~ice->state.dirty;
4115
4116 const int stage = MESA_SHADER_COMPUTE;
4117 struct iris_shader_state *shs = &ice->state.shaders[stage];
4118
4119 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
4120 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4121
4122 if (shader) {
4123 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4124 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
4125
4126 if (range->length > 0) {
4127 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4128 struct iris_resource *res = (void *) cbuf->data.res;
4129
4130 if (res)
4131 iris_use_pinned_bo(batch, res->bo, false);
4132 else
4133 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4134 }
4135 }
4136 }
4137
4138 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4139 /* Re-pin any buffers referred to by the binding table. */
4140 iris_populate_binding_table(ice, batch, stage, true);
4141 }
4142
4143 struct pipe_resource *sampler_res = shs->sampler_table.res;
4144 if (sampler_res)
4145 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4146
4147 if (clean & IRIS_DIRTY_CS) {
4148 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4149
4150 if (shader) {
4151 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4152 iris_use_pinned_bo(batch, bo, false);
4153
4154 struct brw_stage_prog_data *prog_data = shader->prog_data;
4155
4156 if (prog_data->total_scratch > 0) {
4157 struct iris_bo *bo =
4158 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4159 iris_use_pinned_bo(batch, bo, true);
4160 }
4161 }
4162 }
4163 }
4164
4165 /**
4166 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4167 */
4168 static void
4169 iris_update_surface_base_address(struct iris_batch *batch,
4170 struct iris_binder *binder)
4171 {
4172 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4173 return;
4174
4175 flush_for_state_base_change(batch);
4176
4177 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4178 sba.SurfaceStateMOCS = MOCS_WB;
4179 sba.SurfaceStateBaseAddressModifyEnable = true;
4180 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4181 }
4182
4183 batch->last_surface_base_address = binder->bo->gtt_offset;
4184 }
4185
4186 static void
4187 iris_upload_dirty_render_state(struct iris_context *ice,
4188 struct iris_batch *batch,
4189 const struct pipe_draw_info *draw)
4190 {
4191 const uint64_t dirty = ice->state.dirty;
4192
4193 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4194 return;
4195
4196 struct iris_genx_state *genx = ice->state.genx;
4197 struct iris_binder *binder = &ice->state.binder;
4198 struct brw_wm_prog_data *wm_prog_data = (void *)
4199 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4200
4201 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4202 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4203 uint32_t cc_vp_address;
4204
4205 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4206 uint32_t *cc_vp_map =
4207 stream_state(batch, ice->state.dynamic_uploader,
4208 &ice->state.last_res.cc_vp,
4209 4 * ice->state.num_viewports *
4210 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4211 for (int i = 0; i < ice->state.num_viewports; i++) {
4212 float zmin, zmax;
4213 util_viewport_zmin_zmax(&ice->state.viewports[i],
4214 cso_rast->clip_halfz, &zmin, &zmax);
4215 if (cso_rast->depth_clip_near)
4216 zmin = 0.0;
4217 if (cso_rast->depth_clip_far)
4218 zmax = 1.0;
4219
4220 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4221 ccv.MinimumDepth = zmin;
4222 ccv.MaximumDepth = zmax;
4223 }
4224
4225 cc_vp_map += GENX(CC_VIEWPORT_length);
4226 }
4227
4228 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4229 ptr.CCViewportPointer = cc_vp_address;
4230 }
4231 }
4232
4233 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4234 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4235 uint32_t sf_cl_vp_address;
4236 uint32_t *vp_map =
4237 stream_state(batch, ice->state.dynamic_uploader,
4238 &ice->state.last_res.sf_cl_vp,
4239 4 * ice->state.num_viewports *
4240 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4241
4242 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4243 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4244 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4245
4246 float vp_xmin = viewport_extent(state, 0, -1.0f);
4247 float vp_xmax = viewport_extent(state, 0, 1.0f);
4248 float vp_ymin = viewport_extent(state, 1, -1.0f);
4249 float vp_ymax = viewport_extent(state, 1, 1.0f);
4250
4251 calculate_guardband_size(cso_fb->width, cso_fb->height,
4252 state->scale[0], state->scale[1],
4253 state->translate[0], state->translate[1],
4254 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4255
4256 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4257 vp.ViewportMatrixElementm00 = state->scale[0];
4258 vp.ViewportMatrixElementm11 = state->scale[1];
4259 vp.ViewportMatrixElementm22 = state->scale[2];
4260 vp.ViewportMatrixElementm30 = state->translate[0];
4261 vp.ViewportMatrixElementm31 = state->translate[1];
4262 vp.ViewportMatrixElementm32 = state->translate[2];
4263 vp.XMinClipGuardband = gb_xmin;
4264 vp.XMaxClipGuardband = gb_xmax;
4265 vp.YMinClipGuardband = gb_ymin;
4266 vp.YMaxClipGuardband = gb_ymax;
4267 vp.XMinViewPort = MAX2(vp_xmin, 0);
4268 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4269 vp.YMinViewPort = MAX2(vp_ymin, 0);
4270 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4271 }
4272
4273 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4274 }
4275
4276 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4277 ptr.SFClipViewportPointer = sf_cl_vp_address;
4278 }
4279 }
4280
4281 if (dirty & IRIS_DIRTY_URB) {
4282 unsigned size[4];
4283
4284 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
4285 if (!ice->shaders.prog[i]) {
4286 size[i] = 1;
4287 } else {
4288 struct brw_vue_prog_data *vue_prog_data =
4289 (void *) ice->shaders.prog[i]->prog_data;
4290 size[i] = vue_prog_data->urb_entry_size;
4291 }
4292 assert(size[i] != 0);
4293 }
4294
4295 genX(emit_urb_setup)(ice, batch, size,
4296 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
4297 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
4298 }
4299
4300 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4301 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4302 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4303 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4304 const int header_dwords = GENX(BLEND_STATE_length);
4305
4306 /* Always write at least one BLEND_STATE - the final RT message will
4307 * reference BLEND_STATE[0] even if there aren't color writes. There
4308 * may still be alpha testing, computed depth, and so on.
4309 */
4310 const int rt_dwords =
4311 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4312
4313 uint32_t blend_offset;
4314 uint32_t *blend_map =
4315 stream_state(batch, ice->state.dynamic_uploader,
4316 &ice->state.last_res.blend,
4317 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4318
4319 uint32_t blend_state_header;
4320 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4321 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4322 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4323 }
4324
4325 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4326 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4327
4328 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4329 ptr.BlendStatePointer = blend_offset;
4330 ptr.BlendStatePointerValid = true;
4331 }
4332 }
4333
4334 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4335 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4336 #if GEN_GEN == 8
4337 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4338 #endif
4339 uint32_t cc_offset;
4340 void *cc_map =
4341 stream_state(batch, ice->state.dynamic_uploader,
4342 &ice->state.last_res.color_calc,
4343 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4344 64, &cc_offset);
4345 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4346 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4347 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4348 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4349 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4350 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4351 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4352 #if GEN_GEN == 8
4353 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4354 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4355 #endif
4356 }
4357 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4358 ptr.ColorCalcStatePointer = cc_offset;
4359 ptr.ColorCalcStatePointerValid = true;
4360 }
4361 }
4362
4363 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4364 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4365 continue;
4366
4367 struct iris_shader_state *shs = &ice->state.shaders[stage];
4368 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4369
4370 if (!shader)
4371 continue;
4372
4373 if (shs->cbuf0_needs_upload)
4374 upload_uniforms(ice, stage);
4375
4376 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4377
4378 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4379 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4380 if (prog_data) {
4381 /* The Skylake PRM contains the following restriction:
4382 *
4383 * "The driver must ensure The following case does not occur
4384 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4385 * buffer 3 read length equal to zero committed followed by a
4386 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4387 * zero committed."
4388 *
4389 * To avoid this, we program the buffers in the highest slots.
4390 * This way, slot 0 is only used if slot 3 is also used.
4391 */
4392 int n = 3;
4393
4394 for (int i = 3; i >= 0; i--) {
4395 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4396
4397 if (range->length == 0)
4398 continue;
4399
4400 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4401 struct iris_resource *res = (void *) cbuf->data.res;
4402
4403 assert(cbuf->data.offset % 32 == 0);
4404
4405 pkt.ConstantBody.ReadLength[n] = range->length;
4406 pkt.ConstantBody.Buffer[n] =
4407 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4408 : ro_bo(batch->screen->workaround_bo, 0);
4409 n--;
4410 }
4411 }
4412 }
4413 }
4414
4415 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4416 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4417 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4418 ptr._3DCommandSubOpcode = 38 + stage;
4419 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4420 }
4421 }
4422 }
4423
4424 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4425 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4426 iris_populate_binding_table(ice, batch, stage, false);
4427 }
4428 }
4429
4430 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4431 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4432 !ice->shaders.prog[stage])
4433 continue;
4434
4435 iris_upload_sampler_states(ice, stage);
4436
4437 struct iris_shader_state *shs = &ice->state.shaders[stage];
4438 struct pipe_resource *res = shs->sampler_table.res;
4439 if (res)
4440 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4441
4442 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4443 ptr._3DCommandSubOpcode = 43 + stage;
4444 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4445 }
4446 }
4447
4448 if (ice->state.need_border_colors)
4449 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4450
4451 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4452 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4453 ms.PixelLocation =
4454 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4455 if (ice->state.framebuffer.samples > 0)
4456 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4457 }
4458 }
4459
4460 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4461 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4462 ms.SampleMask = ice->state.sample_mask;
4463 }
4464 }
4465
4466 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4467 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4468 continue;
4469
4470 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4471
4472 if (shader) {
4473 struct iris_resource *cache = (void *) shader->assembly.res;
4474 iris_use_pinned_bo(batch, cache->bo, false);
4475 iris_batch_emit(batch, shader->derived_data,
4476 iris_derived_program_state_size(stage));
4477 } else {
4478 if (stage == MESA_SHADER_TESS_EVAL) {
4479 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4480 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4481 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4482 } else if (stage == MESA_SHADER_GEOMETRY) {
4483 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4484 }
4485 }
4486 }
4487
4488 if (ice->state.streamout_active) {
4489 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4490 iris_batch_emit(batch, genx->so_buffers,
4491 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4492 for (int i = 0; i < 4; i++) {
4493 struct iris_stream_output_target *tgt =
4494 (void *) ice->state.so_target[i];
4495 if (tgt) {
4496 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4497 true);
4498 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4499 true);
4500 }
4501 }
4502 }
4503
4504 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4505 uint32_t *decl_list =
4506 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4507 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4508 }
4509
4510 if (dirty & IRIS_DIRTY_STREAMOUT) {
4511 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4512
4513 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4514 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4515 sol.SOFunctionEnable = true;
4516 sol.SOStatisticsEnable = true;
4517
4518 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4519 !ice->state.prims_generated_query_active;
4520 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4521 }
4522
4523 assert(ice->state.streamout);
4524
4525 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4526 GENX(3DSTATE_STREAMOUT_length));
4527 }
4528 } else {
4529 if (dirty & IRIS_DIRTY_STREAMOUT) {
4530 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4531 }
4532 }
4533
4534 if (dirty & IRIS_DIRTY_CLIP) {
4535 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4536 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4537
4538 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4539 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4540 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4541 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4542 : CLIPMODE_NORMAL;
4543 if (wm_prog_data->barycentric_interp_modes &
4544 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4545 cl.NonPerspectiveBarycentricEnable = true;
4546
4547 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4548 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4549 }
4550 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4551 ARRAY_SIZE(cso_rast->clip));
4552 }
4553
4554 if (dirty & IRIS_DIRTY_RASTER) {
4555 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4556 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4557 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4558
4559 }
4560
4561 if (dirty & IRIS_DIRTY_WM) {
4562 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4563 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4564
4565 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4566 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4567
4568 wm.BarycentricInterpolationMode =
4569 wm_prog_data->barycentric_interp_modes;
4570
4571 if (wm_prog_data->early_fragment_tests)
4572 wm.EarlyDepthStencilControl = EDSC_PREPS;
4573 else if (wm_prog_data->has_side_effects)
4574 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4575
4576 /* We could skip this bit if color writes are enabled. */
4577 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
4578 wm.ForceThreadDispatchEnable = ForceON;
4579 }
4580 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4581 }
4582
4583 if (dirty & IRIS_DIRTY_SBE) {
4584 iris_emit_sbe(batch, ice);
4585 }
4586
4587 if (dirty & IRIS_DIRTY_PS_BLEND) {
4588 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4589 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4590 const struct shader_info *fs_info =
4591 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4592
4593 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4594 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4595 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
4596 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4597 }
4598
4599 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4600 ARRAY_SIZE(cso_blend->ps_blend));
4601 }
4602
4603 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4604 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4605 #if GEN_GEN >= 9
4606 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4607 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4608 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4609 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4610 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4611 }
4612 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4613 #else
4614 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4615 #endif
4616 }
4617
4618 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4619 uint32_t scissor_offset =
4620 emit_state(batch, ice->state.dynamic_uploader,
4621 &ice->state.last_res.scissor,
4622 ice->state.scissors,
4623 sizeof(struct pipe_scissor_state) *
4624 ice->state.num_viewports, 32);
4625
4626 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4627 ptr.ScissorRectPointer = scissor_offset;
4628 }
4629 }
4630
4631 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4632 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4633 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4634
4635 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4636
4637 if (cso_fb->zsbuf) {
4638 struct iris_resource *zres, *sres;
4639 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4640 &zres, &sres);
4641 if (zres) {
4642 iris_use_pinned_bo(batch, zres->bo,
4643 ice->state.depth_writes_enabled);
4644 if (zres->aux.bo) {
4645 iris_use_pinned_bo(batch, zres->aux.bo,
4646 ice->state.depth_writes_enabled);
4647 }
4648 }
4649
4650 if (sres) {
4651 iris_use_pinned_bo(batch, sres->bo,
4652 ice->state.stencil_writes_enabled);
4653 }
4654 }
4655 }
4656
4657 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4658 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4659 for (int i = 0; i < 32; i++) {
4660 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4661 }
4662 }
4663 }
4664
4665 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4666 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4667 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4668 }
4669
4670 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4671 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4672 topo.PrimitiveTopologyType =
4673 translate_prim_type(draw->mode, draw->vertices_per_patch);
4674 }
4675 }
4676
4677 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4678 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4679 int dynamic_bound = ice->state.bound_vertex_buffers;
4680
4681 if (ice->state.vs_uses_draw_params) {
4682 if (ice->draw.draw_params_offset == 0) {
4683 u_upload_data(ice->state.dynamic_uploader, 0, sizeof(ice->draw.params),
4684 4, &ice->draw.params, &ice->draw.draw_params_offset,
4685 &ice->draw.draw_params_res);
4686 }
4687 assert(ice->draw.draw_params_res);
4688
4689 struct iris_vertex_buffer_state *state =
4690 &(ice->state.genx->vertex_buffers[count]);
4691 pipe_resource_reference(&state->resource, ice->draw.draw_params_res);
4692 struct iris_resource *res = (void *) state->resource;
4693
4694 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4695 vb.VertexBufferIndex = count;
4696 vb.AddressModifyEnable = true;
4697 vb.BufferPitch = 0;
4698 vb.BufferSize = res->bo->size - ice->draw.draw_params_offset;
4699 vb.BufferStartingAddress =
4700 ro_bo(NULL, res->bo->gtt_offset +
4701 (int) ice->draw.draw_params_offset);
4702 vb.MOCS = mocs(res->bo);
4703 }
4704 dynamic_bound |= 1ull << count;
4705 count++;
4706 }
4707
4708 if (ice->state.vs_uses_derived_draw_params) {
4709 u_upload_data(ice->state.dynamic_uploader, 0,
4710 sizeof(ice->draw.derived_params), 4,
4711 &ice->draw.derived_params,
4712 &ice->draw.derived_draw_params_offset,
4713 &ice->draw.derived_draw_params_res);
4714
4715 struct iris_vertex_buffer_state *state =
4716 &(ice->state.genx->vertex_buffers[count]);
4717 pipe_resource_reference(&state->resource,
4718 ice->draw.derived_draw_params_res);
4719 struct iris_resource *res = (void *) ice->draw.derived_draw_params_res;
4720
4721 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4722 vb.VertexBufferIndex = count;
4723 vb.AddressModifyEnable = true;
4724 vb.BufferPitch = 0;
4725 vb.BufferSize =
4726 res->bo->size - ice->draw.derived_draw_params_offset;
4727 vb.BufferStartingAddress =
4728 ro_bo(NULL, res->bo->gtt_offset +
4729 (int) ice->draw.derived_draw_params_offset);
4730 vb.MOCS = mocs(res->bo);
4731 }
4732 dynamic_bound |= 1ull << count;
4733 count++;
4734 }
4735
4736 if (count) {
4737 /* The VF cache designers cut corners, and made the cache key's
4738 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4739 * 32 bits of the address. If you have two vertex buffers which get
4740 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4741 * you can get collisions (even within a single batch).
4742 *
4743 * So, we need to do a VF cache invalidate if the buffer for a VB
4744 * slot slot changes [48:32] address bits from the previous time.
4745 */
4746 unsigned flush_flags = 0;
4747
4748 uint64_t bound = dynamic_bound;
4749 while (bound) {
4750 const int i = u_bit_scan64(&bound);
4751 uint16_t high_bits = 0;
4752
4753 struct iris_resource *res =
4754 (void *) genx->vertex_buffers[i].resource;
4755 if (res) {
4756 iris_use_pinned_bo(batch, res->bo, false);
4757
4758 high_bits = res->bo->gtt_offset >> 32ull;
4759 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4760 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
4761 PIPE_CONTROL_CS_STALL;
4762 ice->state.last_vbo_high_bits[i] = high_bits;
4763 }
4764
4765 /* If the buffer was written to by streamout, we may need
4766 * to stall so those writes land and become visible to the
4767 * vertex fetcher.
4768 *
4769 * TODO: This may stall more than necessary.
4770 */
4771 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
4772 flush_flags |= PIPE_CONTROL_CS_STALL;
4773 }
4774 }
4775
4776 if (flush_flags)
4777 iris_emit_pipe_control_flush(batch, flush_flags);
4778
4779 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4780
4781 uint32_t *map =
4782 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
4783 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
4784 vb.DWordLength = (vb_dwords * count + 1) - 2;
4785 }
4786 map += 1;
4787
4788 bound = dynamic_bound;
4789 while (bound) {
4790 const int i = u_bit_scan64(&bound);
4791 memcpy(map, genx->vertex_buffers[i].state,
4792 sizeof(uint32_t) * vb_dwords);
4793 map += vb_dwords;
4794 }
4795 }
4796 }
4797
4798 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4799 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4800 const unsigned entries = MAX2(cso->count, 1);
4801 if (!(ice->state.vs_needs_sgvs_element ||
4802 ice->state.vs_uses_derived_draw_params ||
4803 ice->state.vs_needs_edge_flag)) {
4804 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4805 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4806 } else {
4807 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
4808 const unsigned dyn_count = cso->count +
4809 ice->state.vs_needs_sgvs_element +
4810 ice->state.vs_uses_derived_draw_params;
4811
4812 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
4813 &dynamic_ves, ve) {
4814 ve.DWordLength =
4815 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
4816 }
4817 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
4818 (cso->count - ice->state.vs_needs_edge_flag) *
4819 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
4820 uint32_t *ve_pack_dest =
4821 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
4822 GENX(VERTEX_ELEMENT_STATE_length)];
4823
4824 if (ice->state.vs_needs_sgvs_element) {
4825 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
4826 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
4827 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
4828 ve.Valid = true;
4829 ve.VertexBufferIndex =
4830 util_bitcount64(ice->state.bound_vertex_buffers);
4831 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
4832 ve.Component0Control = base_ctrl;
4833 ve.Component1Control = base_ctrl;
4834 ve.Component2Control = VFCOMP_STORE_0;
4835 ve.Component3Control = VFCOMP_STORE_0;
4836 }
4837 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
4838 }
4839 if (ice->state.vs_uses_derived_draw_params) {
4840 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
4841 ve.Valid = true;
4842 ve.VertexBufferIndex =
4843 util_bitcount64(ice->state.bound_vertex_buffers) +
4844 ice->state.vs_uses_draw_params;
4845 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
4846 ve.Component0Control = VFCOMP_STORE_SRC;
4847 ve.Component1Control = VFCOMP_STORE_SRC;
4848 ve.Component2Control = VFCOMP_STORE_0;
4849 ve.Component3Control = VFCOMP_STORE_0;
4850 }
4851 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
4852 }
4853 if (ice->state.vs_needs_edge_flag) {
4854 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
4855 ve_pack_dest[i] = cso->edgeflag_ve[i];
4856 }
4857
4858 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
4859 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
4860 }
4861
4862 if (!ice->state.vs_needs_edge_flag) {
4863 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4864 entries * GENX(3DSTATE_VF_INSTANCING_length));
4865 } else {
4866 assert(cso->count > 0);
4867 const unsigned edgeflag_index = cso->count - 1;
4868 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
4869 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
4870 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
4871
4872 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
4873 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
4874 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
4875 vi.VertexElementIndex = edgeflag_index +
4876 ice->state.vs_needs_sgvs_element +
4877 ice->state.vs_uses_derived_draw_params;
4878 }
4879 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
4880 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
4881
4882 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
4883 entries * GENX(3DSTATE_VF_INSTANCING_length));
4884 }
4885 }
4886
4887 if (dirty & IRIS_DIRTY_VF_SGVS) {
4888 const struct brw_vs_prog_data *vs_prog_data = (void *)
4889 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4890 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4891
4892 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4893 if (vs_prog_data->uses_vertexid) {
4894 sgv.VertexIDEnable = true;
4895 sgv.VertexIDComponentNumber = 2;
4896 sgv.VertexIDElementOffset =
4897 cso->count - ice->state.vs_needs_edge_flag;
4898 }
4899
4900 if (vs_prog_data->uses_instanceid) {
4901 sgv.InstanceIDEnable = true;
4902 sgv.InstanceIDComponentNumber = 3;
4903 sgv.InstanceIDElementOffset =
4904 cso->count - ice->state.vs_needs_edge_flag;
4905 }
4906 }
4907 }
4908
4909 if (dirty & IRIS_DIRTY_VF) {
4910 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4911 if (draw->primitive_restart) {
4912 vf.IndexedDrawCutIndexEnable = true;
4913 vf.CutIndex = draw->restart_index;
4914 }
4915 }
4916 }
4917
4918 /* TODO: Gen8 PMA fix */
4919 }
4920
4921 static void
4922 iris_upload_render_state(struct iris_context *ice,
4923 struct iris_batch *batch,
4924 const struct pipe_draw_info *draw)
4925 {
4926 /* Always pin the binder. If we're emitting new binding table pointers,
4927 * we need it. If not, we're probably inheriting old tables via the
4928 * context, and need it anyway. Since true zero-bindings cases are
4929 * practically non-existent, just pin it and avoid last_res tracking.
4930 */
4931 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4932
4933 if (!batch->contains_draw) {
4934 iris_restore_render_saved_bos(ice, batch, draw);
4935 batch->contains_draw = true;
4936 }
4937
4938 iris_upload_dirty_render_state(ice, batch, draw);
4939
4940 if (draw->index_size > 0) {
4941 unsigned offset;
4942
4943 if (draw->has_user_indices) {
4944 u_upload_data(ice->ctx.stream_uploader, 0,
4945 draw->count * draw->index_size, 4, draw->index.user,
4946 &offset, &ice->state.last_res.index_buffer);
4947 } else {
4948 struct iris_resource *res = (void *) draw->index.resource;
4949 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
4950
4951 pipe_resource_reference(&ice->state.last_res.index_buffer,
4952 draw->index.resource);
4953 offset = 0;
4954 }
4955
4956 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4957
4958 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4959 ib.IndexFormat = draw->index_size >> 1;
4960 ib.MOCS = mocs(bo);
4961 ib.BufferSize = bo->size;
4962 ib.BufferStartingAddress = ro_bo(bo, offset);
4963 }
4964
4965 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
4966 uint16_t high_bits = bo->gtt_offset >> 32ull;
4967 if (high_bits != ice->state.last_index_bo_high_bits) {
4968 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE |
4969 PIPE_CONTROL_CS_STALL);
4970 ice->state.last_index_bo_high_bits = high_bits;
4971 }
4972 }
4973
4974 #define _3DPRIM_END_OFFSET 0x2420
4975 #define _3DPRIM_START_VERTEX 0x2430
4976 #define _3DPRIM_VERTEX_COUNT 0x2434
4977 #define _3DPRIM_INSTANCE_COUNT 0x2438
4978 #define _3DPRIM_START_INSTANCE 0x243C
4979 #define _3DPRIM_BASE_VERTEX 0x2440
4980
4981 if (draw->indirect) {
4982 /* We don't support this MultidrawIndirect. */
4983 assert(!draw->indirect->indirect_draw_count);
4984
4985 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4986 assert(bo);
4987
4988 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4989 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
4990 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
4991 }
4992 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4993 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
4994 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
4995 }
4996 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4997 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
4998 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
4999 }
5000 if (draw->index_size) {
5001 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5002 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5003 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5004 }
5005 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5006 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5007 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5008 }
5009 } else {
5010 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5011 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5012 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5013 }
5014 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5015 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5016 lri.DataDWord = 0;
5017 }
5018 }
5019 } else if (draw->count_from_stream_output) {
5020 struct iris_stream_output_target *so =
5021 (void *) draw->count_from_stream_output;
5022
5023 /* XXX: Replace with actual cache tracking */
5024 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
5025
5026 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5027 lrm.RegisterAddress = CS_GPR(0);
5028 lrm.MemoryAddress =
5029 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5030 }
5031 iris_math_div32_gpr0(ice, batch, so->stride);
5032 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
5033
5034 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5035 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5036 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5037 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5038 }
5039
5040 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5041 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5042 prim.PredicateEnable =
5043 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5044
5045 if (draw->indirect || draw->count_from_stream_output) {
5046 prim.IndirectParameterEnable = true;
5047 } else {
5048 prim.StartInstanceLocation = draw->start_instance;
5049 prim.InstanceCount = draw->instance_count;
5050 prim.VertexCountPerInstance = draw->count;
5051
5052 // XXX: this is probably bonkers.
5053 prim.StartVertexLocation = draw->start;
5054
5055 if (draw->index_size) {
5056 prim.BaseVertexLocation += draw->index_bias;
5057 } else {
5058 prim.StartVertexLocation += draw->index_bias;
5059 }
5060
5061 //prim.BaseVertexLocation = ...;
5062 }
5063 }
5064 }
5065
5066 static void
5067 iris_upload_compute_state(struct iris_context *ice,
5068 struct iris_batch *batch,
5069 const struct pipe_grid_info *grid)
5070 {
5071 const uint64_t dirty = ice->state.dirty;
5072 struct iris_screen *screen = batch->screen;
5073 const struct gen_device_info *devinfo = &screen->devinfo;
5074 struct iris_binder *binder = &ice->state.binder;
5075 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5076 struct iris_compiled_shader *shader =
5077 ice->shaders.prog[MESA_SHADER_COMPUTE];
5078 struct brw_stage_prog_data *prog_data = shader->prog_data;
5079 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5080
5081 /* Always pin the binder. If we're emitting new binding table pointers,
5082 * we need it. If not, we're probably inheriting old tables via the
5083 * context, and need it anyway. Since true zero-bindings cases are
5084 * practically non-existent, just pin it and avoid last_res tracking.
5085 */
5086 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5087
5088 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
5089 upload_uniforms(ice, MESA_SHADER_COMPUTE);
5090
5091 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5092 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5093
5094 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
5095 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
5096
5097 iris_use_optional_res(batch, shs->sampler_table.res, false);
5098 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5099
5100 if (ice->state.need_border_colors)
5101 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5102
5103 if (dirty & IRIS_DIRTY_CS) {
5104 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5105 *
5106 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5107 * the only bits that are changed are scoreboard related: Scoreboard
5108 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5109 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5110 * sufficient."
5111 */
5112 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
5113
5114 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5115 if (prog_data->total_scratch) {
5116 struct iris_bo *bo =
5117 iris_get_scratch_space(ice, prog_data->total_scratch,
5118 MESA_SHADER_COMPUTE);
5119 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5120 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5121 }
5122
5123 vfe.MaximumNumberofThreads =
5124 devinfo->max_cs_threads * screen->subslice_total - 1;
5125 #if GEN_GEN < 11
5126 vfe.ResetGatewayTimer =
5127 Resettingrelativetimerandlatchingtheglobaltimestamp;
5128 #endif
5129 #if GEN_GEN == 8
5130 vfe.BypassGatewayControl = true;
5131 #endif
5132 vfe.NumberofURBEntries = 2;
5133 vfe.URBEntryAllocationSize = 2;
5134
5135 vfe.CURBEAllocationSize =
5136 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5137 cs_prog_data->push.cross_thread.regs, 2);
5138 }
5139 }
5140
5141 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5142 uint32_t curbe_data_offset = 0;
5143 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5144 cs_prog_data->push.per_thread.dwords == 1 &&
5145 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5146 struct pipe_resource *curbe_data_res = NULL;
5147 uint32_t *curbe_data_map =
5148 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
5149 ALIGN(cs_prog_data->push.total.size, 64), 64,
5150 &curbe_data_offset);
5151 assert(curbe_data_map);
5152 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5153 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5154
5155 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
5156 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5157 curbe.CURBETotalDataLength =
5158 ALIGN(cs_prog_data->push.total.size, 64);
5159 curbe.CURBEDataStartAddress = curbe_data_offset;
5160 }
5161 }
5162
5163 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5164 IRIS_DIRTY_BINDINGS_CS |
5165 IRIS_DIRTY_CONSTANTS_CS |
5166 IRIS_DIRTY_CS)) {
5167 struct pipe_resource *desc_res = NULL;
5168 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5169
5170 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5171 idd.SamplerStatePointer = shs->sampler_table.offset;
5172 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5173 }
5174
5175 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5176 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5177
5178 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5179 load.InterfaceDescriptorTotalLength =
5180 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5181 load.InterfaceDescriptorDataStartAddress =
5182 emit_state(batch, ice->state.dynamic_uploader,
5183 &desc_res, desc, sizeof(desc), 32);
5184 }
5185
5186 pipe_resource_reference(&desc_res, NULL);
5187 }
5188
5189 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5190 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5191 uint32_t right_mask;
5192
5193 if (remainder > 0)
5194 right_mask = ~0u >> (32 - remainder);
5195 else
5196 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5197
5198 #define GPGPU_DISPATCHDIMX 0x2500
5199 #define GPGPU_DISPATCHDIMY 0x2504
5200 #define GPGPU_DISPATCHDIMZ 0x2508
5201
5202 if (grid->indirect) {
5203 struct iris_state_ref *grid_size = &ice->state.grid_size;
5204 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5205 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5206 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5207 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5208 }
5209 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5210 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5211 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5212 }
5213 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5214 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5215 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5216 }
5217 }
5218
5219 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5220 ggw.IndirectParameterEnable = grid->indirect != NULL;
5221 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5222 ggw.ThreadDepthCounterMaximum = 0;
5223 ggw.ThreadHeightCounterMaximum = 0;
5224 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5225 ggw.ThreadGroupIDXDimension = grid->grid[0];
5226 ggw.ThreadGroupIDYDimension = grid->grid[1];
5227 ggw.ThreadGroupIDZDimension = grid->grid[2];
5228 ggw.RightExecutionMask = right_mask;
5229 ggw.BottomExecutionMask = 0xffffffff;
5230 }
5231
5232 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5233
5234 if (!batch->contains_draw) {
5235 iris_restore_compute_saved_bos(ice, batch, grid);
5236 batch->contains_draw = true;
5237 }
5238 }
5239
5240 /**
5241 * State module teardown.
5242 */
5243 static void
5244 iris_destroy_state(struct iris_context *ice)
5245 {
5246 struct iris_genx_state *genx = ice->state.genx;
5247
5248 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5249 while (bound_vbs) {
5250 const int i = u_bit_scan64(&bound_vbs);
5251 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5252 }
5253 free(ice->state.genx);
5254
5255 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5256 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5257 }
5258 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5259
5260 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5261 struct iris_shader_state *shs = &ice->state.shaders[stage];
5262 pipe_resource_reference(&shs->sampler_table.res, NULL);
5263 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5264 pipe_resource_reference(&shs->constbuf[i].data.res, NULL);
5265 pipe_resource_reference(&shs->constbuf[i].surface_state.res, NULL);
5266 }
5267 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5268 pipe_resource_reference(&shs->image[i].res, NULL);
5269 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5270 }
5271 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5272 pipe_resource_reference(&shs->ssbo[i], NULL);
5273 pipe_resource_reference(&shs->ssbo_surface_state[i].res, NULL);
5274 }
5275 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5276 pipe_sampler_view_reference((struct pipe_sampler_view **)
5277 &shs->textures[i], NULL);
5278 }
5279 }
5280
5281 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5282 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5283
5284 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5285 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5286
5287 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5288 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5289 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5290 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5291 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5292 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5293 }
5294
5295 /* ------------------------------------------------------------------- */
5296
5297 static void
5298 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
5299 uint32_t src)
5300 {
5301 _iris_emit_lrr(batch, dst, src);
5302 }
5303
5304 static void
5305 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
5306 uint32_t src)
5307 {
5308 _iris_emit_lrr(batch, dst, src);
5309 _iris_emit_lrr(batch, dst + 4, src + 4);
5310 }
5311
5312 static void
5313 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5314 uint32_t val)
5315 {
5316 _iris_emit_lri(batch, reg, val);
5317 }
5318
5319 static void
5320 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5321 uint64_t val)
5322 {
5323 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5324 _iris_emit_lri(batch, reg + 4, val >> 32);
5325 }
5326
5327 /**
5328 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5329 */
5330 static void
5331 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5332 struct iris_bo *bo, uint32_t offset)
5333 {
5334 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5335 lrm.RegisterAddress = reg;
5336 lrm.MemoryAddress = ro_bo(bo, offset);
5337 }
5338 }
5339
5340 /**
5341 * Load a 64-bit value from a buffer into a MMIO register via
5342 * two MI_LOAD_REGISTER_MEM commands.
5343 */
5344 static void
5345 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5346 struct iris_bo *bo, uint32_t offset)
5347 {
5348 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5349 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5350 }
5351
5352 static void
5353 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5354 struct iris_bo *bo, uint32_t offset,
5355 bool predicated)
5356 {
5357 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5358 srm.RegisterAddress = reg;
5359 srm.MemoryAddress = rw_bo(bo, offset);
5360 srm.PredicateEnable = predicated;
5361 }
5362 }
5363
5364 static void
5365 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5366 struct iris_bo *bo, uint32_t offset,
5367 bool predicated)
5368 {
5369 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5370 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5371 }
5372
5373 static void
5374 iris_store_data_imm32(struct iris_batch *batch,
5375 struct iris_bo *bo, uint32_t offset,
5376 uint32_t imm)
5377 {
5378 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5379 sdi.Address = rw_bo(bo, offset);
5380 sdi.ImmediateData = imm;
5381 }
5382 }
5383
5384 static void
5385 iris_store_data_imm64(struct iris_batch *batch,
5386 struct iris_bo *bo, uint32_t offset,
5387 uint64_t imm)
5388 {
5389 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5390 * 2 in genxml but it's actually variable length and we need 5 DWords.
5391 */
5392 void *map = iris_get_command_space(batch, 4 * 5);
5393 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5394 sdi.DWordLength = 5 - 2;
5395 sdi.Address = rw_bo(bo, offset);
5396 sdi.ImmediateData = imm;
5397 }
5398 }
5399
5400 static void
5401 iris_copy_mem_mem(struct iris_batch *batch,
5402 struct iris_bo *dst_bo, uint32_t dst_offset,
5403 struct iris_bo *src_bo, uint32_t src_offset,
5404 unsigned bytes)
5405 {
5406 /* MI_COPY_MEM_MEM operates on DWords. */
5407 assert(bytes % 4 == 0);
5408 assert(dst_offset % 4 == 0);
5409 assert(src_offset % 4 == 0);
5410
5411 for (unsigned i = 0; i < bytes; i += 4) {
5412 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5413 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5414 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5415 }
5416 }
5417 }
5418
5419 /* ------------------------------------------------------------------- */
5420
5421 static unsigned
5422 flags_to_post_sync_op(uint32_t flags)
5423 {
5424 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5425 return WriteImmediateData;
5426
5427 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5428 return WritePSDepthCount;
5429
5430 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5431 return WriteTimestamp;
5432
5433 return 0;
5434 }
5435
5436 /**
5437 * Do the given flags have a Post Sync or LRI Post Sync operation?
5438 */
5439 static enum pipe_control_flags
5440 get_post_sync_flags(enum pipe_control_flags flags)
5441 {
5442 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5443 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5444 PIPE_CONTROL_WRITE_TIMESTAMP |
5445 PIPE_CONTROL_LRI_POST_SYNC_OP;
5446
5447 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5448 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5449 */
5450 assert(util_bitcount(flags) <= 1);
5451
5452 return flags;
5453 }
5454
5455 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5456
5457 /**
5458 * Emit a series of PIPE_CONTROL commands, taking into account any
5459 * workarounds necessary to actually accomplish the caller's request.
5460 *
5461 * Unless otherwise noted, spec quotations in this function come from:
5462 *
5463 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5464 * Restrictions for PIPE_CONTROL.
5465 *
5466 * You should not use this function directly. Use the helpers in
5467 * iris_pipe_control.c instead, which may split the pipe control further.
5468 */
5469 static void
5470 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
5471 struct iris_bo *bo, uint32_t offset, uint64_t imm)
5472 {
5473 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5474 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5475 enum pipe_control_flags non_lri_post_sync_flags =
5476 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5477
5478 /* Recursive PIPE_CONTROL workarounds --------------------------------
5479 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5480 *
5481 * We do these first because we want to look at the original operation,
5482 * rather than any workarounds we set.
5483 */
5484 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5485 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5486 * lists several workarounds:
5487 *
5488 * "Project: SKL, KBL, BXT
5489 *
5490 * If the VF Cache Invalidation Enable is set to a 1 in a
5491 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5492 * sets to 0, with the VF Cache Invalidation Enable set to 0
5493 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5494 * Invalidation Enable set to a 1."
5495 */
5496 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
5497 }
5498
5499 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5500 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5501 *
5502 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5503 * programmed prior to programming a PIPECONTROL command with "LRI
5504 * Post Sync Operation" in GPGPU mode of operation (i.e when
5505 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5506 *
5507 * The same text exists a few rows below for Post Sync Op.
5508 */
5509 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
5510 }
5511
5512 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5513 /* Cannonlake:
5514 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5515 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5516 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5517 */
5518 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
5519 offset, imm);
5520 }
5521
5522 /* "Flush Types" workarounds ---------------------------------------------
5523 * We do these now because they may add post-sync operations or CS stalls.
5524 */
5525
5526 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5527 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5528 *
5529 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5530 * 'Write PS Depth Count' or 'Write Timestamp'."
5531 */
5532 if (!bo) {
5533 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5534 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5535 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5536 bo = batch->screen->workaround_bo;
5537 }
5538 }
5539
5540 /* #1130 from Gen10 workarounds page:
5541 *
5542 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5543 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5544 * board stall if Render target cache flush is enabled."
5545 *
5546 * Applicable to CNL B0 and C0 steppings only.
5547 *
5548 * The wording here is unclear, and this workaround doesn't look anything
5549 * like the internal bug report recommendations, but leave it be for now...
5550 */
5551 if (GEN_GEN == 10) {
5552 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5553 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5554 } else if (flags & non_lri_post_sync_flags) {
5555 flags |= PIPE_CONTROL_DEPTH_STALL;
5556 }
5557 }
5558
5559 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5560 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5561 *
5562 * "This bit must be DISABLED for operations other than writing
5563 * PS_DEPTH_COUNT."
5564 *
5565 * This seems like nonsense. An Ivybridge workaround requires us to
5566 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5567 * operation. Gen8+ requires us to emit depth stalls and depth cache
5568 * flushes together. So, it's hard to imagine this means anything other
5569 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5570 *
5571 * We ignore the supposed restriction and do nothing.
5572 */
5573 }
5574
5575 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5576 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5577 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5578 *
5579 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5580 * PS_DEPTH_COUNT or TIMESTAMP queries."
5581 *
5582 * TODO: Implement end-of-pipe checking.
5583 */
5584 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5585 PIPE_CONTROL_WRITE_TIMESTAMP)));
5586 }
5587
5588 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5589 /* From the PIPE_CONTROL instruction table, bit 1:
5590 *
5591 * "This bit is ignored if Depth Stall Enable is set.
5592 * Further, the render cache is not flushed even if Write Cache
5593 * Flush Enable bit is set."
5594 *
5595 * We assert that the caller doesn't do this combination, to try and
5596 * prevent mistakes. It shouldn't hurt the GPU, though.
5597 *
5598 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5599 * and "Render Target Flush" combo is explicitly required for BTI
5600 * update workarounds.
5601 */
5602 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5603 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5604 }
5605
5606 /* PIPE_CONTROL page workarounds ------------------------------------- */
5607
5608 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5609 /* From the PIPE_CONTROL page itself:
5610 *
5611 * "IVB, HSW, BDW
5612 * Restriction: Pipe_control with CS-stall bit set must be issued
5613 * before a pipe-control command that has the State Cache
5614 * Invalidate bit set."
5615 */
5616 flags |= PIPE_CONTROL_CS_STALL;
5617 }
5618
5619 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5620 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5621 *
5622 * "Project: ALL
5623 * SW must always program Post-Sync Operation to "Write Immediate
5624 * Data" when Flush LLC is set."
5625 *
5626 * For now, we just require the caller to do it.
5627 */
5628 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5629 }
5630
5631 /* "Post-Sync Operation" workarounds -------------------------------- */
5632
5633 /* Project: All / Argument: Global Snapshot Count Reset [19]
5634 *
5635 * "This bit must not be exercised on any product.
5636 * Requires stall bit ([20] of DW1) set."
5637 *
5638 * We don't use this, so we just assert that it isn't used. The
5639 * PIPE_CONTROL instruction page indicates that they intended this
5640 * as a debug feature and don't think it is useful in production,
5641 * but it may actually be usable, should we ever want to.
5642 */
5643 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5644
5645 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5646 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5647 /* Project: All / Arguments:
5648 *
5649 * - Generic Media State Clear [16]
5650 * - Indirect State Pointers Disable [16]
5651 *
5652 * "Requires stall bit ([20] of DW1) set."
5653 *
5654 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5655 * State Clear) says:
5656 *
5657 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5658 * programmed prior to programming a PIPECONTROL command with "Media
5659 * State Clear" set in GPGPU mode of operation"
5660 *
5661 * This is a subset of the earlier rule, so there's nothing to do.
5662 */
5663 flags |= PIPE_CONTROL_CS_STALL;
5664 }
5665
5666 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5667 /* Project: All / Argument: Store Data Index
5668 *
5669 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5670 * than '0'."
5671 *
5672 * For now, we just assert that the caller does this. We might want to
5673 * automatically add a write to the workaround BO...
5674 */
5675 assert(non_lri_post_sync_flags != 0);
5676 }
5677
5678 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5679 /* Project: All / Argument: Sync GFDT
5680 *
5681 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5682 * than '0' or 0x2520[13] must be set."
5683 *
5684 * For now, we just assert that the caller does this.
5685 */
5686 assert(non_lri_post_sync_flags != 0);
5687 }
5688
5689 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5690 /* Project: IVB+ / Argument: TLB inv
5691 *
5692 * "Requires stall bit ([20] of DW1) set."
5693 *
5694 * Also, from the PIPE_CONTROL instruction table:
5695 *
5696 * "Project: SKL+
5697 * Post Sync Operation or CS stall must be set to ensure a TLB
5698 * invalidation occurs. Otherwise no cycle will occur to the TLB
5699 * cache to invalidate."
5700 *
5701 * This is not a subset of the earlier rule, so there's nothing to do.
5702 */
5703 flags |= PIPE_CONTROL_CS_STALL;
5704 }
5705
5706 if (GEN_GEN == 9 && devinfo->gt == 4) {
5707 /* TODO: The big Skylake GT4 post sync op workaround */
5708 }
5709
5710 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5711
5712 if (IS_COMPUTE_PIPELINE(batch)) {
5713 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5714 /* Project: SKL+ / Argument: Tex Invalidate
5715 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5716 */
5717 flags |= PIPE_CONTROL_CS_STALL;
5718 }
5719
5720 if (GEN_GEN == 8 && (post_sync_flags ||
5721 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5722 PIPE_CONTROL_DEPTH_STALL |
5723 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5724 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5725 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5726 /* Project: BDW / Arguments:
5727 *
5728 * - LRI Post Sync Operation [23]
5729 * - Post Sync Op [15:14]
5730 * - Notify En [8]
5731 * - Depth Stall [13]
5732 * - Render Target Cache Flush [12]
5733 * - Depth Cache Flush [0]
5734 * - DC Flush Enable [5]
5735 *
5736 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5737 * Workloads."
5738 */
5739 flags |= PIPE_CONTROL_CS_STALL;
5740
5741 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5742 *
5743 * "Project: BDW
5744 * This bit must be always set when PIPE_CONTROL command is
5745 * programmed by GPGPU and MEDIA workloads, except for the cases
5746 * when only Read Only Cache Invalidation bits are set (State
5747 * Cache Invalidation Enable, Instruction cache Invalidation
5748 * Enable, Texture Cache Invalidation Enable, Constant Cache
5749 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5750 * need not implemented when FF_DOP_CG is disable via "Fixed
5751 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5752 *
5753 * It sounds like we could avoid CS stalls in some cases, but we
5754 * don't currently bother. This list isn't exactly the list above,
5755 * either...
5756 */
5757 }
5758 }
5759
5760 /* "Stall" workarounds ----------------------------------------------
5761 * These have to come after the earlier ones because we may have added
5762 * some additional CS stalls above.
5763 */
5764
5765 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5766 /* Project: PRE-SKL, VLV, CHV
5767 *
5768 * "[All Stepping][All SKUs]:
5769 *
5770 * One of the following must also be set:
5771 *
5772 * - Render Target Cache Flush Enable ([12] of DW1)
5773 * - Depth Cache Flush Enable ([0] of DW1)
5774 * - Stall at Pixel Scoreboard ([1] of DW1)
5775 * - Depth Stall ([13] of DW1)
5776 * - Post-Sync Operation ([13] of DW1)
5777 * - DC Flush Enable ([5] of DW1)"
5778 *
5779 * If we don't already have one of those bits set, we choose to add
5780 * "Stall at Pixel Scoreboard". Some of the other bits require a
5781 * CS stall as a workaround (see above), which would send us into
5782 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5783 * appears to be safe, so we choose that.
5784 */
5785 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5786 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5787 PIPE_CONTROL_WRITE_IMMEDIATE |
5788 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5789 PIPE_CONTROL_WRITE_TIMESTAMP |
5790 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5791 PIPE_CONTROL_DEPTH_STALL |
5792 PIPE_CONTROL_DATA_CACHE_FLUSH;
5793 if (!(flags & wa_bits))
5794 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5795 }
5796
5797 /* Emit --------------------------------------------------------------- */
5798
5799 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5800 pc.LRIPostSyncOperation = NoLRIOperation;
5801 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5802 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5803 pc.StoreDataIndex = 0;
5804 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5805 pc.GlobalSnapshotCountReset =
5806 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5807 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5808 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5809 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5810 pc.RenderTargetCacheFlushEnable =
5811 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5812 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5813 pc.StateCacheInvalidationEnable =
5814 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5815 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5816 pc.ConstantCacheInvalidationEnable =
5817 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5818 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5819 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5820 pc.InstructionCacheInvalidateEnable =
5821 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5822 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5823 pc.IndirectStatePointersDisable =
5824 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5825 pc.TextureCacheInvalidationEnable =
5826 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5827 pc.Address = rw_bo(bo, offset);
5828 pc.ImmediateData = imm;
5829 }
5830 }
5831
5832 void
5833 genX(emit_urb_setup)(struct iris_context *ice,
5834 struct iris_batch *batch,
5835 const unsigned size[4],
5836 bool tess_present, bool gs_present)
5837 {
5838 const struct gen_device_info *devinfo = &batch->screen->devinfo;
5839 const unsigned push_size_kB = 32;
5840 unsigned entries[4];
5841 unsigned start[4];
5842
5843 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
5844
5845 gen_get_urb_config(devinfo, 1024 * push_size_kB,
5846 1024 * ice->shaders.urb_size,
5847 tess_present, gs_present,
5848 size, entries, start);
5849
5850 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
5851 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
5852 urb._3DCommandSubOpcode += i;
5853 urb.VSURBStartingAddress = start[i];
5854 urb.VSURBEntryAllocationSize = size[i] - 1;
5855 urb.VSNumberofURBEntries = entries[i];
5856 }
5857 }
5858 }
5859
5860 void
5861 genX(init_state)(struct iris_context *ice)
5862 {
5863 struct pipe_context *ctx = &ice->ctx;
5864 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5865
5866 ctx->create_blend_state = iris_create_blend_state;
5867 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5868 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5869 ctx->create_sampler_state = iris_create_sampler_state;
5870 ctx->create_sampler_view = iris_create_sampler_view;
5871 ctx->create_surface = iris_create_surface;
5872 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5873 ctx->bind_blend_state = iris_bind_blend_state;
5874 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5875 ctx->bind_sampler_states = iris_bind_sampler_states;
5876 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5877 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5878 ctx->delete_blend_state = iris_delete_state;
5879 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5880 ctx->delete_rasterizer_state = iris_delete_state;
5881 ctx->delete_sampler_state = iris_delete_state;
5882 ctx->delete_vertex_elements_state = iris_delete_state;
5883 ctx->set_blend_color = iris_set_blend_color;
5884 ctx->set_clip_state = iris_set_clip_state;
5885 ctx->set_constant_buffer = iris_set_constant_buffer;
5886 ctx->set_shader_buffers = iris_set_shader_buffers;
5887 ctx->set_shader_images = iris_set_shader_images;
5888 ctx->set_sampler_views = iris_set_sampler_views;
5889 ctx->set_tess_state = iris_set_tess_state;
5890 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5891 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5892 ctx->set_sample_mask = iris_set_sample_mask;
5893 ctx->set_scissor_states = iris_set_scissor_states;
5894 ctx->set_stencil_ref = iris_set_stencil_ref;
5895 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5896 ctx->set_viewport_states = iris_set_viewport_states;
5897 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5898 ctx->surface_destroy = iris_surface_destroy;
5899 ctx->draw_vbo = iris_draw_vbo;
5900 ctx->launch_grid = iris_launch_grid;
5901 ctx->create_stream_output_target = iris_create_stream_output_target;
5902 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5903 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5904
5905 ice->vtbl.destroy_state = iris_destroy_state;
5906 ice->vtbl.init_render_context = iris_init_render_context;
5907 ice->vtbl.init_compute_context = iris_init_compute_context;
5908 ice->vtbl.upload_render_state = iris_upload_render_state;
5909 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5910 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5911 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5912 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
5913 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
5914 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5915 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5916 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5917 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5918 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5919 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5920 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5921 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5922 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5923 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5924 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5925 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5926 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5927 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5928 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5929 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5930 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5931 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5932 ice->vtbl.mocs = mocs;
5933
5934 ice->state.dirty = ~0ull;
5935
5936 ice->state.statistics_counters_enabled = true;
5937
5938 ice->state.sample_mask = 0xffff;
5939 ice->state.num_viewports = 1;
5940 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5941
5942 /* Make a 1x1x1 null surface for unbound textures */
5943 void *null_surf_map =
5944 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5945 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5946 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5947 ice->state.unbound_tex.offset +=
5948 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5949
5950 /* Default all scissor rectangles to be empty regions. */
5951 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5952 ice->state.scissors[i] = (struct pipe_scissor_state) {
5953 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5954 };
5955 }
5956 }