gallium/ttn: Convert to using VARYING_SLOT_* / FRAG_RESULT_*.
[mesa.git] / src / gallium / drivers / vc4 / vc4_program.c
1 /*
2 * Copyright (c) 2014 Scott Mansell
3 * Copyright © 2014 Broadcom
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24
25 #include <inttypes.h>
26 #include "util/u_format.h"
27 #include "util/u_hash.h"
28 #include "util/u_math.h"
29 #include "util/u_memory.h"
30 #include "util/ralloc.h"
31 #include "util/hash_table.h"
32 #include "tgsi/tgsi_dump.h"
33 #include "tgsi/tgsi_info.h"
34 #include "tgsi/tgsi_lowering.h"
35 #include "tgsi/tgsi_parse.h"
36 #include "glsl/nir/nir.h"
37 #include "glsl/nir/nir_builder.h"
38 #include "nir/tgsi_to_nir.h"
39 #include "vc4_context.h"
40 #include "vc4_qpu.h"
41 #include "vc4_qir.h"
42 #ifdef USE_VC4_SIMULATOR
43 #include "simpenrose/simpenrose.h"
44 #endif
45
46 static struct qreg
47 ntq_get_src(struct vc4_compile *c, nir_src src, int i);
48
49 static void
50 resize_qreg_array(struct vc4_compile *c,
51 struct qreg **regs,
52 uint32_t *size,
53 uint32_t decl_size)
54 {
55 if (*size >= decl_size)
56 return;
57
58 uint32_t old_size = *size;
59 *size = MAX2(*size * 2, decl_size);
60 *regs = reralloc(c, *regs, struct qreg, *size);
61 if (!*regs) {
62 fprintf(stderr, "Malloc failure\n");
63 abort();
64 }
65
66 for (uint32_t i = old_size; i < *size; i++)
67 (*regs)[i] = c->undef;
68 }
69
70 static struct qreg
71 indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
72 {
73 struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
74 uint32_t offset = intr->const_index[0];
75 struct vc4_compiler_ubo_range *range = NULL;
76 unsigned i;
77 for (i = 0; i < c->num_uniform_ranges; i++) {
78 range = &c->ubo_ranges[i];
79 if (offset >= range->src_offset &&
80 offset < range->src_offset + range->size) {
81 break;
82 }
83 }
84 /* The driver-location-based offset always has to be within a declared
85 * uniform range.
86 */
87 assert(range);
88 if (!range->used) {
89 range->used = true;
90 range->dst_offset = c->next_ubo_dst_offset;
91 c->next_ubo_dst_offset += range->size;
92 c->num_ubo_ranges++;
93 };
94
95 offset -= range->src_offset;
96
97 /* Adjust for where we stored the TGSI register base. */
98 indirect_offset = qir_ADD(c, indirect_offset,
99 qir_uniform_ui(c, (range->dst_offset +
100 offset)));
101
102 /* Clamp to [0, array size). Note that MIN/MAX are signed. */
103 indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0));
104 indirect_offset = qir_MIN(c, indirect_offset,
105 qir_uniform_ui(c, (range->dst_offset +
106 range->size - 4)));
107
108 qir_TEX_DIRECT(c, indirect_offset, qir_uniform(c, QUNIFORM_UBO_ADDR, 0));
109 c->num_texture_samples++;
110 return qir_TEX_RESULT(c);
111 }
112
113 nir_ssa_def *vc4_nir_get_state_uniform(struct nir_builder *b,
114 enum quniform_contents contents)
115 {
116 nir_intrinsic_instr *intr =
117 nir_intrinsic_instr_create(b->shader,
118 nir_intrinsic_load_uniform);
119 intr->const_index[0] = VC4_NIR_STATE_UNIFORM_OFFSET + contents;
120 intr->num_components = 1;
121 nir_ssa_dest_init(&intr->instr, &intr->dest, 1, NULL);
122 nir_builder_instr_insert(b, &intr->instr);
123 return &intr->dest.ssa;
124 }
125
126 nir_ssa_def *
127 vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz)
128 {
129 switch (swiz) {
130 default:
131 case UTIL_FORMAT_SWIZZLE_NONE:
132 fprintf(stderr, "warning: unknown swizzle\n");
133 /* FALLTHROUGH */
134 case UTIL_FORMAT_SWIZZLE_0:
135 return nir_imm_float(b, 0.0);
136 case UTIL_FORMAT_SWIZZLE_1:
137 return nir_imm_float(b, 1.0);
138 case UTIL_FORMAT_SWIZZLE_X:
139 case UTIL_FORMAT_SWIZZLE_Y:
140 case UTIL_FORMAT_SWIZZLE_Z:
141 case UTIL_FORMAT_SWIZZLE_W:
142 return srcs[swiz];
143 }
144 }
145
146 static struct qreg *
147 ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def)
148 {
149 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
150 def->num_components);
151 _mesa_hash_table_insert(c->def_ht, def, qregs);
152 return qregs;
153 }
154
155 static struct qreg *
156 ntq_get_dest(struct vc4_compile *c, nir_dest *dest)
157 {
158 if (dest->is_ssa) {
159 struct qreg *qregs = ntq_init_ssa_def(c, &dest->ssa);
160 for (int i = 0; i < dest->ssa.num_components; i++)
161 qregs[i] = c->undef;
162 return qregs;
163 } else {
164 nir_register *reg = dest->reg.reg;
165 assert(dest->reg.base_offset == 0);
166 assert(reg->num_array_elems == 0);
167 struct hash_entry *entry =
168 _mesa_hash_table_search(c->def_ht, reg);
169 return entry->data;
170 }
171 }
172
173 static struct qreg
174 ntq_get_src(struct vc4_compile *c, nir_src src, int i)
175 {
176 struct hash_entry *entry;
177 if (src.is_ssa) {
178 entry = _mesa_hash_table_search(c->def_ht, src.ssa);
179 assert(i < src.ssa->num_components);
180 } else {
181 nir_register *reg = src.reg.reg;
182 entry = _mesa_hash_table_search(c->def_ht, reg);
183 assert(reg->num_array_elems == 0);
184 assert(src.reg.base_offset == 0);
185 assert(i < reg->num_components);
186 }
187
188 struct qreg *qregs = entry->data;
189 return qregs[i];
190 }
191
192 static struct qreg
193 ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
194 unsigned src)
195 {
196 assert(util_is_power_of_two(instr->dest.write_mask));
197 unsigned chan = ffs(instr->dest.write_mask) - 1;
198 struct qreg r = ntq_get_src(c, instr->src[src].src,
199 instr->src[src].swizzle[chan]);
200
201 assert(!instr->src[src].abs);
202 assert(!instr->src[src].negate);
203
204 return r;
205 };
206
207 static struct qreg
208 get_swizzled_channel(struct vc4_compile *c,
209 struct qreg *srcs, int swiz)
210 {
211 switch (swiz) {
212 default:
213 case UTIL_FORMAT_SWIZZLE_NONE:
214 fprintf(stderr, "warning: unknown swizzle\n");
215 /* FALLTHROUGH */
216 case UTIL_FORMAT_SWIZZLE_0:
217 return qir_uniform_f(c, 0.0);
218 case UTIL_FORMAT_SWIZZLE_1:
219 return qir_uniform_f(c, 1.0);
220 case UTIL_FORMAT_SWIZZLE_X:
221 case UTIL_FORMAT_SWIZZLE_Y:
222 case UTIL_FORMAT_SWIZZLE_Z:
223 case UTIL_FORMAT_SWIZZLE_W:
224 return srcs[swiz];
225 }
226 }
227
228 static inline struct qreg
229 qir_SAT(struct vc4_compile *c, struct qreg val)
230 {
231 return qir_FMAX(c,
232 qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
233 qir_uniform_f(c, 0.0));
234 }
235
236 static struct qreg
237 ntq_rcp(struct vc4_compile *c, struct qreg x)
238 {
239 struct qreg r = qir_RCP(c, x);
240
241 /* Apply a Newton-Raphson step to improve the accuracy. */
242 r = qir_FMUL(c, r, qir_FSUB(c,
243 qir_uniform_f(c, 2.0),
244 qir_FMUL(c, x, r)));
245
246 return r;
247 }
248
249 static struct qreg
250 ntq_rsq(struct vc4_compile *c, struct qreg x)
251 {
252 struct qreg r = qir_RSQ(c, x);
253
254 /* Apply a Newton-Raphson step to improve the accuracy. */
255 r = qir_FMUL(c, r, qir_FSUB(c,
256 qir_uniform_f(c, 1.5),
257 qir_FMUL(c,
258 qir_uniform_f(c, 0.5),
259 qir_FMUL(c, x,
260 qir_FMUL(c, r, r)))));
261
262 return r;
263 }
264
265 static struct qreg
266 qir_srgb_decode(struct vc4_compile *c, struct qreg srgb)
267 {
268 struct qreg low = qir_FMUL(c, srgb, qir_uniform_f(c, 1.0 / 12.92));
269 struct qreg high = qir_POW(c,
270 qir_FMUL(c,
271 qir_FADD(c,
272 srgb,
273 qir_uniform_f(c, 0.055)),
274 qir_uniform_f(c, 1.0 / 1.055)),
275 qir_uniform_f(c, 2.4));
276
277 qir_SF(c, qir_FSUB(c, srgb, qir_uniform_f(c, 0.04045)));
278 return qir_SEL_X_Y_NS(c, low, high);
279 }
280
281 static struct qreg
282 ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
283 {
284 struct qreg src0_hi = qir_SHR(c, src0,
285 qir_uniform_ui(c, 24));
286 struct qreg src1_hi = qir_SHR(c, src1,
287 qir_uniform_ui(c, 24));
288
289 struct qreg hilo = qir_MUL24(c, src0_hi, src1);
290 struct qreg lohi = qir_MUL24(c, src0, src1_hi);
291 struct qreg lolo = qir_MUL24(c, src0, src1);
292
293 return qir_ADD(c, lolo, qir_SHL(c,
294 qir_ADD(c, hilo, lohi),
295 qir_uniform_ui(c, 24)));
296 }
297
298 static void
299 ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
300 {
301 struct qreg s, t, r, lod, proj, compare;
302 bool is_txb = false, is_txl = false, has_proj = false;
303 unsigned unit = instr->sampler_index;
304
305 for (unsigned i = 0; i < instr->num_srcs; i++) {
306 switch (instr->src[i].src_type) {
307 case nir_tex_src_coord:
308 s = ntq_get_src(c, instr->src[i].src, 0);
309 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D)
310 t = qir_uniform_f(c, 0.5);
311 else
312 t = ntq_get_src(c, instr->src[i].src, 1);
313 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
314 r = ntq_get_src(c, instr->src[i].src, 2);
315 break;
316 case nir_tex_src_bias:
317 lod = ntq_get_src(c, instr->src[i].src, 0);
318 is_txb = true;
319 break;
320 case nir_tex_src_lod:
321 lod = ntq_get_src(c, instr->src[i].src, 0);
322 is_txl = true;
323 break;
324 case nir_tex_src_comparitor:
325 compare = ntq_get_src(c, instr->src[i].src, 0);
326 break;
327 case nir_tex_src_projector:
328 proj = qir_RCP(c, ntq_get_src(c, instr->src[i].src, 0));
329 s = qir_FMUL(c, s, proj);
330 t = qir_FMUL(c, t, proj);
331 has_proj = true;
332 break;
333 default:
334 unreachable("unknown texture source");
335 }
336 }
337
338 struct qreg texture_u[] = {
339 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
340 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
341 qir_uniform(c, QUNIFORM_CONSTANT, 0),
342 qir_uniform(c, QUNIFORM_CONSTANT, 0),
343 };
344 uint32_t next_texture_u = 0;
345
346 /* There is no native support for GL texture rectangle coordinates, so
347 * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
348 * 1]).
349 */
350 if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
351 s = qir_FMUL(c, s,
352 qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, unit));
353 t = qir_FMUL(c, t,
354 qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, unit));
355 }
356
357 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
358 texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
359 unit | (is_txl << 16));
360 }
361
362 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
363 struct qreg ma = qir_FMAXABS(c, qir_FMAXABS(c, s, t), r);
364 struct qreg rcp_ma = qir_RCP(c, ma);
365 s = qir_FMUL(c, s, rcp_ma);
366 t = qir_FMUL(c, t, rcp_ma);
367 r = qir_FMUL(c, r, rcp_ma);
368
369 qir_TEX_R(c, r, texture_u[next_texture_u++]);
370 } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
371 c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
372 c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
373 c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
374 qir_TEX_R(c, qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR, unit),
375 texture_u[next_texture_u++]);
376 }
377
378 if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
379 s = qir_SAT(c, s);
380 }
381
382 if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
383 t = qir_SAT(c, t);
384 }
385
386 qir_TEX_T(c, t, texture_u[next_texture_u++]);
387
388 if (is_txl || is_txb)
389 qir_TEX_B(c, lod, texture_u[next_texture_u++]);
390
391 qir_TEX_S(c, s, texture_u[next_texture_u++]);
392
393 c->num_texture_samples++;
394 struct qreg tex = qir_TEX_RESULT(c);
395
396 enum pipe_format format = c->key->tex[unit].format;
397
398 struct qreg unpacked[4];
399 if (util_format_is_depth_or_stencil(format)) {
400 struct qreg depthf = qir_ITOF(c, qir_SHR(c, tex,
401 qir_uniform_ui(c, 8)));
402 struct qreg normalized = qir_FMUL(c, depthf,
403 qir_uniform_f(c, 1.0f/0xffffff));
404
405 struct qreg depth_output;
406
407 struct qreg one = qir_uniform_f(c, 1.0f);
408 if (c->key->tex[unit].compare_mode) {
409 if (has_proj)
410 compare = qir_FMUL(c, compare, proj);
411
412 switch (c->key->tex[unit].compare_func) {
413 case PIPE_FUNC_NEVER:
414 depth_output = qir_uniform_f(c, 0.0f);
415 break;
416 case PIPE_FUNC_ALWAYS:
417 depth_output = one;
418 break;
419 case PIPE_FUNC_EQUAL:
420 qir_SF(c, qir_FSUB(c, compare, normalized));
421 depth_output = qir_SEL_X_0_ZS(c, one);
422 break;
423 case PIPE_FUNC_NOTEQUAL:
424 qir_SF(c, qir_FSUB(c, compare, normalized));
425 depth_output = qir_SEL_X_0_ZC(c, one);
426 break;
427 case PIPE_FUNC_GREATER:
428 qir_SF(c, qir_FSUB(c, compare, normalized));
429 depth_output = qir_SEL_X_0_NC(c, one);
430 break;
431 case PIPE_FUNC_GEQUAL:
432 qir_SF(c, qir_FSUB(c, normalized, compare));
433 depth_output = qir_SEL_X_0_NS(c, one);
434 break;
435 case PIPE_FUNC_LESS:
436 qir_SF(c, qir_FSUB(c, compare, normalized));
437 depth_output = qir_SEL_X_0_NS(c, one);
438 break;
439 case PIPE_FUNC_LEQUAL:
440 qir_SF(c, qir_FSUB(c, normalized, compare));
441 depth_output = qir_SEL_X_0_NC(c, one);
442 break;
443 }
444 } else {
445 depth_output = normalized;
446 }
447
448 for (int i = 0; i < 4; i++)
449 unpacked[i] = depth_output;
450 } else {
451 for (int i = 0; i < 4; i++)
452 unpacked[i] = qir_UNPACK_8_F(c, tex, i);
453 }
454
455 const uint8_t *format_swiz = vc4_get_format_swizzle(format);
456 struct qreg texture_output[4];
457 for (int i = 0; i < 4; i++) {
458 texture_output[i] = get_swizzled_channel(c, unpacked,
459 format_swiz[i]);
460 }
461
462 if (util_format_is_srgb(format)) {
463 for (int i = 0; i < 3; i++)
464 texture_output[i] = qir_srgb_decode(c,
465 texture_output[i]);
466 }
467
468 struct qreg *dest = ntq_get_dest(c, &instr->dest);
469 for (int i = 0; i < 4; i++) {
470 dest[i] = get_swizzled_channel(c, texture_output,
471 c->key->tex[unit].swizzle[i]);
472 }
473 }
474
475 /**
476 * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
477 * to zero).
478 */
479 static struct qreg
480 ntq_ffract(struct vc4_compile *c, struct qreg src)
481 {
482 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
483 struct qreg diff = qir_FSUB(c, src, trunc);
484 qir_SF(c, diff);
485 return qir_SEL_X_Y_NS(c,
486 qir_FADD(c, diff, qir_uniform_f(c, 1.0)),
487 diff);
488 }
489
490 /**
491 * Computes floor(x), which is tricky because our FTOI truncates (rounds to
492 * zero).
493 */
494 static struct qreg
495 ntq_ffloor(struct vc4_compile *c, struct qreg src)
496 {
497 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
498
499 /* This will be < 0 if we truncated and the truncation was of a value
500 * that was < 0 in the first place.
501 */
502 qir_SF(c, qir_FSUB(c, src, trunc));
503
504 return qir_SEL_X_Y_NS(c,
505 qir_FSUB(c, trunc, qir_uniform_f(c, 1.0)),
506 trunc);
507 }
508
509 /**
510 * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
511 * zero).
512 */
513 static struct qreg
514 ntq_fceil(struct vc4_compile *c, struct qreg src)
515 {
516 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
517
518 /* This will be < 0 if we truncated and the truncation was of a value
519 * that was > 0 in the first place.
520 */
521 qir_SF(c, qir_FSUB(c, trunc, src));
522
523 return qir_SEL_X_Y_NS(c,
524 qir_FADD(c, trunc, qir_uniform_f(c, 1.0)),
525 trunc);
526 }
527
528 static struct qreg
529 ntq_fsin(struct vc4_compile *c, struct qreg src)
530 {
531 float coeff[] = {
532 -2.0 * M_PI,
533 pow(2.0 * M_PI, 3) / (3 * 2 * 1),
534 -pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
535 pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
536 -pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
537 };
538
539 struct qreg scaled_x =
540 qir_FMUL(c,
541 src,
542 qir_uniform_f(c, 1.0 / (M_PI * 2.0)));
543
544 struct qreg x = qir_FADD(c,
545 ntq_ffract(c, scaled_x),
546 qir_uniform_f(c, -0.5));
547 struct qreg x2 = qir_FMUL(c, x, x);
548 struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
549 for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
550 x = qir_FMUL(c, x, x2);
551 sum = qir_FADD(c,
552 sum,
553 qir_FMUL(c,
554 x,
555 qir_uniform_f(c, coeff[i])));
556 }
557 return sum;
558 }
559
560 static struct qreg
561 ntq_fcos(struct vc4_compile *c, struct qreg src)
562 {
563 float coeff[] = {
564 -1.0f,
565 pow(2.0 * M_PI, 2) / (2 * 1),
566 -pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
567 pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
568 -pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
569 pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
570 };
571
572 struct qreg scaled_x =
573 qir_FMUL(c, src,
574 qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
575 struct qreg x_frac = qir_FADD(c,
576 ntq_ffract(c, scaled_x),
577 qir_uniform_f(c, -0.5));
578
579 struct qreg sum = qir_uniform_f(c, coeff[0]);
580 struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
581 struct qreg x = x2; /* Current x^2, x^4, or x^6 */
582 for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
583 if (i != 1)
584 x = qir_FMUL(c, x, x2);
585
586 struct qreg mul = qir_FMUL(c,
587 x,
588 qir_uniform_f(c, coeff[i]));
589 if (i == 0)
590 sum = mul;
591 else
592 sum = qir_FADD(c, sum, mul);
593 }
594 return sum;
595 }
596
597 static struct qreg
598 ntq_fsign(struct vc4_compile *c, struct qreg src)
599 {
600 qir_SF(c, src);
601 return qir_SEL_X_Y_NC(c,
602 qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0)),
603 qir_uniform_f(c, -1.0));
604 }
605
606 static struct qreg
607 get_channel_from_vpm(struct vc4_compile *c,
608 struct qreg *vpm_reads,
609 uint8_t swiz,
610 const struct util_format_description *desc)
611 {
612 const struct util_format_channel_description *chan =
613 &desc->channel[swiz];
614 struct qreg temp;
615
616 if (swiz > UTIL_FORMAT_SWIZZLE_W)
617 return get_swizzled_channel(c, vpm_reads, swiz);
618 else if (chan->size == 32 &&
619 chan->type == UTIL_FORMAT_TYPE_FLOAT) {
620 return get_swizzled_channel(c, vpm_reads, swiz);
621 } else if (chan->size == 32 &&
622 chan->type == UTIL_FORMAT_TYPE_SIGNED) {
623 if (chan->normalized) {
624 return qir_FMUL(c,
625 qir_ITOF(c, vpm_reads[swiz]),
626 qir_uniform_f(c,
627 1.0 / 0x7fffffff));
628 } else {
629 return qir_ITOF(c, vpm_reads[swiz]);
630 }
631 } else if (chan->size == 8 &&
632 (chan->type == UTIL_FORMAT_TYPE_UNSIGNED ||
633 chan->type == UTIL_FORMAT_TYPE_SIGNED)) {
634 struct qreg vpm = vpm_reads[0];
635 if (chan->type == UTIL_FORMAT_TYPE_SIGNED) {
636 temp = qir_XOR(c, vpm, qir_uniform_ui(c, 0x80808080));
637 if (chan->normalized) {
638 return qir_FSUB(c, qir_FMUL(c,
639 qir_UNPACK_8_F(c, temp, swiz),
640 qir_uniform_f(c, 2.0)),
641 qir_uniform_f(c, 1.0));
642 } else {
643 return qir_FADD(c,
644 qir_ITOF(c,
645 qir_UNPACK_8_I(c, temp,
646 swiz)),
647 qir_uniform_f(c, -128.0));
648 }
649 } else {
650 if (chan->normalized) {
651 return qir_UNPACK_8_F(c, vpm, swiz);
652 } else {
653 return qir_ITOF(c, qir_UNPACK_8_I(c, vpm, swiz));
654 }
655 }
656 } else if (chan->size == 16 &&
657 (chan->type == UTIL_FORMAT_TYPE_UNSIGNED ||
658 chan->type == UTIL_FORMAT_TYPE_SIGNED)) {
659 struct qreg vpm = vpm_reads[swiz / 2];
660
661 /* Note that UNPACK_16F eats a half float, not ints, so we use
662 * UNPACK_16_I for all of these.
663 */
664 if (chan->type == UTIL_FORMAT_TYPE_SIGNED) {
665 temp = qir_ITOF(c, qir_UNPACK_16_I(c, vpm, swiz % 2));
666 if (chan->normalized) {
667 return qir_FMUL(c, temp,
668 qir_uniform_f(c, 1/32768.0f));
669 } else {
670 return temp;
671 }
672 } else {
673 /* UNPACK_16I sign-extends, so we have to emit ANDs. */
674 temp = vpm;
675 if (swiz == 1 || swiz == 3)
676 temp = qir_UNPACK_16_I(c, temp, 1);
677 temp = qir_AND(c, temp, qir_uniform_ui(c, 0xffff));
678 temp = qir_ITOF(c, temp);
679
680 if (chan->normalized) {
681 return qir_FMUL(c, temp,
682 qir_uniform_f(c, 1 / 65535.0));
683 } else {
684 return temp;
685 }
686 }
687 } else {
688 return c->undef;
689 }
690 }
691
692 static void
693 emit_vertex_input(struct vc4_compile *c, int attr)
694 {
695 enum pipe_format format = c->vs_key->attr_formats[attr];
696 uint32_t attr_size = util_format_get_blocksize(format);
697 struct qreg vpm_reads[4];
698
699 c->vattr_sizes[attr] = align(attr_size, 4);
700 for (int i = 0; i < align(attr_size, 4) / 4; i++) {
701 struct qreg vpm = { QFILE_VPM, attr * 4 + i };
702 vpm_reads[i] = qir_MOV(c, vpm);
703 c->num_inputs++;
704 }
705
706 bool format_warned = false;
707 const struct util_format_description *desc =
708 util_format_description(format);
709
710 for (int i = 0; i < 4; i++) {
711 uint8_t swiz = desc->swizzle[i];
712 struct qreg result = get_channel_from_vpm(c, vpm_reads,
713 swiz, desc);
714
715 if (result.file == QFILE_NULL) {
716 if (!format_warned) {
717 fprintf(stderr,
718 "vtx element %d unsupported type: %s\n",
719 attr, util_format_name(format));
720 format_warned = true;
721 }
722 result = qir_uniform_f(c, 0.0);
723 }
724 c->inputs[attr * 4 + i] = result;
725 }
726 }
727
728 static void
729 emit_fragcoord_input(struct vc4_compile *c, int attr)
730 {
731 c->inputs[attr * 4 + 0] = qir_FRAG_X(c);
732 c->inputs[attr * 4 + 1] = qir_FRAG_Y(c);
733 c->inputs[attr * 4 + 2] =
734 qir_FMUL(c,
735 qir_ITOF(c, qir_FRAG_Z(c)),
736 qir_uniform_f(c, 1.0 / 0xffffff));
737 c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
738 }
739
740 static struct qreg
741 emit_fragment_varying(struct vc4_compile *c, uint8_t semantic,
742 uint8_t index, uint8_t swizzle)
743 {
744 uint32_t i = c->num_input_semantics++;
745 struct qreg vary = {
746 QFILE_VARY,
747 i
748 };
749
750 if (c->num_input_semantics >= c->input_semantics_array_size) {
751 c->input_semantics_array_size =
752 MAX2(4, c->input_semantics_array_size * 2);
753
754 c->input_semantics = reralloc(c, c->input_semantics,
755 struct vc4_varying_semantic,
756 c->input_semantics_array_size);
757 }
758
759 c->input_semantics[i].semantic = semantic;
760 c->input_semantics[i].index = index;
761 c->input_semantics[i].swizzle = swizzle;
762
763 return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
764 }
765
766 static void
767 emit_fragment_input(struct vc4_compile *c, int attr,
768 unsigned semantic_name, unsigned semantic_index)
769 {
770 for (int i = 0; i < 4; i++) {
771 c->inputs[attr * 4 + i] =
772 emit_fragment_varying(c,
773 semantic_name,
774 semantic_index,
775 i);
776 c->num_inputs++;
777 }
778 }
779
780 static void
781 add_output(struct vc4_compile *c,
782 uint32_t decl_offset,
783 uint8_t semantic_name,
784 uint8_t semantic_index,
785 uint8_t semantic_swizzle)
786 {
787 uint32_t old_array_size = c->outputs_array_size;
788 resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
789 decl_offset + 1);
790
791 if (old_array_size != c->outputs_array_size) {
792 c->output_semantics = reralloc(c,
793 c->output_semantics,
794 struct vc4_varying_semantic,
795 c->outputs_array_size);
796 }
797
798 c->output_semantics[decl_offset].semantic = semantic_name;
799 c->output_semantics[decl_offset].index = semantic_index;
800 c->output_semantics[decl_offset].swizzle = semantic_swizzle;
801 }
802
803 static void
804 declare_uniform_range(struct vc4_compile *c, uint32_t start, uint32_t size)
805 {
806 unsigned array_id = c->num_uniform_ranges++;
807 if (array_id >= c->ubo_ranges_array_size) {
808 c->ubo_ranges_array_size = MAX2(c->ubo_ranges_array_size * 2,
809 array_id + 1);
810 c->ubo_ranges = reralloc(c, c->ubo_ranges,
811 struct vc4_compiler_ubo_range,
812 c->ubo_ranges_array_size);
813 }
814
815 c->ubo_ranges[array_id].dst_offset = 0;
816 c->ubo_ranges[array_id].src_offset = start;
817 c->ubo_ranges[array_id].size = size;
818 c->ubo_ranges[array_id].used = false;
819 }
820
821 static bool
822 ntq_src_is_only_ssa_def_user(nir_src *src)
823 {
824 if (!src->is_ssa)
825 return false;
826
827 if (!list_empty(&src->ssa->if_uses))
828 return false;
829
830 return (src->ssa->uses.next == &src->use_link &&
831 src->ssa->uses.next->next == &src->ssa->uses);
832 }
833
834 /**
835 * In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack
836 * bit set.
837 *
838 * However, as an optimization, it tries to find the instructions generating
839 * the sources to be packed and just emit the pack flag there, if possible.
840 */
841 static void
842 ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr)
843 {
844 struct qreg result = qir_get_temp(c);
845 struct nir_alu_instr *vec4 = NULL;
846
847 /* If packing from a vec4 op (as expected), identify it so that we can
848 * peek back at what generated its sources.
849 */
850 if (instr->src[0].src.is_ssa &&
851 instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu &&
852 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op ==
853 nir_op_vec4) {
854 vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
855 }
856
857 for (int i = 0; i < 4; i++) {
858 int swiz = instr->src[0].swizzle[i];
859 struct qreg src;
860 if (vec4) {
861 src = ntq_get_src(c, vec4->src[swiz].src,
862 vec4->src[swiz].swizzle[0]);
863 } else {
864 src = ntq_get_src(c, instr->src[0].src, swiz);
865 }
866
867 if (vec4 &&
868 ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) &&
869 src.file == QFILE_TEMP &&
870 c->defs[src.index] &&
871 qir_is_mul(c->defs[src.index]) &&
872 !c->defs[src.index]->dst.pack) {
873 struct qinst *rewrite = c->defs[src.index];
874 c->defs[src.index] = NULL;
875 rewrite->dst = result;
876 rewrite->dst.pack = QPU_PACK_MUL_8A + i;
877 continue;
878 }
879
880 qir_PACK_8_F(c, result, src, i);
881 }
882
883 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
884 *dest = result;
885 }
886
887 static void
888 ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
889 {
890 /* Vectors are special in that they have non-scalarized writemasks,
891 * and just take the first swizzle channel for each argument in order
892 * into each writemask channel.
893 */
894 if (instr->op == nir_op_vec2 ||
895 instr->op == nir_op_vec3 ||
896 instr->op == nir_op_vec4) {
897 struct qreg srcs[4];
898 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
899 srcs[i] = ntq_get_src(c, instr->src[i].src,
900 instr->src[i].swizzle[0]);
901 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
902 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
903 dest[i] = srcs[i];
904 return;
905 }
906
907 if (instr->op == nir_op_pack_unorm_4x8) {
908 ntq_emit_pack_unorm_4x8(c, instr);
909 return;
910 }
911
912 if (instr->op == nir_op_unpack_unorm_4x8) {
913 struct qreg src = ntq_get_src(c, instr->src[0].src,
914 instr->src[0].swizzle[0]);
915 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
916 for (int i = 0; i < 4; i++) {
917 if (instr->dest.write_mask & (1 << i))
918 dest[i] = qir_UNPACK_8_F(c, src, i);
919 }
920 return;
921 }
922
923 /* General case: We can just grab the one used channel per src. */
924 struct qreg src[nir_op_infos[instr->op].num_inputs];
925 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
926 src[i] = ntq_get_alu_src(c, instr, i);
927 }
928
929 /* Pick the channel to store the output in. */
930 assert(!instr->dest.saturate);
931 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
932 assert(util_is_power_of_two(instr->dest.write_mask));
933 dest += ffs(instr->dest.write_mask) - 1;
934
935 switch (instr->op) {
936 case nir_op_fmov:
937 case nir_op_imov:
938 *dest = qir_MOV(c, src[0]);
939 break;
940 case nir_op_fmul:
941 *dest = qir_FMUL(c, src[0], src[1]);
942 break;
943 case nir_op_fadd:
944 *dest = qir_FADD(c, src[0], src[1]);
945 break;
946 case nir_op_fsub:
947 *dest = qir_FSUB(c, src[0], src[1]);
948 break;
949 case nir_op_fmin:
950 *dest = qir_FMIN(c, src[0], src[1]);
951 break;
952 case nir_op_fmax:
953 *dest = qir_FMAX(c, src[0], src[1]);
954 break;
955
956 case nir_op_f2i:
957 case nir_op_f2u:
958 *dest = qir_FTOI(c, src[0]);
959 break;
960 case nir_op_i2f:
961 case nir_op_u2f:
962 *dest = qir_ITOF(c, src[0]);
963 break;
964 case nir_op_b2f:
965 *dest = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
966 break;
967 case nir_op_b2i:
968 *dest = qir_AND(c, src[0], qir_uniform_ui(c, 1));
969 break;
970 case nir_op_i2b:
971 case nir_op_f2b:
972 qir_SF(c, src[0]);
973 *dest = qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
974 break;
975
976 case nir_op_iadd:
977 *dest = qir_ADD(c, src[0], src[1]);
978 break;
979 case nir_op_ushr:
980 *dest = qir_SHR(c, src[0], src[1]);
981 break;
982 case nir_op_isub:
983 *dest = qir_SUB(c, src[0], src[1]);
984 break;
985 case nir_op_ishr:
986 *dest = qir_ASR(c, src[0], src[1]);
987 break;
988 case nir_op_ishl:
989 *dest = qir_SHL(c, src[0], src[1]);
990 break;
991 case nir_op_imin:
992 *dest = qir_MIN(c, src[0], src[1]);
993 break;
994 case nir_op_imax:
995 *dest = qir_MAX(c, src[0], src[1]);
996 break;
997 case nir_op_iand:
998 *dest = qir_AND(c, src[0], src[1]);
999 break;
1000 case nir_op_ior:
1001 *dest = qir_OR(c, src[0], src[1]);
1002 break;
1003 case nir_op_ixor:
1004 *dest = qir_XOR(c, src[0], src[1]);
1005 break;
1006 case nir_op_inot:
1007 *dest = qir_NOT(c, src[0]);
1008 break;
1009
1010 case nir_op_imul:
1011 *dest = ntq_umul(c, src[0], src[1]);
1012 break;
1013
1014 case nir_op_seq:
1015 qir_SF(c, qir_FSUB(c, src[0], src[1]));
1016 *dest = qir_SEL_X_0_ZS(c, qir_uniform_f(c, 1.0));
1017 break;
1018 case nir_op_sne:
1019 qir_SF(c, qir_FSUB(c, src[0], src[1]));
1020 *dest = qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0));
1021 break;
1022 case nir_op_sge:
1023 qir_SF(c, qir_FSUB(c, src[0], src[1]));
1024 *dest = qir_SEL_X_0_NC(c, qir_uniform_f(c, 1.0));
1025 break;
1026 case nir_op_slt:
1027 qir_SF(c, qir_FSUB(c, src[0], src[1]));
1028 *dest = qir_SEL_X_0_NS(c, qir_uniform_f(c, 1.0));
1029 break;
1030 case nir_op_feq:
1031 qir_SF(c, qir_FSUB(c, src[0], src[1]));
1032 *dest = qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
1033 break;
1034 case nir_op_fne:
1035 qir_SF(c, qir_FSUB(c, src[0], src[1]));
1036 *dest = qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
1037 break;
1038 case nir_op_fge:
1039 qir_SF(c, qir_FSUB(c, src[0], src[1]));
1040 *dest = qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
1041 break;
1042 case nir_op_flt:
1043 qir_SF(c, qir_FSUB(c, src[0], src[1]));
1044 *dest = qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
1045 break;
1046 case nir_op_ieq:
1047 qir_SF(c, qir_SUB(c, src[0], src[1]));
1048 *dest = qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
1049 break;
1050 case nir_op_ine:
1051 qir_SF(c, qir_SUB(c, src[0], src[1]));
1052 *dest = qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
1053 break;
1054 case nir_op_ige:
1055 qir_SF(c, qir_SUB(c, src[0], src[1]));
1056 *dest = qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
1057 break;
1058 case nir_op_ilt:
1059 qir_SF(c, qir_SUB(c, src[0], src[1]));
1060 *dest = qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
1061 break;
1062
1063 case nir_op_bcsel:
1064 qir_SF(c, src[0]);
1065 *dest = qir_SEL_X_Y_NS(c, src[1], src[2]);
1066 break;
1067 case nir_op_fcsel:
1068 qir_SF(c, src[0]);
1069 *dest = qir_SEL_X_Y_ZC(c, src[1], src[2]);
1070 break;
1071
1072 case nir_op_frcp:
1073 *dest = ntq_rcp(c, src[0]);
1074 break;
1075 case nir_op_frsq:
1076 *dest = ntq_rsq(c, src[0]);
1077 break;
1078 case nir_op_fexp2:
1079 *dest = qir_EXP2(c, src[0]);
1080 break;
1081 case nir_op_flog2:
1082 *dest = qir_LOG2(c, src[0]);
1083 break;
1084
1085 case nir_op_ftrunc:
1086 *dest = qir_ITOF(c, qir_FTOI(c, src[0]));
1087 break;
1088 case nir_op_fceil:
1089 *dest = ntq_fceil(c, src[0]);
1090 break;
1091 case nir_op_ffract:
1092 *dest = ntq_ffract(c, src[0]);
1093 break;
1094 case nir_op_ffloor:
1095 *dest = ntq_ffloor(c, src[0]);
1096 break;
1097
1098 case nir_op_fsin:
1099 *dest = ntq_fsin(c, src[0]);
1100 break;
1101 case nir_op_fcos:
1102 *dest = ntq_fcos(c, src[0]);
1103 break;
1104
1105 case nir_op_fsign:
1106 *dest = ntq_fsign(c, src[0]);
1107 break;
1108
1109 case nir_op_fabs:
1110 *dest = qir_FMAXABS(c, src[0], src[0]);
1111 break;
1112 case nir_op_iabs:
1113 *dest = qir_MAX(c, src[0],
1114 qir_SUB(c, qir_uniform_ui(c, 0), src[0]));
1115 break;
1116
1117 default:
1118 fprintf(stderr, "unknown NIR ALU inst: ");
1119 nir_print_instr(&instr->instr, stderr);
1120 fprintf(stderr, "\n");
1121 abort();
1122 }
1123 }
1124
1125 static void
1126 clip_distance_discard(struct vc4_compile *c)
1127 {
1128 for (int i = 0; i < PIPE_MAX_CLIP_PLANES; i++) {
1129 if (!(c->key->ucp_enables & (1 << i)))
1130 continue;
1131
1132 struct qreg dist = emit_fragment_varying(c,
1133 TGSI_SEMANTIC_CLIPDIST,
1134 i,
1135 TGSI_SWIZZLE_X);
1136
1137 qir_SF(c, dist);
1138
1139 if (c->discard.file == QFILE_NULL)
1140 c->discard = qir_uniform_ui(c, 0);
1141
1142 c->discard = qir_SEL_X_Y_NS(c, qir_uniform_ui(c, ~0),
1143 c->discard);
1144 }
1145 }
1146
1147 static void
1148 emit_frag_end(struct vc4_compile *c)
1149 {
1150 clip_distance_discard(c);
1151
1152 struct qreg color;
1153 if (c->output_color_index != -1) {
1154 color = c->outputs[c->output_color_index];
1155 } else {
1156 color = qir_uniform_ui(c, 0);
1157 }
1158
1159 if (c->discard.file != QFILE_NULL)
1160 qir_TLB_DISCARD_SETUP(c, c->discard);
1161
1162 if (c->fs_key->stencil_enabled) {
1163 qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 0));
1164 if (c->fs_key->stencil_twoside) {
1165 qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 1));
1166 }
1167 if (c->fs_key->stencil_full_writemasks) {
1168 qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 2));
1169 }
1170 }
1171
1172 if (c->fs_key->depth_enabled) {
1173 struct qreg z;
1174 if (c->output_position_index != -1) {
1175 z = qir_FTOI(c, qir_FMUL(c, c->outputs[c->output_position_index + 2],
1176 qir_uniform_f(c, 0xffffff)));
1177 } else {
1178 z = qir_FRAG_Z(c);
1179 }
1180 qir_TLB_Z_WRITE(c, z);
1181 }
1182
1183 qir_TLB_COLOR_WRITE(c, color);
1184 }
1185
1186 static void
1187 emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
1188 {
1189 struct qreg packed = qir_get_temp(c);
1190
1191 for (int i = 0; i < 2; i++) {
1192 struct qreg scale =
1193 qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
1194
1195 struct qreg packed_chan = packed;
1196 packed_chan.pack = QPU_PACK_A_16A + i;
1197
1198 qir_FTOI_dest(c, packed_chan,
1199 qir_FMUL(c,
1200 qir_FMUL(c,
1201 c->outputs[c->output_position_index + i],
1202 scale),
1203 rcp_w));
1204 }
1205
1206 qir_VPM_WRITE(c, packed);
1207 }
1208
1209 static void
1210 emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
1211 {
1212 struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
1213 struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
1214
1215 qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
1216 c->outputs[c->output_position_index + 2],
1217 zscale),
1218 rcp_w),
1219 zoffset));
1220 }
1221
1222 static void
1223 emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
1224 {
1225 qir_VPM_WRITE(c, rcp_w);
1226 }
1227
1228 static void
1229 emit_point_size_write(struct vc4_compile *c)
1230 {
1231 struct qreg point_size;
1232
1233 if (c->output_point_size_index != -1)
1234 point_size = c->outputs[c->output_point_size_index + 3];
1235 else
1236 point_size = qir_uniform_f(c, 1.0);
1237
1238 /* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835,
1239 * BCM21553).
1240 */
1241 point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125));
1242
1243 qir_VPM_WRITE(c, point_size);
1244 }
1245
1246 /**
1247 * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
1248 *
1249 * The simulator insists that there be at least one vertex attribute, so
1250 * vc4_draw.c will emit one if it wouldn't have otherwise. The simulator also
1251 * insists that all vertex attributes loaded get read by the VS/CS, so we have
1252 * to consume it here.
1253 */
1254 static void
1255 emit_stub_vpm_read(struct vc4_compile *c)
1256 {
1257 if (c->num_inputs)
1258 return;
1259
1260 c->vattr_sizes[0] = 4;
1261 struct qreg vpm = { QFILE_VPM, 0 };
1262 (void)qir_MOV(c, vpm);
1263 c->num_inputs++;
1264 }
1265
1266 static void
1267 emit_ucp_clipdistance(struct vc4_compile *c)
1268 {
1269 unsigned cv;
1270 if (c->output_clipvertex_index != -1)
1271 cv = c->output_clipvertex_index;
1272 else if (c->output_position_index != -1)
1273 cv = c->output_position_index;
1274 else
1275 return;
1276
1277 for (int plane = 0; plane < PIPE_MAX_CLIP_PLANES; plane++) {
1278 if (!(c->key->ucp_enables & (1 << plane)))
1279 continue;
1280
1281 /* Pick the next outputs[] that hasn't been written to, since
1282 * there are no other program writes left to be processed at
1283 * this point. If something had been declared but not written
1284 * (like a w component), we'll just smash over the top of it.
1285 */
1286 uint32_t output_index = c->num_outputs++;
1287 add_output(c, output_index,
1288 TGSI_SEMANTIC_CLIPDIST,
1289 plane,
1290 TGSI_SWIZZLE_X);
1291
1292
1293 struct qreg dist = qir_uniform_f(c, 0.0);
1294 for (int i = 0; i < 4; i++) {
1295 struct qreg pos_chan = c->outputs[cv + i];
1296 struct qreg ucp =
1297 qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1298 plane * 4 + i);
1299 dist = qir_FADD(c, dist, qir_FMUL(c, pos_chan, ucp));
1300 }
1301
1302 c->outputs[output_index] = dist;
1303 }
1304 }
1305
1306 static void
1307 emit_vert_end(struct vc4_compile *c,
1308 struct vc4_varying_semantic *fs_inputs,
1309 uint32_t num_fs_inputs)
1310 {
1311 struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
1312
1313 emit_stub_vpm_read(c);
1314 emit_ucp_clipdistance(c);
1315
1316 emit_scaled_viewport_write(c, rcp_w);
1317 emit_zs_write(c, rcp_w);
1318 emit_rcp_wc_write(c, rcp_w);
1319 if (c->vs_key->per_vertex_point_size)
1320 emit_point_size_write(c);
1321
1322 for (int i = 0; i < num_fs_inputs; i++) {
1323 struct vc4_varying_semantic *input = &fs_inputs[i];
1324 int j;
1325
1326 for (j = 0; j < c->num_outputs; j++) {
1327 struct vc4_varying_semantic *output =
1328 &c->output_semantics[j];
1329
1330 if (input->semantic == output->semantic &&
1331 input->index == output->index &&
1332 input->swizzle == output->swizzle) {
1333 qir_VPM_WRITE(c, c->outputs[j]);
1334 break;
1335 }
1336 }
1337 /* Emit padding if we didn't find a declared VS output for
1338 * this FS input.
1339 */
1340 if (j == c->num_outputs)
1341 qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
1342 }
1343 }
1344
1345 static void
1346 emit_coord_end(struct vc4_compile *c)
1347 {
1348 struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
1349
1350 emit_stub_vpm_read(c);
1351
1352 for (int i = 0; i < 4; i++)
1353 qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
1354
1355 emit_scaled_viewport_write(c, rcp_w);
1356 emit_zs_write(c, rcp_w);
1357 emit_rcp_wc_write(c, rcp_w);
1358 if (c->vs_key->per_vertex_point_size)
1359 emit_point_size_write(c);
1360 }
1361
1362 static void
1363 vc4_optimize_nir(struct nir_shader *s)
1364 {
1365 bool progress;
1366
1367 do {
1368 progress = false;
1369
1370 nir_lower_vars_to_ssa(s);
1371 nir_lower_alu_to_scalar(s);
1372
1373 progress = nir_copy_prop(s) || progress;
1374 progress = nir_opt_dce(s) || progress;
1375 progress = nir_opt_cse(s) || progress;
1376 progress = nir_opt_peephole_select(s) || progress;
1377 progress = nir_opt_algebraic(s) || progress;
1378 progress = nir_opt_constant_folding(s) || progress;
1379 progress = nir_opt_undef(s) || progress;
1380 } while (progress);
1381 }
1382
1383 static int
1384 driver_location_compare(const void *in_a, const void *in_b)
1385 {
1386 const nir_variable *const *a = in_a;
1387 const nir_variable *const *b = in_b;
1388
1389 return (*a)->data.driver_location - (*b)->data.driver_location;
1390 }
1391
1392 static void
1393 ntq_setup_inputs(struct vc4_compile *c)
1394 {
1395 unsigned num_entries = 0;
1396 foreach_list_typed(nir_variable, var, node, &c->s->inputs)
1397 num_entries++;
1398
1399 nir_variable *vars[num_entries];
1400
1401 unsigned i = 0;
1402 foreach_list_typed(nir_variable, var, node, &c->s->inputs)
1403 vars[i++] = var;
1404
1405 /* Sort the variables so that we emit the input setup in
1406 * driver_location order. This is required for VPM reads, whose data
1407 * is fetched into the VPM in driver_location (TGSI register index)
1408 * order.
1409 */
1410 qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
1411
1412 for (unsigned i = 0; i < num_entries; i++) {
1413 nir_variable *var = vars[i];
1414 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1415 unsigned semantic_name, semantic_index;
1416 unsigned loc = var->data.driver_location;
1417
1418 varying_slot_to_tgsi_semantic(var->data.location,
1419 &semantic_name, &semantic_index);
1420
1421 assert(array_len == 1);
1422 (void)array_len;
1423 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1424 (loc + 1) * 4);
1425
1426 if (c->stage == QSTAGE_FRAG) {
1427 if (semantic_name == TGSI_SEMANTIC_POSITION) {
1428 emit_fragcoord_input(c, loc);
1429 } else if (semantic_name == TGSI_SEMANTIC_FACE) {
1430 c->inputs[loc * 4 + 0] = qir_FRAG_REV_FLAG(c);
1431 } else if (semantic_name == TGSI_SEMANTIC_GENERIC &&
1432 (c->fs_key->point_sprite_mask &
1433 (1 << semantic_index))) {
1434 c->inputs[loc * 4 + 0] = c->point_x;
1435 c->inputs[loc * 4 + 1] = c->point_y;
1436 } else {
1437 emit_fragment_input(c, loc,
1438 semantic_name,
1439 semantic_index);
1440 }
1441 } else {
1442 emit_vertex_input(c, loc);
1443 }
1444 }
1445 }
1446
1447 static void
1448 ntq_setup_outputs(struct vc4_compile *c)
1449 {
1450 foreach_list_typed(nir_variable, var, node, &c->s->outputs) {
1451 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1452 unsigned semantic_name, semantic_index;
1453 unsigned loc = var->data.driver_location * 4;
1454
1455 if (c->stage == QSTAGE_FRAG) {
1456 frag_result_to_tgsi_semantic(var->data.location,
1457 &semantic_name, &semantic_index);
1458 } else {
1459 varying_slot_to_tgsi_semantic(var->data.location,
1460 &semantic_name, &semantic_index);
1461 }
1462
1463 assert(array_len == 1);
1464 (void)array_len;
1465
1466 /* NIR hack to pass through
1467 * TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS */
1468 if (semantic_name == TGSI_SEMANTIC_COLOR &&
1469 semantic_index == -1)
1470 semantic_index = 0;
1471
1472 for (int i = 0; i < 4; i++) {
1473 add_output(c,
1474 loc + i,
1475 semantic_name,
1476 semantic_index,
1477 i);
1478 }
1479
1480 switch (semantic_name) {
1481 case TGSI_SEMANTIC_POSITION:
1482 c->output_position_index = loc;
1483 break;
1484 case TGSI_SEMANTIC_CLIPVERTEX:
1485 c->output_clipvertex_index = loc;
1486 break;
1487 case TGSI_SEMANTIC_COLOR:
1488 c->output_color_index = loc;
1489 break;
1490 case TGSI_SEMANTIC_PSIZE:
1491 c->output_point_size_index = loc;
1492 break;
1493 }
1494
1495 }
1496 }
1497
1498 static void
1499 ntq_setup_uniforms(struct vc4_compile *c)
1500 {
1501 foreach_list_typed(nir_variable, var, node, &c->s->uniforms) {
1502 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1503 unsigned array_elem_size = 4 * sizeof(float);
1504
1505 declare_uniform_range(c, var->data.driver_location * array_elem_size,
1506 array_len * array_elem_size);
1507
1508 }
1509 }
1510
1511 /**
1512 * Sets up the mapping from nir_register to struct qreg *.
1513 *
1514 * Each nir_register gets a struct qreg per 32-bit component being stored.
1515 */
1516 static void
1517 ntq_setup_registers(struct vc4_compile *c, struct exec_list *list)
1518 {
1519 foreach_list_typed(nir_register, nir_reg, node, list) {
1520 unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
1521 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
1522 array_len *
1523 nir_reg->num_components);
1524
1525 _mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
1526
1527 for (int i = 0; i < array_len * nir_reg->num_components; i++)
1528 qregs[i] = qir_uniform_ui(c, 0);
1529 }
1530 }
1531
1532 static void
1533 ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
1534 {
1535 struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1536 for (int i = 0; i < instr->def.num_components; i++)
1537 qregs[i] = qir_uniform_ui(c, instr->value.u[i]);
1538
1539 _mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
1540 }
1541
1542 static void
1543 ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr)
1544 {
1545 struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1546
1547 /* QIR needs there to be *some* value, so pick 0 (same as for
1548 * ntq_setup_registers().
1549 */
1550 for (int i = 0; i < instr->def.num_components; i++)
1551 qregs[i] = qir_uniform_ui(c, 0);
1552 }
1553
1554 static void
1555 ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
1556 {
1557 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
1558 struct qreg *dest = NULL;
1559
1560 if (info->has_dest) {
1561 dest = ntq_get_dest(c, &instr->dest);
1562 }
1563
1564 switch (instr->intrinsic) {
1565 case nir_intrinsic_load_uniform:
1566 assert(instr->num_components == 1);
1567 if (instr->const_index[0] < VC4_NIR_STATE_UNIFORM_OFFSET) {
1568 *dest = qir_uniform(c, QUNIFORM_UNIFORM,
1569 instr->const_index[0]);
1570 } else {
1571 *dest = qir_uniform(c, instr->const_index[0] -
1572 VC4_NIR_STATE_UNIFORM_OFFSET,
1573 0);
1574 }
1575 break;
1576
1577 case nir_intrinsic_load_uniform_indirect:
1578 *dest = indirect_uniform_load(c, instr);
1579
1580 break;
1581
1582 case nir_intrinsic_load_input:
1583 assert(instr->num_components == 1);
1584 if (instr->const_index[0] == VC4_NIR_TLB_COLOR_READ_INPUT) {
1585 *dest = qir_TLB_COLOR_READ(c);
1586 } else {
1587 *dest = c->inputs[instr->const_index[0]];
1588 }
1589 break;
1590
1591 case nir_intrinsic_store_output:
1592 assert(instr->num_components == 1);
1593 c->outputs[instr->const_index[0]] =
1594 qir_MOV(c, ntq_get_src(c, instr->src[0], 0));
1595 c->num_outputs = MAX2(c->num_outputs, instr->const_index[0] + 1);
1596 break;
1597
1598 case nir_intrinsic_discard:
1599 c->discard = qir_uniform_ui(c, ~0);
1600 break;
1601
1602 case nir_intrinsic_discard_if:
1603 if (c->discard.file == QFILE_NULL)
1604 c->discard = qir_uniform_ui(c, 0);
1605 c->discard = qir_OR(c, c->discard,
1606 ntq_get_src(c, instr->src[0], 0));
1607 break;
1608
1609 default:
1610 fprintf(stderr, "Unknown intrinsic: ");
1611 nir_print_instr(&instr->instr, stderr);
1612 fprintf(stderr, "\n");
1613 break;
1614 }
1615 }
1616
1617 static void
1618 ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
1619 {
1620 fprintf(stderr, "general IF statements not handled.\n");
1621 }
1622
1623 static void
1624 ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
1625 {
1626 switch (instr->type) {
1627 case nir_instr_type_alu:
1628 ntq_emit_alu(c, nir_instr_as_alu(instr));
1629 break;
1630
1631 case nir_instr_type_intrinsic:
1632 ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
1633 break;
1634
1635 case nir_instr_type_load_const:
1636 ntq_emit_load_const(c, nir_instr_as_load_const(instr));
1637 break;
1638
1639 case nir_instr_type_ssa_undef:
1640 ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
1641 break;
1642
1643 case nir_instr_type_tex:
1644 ntq_emit_tex(c, nir_instr_as_tex(instr));
1645 break;
1646
1647 default:
1648 fprintf(stderr, "Unknown NIR instr type: ");
1649 nir_print_instr(instr, stderr);
1650 fprintf(stderr, "\n");
1651 abort();
1652 }
1653 }
1654
1655 static void
1656 ntq_emit_block(struct vc4_compile *c, nir_block *block)
1657 {
1658 nir_foreach_instr(block, instr) {
1659 ntq_emit_instr(c, instr);
1660 }
1661 }
1662
1663 static void
1664 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
1665 {
1666 foreach_list_typed(nir_cf_node, node, node, list) {
1667 switch (node->type) {
1668 /* case nir_cf_node_loop: */
1669 case nir_cf_node_block:
1670 ntq_emit_block(c, nir_cf_node_as_block(node));
1671 break;
1672
1673 case nir_cf_node_if:
1674 ntq_emit_if(c, nir_cf_node_as_if(node));
1675 break;
1676
1677 default:
1678 assert(0);
1679 }
1680 }
1681 }
1682
1683 static void
1684 ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
1685 {
1686 ntq_setup_registers(c, &impl->registers);
1687 ntq_emit_cf_list(c, &impl->body);
1688 }
1689
1690 static void
1691 nir_to_qir(struct vc4_compile *c)
1692 {
1693 ntq_setup_inputs(c);
1694 ntq_setup_outputs(c);
1695 ntq_setup_uniforms(c);
1696 ntq_setup_registers(c, &c->s->registers);
1697
1698 /* Find the main function and emit the body. */
1699 nir_foreach_overload(c->s, overload) {
1700 assert(strcmp(overload->function->name, "main") == 0);
1701 assert(overload->impl);
1702 ntq_emit_impl(c, overload->impl);
1703 }
1704 }
1705
1706 static const nir_shader_compiler_options nir_options = {
1707 .lower_ffma = true,
1708 .lower_flrp = true,
1709 .lower_fpow = true,
1710 .lower_fsat = true,
1711 .lower_fsqrt = true,
1712 .lower_negate = true,
1713 };
1714
1715 static bool
1716 count_nir_instrs_in_block(nir_block *block, void *state)
1717 {
1718 int *count = (int *) state;
1719 nir_foreach_instr(block, instr) {
1720 *count = *count + 1;
1721 }
1722 return true;
1723 }
1724
1725 static int
1726 count_nir_instrs(nir_shader *nir)
1727 {
1728 int count = 0;
1729 nir_foreach_overload(nir, overload) {
1730 if (!overload->impl)
1731 continue;
1732 nir_foreach_block(overload->impl, count_nir_instrs_in_block, &count);
1733 }
1734 return count;
1735 }
1736
1737 static struct vc4_compile *
1738 vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
1739 struct vc4_key *key)
1740 {
1741 struct vc4_compile *c = qir_compile_init();
1742
1743 c->stage = stage;
1744 c->shader_state = &key->shader_state->base;
1745 c->program_id = key->shader_state->program_id;
1746 c->variant_id = key->shader_state->compiled_variant_count++;
1747
1748 c->key = key;
1749 switch (stage) {
1750 case QSTAGE_FRAG:
1751 c->fs_key = (struct vc4_fs_key *)key;
1752 if (c->fs_key->is_points) {
1753 c->point_x = emit_fragment_varying(c, ~0, ~0, 0);
1754 c->point_y = emit_fragment_varying(c, ~0, ~0, 0);
1755 } else if (c->fs_key->is_lines) {
1756 c->line_x = emit_fragment_varying(c, ~0, ~0, 0);
1757 }
1758 break;
1759 case QSTAGE_VERT:
1760 c->vs_key = (struct vc4_vs_key *)key;
1761 break;
1762 case QSTAGE_COORD:
1763 c->vs_key = (struct vc4_vs_key *)key;
1764 break;
1765 }
1766
1767 const struct tgsi_token *tokens = key->shader_state->base.tokens;
1768 if (c->fs_key && c->fs_key->light_twoside) {
1769 if (!key->shader_state->twoside_tokens) {
1770 const struct tgsi_lowering_config lowering_config = {
1771 .color_two_side = true,
1772 };
1773 struct tgsi_shader_info info;
1774 key->shader_state->twoside_tokens =
1775 tgsi_transform_lowering(&lowering_config,
1776 key->shader_state->base.tokens,
1777 &info);
1778
1779 /* If no transformation occurred, then NULL is
1780 * returned and we just use our original tokens.
1781 */
1782 if (!key->shader_state->twoside_tokens) {
1783 key->shader_state->twoside_tokens =
1784 key->shader_state->base.tokens;
1785 }
1786 }
1787 tokens = key->shader_state->twoside_tokens;
1788 }
1789
1790 if (vc4_debug & VC4_DEBUG_TGSI) {
1791 fprintf(stderr, "%s prog %d/%d TGSI:\n",
1792 qir_get_stage_name(c->stage),
1793 c->program_id, c->variant_id);
1794 tgsi_dump(tokens, 0);
1795 }
1796
1797 c->s = tgsi_to_nir(tokens, &nir_options);
1798 nir_opt_global_to_local(c->s);
1799 nir_convert_to_ssa(c->s);
1800 if (stage == QSTAGE_FRAG)
1801 vc4_nir_lower_blend(c);
1802 vc4_nir_lower_io(c);
1803 nir_lower_idiv(c->s);
1804 nir_lower_load_const_to_scalar(c->s);
1805
1806 vc4_optimize_nir(c->s);
1807
1808 nir_remove_dead_variables(c->s);
1809
1810 nir_convert_from_ssa(c->s, true);
1811
1812 if (vc4_debug & VC4_DEBUG_SHADERDB) {
1813 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n",
1814 qir_get_stage_name(c->stage),
1815 c->program_id, c->variant_id,
1816 count_nir_instrs(c->s));
1817 }
1818
1819 if (vc4_debug & VC4_DEBUG_NIR) {
1820 fprintf(stderr, "%s prog %d/%d NIR:\n",
1821 qir_get_stage_name(c->stage),
1822 c->program_id, c->variant_id);
1823 nir_print_shader(c->s, stderr);
1824 }
1825
1826 nir_to_qir(c);
1827
1828 switch (stage) {
1829 case QSTAGE_FRAG:
1830 emit_frag_end(c);
1831 break;
1832 case QSTAGE_VERT:
1833 emit_vert_end(c,
1834 vc4->prog.fs->input_semantics,
1835 vc4->prog.fs->num_inputs);
1836 break;
1837 case QSTAGE_COORD:
1838 emit_coord_end(c);
1839 break;
1840 }
1841
1842 if (vc4_debug & VC4_DEBUG_QIR) {
1843 fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
1844 qir_get_stage_name(c->stage),
1845 c->program_id, c->variant_id);
1846 qir_dump(c);
1847 }
1848
1849 qir_optimize(c);
1850 qir_lower_uniforms(c);
1851
1852 if (vc4_debug & VC4_DEBUG_QIR) {
1853 fprintf(stderr, "%s prog %d/%d QIR:\n",
1854 qir_get_stage_name(c->stage),
1855 c->program_id, c->variant_id);
1856 qir_dump(c);
1857 }
1858 qir_reorder_uniforms(c);
1859 vc4_generate_code(vc4, c);
1860
1861 if (vc4_debug & VC4_DEBUG_SHADERDB) {
1862 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
1863 qir_get_stage_name(c->stage),
1864 c->program_id, c->variant_id,
1865 c->qpu_inst_count);
1866 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
1867 qir_get_stage_name(c->stage),
1868 c->program_id, c->variant_id,
1869 c->num_uniforms);
1870 }
1871
1872 ralloc_free(c->s);
1873
1874 return c;
1875 }
1876
1877 static void *
1878 vc4_shader_state_create(struct pipe_context *pctx,
1879 const struct pipe_shader_state *cso)
1880 {
1881 struct vc4_context *vc4 = vc4_context(pctx);
1882 struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
1883 if (!so)
1884 return NULL;
1885
1886 so->base.tokens = tgsi_dup_tokens(cso->tokens);
1887 so->program_id = vc4->next_uncompiled_program_id++;
1888
1889 return so;
1890 }
1891
1892 static void
1893 copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
1894 struct vc4_compile *c)
1895 {
1896 int count = c->num_uniforms;
1897 struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
1898
1899 uinfo->count = count;
1900 uinfo->data = ralloc_array(shader, uint32_t, count);
1901 memcpy(uinfo->data, c->uniform_data,
1902 count * sizeof(*uinfo->data));
1903 uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
1904 memcpy(uinfo->contents, c->uniform_contents,
1905 count * sizeof(*uinfo->contents));
1906 uinfo->num_texture_samples = c->num_texture_samples;
1907
1908 vc4_set_shader_uniform_dirty_flags(shader);
1909 }
1910
1911 static struct vc4_compiled_shader *
1912 vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
1913 struct vc4_key *key)
1914 {
1915 struct hash_table *ht;
1916 uint32_t key_size;
1917 if (stage == QSTAGE_FRAG) {
1918 ht = vc4->fs_cache;
1919 key_size = sizeof(struct vc4_fs_key);
1920 } else {
1921 ht = vc4->vs_cache;
1922 key_size = sizeof(struct vc4_vs_key);
1923 }
1924
1925 struct vc4_compiled_shader *shader;
1926 struct hash_entry *entry = _mesa_hash_table_search(ht, key);
1927 if (entry)
1928 return entry->data;
1929
1930 struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key);
1931 shader = rzalloc(NULL, struct vc4_compiled_shader);
1932
1933 shader->program_id = vc4->next_compiled_program_id++;
1934 if (stage == QSTAGE_FRAG) {
1935 bool input_live[c->num_input_semantics];
1936
1937 memset(input_live, 0, sizeof(input_live));
1938 list_for_each_entry(struct qinst, inst, &c->instructions, link) {
1939 for (int i = 0; i < qir_get_op_nsrc(inst->op); i++) {
1940 if (inst->src[i].file == QFILE_VARY)
1941 input_live[inst->src[i].index] = true;
1942 }
1943 }
1944
1945 shader->input_semantics = ralloc_array(shader,
1946 struct vc4_varying_semantic,
1947 c->num_input_semantics);
1948
1949 for (int i = 0; i < c->num_input_semantics; i++) {
1950 struct vc4_varying_semantic *sem = &c->input_semantics[i];
1951
1952 if (!input_live[i])
1953 continue;
1954
1955 /* Skip non-VS-output inputs. */
1956 if (sem->semantic == (uint8_t)~0)
1957 continue;
1958
1959 if (sem->semantic == TGSI_SEMANTIC_COLOR ||
1960 sem->semantic == TGSI_SEMANTIC_BCOLOR) {
1961 shader->color_inputs |= (1 << shader->num_inputs);
1962 }
1963
1964 shader->input_semantics[shader->num_inputs] = *sem;
1965 shader->num_inputs++;
1966 }
1967 } else {
1968 shader->num_inputs = c->num_inputs;
1969
1970 shader->vattr_offsets[0] = 0;
1971 for (int i = 0; i < 8; i++) {
1972 shader->vattr_offsets[i + 1] =
1973 shader->vattr_offsets[i] + c->vattr_sizes[i];
1974
1975 if (c->vattr_sizes[i])
1976 shader->vattrs_live |= (1 << i);
1977 }
1978 }
1979
1980 copy_uniform_state_to_shader(shader, c);
1981 shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts,
1982 c->qpu_inst_count * sizeof(uint64_t));
1983
1984 /* Copy the compiler UBO range state to the compiled shader, dropping
1985 * out arrays that were never referenced by an indirect load.
1986 *
1987 * (Note that QIR dead code elimination of an array access still
1988 * leaves that array alive, though)
1989 */
1990 if (c->num_ubo_ranges) {
1991 shader->num_ubo_ranges = c->num_ubo_ranges;
1992 shader->ubo_ranges = ralloc_array(shader, struct vc4_ubo_range,
1993 c->num_ubo_ranges);
1994 uint32_t j = 0;
1995 for (int i = 0; i < c->num_uniform_ranges; i++) {
1996 struct vc4_compiler_ubo_range *range =
1997 &c->ubo_ranges[i];
1998 if (!range->used)
1999 continue;
2000
2001 shader->ubo_ranges[j].dst_offset = range->dst_offset;
2002 shader->ubo_ranges[j].src_offset = range->src_offset;
2003 shader->ubo_ranges[j].size = range->size;
2004 shader->ubo_size += c->ubo_ranges[i].size;
2005 j++;
2006 }
2007 }
2008 if (shader->ubo_size) {
2009 if (vc4_debug & VC4_DEBUG_SHADERDB) {
2010 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d UBO uniforms\n",
2011 qir_get_stage_name(c->stage),
2012 c->program_id, c->variant_id,
2013 shader->ubo_size / 4);
2014 }
2015 }
2016
2017 qir_compile_destroy(c);
2018
2019 struct vc4_key *dup_key;
2020 dup_key = ralloc_size(shader, key_size);
2021 memcpy(dup_key, key, key_size);
2022 _mesa_hash_table_insert(ht, dup_key, shader);
2023
2024 return shader;
2025 }
2026
2027 static void
2028 vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
2029 struct vc4_texture_stateobj *texstate)
2030 {
2031 for (int i = 0; i < texstate->num_textures; i++) {
2032 struct pipe_sampler_view *sampler = texstate->textures[i];
2033 struct pipe_sampler_state *sampler_state =
2034 texstate->samplers[i];
2035
2036 if (sampler) {
2037 key->tex[i].format = sampler->format;
2038 key->tex[i].swizzle[0] = sampler->swizzle_r;
2039 key->tex[i].swizzle[1] = sampler->swizzle_g;
2040 key->tex[i].swizzle[2] = sampler->swizzle_b;
2041 key->tex[i].swizzle[3] = sampler->swizzle_a;
2042 key->tex[i].compare_mode = sampler_state->compare_mode;
2043 key->tex[i].compare_func = sampler_state->compare_func;
2044 key->tex[i].wrap_s = sampler_state->wrap_s;
2045 key->tex[i].wrap_t = sampler_state->wrap_t;
2046 }
2047 }
2048
2049 key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
2050 }
2051
2052 static void
2053 vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
2054 {
2055 struct vc4_fs_key local_key;
2056 struct vc4_fs_key *key = &local_key;
2057
2058 if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2059 VC4_DIRTY_BLEND |
2060 VC4_DIRTY_FRAMEBUFFER |
2061 VC4_DIRTY_ZSA |
2062 VC4_DIRTY_RASTERIZER |
2063 VC4_DIRTY_FRAGTEX |
2064 VC4_DIRTY_TEXSTATE |
2065 VC4_DIRTY_UNCOMPILED_FS))) {
2066 return;
2067 }
2068
2069 memset(key, 0, sizeof(*key));
2070 vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
2071 key->base.shader_state = vc4->prog.bind_fs;
2072 key->is_points = (prim_mode == PIPE_PRIM_POINTS);
2073 key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
2074 prim_mode <= PIPE_PRIM_LINE_STRIP);
2075 key->blend = vc4->blend->rt[0];
2076 if (vc4->blend->logicop_enable) {
2077 key->logicop_func = vc4->blend->logicop_func;
2078 } else {
2079 key->logicop_func = PIPE_LOGICOP_COPY;
2080 }
2081 if (vc4->framebuffer.cbufs[0])
2082 key->color_format = vc4->framebuffer.cbufs[0]->format;
2083
2084 key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
2085 key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
2086 key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
2087 key->depth_enabled = (vc4->zsa->base.depth.enabled ||
2088 key->stencil_enabled);
2089 if (vc4->zsa->base.alpha.enabled) {
2090 key->alpha_test = true;
2091 key->alpha_test_func = vc4->zsa->base.alpha.func;
2092 }
2093
2094 if (key->is_points) {
2095 key->point_sprite_mask =
2096 vc4->rasterizer->base.sprite_coord_enable;
2097 key->point_coord_upper_left =
2098 (vc4->rasterizer->base.sprite_coord_mode ==
2099 PIPE_SPRITE_COORD_UPPER_LEFT);
2100 }
2101
2102 key->light_twoside = vc4->rasterizer->base.light_twoside;
2103
2104 struct vc4_compiled_shader *old_fs = vc4->prog.fs;
2105 vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
2106 if (vc4->prog.fs == old_fs)
2107 return;
2108
2109 vc4->dirty |= VC4_DIRTY_COMPILED_FS;
2110 if (vc4->rasterizer->base.flatshade &&
2111 old_fs && vc4->prog.fs->color_inputs != old_fs->color_inputs) {
2112 vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
2113 }
2114 }
2115
2116 static void
2117 vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
2118 {
2119 struct vc4_vs_key local_key;
2120 struct vc4_vs_key *key = &local_key;
2121
2122 if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2123 VC4_DIRTY_RASTERIZER |
2124 VC4_DIRTY_VERTTEX |
2125 VC4_DIRTY_TEXSTATE |
2126 VC4_DIRTY_VTXSTATE |
2127 VC4_DIRTY_UNCOMPILED_VS |
2128 VC4_DIRTY_COMPILED_FS))) {
2129 return;
2130 }
2131
2132 memset(key, 0, sizeof(*key));
2133 vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
2134 key->base.shader_state = vc4->prog.bind_vs;
2135 key->compiled_fs_id = vc4->prog.fs->program_id;
2136
2137 for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
2138 key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
2139
2140 key->per_vertex_point_size =
2141 (prim_mode == PIPE_PRIM_POINTS &&
2142 vc4->rasterizer->base.point_size_per_vertex);
2143
2144 struct vc4_compiled_shader *vs =
2145 vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
2146 if (vs != vc4->prog.vs) {
2147 vc4->prog.vs = vs;
2148 vc4->dirty |= VC4_DIRTY_COMPILED_VS;
2149 }
2150
2151 key->is_coord = true;
2152 struct vc4_compiled_shader *cs =
2153 vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
2154 if (cs != vc4->prog.cs) {
2155 vc4->prog.cs = cs;
2156 vc4->dirty |= VC4_DIRTY_COMPILED_CS;
2157 }
2158 }
2159
2160 void
2161 vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
2162 {
2163 vc4_update_compiled_fs(vc4, prim_mode);
2164 vc4_update_compiled_vs(vc4, prim_mode);
2165 }
2166
2167 static uint32_t
2168 fs_cache_hash(const void *key)
2169 {
2170 return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
2171 }
2172
2173 static uint32_t
2174 vs_cache_hash(const void *key)
2175 {
2176 return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
2177 }
2178
2179 static bool
2180 fs_cache_compare(const void *key1, const void *key2)
2181 {
2182 return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
2183 }
2184
2185 static bool
2186 vs_cache_compare(const void *key1, const void *key2)
2187 {
2188 return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
2189 }
2190
2191 static void
2192 delete_from_cache_if_matches(struct hash_table *ht,
2193 struct hash_entry *entry,
2194 struct vc4_uncompiled_shader *so)
2195 {
2196 const struct vc4_key *key = entry->key;
2197
2198 if (key->shader_state == so) {
2199 struct vc4_compiled_shader *shader = entry->data;
2200 _mesa_hash_table_remove(ht, entry);
2201 vc4_bo_unreference(&shader->bo);
2202 ralloc_free(shader);
2203 }
2204 }
2205
2206 static void
2207 vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
2208 {
2209 struct vc4_context *vc4 = vc4_context(pctx);
2210 struct vc4_uncompiled_shader *so = hwcso;
2211
2212 struct hash_entry *entry;
2213 hash_table_foreach(vc4->fs_cache, entry)
2214 delete_from_cache_if_matches(vc4->fs_cache, entry, so);
2215 hash_table_foreach(vc4->vs_cache, entry)
2216 delete_from_cache_if_matches(vc4->vs_cache, entry, so);
2217
2218 if (so->twoside_tokens != so->base.tokens)
2219 free((void *)so->twoside_tokens);
2220 free((void *)so->base.tokens);
2221 free(so);
2222 }
2223
2224 static void
2225 vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
2226 {
2227 struct vc4_context *vc4 = vc4_context(pctx);
2228 vc4->prog.bind_fs = hwcso;
2229 vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
2230 }
2231
2232 static void
2233 vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
2234 {
2235 struct vc4_context *vc4 = vc4_context(pctx);
2236 vc4->prog.bind_vs = hwcso;
2237 vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
2238 }
2239
2240 void
2241 vc4_program_init(struct pipe_context *pctx)
2242 {
2243 struct vc4_context *vc4 = vc4_context(pctx);
2244
2245 pctx->create_vs_state = vc4_shader_state_create;
2246 pctx->delete_vs_state = vc4_shader_state_delete;
2247
2248 pctx->create_fs_state = vc4_shader_state_create;
2249 pctx->delete_fs_state = vc4_shader_state_delete;
2250
2251 pctx->bind_fs_state = vc4_fp_state_bind;
2252 pctx->bind_vs_state = vc4_vp_state_bind;
2253
2254 vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
2255 fs_cache_compare);
2256 vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
2257 vs_cache_compare);
2258 }
2259
2260 void
2261 vc4_program_fini(struct pipe_context *pctx)
2262 {
2263 struct vc4_context *vc4 = vc4_context(pctx);
2264
2265 struct hash_entry *entry;
2266 hash_table_foreach(vc4->fs_cache, entry) {
2267 struct vc4_compiled_shader *shader = entry->data;
2268 vc4_bo_unreference(&shader->bo);
2269 ralloc_free(shader);
2270 _mesa_hash_table_remove(vc4->fs_cache, entry);
2271 }
2272
2273 hash_table_foreach(vc4->vs_cache, entry) {
2274 struct vc4_compiled_shader *shader = entry->data;
2275 vc4_bo_unreference(&shader->bo);
2276 ralloc_free(shader);
2277 _mesa_hash_table_remove(vc4->vs_cache, entry);
2278 }
2279 }