vc4: Fix the uniform debug output.
[mesa.git] / src / gallium / drivers / vc4 / vc4_program.c
1 /*
2 * Copyright (c) 2014 Scott Mansell
3 * Copyright © 2014 Broadcom
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24
25 #include <inttypes.h>
26 #include "pipe/p_state.h"
27 #include "util/u_format.h"
28 #include "util/u_hash_table.h"
29 #include "util/u_hash.h"
30 #include "util/u_memory.h"
31 #include "util/u_pack_color.h"
32 #include "util/format_srgb.h"
33 #include "util/ralloc.h"
34 #include "util/hash_table.h"
35 #include "tgsi/tgsi_dump.h"
36 #include "tgsi/tgsi_info.h"
37 #include "tgsi/tgsi_lowering.h"
38
39 #include "vc4_context.h"
40 #include "vc4_qpu.h"
41 #include "vc4_qir.h"
42 #ifdef USE_VC4_SIMULATOR
43 #include "simpenrose/simpenrose.h"
44 #endif
45
46 struct vc4_key {
47 struct vc4_uncompiled_shader *shader_state;
48 struct {
49 enum pipe_format format;
50 unsigned compare_mode:1;
51 unsigned compare_func:3;
52 unsigned wrap_s:3;
53 unsigned wrap_t:3;
54 uint8_t swizzle[4];
55 } tex[VC4_MAX_TEXTURE_SAMPLERS];
56 uint8_t ucp_enables;
57 };
58
59 struct vc4_fs_key {
60 struct vc4_key base;
61 enum pipe_format color_format;
62 bool depth_enabled;
63 bool stencil_enabled;
64 bool stencil_twoside;
65 bool stencil_full_writemasks;
66 bool is_points;
67 bool is_lines;
68 bool alpha_test;
69 bool point_coord_upper_left;
70 bool light_twoside;
71 uint8_t alpha_test_func;
72 uint32_t point_sprite_mask;
73
74 struct pipe_rt_blend_state blend;
75 };
76
77 struct vc4_vs_key {
78 struct vc4_key base;
79
80 /**
81 * This is a proxy for the array of FS input semantics, which is
82 * larger than we would want to put in the key.
83 */
84 uint64_t compiled_fs_id;
85
86 enum pipe_format attr_formats[8];
87 bool is_coord;
88 bool per_vertex_point_size;
89 };
90
91 static void
92 resize_qreg_array(struct vc4_compile *c,
93 struct qreg **regs,
94 uint32_t *size,
95 uint32_t decl_size)
96 {
97 if (*size >= decl_size)
98 return;
99
100 uint32_t old_size = *size;
101 *size = MAX2(*size * 2, decl_size);
102 *regs = reralloc(c, *regs, struct qreg, *size);
103 if (!*regs) {
104 fprintf(stderr, "Malloc failure\n");
105 abort();
106 }
107
108 for (uint32_t i = old_size; i < *size; i++)
109 (*regs)[i] = c->undef;
110 }
111
112 static struct qreg
113 add_uniform(struct vc4_compile *c,
114 enum quniform_contents contents,
115 uint32_t data)
116 {
117 uint32_t uniform = c->num_uniforms++;
118 struct qreg u = { QFILE_UNIF, uniform };
119
120 if (uniform >= c->uniform_array_size) {
121 c->uniform_array_size = MAX2(MAX2(16, uniform + 1),
122 c->uniform_array_size * 2);
123
124 c->uniform_data = reralloc(c, c->uniform_data,
125 uint32_t,
126 c->uniform_array_size);
127 c->uniform_contents = reralloc(c, c->uniform_contents,
128 enum quniform_contents,
129 c->uniform_array_size);
130 }
131
132 c->uniform_contents[uniform] = contents;
133 c->uniform_data[uniform] = data;
134
135 return u;
136 }
137
138 static struct qreg
139 get_temp_for_uniform(struct vc4_compile *c, enum quniform_contents contents,
140 uint32_t data)
141 {
142 struct qreg u = add_uniform(c, contents, data);
143 struct qreg t = qir_MOV(c, u);
144 return t;
145 }
146
147 static struct qreg
148 qir_uniform_ui(struct vc4_compile *c, uint32_t ui)
149 {
150 return get_temp_for_uniform(c, QUNIFORM_CONSTANT, ui);
151 }
152
153 static struct qreg
154 qir_uniform_f(struct vc4_compile *c, float f)
155 {
156 return qir_uniform_ui(c, fui(f));
157 }
158
159 static struct qreg
160 get_src(struct vc4_compile *c, unsigned tgsi_op,
161 struct tgsi_src_register *src, int i)
162 {
163 struct qreg r = c->undef;
164
165 uint32_t s = i;
166 switch (i) {
167 case TGSI_SWIZZLE_X:
168 s = src->SwizzleX;
169 break;
170 case TGSI_SWIZZLE_Y:
171 s = src->SwizzleY;
172 break;
173 case TGSI_SWIZZLE_Z:
174 s = src->SwizzleZ;
175 break;
176 case TGSI_SWIZZLE_W:
177 s = src->SwizzleW;
178 break;
179 default:
180 abort();
181 }
182
183 assert(!src->Indirect);
184
185 switch (src->File) {
186 case TGSI_FILE_NULL:
187 return r;
188 case TGSI_FILE_TEMPORARY:
189 r = c->temps[src->Index * 4 + s];
190 break;
191 case TGSI_FILE_IMMEDIATE:
192 r = c->consts[src->Index * 4 + s];
193 break;
194 case TGSI_FILE_CONSTANT:
195 r = get_temp_for_uniform(c, QUNIFORM_UNIFORM,
196 src->Index * 4 + s);
197 break;
198 case TGSI_FILE_INPUT:
199 r = c->inputs[src->Index * 4 + s];
200 break;
201 case TGSI_FILE_SAMPLER:
202 case TGSI_FILE_SAMPLER_VIEW:
203 r = c->undef;
204 break;
205 default:
206 fprintf(stderr, "unknown src file %d\n", src->File);
207 abort();
208 }
209
210 if (src->Absolute)
211 r = qir_FMAXABS(c, r, r);
212
213 if (src->Negate) {
214 switch (tgsi_opcode_infer_src_type(tgsi_op)) {
215 case TGSI_TYPE_SIGNED:
216 case TGSI_TYPE_UNSIGNED:
217 r = qir_SUB(c, qir_uniform_ui(c, 0), r);
218 break;
219 default:
220 r = qir_FSUB(c, qir_uniform_f(c, 0.0), r);
221 break;
222 }
223 }
224
225 return r;
226 };
227
228
229 static void
230 update_dst(struct vc4_compile *c, struct tgsi_full_instruction *tgsi_inst,
231 int i, struct qreg val)
232 {
233 struct tgsi_dst_register *tgsi_dst = &tgsi_inst->Dst[0].Register;
234
235 assert(!tgsi_dst->Indirect);
236
237 switch (tgsi_dst->File) {
238 case TGSI_FILE_TEMPORARY:
239 c->temps[tgsi_dst->Index * 4 + i] = val;
240 break;
241 case TGSI_FILE_OUTPUT:
242 c->outputs[tgsi_dst->Index * 4 + i] = val;
243 c->num_outputs = MAX2(c->num_outputs,
244 tgsi_dst->Index * 4 + i + 1);
245 break;
246 default:
247 fprintf(stderr, "unknown dst file %d\n", tgsi_dst->File);
248 abort();
249 }
250 };
251
252 static struct qreg
253 get_swizzled_channel(struct vc4_compile *c,
254 struct qreg *srcs, int swiz)
255 {
256 switch (swiz) {
257 default:
258 case UTIL_FORMAT_SWIZZLE_NONE:
259 fprintf(stderr, "warning: unknown swizzle\n");
260 /* FALLTHROUGH */
261 case UTIL_FORMAT_SWIZZLE_0:
262 return qir_uniform_f(c, 0.0);
263 case UTIL_FORMAT_SWIZZLE_1:
264 return qir_uniform_f(c, 1.0);
265 case UTIL_FORMAT_SWIZZLE_X:
266 case UTIL_FORMAT_SWIZZLE_Y:
267 case UTIL_FORMAT_SWIZZLE_Z:
268 case UTIL_FORMAT_SWIZZLE_W:
269 return srcs[swiz];
270 }
271 }
272
273 static struct qreg
274 tgsi_to_qir_alu(struct vc4_compile *c,
275 struct tgsi_full_instruction *tgsi_inst,
276 enum qop op, struct qreg *src, int i)
277 {
278 struct qreg dst = qir_get_temp(c);
279 qir_emit(c, qir_inst4(op, dst,
280 src[0 * 4 + i],
281 src[1 * 4 + i],
282 src[2 * 4 + i],
283 c->undef));
284 return dst;
285 }
286
287 static struct qreg
288 tgsi_to_qir_scalar(struct vc4_compile *c,
289 struct tgsi_full_instruction *tgsi_inst,
290 enum qop op, struct qreg *src, int i)
291 {
292 struct qreg dst = qir_get_temp(c);
293 qir_emit(c, qir_inst(op, dst,
294 src[0 * 4 + 0],
295 c->undef));
296 return dst;
297 }
298
299 static struct qreg
300 qir_srgb_decode(struct vc4_compile *c, struct qreg srgb)
301 {
302 struct qreg low = qir_FMUL(c, srgb, qir_uniform_f(c, 1.0 / 12.92));
303 struct qreg high = qir_POW(c,
304 qir_FMUL(c,
305 qir_FADD(c,
306 srgb,
307 qir_uniform_f(c, 0.055)),
308 qir_uniform_f(c, 1.0 / 1.055)),
309 qir_uniform_f(c, 2.4));
310
311 qir_SF(c, qir_FSUB(c, srgb, qir_uniform_f(c, 0.04045)));
312 return qir_SEL_X_Y_NS(c, low, high);
313 }
314
315 static struct qreg
316 qir_srgb_encode(struct vc4_compile *c, struct qreg linear)
317 {
318 struct qreg low = qir_FMUL(c, linear, qir_uniform_f(c, 12.92));
319 struct qreg high = qir_FSUB(c,
320 qir_FMUL(c,
321 qir_uniform_f(c, 1.055),
322 qir_POW(c,
323 linear,
324 qir_uniform_f(c, 0.41666))),
325 qir_uniform_f(c, 0.055));
326
327 qir_SF(c, qir_FSUB(c, linear, qir_uniform_f(c, 0.0031308)));
328 return qir_SEL_X_Y_NS(c, low, high);
329 }
330
331 static struct qreg
332 tgsi_to_qir_umul(struct vc4_compile *c,
333 struct tgsi_full_instruction *tgsi_inst,
334 enum qop op, struct qreg *src, int i)
335 {
336 struct qreg src0_hi = qir_SHR(c, src[0 * 4 + i],
337 qir_uniform_ui(c, 16));
338 struct qreg src0_lo = qir_AND(c, src[0 * 4 + i],
339 qir_uniform_ui(c, 0xffff));
340 struct qreg src1_hi = qir_SHR(c, src[1 * 4 + i],
341 qir_uniform_ui(c, 16));
342 struct qreg src1_lo = qir_AND(c, src[1 * 4 + i],
343 qir_uniform_ui(c, 0xffff));
344
345 struct qreg hilo = qir_MUL24(c, src0_hi, src1_lo);
346 struct qreg lohi = qir_MUL24(c, src0_lo, src1_hi);
347 struct qreg lolo = qir_MUL24(c, src0_lo, src1_lo);
348
349 return qir_ADD(c, lolo, qir_SHL(c,
350 qir_ADD(c, hilo, lohi),
351 qir_uniform_ui(c, 16)));
352 }
353
354 static struct qreg
355 tgsi_to_qir_idiv(struct vc4_compile *c,
356 struct tgsi_full_instruction *tgsi_inst,
357 enum qop op, struct qreg *src, int i)
358 {
359 return qir_FTOI(c, qir_FMUL(c,
360 qir_ITOF(c, src[0 * 4 + i]),
361 qir_RCP(c, qir_ITOF(c, src[1 * 4 + i]))));
362 }
363
364 static struct qreg
365 tgsi_to_qir_ineg(struct vc4_compile *c,
366 struct tgsi_full_instruction *tgsi_inst,
367 enum qop op, struct qreg *src, int i)
368 {
369 return qir_SUB(c, qir_uniform_ui(c, 0), src[0 * 4 + i]);
370 }
371
372 static struct qreg
373 tgsi_to_qir_seq(struct vc4_compile *c,
374 struct tgsi_full_instruction *tgsi_inst,
375 enum qop op, struct qreg *src, int i)
376 {
377 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
378 return qir_SEL_X_0_ZS(c, qir_uniform_f(c, 1.0));
379 }
380
381 static struct qreg
382 tgsi_to_qir_sne(struct vc4_compile *c,
383 struct tgsi_full_instruction *tgsi_inst,
384 enum qop op, struct qreg *src, int i)
385 {
386 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
387 return qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0));
388 }
389
390 static struct qreg
391 tgsi_to_qir_slt(struct vc4_compile *c,
392 struct tgsi_full_instruction *tgsi_inst,
393 enum qop op, struct qreg *src, int i)
394 {
395 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
396 return qir_SEL_X_0_NS(c, qir_uniform_f(c, 1.0));
397 }
398
399 static struct qreg
400 tgsi_to_qir_sge(struct vc4_compile *c,
401 struct tgsi_full_instruction *tgsi_inst,
402 enum qop op, struct qreg *src, int i)
403 {
404 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
405 return qir_SEL_X_0_NC(c, qir_uniform_f(c, 1.0));
406 }
407
408 static struct qreg
409 tgsi_to_qir_fseq(struct vc4_compile *c,
410 struct tgsi_full_instruction *tgsi_inst,
411 enum qop op, struct qreg *src, int i)
412 {
413 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
414 return qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
415 }
416
417 static struct qreg
418 tgsi_to_qir_fsne(struct vc4_compile *c,
419 struct tgsi_full_instruction *tgsi_inst,
420 enum qop op, struct qreg *src, int i)
421 {
422 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
423 return qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
424 }
425
426 static struct qreg
427 tgsi_to_qir_fslt(struct vc4_compile *c,
428 struct tgsi_full_instruction *tgsi_inst,
429 enum qop op, struct qreg *src, int i)
430 {
431 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
432 return qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
433 }
434
435 static struct qreg
436 tgsi_to_qir_fsge(struct vc4_compile *c,
437 struct tgsi_full_instruction *tgsi_inst,
438 enum qop op, struct qreg *src, int i)
439 {
440 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
441 return qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
442 }
443
444 static struct qreg
445 tgsi_to_qir_useq(struct vc4_compile *c,
446 struct tgsi_full_instruction *tgsi_inst,
447 enum qop op, struct qreg *src, int i)
448 {
449 qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
450 return qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
451 }
452
453 static struct qreg
454 tgsi_to_qir_usne(struct vc4_compile *c,
455 struct tgsi_full_instruction *tgsi_inst,
456 enum qop op, struct qreg *src, int i)
457 {
458 qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
459 return qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
460 }
461
462 static struct qreg
463 tgsi_to_qir_islt(struct vc4_compile *c,
464 struct tgsi_full_instruction *tgsi_inst,
465 enum qop op, struct qreg *src, int i)
466 {
467 qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
468 return qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
469 }
470
471 static struct qreg
472 tgsi_to_qir_isge(struct vc4_compile *c,
473 struct tgsi_full_instruction *tgsi_inst,
474 enum qop op, struct qreg *src, int i)
475 {
476 qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
477 return qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
478 }
479
480 static struct qreg
481 tgsi_to_qir_cmp(struct vc4_compile *c,
482 struct tgsi_full_instruction *tgsi_inst,
483 enum qop op, struct qreg *src, int i)
484 {
485 qir_SF(c, src[0 * 4 + i]);
486 return qir_SEL_X_Y_NS(c,
487 src[1 * 4 + i],
488 src[2 * 4 + i]);
489 }
490
491 static struct qreg
492 tgsi_to_qir_mad(struct vc4_compile *c,
493 struct tgsi_full_instruction *tgsi_inst,
494 enum qop op, struct qreg *src, int i)
495 {
496 return qir_FADD(c,
497 qir_FMUL(c,
498 src[0 * 4 + i],
499 src[1 * 4 + i]),
500 src[2 * 4 + i]);
501 }
502
503 static struct qreg
504 tgsi_to_qir_lrp(struct vc4_compile *c,
505 struct tgsi_full_instruction *tgsi_inst,
506 enum qop op, struct qreg *src, int i)
507 {
508 struct qreg src0 = src[0 * 4 + i];
509 struct qreg src1 = src[1 * 4 + i];
510 struct qreg src2 = src[2 * 4 + i];
511
512 /* LRP is:
513 * src0 * src1 + (1 - src0) * src2.
514 * -> src0 * src1 + src2 - src0 * src2
515 * -> src2 + src0 * (src1 - src2)
516 */
517 return qir_FADD(c, src2, qir_FMUL(c, src0, qir_FSUB(c, src1, src2)));
518
519 }
520
521 static void
522 tgsi_to_qir_tex(struct vc4_compile *c,
523 struct tgsi_full_instruction *tgsi_inst,
524 enum qop op, struct qreg *src)
525 {
526 assert(!tgsi_inst->Instruction.Saturate);
527
528 struct qreg s = src[0 * 4 + 0];
529 struct qreg t = src[0 * 4 + 1];
530 struct qreg r = src[0 * 4 + 2];
531 uint32_t unit = tgsi_inst->Src[1].Register.Index;
532 bool is_txl = tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXL;
533
534 struct qreg proj = c->undef;
535 if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXP) {
536 proj = qir_RCP(c, src[0 * 4 + 3]);
537 s = qir_FMUL(c, s, proj);
538 t = qir_FMUL(c, t, proj);
539 }
540
541 struct qreg texture_u[] = {
542 add_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
543 add_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
544 add_uniform(c, QUNIFORM_CONSTANT, 0),
545 add_uniform(c, QUNIFORM_CONSTANT, 0),
546 };
547 uint32_t next_texture_u = 0;
548
549 /* There is no native support for GL texture rectangle coordinates, so
550 * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
551 * 1]).
552 */
553 if (tgsi_inst->Texture.Texture == TGSI_TEXTURE_RECT ||
554 tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOWRECT) {
555 s = qir_FMUL(c, s,
556 get_temp_for_uniform(c,
557 QUNIFORM_TEXRECT_SCALE_X,
558 unit));
559 t = qir_FMUL(c, t,
560 get_temp_for_uniform(c,
561 QUNIFORM_TEXRECT_SCALE_Y,
562 unit));
563 }
564
565 if (tgsi_inst->Texture.Texture == TGSI_TEXTURE_CUBE ||
566 tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE ||
567 is_txl) {
568 texture_u[2] = add_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
569 unit | (is_txl << 16));
570 }
571
572 if (tgsi_inst->Texture.Texture == TGSI_TEXTURE_CUBE ||
573 tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE) {
574 struct qreg ma = qir_FMAXABS(c, qir_FMAXABS(c, s, t), r);
575 struct qreg rcp_ma = qir_RCP(c, ma);
576 s = qir_FMUL(c, s, rcp_ma);
577 t = qir_FMUL(c, t, rcp_ma);
578 r = qir_FMUL(c, r, rcp_ma);
579
580 qir_TEX_R(c, r, texture_u[next_texture_u++]);
581 } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
582 c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
583 c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
584 c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
585 qir_TEX_R(c, get_temp_for_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR, unit),
586 texture_u[next_texture_u++]);
587 }
588
589 if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
590 s = qir_FMIN(c, qir_FMAX(c, s, qir_uniform_f(c, 0.0)),
591 qir_uniform_f(c, 1.0));
592 }
593
594 if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
595 t = qir_FMIN(c, qir_FMAX(c, t, qir_uniform_f(c, 0.0)),
596 qir_uniform_f(c, 1.0));
597 }
598
599 qir_TEX_T(c, t, texture_u[next_texture_u++]);
600
601 if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXB ||
602 tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXL)
603 qir_TEX_B(c, src[0 * 4 + 3], texture_u[next_texture_u++]);
604
605 qir_TEX_S(c, s, texture_u[next_texture_u++]);
606
607 c->num_texture_samples++;
608 struct qreg r4 = qir_TEX_RESULT(c);
609
610 enum pipe_format format = c->key->tex[unit].format;
611
612 struct qreg unpacked[4];
613 if (util_format_is_depth_or_stencil(format)) {
614 struct qreg depthf = qir_ITOF(c, qir_SHR(c, r4,
615 qir_uniform_ui(c, 8)));
616 struct qreg normalized = qir_FMUL(c, depthf,
617 qir_uniform_f(c, 1.0f/0xffffff));
618
619 struct qreg depth_output;
620
621 struct qreg one = qir_uniform_f(c, 1.0f);
622 if (c->key->tex[unit].compare_mode) {
623 struct qreg compare = src[0 * 4 + 2];
624
625 if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXP)
626 compare = qir_FMUL(c, compare, proj);
627
628 switch (c->key->tex[unit].compare_func) {
629 case PIPE_FUNC_NEVER:
630 depth_output = qir_uniform_f(c, 0.0f);
631 break;
632 case PIPE_FUNC_ALWAYS:
633 depth_output = one;
634 break;
635 case PIPE_FUNC_EQUAL:
636 qir_SF(c, qir_FSUB(c, compare, normalized));
637 depth_output = qir_SEL_X_0_ZS(c, one);
638 break;
639 case PIPE_FUNC_NOTEQUAL:
640 qir_SF(c, qir_FSUB(c, compare, normalized));
641 depth_output = qir_SEL_X_0_ZC(c, one);
642 break;
643 case PIPE_FUNC_GREATER:
644 qir_SF(c, qir_FSUB(c, compare, normalized));
645 depth_output = qir_SEL_X_0_NC(c, one);
646 break;
647 case PIPE_FUNC_GEQUAL:
648 qir_SF(c, qir_FSUB(c, normalized, compare));
649 depth_output = qir_SEL_X_0_NS(c, one);
650 break;
651 case PIPE_FUNC_LESS:
652 qir_SF(c, qir_FSUB(c, compare, normalized));
653 depth_output = qir_SEL_X_0_NS(c, one);
654 break;
655 case PIPE_FUNC_LEQUAL:
656 qir_SF(c, qir_FSUB(c, normalized, compare));
657 depth_output = qir_SEL_X_0_NC(c, one);
658 break;
659 }
660 } else {
661 depth_output = normalized;
662 }
663
664 for (int i = 0; i < 4; i++)
665 unpacked[i] = depth_output;
666 } else {
667 for (int i = 0; i < 4; i++)
668 unpacked[i] = qir_R4_UNPACK(c, r4, i);
669 }
670
671 const uint8_t *format_swiz = vc4_get_format_swizzle(format);
672 struct qreg texture_output[4];
673 for (int i = 0; i < 4; i++) {
674 texture_output[i] = get_swizzled_channel(c, unpacked,
675 format_swiz[i]);
676 }
677
678 if (util_format_is_srgb(format)) {
679 for (int i = 0; i < 3; i++)
680 texture_output[i] = qir_srgb_decode(c,
681 texture_output[i]);
682 }
683
684 for (int i = 0; i < 4; i++) {
685 if (!(tgsi_inst->Dst[0].Register.WriteMask & (1 << i)))
686 continue;
687
688 update_dst(c, tgsi_inst, i,
689 get_swizzled_channel(c, texture_output,
690 c->key->tex[unit].swizzle[i]));
691 }
692 }
693
694 static struct qreg
695 tgsi_to_qir_trunc(struct vc4_compile *c,
696 struct tgsi_full_instruction *tgsi_inst,
697 enum qop op, struct qreg *src, int i)
698 {
699 return qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
700 }
701
702 /**
703 * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
704 * to zero).
705 */
706 static struct qreg
707 tgsi_to_qir_frc(struct vc4_compile *c,
708 struct tgsi_full_instruction *tgsi_inst,
709 enum qop op, struct qreg *src, int i)
710 {
711 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
712 struct qreg diff = qir_FSUB(c, src[0 * 4 + i], trunc);
713 qir_SF(c, diff);
714 return qir_SEL_X_Y_NS(c,
715 qir_FADD(c, diff, qir_uniform_f(c, 1.0)),
716 diff);
717 }
718
719 /**
720 * Computes floor(x), which is tricky because our FTOI truncates (rounds to
721 * zero).
722 */
723 static struct qreg
724 tgsi_to_qir_flr(struct vc4_compile *c,
725 struct tgsi_full_instruction *tgsi_inst,
726 enum qop op, struct qreg *src, int i)
727 {
728 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
729
730 /* This will be < 0 if we truncated and the truncation was of a value
731 * that was < 0 in the first place.
732 */
733 qir_SF(c, qir_FSUB(c, src[0 * 4 + i], trunc));
734
735 return qir_SEL_X_Y_NS(c,
736 qir_FSUB(c, trunc, qir_uniform_f(c, 1.0)),
737 trunc);
738 }
739
740 /**
741 * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
742 * zero).
743 */
744 static struct qreg
745 tgsi_to_qir_ceil(struct vc4_compile *c,
746 struct tgsi_full_instruction *tgsi_inst,
747 enum qop op, struct qreg *src, int i)
748 {
749 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
750
751 /* This will be < 0 if we truncated and the truncation was of a value
752 * that was > 0 in the first place.
753 */
754 qir_SF(c, qir_FSUB(c, trunc, src[0 * 4 + i]));
755
756 return qir_SEL_X_Y_NS(c,
757 qir_FADD(c, trunc, qir_uniform_f(c, 1.0)),
758 trunc);
759 }
760
761 static struct qreg
762 tgsi_to_qir_abs(struct vc4_compile *c,
763 struct tgsi_full_instruction *tgsi_inst,
764 enum qop op, struct qreg *src, int i)
765 {
766 struct qreg arg = src[0 * 4 + i];
767 return qir_FMAXABS(c, arg, arg);
768 }
769
770 /* Note that this instruction replicates its result from the x channel */
771 static struct qreg
772 tgsi_to_qir_sin(struct vc4_compile *c,
773 struct tgsi_full_instruction *tgsi_inst,
774 enum qop op, struct qreg *src, int i)
775 {
776 float coeff[] = {
777 -2.0 * M_PI,
778 pow(2.0 * M_PI, 3) / (3 * 2 * 1),
779 -pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
780 pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
781 -pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
782 };
783
784 struct qreg scaled_x =
785 qir_FMUL(c,
786 src[0 * 4 + 0],
787 qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
788
789 struct qreg x = qir_FADD(c,
790 tgsi_to_qir_frc(c, NULL, 0, &scaled_x, 0),
791 qir_uniform_f(c, -0.5));
792 struct qreg x2 = qir_FMUL(c, x, x);
793 struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
794 for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
795 x = qir_FMUL(c, x, x2);
796 sum = qir_FADD(c,
797 sum,
798 qir_FMUL(c,
799 x,
800 qir_uniform_f(c, coeff[i])));
801 }
802 return sum;
803 }
804
805 /* Note that this instruction replicates its result from the x channel */
806 static struct qreg
807 tgsi_to_qir_cos(struct vc4_compile *c,
808 struct tgsi_full_instruction *tgsi_inst,
809 enum qop op, struct qreg *src, int i)
810 {
811 float coeff[] = {
812 -1.0f,
813 pow(2.0 * M_PI, 2) / (2 * 1),
814 -pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
815 pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
816 -pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
817 pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
818 };
819
820 struct qreg scaled_x =
821 qir_FMUL(c, src[0 * 4 + 0],
822 qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
823 struct qreg x_frac = qir_FADD(c,
824 tgsi_to_qir_frc(c, NULL, 0, &scaled_x, 0),
825 qir_uniform_f(c, -0.5));
826
827 struct qreg sum = qir_uniform_f(c, coeff[0]);
828 struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
829 struct qreg x = x2; /* Current x^2, x^4, or x^6 */
830 for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
831 if (i != 1)
832 x = qir_FMUL(c, x, x2);
833
834 struct qreg mul = qir_FMUL(c,
835 x,
836 qir_uniform_f(c, coeff[i]));
837 if (i == 0)
838 sum = mul;
839 else
840 sum = qir_FADD(c, sum, mul);
841 }
842 return sum;
843 }
844
845 static struct qreg
846 tgsi_to_qir_clamp(struct vc4_compile *c,
847 struct tgsi_full_instruction *tgsi_inst,
848 enum qop op, struct qreg *src, int i)
849 {
850 return qir_FMAX(c, qir_FMIN(c,
851 src[0 * 4 + i],
852 src[2 * 4 + i]),
853 src[1 * 4 + i]);
854 }
855
856 static struct qreg
857 tgsi_to_qir_ssg(struct vc4_compile *c,
858 struct tgsi_full_instruction *tgsi_inst,
859 enum qop op, struct qreg *src, int i)
860 {
861 qir_SF(c, src[0 * 4 + i]);
862 return qir_SEL_X_Y_NC(c,
863 qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0)),
864 qir_uniform_f(c, -1.0));
865 }
866
867 static void
868 emit_vertex_input(struct vc4_compile *c, int attr)
869 {
870 enum pipe_format format = c->vs_key->attr_formats[attr];
871 struct qreg vpm_reads[4];
872
873 /* Right now, we're setting the VPM offsets to be 16 bytes wide every
874 * time, so we always read 4 32-bit VPM entries.
875 */
876 for (int i = 0; i < 4; i++) {
877 vpm_reads[i] = qir_get_temp(c);
878 qir_emit(c, qir_inst(QOP_VPM_READ,
879 vpm_reads[i],
880 c->undef,
881 c->undef));
882 c->num_inputs++;
883 }
884
885 bool format_warned = false;
886 const struct util_format_description *desc =
887 util_format_description(format);
888
889 for (int i = 0; i < 4; i++) {
890 uint8_t swiz = desc->swizzle[i];
891 struct qreg result;
892
893 if (swiz > UTIL_FORMAT_SWIZZLE_W)
894 result = get_swizzled_channel(c, vpm_reads, swiz);
895 else if (desc->channel[swiz].size == 32 &&
896 desc->channel[swiz].type == UTIL_FORMAT_TYPE_FLOAT) {
897 result = get_swizzled_channel(c, vpm_reads, swiz);
898 } else if (desc->channel[swiz].size == 8 &&
899 (desc->channel[swiz].type == UTIL_FORMAT_TYPE_UNSIGNED ||
900 desc->channel[swiz].type == UTIL_FORMAT_TYPE_SIGNED) &&
901 desc->channel[swiz].normalized) {
902 struct qreg vpm = vpm_reads[0];
903 if (desc->channel[swiz].type == UTIL_FORMAT_TYPE_SIGNED)
904 vpm = qir_XOR(c, vpm, qir_uniform_ui(c, 0x80808080));
905 result = qir_UNPACK_8(c, vpm, swiz);
906 } else {
907 if (!format_warned) {
908 fprintf(stderr,
909 "vtx element %d unsupported type: %s\n",
910 attr, util_format_name(format));
911 format_warned = true;
912 }
913 result = qir_uniform_f(c, 0.0);
914 }
915
916 if (desc->channel[swiz].normalized &&
917 desc->channel[swiz].type == UTIL_FORMAT_TYPE_SIGNED) {
918 result = qir_FSUB(c,
919 qir_FMUL(c,
920 result,
921 qir_uniform_f(c, 2.0)),
922 qir_uniform_f(c, 1.0));
923 }
924
925 c->inputs[attr * 4 + i] = result;
926 }
927 }
928
929 static void
930 tgsi_to_qir_kill_if(struct vc4_compile *c, struct qreg *src, int i)
931 {
932 if (c->discard.file == QFILE_NULL)
933 c->discard = qir_uniform_f(c, 0.0);
934 qir_SF(c, src[0 * 4 + i]);
935 c->discard = qir_SEL_X_Y_NS(c, qir_uniform_f(c, 1.0),
936 c->discard);
937 }
938
939 static void
940 emit_fragcoord_input(struct vc4_compile *c, int attr)
941 {
942 c->inputs[attr * 4 + 0] = qir_FRAG_X(c);
943 c->inputs[attr * 4 + 1] = qir_FRAG_Y(c);
944 c->inputs[attr * 4 + 2] =
945 qir_FMUL(c,
946 qir_ITOF(c, qir_FRAG_Z(c)),
947 qir_uniform_f(c, 1.0 / 0xffffff));
948 c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
949 }
950
951 static void
952 emit_point_coord_input(struct vc4_compile *c, int attr)
953 {
954 if (c->point_x.file == QFILE_NULL) {
955 c->point_x = qir_uniform_f(c, 0.0);
956 c->point_y = qir_uniform_f(c, 0.0);
957 }
958
959 c->inputs[attr * 4 + 0] = c->point_x;
960 if (c->fs_key->point_coord_upper_left) {
961 c->inputs[attr * 4 + 1] = qir_FSUB(c,
962 qir_uniform_f(c, 1.0),
963 c->point_y);
964 } else {
965 c->inputs[attr * 4 + 1] = c->point_y;
966 }
967 c->inputs[attr * 4 + 2] = qir_uniform_f(c, 0.0);
968 c->inputs[attr * 4 + 3] = qir_uniform_f(c, 1.0);
969 }
970
971 static struct qreg
972 emit_fragment_varying(struct vc4_compile *c, uint8_t semantic,
973 uint8_t index, uint8_t swizzle)
974 {
975 uint32_t i = c->num_input_semantics++;
976 struct qreg vary = {
977 QFILE_VARY,
978 i
979 };
980
981 if (c->num_input_semantics >= c->input_semantics_array_size) {
982 c->input_semantics_array_size =
983 MAX2(4, c->input_semantics_array_size * 2);
984
985 c->input_semantics = reralloc(c, c->input_semantics,
986 struct vc4_varying_semantic,
987 c->input_semantics_array_size);
988 }
989
990 c->input_semantics[i].semantic = semantic;
991 c->input_semantics[i].index = index;
992 c->input_semantics[i].swizzle = swizzle;
993
994 return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
995 }
996
997 static void
998 emit_fragment_input(struct vc4_compile *c, int attr,
999 struct tgsi_full_declaration *decl)
1000 {
1001 for (int i = 0; i < 4; i++) {
1002 c->inputs[attr * 4 + i] =
1003 emit_fragment_varying(c,
1004 decl->Semantic.Name,
1005 decl->Semantic.Index,
1006 i);
1007 c->num_inputs++;
1008 }
1009 }
1010
1011 static void
1012 emit_face_input(struct vc4_compile *c, int attr)
1013 {
1014 c->inputs[attr * 4 + 0] = qir_FSUB(c,
1015 qir_uniform_f(c, 1.0),
1016 qir_FMUL(c,
1017 qir_ITOF(c, qir_FRAG_REV_FLAG(c)),
1018 qir_uniform_f(c, 2.0)));
1019 c->inputs[attr * 4 + 1] = qir_uniform_f(c, 0.0);
1020 c->inputs[attr * 4 + 2] = qir_uniform_f(c, 0.0);
1021 c->inputs[attr * 4 + 3] = qir_uniform_f(c, 1.0);
1022 }
1023
1024 static void
1025 add_output(struct vc4_compile *c,
1026 uint32_t decl_offset,
1027 uint8_t semantic_name,
1028 uint8_t semantic_index,
1029 uint8_t semantic_swizzle)
1030 {
1031 uint32_t old_array_size = c->outputs_array_size;
1032 resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
1033 decl_offset + 1);
1034
1035 if (old_array_size != c->outputs_array_size) {
1036 c->output_semantics = reralloc(c,
1037 c->output_semantics,
1038 struct vc4_varying_semantic,
1039 c->outputs_array_size);
1040 }
1041
1042 c->output_semantics[decl_offset].semantic = semantic_name;
1043 c->output_semantics[decl_offset].index = semantic_index;
1044 c->output_semantics[decl_offset].swizzle = semantic_swizzle;
1045 }
1046
1047 static void
1048 emit_tgsi_declaration(struct vc4_compile *c,
1049 struct tgsi_full_declaration *decl)
1050 {
1051 switch (decl->Declaration.File) {
1052 case TGSI_FILE_TEMPORARY: {
1053 uint32_t old_size = c->temps_array_size;
1054 resize_qreg_array(c, &c->temps, &c->temps_array_size,
1055 (decl->Range.Last + 1) * 4);
1056
1057 for (int i = old_size; i < c->temps_array_size; i++)
1058 c->temps[i] = qir_uniform_ui(c, 0);
1059 break;
1060 }
1061
1062 case TGSI_FILE_INPUT:
1063 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1064 (decl->Range.Last + 1) * 4);
1065
1066 for (int i = decl->Range.First;
1067 i <= decl->Range.Last;
1068 i++) {
1069 if (c->stage == QSTAGE_FRAG) {
1070 if (decl->Semantic.Name ==
1071 TGSI_SEMANTIC_POSITION) {
1072 emit_fragcoord_input(c, i);
1073 } else if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
1074 emit_face_input(c, i);
1075 } else if (decl->Semantic.Name == TGSI_SEMANTIC_GENERIC &&
1076 (c->fs_key->point_sprite_mask &
1077 (1 << decl->Semantic.Index))) {
1078 emit_point_coord_input(c, i);
1079 } else {
1080 emit_fragment_input(c, i, decl);
1081 }
1082 } else {
1083 emit_vertex_input(c, i);
1084 }
1085 }
1086 break;
1087
1088 case TGSI_FILE_OUTPUT: {
1089 for (int i = 0; i < 4; i++) {
1090 add_output(c,
1091 decl->Range.First * 4 + i,
1092 decl->Semantic.Name,
1093 decl->Semantic.Index,
1094 i);
1095 }
1096
1097 switch (decl->Semantic.Name) {
1098 case TGSI_SEMANTIC_POSITION:
1099 c->output_position_index = decl->Range.First * 4;
1100 break;
1101 case TGSI_SEMANTIC_CLIPVERTEX:
1102 c->output_clipvertex_index = decl->Range.First * 4;
1103 break;
1104 case TGSI_SEMANTIC_COLOR:
1105 c->output_color_index = decl->Range.First * 4;
1106 break;
1107 case TGSI_SEMANTIC_PSIZE:
1108 c->output_point_size_index = decl->Range.First * 4;
1109 break;
1110 }
1111
1112 break;
1113 }
1114 }
1115 }
1116
1117 static void
1118 emit_tgsi_instruction(struct vc4_compile *c,
1119 struct tgsi_full_instruction *tgsi_inst)
1120 {
1121 struct {
1122 enum qop op;
1123 struct qreg (*func)(struct vc4_compile *c,
1124 struct tgsi_full_instruction *tgsi_inst,
1125 enum qop op,
1126 struct qreg *src, int i);
1127 } op_trans[] = {
1128 [TGSI_OPCODE_MOV] = { QOP_MOV, tgsi_to_qir_alu },
1129 [TGSI_OPCODE_ABS] = { 0, tgsi_to_qir_abs },
1130 [TGSI_OPCODE_MUL] = { QOP_FMUL, tgsi_to_qir_alu },
1131 [TGSI_OPCODE_ADD] = { QOP_FADD, tgsi_to_qir_alu },
1132 [TGSI_OPCODE_SUB] = { QOP_FSUB, tgsi_to_qir_alu },
1133 [TGSI_OPCODE_MIN] = { QOP_FMIN, tgsi_to_qir_alu },
1134 [TGSI_OPCODE_MAX] = { QOP_FMAX, tgsi_to_qir_alu },
1135 [TGSI_OPCODE_F2I] = { QOP_FTOI, tgsi_to_qir_alu },
1136 [TGSI_OPCODE_I2F] = { QOP_ITOF, tgsi_to_qir_alu },
1137 [TGSI_OPCODE_UADD] = { QOP_ADD, tgsi_to_qir_alu },
1138 [TGSI_OPCODE_USHR] = { QOP_SHR, tgsi_to_qir_alu },
1139 [TGSI_OPCODE_ISHR] = { QOP_ASR, tgsi_to_qir_alu },
1140 [TGSI_OPCODE_SHL] = { QOP_SHL, tgsi_to_qir_alu },
1141 [TGSI_OPCODE_IMIN] = { QOP_MIN, tgsi_to_qir_alu },
1142 [TGSI_OPCODE_IMAX] = { QOP_MAX, tgsi_to_qir_alu },
1143 [TGSI_OPCODE_AND] = { QOP_AND, tgsi_to_qir_alu },
1144 [TGSI_OPCODE_OR] = { QOP_OR, tgsi_to_qir_alu },
1145 [TGSI_OPCODE_XOR] = { QOP_XOR, tgsi_to_qir_alu },
1146 [TGSI_OPCODE_NOT] = { QOP_NOT, tgsi_to_qir_alu },
1147
1148 [TGSI_OPCODE_UMUL] = { 0, tgsi_to_qir_umul },
1149 [TGSI_OPCODE_IDIV] = { 0, tgsi_to_qir_idiv },
1150 [TGSI_OPCODE_INEG] = { 0, tgsi_to_qir_ineg },
1151
1152 [TGSI_OPCODE_RSQ] = { QOP_RSQ, tgsi_to_qir_alu },
1153 [TGSI_OPCODE_SEQ] = { 0, tgsi_to_qir_seq },
1154 [TGSI_OPCODE_SNE] = { 0, tgsi_to_qir_sne },
1155 [TGSI_OPCODE_SGE] = { 0, tgsi_to_qir_sge },
1156 [TGSI_OPCODE_SLT] = { 0, tgsi_to_qir_slt },
1157 [TGSI_OPCODE_FSEQ] = { 0, tgsi_to_qir_fseq },
1158 [TGSI_OPCODE_FSNE] = { 0, tgsi_to_qir_fsne },
1159 [TGSI_OPCODE_FSGE] = { 0, tgsi_to_qir_fsge },
1160 [TGSI_OPCODE_FSLT] = { 0, tgsi_to_qir_fslt },
1161 [TGSI_OPCODE_USEQ] = { 0, tgsi_to_qir_useq },
1162 [TGSI_OPCODE_USNE] = { 0, tgsi_to_qir_usne },
1163 [TGSI_OPCODE_ISGE] = { 0, tgsi_to_qir_isge },
1164 [TGSI_OPCODE_ISLT] = { 0, tgsi_to_qir_islt },
1165
1166 [TGSI_OPCODE_CMP] = { 0, tgsi_to_qir_cmp },
1167 [TGSI_OPCODE_MAD] = { 0, tgsi_to_qir_mad },
1168 [TGSI_OPCODE_RCP] = { QOP_RCP, tgsi_to_qir_scalar },
1169 [TGSI_OPCODE_RSQ] = { QOP_RSQ, tgsi_to_qir_scalar },
1170 [TGSI_OPCODE_EX2] = { QOP_EXP2, tgsi_to_qir_scalar },
1171 [TGSI_OPCODE_LG2] = { QOP_LOG2, tgsi_to_qir_scalar },
1172 [TGSI_OPCODE_LRP] = { 0, tgsi_to_qir_lrp },
1173 [TGSI_OPCODE_TRUNC] = { 0, tgsi_to_qir_trunc },
1174 [TGSI_OPCODE_CEIL] = { 0, tgsi_to_qir_ceil },
1175 [TGSI_OPCODE_FRC] = { 0, tgsi_to_qir_frc },
1176 [TGSI_OPCODE_FLR] = { 0, tgsi_to_qir_flr },
1177 [TGSI_OPCODE_SIN] = { 0, tgsi_to_qir_sin },
1178 [TGSI_OPCODE_COS] = { 0, tgsi_to_qir_cos },
1179 [TGSI_OPCODE_CLAMP] = { 0, tgsi_to_qir_clamp },
1180 [TGSI_OPCODE_SSG] = { 0, tgsi_to_qir_ssg },
1181 };
1182 static int asdf = 0;
1183 uint32_t tgsi_op = tgsi_inst->Instruction.Opcode;
1184
1185 if (tgsi_op == TGSI_OPCODE_END)
1186 return;
1187
1188 struct qreg src_regs[12];
1189 for (int s = 0; s < 3; s++) {
1190 for (int i = 0; i < 4; i++) {
1191 src_regs[4 * s + i] =
1192 get_src(c, tgsi_inst->Instruction.Opcode,
1193 &tgsi_inst->Src[s].Register, i);
1194 }
1195 }
1196
1197 switch (tgsi_op) {
1198 case TGSI_OPCODE_TEX:
1199 case TGSI_OPCODE_TXP:
1200 case TGSI_OPCODE_TXB:
1201 case TGSI_OPCODE_TXL:
1202 tgsi_to_qir_tex(c, tgsi_inst,
1203 op_trans[tgsi_op].op, src_regs);
1204 return;
1205 case TGSI_OPCODE_KILL:
1206 c->discard = qir_uniform_f(c, 1.0);
1207 return;
1208 case TGSI_OPCODE_KILL_IF:
1209 for (int i = 0; i < 4; i++)
1210 tgsi_to_qir_kill_if(c, src_regs, i);
1211 return;
1212 default:
1213 break;
1214 }
1215
1216 if (tgsi_op > ARRAY_SIZE(op_trans) || !(op_trans[tgsi_op].func)) {
1217 fprintf(stderr, "unknown tgsi inst: ");
1218 tgsi_dump_instruction(tgsi_inst, asdf++);
1219 fprintf(stderr, "\n");
1220 abort();
1221 }
1222
1223 for (int i = 0; i < 4; i++) {
1224 if (!(tgsi_inst->Dst[0].Register.WriteMask & (1 << i)))
1225 continue;
1226
1227 struct qreg result;
1228
1229 result = op_trans[tgsi_op].func(c, tgsi_inst,
1230 op_trans[tgsi_op].op,
1231 src_regs, i);
1232
1233 if (tgsi_inst->Instruction.Saturate) {
1234 float low = (tgsi_inst->Instruction.Saturate ==
1235 TGSI_SAT_MINUS_PLUS_ONE ? -1.0 : 0.0);
1236 result = qir_FMAX(c,
1237 qir_FMIN(c,
1238 result,
1239 qir_uniform_f(c, 1.0)),
1240 qir_uniform_f(c, low));
1241 }
1242
1243 update_dst(c, tgsi_inst, i, result);
1244 }
1245 }
1246
1247 static void
1248 parse_tgsi_immediate(struct vc4_compile *c, struct tgsi_full_immediate *imm)
1249 {
1250 for (int i = 0; i < 4; i++) {
1251 unsigned n = c->num_consts++;
1252 resize_qreg_array(c, &c->consts, &c->consts_array_size, n + 1);
1253 c->consts[n] = qir_uniform_ui(c, imm->u[i].Uint);
1254 }
1255 }
1256
1257 static struct qreg
1258 vc4_blend_channel(struct vc4_compile *c,
1259 struct qreg *dst,
1260 struct qreg *src,
1261 struct qreg val,
1262 unsigned factor,
1263 int channel)
1264 {
1265 switch(factor) {
1266 case PIPE_BLENDFACTOR_ONE:
1267 return val;
1268 case PIPE_BLENDFACTOR_SRC_COLOR:
1269 return qir_FMUL(c, val, src[channel]);
1270 case PIPE_BLENDFACTOR_SRC_ALPHA:
1271 return qir_FMUL(c, val, src[3]);
1272 case PIPE_BLENDFACTOR_DST_ALPHA:
1273 return qir_FMUL(c, val, dst[3]);
1274 case PIPE_BLENDFACTOR_DST_COLOR:
1275 return qir_FMUL(c, val, dst[channel]);
1276 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1277 return qir_FMIN(c, src[3], qir_FSUB(c,
1278 qir_uniform_f(c, 1.0),
1279 dst[3]));
1280 case PIPE_BLENDFACTOR_CONST_COLOR:
1281 return qir_FMUL(c, val,
1282 get_temp_for_uniform(c,
1283 QUNIFORM_BLEND_CONST_COLOR,
1284 channel));
1285 case PIPE_BLENDFACTOR_CONST_ALPHA:
1286 return qir_FMUL(c, val,
1287 get_temp_for_uniform(c,
1288 QUNIFORM_BLEND_CONST_COLOR,
1289 3));
1290 case PIPE_BLENDFACTOR_ZERO:
1291 return qir_uniform_f(c, 0.0);
1292 case PIPE_BLENDFACTOR_INV_SRC_COLOR:
1293 return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
1294 src[channel]));
1295 case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
1296 return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
1297 src[3]));
1298 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1299 return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
1300 dst[3]));
1301 case PIPE_BLENDFACTOR_INV_DST_COLOR:
1302 return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
1303 dst[channel]));
1304 case PIPE_BLENDFACTOR_INV_CONST_COLOR:
1305 return qir_FMUL(c, val,
1306 qir_FSUB(c, qir_uniform_f(c, 1.0),
1307 get_temp_for_uniform(c,
1308 QUNIFORM_BLEND_CONST_COLOR,
1309 channel)));
1310 case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
1311 return qir_FMUL(c, val,
1312 qir_FSUB(c, qir_uniform_f(c, 1.0),
1313 get_temp_for_uniform(c,
1314 QUNIFORM_BLEND_CONST_COLOR,
1315 3)));
1316
1317 default:
1318 case PIPE_BLENDFACTOR_SRC1_COLOR:
1319 case PIPE_BLENDFACTOR_SRC1_ALPHA:
1320 case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
1321 case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
1322 /* Unsupported. */
1323 fprintf(stderr, "Unknown blend factor %d\n", factor);
1324 return val;
1325 }
1326 }
1327
1328 static struct qreg
1329 vc4_blend_func(struct vc4_compile *c,
1330 struct qreg src, struct qreg dst,
1331 unsigned func)
1332 {
1333 switch (func) {
1334 case PIPE_BLEND_ADD:
1335 return qir_FADD(c, src, dst);
1336 case PIPE_BLEND_SUBTRACT:
1337 return qir_FSUB(c, src, dst);
1338 case PIPE_BLEND_REVERSE_SUBTRACT:
1339 return qir_FSUB(c, dst, src);
1340 case PIPE_BLEND_MIN:
1341 return qir_FMIN(c, src, dst);
1342 case PIPE_BLEND_MAX:
1343 return qir_FMAX(c, src, dst);
1344
1345 default:
1346 /* Unsupported. */
1347 fprintf(stderr, "Unknown blend func %d\n", func);
1348 return src;
1349
1350 }
1351 }
1352
1353 /**
1354 * Implements fixed function blending in shader code.
1355 *
1356 * VC4 doesn't have any hardware support for blending. Instead, you read the
1357 * current contents of the destination from the tile buffer after having
1358 * waited for the scoreboard (which is handled by vc4_qpu_emit.c), then do
1359 * math using your output color and that destination value, and update the
1360 * output color appropriately.
1361 */
1362 static void
1363 vc4_blend(struct vc4_compile *c, struct qreg *result,
1364 struct qreg *dst_color, struct qreg *src_color)
1365 {
1366 struct pipe_rt_blend_state *blend = &c->fs_key->blend;
1367
1368 if (!blend->blend_enable) {
1369 for (int i = 0; i < 4; i++)
1370 result[i] = src_color[i];
1371 return;
1372 }
1373
1374 struct qreg src_blend[4], dst_blend[4];
1375 for (int i = 0; i < 3; i++) {
1376 src_blend[i] = vc4_blend_channel(c,
1377 dst_color, src_color,
1378 src_color[i],
1379 blend->rgb_src_factor, i);
1380 dst_blend[i] = vc4_blend_channel(c,
1381 dst_color, src_color,
1382 dst_color[i],
1383 blend->rgb_dst_factor, i);
1384 }
1385 src_blend[3] = vc4_blend_channel(c,
1386 dst_color, src_color,
1387 src_color[3],
1388 blend->alpha_src_factor, 3);
1389 dst_blend[3] = vc4_blend_channel(c,
1390 dst_color, src_color,
1391 dst_color[3],
1392 blend->alpha_dst_factor, 3);
1393
1394 for (int i = 0; i < 3; i++) {
1395 result[i] = vc4_blend_func(c,
1396 src_blend[i], dst_blend[i],
1397 blend->rgb_func);
1398 }
1399 result[3] = vc4_blend_func(c,
1400 src_blend[3], dst_blend[3],
1401 blend->alpha_func);
1402 }
1403
1404 static void
1405 clip_distance_discard(struct vc4_compile *c)
1406 {
1407 for (int i = 0; i < PIPE_MAX_CLIP_PLANES; i++) {
1408 if (!(c->key->ucp_enables & (1 << i)))
1409 continue;
1410
1411 struct qreg dist = emit_fragment_varying(c,
1412 TGSI_SEMANTIC_CLIPDIST,
1413 i,
1414 TGSI_SWIZZLE_X);
1415
1416 qir_SF(c, dist);
1417
1418 if (c->discard.file == QFILE_NULL)
1419 c->discard = qir_uniform_f(c, 0.0);
1420
1421 c->discard = qir_SEL_X_Y_NS(c, qir_uniform_f(c, 1.0),
1422 c->discard);
1423 }
1424 }
1425
1426 static void
1427 alpha_test_discard(struct vc4_compile *c)
1428 {
1429 struct qreg src_alpha;
1430 struct qreg alpha_ref = get_temp_for_uniform(c, QUNIFORM_ALPHA_REF, 0);
1431
1432 if (!c->fs_key->alpha_test)
1433 return;
1434
1435 if (c->output_color_index != -1)
1436 src_alpha = c->outputs[c->output_color_index + 3];
1437 else
1438 src_alpha = qir_uniform_f(c, 1.0);
1439
1440 if (c->discard.file == QFILE_NULL)
1441 c->discard = qir_uniform_f(c, 0.0);
1442
1443 switch (c->fs_key->alpha_test_func) {
1444 case PIPE_FUNC_NEVER:
1445 c->discard = qir_uniform_f(c, 1.0);
1446 break;
1447 case PIPE_FUNC_ALWAYS:
1448 break;
1449 case PIPE_FUNC_EQUAL:
1450 qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
1451 c->discard = qir_SEL_X_Y_ZS(c, c->discard,
1452 qir_uniform_f(c, 1.0));
1453 break;
1454 case PIPE_FUNC_NOTEQUAL:
1455 qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
1456 c->discard = qir_SEL_X_Y_ZC(c, c->discard,
1457 qir_uniform_f(c, 1.0));
1458 break;
1459 case PIPE_FUNC_GREATER:
1460 qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
1461 c->discard = qir_SEL_X_Y_NC(c, c->discard,
1462 qir_uniform_f(c, 1.0));
1463 break;
1464 case PIPE_FUNC_GEQUAL:
1465 qir_SF(c, qir_FSUB(c, alpha_ref, src_alpha));
1466 c->discard = qir_SEL_X_Y_NS(c, c->discard,
1467 qir_uniform_f(c, 1.0));
1468 break;
1469 case PIPE_FUNC_LESS:
1470 qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
1471 c->discard = qir_SEL_X_Y_NS(c, c->discard,
1472 qir_uniform_f(c, 1.0));
1473 break;
1474 case PIPE_FUNC_LEQUAL:
1475 qir_SF(c, qir_FSUB(c, alpha_ref, src_alpha));
1476 c->discard = qir_SEL_X_Y_NC(c, c->discard,
1477 qir_uniform_f(c, 1.0));
1478 break;
1479 }
1480 }
1481
1482 static void
1483 emit_frag_end(struct vc4_compile *c)
1484 {
1485 clip_distance_discard(c);
1486 alpha_test_discard(c);
1487
1488 enum pipe_format color_format = c->fs_key->color_format;
1489 const uint8_t *format_swiz = vc4_get_format_swizzle(color_format);
1490 struct qreg tlb_read_color[4] = { c->undef, c->undef, c->undef, c->undef };
1491 struct qreg dst_color[4] = { c->undef, c->undef, c->undef, c->undef };
1492 struct qreg linear_dst_color[4] = { c->undef, c->undef, c->undef, c->undef };
1493 if (c->fs_key->blend.blend_enable ||
1494 c->fs_key->blend.colormask != 0xf) {
1495 struct qreg r4 = qir_TLB_COLOR_READ(c);
1496 for (int i = 0; i < 4; i++)
1497 tlb_read_color[i] = qir_R4_UNPACK(c, r4, i);
1498 for (int i = 0; i < 4; i++) {
1499 dst_color[i] = get_swizzled_channel(c,
1500 tlb_read_color,
1501 format_swiz[i]);
1502 if (util_format_is_srgb(color_format) && i != 3) {
1503 linear_dst_color[i] =
1504 qir_srgb_decode(c, dst_color[i]);
1505 } else {
1506 linear_dst_color[i] = dst_color[i];
1507 }
1508 }
1509 }
1510
1511 struct qreg blend_color[4];
1512 struct qreg undef_array[4] = {
1513 c->undef, c->undef, c->undef, c->undef
1514 };
1515 vc4_blend(c, blend_color, linear_dst_color,
1516 (c->output_color_index != -1 ?
1517 c->outputs + c->output_color_index :
1518 undef_array));
1519
1520 if (util_format_is_srgb(color_format)) {
1521 for (int i = 0; i < 3; i++)
1522 blend_color[i] = qir_srgb_encode(c, blend_color[i]);
1523 }
1524
1525 /* If the bit isn't set in the color mask, then just return the
1526 * original dst color, instead.
1527 */
1528 for (int i = 0; i < 4; i++) {
1529 if (!(c->fs_key->blend.colormask & (1 << i))) {
1530 blend_color[i] = dst_color[i];
1531 }
1532 }
1533
1534 /* Debug: Sometimes you're getting a black output and just want to see
1535 * if the FS is getting executed at all. Spam magenta into the color
1536 * output.
1537 */
1538 if (0) {
1539 blend_color[0] = qir_uniform_f(c, 1.0);
1540 blend_color[1] = qir_uniform_f(c, 0.0);
1541 blend_color[2] = qir_uniform_f(c, 1.0);
1542 blend_color[3] = qir_uniform_f(c, 0.5);
1543 }
1544
1545 struct qreg swizzled_outputs[4];
1546 for (int i = 0; i < 4; i++) {
1547 swizzled_outputs[i] = get_swizzled_channel(c, blend_color,
1548 format_swiz[i]);
1549 }
1550
1551 if (c->discard.file != QFILE_NULL)
1552 qir_TLB_DISCARD_SETUP(c, c->discard);
1553
1554 if (c->fs_key->stencil_enabled) {
1555 qir_TLB_STENCIL_SETUP(c, add_uniform(c, QUNIFORM_STENCIL, 0));
1556 if (c->fs_key->stencil_twoside) {
1557 qir_TLB_STENCIL_SETUP(c, add_uniform(c, QUNIFORM_STENCIL, 1));
1558 }
1559 if (c->fs_key->stencil_full_writemasks) {
1560 qir_TLB_STENCIL_SETUP(c, add_uniform(c, QUNIFORM_STENCIL, 2));
1561 }
1562 }
1563
1564 if (c->fs_key->depth_enabled) {
1565 struct qreg z;
1566 if (c->output_position_index != -1) {
1567 z = qir_FTOI(c, qir_FMUL(c, c->outputs[c->output_position_index + 2],
1568 qir_uniform_f(c, 0xffffff)));
1569 } else {
1570 z = qir_FRAG_Z(c);
1571 }
1572 qir_TLB_Z_WRITE(c, z);
1573 }
1574
1575 bool color_written = false;
1576 for (int i = 0; i < 4; i++) {
1577 if (swizzled_outputs[i].file != QFILE_NULL)
1578 color_written = true;
1579 }
1580
1581 struct qreg packed_color;
1582 if (color_written) {
1583 /* Fill in any undefined colors. The simulator will assertion
1584 * fail if we read something that wasn't written, and I don't
1585 * know what hardware does.
1586 */
1587 for (int i = 0; i < 4; i++) {
1588 if (swizzled_outputs[i].file == QFILE_NULL)
1589 swizzled_outputs[i] = qir_uniform_f(c, 0.0);
1590 }
1591 packed_color = qir_get_temp(c);
1592 qir_emit(c, qir_inst4(QOP_PACK_COLORS, packed_color,
1593 swizzled_outputs[0],
1594 swizzled_outputs[1],
1595 swizzled_outputs[2],
1596 swizzled_outputs[3]));
1597 } else {
1598 packed_color = qir_uniform_ui(c, 0);
1599 }
1600
1601 qir_emit(c, qir_inst(QOP_TLB_COLOR_WRITE, c->undef,
1602 packed_color, c->undef));
1603 }
1604
1605 static void
1606 emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
1607 {
1608 struct qreg xyi[2];
1609
1610 for (int i = 0; i < 2; i++) {
1611 struct qreg scale =
1612 add_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
1613
1614 xyi[i] = qir_FTOI(c, qir_FMUL(c,
1615 qir_FMUL(c,
1616 c->outputs[i],
1617 scale),
1618 rcp_w));
1619 }
1620
1621 qir_VPM_WRITE(c, qir_PACK_SCALED(c, xyi[0], xyi[1]));
1622 }
1623
1624 static void
1625 emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
1626 {
1627 struct qreg zscale = add_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
1628 struct qreg zoffset = add_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
1629
1630 qir_VPM_WRITE(c, qir_FMUL(c, qir_FADD(c, qir_FMUL(c,
1631 c->outputs[2],
1632 zscale),
1633 zoffset),
1634 rcp_w));
1635 }
1636
1637 static void
1638 emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
1639 {
1640 qir_VPM_WRITE(c, rcp_w);
1641 }
1642
1643 static void
1644 emit_point_size_write(struct vc4_compile *c)
1645 {
1646 struct qreg point_size;
1647
1648 if (c->output_point_size_index)
1649 point_size = c->outputs[c->output_point_size_index + 3];
1650 else
1651 point_size = qir_uniform_f(c, 1.0);
1652
1653 /* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835,
1654 * BCM21553).
1655 */
1656 point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125));
1657
1658 qir_VPM_WRITE(c, point_size);
1659 }
1660
1661 /**
1662 * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
1663 *
1664 * The simulator insists that there be at least one vertex attribute, so
1665 * vc4_draw.c will emit one if it wouldn't have otherwise. The simulator also
1666 * insists that all vertex attributes loaded get read by the VS/CS, so we have
1667 * to consume it here.
1668 */
1669 static void
1670 emit_stub_vpm_read(struct vc4_compile *c)
1671 {
1672 if (c->num_inputs)
1673 return;
1674
1675 for (int i = 0; i < 4; i++) {
1676 qir_emit(c, qir_inst(QOP_VPM_READ,
1677 qir_get_temp(c),
1678 c->undef,
1679 c->undef));
1680 c->num_inputs++;
1681 }
1682 }
1683
1684 static void
1685 emit_ucp_clipdistance(struct vc4_compile *c)
1686 {
1687 struct qreg *clipvertex;
1688
1689 if (c->output_clipvertex_index != -1)
1690 clipvertex = &c->outputs[c->output_clipvertex_index];
1691 else if (c->output_position_index != -1)
1692 clipvertex = &c->outputs[c->output_position_index];
1693 else
1694 return;
1695
1696 for (int plane = 0; plane < PIPE_MAX_CLIP_PLANES; plane++) {
1697 if (!(c->key->ucp_enables & (1 << plane)))
1698 continue;
1699
1700 /* Pick the next outputs[] that hasn't been written to, since
1701 * there are no other program writes left to be processed at
1702 * this point. If something had been declared but not written
1703 * (like a w component), we'll just smash over the top of it.
1704 */
1705 uint32_t output_index = c->num_outputs++;
1706 add_output(c, output_index,
1707 TGSI_SEMANTIC_CLIPDIST,
1708 plane,
1709 TGSI_SWIZZLE_X);
1710
1711 struct qreg dist = qir_uniform_f(c, 0.0);
1712 for (int i = 0; i < 4; i++) {
1713 struct qreg ucp =
1714 add_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1715 plane * 4 + i);
1716 dist = qir_FADD(c, dist, qir_FMUL(c, clipvertex[i], ucp));
1717 }
1718
1719 c->outputs[output_index] = dist;
1720 }
1721 }
1722
1723 static void
1724 emit_vert_end(struct vc4_compile *c,
1725 struct vc4_varying_semantic *fs_inputs,
1726 uint32_t num_fs_inputs)
1727 {
1728 struct qreg rcp_w = qir_RCP(c, c->outputs[3]);
1729
1730 emit_stub_vpm_read(c);
1731 emit_ucp_clipdistance(c);
1732
1733 emit_scaled_viewport_write(c, rcp_w);
1734 emit_zs_write(c, rcp_w);
1735 emit_rcp_wc_write(c, rcp_w);
1736 if (c->vs_key->per_vertex_point_size)
1737 emit_point_size_write(c);
1738
1739 for (int i = 0; i < num_fs_inputs; i++) {
1740 struct vc4_varying_semantic *input = &fs_inputs[i];
1741 int j;
1742
1743 for (j = 0; j < c->num_outputs; j++) {
1744 struct vc4_varying_semantic *output =
1745 &c->output_semantics[j];
1746
1747 if (input->semantic == output->semantic &&
1748 input->index == output->index &&
1749 input->swizzle == output->swizzle) {
1750 qir_VPM_WRITE(c, c->outputs[j]);
1751 break;
1752 }
1753 }
1754 /* Emit padding if we didn't find a declared VS output for
1755 * this FS input.
1756 */
1757 if (j == c->num_outputs)
1758 qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
1759 }
1760 }
1761
1762 static void
1763 emit_coord_end(struct vc4_compile *c)
1764 {
1765 struct qreg rcp_w = qir_RCP(c, c->outputs[3]);
1766
1767 emit_stub_vpm_read(c);
1768
1769 for (int i = 0; i < 4; i++)
1770 qir_VPM_WRITE(c, c->outputs[i]);
1771
1772 emit_scaled_viewport_write(c, rcp_w);
1773 emit_zs_write(c, rcp_w);
1774 emit_rcp_wc_write(c, rcp_w);
1775 if (c->vs_key->per_vertex_point_size)
1776 emit_point_size_write(c);
1777 }
1778
1779 static struct vc4_compile *
1780 vc4_shader_tgsi_to_qir(struct vc4_context *vc4, enum qstage stage,
1781 struct vc4_key *key)
1782 {
1783 struct vc4_compile *c = qir_compile_init();
1784 int ret;
1785
1786 c->stage = stage;
1787 c->shader_state = &key->shader_state->base;
1788
1789 c->key = key;
1790 switch (stage) {
1791 case QSTAGE_FRAG:
1792 c->fs_key = (struct vc4_fs_key *)key;
1793 if (c->fs_key->is_points) {
1794 c->point_x = emit_fragment_varying(c, ~0, ~0, 0);
1795 c->point_y = emit_fragment_varying(c, ~0, ~0, 0);
1796 } else if (c->fs_key->is_lines) {
1797 c->line_x = emit_fragment_varying(c, ~0, ~0, 0);
1798 }
1799 break;
1800 case QSTAGE_VERT:
1801 c->vs_key = (struct vc4_vs_key *)key;
1802 break;
1803 case QSTAGE_COORD:
1804 c->vs_key = (struct vc4_vs_key *)key;
1805 break;
1806 }
1807
1808 const struct tgsi_token *tokens = key->shader_state->base.tokens;
1809 if (c->fs_key && c->fs_key->light_twoside) {
1810 if (!key->shader_state->twoside_tokens) {
1811 const struct tgsi_lowering_config lowering_config = {
1812 .color_two_side = true,
1813 };
1814 struct tgsi_shader_info info;
1815 key->shader_state->twoside_tokens =
1816 tgsi_transform_lowering(&lowering_config,
1817 key->shader_state->base.tokens,
1818 &info);
1819
1820 /* If no transformation occurred, then NULL is
1821 * returned and we just use our original tokens.
1822 */
1823 if (!key->shader_state->twoside_tokens) {
1824 key->shader_state->twoside_tokens =
1825 key->shader_state->base.tokens;
1826 }
1827 }
1828 tokens = key->shader_state->twoside_tokens;
1829 }
1830
1831 ret = tgsi_parse_init(&c->parser, tokens);
1832 assert(ret == TGSI_PARSE_OK);
1833
1834 if (vc4_debug & VC4_DEBUG_TGSI) {
1835 fprintf(stderr, "TGSI:\n");
1836 tgsi_dump(tokens, 0);
1837 }
1838
1839 while (!tgsi_parse_end_of_tokens(&c->parser)) {
1840 tgsi_parse_token(&c->parser);
1841
1842 switch (c->parser.FullToken.Token.Type) {
1843 case TGSI_TOKEN_TYPE_DECLARATION:
1844 emit_tgsi_declaration(c,
1845 &c->parser.FullToken.FullDeclaration);
1846 break;
1847
1848 case TGSI_TOKEN_TYPE_INSTRUCTION:
1849 emit_tgsi_instruction(c,
1850 &c->parser.FullToken.FullInstruction);
1851 break;
1852
1853 case TGSI_TOKEN_TYPE_IMMEDIATE:
1854 parse_tgsi_immediate(c,
1855 &c->parser.FullToken.FullImmediate);
1856 break;
1857 }
1858 }
1859
1860 switch (stage) {
1861 case QSTAGE_FRAG:
1862 emit_frag_end(c);
1863 break;
1864 case QSTAGE_VERT:
1865 emit_vert_end(c,
1866 vc4->prog.fs->input_semantics,
1867 vc4->prog.fs->num_inputs);
1868 break;
1869 case QSTAGE_COORD:
1870 emit_coord_end(c);
1871 break;
1872 }
1873
1874 tgsi_parse_free(&c->parser);
1875
1876 qir_optimize(c);
1877
1878 if (vc4_debug & VC4_DEBUG_QIR) {
1879 fprintf(stderr, "QIR:\n");
1880 qir_dump(c);
1881 }
1882 qir_reorder_uniforms(c);
1883 vc4_generate_code(vc4, c);
1884
1885 if (vc4_debug & VC4_DEBUG_SHADERDB) {
1886 fprintf(stderr, "SHADER-DB: %s: %d instructions\n",
1887 qir_get_stage_name(c->stage), c->qpu_inst_count);
1888 fprintf(stderr, "SHADER-DB: %s: %d uniforms\n",
1889 qir_get_stage_name(c->stage), c->num_uniforms);
1890 }
1891
1892 return c;
1893 }
1894
1895 static void *
1896 vc4_shader_state_create(struct pipe_context *pctx,
1897 const struct pipe_shader_state *cso)
1898 {
1899 struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
1900 if (!so)
1901 return NULL;
1902
1903 const struct tgsi_lowering_config lowering_config = {
1904 .lower_DST = true,
1905 .lower_XPD = true,
1906 .lower_SCS = true,
1907 .lower_POW = true,
1908 .lower_LIT = true,
1909 .lower_EXP = true,
1910 .lower_LOG = true,
1911 .lower_DP4 = true,
1912 .lower_DP3 = true,
1913 .lower_DPH = true,
1914 .lower_DP2 = true,
1915 .lower_DP2A = true,
1916 };
1917
1918 struct tgsi_shader_info info;
1919 so->base.tokens = tgsi_transform_lowering(&lowering_config, cso->tokens, &info);
1920 if (!so->base.tokens)
1921 so->base.tokens = tgsi_dup_tokens(cso->tokens);
1922
1923 return so;
1924 }
1925
1926 static void
1927 copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
1928 struct vc4_compile *c)
1929 {
1930 int count = c->num_uniforms;
1931 struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
1932
1933 uinfo->count = count;
1934 uinfo->data = ralloc_array(shader, uint32_t, count);
1935 memcpy(uinfo->data, c->uniform_data,
1936 count * sizeof(*uinfo->data));
1937 uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
1938 memcpy(uinfo->contents, c->uniform_contents,
1939 count * sizeof(*uinfo->contents));
1940 uinfo->num_texture_samples = c->num_texture_samples;
1941 }
1942
1943 static struct vc4_compiled_shader *
1944 vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
1945 struct vc4_key *key)
1946 {
1947 struct util_hash_table *ht;
1948 uint32_t key_size;
1949 if (stage == QSTAGE_FRAG) {
1950 ht = vc4->fs_cache;
1951 key_size = sizeof(struct vc4_fs_key);
1952 } else {
1953 ht = vc4->vs_cache;
1954 key_size = sizeof(struct vc4_vs_key);
1955 }
1956
1957 struct vc4_compiled_shader *shader;
1958 shader = util_hash_table_get(ht, key);
1959 if (shader)
1960 return shader;
1961
1962 struct vc4_compile *c = vc4_shader_tgsi_to_qir(vc4, stage, key);
1963 shader = rzalloc(NULL, struct vc4_compiled_shader);
1964
1965 shader->program_id = vc4->next_compiled_program_id++;
1966 if (stage == QSTAGE_FRAG) {
1967 shader->input_semantics = ralloc_array(shader,
1968 struct vc4_varying_semantic,
1969 c->num_input_semantics);
1970
1971 for (int i = 0; i < c->num_input_semantics; i++) {
1972 struct vc4_varying_semantic *sem = &c->input_semantics[i];
1973
1974 /* Skip non-VS-output inputs. */
1975 if (sem->semantic == (uint8_t)~0)
1976 continue;
1977
1978 if (sem->semantic == TGSI_SEMANTIC_COLOR)
1979 shader->color_inputs |= (1 << shader->num_inputs);
1980 shader->input_semantics[shader->num_inputs] = *sem;
1981 shader->num_inputs++;
1982 }
1983 } else {
1984 shader->num_inputs = c->num_inputs;
1985 }
1986
1987 copy_uniform_state_to_shader(shader, c);
1988 shader->bo = vc4_bo_alloc_mem(vc4->screen, c->qpu_insts,
1989 c->qpu_inst_count * sizeof(uint64_t),
1990 "code");
1991
1992 qir_compile_destroy(c);
1993
1994 struct vc4_key *dup_key;
1995 dup_key = malloc(key_size);
1996 memcpy(dup_key, key, key_size);
1997 util_hash_table_set(ht, dup_key, shader);
1998
1999 return shader;
2000 }
2001
2002 static void
2003 vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
2004 struct vc4_texture_stateobj *texstate)
2005 {
2006 for (int i = 0; i < texstate->num_textures; i++) {
2007 struct pipe_sampler_view *sampler = texstate->textures[i];
2008 struct pipe_sampler_state *sampler_state =
2009 texstate->samplers[i];
2010
2011 if (sampler) {
2012 key->tex[i].format = sampler->format;
2013 key->tex[i].swizzle[0] = sampler->swizzle_r;
2014 key->tex[i].swizzle[1] = sampler->swizzle_g;
2015 key->tex[i].swizzle[2] = sampler->swizzle_b;
2016 key->tex[i].swizzle[3] = sampler->swizzle_a;
2017 key->tex[i].compare_mode = sampler_state->compare_mode;
2018 key->tex[i].compare_func = sampler_state->compare_func;
2019 key->tex[i].wrap_s = sampler_state->wrap_s;
2020 key->tex[i].wrap_t = sampler_state->wrap_t;
2021 }
2022 }
2023
2024 key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
2025 }
2026
2027 static void
2028 vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
2029 {
2030 struct vc4_fs_key local_key;
2031 struct vc4_fs_key *key = &local_key;
2032
2033 if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2034 VC4_DIRTY_BLEND |
2035 VC4_DIRTY_FRAMEBUFFER |
2036 VC4_DIRTY_ZSA |
2037 VC4_DIRTY_RASTERIZER |
2038 VC4_DIRTY_FRAGTEX |
2039 VC4_DIRTY_TEXSTATE |
2040 VC4_DIRTY_PROG))) {
2041 return;
2042 }
2043
2044 memset(key, 0, sizeof(*key));
2045 vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
2046 key->base.shader_state = vc4->prog.bind_fs;
2047 key->is_points = (prim_mode == PIPE_PRIM_POINTS);
2048 key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
2049 prim_mode <= PIPE_PRIM_LINE_STRIP);
2050 key->blend = vc4->blend->rt[0];
2051
2052 if (vc4->framebuffer.cbufs[0])
2053 key->color_format = vc4->framebuffer.cbufs[0]->format;
2054
2055 key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
2056 key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
2057 key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
2058 key->depth_enabled = (vc4->zsa->base.depth.enabled ||
2059 key->stencil_enabled);
2060 if (vc4->zsa->base.alpha.enabled) {
2061 key->alpha_test = true;
2062 key->alpha_test_func = vc4->zsa->base.alpha.func;
2063 }
2064
2065 if (key->is_points) {
2066 key->point_sprite_mask =
2067 vc4->rasterizer->base.sprite_coord_enable;
2068 key->point_coord_upper_left =
2069 (vc4->rasterizer->base.sprite_coord_mode ==
2070 PIPE_SPRITE_COORD_UPPER_LEFT);
2071 }
2072
2073 key->light_twoside = vc4->rasterizer->base.light_twoside;
2074
2075 struct vc4_compiled_shader *old_fs = vc4->prog.fs;
2076 vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
2077 if (vc4->prog.fs == old_fs)
2078 return;
2079
2080 if (vc4->rasterizer->base.flatshade &&
2081 old_fs && vc4->prog.fs->color_inputs != old_fs->color_inputs) {
2082 vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
2083 }
2084 }
2085
2086 static void
2087 vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
2088 {
2089 struct vc4_vs_key local_key;
2090 struct vc4_vs_key *key = &local_key;
2091
2092 if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2093 VC4_DIRTY_RASTERIZER |
2094 VC4_DIRTY_VERTTEX |
2095 VC4_DIRTY_TEXSTATE |
2096 VC4_DIRTY_VTXSTATE |
2097 VC4_DIRTY_PROG))) {
2098 return;
2099 }
2100
2101 memset(key, 0, sizeof(*key));
2102 vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
2103 key->base.shader_state = vc4->prog.bind_vs;
2104 key->compiled_fs_id = vc4->prog.fs->program_id;
2105
2106 for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
2107 key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
2108
2109 key->per_vertex_point_size =
2110 (prim_mode == PIPE_PRIM_POINTS &&
2111 vc4->rasterizer->base.point_size_per_vertex);
2112
2113 vc4->prog.vs = vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
2114 key->is_coord = true;
2115 vc4->prog.cs = vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
2116 }
2117
2118 void
2119 vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
2120 {
2121 vc4_update_compiled_fs(vc4, prim_mode);
2122 vc4_update_compiled_vs(vc4, prim_mode);
2123 }
2124
2125 static unsigned
2126 fs_cache_hash(void *key)
2127 {
2128 return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
2129 }
2130
2131 static unsigned
2132 vs_cache_hash(void *key)
2133 {
2134 return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
2135 }
2136
2137 static int
2138 fs_cache_compare(void *key1, void *key2)
2139 {
2140 return memcmp(key1, key2, sizeof(struct vc4_fs_key));
2141 }
2142
2143 static int
2144 vs_cache_compare(void *key1, void *key2)
2145 {
2146 return memcmp(key1, key2, sizeof(struct vc4_vs_key));
2147 }
2148
2149 struct delete_state {
2150 struct vc4_context *vc4;
2151 struct vc4_uncompiled_shader *shader_state;
2152 };
2153
2154 static enum pipe_error
2155 fs_delete_from_cache(void *in_key, void *in_value, void *data)
2156 {
2157 struct delete_state *del = data;
2158 struct vc4_fs_key *key = in_key;
2159 struct vc4_compiled_shader *shader = in_value;
2160
2161 if (key->base.shader_state == data) {
2162 util_hash_table_remove(del->vc4->fs_cache, key);
2163 vc4_bo_unreference(&shader->bo);
2164 ralloc_free(shader);
2165 }
2166
2167 return 0;
2168 }
2169
2170 static enum pipe_error
2171 vs_delete_from_cache(void *in_key, void *in_value, void *data)
2172 {
2173 struct delete_state *del = data;
2174 struct vc4_vs_key *key = in_key;
2175 struct vc4_compiled_shader *shader = in_value;
2176
2177 if (key->base.shader_state == data) {
2178 util_hash_table_remove(del->vc4->vs_cache, key);
2179 vc4_bo_unreference(&shader->bo);
2180 ralloc_free(shader);
2181 }
2182
2183 return 0;
2184 }
2185
2186 static void
2187 vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
2188 {
2189 struct vc4_context *vc4 = vc4_context(pctx);
2190 struct vc4_uncompiled_shader *so = hwcso;
2191 struct delete_state del;
2192
2193 del.vc4 = vc4;
2194 del.shader_state = so;
2195 util_hash_table_foreach(vc4->fs_cache, fs_delete_from_cache, &del);
2196 util_hash_table_foreach(vc4->vs_cache, vs_delete_from_cache, &del);
2197
2198 if (so->twoside_tokens != so->base.tokens)
2199 free((void *)so->twoside_tokens);
2200 free((void *)so->base.tokens);
2201 free(so);
2202 }
2203
2204 static uint32_t translate_wrap(uint32_t p_wrap, bool using_nearest)
2205 {
2206 switch (p_wrap) {
2207 case PIPE_TEX_WRAP_REPEAT:
2208 return 0;
2209 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2210 return 1;
2211 case PIPE_TEX_WRAP_MIRROR_REPEAT:
2212 return 2;
2213 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2214 return 3;
2215 case PIPE_TEX_WRAP_CLAMP:
2216 return (using_nearest ? 1 : 3);
2217 default:
2218 fprintf(stderr, "Unknown wrap mode %d\n", p_wrap);
2219 assert(!"not reached");
2220 return 0;
2221 }
2222 }
2223
2224 static void
2225 write_texture_p0(struct vc4_context *vc4,
2226 struct vc4_texture_stateobj *texstate,
2227 uint32_t unit)
2228 {
2229 struct pipe_sampler_view *texture = texstate->textures[unit];
2230 struct vc4_resource *rsc = vc4_resource(texture->texture);
2231
2232 cl_reloc(vc4, &vc4->uniforms, rsc->bo,
2233 VC4_SET_FIELD(rsc->slices[0].offset >> 12, VC4_TEX_P0_OFFSET) |
2234 VC4_SET_FIELD(texture->u.tex.last_level, VC4_TEX_P0_MIPLVLS) |
2235 VC4_SET_FIELD(texture->target == PIPE_TEXTURE_CUBE,
2236 VC4_TEX_P0_CMMODE) |
2237 VC4_SET_FIELD(rsc->vc4_format & 7, VC4_TEX_P0_TYPE));
2238 }
2239
2240 static void
2241 write_texture_p1(struct vc4_context *vc4,
2242 struct vc4_texture_stateobj *texstate,
2243 uint32_t unit)
2244 {
2245 struct pipe_sampler_view *texture = texstate->textures[unit];
2246 struct vc4_resource *rsc = vc4_resource(texture->texture);
2247 struct pipe_sampler_state *sampler = texstate->samplers[unit];
2248 static const uint8_t minfilter_map[6] = {
2249 VC4_TEX_P1_MINFILT_NEAR_MIP_NEAR,
2250 VC4_TEX_P1_MINFILT_LIN_MIP_NEAR,
2251 VC4_TEX_P1_MINFILT_NEAR_MIP_LIN,
2252 VC4_TEX_P1_MINFILT_LIN_MIP_LIN,
2253 VC4_TEX_P1_MINFILT_NEAREST,
2254 VC4_TEX_P1_MINFILT_LINEAR,
2255 };
2256 static const uint32_t magfilter_map[] = {
2257 [PIPE_TEX_FILTER_NEAREST] = VC4_TEX_P1_MAGFILT_NEAREST,
2258 [PIPE_TEX_FILTER_LINEAR] = VC4_TEX_P1_MAGFILT_LINEAR,
2259 };
2260
2261 bool either_nearest =
2262 (sampler->mag_img_filter == PIPE_TEX_MIPFILTER_NEAREST ||
2263 sampler->min_img_filter == PIPE_TEX_MIPFILTER_NEAREST);
2264
2265 cl_u32(&vc4->uniforms,
2266 VC4_SET_FIELD(rsc->vc4_format >> 4, VC4_TEX_P1_TYPE4) |
2267 VC4_SET_FIELD(texture->texture->height0 & 2047,
2268 VC4_TEX_P1_HEIGHT) |
2269 VC4_SET_FIELD(texture->texture->width0 & 2047,
2270 VC4_TEX_P1_WIDTH) |
2271 VC4_SET_FIELD(magfilter_map[sampler->mag_img_filter],
2272 VC4_TEX_P1_MAGFILT) |
2273 VC4_SET_FIELD(minfilter_map[sampler->min_mip_filter * 2 +
2274 sampler->min_img_filter],
2275 VC4_TEX_P1_MINFILT) |
2276 VC4_SET_FIELD(translate_wrap(sampler->wrap_s, either_nearest),
2277 VC4_TEX_P1_WRAP_S) |
2278 VC4_SET_FIELD(translate_wrap(sampler->wrap_t, either_nearest),
2279 VC4_TEX_P1_WRAP_T));
2280 }
2281
2282 static void
2283 write_texture_p2(struct vc4_context *vc4,
2284 struct vc4_texture_stateobj *texstate,
2285 uint32_t data)
2286 {
2287 uint32_t unit = data & 0xffff;
2288 struct pipe_sampler_view *texture = texstate->textures[unit];
2289 struct vc4_resource *rsc = vc4_resource(texture->texture);
2290
2291 cl_u32(&vc4->uniforms,
2292 VC4_SET_FIELD(VC4_TEX_P2_PTYPE_CUBE_MAP_STRIDE,
2293 VC4_TEX_P2_PTYPE) |
2294 VC4_SET_FIELD(rsc->cube_map_stride >> 12, VC4_TEX_P2_CMST) |
2295 VC4_SET_FIELD((data >> 16) & 1, VC4_TEX_P2_BSLOD));
2296 }
2297
2298
2299 #define SWIZ(x,y,z,w) { \
2300 UTIL_FORMAT_SWIZZLE_##x, \
2301 UTIL_FORMAT_SWIZZLE_##y, \
2302 UTIL_FORMAT_SWIZZLE_##z, \
2303 UTIL_FORMAT_SWIZZLE_##w \
2304 }
2305
2306 static void
2307 write_texture_border_color(struct vc4_context *vc4,
2308 struct vc4_texture_stateobj *texstate,
2309 uint32_t unit)
2310 {
2311 struct pipe_sampler_state *sampler = texstate->samplers[unit];
2312 struct pipe_sampler_view *texture = texstate->textures[unit];
2313 struct vc4_resource *rsc = vc4_resource(texture->texture);
2314 union util_color uc;
2315
2316 const struct util_format_description *tex_format_desc =
2317 util_format_description(texture->format);
2318
2319 float border_color[4];
2320 for (int i = 0; i < 4; i++)
2321 border_color[i] = sampler->border_color.f[i];
2322 if (util_format_is_srgb(texture->format)) {
2323 for (int i = 0; i < 3; i++)
2324 border_color[i] =
2325 util_format_linear_to_srgb_float(border_color[i]);
2326 }
2327
2328 /* Turn the border color into the layout of channels that it would
2329 * have when stored as texture contents.
2330 */
2331 float storage_color[4];
2332 util_format_unswizzle_4f(storage_color,
2333 border_color,
2334 tex_format_desc->swizzle);
2335
2336 /* Now, pack so that when the vc4_format-sampled texture contents are
2337 * replaced with our border color, the vc4_get_format_swizzle()
2338 * swizzling will get the right channels.
2339 */
2340 if (util_format_is_depth_or_stencil(texture->format)) {
2341 uc.ui[0] = util_pack_z(PIPE_FORMAT_Z24X8_UNORM,
2342 sampler->border_color.f[0]) << 8;
2343 } else {
2344 switch (rsc->vc4_format) {
2345 default:
2346 case VC4_TEXTURE_TYPE_RGBA8888:
2347 util_pack_color(storage_color,
2348 PIPE_FORMAT_R8G8B8A8_UNORM, &uc);
2349 break;
2350 case VC4_TEXTURE_TYPE_RGBA4444:
2351 util_pack_color(storage_color,
2352 PIPE_FORMAT_A8B8G8R8_UNORM, &uc);
2353 break;
2354 case VC4_TEXTURE_TYPE_RGB565:
2355 util_pack_color(storage_color,
2356 PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
2357 break;
2358 case VC4_TEXTURE_TYPE_ALPHA:
2359 uc.ui[0] = float_to_ubyte(storage_color[0]) << 24;
2360 break;
2361 case VC4_TEXTURE_TYPE_LUMALPHA:
2362 uc.ui[0] = ((float_to_ubyte(storage_color[1]) << 24) |
2363 (float_to_ubyte(storage_color[0]) << 0));
2364 break;
2365 }
2366 }
2367
2368 cl_u32(&vc4->uniforms, uc.ui[0]);
2369 }
2370
2371 static uint32_t
2372 get_texrect_scale(struct vc4_texture_stateobj *texstate,
2373 enum quniform_contents contents,
2374 uint32_t data)
2375 {
2376 struct pipe_sampler_view *texture = texstate->textures[data];
2377 uint32_t dim;
2378
2379 if (contents == QUNIFORM_TEXRECT_SCALE_X)
2380 dim = texture->texture->width0;
2381 else
2382 dim = texture->texture->height0;
2383
2384 return fui(1.0f / dim);
2385 }
2386
2387 void
2388 vc4_write_uniforms(struct vc4_context *vc4, struct vc4_compiled_shader *shader,
2389 struct vc4_constbuf_stateobj *cb,
2390 struct vc4_texture_stateobj *texstate)
2391 {
2392 struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
2393 const uint32_t *gallium_uniforms = cb->cb[0].user_buffer;
2394
2395 cl_start_shader_reloc(&vc4->uniforms, uinfo->num_texture_samples);
2396
2397 for (int i = 0; i < uinfo->count; i++) {
2398
2399 switch (uinfo->contents[i]) {
2400 case QUNIFORM_CONSTANT:
2401 cl_u32(&vc4->uniforms, uinfo->data[i]);
2402 break;
2403 case QUNIFORM_UNIFORM:
2404 cl_u32(&vc4->uniforms,
2405 gallium_uniforms[uinfo->data[i]]);
2406 break;
2407 case QUNIFORM_VIEWPORT_X_SCALE:
2408 cl_f(&vc4->uniforms, vc4->viewport.scale[0] * 16.0f);
2409 break;
2410 case QUNIFORM_VIEWPORT_Y_SCALE:
2411 cl_f(&vc4->uniforms, vc4->viewport.scale[1] * 16.0f);
2412 break;
2413
2414 case QUNIFORM_VIEWPORT_Z_OFFSET:
2415 cl_f(&vc4->uniforms, vc4->viewport.translate[2]);
2416 break;
2417 case QUNIFORM_VIEWPORT_Z_SCALE:
2418 cl_f(&vc4->uniforms, vc4->viewport.scale[2]);
2419 break;
2420
2421 case QUNIFORM_USER_CLIP_PLANE:
2422 cl_f(&vc4->uniforms,
2423 vc4->clip.ucp[uinfo->data[i] / 4][uinfo->data[i] % 4]);
2424 break;
2425
2426 case QUNIFORM_TEXTURE_CONFIG_P0:
2427 write_texture_p0(vc4, texstate, uinfo->data[i]);
2428 break;
2429
2430 case QUNIFORM_TEXTURE_CONFIG_P1:
2431 write_texture_p1(vc4, texstate, uinfo->data[i]);
2432 break;
2433
2434 case QUNIFORM_TEXTURE_CONFIG_P2:
2435 write_texture_p2(vc4, texstate, uinfo->data[i]);
2436 break;
2437
2438 case QUNIFORM_TEXTURE_BORDER_COLOR:
2439 write_texture_border_color(vc4, texstate, uinfo->data[i]);
2440 break;
2441
2442 case QUNIFORM_TEXRECT_SCALE_X:
2443 case QUNIFORM_TEXRECT_SCALE_Y:
2444 cl_u32(&vc4->uniforms,
2445 get_texrect_scale(texstate,
2446 uinfo->contents[i],
2447 uinfo->data[i]));
2448 break;
2449
2450 case QUNIFORM_BLEND_CONST_COLOR:
2451 cl_f(&vc4->uniforms,
2452 vc4->blend_color.color[uinfo->data[i]]);
2453 break;
2454
2455 case QUNIFORM_STENCIL:
2456 cl_u32(&vc4->uniforms,
2457 vc4->zsa->stencil_uniforms[uinfo->data[i]] |
2458 (uinfo->data[i] <= 1 ?
2459 (vc4->stencil_ref.ref_value[uinfo->data[i]] << 8) :
2460 0));
2461 break;
2462
2463 case QUNIFORM_ALPHA_REF:
2464 cl_f(&vc4->uniforms, vc4->zsa->base.alpha.ref_value);
2465 break;
2466 }
2467 #if 0
2468 uint32_t written_val = *(uint32_t *)(vc4->uniforms.next - 4);
2469 fprintf(stderr, "%p: %d / 0x%08x (%f)\n",
2470 shader, i, written_val, uif(written_val));
2471 #endif
2472 }
2473 }
2474
2475 static void
2476 vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
2477 {
2478 struct vc4_context *vc4 = vc4_context(pctx);
2479 vc4->prog.bind_fs = hwcso;
2480 vc4->prog.dirty |= VC4_SHADER_DIRTY_FP;
2481 vc4->dirty |= VC4_DIRTY_PROG;
2482 }
2483
2484 static void
2485 vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
2486 {
2487 struct vc4_context *vc4 = vc4_context(pctx);
2488 vc4->prog.bind_vs = hwcso;
2489 vc4->prog.dirty |= VC4_SHADER_DIRTY_VP;
2490 vc4->dirty |= VC4_DIRTY_PROG;
2491 }
2492
2493 void
2494 vc4_program_init(struct pipe_context *pctx)
2495 {
2496 struct vc4_context *vc4 = vc4_context(pctx);
2497
2498 pctx->create_vs_state = vc4_shader_state_create;
2499 pctx->delete_vs_state = vc4_shader_state_delete;
2500
2501 pctx->create_fs_state = vc4_shader_state_create;
2502 pctx->delete_fs_state = vc4_shader_state_delete;
2503
2504 pctx->bind_fs_state = vc4_fp_state_bind;
2505 pctx->bind_vs_state = vc4_vp_state_bind;
2506
2507 vc4->fs_cache = util_hash_table_create(fs_cache_hash, fs_cache_compare);
2508 vc4->vs_cache = util_hash_table_create(vs_cache_hash, vs_cache_compare);
2509 }