vc4: Add a helper function for the construction of qregs.
[mesa.git] / src / gallium / drivers / vc4 / vc4_program.c
1 /*
2 * Copyright (c) 2014 Scott Mansell
3 * Copyright © 2014 Broadcom
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24
25 #include <inttypes.h>
26 #include "util/u_format.h"
27 #include "util/u_hash.h"
28 #include "util/u_math.h"
29 #include "util/u_memory.h"
30 #include "util/ralloc.h"
31 #include "util/hash_table.h"
32 #include "tgsi/tgsi_dump.h"
33 #include "tgsi/tgsi_parse.h"
34 #include "compiler/nir/nir.h"
35 #include "compiler/nir/nir_builder.h"
36 #include "nir/tgsi_to_nir.h"
37 #include "vc4_context.h"
38 #include "vc4_qpu.h"
39 #include "vc4_qir.h"
40 #ifdef USE_VC4_SIMULATOR
41 #include "simpenrose/simpenrose.h"
42 #endif
43
44 static struct qreg
45 ntq_get_src(struct vc4_compile *c, nir_src src, int i);
46
47 static void
48 resize_qreg_array(struct vc4_compile *c,
49 struct qreg **regs,
50 uint32_t *size,
51 uint32_t decl_size)
52 {
53 if (*size >= decl_size)
54 return;
55
56 uint32_t old_size = *size;
57 *size = MAX2(*size * 2, decl_size);
58 *regs = reralloc(c, *regs, struct qreg, *size);
59 if (!*regs) {
60 fprintf(stderr, "Malloc failure\n");
61 abort();
62 }
63
64 for (uint32_t i = old_size; i < *size; i++)
65 (*regs)[i] = c->undef;
66 }
67
68 static struct qreg
69 indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
70 {
71 struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
72 uint32_t offset = intr->const_index[0];
73 struct vc4_compiler_ubo_range *range = NULL;
74 unsigned i;
75 for (i = 0; i < c->num_uniform_ranges; i++) {
76 range = &c->ubo_ranges[i];
77 if (offset >= range->src_offset &&
78 offset < range->src_offset + range->size) {
79 break;
80 }
81 }
82 /* The driver-location-based offset always has to be within a declared
83 * uniform range.
84 */
85 assert(range);
86 if (!range->used) {
87 range->used = true;
88 range->dst_offset = c->next_ubo_dst_offset;
89 c->next_ubo_dst_offset += range->size;
90 c->num_ubo_ranges++;
91 }
92
93 offset -= range->src_offset;
94
95 /* Adjust for where we stored the TGSI register base. */
96 indirect_offset = qir_ADD(c, indirect_offset,
97 qir_uniform_ui(c, (range->dst_offset +
98 offset)));
99
100 /* Clamp to [0, array size). Note that MIN/MAX are signed. */
101 indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0));
102 indirect_offset = qir_MIN(c, indirect_offset,
103 qir_uniform_ui(c, (range->dst_offset +
104 range->size - 4)));
105
106 qir_TEX_DIRECT(c, indirect_offset, qir_uniform(c, QUNIFORM_UBO_ADDR, 0));
107 c->num_texture_samples++;
108 return qir_TEX_RESULT(c);
109 }
110
111 nir_ssa_def *vc4_nir_get_state_uniform(struct nir_builder *b,
112 enum quniform_contents contents)
113 {
114 nir_intrinsic_instr *intr =
115 nir_intrinsic_instr_create(b->shader,
116 nir_intrinsic_load_uniform);
117 intr->const_index[0] = (VC4_NIR_STATE_UNIFORM_OFFSET + contents) * 4;
118 intr->num_components = 1;
119 intr->src[0] = nir_src_for_ssa(nir_imm_int(b, 0));
120 nir_ssa_dest_init(&intr->instr, &intr->dest, 1, 32, NULL);
121 nir_builder_instr_insert(b, &intr->instr);
122 return &intr->dest.ssa;
123 }
124
125 nir_ssa_def *
126 vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz)
127 {
128 switch (swiz) {
129 default:
130 case UTIL_FORMAT_SWIZZLE_NONE:
131 fprintf(stderr, "warning: unknown swizzle\n");
132 /* FALLTHROUGH */
133 case UTIL_FORMAT_SWIZZLE_0:
134 return nir_imm_float(b, 0.0);
135 case UTIL_FORMAT_SWIZZLE_1:
136 return nir_imm_float(b, 1.0);
137 case UTIL_FORMAT_SWIZZLE_X:
138 case UTIL_FORMAT_SWIZZLE_Y:
139 case UTIL_FORMAT_SWIZZLE_Z:
140 case UTIL_FORMAT_SWIZZLE_W:
141 return srcs[swiz];
142 }
143 }
144
145 static struct qreg *
146 ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def)
147 {
148 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
149 def->num_components);
150 _mesa_hash_table_insert(c->def_ht, def, qregs);
151 return qregs;
152 }
153
154 static struct qreg *
155 ntq_get_dest(struct vc4_compile *c, nir_dest *dest)
156 {
157 if (dest->is_ssa) {
158 struct qreg *qregs = ntq_init_ssa_def(c, &dest->ssa);
159 for (int i = 0; i < dest->ssa.num_components; i++)
160 qregs[i] = c->undef;
161 return qregs;
162 } else {
163 nir_register *reg = dest->reg.reg;
164 assert(dest->reg.base_offset == 0);
165 assert(reg->num_array_elems == 0);
166 struct hash_entry *entry =
167 _mesa_hash_table_search(c->def_ht, reg);
168 return entry->data;
169 }
170 }
171
172 static struct qreg
173 ntq_get_src(struct vc4_compile *c, nir_src src, int i)
174 {
175 struct hash_entry *entry;
176 if (src.is_ssa) {
177 entry = _mesa_hash_table_search(c->def_ht, src.ssa);
178 assert(i < src.ssa->num_components);
179 } else {
180 nir_register *reg = src.reg.reg;
181 entry = _mesa_hash_table_search(c->def_ht, reg);
182 assert(reg->num_array_elems == 0);
183 assert(src.reg.base_offset == 0);
184 assert(i < reg->num_components);
185 }
186
187 struct qreg *qregs = entry->data;
188 return qregs[i];
189 }
190
191 static struct qreg
192 ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
193 unsigned src)
194 {
195 assert(util_is_power_of_two(instr->dest.write_mask));
196 unsigned chan = ffs(instr->dest.write_mask) - 1;
197 struct qreg r = ntq_get_src(c, instr->src[src].src,
198 instr->src[src].swizzle[chan]);
199
200 assert(!instr->src[src].abs);
201 assert(!instr->src[src].negate);
202
203 return r;
204 };
205
206 static inline struct qreg
207 qir_SAT(struct vc4_compile *c, struct qreg val)
208 {
209 return qir_FMAX(c,
210 qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
211 qir_uniform_f(c, 0.0));
212 }
213
214 static struct qreg
215 ntq_rcp(struct vc4_compile *c, struct qreg x)
216 {
217 struct qreg r = qir_RCP(c, x);
218
219 /* Apply a Newton-Raphson step to improve the accuracy. */
220 r = qir_FMUL(c, r, qir_FSUB(c,
221 qir_uniform_f(c, 2.0),
222 qir_FMUL(c, x, r)));
223
224 return r;
225 }
226
227 static struct qreg
228 ntq_rsq(struct vc4_compile *c, struct qreg x)
229 {
230 struct qreg r = qir_RSQ(c, x);
231
232 /* Apply a Newton-Raphson step to improve the accuracy. */
233 r = qir_FMUL(c, r, qir_FSUB(c,
234 qir_uniform_f(c, 1.5),
235 qir_FMUL(c,
236 qir_uniform_f(c, 0.5),
237 qir_FMUL(c, x,
238 qir_FMUL(c, r, r)))));
239
240 return r;
241 }
242
243 static struct qreg
244 qir_srgb_decode(struct vc4_compile *c, struct qreg srgb)
245 {
246 struct qreg low = qir_FMUL(c, srgb, qir_uniform_f(c, 1.0 / 12.92));
247 struct qreg high = qir_POW(c,
248 qir_FMUL(c,
249 qir_FADD(c,
250 srgb,
251 qir_uniform_f(c, 0.055)),
252 qir_uniform_f(c, 1.0 / 1.055)),
253 qir_uniform_f(c, 2.4));
254
255 qir_SF(c, qir_FSUB(c, srgb, qir_uniform_f(c, 0.04045)));
256 return qir_SEL(c, QPU_COND_NS, low, high);
257 }
258
259 static struct qreg
260 ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
261 {
262 struct qreg src0_hi = qir_SHR(c, src0,
263 qir_uniform_ui(c, 24));
264 struct qreg src1_hi = qir_SHR(c, src1,
265 qir_uniform_ui(c, 24));
266
267 struct qreg hilo = qir_MUL24(c, src0_hi, src1);
268 struct qreg lohi = qir_MUL24(c, src0, src1_hi);
269 struct qreg lolo = qir_MUL24(c, src0, src1);
270
271 return qir_ADD(c, lolo, qir_SHL(c,
272 qir_ADD(c, hilo, lohi),
273 qir_uniform_ui(c, 24)));
274 }
275
276 static struct qreg
277 ntq_scale_depth_texture(struct vc4_compile *c, struct qreg src)
278 {
279 struct qreg depthf = qir_ITOF(c, qir_SHR(c, src,
280 qir_uniform_ui(c, 8)));
281 return qir_FMUL(c, depthf, qir_uniform_f(c, 1.0f/0xffffff));
282 }
283
284 /**
285 * Emits a lowered TXF_MS from an MSAA texture.
286 *
287 * The addressing math has been lowered in NIR, and now we just need to read
288 * it like a UBO.
289 */
290 static void
291 ntq_emit_txf(struct vc4_compile *c, nir_tex_instr *instr)
292 {
293 uint32_t tile_width = 32;
294 uint32_t tile_height = 32;
295 uint32_t tile_size = (tile_height * tile_width *
296 VC4_MAX_SAMPLES * sizeof(uint32_t));
297
298 unsigned unit = instr->texture_index;
299 uint32_t w = align(c->key->tex[unit].msaa_width, tile_width);
300 uint32_t w_tiles = w / tile_width;
301 uint32_t h = align(c->key->tex[unit].msaa_height, tile_height);
302 uint32_t h_tiles = h / tile_height;
303 uint32_t size = w_tiles * h_tiles * tile_size;
304
305 struct qreg addr;
306 assert(instr->num_srcs == 1);
307 assert(instr->src[0].src_type == nir_tex_src_coord);
308 addr = ntq_get_src(c, instr->src[0].src, 0);
309
310 /* Perform the clamping required by kernel validation. */
311 addr = qir_MAX(c, addr, qir_uniform_ui(c, 0));
312 addr = qir_MIN(c, addr, qir_uniform_ui(c, size - 4));
313
314 qir_TEX_DIRECT(c, addr, qir_uniform(c, QUNIFORM_TEXTURE_MSAA_ADDR, unit));
315
316 struct qreg tex = qir_TEX_RESULT(c);
317 c->num_texture_samples++;
318
319 struct qreg *dest = ntq_get_dest(c, &instr->dest);
320 enum pipe_format format = c->key->tex[unit].format;
321 if (util_format_is_depth_or_stencil(format)) {
322 struct qreg scaled = ntq_scale_depth_texture(c, tex);
323 for (int i = 0; i < 4; i++)
324 dest[i] = scaled;
325 } else {
326 for (int i = 0; i < 4; i++)
327 dest[i] = qir_UNPACK_8_F(c, tex, i);
328 }
329
330 for (int i = 0; i < 4; i++) {
331 if (c->tex_srgb_decode[unit] & (1 << i))
332 dest[i] = qir_srgb_decode(c, dest[i]);
333 }
334 }
335
336 static void
337 ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
338 {
339 struct qreg s, t, r, lod, proj, compare;
340 bool is_txb = false, is_txl = false, has_proj = false;
341 unsigned unit = instr->texture_index;
342
343 if (instr->op == nir_texop_txf) {
344 ntq_emit_txf(c, instr);
345 return;
346 }
347
348 for (unsigned i = 0; i < instr->num_srcs; i++) {
349 switch (instr->src[i].src_type) {
350 case nir_tex_src_coord:
351 s = ntq_get_src(c, instr->src[i].src, 0);
352 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D)
353 t = qir_uniform_f(c, 0.5);
354 else
355 t = ntq_get_src(c, instr->src[i].src, 1);
356 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
357 r = ntq_get_src(c, instr->src[i].src, 2);
358 break;
359 case nir_tex_src_bias:
360 lod = ntq_get_src(c, instr->src[i].src, 0);
361 is_txb = true;
362 break;
363 case nir_tex_src_lod:
364 lod = ntq_get_src(c, instr->src[i].src, 0);
365 is_txl = true;
366 break;
367 case nir_tex_src_comparitor:
368 compare = ntq_get_src(c, instr->src[i].src, 0);
369 break;
370 case nir_tex_src_projector:
371 proj = qir_RCP(c, ntq_get_src(c, instr->src[i].src, 0));
372 s = qir_FMUL(c, s, proj);
373 t = qir_FMUL(c, t, proj);
374 has_proj = true;
375 break;
376 default:
377 unreachable("unknown texture source");
378 }
379 }
380
381 struct qreg texture_u[] = {
382 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
383 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
384 qir_uniform(c, QUNIFORM_CONSTANT, 0),
385 qir_uniform(c, QUNIFORM_CONSTANT, 0),
386 };
387 uint32_t next_texture_u = 0;
388
389 /* There is no native support for GL texture rectangle coordinates, so
390 * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
391 * 1]).
392 */
393 if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
394 s = qir_FMUL(c, s,
395 qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, unit));
396 t = qir_FMUL(c, t,
397 qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, unit));
398 }
399
400 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
401 texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
402 unit | (is_txl << 16));
403 }
404
405 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
406 struct qreg ma = qir_FMAXABS(c, qir_FMAXABS(c, s, t), r);
407 struct qreg rcp_ma = qir_RCP(c, ma);
408 s = qir_FMUL(c, s, rcp_ma);
409 t = qir_FMUL(c, t, rcp_ma);
410 r = qir_FMUL(c, r, rcp_ma);
411
412 qir_TEX_R(c, r, texture_u[next_texture_u++]);
413 } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
414 c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
415 c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
416 c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
417 qir_TEX_R(c, qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR, unit),
418 texture_u[next_texture_u++]);
419 }
420
421 if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
422 s = qir_SAT(c, s);
423 }
424
425 if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
426 t = qir_SAT(c, t);
427 }
428
429 qir_TEX_T(c, t, texture_u[next_texture_u++]);
430
431 if (is_txl || is_txb)
432 qir_TEX_B(c, lod, texture_u[next_texture_u++]);
433
434 qir_TEX_S(c, s, texture_u[next_texture_u++]);
435
436 c->num_texture_samples++;
437 struct qreg tex = qir_TEX_RESULT(c);
438
439 enum pipe_format format = c->key->tex[unit].format;
440
441 struct qreg *dest = ntq_get_dest(c, &instr->dest);
442 if (util_format_is_depth_or_stencil(format)) {
443 struct qreg normalized = ntq_scale_depth_texture(c, tex);
444 struct qreg depth_output;
445
446 struct qreg u0 = qir_uniform_f(c, 0.0f);
447 struct qreg u1 = qir_uniform_f(c, 1.0f);
448 if (c->key->tex[unit].compare_mode) {
449 if (has_proj)
450 compare = qir_FMUL(c, compare, proj);
451
452 switch (c->key->tex[unit].compare_func) {
453 case PIPE_FUNC_NEVER:
454 depth_output = qir_uniform_f(c, 0.0f);
455 break;
456 case PIPE_FUNC_ALWAYS:
457 depth_output = u1;
458 break;
459 case PIPE_FUNC_EQUAL:
460 qir_SF(c, qir_FSUB(c, compare, normalized));
461 depth_output = qir_SEL(c, QPU_COND_ZS, u1, u0);
462 break;
463 case PIPE_FUNC_NOTEQUAL:
464 qir_SF(c, qir_FSUB(c, compare, normalized));
465 depth_output = qir_SEL(c, QPU_COND_ZC, u1, u0);
466 break;
467 case PIPE_FUNC_GREATER:
468 qir_SF(c, qir_FSUB(c, compare, normalized));
469 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
470 break;
471 case PIPE_FUNC_GEQUAL:
472 qir_SF(c, qir_FSUB(c, normalized, compare));
473 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
474 break;
475 case PIPE_FUNC_LESS:
476 qir_SF(c, qir_FSUB(c, compare, normalized));
477 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
478 break;
479 case PIPE_FUNC_LEQUAL:
480 qir_SF(c, qir_FSUB(c, normalized, compare));
481 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
482 break;
483 }
484 } else {
485 depth_output = normalized;
486 }
487
488 for (int i = 0; i < 4; i++)
489 dest[i] = depth_output;
490 } else {
491 for (int i = 0; i < 4; i++)
492 dest[i] = qir_UNPACK_8_F(c, tex, i);
493 }
494
495 for (int i = 0; i < 4; i++) {
496 if (c->tex_srgb_decode[unit] & (1 << i))
497 dest[i] = qir_srgb_decode(c, dest[i]);
498 }
499 }
500
501 /**
502 * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
503 * to zero).
504 */
505 static struct qreg
506 ntq_ffract(struct vc4_compile *c, struct qreg src)
507 {
508 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
509 struct qreg diff = qir_FSUB(c, src, trunc);
510 qir_SF(c, diff);
511 return qir_SEL(c, QPU_COND_NS,
512 qir_FADD(c, diff, qir_uniform_f(c, 1.0)), diff);
513 }
514
515 /**
516 * Computes floor(x), which is tricky because our FTOI truncates (rounds to
517 * zero).
518 */
519 static struct qreg
520 ntq_ffloor(struct vc4_compile *c, struct qreg src)
521 {
522 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
523
524 /* This will be < 0 if we truncated and the truncation was of a value
525 * that was < 0 in the first place.
526 */
527 qir_SF(c, qir_FSUB(c, src, trunc));
528
529 return qir_SEL(c, QPU_COND_NS,
530 qir_FSUB(c, trunc, qir_uniform_f(c, 1.0)), trunc);
531 }
532
533 /**
534 * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
535 * zero).
536 */
537 static struct qreg
538 ntq_fceil(struct vc4_compile *c, struct qreg src)
539 {
540 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
541
542 /* This will be < 0 if we truncated and the truncation was of a value
543 * that was > 0 in the first place.
544 */
545 qir_SF(c, qir_FSUB(c, trunc, src));
546
547 return qir_SEL(c, QPU_COND_NS,
548 qir_FADD(c, trunc, qir_uniform_f(c, 1.0)), trunc);
549 }
550
551 static struct qreg
552 ntq_fsin(struct vc4_compile *c, struct qreg src)
553 {
554 float coeff[] = {
555 -2.0 * M_PI,
556 pow(2.0 * M_PI, 3) / (3 * 2 * 1),
557 -pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
558 pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
559 -pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
560 };
561
562 struct qreg scaled_x =
563 qir_FMUL(c,
564 src,
565 qir_uniform_f(c, 1.0 / (M_PI * 2.0)));
566
567 struct qreg x = qir_FADD(c,
568 ntq_ffract(c, scaled_x),
569 qir_uniform_f(c, -0.5));
570 struct qreg x2 = qir_FMUL(c, x, x);
571 struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
572 for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
573 x = qir_FMUL(c, x, x2);
574 sum = qir_FADD(c,
575 sum,
576 qir_FMUL(c,
577 x,
578 qir_uniform_f(c, coeff[i])));
579 }
580 return sum;
581 }
582
583 static struct qreg
584 ntq_fcos(struct vc4_compile *c, struct qreg src)
585 {
586 float coeff[] = {
587 -1.0f,
588 pow(2.0 * M_PI, 2) / (2 * 1),
589 -pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
590 pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
591 -pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
592 pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
593 };
594
595 struct qreg scaled_x =
596 qir_FMUL(c, src,
597 qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
598 struct qreg x_frac = qir_FADD(c,
599 ntq_ffract(c, scaled_x),
600 qir_uniform_f(c, -0.5));
601
602 struct qreg sum = qir_uniform_f(c, coeff[0]);
603 struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
604 struct qreg x = x2; /* Current x^2, x^4, or x^6 */
605 for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
606 if (i != 1)
607 x = qir_FMUL(c, x, x2);
608
609 struct qreg mul = qir_FMUL(c,
610 x,
611 qir_uniform_f(c, coeff[i]));
612 if (i == 0)
613 sum = mul;
614 else
615 sum = qir_FADD(c, sum, mul);
616 }
617 return sum;
618 }
619
620 static struct qreg
621 ntq_fsign(struct vc4_compile *c, struct qreg src)
622 {
623 struct qreg t = qir_get_temp(c);
624
625 qir_SF(c, src);
626 qir_MOV_dest(c, t, qir_uniform_f(c, 0.0));
627 qir_MOV_dest(c, t, qir_uniform_f(c, 1.0))->cond = QPU_COND_ZC;
628 qir_MOV_dest(c, t, qir_uniform_f(c, -1.0))->cond = QPU_COND_NS;
629 return t;
630 }
631
632 static void
633 emit_vertex_input(struct vc4_compile *c, int attr)
634 {
635 enum pipe_format format = c->vs_key->attr_formats[attr];
636 uint32_t attr_size = util_format_get_blocksize(format);
637
638 c->vattr_sizes[attr] = align(attr_size, 4);
639 for (int i = 0; i < align(attr_size, 4) / 4; i++) {
640 c->inputs[attr * 4 + i] =
641 qir_MOV(c, qir_reg(QFILE_VPM, attr * 4 + i));
642 c->num_inputs++;
643 }
644 }
645
646 static void
647 emit_fragcoord_input(struct vc4_compile *c, int attr)
648 {
649 c->inputs[attr * 4 + 0] = qir_FRAG_X(c);
650 c->inputs[attr * 4 + 1] = qir_FRAG_Y(c);
651 c->inputs[attr * 4 + 2] =
652 qir_FMUL(c,
653 qir_ITOF(c, qir_FRAG_Z(c)),
654 qir_uniform_f(c, 1.0 / 0xffffff));
655 c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
656 }
657
658 static struct qreg
659 emit_fragment_varying(struct vc4_compile *c, gl_varying_slot slot,
660 uint8_t swizzle)
661 {
662 uint32_t i = c->num_input_slots++;
663 struct qreg vary = {
664 QFILE_VARY,
665 i
666 };
667
668 if (c->num_input_slots >= c->input_slots_array_size) {
669 c->input_slots_array_size =
670 MAX2(4, c->input_slots_array_size * 2);
671
672 c->input_slots = reralloc(c, c->input_slots,
673 struct vc4_varying_slot,
674 c->input_slots_array_size);
675 }
676
677 c->input_slots[i].slot = slot;
678 c->input_slots[i].swizzle = swizzle;
679
680 return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
681 }
682
683 static void
684 emit_fragment_input(struct vc4_compile *c, int attr, gl_varying_slot slot)
685 {
686 for (int i = 0; i < 4; i++) {
687 c->inputs[attr * 4 + i] =
688 emit_fragment_varying(c, slot, i);
689 c->num_inputs++;
690 }
691 }
692
693 static void
694 add_output(struct vc4_compile *c,
695 uint32_t decl_offset,
696 uint8_t slot,
697 uint8_t swizzle)
698 {
699 uint32_t old_array_size = c->outputs_array_size;
700 resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
701 decl_offset + 1);
702
703 if (old_array_size != c->outputs_array_size) {
704 c->output_slots = reralloc(c,
705 c->output_slots,
706 struct vc4_varying_slot,
707 c->outputs_array_size);
708 }
709
710 c->output_slots[decl_offset].slot = slot;
711 c->output_slots[decl_offset].swizzle = swizzle;
712 }
713
714 static void
715 declare_uniform_range(struct vc4_compile *c, uint32_t start, uint32_t size)
716 {
717 unsigned array_id = c->num_uniform_ranges++;
718 if (array_id >= c->ubo_ranges_array_size) {
719 c->ubo_ranges_array_size = MAX2(c->ubo_ranges_array_size * 2,
720 array_id + 1);
721 c->ubo_ranges = reralloc(c, c->ubo_ranges,
722 struct vc4_compiler_ubo_range,
723 c->ubo_ranges_array_size);
724 }
725
726 c->ubo_ranges[array_id].dst_offset = 0;
727 c->ubo_ranges[array_id].src_offset = start;
728 c->ubo_ranges[array_id].size = size;
729 c->ubo_ranges[array_id].used = false;
730 }
731
732 static bool
733 ntq_src_is_only_ssa_def_user(nir_src *src)
734 {
735 if (!src->is_ssa)
736 return false;
737
738 if (!list_empty(&src->ssa->if_uses))
739 return false;
740
741 return (src->ssa->uses.next == &src->use_link &&
742 src->ssa->uses.next->next == &src->ssa->uses);
743 }
744
745 /**
746 * In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack
747 * bit set.
748 *
749 * However, as an optimization, it tries to find the instructions generating
750 * the sources to be packed and just emit the pack flag there, if possible.
751 */
752 static void
753 ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr)
754 {
755 struct qreg result = qir_get_temp(c);
756 struct nir_alu_instr *vec4 = NULL;
757
758 /* If packing from a vec4 op (as expected), identify it so that we can
759 * peek back at what generated its sources.
760 */
761 if (instr->src[0].src.is_ssa &&
762 instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu &&
763 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op ==
764 nir_op_vec4) {
765 vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
766 }
767
768 /* If the pack is replicating the same channel 4 times, use the 8888
769 * pack flag. This is common for blending using the alpha
770 * channel.
771 */
772 if (instr->src[0].swizzle[0] == instr->src[0].swizzle[1] &&
773 instr->src[0].swizzle[0] == instr->src[0].swizzle[2] &&
774 instr->src[0].swizzle[0] == instr->src[0].swizzle[3]) {
775 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
776 *dest = qir_PACK_8888_F(c,
777 ntq_get_src(c, instr->src[0].src,
778 instr->src[0].swizzle[0]));
779 return;
780 }
781
782 for (int i = 0; i < 4; i++) {
783 int swiz = instr->src[0].swizzle[i];
784 struct qreg src;
785 if (vec4) {
786 src = ntq_get_src(c, vec4->src[swiz].src,
787 vec4->src[swiz].swizzle[0]);
788 } else {
789 src = ntq_get_src(c, instr->src[0].src, swiz);
790 }
791
792 if (vec4 &&
793 ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) &&
794 src.file == QFILE_TEMP &&
795 c->defs[src.index] &&
796 qir_is_mul(c->defs[src.index]) &&
797 !c->defs[src.index]->dst.pack) {
798 struct qinst *rewrite = c->defs[src.index];
799 c->defs[src.index] = NULL;
800 rewrite->dst = result;
801 rewrite->dst.pack = QPU_PACK_MUL_8A + i;
802 continue;
803 }
804
805 qir_PACK_8_F(c, result, src, i);
806 }
807
808 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
809 *dest = result;
810 }
811
812 /** Handles sign-extended bitfield extracts for 16 bits. */
813 static struct qreg
814 ntq_emit_ibfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
815 struct qreg bits)
816 {
817 assert(bits.file == QFILE_UNIF &&
818 c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
819 c->uniform_data[bits.index] == 16);
820
821 assert(offset.file == QFILE_UNIF &&
822 c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
823 int offset_bit = c->uniform_data[offset.index];
824 assert(offset_bit % 16 == 0);
825
826 return qir_UNPACK_16_I(c, base, offset_bit / 16);
827 }
828
829 /** Handles unsigned bitfield extracts for 8 bits. */
830 static struct qreg
831 ntq_emit_ubfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
832 struct qreg bits)
833 {
834 assert(bits.file == QFILE_UNIF &&
835 c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
836 c->uniform_data[bits.index] == 8);
837
838 assert(offset.file == QFILE_UNIF &&
839 c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
840 int offset_bit = c->uniform_data[offset.index];
841 assert(offset_bit % 8 == 0);
842
843 return qir_UNPACK_8_I(c, base, offset_bit / 8);
844 }
845
846 /**
847 * If compare_instr is a valid comparison instruction, emits the
848 * compare_instr's comparison and returns the sel_instr's return value based
849 * on the compare_instr's result.
850 */
851 static bool
852 ntq_emit_comparison(struct vc4_compile *c, struct qreg *dest,
853 nir_alu_instr *compare_instr,
854 nir_alu_instr *sel_instr)
855 {
856 enum qpu_cond cond;
857
858 switch (compare_instr->op) {
859 case nir_op_feq:
860 case nir_op_ieq:
861 case nir_op_seq:
862 cond = QPU_COND_ZS;
863 break;
864 case nir_op_fne:
865 case nir_op_ine:
866 case nir_op_sne:
867 cond = QPU_COND_ZC;
868 break;
869 case nir_op_fge:
870 case nir_op_ige:
871 case nir_op_uge:
872 case nir_op_sge:
873 cond = QPU_COND_NC;
874 break;
875 case nir_op_flt:
876 case nir_op_ilt:
877 case nir_op_slt:
878 cond = QPU_COND_NS;
879 break;
880 default:
881 return false;
882 }
883
884 struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
885 struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1);
886
887 unsigned unsized_type =
888 nir_alu_type_get_base_type(nir_op_infos[compare_instr->op].input_types[0]);
889 if (unsized_type == nir_type_float)
890 qir_SF(c, qir_FSUB(c, src0, src1));
891 else
892 qir_SF(c, qir_SUB(c, src0, src1));
893
894 switch (sel_instr->op) {
895 case nir_op_seq:
896 case nir_op_sne:
897 case nir_op_sge:
898 case nir_op_slt:
899 *dest = qir_SEL(c, cond,
900 qir_uniform_f(c, 1.0), qir_uniform_f(c, 0.0));
901 break;
902
903 case nir_op_bcsel:
904 *dest = qir_SEL(c, cond,
905 ntq_get_alu_src(c, sel_instr, 1),
906 ntq_get_alu_src(c, sel_instr, 2));
907 break;
908
909 default:
910 *dest = qir_SEL(c, cond,
911 qir_uniform_ui(c, ~0), qir_uniform_ui(c, 0));
912 break;
913 }
914
915 return true;
916 }
917
918 /**
919 * Attempts to fold a comparison generating a boolean result into the
920 * condition code for selecting between two values, instead of comparing the
921 * boolean result against 0 to generate the condition code.
922 */
923 static struct qreg ntq_emit_bcsel(struct vc4_compile *c, nir_alu_instr *instr,
924 struct qreg *src)
925 {
926 if (!instr->src[0].src.is_ssa)
927 goto out;
928 nir_alu_instr *compare =
929 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
930 if (!compare)
931 goto out;
932
933 struct qreg dest;
934 if (ntq_emit_comparison(c, &dest, compare, instr))
935 return dest;
936
937 out:
938 qir_SF(c, src[0]);
939 return qir_SEL(c, QPU_COND_NS, src[1], src[2]);
940 }
941
942 static void
943 ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
944 {
945 /* Vectors are special in that they have non-scalarized writemasks,
946 * and just take the first swizzle channel for each argument in order
947 * into each writemask channel.
948 */
949 if (instr->op == nir_op_vec2 ||
950 instr->op == nir_op_vec3 ||
951 instr->op == nir_op_vec4) {
952 struct qreg srcs[4];
953 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
954 srcs[i] = ntq_get_src(c, instr->src[i].src,
955 instr->src[i].swizzle[0]);
956 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
957 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
958 dest[i] = srcs[i];
959 return;
960 }
961
962 if (instr->op == nir_op_pack_unorm_4x8) {
963 ntq_emit_pack_unorm_4x8(c, instr);
964 return;
965 }
966
967 if (instr->op == nir_op_unpack_unorm_4x8) {
968 struct qreg src = ntq_get_src(c, instr->src[0].src,
969 instr->src[0].swizzle[0]);
970 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
971 for (int i = 0; i < 4; i++) {
972 if (instr->dest.write_mask & (1 << i))
973 dest[i] = qir_UNPACK_8_F(c, src, i);
974 }
975 return;
976 }
977
978 /* General case: We can just grab the one used channel per src. */
979 struct qreg src[nir_op_infos[instr->op].num_inputs];
980 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
981 src[i] = ntq_get_alu_src(c, instr, i);
982 }
983
984 /* Pick the channel to store the output in. */
985 assert(!instr->dest.saturate);
986 struct qreg *dest = ntq_get_dest(c, &instr->dest.dest);
987 assert(util_is_power_of_two(instr->dest.write_mask));
988 dest += ffs(instr->dest.write_mask) - 1;
989
990 switch (instr->op) {
991 case nir_op_fmov:
992 case nir_op_imov:
993 *dest = qir_MOV(c, src[0]);
994 break;
995 case nir_op_fmul:
996 *dest = qir_FMUL(c, src[0], src[1]);
997 break;
998 case nir_op_fadd:
999 *dest = qir_FADD(c, src[0], src[1]);
1000 break;
1001 case nir_op_fsub:
1002 *dest = qir_FSUB(c, src[0], src[1]);
1003 break;
1004 case nir_op_fmin:
1005 *dest = qir_FMIN(c, src[0], src[1]);
1006 break;
1007 case nir_op_fmax:
1008 *dest = qir_FMAX(c, src[0], src[1]);
1009 break;
1010
1011 case nir_op_f2i:
1012 case nir_op_f2u:
1013 *dest = qir_FTOI(c, src[0]);
1014 break;
1015 case nir_op_i2f:
1016 case nir_op_u2f:
1017 *dest = qir_ITOF(c, src[0]);
1018 break;
1019 case nir_op_b2f:
1020 *dest = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
1021 break;
1022 case nir_op_b2i:
1023 *dest = qir_AND(c, src[0], qir_uniform_ui(c, 1));
1024 break;
1025 case nir_op_i2b:
1026 case nir_op_f2b:
1027 qir_SF(c, src[0]);
1028 *dest = qir_SEL(c, QPU_COND_ZC,
1029 qir_uniform_ui(c, ~0),
1030 qir_uniform_ui(c, 0));
1031 break;
1032
1033 case nir_op_iadd:
1034 *dest = qir_ADD(c, src[0], src[1]);
1035 break;
1036 case nir_op_ushr:
1037 *dest = qir_SHR(c, src[0], src[1]);
1038 break;
1039 case nir_op_isub:
1040 *dest = qir_SUB(c, src[0], src[1]);
1041 break;
1042 case nir_op_ishr:
1043 *dest = qir_ASR(c, src[0], src[1]);
1044 break;
1045 case nir_op_ishl:
1046 *dest = qir_SHL(c, src[0], src[1]);
1047 break;
1048 case nir_op_imin:
1049 *dest = qir_MIN(c, src[0], src[1]);
1050 break;
1051 case nir_op_imax:
1052 *dest = qir_MAX(c, src[0], src[1]);
1053 break;
1054 case nir_op_iand:
1055 *dest = qir_AND(c, src[0], src[1]);
1056 break;
1057 case nir_op_ior:
1058 *dest = qir_OR(c, src[0], src[1]);
1059 break;
1060 case nir_op_ixor:
1061 *dest = qir_XOR(c, src[0], src[1]);
1062 break;
1063 case nir_op_inot:
1064 *dest = qir_NOT(c, src[0]);
1065 break;
1066
1067 case nir_op_imul:
1068 *dest = ntq_umul(c, src[0], src[1]);
1069 break;
1070
1071 case nir_op_seq:
1072 case nir_op_sne:
1073 case nir_op_sge:
1074 case nir_op_slt:
1075 case nir_op_feq:
1076 case nir_op_fne:
1077 case nir_op_fge:
1078 case nir_op_flt:
1079 case nir_op_ieq:
1080 case nir_op_ine:
1081 case nir_op_ige:
1082 case nir_op_uge:
1083 case nir_op_ilt:
1084 if (!ntq_emit_comparison(c, dest, instr, instr)) {
1085 fprintf(stderr, "Bad comparison instruction\n");
1086 }
1087 break;
1088
1089 case nir_op_bcsel:
1090 *dest = ntq_emit_bcsel(c, instr, src);
1091 break;
1092 case nir_op_fcsel:
1093 qir_SF(c, src[0]);
1094 *dest = qir_SEL(c, QPU_COND_ZC, src[1], src[2]);
1095 break;
1096
1097 case nir_op_frcp:
1098 *dest = ntq_rcp(c, src[0]);
1099 break;
1100 case nir_op_frsq:
1101 *dest = ntq_rsq(c, src[0]);
1102 break;
1103 case nir_op_fexp2:
1104 *dest = qir_EXP2(c, src[0]);
1105 break;
1106 case nir_op_flog2:
1107 *dest = qir_LOG2(c, src[0]);
1108 break;
1109
1110 case nir_op_ftrunc:
1111 *dest = qir_ITOF(c, qir_FTOI(c, src[0]));
1112 break;
1113 case nir_op_fceil:
1114 *dest = ntq_fceil(c, src[0]);
1115 break;
1116 case nir_op_ffract:
1117 *dest = ntq_ffract(c, src[0]);
1118 break;
1119 case nir_op_ffloor:
1120 *dest = ntq_ffloor(c, src[0]);
1121 break;
1122
1123 case nir_op_fsin:
1124 *dest = ntq_fsin(c, src[0]);
1125 break;
1126 case nir_op_fcos:
1127 *dest = ntq_fcos(c, src[0]);
1128 break;
1129
1130 case nir_op_fsign:
1131 *dest = ntq_fsign(c, src[0]);
1132 break;
1133
1134 case nir_op_fabs:
1135 *dest = qir_FMAXABS(c, src[0], src[0]);
1136 break;
1137 case nir_op_iabs:
1138 *dest = qir_MAX(c, src[0],
1139 qir_SUB(c, qir_uniform_ui(c, 0), src[0]));
1140 break;
1141
1142 case nir_op_ibitfield_extract:
1143 *dest = ntq_emit_ibfe(c, src[0], src[1], src[2]);
1144 break;
1145
1146 case nir_op_ubitfield_extract:
1147 *dest = ntq_emit_ubfe(c, src[0], src[1], src[2]);
1148 break;
1149
1150 case nir_op_usadd_4x8:
1151 *dest = qir_V8ADDS(c, src[0], src[1]);
1152 break;
1153
1154 case nir_op_ussub_4x8:
1155 *dest = qir_V8SUBS(c, src[0], src[1]);
1156 break;
1157
1158 case nir_op_umin_4x8:
1159 *dest = qir_V8MIN(c, src[0], src[1]);
1160 break;
1161
1162 case nir_op_umax_4x8:
1163 *dest = qir_V8MAX(c, src[0], src[1]);
1164 break;
1165
1166 case nir_op_umul_unorm_4x8:
1167 *dest = qir_V8MULD(c, src[0], src[1]);
1168 break;
1169
1170 default:
1171 fprintf(stderr, "unknown NIR ALU inst: ");
1172 nir_print_instr(&instr->instr, stderr);
1173 fprintf(stderr, "\n");
1174 abort();
1175 }
1176 }
1177
1178 static void
1179 emit_frag_end(struct vc4_compile *c)
1180 {
1181 struct qreg color;
1182 if (c->output_color_index != -1) {
1183 color = c->outputs[c->output_color_index];
1184 } else {
1185 color = qir_uniform_ui(c, 0);
1186 }
1187
1188 uint32_t discard_cond = QPU_COND_ALWAYS;
1189 if (c->discard.file != QFILE_NULL) {
1190 qir_SF(c, c->discard);
1191 discard_cond = QPU_COND_ZS;
1192 }
1193
1194 if (c->fs_key->stencil_enabled) {
1195 qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 0));
1196 if (c->fs_key->stencil_twoside) {
1197 qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 1));
1198 }
1199 if (c->fs_key->stencil_full_writemasks) {
1200 qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 2));
1201 }
1202 }
1203
1204 if (c->output_sample_mask_index != -1) {
1205 qir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
1206 }
1207
1208 if (c->fs_key->depth_enabled) {
1209 struct qreg z;
1210 if (c->output_position_index != -1) {
1211 z = qir_FTOI(c, qir_FMUL(c, c->outputs[c->output_position_index + 2],
1212 qir_uniform_f(c, 0xffffff)));
1213 } else {
1214 z = qir_FRAG_Z(c);
1215 }
1216 struct qinst *inst = qir_TLB_Z_WRITE(c, z);
1217 inst->cond = discard_cond;
1218 }
1219
1220 if (!c->msaa_per_sample_output) {
1221 struct qinst *inst = qir_TLB_COLOR_WRITE(c, color);
1222 inst->cond = discard_cond;
1223 } else {
1224 for (int i = 0; i < VC4_MAX_SAMPLES; i++) {
1225 struct qinst *inst = qir_TLB_COLOR_WRITE_MS(c, c->sample_colors[i]);
1226 inst->cond = discard_cond;
1227 }
1228 }
1229 }
1230
1231 static void
1232 emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
1233 {
1234 struct qreg packed = qir_get_temp(c);
1235
1236 for (int i = 0; i < 2; i++) {
1237 struct qreg scale =
1238 qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
1239
1240 struct qreg packed_chan = packed;
1241 packed_chan.pack = QPU_PACK_A_16A + i;
1242
1243 qir_FTOI_dest(c, packed_chan,
1244 qir_FMUL(c,
1245 qir_FMUL(c,
1246 c->outputs[c->output_position_index + i],
1247 scale),
1248 rcp_w));
1249 }
1250
1251 qir_VPM_WRITE(c, packed);
1252 }
1253
1254 static void
1255 emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
1256 {
1257 struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
1258 struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
1259
1260 qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
1261 c->outputs[c->output_position_index + 2],
1262 zscale),
1263 rcp_w),
1264 zoffset));
1265 }
1266
1267 static void
1268 emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
1269 {
1270 qir_VPM_WRITE(c, rcp_w);
1271 }
1272
1273 static void
1274 emit_point_size_write(struct vc4_compile *c)
1275 {
1276 struct qreg point_size;
1277
1278 if (c->output_point_size_index != -1)
1279 point_size = c->outputs[c->output_point_size_index];
1280 else
1281 point_size = qir_uniform_f(c, 1.0);
1282
1283 /* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835,
1284 * BCM21553).
1285 */
1286 point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125));
1287
1288 qir_VPM_WRITE(c, point_size);
1289 }
1290
1291 /**
1292 * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
1293 *
1294 * The simulator insists that there be at least one vertex attribute, so
1295 * vc4_draw.c will emit one if it wouldn't have otherwise. The simulator also
1296 * insists that all vertex attributes loaded get read by the VS/CS, so we have
1297 * to consume it here.
1298 */
1299 static void
1300 emit_stub_vpm_read(struct vc4_compile *c)
1301 {
1302 if (c->num_inputs)
1303 return;
1304
1305 c->vattr_sizes[0] = 4;
1306 (void)qir_MOV(c, qir_reg(QFILE_VPM, 0));
1307 c->num_inputs++;
1308 }
1309
1310 static void
1311 emit_vert_end(struct vc4_compile *c,
1312 struct vc4_varying_slot *fs_inputs,
1313 uint32_t num_fs_inputs)
1314 {
1315 struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
1316
1317 emit_stub_vpm_read(c);
1318
1319 emit_scaled_viewport_write(c, rcp_w);
1320 emit_zs_write(c, rcp_w);
1321 emit_rcp_wc_write(c, rcp_w);
1322 if (c->vs_key->per_vertex_point_size)
1323 emit_point_size_write(c);
1324
1325 for (int i = 0; i < num_fs_inputs; i++) {
1326 struct vc4_varying_slot *input = &fs_inputs[i];
1327 int j;
1328
1329 for (j = 0; j < c->num_outputs; j++) {
1330 struct vc4_varying_slot *output =
1331 &c->output_slots[j];
1332
1333 if (input->slot == output->slot &&
1334 input->swizzle == output->swizzle) {
1335 qir_VPM_WRITE(c, c->outputs[j]);
1336 break;
1337 }
1338 }
1339 /* Emit padding if we didn't find a declared VS output for
1340 * this FS input.
1341 */
1342 if (j == c->num_outputs)
1343 qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
1344 }
1345 }
1346
1347 static void
1348 emit_coord_end(struct vc4_compile *c)
1349 {
1350 struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);
1351
1352 emit_stub_vpm_read(c);
1353
1354 for (int i = 0; i < 4; i++)
1355 qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
1356
1357 emit_scaled_viewport_write(c, rcp_w);
1358 emit_zs_write(c, rcp_w);
1359 emit_rcp_wc_write(c, rcp_w);
1360 if (c->vs_key->per_vertex_point_size)
1361 emit_point_size_write(c);
1362 }
1363
1364 static void
1365 vc4_optimize_nir(struct nir_shader *s)
1366 {
1367 bool progress;
1368
1369 do {
1370 progress = false;
1371
1372 NIR_PASS_V(s, nir_lower_vars_to_ssa);
1373 NIR_PASS_V(s, nir_lower_alu_to_scalar);
1374
1375 NIR_PASS(progress, s, nir_copy_prop);
1376 NIR_PASS(progress, s, nir_opt_dce);
1377 NIR_PASS(progress, s, nir_opt_cse);
1378 NIR_PASS(progress, s, nir_opt_peephole_select);
1379 NIR_PASS(progress, s, nir_opt_algebraic);
1380 NIR_PASS(progress, s, nir_opt_constant_folding);
1381 NIR_PASS(progress, s, nir_opt_undef);
1382 } while (progress);
1383 }
1384
1385 static int
1386 driver_location_compare(const void *in_a, const void *in_b)
1387 {
1388 const nir_variable *const *a = in_a;
1389 const nir_variable *const *b = in_b;
1390
1391 return (*a)->data.driver_location - (*b)->data.driver_location;
1392 }
1393
1394 static void
1395 ntq_setup_inputs(struct vc4_compile *c)
1396 {
1397 unsigned num_entries = 0;
1398 nir_foreach_variable(var, &c->s->inputs)
1399 num_entries++;
1400
1401 nir_variable *vars[num_entries];
1402
1403 unsigned i = 0;
1404 nir_foreach_variable(var, &c->s->inputs)
1405 vars[i++] = var;
1406
1407 /* Sort the variables so that we emit the input setup in
1408 * driver_location order. This is required for VPM reads, whose data
1409 * is fetched into the VPM in driver_location (TGSI register index)
1410 * order.
1411 */
1412 qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
1413
1414 for (unsigned i = 0; i < num_entries; i++) {
1415 nir_variable *var = vars[i];
1416 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1417 unsigned loc = var->data.driver_location;
1418
1419 assert(array_len == 1);
1420 (void)array_len;
1421 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1422 (loc + 1) * 4);
1423
1424 if (c->stage == QSTAGE_FRAG) {
1425 if (var->data.location == VARYING_SLOT_POS) {
1426 emit_fragcoord_input(c, loc);
1427 } else if (var->data.location == VARYING_SLOT_FACE) {
1428 c->inputs[loc * 4 + 0] = qir_FRAG_REV_FLAG(c);
1429 } else if (var->data.location >= VARYING_SLOT_VAR0 &&
1430 (c->fs_key->point_sprite_mask &
1431 (1 << (var->data.location -
1432 VARYING_SLOT_VAR0)))) {
1433 c->inputs[loc * 4 + 0] = c->point_x;
1434 c->inputs[loc * 4 + 1] = c->point_y;
1435 } else {
1436 emit_fragment_input(c, loc, var->data.location);
1437 }
1438 } else {
1439 emit_vertex_input(c, loc);
1440 }
1441 }
1442 }
1443
1444 static void
1445 ntq_setup_outputs(struct vc4_compile *c)
1446 {
1447 nir_foreach_variable(var, &c->s->outputs) {
1448 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1449 unsigned loc = var->data.driver_location * 4;
1450
1451 assert(array_len == 1);
1452 (void)array_len;
1453
1454 for (int i = 0; i < 4; i++)
1455 add_output(c, loc + i, var->data.location, i);
1456
1457 if (c->stage == QSTAGE_FRAG) {
1458 switch (var->data.location) {
1459 case FRAG_RESULT_COLOR:
1460 case FRAG_RESULT_DATA0:
1461 c->output_color_index = loc;
1462 break;
1463 case FRAG_RESULT_DEPTH:
1464 c->output_position_index = loc;
1465 break;
1466 case FRAG_RESULT_SAMPLE_MASK:
1467 c->output_sample_mask_index = loc;
1468 break;
1469 }
1470 } else {
1471 switch (var->data.location) {
1472 case VARYING_SLOT_POS:
1473 c->output_position_index = loc;
1474 break;
1475 case VARYING_SLOT_PSIZ:
1476 c->output_point_size_index = loc;
1477 break;
1478 }
1479 }
1480 }
1481 }
1482
1483 static void
1484 ntq_setup_uniforms(struct vc4_compile *c)
1485 {
1486 nir_foreach_variable(var, &c->s->uniforms) {
1487 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1488 unsigned array_elem_size = 4 * sizeof(float);
1489
1490 declare_uniform_range(c, var->data.driver_location * array_elem_size,
1491 array_len * array_elem_size);
1492
1493 }
1494 }
1495
1496 /**
1497 * Sets up the mapping from nir_register to struct qreg *.
1498 *
1499 * Each nir_register gets a struct qreg per 32-bit component being stored.
1500 */
1501 static void
1502 ntq_setup_registers(struct vc4_compile *c, struct exec_list *list)
1503 {
1504 foreach_list_typed(nir_register, nir_reg, node, list) {
1505 unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
1506 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
1507 array_len *
1508 nir_reg->num_components);
1509
1510 _mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
1511
1512 for (int i = 0; i < array_len * nir_reg->num_components; i++)
1513 qregs[i] = qir_uniform_ui(c, 0);
1514 }
1515 }
1516
1517 static void
1518 ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
1519 {
1520 struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1521 for (int i = 0; i < instr->def.num_components; i++)
1522 qregs[i] = qir_uniform_ui(c, instr->value.u32[i]);
1523
1524 _mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
1525 }
1526
1527 static void
1528 ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr)
1529 {
1530 struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1531
1532 /* QIR needs there to be *some* value, so pick 0 (same as for
1533 * ntq_setup_registers().
1534 */
1535 for (int i = 0; i < instr->def.num_components; i++)
1536 qregs[i] = qir_uniform_ui(c, 0);
1537 }
1538
1539 static void
1540 ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
1541 {
1542 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
1543 nir_const_value *const_offset;
1544 unsigned offset;
1545 struct qreg *dest = NULL;
1546
1547 if (info->has_dest) {
1548 dest = ntq_get_dest(c, &instr->dest);
1549 }
1550
1551 switch (instr->intrinsic) {
1552 case nir_intrinsic_load_uniform:
1553 assert(instr->num_components == 1);
1554 const_offset = nir_src_as_const_value(instr->src[0]);
1555 if (const_offset) {
1556 offset = instr->const_index[0] + const_offset->u32[0];
1557 assert(offset % 4 == 0);
1558 /* We need dwords */
1559 offset = offset / 4;
1560 if (offset < VC4_NIR_STATE_UNIFORM_OFFSET) {
1561 *dest = qir_uniform(c, QUNIFORM_UNIFORM,
1562 offset);
1563 } else {
1564 *dest = qir_uniform(c, offset -
1565 VC4_NIR_STATE_UNIFORM_OFFSET,
1566 0);
1567 }
1568 } else {
1569 *dest = indirect_uniform_load(c, instr);
1570 }
1571 break;
1572
1573 case nir_intrinsic_load_user_clip_plane:
1574 for (int i = 0; i < instr->num_components; i++) {
1575 dest[i] = qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1576 instr->const_index[0] * 4 + i);
1577 }
1578 break;
1579
1580 case nir_intrinsic_load_sample_mask_in:
1581 *dest = qir_uniform(c, QUNIFORM_SAMPLE_MASK, 0);
1582 break;
1583
1584 case nir_intrinsic_load_input:
1585 assert(instr->num_components == 1);
1586 const_offset = nir_src_as_const_value(instr->src[0]);
1587 assert(const_offset && "vc4 doesn't support indirect inputs");
1588 if (instr->const_index[0] >= VC4_NIR_TLB_COLOR_READ_INPUT) {
1589 assert(const_offset->u32[0] == 0);
1590 /* Reads of the per-sample color need to be done in
1591 * order.
1592 */
1593 int sample_index = (instr->const_index[0] -
1594 VC4_NIR_TLB_COLOR_READ_INPUT);
1595 for (int i = 0; i <= sample_index; i++) {
1596 if (c->color_reads[i].file == QFILE_NULL) {
1597 c->color_reads[i] =
1598 qir_TLB_COLOR_READ(c);
1599 }
1600 }
1601 *dest = c->color_reads[sample_index];
1602 } else {
1603 offset = instr->const_index[0] + const_offset->u32[0];
1604 *dest = c->inputs[offset];
1605 }
1606 break;
1607
1608 case nir_intrinsic_store_output:
1609 const_offset = nir_src_as_const_value(instr->src[1]);
1610 assert(const_offset && "vc4 doesn't support indirect outputs");
1611 offset = instr->const_index[0] + const_offset->u32[0];
1612
1613 /* MSAA color outputs are the only case where we have an
1614 * output that's not lowered to being a store of a single 32
1615 * bit value.
1616 */
1617 if (c->stage == QSTAGE_FRAG && instr->num_components == 4) {
1618 assert(offset == c->output_color_index);
1619 for (int i = 0; i < 4; i++) {
1620 c->sample_colors[i] =
1621 qir_MOV(c, ntq_get_src(c, instr->src[0],
1622 i));
1623 }
1624 } else {
1625 assert(instr->num_components == 1);
1626 c->outputs[offset] =
1627 qir_MOV(c, ntq_get_src(c, instr->src[0], 0));
1628 c->num_outputs = MAX2(c->num_outputs, offset + 1);
1629 }
1630 break;
1631
1632 case nir_intrinsic_discard:
1633 c->discard = qir_uniform_ui(c, ~0);
1634 break;
1635
1636 case nir_intrinsic_discard_if:
1637 if (c->discard.file == QFILE_NULL)
1638 c->discard = qir_uniform_ui(c, 0);
1639 c->discard = qir_OR(c, c->discard,
1640 ntq_get_src(c, instr->src[0], 0));
1641 break;
1642
1643 default:
1644 fprintf(stderr, "Unknown intrinsic: ");
1645 nir_print_instr(&instr->instr, stderr);
1646 fprintf(stderr, "\n");
1647 break;
1648 }
1649 }
1650
1651 static void
1652 ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
1653 {
1654 fprintf(stderr, "general IF statements not handled.\n");
1655 }
1656
1657 static void
1658 ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
1659 {
1660 switch (instr->type) {
1661 case nir_instr_type_alu:
1662 ntq_emit_alu(c, nir_instr_as_alu(instr));
1663 break;
1664
1665 case nir_instr_type_intrinsic:
1666 ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
1667 break;
1668
1669 case nir_instr_type_load_const:
1670 ntq_emit_load_const(c, nir_instr_as_load_const(instr));
1671 break;
1672
1673 case nir_instr_type_ssa_undef:
1674 ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
1675 break;
1676
1677 case nir_instr_type_tex:
1678 ntq_emit_tex(c, nir_instr_as_tex(instr));
1679 break;
1680
1681 default:
1682 fprintf(stderr, "Unknown NIR instr type: ");
1683 nir_print_instr(instr, stderr);
1684 fprintf(stderr, "\n");
1685 abort();
1686 }
1687 }
1688
1689 static void
1690 ntq_emit_block(struct vc4_compile *c, nir_block *block)
1691 {
1692 nir_foreach_instr(block, instr) {
1693 ntq_emit_instr(c, instr);
1694 }
1695 }
1696
1697 static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
1698
1699 static void
1700 ntq_emit_loop(struct vc4_compile *c, nir_loop *nloop)
1701 {
1702 fprintf(stderr, "LOOPS not fully handled. Rendering errors likely.\n");
1703 ntq_emit_cf_list(c, &nloop->body);
1704 }
1705
1706 static void
1707 ntq_emit_function(struct vc4_compile *c, nir_function_impl *func)
1708 {
1709 fprintf(stderr, "FUNCTIONS not handled.\n");
1710 abort();
1711 }
1712
1713 static void
1714 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
1715 {
1716 foreach_list_typed(nir_cf_node, node, node, list) {
1717 switch (node->type) {
1718 case nir_cf_node_block:
1719 ntq_emit_block(c, nir_cf_node_as_block(node));
1720 break;
1721
1722 case nir_cf_node_if:
1723 ntq_emit_if(c, nir_cf_node_as_if(node));
1724 break;
1725
1726 case nir_cf_node_loop:
1727 ntq_emit_loop(c, nir_cf_node_as_loop(node));
1728 break;
1729
1730 case nir_cf_node_function:
1731 ntq_emit_function(c, nir_cf_node_as_function(node));
1732 break;
1733
1734 default:
1735 fprintf(stderr, "Unknown NIR node type\n");
1736 abort();
1737 }
1738 }
1739 }
1740
1741 static void
1742 ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
1743 {
1744 ntq_setup_registers(c, &impl->registers);
1745 ntq_emit_cf_list(c, &impl->body);
1746 }
1747
1748 static void
1749 nir_to_qir(struct vc4_compile *c)
1750 {
1751 ntq_setup_inputs(c);
1752 ntq_setup_outputs(c);
1753 ntq_setup_uniforms(c);
1754 ntq_setup_registers(c, &c->s->registers);
1755
1756 /* Find the main function and emit the body. */
1757 nir_foreach_function(c->s, function) {
1758 assert(strcmp(function->name, "main") == 0);
1759 assert(function->impl);
1760 ntq_emit_impl(c, function->impl);
1761 }
1762 }
1763
1764 static const nir_shader_compiler_options nir_options = {
1765 .lower_extract_byte = true,
1766 .lower_extract_word = true,
1767 .lower_ffma = true,
1768 .lower_flrp = true,
1769 .lower_fpow = true,
1770 .lower_fsat = true,
1771 .lower_fsqrt = true,
1772 .lower_negate = true,
1773 };
1774
1775 static bool
1776 count_nir_instrs_in_block(nir_block *block, void *state)
1777 {
1778 int *count = (int *) state;
1779 nir_foreach_instr(block, instr) {
1780 *count = *count + 1;
1781 }
1782 return true;
1783 }
1784
1785 static int
1786 count_nir_instrs(nir_shader *nir)
1787 {
1788 int count = 0;
1789 nir_foreach_function(nir, function) {
1790 if (!function->impl)
1791 continue;
1792 nir_foreach_block(function->impl, count_nir_instrs_in_block, &count);
1793 }
1794 return count;
1795 }
1796
1797 static struct vc4_compile *
1798 vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
1799 struct vc4_key *key)
1800 {
1801 struct vc4_compile *c = qir_compile_init();
1802
1803 c->stage = stage;
1804 c->shader_state = &key->shader_state->base;
1805 c->program_id = key->shader_state->program_id;
1806 c->variant_id = key->shader_state->compiled_variant_count++;
1807
1808 c->key = key;
1809 switch (stage) {
1810 case QSTAGE_FRAG:
1811 c->fs_key = (struct vc4_fs_key *)key;
1812 if (c->fs_key->is_points) {
1813 c->point_x = emit_fragment_varying(c, ~0, 0);
1814 c->point_y = emit_fragment_varying(c, ~0, 0);
1815 } else if (c->fs_key->is_lines) {
1816 c->line_x = emit_fragment_varying(c, ~0, 0);
1817 }
1818 break;
1819 case QSTAGE_VERT:
1820 c->vs_key = (struct vc4_vs_key *)key;
1821 break;
1822 case QSTAGE_COORD:
1823 c->vs_key = (struct vc4_vs_key *)key;
1824 break;
1825 }
1826
1827 const struct tgsi_token *tokens = key->shader_state->base.tokens;
1828
1829 if (vc4_debug & VC4_DEBUG_TGSI) {
1830 fprintf(stderr, "%s prog %d/%d TGSI:\n",
1831 qir_get_stage_name(c->stage),
1832 c->program_id, c->variant_id);
1833 tgsi_dump(tokens, 0);
1834 }
1835
1836 c->s = tgsi_to_nir(tokens, &nir_options);
1837 NIR_PASS_V(c->s, nir_opt_global_to_local);
1838 NIR_PASS_V(c->s, nir_convert_to_ssa);
1839
1840 if (stage == QSTAGE_FRAG)
1841 NIR_PASS_V(c->s, vc4_nir_lower_blend, c);
1842
1843 struct nir_lower_tex_options tex_options = {
1844 /* We would need to implement txs, but we don't want the
1845 * int/float conversions
1846 */
1847 .lower_rect = false,
1848
1849 /* We want to use this, but we don't want to newton-raphson
1850 * its rcp.
1851 */
1852 .lower_txp = false,
1853
1854 /* Apply swizzles to all samplers. */
1855 .swizzle_result = ~0,
1856 };
1857
1858 /* Lower the format swizzle and ARB_texture_swizzle-style swizzle.
1859 * The format swizzling applies before sRGB decode, and
1860 * ARB_texture_swizzle is the last thing before returning the sample.
1861 */
1862 for (int i = 0; i < ARRAY_SIZE(key->tex); i++) {
1863 enum pipe_format format = c->key->tex[i].format;
1864
1865 if (!format)
1866 continue;
1867
1868 const uint8_t *format_swizzle = vc4_get_format_swizzle(format);
1869
1870 for (int j = 0; j < 4; j++) {
1871 uint8_t arb_swiz = c->key->tex[i].swizzle[j];
1872
1873 if (arb_swiz <= 3) {
1874 tex_options.swizzles[i][j] =
1875 format_swizzle[arb_swiz];
1876 } else {
1877 tex_options.swizzles[i][j] = arb_swiz;
1878 }
1879
1880 /* If ARB_texture_swizzle is reading from the R, G, or
1881 * B channels of an sRGB texture, then we need to
1882 * apply sRGB decode to this channel at sample time.
1883 */
1884 if (arb_swiz < 3 && util_format_is_srgb(format)) {
1885 c->tex_srgb_decode[i] |= (1 << j);
1886 }
1887
1888 }
1889 }
1890
1891 NIR_PASS_V(c->s, nir_lower_tex, &tex_options);
1892
1893 if (c->fs_key && c->fs_key->light_twoside)
1894 NIR_PASS_V(c->s, nir_lower_two_sided_color);
1895
1896 if (stage == QSTAGE_FRAG)
1897 NIR_PASS_V(c->s, nir_lower_clip_fs, c->key->ucp_enables);
1898 else
1899 NIR_PASS_V(c->s, nir_lower_clip_vs, c->key->ucp_enables);
1900
1901 NIR_PASS_V(c->s, vc4_nir_lower_io, c);
1902 NIR_PASS_V(c->s, vc4_nir_lower_txf_ms, c);
1903 NIR_PASS_V(c->s, nir_lower_idiv);
1904 NIR_PASS_V(c->s, nir_lower_load_const_to_scalar);
1905
1906 vc4_optimize_nir(c->s);
1907
1908 NIR_PASS_V(c->s, nir_remove_dead_variables);
1909 NIR_PASS_V(c->s, nir_convert_from_ssa, true);
1910
1911 if (vc4_debug & VC4_DEBUG_SHADERDB) {
1912 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n",
1913 qir_get_stage_name(c->stage),
1914 c->program_id, c->variant_id,
1915 count_nir_instrs(c->s));
1916 }
1917
1918 if (vc4_debug & VC4_DEBUG_NIR) {
1919 fprintf(stderr, "%s prog %d/%d NIR:\n",
1920 qir_get_stage_name(c->stage),
1921 c->program_id, c->variant_id);
1922 nir_print_shader(c->s, stderr);
1923 }
1924
1925 nir_to_qir(c);
1926
1927 switch (stage) {
1928 case QSTAGE_FRAG:
1929 emit_frag_end(c);
1930 break;
1931 case QSTAGE_VERT:
1932 emit_vert_end(c,
1933 vc4->prog.fs->input_slots,
1934 vc4->prog.fs->num_inputs);
1935 break;
1936 case QSTAGE_COORD:
1937 emit_coord_end(c);
1938 break;
1939 }
1940
1941 if (vc4_debug & VC4_DEBUG_QIR) {
1942 fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
1943 qir_get_stage_name(c->stage),
1944 c->program_id, c->variant_id);
1945 qir_dump(c);
1946 }
1947
1948 qir_optimize(c);
1949 qir_lower_uniforms(c);
1950
1951 qir_schedule_instructions(c);
1952
1953 if (vc4_debug & VC4_DEBUG_QIR) {
1954 fprintf(stderr, "%s prog %d/%d QIR:\n",
1955 qir_get_stage_name(c->stage),
1956 c->program_id, c->variant_id);
1957 qir_dump(c);
1958 }
1959
1960 qir_reorder_uniforms(c);
1961 vc4_generate_code(vc4, c);
1962
1963 if (vc4_debug & VC4_DEBUG_SHADERDB) {
1964 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
1965 qir_get_stage_name(c->stage),
1966 c->program_id, c->variant_id,
1967 c->qpu_inst_count);
1968 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
1969 qir_get_stage_name(c->stage),
1970 c->program_id, c->variant_id,
1971 c->num_uniforms);
1972 }
1973
1974 ralloc_free(c->s);
1975
1976 return c;
1977 }
1978
1979 static void *
1980 vc4_shader_state_create(struct pipe_context *pctx,
1981 const struct pipe_shader_state *cso)
1982 {
1983 struct vc4_context *vc4 = vc4_context(pctx);
1984 struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
1985 if (!so)
1986 return NULL;
1987
1988 so->base.tokens = tgsi_dup_tokens(cso->tokens);
1989 so->program_id = vc4->next_uncompiled_program_id++;
1990
1991 return so;
1992 }
1993
1994 static void
1995 copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
1996 struct vc4_compile *c)
1997 {
1998 int count = c->num_uniforms;
1999 struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
2000
2001 uinfo->count = count;
2002 uinfo->data = ralloc_array(shader, uint32_t, count);
2003 memcpy(uinfo->data, c->uniform_data,
2004 count * sizeof(*uinfo->data));
2005 uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
2006 memcpy(uinfo->contents, c->uniform_contents,
2007 count * sizeof(*uinfo->contents));
2008 uinfo->num_texture_samples = c->num_texture_samples;
2009
2010 vc4_set_shader_uniform_dirty_flags(shader);
2011 }
2012
2013 static struct vc4_compiled_shader *
2014 vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
2015 struct vc4_key *key)
2016 {
2017 struct hash_table *ht;
2018 uint32_t key_size;
2019 if (stage == QSTAGE_FRAG) {
2020 ht = vc4->fs_cache;
2021 key_size = sizeof(struct vc4_fs_key);
2022 } else {
2023 ht = vc4->vs_cache;
2024 key_size = sizeof(struct vc4_vs_key);
2025 }
2026
2027 struct vc4_compiled_shader *shader;
2028 struct hash_entry *entry = _mesa_hash_table_search(ht, key);
2029 if (entry)
2030 return entry->data;
2031
2032 struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key);
2033 shader = rzalloc(NULL, struct vc4_compiled_shader);
2034
2035 shader->program_id = vc4->next_compiled_program_id++;
2036 if (stage == QSTAGE_FRAG) {
2037 bool input_live[c->num_input_slots];
2038
2039 memset(input_live, 0, sizeof(input_live));
2040 list_for_each_entry(struct qinst, inst, &c->instructions, link) {
2041 for (int i = 0; i < qir_get_op_nsrc(inst->op); i++) {
2042 if (inst->src[i].file == QFILE_VARY)
2043 input_live[inst->src[i].index] = true;
2044 }
2045 }
2046
2047 shader->input_slots = ralloc_array(shader,
2048 struct vc4_varying_slot,
2049 c->num_input_slots);
2050
2051 for (int i = 0; i < c->num_input_slots; i++) {
2052 struct vc4_varying_slot *slot = &c->input_slots[i];
2053
2054 if (!input_live[i])
2055 continue;
2056
2057 /* Skip non-VS-output inputs. */
2058 if (slot->slot == (uint8_t)~0)
2059 continue;
2060
2061 if (slot->slot == VARYING_SLOT_COL0 ||
2062 slot->slot == VARYING_SLOT_COL1 ||
2063 slot->slot == VARYING_SLOT_BFC0 ||
2064 slot->slot == VARYING_SLOT_BFC1) {
2065 shader->color_inputs |= (1 << shader->num_inputs);
2066 }
2067
2068 shader->input_slots[shader->num_inputs] = *slot;
2069 shader->num_inputs++;
2070 }
2071 } else {
2072 shader->num_inputs = c->num_inputs;
2073
2074 shader->vattr_offsets[0] = 0;
2075 for (int i = 0; i < 8; i++) {
2076 shader->vattr_offsets[i + 1] =
2077 shader->vattr_offsets[i] + c->vattr_sizes[i];
2078
2079 if (c->vattr_sizes[i])
2080 shader->vattrs_live |= (1 << i);
2081 }
2082 }
2083
2084 copy_uniform_state_to_shader(shader, c);
2085 shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts,
2086 c->qpu_inst_count * sizeof(uint64_t));
2087
2088 /* Copy the compiler UBO range state to the compiled shader, dropping
2089 * out arrays that were never referenced by an indirect load.
2090 *
2091 * (Note that QIR dead code elimination of an array access still
2092 * leaves that array alive, though)
2093 */
2094 if (c->num_ubo_ranges) {
2095 shader->num_ubo_ranges = c->num_ubo_ranges;
2096 shader->ubo_ranges = ralloc_array(shader, struct vc4_ubo_range,
2097 c->num_ubo_ranges);
2098 uint32_t j = 0;
2099 for (int i = 0; i < c->num_uniform_ranges; i++) {
2100 struct vc4_compiler_ubo_range *range =
2101 &c->ubo_ranges[i];
2102 if (!range->used)
2103 continue;
2104
2105 shader->ubo_ranges[j].dst_offset = range->dst_offset;
2106 shader->ubo_ranges[j].src_offset = range->src_offset;
2107 shader->ubo_ranges[j].size = range->size;
2108 shader->ubo_size += c->ubo_ranges[i].size;
2109 j++;
2110 }
2111 }
2112 if (shader->ubo_size) {
2113 if (vc4_debug & VC4_DEBUG_SHADERDB) {
2114 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d UBO uniforms\n",
2115 qir_get_stage_name(c->stage),
2116 c->program_id, c->variant_id,
2117 shader->ubo_size / 4);
2118 }
2119 }
2120
2121 qir_compile_destroy(c);
2122
2123 struct vc4_key *dup_key;
2124 dup_key = ralloc_size(shader, key_size);
2125 memcpy(dup_key, key, key_size);
2126 _mesa_hash_table_insert(ht, dup_key, shader);
2127
2128 return shader;
2129 }
2130
2131 static void
2132 vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
2133 struct vc4_texture_stateobj *texstate)
2134 {
2135 for (int i = 0; i < texstate->num_textures; i++) {
2136 struct pipe_sampler_view *sampler = texstate->textures[i];
2137 struct pipe_sampler_state *sampler_state =
2138 texstate->samplers[i];
2139
2140 if (!sampler)
2141 continue;
2142
2143 key->tex[i].format = sampler->format;
2144 key->tex[i].swizzle[0] = sampler->swizzle_r;
2145 key->tex[i].swizzle[1] = sampler->swizzle_g;
2146 key->tex[i].swizzle[2] = sampler->swizzle_b;
2147 key->tex[i].swizzle[3] = sampler->swizzle_a;
2148
2149 if (sampler->texture->nr_samples > 1) {
2150 key->tex[i].msaa_width = sampler->texture->width0;
2151 key->tex[i].msaa_height = sampler->texture->height0;
2152 } else if (sampler){
2153 key->tex[i].compare_mode = sampler_state->compare_mode;
2154 key->tex[i].compare_func = sampler_state->compare_func;
2155 key->tex[i].wrap_s = sampler_state->wrap_s;
2156 key->tex[i].wrap_t = sampler_state->wrap_t;
2157 }
2158 }
2159
2160 key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
2161 }
2162
2163 static void
2164 vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
2165 {
2166 struct vc4_fs_key local_key;
2167 struct vc4_fs_key *key = &local_key;
2168
2169 if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2170 VC4_DIRTY_BLEND |
2171 VC4_DIRTY_FRAMEBUFFER |
2172 VC4_DIRTY_ZSA |
2173 VC4_DIRTY_RASTERIZER |
2174 VC4_DIRTY_FRAGTEX |
2175 VC4_DIRTY_TEXSTATE |
2176 VC4_DIRTY_UNCOMPILED_FS))) {
2177 return;
2178 }
2179
2180 memset(key, 0, sizeof(*key));
2181 vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
2182 key->base.shader_state = vc4->prog.bind_fs;
2183 key->is_points = (prim_mode == PIPE_PRIM_POINTS);
2184 key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
2185 prim_mode <= PIPE_PRIM_LINE_STRIP);
2186 key->blend = vc4->blend->rt[0];
2187 if (vc4->blend->logicop_enable) {
2188 key->logicop_func = vc4->blend->logicop_func;
2189 } else {
2190 key->logicop_func = PIPE_LOGICOP_COPY;
2191 }
2192 key->msaa = vc4->rasterizer->base.multisample;
2193 key->sample_coverage = (vc4->rasterizer->base.multisample &&
2194 vc4->sample_mask != (1 << VC4_MAX_SAMPLES) - 1);
2195 key->sample_alpha_to_coverage = vc4->blend->alpha_to_coverage;
2196 key->sample_alpha_to_one = vc4->blend->alpha_to_one;
2197 if (vc4->framebuffer.cbufs[0])
2198 key->color_format = vc4->framebuffer.cbufs[0]->format;
2199
2200 key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
2201 key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
2202 key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
2203 key->depth_enabled = (vc4->zsa->base.depth.enabled ||
2204 key->stencil_enabled);
2205 if (vc4->zsa->base.alpha.enabled) {
2206 key->alpha_test = true;
2207 key->alpha_test_func = vc4->zsa->base.alpha.func;
2208 }
2209
2210 if (key->is_points) {
2211 key->point_sprite_mask =
2212 vc4->rasterizer->base.sprite_coord_enable;
2213 key->point_coord_upper_left =
2214 (vc4->rasterizer->base.sprite_coord_mode ==
2215 PIPE_SPRITE_COORD_UPPER_LEFT);
2216 }
2217
2218 key->light_twoside = vc4->rasterizer->base.light_twoside;
2219
2220 struct vc4_compiled_shader *old_fs = vc4->prog.fs;
2221 vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
2222 if (vc4->prog.fs == old_fs)
2223 return;
2224
2225 vc4->dirty |= VC4_DIRTY_COMPILED_FS;
2226 if (vc4->rasterizer->base.flatshade &&
2227 old_fs && vc4->prog.fs->color_inputs != old_fs->color_inputs) {
2228 vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
2229 }
2230 }
2231
2232 static void
2233 vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
2234 {
2235 struct vc4_vs_key local_key;
2236 struct vc4_vs_key *key = &local_key;
2237
2238 if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2239 VC4_DIRTY_RASTERIZER |
2240 VC4_DIRTY_VERTTEX |
2241 VC4_DIRTY_TEXSTATE |
2242 VC4_DIRTY_VTXSTATE |
2243 VC4_DIRTY_UNCOMPILED_VS |
2244 VC4_DIRTY_COMPILED_FS))) {
2245 return;
2246 }
2247
2248 memset(key, 0, sizeof(*key));
2249 vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
2250 key->base.shader_state = vc4->prog.bind_vs;
2251 key->compiled_fs_id = vc4->prog.fs->program_id;
2252
2253 for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
2254 key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
2255
2256 key->per_vertex_point_size =
2257 (prim_mode == PIPE_PRIM_POINTS &&
2258 vc4->rasterizer->base.point_size_per_vertex);
2259
2260 struct vc4_compiled_shader *vs =
2261 vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
2262 if (vs != vc4->prog.vs) {
2263 vc4->prog.vs = vs;
2264 vc4->dirty |= VC4_DIRTY_COMPILED_VS;
2265 }
2266
2267 key->is_coord = true;
2268 struct vc4_compiled_shader *cs =
2269 vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
2270 if (cs != vc4->prog.cs) {
2271 vc4->prog.cs = cs;
2272 vc4->dirty |= VC4_DIRTY_COMPILED_CS;
2273 }
2274 }
2275
2276 void
2277 vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
2278 {
2279 vc4_update_compiled_fs(vc4, prim_mode);
2280 vc4_update_compiled_vs(vc4, prim_mode);
2281 }
2282
2283 static uint32_t
2284 fs_cache_hash(const void *key)
2285 {
2286 return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
2287 }
2288
2289 static uint32_t
2290 vs_cache_hash(const void *key)
2291 {
2292 return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
2293 }
2294
2295 static bool
2296 fs_cache_compare(const void *key1, const void *key2)
2297 {
2298 return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
2299 }
2300
2301 static bool
2302 vs_cache_compare(const void *key1, const void *key2)
2303 {
2304 return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
2305 }
2306
2307 static void
2308 delete_from_cache_if_matches(struct hash_table *ht,
2309 struct hash_entry *entry,
2310 struct vc4_uncompiled_shader *so)
2311 {
2312 const struct vc4_key *key = entry->key;
2313
2314 if (key->shader_state == so) {
2315 struct vc4_compiled_shader *shader = entry->data;
2316 _mesa_hash_table_remove(ht, entry);
2317 vc4_bo_unreference(&shader->bo);
2318 ralloc_free(shader);
2319 }
2320 }
2321
2322 static void
2323 vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
2324 {
2325 struct vc4_context *vc4 = vc4_context(pctx);
2326 struct vc4_uncompiled_shader *so = hwcso;
2327
2328 struct hash_entry *entry;
2329 hash_table_foreach(vc4->fs_cache, entry)
2330 delete_from_cache_if_matches(vc4->fs_cache, entry, so);
2331 hash_table_foreach(vc4->vs_cache, entry)
2332 delete_from_cache_if_matches(vc4->vs_cache, entry, so);
2333
2334 free((void *)so->base.tokens);
2335 free(so);
2336 }
2337
2338 static void
2339 vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
2340 {
2341 struct vc4_context *vc4 = vc4_context(pctx);
2342 vc4->prog.bind_fs = hwcso;
2343 vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
2344 }
2345
2346 static void
2347 vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
2348 {
2349 struct vc4_context *vc4 = vc4_context(pctx);
2350 vc4->prog.bind_vs = hwcso;
2351 vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
2352 }
2353
2354 void
2355 vc4_program_init(struct pipe_context *pctx)
2356 {
2357 struct vc4_context *vc4 = vc4_context(pctx);
2358
2359 pctx->create_vs_state = vc4_shader_state_create;
2360 pctx->delete_vs_state = vc4_shader_state_delete;
2361
2362 pctx->create_fs_state = vc4_shader_state_create;
2363 pctx->delete_fs_state = vc4_shader_state_delete;
2364
2365 pctx->bind_fs_state = vc4_fp_state_bind;
2366 pctx->bind_vs_state = vc4_vp_state_bind;
2367
2368 vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
2369 fs_cache_compare);
2370 vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
2371 vs_cache_compare);
2372 }
2373
2374 void
2375 vc4_program_fini(struct pipe_context *pctx)
2376 {
2377 struct vc4_context *vc4 = vc4_context(pctx);
2378
2379 struct hash_entry *entry;
2380 hash_table_foreach(vc4->fs_cache, entry) {
2381 struct vc4_compiled_shader *shader = entry->data;
2382 vc4_bo_unreference(&shader->bo);
2383 ralloc_free(shader);
2384 _mesa_hash_table_remove(vc4->fs_cache, entry);
2385 }
2386
2387 hash_table_foreach(vc4->vs_cache, entry) {
2388 struct vc4_compiled_shader *shader = entry->data;
2389 vc4_bo_unreference(&shader->bo);
2390 ralloc_free(shader);
2391 _mesa_hash_table_remove(vc4->vs_cache, entry);
2392 }
2393 }