anv,i965,radv,st,ir3: Call nir_lower_deref_instrs
[mesa.git] / src / gallium / drivers / vc4 / vc4_program.c
1 /*
2 * Copyright (c) 2014 Scott Mansell
3 * Copyright © 2014 Broadcom
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24
25 #include <inttypes.h>
26 #include "util/u_format.h"
27 #include "util/crc32.h"
28 #include "util/u_math.h"
29 #include "util/u_memory.h"
30 #include "util/ralloc.h"
31 #include "util/hash_table.h"
32 #include "tgsi/tgsi_dump.h"
33 #include "tgsi/tgsi_parse.h"
34 #include "compiler/nir/nir.h"
35 #include "compiler/nir/nir_builder.h"
36 #include "compiler/nir_types.h"
37 #include "nir/tgsi_to_nir.h"
38 #include "vc4_context.h"
39 #include "vc4_qpu.h"
40 #include "vc4_qir.h"
41
42 static struct qreg
43 ntq_get_src(struct vc4_compile *c, nir_src src, int i);
44 static void
45 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
46
47 static int
48 type_size(const struct glsl_type *type)
49 {
50 return glsl_count_attribute_slots(type, false);
51 }
52
53 static void
54 resize_qreg_array(struct vc4_compile *c,
55 struct qreg **regs,
56 uint32_t *size,
57 uint32_t decl_size)
58 {
59 if (*size >= decl_size)
60 return;
61
62 uint32_t old_size = *size;
63 *size = MAX2(*size * 2, decl_size);
64 *regs = reralloc(c, *regs, struct qreg, *size);
65 if (!*regs) {
66 fprintf(stderr, "Malloc failure\n");
67 abort();
68 }
69
70 for (uint32_t i = old_size; i < *size; i++)
71 (*regs)[i] = c->undef;
72 }
73
74 static void
75 ntq_emit_thrsw(struct vc4_compile *c)
76 {
77 if (!c->fs_threaded)
78 return;
79
80 /* Always thread switch after each texture operation for now.
81 *
82 * We could do better by batching a bunch of texture fetches up and
83 * then doing one thread switch and collecting all their results
84 * afterward.
85 */
86 qir_emit_nondef(c, qir_inst(QOP_THRSW, c->undef,
87 c->undef, c->undef));
88 c->last_thrsw_at_top_level = (c->execute.file == QFILE_NULL);
89 }
90
91 static struct qreg
92 indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
93 {
94 struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
95 uint32_t offset = nir_intrinsic_base(intr);
96 struct vc4_compiler_ubo_range *range = NULL;
97 unsigned i;
98 for (i = 0; i < c->num_uniform_ranges; i++) {
99 range = &c->ubo_ranges[i];
100 if (offset >= range->src_offset &&
101 offset < range->src_offset + range->size) {
102 break;
103 }
104 }
105 /* The driver-location-based offset always has to be within a declared
106 * uniform range.
107 */
108 assert(range);
109 if (!range->used) {
110 range->used = true;
111 range->dst_offset = c->next_ubo_dst_offset;
112 c->next_ubo_dst_offset += range->size;
113 c->num_ubo_ranges++;
114 }
115
116 offset -= range->src_offset;
117
118 /* Adjust for where we stored the TGSI register base. */
119 indirect_offset = qir_ADD(c, indirect_offset,
120 qir_uniform_ui(c, (range->dst_offset +
121 offset)));
122
123 /* Clamp to [0, array size). Note that MIN/MAX are signed. */
124 indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0));
125 indirect_offset = qir_MIN_NOIMM(c, indirect_offset,
126 qir_uniform_ui(c, (range->dst_offset +
127 range->size - 4)));
128
129 qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
130 indirect_offset,
131 qir_uniform(c, QUNIFORM_UBO_ADDR, 0));
132
133 c->num_texture_samples++;
134
135 ntq_emit_thrsw(c);
136
137 return qir_TEX_RESULT(c);
138 }
139
140 static struct qreg
141 vc4_ubo_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
142 {
143 nir_const_value *buffer_index =
144 nir_src_as_const_value(intr->src[0]);
145 assert(buffer_index->u32[0] == 1);
146 assert(c->stage == QSTAGE_FRAG);
147
148 struct qreg offset = ntq_get_src(c, intr->src[1], 0);
149
150 /* Clamp to [0, array size). Note that MIN/MAX are signed. */
151 offset = qir_MAX(c, offset, qir_uniform_ui(c, 0));
152 offset = qir_MIN_NOIMM(c, offset,
153 qir_uniform_ui(c, c->fs_key->ubo_1_size - 4));
154
155 qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
156 offset,
157 qir_uniform(c, QUNIFORM_UBO_ADDR, buffer_index->u32[0]));
158
159 c->num_texture_samples++;
160
161 ntq_emit_thrsw(c);
162
163 return qir_TEX_RESULT(c);
164 }
165
166 nir_ssa_def *
167 vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz)
168 {
169 switch (swiz) {
170 default:
171 case PIPE_SWIZZLE_NONE:
172 fprintf(stderr, "warning: unknown swizzle\n");
173 /* FALLTHROUGH */
174 case PIPE_SWIZZLE_0:
175 return nir_imm_float(b, 0.0);
176 case PIPE_SWIZZLE_1:
177 return nir_imm_float(b, 1.0);
178 case PIPE_SWIZZLE_X:
179 case PIPE_SWIZZLE_Y:
180 case PIPE_SWIZZLE_Z:
181 case PIPE_SWIZZLE_W:
182 return srcs[swiz];
183 }
184 }
185
186 static struct qreg *
187 ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def)
188 {
189 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
190 def->num_components);
191 _mesa_hash_table_insert(c->def_ht, def, qregs);
192 return qregs;
193 }
194
195 /**
196 * This function is responsible for getting QIR results into the associated
197 * storage for a NIR instruction.
198 *
199 * If it's a NIR SSA def, then we just set the associated hash table entry to
200 * the new result.
201 *
202 * If it's a NIR reg, then we need to update the existing qreg assigned to the
203 * NIR destination with the incoming value. To do that without introducing
204 * new MOVs, we require that the incoming qreg either be a uniform, or be
205 * SSA-defined by the previous QIR instruction in the block and rewritable by
206 * this function. That lets us sneak ahead and insert the SF flag beforehand
207 * (knowing that the previous instruction doesn't depend on flags) and rewrite
208 * its destination to be the NIR reg's destination
209 */
210 static void
211 ntq_store_dest(struct vc4_compile *c, nir_dest *dest, int chan,
212 struct qreg result)
213 {
214 struct qinst *last_inst = NULL;
215 if (!list_empty(&c->cur_block->instructions))
216 last_inst = (struct qinst *)c->cur_block->instructions.prev;
217
218 assert(result.file == QFILE_UNIF ||
219 (result.file == QFILE_TEMP &&
220 last_inst && last_inst == c->defs[result.index]));
221
222 if (dest->is_ssa) {
223 assert(chan < dest->ssa.num_components);
224
225 struct qreg *qregs;
226 struct hash_entry *entry =
227 _mesa_hash_table_search(c->def_ht, &dest->ssa);
228
229 if (entry)
230 qregs = entry->data;
231 else
232 qregs = ntq_init_ssa_def(c, &dest->ssa);
233
234 qregs[chan] = result;
235 } else {
236 nir_register *reg = dest->reg.reg;
237 assert(dest->reg.base_offset == 0);
238 assert(reg->num_array_elems == 0);
239 struct hash_entry *entry =
240 _mesa_hash_table_search(c->def_ht, reg);
241 struct qreg *qregs = entry->data;
242
243 /* Insert a MOV if the source wasn't an SSA def in the
244 * previous instruction.
245 */
246 if (result.file == QFILE_UNIF) {
247 result = qir_MOV(c, result);
248 last_inst = c->defs[result.index];
249 }
250
251 /* We know they're both temps, so just rewrite index. */
252 c->defs[last_inst->dst.index] = NULL;
253 last_inst->dst.index = qregs[chan].index;
254
255 /* If we're in control flow, then make this update of the reg
256 * conditional on the execution mask.
257 */
258 if (c->execute.file != QFILE_NULL) {
259 last_inst->dst.index = qregs[chan].index;
260
261 /* Set the flags to the current exec mask. To insert
262 * the SF, we temporarily remove our SSA instruction.
263 */
264 list_del(&last_inst->link);
265 qir_SF(c, c->execute);
266 list_addtail(&last_inst->link,
267 &c->cur_block->instructions);
268
269 last_inst->cond = QPU_COND_ZS;
270 last_inst->cond_is_exec_mask = true;
271 }
272 }
273 }
274
275 static struct qreg *
276 ntq_get_dest(struct vc4_compile *c, nir_dest *dest)
277 {
278 if (dest->is_ssa) {
279 struct qreg *qregs = ntq_init_ssa_def(c, &dest->ssa);
280 for (int i = 0; i < dest->ssa.num_components; i++)
281 qregs[i] = c->undef;
282 return qregs;
283 } else {
284 nir_register *reg = dest->reg.reg;
285 assert(dest->reg.base_offset == 0);
286 assert(reg->num_array_elems == 0);
287 struct hash_entry *entry =
288 _mesa_hash_table_search(c->def_ht, reg);
289 return entry->data;
290 }
291 }
292
293 static struct qreg
294 ntq_get_src(struct vc4_compile *c, nir_src src, int i)
295 {
296 struct hash_entry *entry;
297 if (src.is_ssa) {
298 entry = _mesa_hash_table_search(c->def_ht, src.ssa);
299 assert(i < src.ssa->num_components);
300 } else {
301 nir_register *reg = src.reg.reg;
302 entry = _mesa_hash_table_search(c->def_ht, reg);
303 assert(reg->num_array_elems == 0);
304 assert(src.reg.base_offset == 0);
305 assert(i < reg->num_components);
306 }
307
308 struct qreg *qregs = entry->data;
309 return qregs[i];
310 }
311
312 static struct qreg
313 ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
314 unsigned src)
315 {
316 assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
317 unsigned chan = ffs(instr->dest.write_mask) - 1;
318 struct qreg r = ntq_get_src(c, instr->src[src].src,
319 instr->src[src].swizzle[chan]);
320
321 assert(!instr->src[src].abs);
322 assert(!instr->src[src].negate);
323
324 return r;
325 };
326
327 static inline struct qreg
328 qir_SAT(struct vc4_compile *c, struct qreg val)
329 {
330 return qir_FMAX(c,
331 qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
332 qir_uniform_f(c, 0.0));
333 }
334
335 static struct qreg
336 ntq_rcp(struct vc4_compile *c, struct qreg x)
337 {
338 struct qreg r = qir_RCP(c, x);
339
340 /* Apply a Newton-Raphson step to improve the accuracy. */
341 r = qir_FMUL(c, r, qir_FSUB(c,
342 qir_uniform_f(c, 2.0),
343 qir_FMUL(c, x, r)));
344
345 return r;
346 }
347
348 static struct qreg
349 ntq_rsq(struct vc4_compile *c, struct qreg x)
350 {
351 struct qreg r = qir_RSQ(c, x);
352
353 /* Apply a Newton-Raphson step to improve the accuracy. */
354 r = qir_FMUL(c, r, qir_FSUB(c,
355 qir_uniform_f(c, 1.5),
356 qir_FMUL(c,
357 qir_uniform_f(c, 0.5),
358 qir_FMUL(c, x,
359 qir_FMUL(c, r, r)))));
360
361 return r;
362 }
363
364 static struct qreg
365 ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
366 {
367 struct qreg src0_hi = qir_SHR(c, src0,
368 qir_uniform_ui(c, 24));
369 struct qreg src1_hi = qir_SHR(c, src1,
370 qir_uniform_ui(c, 24));
371
372 struct qreg hilo = qir_MUL24(c, src0_hi, src1);
373 struct qreg lohi = qir_MUL24(c, src0, src1_hi);
374 struct qreg lolo = qir_MUL24(c, src0, src1);
375
376 return qir_ADD(c, lolo, qir_SHL(c,
377 qir_ADD(c, hilo, lohi),
378 qir_uniform_ui(c, 24)));
379 }
380
381 static struct qreg
382 ntq_scale_depth_texture(struct vc4_compile *c, struct qreg src)
383 {
384 struct qreg depthf = qir_ITOF(c, qir_SHR(c, src,
385 qir_uniform_ui(c, 8)));
386 return qir_FMUL(c, depthf, qir_uniform_f(c, 1.0f/0xffffff));
387 }
388
389 /**
390 * Emits a lowered TXF_MS from an MSAA texture.
391 *
392 * The addressing math has been lowered in NIR, and now we just need to read
393 * it like a UBO.
394 */
395 static void
396 ntq_emit_txf(struct vc4_compile *c, nir_tex_instr *instr)
397 {
398 uint32_t tile_width = 32;
399 uint32_t tile_height = 32;
400 uint32_t tile_size = (tile_height * tile_width *
401 VC4_MAX_SAMPLES * sizeof(uint32_t));
402
403 unsigned unit = instr->texture_index;
404 uint32_t w = align(c->key->tex[unit].msaa_width, tile_width);
405 uint32_t w_tiles = w / tile_width;
406 uint32_t h = align(c->key->tex[unit].msaa_height, tile_height);
407 uint32_t h_tiles = h / tile_height;
408 uint32_t size = w_tiles * h_tiles * tile_size;
409
410 struct qreg addr;
411 assert(instr->num_srcs == 1);
412 assert(instr->src[0].src_type == nir_tex_src_coord);
413 addr = ntq_get_src(c, instr->src[0].src, 0);
414
415 /* Perform the clamping required by kernel validation. */
416 addr = qir_MAX(c, addr, qir_uniform_ui(c, 0));
417 addr = qir_MIN_NOIMM(c, addr, qir_uniform_ui(c, size - 4));
418
419 qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
420 addr, qir_uniform(c, QUNIFORM_TEXTURE_MSAA_ADDR, unit));
421
422 ntq_emit_thrsw(c);
423
424 struct qreg tex = qir_TEX_RESULT(c);
425 c->num_texture_samples++;
426
427 enum pipe_format format = c->key->tex[unit].format;
428 if (util_format_is_depth_or_stencil(format)) {
429 struct qreg scaled = ntq_scale_depth_texture(c, tex);
430 for (int i = 0; i < 4; i++)
431 ntq_store_dest(c, &instr->dest, i, qir_MOV(c, scaled));
432 } else {
433 for (int i = 0; i < 4; i++)
434 ntq_store_dest(c, &instr->dest, i,
435 qir_UNPACK_8_F(c, tex, i));
436 }
437 }
438
439 static void
440 ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
441 {
442 struct qreg s, t, r, lod, compare;
443 bool is_txb = false, is_txl = false;
444 unsigned unit = instr->texture_index;
445
446 if (instr->op == nir_texop_txf) {
447 ntq_emit_txf(c, instr);
448 return;
449 }
450
451 for (unsigned i = 0; i < instr->num_srcs; i++) {
452 switch (instr->src[i].src_type) {
453 case nir_tex_src_coord:
454 s = ntq_get_src(c, instr->src[i].src, 0);
455 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D)
456 t = qir_uniform_f(c, 0.5);
457 else
458 t = ntq_get_src(c, instr->src[i].src, 1);
459 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
460 r = ntq_get_src(c, instr->src[i].src, 2);
461 break;
462 case nir_tex_src_bias:
463 lod = ntq_get_src(c, instr->src[i].src, 0);
464 is_txb = true;
465 break;
466 case nir_tex_src_lod:
467 lod = ntq_get_src(c, instr->src[i].src, 0);
468 is_txl = true;
469 break;
470 case nir_tex_src_comparator:
471 compare = ntq_get_src(c, instr->src[i].src, 0);
472 break;
473 default:
474 unreachable("unknown texture source");
475 }
476 }
477
478 if (c->stage != QSTAGE_FRAG && !is_txl) {
479 /* From the GLSL 1.20 spec:
480 *
481 * "If it is mip-mapped and running on the vertex shader,
482 * then the base texture is used."
483 */
484 is_txl = true;
485 lod = qir_uniform_ui(c, 0);
486 }
487
488 if (c->key->tex[unit].force_first_level) {
489 lod = qir_uniform(c, QUNIFORM_TEXTURE_FIRST_LEVEL, unit);
490 is_txl = true;
491 is_txb = false;
492 }
493
494 struct qreg texture_u[] = {
495 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
496 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
497 qir_uniform(c, QUNIFORM_CONSTANT, 0),
498 qir_uniform(c, QUNIFORM_CONSTANT, 0),
499 };
500 uint32_t next_texture_u = 0;
501
502 /* There is no native support for GL texture rectangle coordinates, so
503 * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
504 * 1]).
505 */
506 if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
507 s = qir_FMUL(c, s,
508 qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, unit));
509 t = qir_FMUL(c, t,
510 qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, unit));
511 }
512
513 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
514 texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
515 unit | (is_txl << 16));
516 }
517
518 struct qinst *tmu;
519 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
520 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0), r);
521 tmu->src[qir_get_tex_uniform_src(tmu)] =
522 texture_u[next_texture_u++];
523 } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
524 c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
525 c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
526 c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
527 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0),
528 qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR,
529 unit));
530 tmu->src[qir_get_tex_uniform_src(tmu)] =
531 texture_u[next_texture_u++];
532 }
533
534 if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
535 s = qir_SAT(c, s);
536 }
537
538 if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
539 t = qir_SAT(c, t);
540 }
541
542 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_T, 0), t);
543 tmu->src[qir_get_tex_uniform_src(tmu)] =
544 texture_u[next_texture_u++];
545
546 if (is_txl || is_txb) {
547 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_B, 0), lod);
548 tmu->src[qir_get_tex_uniform_src(tmu)] =
549 texture_u[next_texture_u++];
550 }
551
552 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_S, 0), s);
553 tmu->src[qir_get_tex_uniform_src(tmu)] = texture_u[next_texture_u++];
554
555 c->num_texture_samples++;
556
557 ntq_emit_thrsw(c);
558
559 struct qreg tex = qir_TEX_RESULT(c);
560
561 enum pipe_format format = c->key->tex[unit].format;
562
563 struct qreg *dest = ntq_get_dest(c, &instr->dest);
564 if (util_format_is_depth_or_stencil(format)) {
565 struct qreg normalized = ntq_scale_depth_texture(c, tex);
566 struct qreg depth_output;
567
568 struct qreg u0 = qir_uniform_f(c, 0.0f);
569 struct qreg u1 = qir_uniform_f(c, 1.0f);
570 if (c->key->tex[unit].compare_mode) {
571 /* From the GL_ARB_shadow spec:
572 *
573 * "Let Dt (D subscript t) be the depth texture
574 * value, in the range [0, 1]. Let R be the
575 * interpolated texture coordinate clamped to the
576 * range [0, 1]."
577 */
578 compare = qir_SAT(c, compare);
579
580 switch (c->key->tex[unit].compare_func) {
581 case PIPE_FUNC_NEVER:
582 depth_output = qir_uniform_f(c, 0.0f);
583 break;
584 case PIPE_FUNC_ALWAYS:
585 depth_output = u1;
586 break;
587 case PIPE_FUNC_EQUAL:
588 qir_SF(c, qir_FSUB(c, compare, normalized));
589 depth_output = qir_SEL(c, QPU_COND_ZS, u1, u0);
590 break;
591 case PIPE_FUNC_NOTEQUAL:
592 qir_SF(c, qir_FSUB(c, compare, normalized));
593 depth_output = qir_SEL(c, QPU_COND_ZC, u1, u0);
594 break;
595 case PIPE_FUNC_GREATER:
596 qir_SF(c, qir_FSUB(c, compare, normalized));
597 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
598 break;
599 case PIPE_FUNC_GEQUAL:
600 qir_SF(c, qir_FSUB(c, normalized, compare));
601 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
602 break;
603 case PIPE_FUNC_LESS:
604 qir_SF(c, qir_FSUB(c, compare, normalized));
605 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
606 break;
607 case PIPE_FUNC_LEQUAL:
608 qir_SF(c, qir_FSUB(c, normalized, compare));
609 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
610 break;
611 }
612 } else {
613 depth_output = normalized;
614 }
615
616 for (int i = 0; i < 4; i++)
617 dest[i] = depth_output;
618 } else {
619 for (int i = 0; i < 4; i++)
620 dest[i] = qir_UNPACK_8_F(c, tex, i);
621 }
622 }
623
624 /**
625 * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
626 * to zero).
627 */
628 static struct qreg
629 ntq_ffract(struct vc4_compile *c, struct qreg src)
630 {
631 struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
632 struct qreg diff = qir_FSUB(c, src, trunc);
633 qir_SF(c, diff);
634
635 qir_FADD_dest(c, diff,
636 diff, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
637
638 return qir_MOV(c, diff);
639 }
640
641 /**
642 * Computes floor(x), which is tricky because our FTOI truncates (rounds to
643 * zero).
644 */
645 static struct qreg
646 ntq_ffloor(struct vc4_compile *c, struct qreg src)
647 {
648 struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
649
650 /* This will be < 0 if we truncated and the truncation was of a value
651 * that was < 0 in the first place.
652 */
653 qir_SF(c, qir_FSUB(c, src, result));
654
655 struct qinst *sub = qir_FSUB_dest(c, result,
656 result, qir_uniform_f(c, 1.0));
657 sub->cond = QPU_COND_NS;
658
659 return qir_MOV(c, result);
660 }
661
662 /**
663 * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
664 * zero).
665 */
666 static struct qreg
667 ntq_fceil(struct vc4_compile *c, struct qreg src)
668 {
669 struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
670
671 /* This will be < 0 if we truncated and the truncation was of a value
672 * that was > 0 in the first place.
673 */
674 qir_SF(c, qir_FSUB(c, result, src));
675
676 qir_FADD_dest(c, result,
677 result, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
678
679 return qir_MOV(c, result);
680 }
681
682 static struct qreg
683 ntq_fsin(struct vc4_compile *c, struct qreg src)
684 {
685 float coeff[] = {
686 -2.0 * M_PI,
687 pow(2.0 * M_PI, 3) / (3 * 2 * 1),
688 -pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
689 pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
690 -pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
691 };
692
693 struct qreg scaled_x =
694 qir_FMUL(c,
695 src,
696 qir_uniform_f(c, 1.0 / (M_PI * 2.0)));
697
698 struct qreg x = qir_FADD(c,
699 ntq_ffract(c, scaled_x),
700 qir_uniform_f(c, -0.5));
701 struct qreg x2 = qir_FMUL(c, x, x);
702 struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
703 for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
704 x = qir_FMUL(c, x, x2);
705 sum = qir_FADD(c,
706 sum,
707 qir_FMUL(c,
708 x,
709 qir_uniform_f(c, coeff[i])));
710 }
711 return sum;
712 }
713
714 static struct qreg
715 ntq_fcos(struct vc4_compile *c, struct qreg src)
716 {
717 float coeff[] = {
718 -1.0f,
719 pow(2.0 * M_PI, 2) / (2 * 1),
720 -pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
721 pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
722 -pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
723 pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
724 };
725
726 struct qreg scaled_x =
727 qir_FMUL(c, src,
728 qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
729 struct qreg x_frac = qir_FADD(c,
730 ntq_ffract(c, scaled_x),
731 qir_uniform_f(c, -0.5));
732
733 struct qreg sum = qir_uniform_f(c, coeff[0]);
734 struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
735 struct qreg x = x2; /* Current x^2, x^4, or x^6 */
736 for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
737 if (i != 1)
738 x = qir_FMUL(c, x, x2);
739
740 struct qreg mul = qir_FMUL(c,
741 x,
742 qir_uniform_f(c, coeff[i]));
743 if (i == 0)
744 sum = mul;
745 else
746 sum = qir_FADD(c, sum, mul);
747 }
748 return sum;
749 }
750
751 static struct qreg
752 ntq_fsign(struct vc4_compile *c, struct qreg src)
753 {
754 struct qreg t = qir_get_temp(c);
755
756 qir_SF(c, src);
757 qir_MOV_dest(c, t, qir_uniform_f(c, 0.0));
758 qir_MOV_dest(c, t, qir_uniform_f(c, 1.0))->cond = QPU_COND_ZC;
759 qir_MOV_dest(c, t, qir_uniform_f(c, -1.0))->cond = QPU_COND_NS;
760 return qir_MOV(c, t);
761 }
762
763 static void
764 emit_vertex_input(struct vc4_compile *c, int attr)
765 {
766 enum pipe_format format = c->vs_key->attr_formats[attr];
767 uint32_t attr_size = util_format_get_blocksize(format);
768
769 c->vattr_sizes[attr] = align(attr_size, 4);
770 for (int i = 0; i < align(attr_size, 4) / 4; i++) {
771 c->inputs[attr * 4 + i] =
772 qir_MOV(c, qir_reg(QFILE_VPM, attr * 4 + i));
773 c->num_inputs++;
774 }
775 }
776
777 static void
778 emit_fragcoord_input(struct vc4_compile *c, int attr)
779 {
780 c->inputs[attr * 4 + 0] = qir_ITOF(c, qir_reg(QFILE_FRAG_X, 0));
781 c->inputs[attr * 4 + 1] = qir_ITOF(c, qir_reg(QFILE_FRAG_Y, 0));
782 c->inputs[attr * 4 + 2] =
783 qir_FMUL(c,
784 qir_ITOF(c, qir_FRAG_Z(c)),
785 qir_uniform_f(c, 1.0 / 0xffffff));
786 c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
787 }
788
789 static struct qreg
790 emit_fragment_varying(struct vc4_compile *c, gl_varying_slot slot,
791 uint8_t swizzle)
792 {
793 uint32_t i = c->num_input_slots++;
794 struct qreg vary = {
795 QFILE_VARY,
796 i
797 };
798
799 if (c->num_input_slots >= c->input_slots_array_size) {
800 c->input_slots_array_size =
801 MAX2(4, c->input_slots_array_size * 2);
802
803 c->input_slots = reralloc(c, c->input_slots,
804 struct vc4_varying_slot,
805 c->input_slots_array_size);
806 }
807
808 c->input_slots[i].slot = slot;
809 c->input_slots[i].swizzle = swizzle;
810
811 return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
812 }
813
814 static void
815 emit_fragment_input(struct vc4_compile *c, int attr, gl_varying_slot slot)
816 {
817 for (int i = 0; i < 4; i++) {
818 c->inputs[attr * 4 + i] =
819 emit_fragment_varying(c, slot, i);
820 c->num_inputs++;
821 }
822 }
823
824 static void
825 add_output(struct vc4_compile *c,
826 uint32_t decl_offset,
827 uint8_t slot,
828 uint8_t swizzle)
829 {
830 uint32_t old_array_size = c->outputs_array_size;
831 resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
832 decl_offset + 1);
833
834 if (old_array_size != c->outputs_array_size) {
835 c->output_slots = reralloc(c,
836 c->output_slots,
837 struct vc4_varying_slot,
838 c->outputs_array_size);
839 }
840
841 c->output_slots[decl_offset].slot = slot;
842 c->output_slots[decl_offset].swizzle = swizzle;
843 }
844
845 static void
846 declare_uniform_range(struct vc4_compile *c, uint32_t start, uint32_t size)
847 {
848 unsigned array_id = c->num_uniform_ranges++;
849 if (array_id >= c->ubo_ranges_array_size) {
850 c->ubo_ranges_array_size = MAX2(c->ubo_ranges_array_size * 2,
851 array_id + 1);
852 c->ubo_ranges = reralloc(c, c->ubo_ranges,
853 struct vc4_compiler_ubo_range,
854 c->ubo_ranges_array_size);
855 }
856
857 c->ubo_ranges[array_id].dst_offset = 0;
858 c->ubo_ranges[array_id].src_offset = start;
859 c->ubo_ranges[array_id].size = size;
860 c->ubo_ranges[array_id].used = false;
861 }
862
863 static bool
864 ntq_src_is_only_ssa_def_user(nir_src *src)
865 {
866 if (!src->is_ssa)
867 return false;
868
869 if (!list_empty(&src->ssa->if_uses))
870 return false;
871
872 return (src->ssa->uses.next == &src->use_link &&
873 src->ssa->uses.next->next == &src->ssa->uses);
874 }
875
876 /**
877 * In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack
878 * bit set.
879 *
880 * However, as an optimization, it tries to find the instructions generating
881 * the sources to be packed and just emit the pack flag there, if possible.
882 */
883 static void
884 ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr)
885 {
886 struct qreg result = qir_get_temp(c);
887 struct nir_alu_instr *vec4 = NULL;
888
889 /* If packing from a vec4 op (as expected), identify it so that we can
890 * peek back at what generated its sources.
891 */
892 if (instr->src[0].src.is_ssa &&
893 instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu &&
894 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op ==
895 nir_op_vec4) {
896 vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
897 }
898
899 /* If the pack is replicating the same channel 4 times, use the 8888
900 * pack flag. This is common for blending using the alpha
901 * channel.
902 */
903 if (instr->src[0].swizzle[0] == instr->src[0].swizzle[1] &&
904 instr->src[0].swizzle[0] == instr->src[0].swizzle[2] &&
905 instr->src[0].swizzle[0] == instr->src[0].swizzle[3]) {
906 struct qreg rep = ntq_get_src(c,
907 instr->src[0].src,
908 instr->src[0].swizzle[0]);
909 ntq_store_dest(c, &instr->dest.dest, 0, qir_PACK_8888_F(c, rep));
910 return;
911 }
912
913 for (int i = 0; i < 4; i++) {
914 int swiz = instr->src[0].swizzle[i];
915 struct qreg src;
916 if (vec4) {
917 src = ntq_get_src(c, vec4->src[swiz].src,
918 vec4->src[swiz].swizzle[0]);
919 } else {
920 src = ntq_get_src(c, instr->src[0].src, swiz);
921 }
922
923 if (vec4 &&
924 ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) &&
925 src.file == QFILE_TEMP &&
926 c->defs[src.index] &&
927 qir_is_mul(c->defs[src.index]) &&
928 !c->defs[src.index]->dst.pack) {
929 struct qinst *rewrite = c->defs[src.index];
930 c->defs[src.index] = NULL;
931 rewrite->dst = result;
932 rewrite->dst.pack = QPU_PACK_MUL_8A + i;
933 continue;
934 }
935
936 qir_PACK_8_F(c, result, src, i);
937 }
938
939 ntq_store_dest(c, &instr->dest.dest, 0, qir_MOV(c, result));
940 }
941
942 /** Handles sign-extended bitfield extracts for 16 bits. */
943 static struct qreg
944 ntq_emit_ibfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
945 struct qreg bits)
946 {
947 assert(bits.file == QFILE_UNIF &&
948 c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
949 c->uniform_data[bits.index] == 16);
950
951 assert(offset.file == QFILE_UNIF &&
952 c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
953 int offset_bit = c->uniform_data[offset.index];
954 assert(offset_bit % 16 == 0);
955
956 return qir_UNPACK_16_I(c, base, offset_bit / 16);
957 }
958
959 /** Handles unsigned bitfield extracts for 8 bits. */
960 static struct qreg
961 ntq_emit_ubfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
962 struct qreg bits)
963 {
964 assert(bits.file == QFILE_UNIF &&
965 c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
966 c->uniform_data[bits.index] == 8);
967
968 assert(offset.file == QFILE_UNIF &&
969 c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
970 int offset_bit = c->uniform_data[offset.index];
971 assert(offset_bit % 8 == 0);
972
973 return qir_UNPACK_8_I(c, base, offset_bit / 8);
974 }
975
976 /**
977 * If compare_instr is a valid comparison instruction, emits the
978 * compare_instr's comparison and returns the sel_instr's return value based
979 * on the compare_instr's result.
980 */
981 static bool
982 ntq_emit_comparison(struct vc4_compile *c, struct qreg *dest,
983 nir_alu_instr *compare_instr,
984 nir_alu_instr *sel_instr)
985 {
986 enum qpu_cond cond;
987
988 switch (compare_instr->op) {
989 case nir_op_feq:
990 case nir_op_ieq:
991 case nir_op_seq:
992 cond = QPU_COND_ZS;
993 break;
994 case nir_op_fne:
995 case nir_op_ine:
996 case nir_op_sne:
997 cond = QPU_COND_ZC;
998 break;
999 case nir_op_fge:
1000 case nir_op_ige:
1001 case nir_op_uge:
1002 case nir_op_sge:
1003 cond = QPU_COND_NC;
1004 break;
1005 case nir_op_flt:
1006 case nir_op_ilt:
1007 case nir_op_slt:
1008 cond = QPU_COND_NS;
1009 break;
1010 default:
1011 return false;
1012 }
1013
1014 struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
1015 struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1);
1016
1017 unsigned unsized_type =
1018 nir_alu_type_get_base_type(nir_op_infos[compare_instr->op].input_types[0]);
1019 if (unsized_type == nir_type_float)
1020 qir_SF(c, qir_FSUB(c, src0, src1));
1021 else
1022 qir_SF(c, qir_SUB(c, src0, src1));
1023
1024 switch (sel_instr->op) {
1025 case nir_op_seq:
1026 case nir_op_sne:
1027 case nir_op_sge:
1028 case nir_op_slt:
1029 *dest = qir_SEL(c, cond,
1030 qir_uniform_f(c, 1.0), qir_uniform_f(c, 0.0));
1031 break;
1032
1033 case nir_op_bcsel:
1034 *dest = qir_SEL(c, cond,
1035 ntq_get_alu_src(c, sel_instr, 1),
1036 ntq_get_alu_src(c, sel_instr, 2));
1037 break;
1038
1039 default:
1040 *dest = qir_SEL(c, cond,
1041 qir_uniform_ui(c, ~0), qir_uniform_ui(c, 0));
1042 break;
1043 }
1044
1045 /* Make the temporary for nir_store_dest(). */
1046 *dest = qir_MOV(c, *dest);
1047
1048 return true;
1049 }
1050
1051 /**
1052 * Attempts to fold a comparison generating a boolean result into the
1053 * condition code for selecting between two values, instead of comparing the
1054 * boolean result against 0 to generate the condition code.
1055 */
1056 static struct qreg ntq_emit_bcsel(struct vc4_compile *c, nir_alu_instr *instr,
1057 struct qreg *src)
1058 {
1059 if (!instr->src[0].src.is_ssa)
1060 goto out;
1061 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
1062 goto out;
1063 nir_alu_instr *compare =
1064 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
1065 if (!compare)
1066 goto out;
1067
1068 struct qreg dest;
1069 if (ntq_emit_comparison(c, &dest, compare, instr))
1070 return dest;
1071
1072 out:
1073 qir_SF(c, src[0]);
1074 return qir_MOV(c, qir_SEL(c, QPU_COND_NS, src[1], src[2]));
1075 }
1076
1077 static struct qreg
1078 ntq_fddx(struct vc4_compile *c, struct qreg src)
1079 {
1080 /* Make sure that we have a bare temp to use for MUL rotation, so it
1081 * can be allocated to an accumulator.
1082 */
1083 if (src.pack || src.file != QFILE_TEMP)
1084 src = qir_MOV(c, src);
1085
1086 struct qreg from_left = qir_ROT_MUL(c, src, 1);
1087 struct qreg from_right = qir_ROT_MUL(c, src, 15);
1088
1089 /* Distinguish left/right pixels of the quad. */
1090 qir_SF(c, qir_AND(c, qir_reg(QFILE_QPU_ELEMENT, 0),
1091 qir_uniform_ui(c, 1)));
1092
1093 return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
1094 qir_FSUB(c, from_right, src),
1095 qir_FSUB(c, src, from_left)));
1096 }
1097
1098 static struct qreg
1099 ntq_fddy(struct vc4_compile *c, struct qreg src)
1100 {
1101 if (src.pack || src.file != QFILE_TEMP)
1102 src = qir_MOV(c, src);
1103
1104 struct qreg from_bottom = qir_ROT_MUL(c, src, 2);
1105 struct qreg from_top = qir_ROT_MUL(c, src, 14);
1106
1107 /* Distinguish top/bottom pixels of the quad. */
1108 qir_SF(c, qir_AND(c,
1109 qir_reg(QFILE_QPU_ELEMENT, 0),
1110 qir_uniform_ui(c, 2)));
1111
1112 return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
1113 qir_FSUB(c, from_top, src),
1114 qir_FSUB(c, src, from_bottom)));
1115 }
1116
1117 static void
1118 ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
1119 {
1120 /* This should always be lowered to ALU operations for VC4. */
1121 assert(!instr->dest.saturate);
1122
1123 /* Vectors are special in that they have non-scalarized writemasks,
1124 * and just take the first swizzle channel for each argument in order
1125 * into each writemask channel.
1126 */
1127 if (instr->op == nir_op_vec2 ||
1128 instr->op == nir_op_vec3 ||
1129 instr->op == nir_op_vec4) {
1130 struct qreg srcs[4];
1131 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1132 srcs[i] = ntq_get_src(c, instr->src[i].src,
1133 instr->src[i].swizzle[0]);
1134 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1135 ntq_store_dest(c, &instr->dest.dest, i,
1136 qir_MOV(c, srcs[i]));
1137 return;
1138 }
1139
1140 if (instr->op == nir_op_pack_unorm_4x8) {
1141 ntq_emit_pack_unorm_4x8(c, instr);
1142 return;
1143 }
1144
1145 if (instr->op == nir_op_unpack_unorm_4x8) {
1146 struct qreg src = ntq_get_src(c, instr->src[0].src,
1147 instr->src[0].swizzle[0]);
1148 for (int i = 0; i < 4; i++) {
1149 if (instr->dest.write_mask & (1 << i))
1150 ntq_store_dest(c, &instr->dest.dest, i,
1151 qir_UNPACK_8_F(c, src, i));
1152 }
1153 return;
1154 }
1155
1156 /* General case: We can just grab the one used channel per src. */
1157 struct qreg src[nir_op_infos[instr->op].num_inputs];
1158 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1159 src[i] = ntq_get_alu_src(c, instr, i);
1160 }
1161
1162 struct qreg result;
1163
1164 switch (instr->op) {
1165 case nir_op_fmov:
1166 case nir_op_imov:
1167 result = qir_MOV(c, src[0]);
1168 break;
1169 case nir_op_fmul:
1170 result = qir_FMUL(c, src[0], src[1]);
1171 break;
1172 case nir_op_fadd:
1173 result = qir_FADD(c, src[0], src[1]);
1174 break;
1175 case nir_op_fsub:
1176 result = qir_FSUB(c, src[0], src[1]);
1177 break;
1178 case nir_op_fmin:
1179 result = qir_FMIN(c, src[0], src[1]);
1180 break;
1181 case nir_op_fmax:
1182 result = qir_FMAX(c, src[0], src[1]);
1183 break;
1184
1185 case nir_op_f2i32:
1186 case nir_op_f2u32:
1187 result = qir_FTOI(c, src[0]);
1188 break;
1189 case nir_op_i2f32:
1190 case nir_op_u2f32:
1191 result = qir_ITOF(c, src[0]);
1192 break;
1193 case nir_op_b2f:
1194 result = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
1195 break;
1196 case nir_op_b2i:
1197 result = qir_AND(c, src[0], qir_uniform_ui(c, 1));
1198 break;
1199 case nir_op_i2b:
1200 case nir_op_f2b:
1201 qir_SF(c, src[0]);
1202 result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC,
1203 qir_uniform_ui(c, ~0),
1204 qir_uniform_ui(c, 0)));
1205 break;
1206
1207 case nir_op_iadd:
1208 result = qir_ADD(c, src[0], src[1]);
1209 break;
1210 case nir_op_ushr:
1211 result = qir_SHR(c, src[0], src[1]);
1212 break;
1213 case nir_op_isub:
1214 result = qir_SUB(c, src[0], src[1]);
1215 break;
1216 case nir_op_ishr:
1217 result = qir_ASR(c, src[0], src[1]);
1218 break;
1219 case nir_op_ishl:
1220 result = qir_SHL(c, src[0], src[1]);
1221 break;
1222 case nir_op_imin:
1223 result = qir_MIN(c, src[0], src[1]);
1224 break;
1225 case nir_op_imax:
1226 result = qir_MAX(c, src[0], src[1]);
1227 break;
1228 case nir_op_iand:
1229 result = qir_AND(c, src[0], src[1]);
1230 break;
1231 case nir_op_ior:
1232 result = qir_OR(c, src[0], src[1]);
1233 break;
1234 case nir_op_ixor:
1235 result = qir_XOR(c, src[0], src[1]);
1236 break;
1237 case nir_op_inot:
1238 result = qir_NOT(c, src[0]);
1239 break;
1240
1241 case nir_op_imul:
1242 result = ntq_umul(c, src[0], src[1]);
1243 break;
1244
1245 case nir_op_seq:
1246 case nir_op_sne:
1247 case nir_op_sge:
1248 case nir_op_slt:
1249 case nir_op_feq:
1250 case nir_op_fne:
1251 case nir_op_fge:
1252 case nir_op_flt:
1253 case nir_op_ieq:
1254 case nir_op_ine:
1255 case nir_op_ige:
1256 case nir_op_uge:
1257 case nir_op_ilt:
1258 if (!ntq_emit_comparison(c, &result, instr, instr)) {
1259 fprintf(stderr, "Bad comparison instruction\n");
1260 }
1261 break;
1262
1263 case nir_op_bcsel:
1264 result = ntq_emit_bcsel(c, instr, src);
1265 break;
1266 case nir_op_fcsel:
1267 qir_SF(c, src[0]);
1268 result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC, src[1], src[2]));
1269 break;
1270
1271 case nir_op_frcp:
1272 result = ntq_rcp(c, src[0]);
1273 break;
1274 case nir_op_frsq:
1275 result = ntq_rsq(c, src[0]);
1276 break;
1277 case nir_op_fexp2:
1278 result = qir_EXP2(c, src[0]);
1279 break;
1280 case nir_op_flog2:
1281 result = qir_LOG2(c, src[0]);
1282 break;
1283
1284 case nir_op_ftrunc:
1285 result = qir_ITOF(c, qir_FTOI(c, src[0]));
1286 break;
1287 case nir_op_fceil:
1288 result = ntq_fceil(c, src[0]);
1289 break;
1290 case nir_op_ffract:
1291 result = ntq_ffract(c, src[0]);
1292 break;
1293 case nir_op_ffloor:
1294 result = ntq_ffloor(c, src[0]);
1295 break;
1296
1297 case nir_op_fsin:
1298 result = ntq_fsin(c, src[0]);
1299 break;
1300 case nir_op_fcos:
1301 result = ntq_fcos(c, src[0]);
1302 break;
1303
1304 case nir_op_fsign:
1305 result = ntq_fsign(c, src[0]);
1306 break;
1307
1308 case nir_op_fabs:
1309 result = qir_FMAXABS(c, src[0], src[0]);
1310 break;
1311 case nir_op_iabs:
1312 result = qir_MAX(c, src[0],
1313 qir_SUB(c, qir_uniform_ui(c, 0), src[0]));
1314 break;
1315
1316 case nir_op_ibitfield_extract:
1317 result = ntq_emit_ibfe(c, src[0], src[1], src[2]);
1318 break;
1319
1320 case nir_op_ubitfield_extract:
1321 result = ntq_emit_ubfe(c, src[0], src[1], src[2]);
1322 break;
1323
1324 case nir_op_usadd_4x8:
1325 result = qir_V8ADDS(c, src[0], src[1]);
1326 break;
1327
1328 case nir_op_ussub_4x8:
1329 result = qir_V8SUBS(c, src[0], src[1]);
1330 break;
1331
1332 case nir_op_umin_4x8:
1333 result = qir_V8MIN(c, src[0], src[1]);
1334 break;
1335
1336 case nir_op_umax_4x8:
1337 result = qir_V8MAX(c, src[0], src[1]);
1338 break;
1339
1340 case nir_op_umul_unorm_4x8:
1341 result = qir_V8MULD(c, src[0], src[1]);
1342 break;
1343
1344 case nir_op_fddx:
1345 case nir_op_fddx_coarse:
1346 case nir_op_fddx_fine:
1347 result = ntq_fddx(c, src[0]);
1348 break;
1349
1350 case nir_op_fddy:
1351 case nir_op_fddy_coarse:
1352 case nir_op_fddy_fine:
1353 result = ntq_fddy(c, src[0]);
1354 break;
1355
1356 default:
1357 fprintf(stderr, "unknown NIR ALU inst: ");
1358 nir_print_instr(&instr->instr, stderr);
1359 fprintf(stderr, "\n");
1360 abort();
1361 }
1362
1363 /* We have a scalar result, so the instruction should only have a
1364 * single channel written to.
1365 */
1366 assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
1367 ntq_store_dest(c, &instr->dest.dest,
1368 ffs(instr->dest.write_mask) - 1, result);
1369 }
1370
1371 static void
1372 emit_frag_end(struct vc4_compile *c)
1373 {
1374 struct qreg color;
1375 if (c->output_color_index != -1) {
1376 color = c->outputs[c->output_color_index];
1377 } else {
1378 color = qir_uniform_ui(c, 0);
1379 }
1380
1381 uint32_t discard_cond = QPU_COND_ALWAYS;
1382 if (c->s->info.fs.uses_discard) {
1383 qir_SF(c, c->discard);
1384 discard_cond = QPU_COND_ZS;
1385 }
1386
1387 if (c->fs_key->stencil_enabled) {
1388 qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1389 qir_uniform(c, QUNIFORM_STENCIL, 0));
1390 if (c->fs_key->stencil_twoside) {
1391 qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1392 qir_uniform(c, QUNIFORM_STENCIL, 1));
1393 }
1394 if (c->fs_key->stencil_full_writemasks) {
1395 qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1396 qir_uniform(c, QUNIFORM_STENCIL, 2));
1397 }
1398 }
1399
1400 if (c->output_sample_mask_index != -1) {
1401 qir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
1402 }
1403
1404 if (c->fs_key->depth_enabled) {
1405 if (c->output_position_index != -1) {
1406 qir_FTOI_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
1407 qir_FMUL(c,
1408 c->outputs[c->output_position_index],
1409 qir_uniform_f(c, 0xffffff)))->cond = discard_cond;
1410 } else {
1411 qir_MOV_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
1412 qir_FRAG_Z(c))->cond = discard_cond;
1413 }
1414 }
1415
1416 if (!c->msaa_per_sample_output) {
1417 qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE, 0),
1418 color)->cond = discard_cond;
1419 } else {
1420 for (int i = 0; i < VC4_MAX_SAMPLES; i++) {
1421 qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE_MS, 0),
1422 c->sample_colors[i])->cond = discard_cond;
1423 }
1424 }
1425 }
1426
1427 static void
1428 emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
1429 {
1430 struct qreg packed = qir_get_temp(c);
1431
1432 for (int i = 0; i < 2; i++) {
1433 struct qreg scale =
1434 qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
1435
1436 struct qreg packed_chan = packed;
1437 packed_chan.pack = QPU_PACK_A_16A + i;
1438
1439 qir_FTOI_dest(c, packed_chan,
1440 qir_FMUL(c,
1441 qir_FMUL(c,
1442 c->outputs[c->output_position_index + i],
1443 scale),
1444 rcp_w));
1445 }
1446
1447 qir_VPM_WRITE(c, packed);
1448 }
1449
1450 static void
1451 emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
1452 {
1453 struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
1454 struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
1455
1456 qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
1457 c->outputs[c->output_position_index + 2],
1458 zscale),
1459 rcp_w),
1460 zoffset));
1461 }
1462
1463 static void
1464 emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
1465 {
1466 qir_VPM_WRITE(c, rcp_w);
1467 }
1468
1469 static void
1470 emit_point_size_write(struct vc4_compile *c)
1471 {
1472 struct qreg point_size;
1473
1474 if (c->output_point_size_index != -1)
1475 point_size = c->outputs[c->output_point_size_index];
1476 else
1477 point_size = qir_uniform_f(c, 1.0);
1478
1479 /* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835,
1480 * BCM21553).
1481 */
1482 point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125));
1483
1484 qir_VPM_WRITE(c, point_size);
1485 }
1486
1487 /**
1488 * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
1489 *
1490 * The simulator insists that there be at least one vertex attribute, so
1491 * vc4_draw.c will emit one if it wouldn't have otherwise. The simulator also
1492 * insists that all vertex attributes loaded get read by the VS/CS, so we have
1493 * to consume it here.
1494 */
1495 static void
1496 emit_stub_vpm_read(struct vc4_compile *c)
1497 {
1498 if (c->num_inputs)
1499 return;
1500
1501 c->vattr_sizes[0] = 4;
1502 (void)qir_MOV(c, qir_reg(QFILE_VPM, 0));
1503 c->num_inputs++;
1504 }
1505
1506 static void
1507 emit_vert_end(struct vc4_compile *c,
1508 struct vc4_varying_slot *fs_inputs,
1509 uint32_t num_fs_inputs)
1510 {
1511 struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
1512
1513 emit_stub_vpm_read(c);
1514
1515 emit_scaled_viewport_write(c, rcp_w);
1516 emit_zs_write(c, rcp_w);
1517 emit_rcp_wc_write(c, rcp_w);
1518 if (c->vs_key->per_vertex_point_size)
1519 emit_point_size_write(c);
1520
1521 for (int i = 0; i < num_fs_inputs; i++) {
1522 struct vc4_varying_slot *input = &fs_inputs[i];
1523 int j;
1524
1525 for (j = 0; j < c->num_outputs; j++) {
1526 struct vc4_varying_slot *output =
1527 &c->output_slots[j];
1528
1529 if (input->slot == output->slot &&
1530 input->swizzle == output->swizzle) {
1531 qir_VPM_WRITE(c, c->outputs[j]);
1532 break;
1533 }
1534 }
1535 /* Emit padding if we didn't find a declared VS output for
1536 * this FS input.
1537 */
1538 if (j == c->num_outputs)
1539 qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
1540 }
1541 }
1542
1543 static void
1544 emit_coord_end(struct vc4_compile *c)
1545 {
1546 struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
1547
1548 emit_stub_vpm_read(c);
1549
1550 for (int i = 0; i < 4; i++)
1551 qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
1552
1553 emit_scaled_viewport_write(c, rcp_w);
1554 emit_zs_write(c, rcp_w);
1555 emit_rcp_wc_write(c, rcp_w);
1556 if (c->vs_key->per_vertex_point_size)
1557 emit_point_size_write(c);
1558 }
1559
1560 static void
1561 vc4_optimize_nir(struct nir_shader *s)
1562 {
1563 bool progress;
1564
1565 do {
1566 progress = false;
1567
1568 NIR_PASS_V(s, nir_lower_vars_to_ssa);
1569 NIR_PASS(progress, s, nir_lower_alu_to_scalar);
1570 NIR_PASS(progress, s, nir_lower_phis_to_scalar);
1571 NIR_PASS(progress, s, nir_copy_prop);
1572 NIR_PASS(progress, s, nir_opt_remove_phis);
1573 NIR_PASS(progress, s, nir_opt_dce);
1574 NIR_PASS(progress, s, nir_opt_dead_cf);
1575 NIR_PASS(progress, s, nir_opt_cse);
1576 NIR_PASS(progress, s, nir_opt_peephole_select, 8);
1577 NIR_PASS(progress, s, nir_opt_algebraic);
1578 NIR_PASS(progress, s, nir_opt_constant_folding);
1579 NIR_PASS(progress, s, nir_opt_undef);
1580 NIR_PASS(progress, s, nir_opt_loop_unroll,
1581 nir_var_shader_in |
1582 nir_var_shader_out |
1583 nir_var_local);
1584 } while (progress);
1585 }
1586
1587 static int
1588 driver_location_compare(const void *in_a, const void *in_b)
1589 {
1590 const nir_variable *const *a = in_a;
1591 const nir_variable *const *b = in_b;
1592
1593 return (*a)->data.driver_location - (*b)->data.driver_location;
1594 }
1595
1596 static void
1597 ntq_setup_inputs(struct vc4_compile *c)
1598 {
1599 unsigned num_entries = 0;
1600 nir_foreach_variable(var, &c->s->inputs)
1601 num_entries++;
1602
1603 nir_variable *vars[num_entries];
1604
1605 unsigned i = 0;
1606 nir_foreach_variable(var, &c->s->inputs)
1607 vars[i++] = var;
1608
1609 /* Sort the variables so that we emit the input setup in
1610 * driver_location order. This is required for VPM reads, whose data
1611 * is fetched into the VPM in driver_location (TGSI register index)
1612 * order.
1613 */
1614 qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
1615
1616 for (unsigned i = 0; i < num_entries; i++) {
1617 nir_variable *var = vars[i];
1618 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1619 unsigned loc = var->data.driver_location;
1620
1621 assert(array_len == 1);
1622 (void)array_len;
1623 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1624 (loc + 1) * 4);
1625
1626 if (c->stage == QSTAGE_FRAG) {
1627 if (var->data.location == VARYING_SLOT_POS) {
1628 emit_fragcoord_input(c, loc);
1629 } else if (var->data.location == VARYING_SLOT_PNTC ||
1630 (var->data.location >= VARYING_SLOT_VAR0 &&
1631 (c->fs_key->point_sprite_mask &
1632 (1 << (var->data.location -
1633 VARYING_SLOT_VAR0))))) {
1634 c->inputs[loc * 4 + 0] = c->point_x;
1635 c->inputs[loc * 4 + 1] = c->point_y;
1636 } else {
1637 emit_fragment_input(c, loc, var->data.location);
1638 }
1639 } else {
1640 emit_vertex_input(c, loc);
1641 }
1642 }
1643 }
1644
1645 static void
1646 ntq_setup_outputs(struct vc4_compile *c)
1647 {
1648 nir_foreach_variable(var, &c->s->outputs) {
1649 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1650 unsigned loc = var->data.driver_location * 4;
1651
1652 assert(array_len == 1);
1653 (void)array_len;
1654
1655 for (int i = 0; i < 4; i++)
1656 add_output(c, loc + i, var->data.location, i);
1657
1658 if (c->stage == QSTAGE_FRAG) {
1659 switch (var->data.location) {
1660 case FRAG_RESULT_COLOR:
1661 case FRAG_RESULT_DATA0:
1662 c->output_color_index = loc;
1663 break;
1664 case FRAG_RESULT_DEPTH:
1665 c->output_position_index = loc;
1666 break;
1667 case FRAG_RESULT_SAMPLE_MASK:
1668 c->output_sample_mask_index = loc;
1669 break;
1670 }
1671 } else {
1672 switch (var->data.location) {
1673 case VARYING_SLOT_POS:
1674 c->output_position_index = loc;
1675 break;
1676 case VARYING_SLOT_PSIZ:
1677 c->output_point_size_index = loc;
1678 break;
1679 }
1680 }
1681 }
1682 }
1683
1684 static void
1685 ntq_setup_uniforms(struct vc4_compile *c)
1686 {
1687 nir_foreach_variable(var, &c->s->uniforms) {
1688 uint32_t vec4_count = type_size(var->type);
1689 unsigned vec4_size = 4 * sizeof(float);
1690
1691 declare_uniform_range(c, var->data.driver_location * vec4_size,
1692 vec4_count * vec4_size);
1693
1694 }
1695 }
1696
1697 /**
1698 * Sets up the mapping from nir_register to struct qreg *.
1699 *
1700 * Each nir_register gets a struct qreg per 32-bit component being stored.
1701 */
1702 static void
1703 ntq_setup_registers(struct vc4_compile *c, struct exec_list *list)
1704 {
1705 foreach_list_typed(nir_register, nir_reg, node, list) {
1706 unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
1707 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
1708 array_len *
1709 nir_reg->num_components);
1710
1711 _mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
1712
1713 for (int i = 0; i < array_len * nir_reg->num_components; i++)
1714 qregs[i] = qir_get_temp(c);
1715 }
1716 }
1717
1718 static void
1719 ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
1720 {
1721 struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1722 for (int i = 0; i < instr->def.num_components; i++)
1723 qregs[i] = qir_uniform_ui(c, instr->value.u32[i]);
1724
1725 _mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
1726 }
1727
1728 static void
1729 ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr)
1730 {
1731 struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1732
1733 /* QIR needs there to be *some* value, so pick 0 (same as for
1734 * ntq_setup_registers().
1735 */
1736 for (int i = 0; i < instr->def.num_components; i++)
1737 qregs[i] = qir_uniform_ui(c, 0);
1738 }
1739
1740 static void
1741 ntq_emit_color_read(struct vc4_compile *c, nir_intrinsic_instr *instr)
1742 {
1743 assert(nir_src_as_const_value(instr->src[0])->u32[0] == 0);
1744
1745 /* Reads of the per-sample color need to be done in
1746 * order.
1747 */
1748 int sample_index = (nir_intrinsic_base(instr) -
1749 VC4_NIR_TLB_COLOR_READ_INPUT);
1750 for (int i = 0; i <= sample_index; i++) {
1751 if (c->color_reads[i].file == QFILE_NULL) {
1752 c->color_reads[i] =
1753 qir_TLB_COLOR_READ(c);
1754 }
1755 }
1756 ntq_store_dest(c, &instr->dest, 0,
1757 qir_MOV(c, c->color_reads[sample_index]));
1758 }
1759
1760 static void
1761 ntq_emit_load_input(struct vc4_compile *c, nir_intrinsic_instr *instr)
1762 {
1763 assert(instr->num_components == 1);
1764
1765 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
1766 assert(const_offset && "vc4 doesn't support indirect inputs");
1767
1768 if (c->stage == QSTAGE_FRAG &&
1769 nir_intrinsic_base(instr) >= VC4_NIR_TLB_COLOR_READ_INPUT) {
1770 ntq_emit_color_read(c, instr);
1771 return;
1772 }
1773
1774 uint32_t offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1775 int comp = nir_intrinsic_component(instr);
1776 ntq_store_dest(c, &instr->dest, 0,
1777 qir_MOV(c, c->inputs[offset * 4 + comp]));
1778 }
1779
1780 static void
1781 ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
1782 {
1783 nir_const_value *const_offset;
1784 unsigned offset;
1785
1786 switch (instr->intrinsic) {
1787 case nir_intrinsic_load_uniform:
1788 assert(instr->num_components == 1);
1789 const_offset = nir_src_as_const_value(instr->src[0]);
1790 if (const_offset) {
1791 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1792 assert(offset % 4 == 0);
1793 /* We need dwords */
1794 offset = offset / 4;
1795 ntq_store_dest(c, &instr->dest, 0,
1796 qir_uniform(c, QUNIFORM_UNIFORM,
1797 offset));
1798 } else {
1799 ntq_store_dest(c, &instr->dest, 0,
1800 indirect_uniform_load(c, instr));
1801 }
1802 break;
1803
1804 case nir_intrinsic_load_ubo:
1805 assert(instr->num_components == 1);
1806 ntq_store_dest(c, &instr->dest, 0, vc4_ubo_load(c, instr));
1807 break;
1808
1809 case nir_intrinsic_load_user_clip_plane:
1810 for (int i = 0; i < instr->num_components; i++) {
1811 ntq_store_dest(c, &instr->dest, i,
1812 qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1813 nir_intrinsic_ucp_id(instr) *
1814 4 + i));
1815 }
1816 break;
1817
1818 case nir_intrinsic_load_blend_const_color_r_float:
1819 case nir_intrinsic_load_blend_const_color_g_float:
1820 case nir_intrinsic_load_blend_const_color_b_float:
1821 case nir_intrinsic_load_blend_const_color_a_float:
1822 ntq_store_dest(c, &instr->dest, 0,
1823 qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_X +
1824 (instr->intrinsic -
1825 nir_intrinsic_load_blend_const_color_r_float),
1826 0));
1827 break;
1828
1829 case nir_intrinsic_load_blend_const_color_rgba8888_unorm:
1830 ntq_store_dest(c, &instr->dest, 0,
1831 qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_RGBA,
1832 0));
1833 break;
1834
1835 case nir_intrinsic_load_blend_const_color_aaaa8888_unorm:
1836 ntq_store_dest(c, &instr->dest, 0,
1837 qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_AAAA,
1838 0));
1839 break;
1840
1841 case nir_intrinsic_load_alpha_ref_float:
1842 ntq_store_dest(c, &instr->dest, 0,
1843 qir_uniform(c, QUNIFORM_ALPHA_REF, 0));
1844 break;
1845
1846 case nir_intrinsic_load_sample_mask_in:
1847 ntq_store_dest(c, &instr->dest, 0,
1848 qir_uniform(c, QUNIFORM_SAMPLE_MASK, 0));
1849 break;
1850
1851 case nir_intrinsic_load_front_face:
1852 /* The register contains 0 (front) or 1 (back), and we need to
1853 * turn it into a NIR bool where true means front.
1854 */
1855 ntq_store_dest(c, &instr->dest, 0,
1856 qir_ADD(c,
1857 qir_uniform_ui(c, -1),
1858 qir_reg(QFILE_FRAG_REV_FLAG, 0)));
1859 break;
1860
1861 case nir_intrinsic_load_input:
1862 ntq_emit_load_input(c, instr);
1863 break;
1864
1865 case nir_intrinsic_store_output:
1866 const_offset = nir_src_as_const_value(instr->src[1]);
1867 assert(const_offset && "vc4 doesn't support indirect outputs");
1868 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1869
1870 /* MSAA color outputs are the only case where we have an
1871 * output that's not lowered to being a store of a single 32
1872 * bit value.
1873 */
1874 if (c->stage == QSTAGE_FRAG && instr->num_components == 4) {
1875 assert(offset == c->output_color_index);
1876 for (int i = 0; i < 4; i++) {
1877 c->sample_colors[i] =
1878 qir_MOV(c, ntq_get_src(c, instr->src[0],
1879 i));
1880 }
1881 } else {
1882 offset = offset * 4 + nir_intrinsic_component(instr);
1883 assert(instr->num_components == 1);
1884 c->outputs[offset] =
1885 qir_MOV(c, ntq_get_src(c, instr->src[0], 0));
1886 c->num_outputs = MAX2(c->num_outputs, offset + 1);
1887 }
1888 break;
1889
1890 case nir_intrinsic_discard:
1891 if (c->execute.file != QFILE_NULL) {
1892 qir_SF(c, c->execute);
1893 qir_MOV_cond(c, QPU_COND_ZS, c->discard,
1894 qir_uniform_ui(c, ~0));
1895 } else {
1896 qir_MOV_dest(c, c->discard, qir_uniform_ui(c, ~0));
1897 }
1898 break;
1899
1900 case nir_intrinsic_discard_if: {
1901 /* true (~0) if we're discarding */
1902 struct qreg cond = ntq_get_src(c, instr->src[0], 0);
1903
1904 if (c->execute.file != QFILE_NULL) {
1905 /* execute == 0 means the channel is active. Invert
1906 * the condition so that we can use zero as "executing
1907 * and discarding."
1908 */
1909 qir_SF(c, qir_AND(c, c->execute, qir_NOT(c, cond)));
1910 qir_MOV_cond(c, QPU_COND_ZS, c->discard, cond);
1911 } else {
1912 qir_OR_dest(c, c->discard, c->discard,
1913 ntq_get_src(c, instr->src[0], 0));
1914 }
1915
1916 break;
1917 }
1918
1919 default:
1920 fprintf(stderr, "Unknown intrinsic: ");
1921 nir_print_instr(&instr->instr, stderr);
1922 fprintf(stderr, "\n");
1923 break;
1924 }
1925 }
1926
1927 /* Clears (activates) the execute flags for any channels whose jump target
1928 * matches this block.
1929 */
1930 static void
1931 ntq_activate_execute_for_block(struct vc4_compile *c)
1932 {
1933 qir_SF(c, qir_SUB(c,
1934 c->execute,
1935 qir_uniform_ui(c, c->cur_block->index)));
1936 qir_MOV_cond(c, QPU_COND_ZS, c->execute, qir_uniform_ui(c, 0));
1937 }
1938
1939 static void
1940 ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
1941 {
1942 if (!c->vc4->screen->has_control_flow) {
1943 fprintf(stderr,
1944 "IF statement support requires updated kernel.\n");
1945 return;
1946 }
1947
1948 nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
1949 bool empty_else_block =
1950 (nir_else_block == nir_if_last_else_block(if_stmt) &&
1951 exec_list_is_empty(&nir_else_block->instr_list));
1952
1953 struct qblock *then_block = qir_new_block(c);
1954 struct qblock *after_block = qir_new_block(c);
1955 struct qblock *else_block;
1956 if (empty_else_block)
1957 else_block = after_block;
1958 else
1959 else_block = qir_new_block(c);
1960
1961 bool was_top_level = false;
1962 if (c->execute.file == QFILE_NULL) {
1963 c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
1964 was_top_level = true;
1965 }
1966
1967 /* Set ZS for executing (execute == 0) and jumping (if->condition ==
1968 * 0) channels, and then update execute flags for those to point to
1969 * the ELSE block.
1970 */
1971 qir_SF(c, qir_OR(c,
1972 c->execute,
1973 ntq_get_src(c, if_stmt->condition, 0)));
1974 qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1975 qir_uniform_ui(c, else_block->index));
1976
1977 /* Jump to ELSE if nothing is active for THEN, otherwise fall
1978 * through.
1979 */
1980 qir_SF(c, c->execute);
1981 qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZC);
1982 qir_link_blocks(c->cur_block, else_block);
1983 qir_link_blocks(c->cur_block, then_block);
1984
1985 /* Process the THEN block. */
1986 qir_set_emit_block(c, then_block);
1987 ntq_emit_cf_list(c, &if_stmt->then_list);
1988
1989 if (!empty_else_block) {
1990 /* Handle the end of the THEN block. First, all currently
1991 * active channels update their execute flags to point to
1992 * ENDIF
1993 */
1994 qir_SF(c, c->execute);
1995 qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1996 qir_uniform_ui(c, after_block->index));
1997
1998 /* If everything points at ENDIF, then jump there immediately. */
1999 qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, after_block->index)));
2000 qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
2001 qir_link_blocks(c->cur_block, after_block);
2002 qir_link_blocks(c->cur_block, else_block);
2003
2004 qir_set_emit_block(c, else_block);
2005 ntq_activate_execute_for_block(c);
2006 ntq_emit_cf_list(c, &if_stmt->else_list);
2007 }
2008
2009 qir_link_blocks(c->cur_block, after_block);
2010
2011 qir_set_emit_block(c, after_block);
2012 if (was_top_level) {
2013 c->execute = c->undef;
2014 c->last_top_block = c->cur_block;
2015 } else {
2016 ntq_activate_execute_for_block(c);
2017 }
2018 }
2019
2020 static void
2021 ntq_emit_jump(struct vc4_compile *c, nir_jump_instr *jump)
2022 {
2023 struct qblock *jump_block;
2024 switch (jump->type) {
2025 case nir_jump_break:
2026 jump_block = c->loop_break_block;
2027 break;
2028 case nir_jump_continue:
2029 jump_block = c->loop_cont_block;
2030 break;
2031 default:
2032 unreachable("Unsupported jump type\n");
2033 }
2034
2035 qir_SF(c, c->execute);
2036 qir_MOV_cond(c, QPU_COND_ZS, c->execute,
2037 qir_uniform_ui(c, jump_block->index));
2038
2039 /* Jump to the destination block if everyone has taken the jump. */
2040 qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, jump_block->index)));
2041 qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
2042 struct qblock *new_block = qir_new_block(c);
2043 qir_link_blocks(c->cur_block, jump_block);
2044 qir_link_blocks(c->cur_block, new_block);
2045 qir_set_emit_block(c, new_block);
2046 }
2047
2048 static void
2049 ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
2050 {
2051 switch (instr->type) {
2052 case nir_instr_type_alu:
2053 ntq_emit_alu(c, nir_instr_as_alu(instr));
2054 break;
2055
2056 case nir_instr_type_intrinsic:
2057 ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
2058 break;
2059
2060 case nir_instr_type_load_const:
2061 ntq_emit_load_const(c, nir_instr_as_load_const(instr));
2062 break;
2063
2064 case nir_instr_type_ssa_undef:
2065 ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
2066 break;
2067
2068 case nir_instr_type_tex:
2069 ntq_emit_tex(c, nir_instr_as_tex(instr));
2070 break;
2071
2072 case nir_instr_type_jump:
2073 ntq_emit_jump(c, nir_instr_as_jump(instr));
2074 break;
2075
2076 default:
2077 fprintf(stderr, "Unknown NIR instr type: ");
2078 nir_print_instr(instr, stderr);
2079 fprintf(stderr, "\n");
2080 abort();
2081 }
2082 }
2083
2084 static void
2085 ntq_emit_block(struct vc4_compile *c, nir_block *block)
2086 {
2087 nir_foreach_instr(instr, block) {
2088 ntq_emit_instr(c, instr);
2089 }
2090 }
2091
2092 static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
2093
2094 static void
2095 ntq_emit_loop(struct vc4_compile *c, nir_loop *loop)
2096 {
2097 if (!c->vc4->screen->has_control_flow) {
2098 fprintf(stderr,
2099 "loop support requires updated kernel.\n");
2100 ntq_emit_cf_list(c, &loop->body);
2101 return;
2102 }
2103
2104 bool was_top_level = false;
2105 if (c->execute.file == QFILE_NULL) {
2106 c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
2107 was_top_level = true;
2108 }
2109
2110 struct qblock *save_loop_cont_block = c->loop_cont_block;
2111 struct qblock *save_loop_break_block = c->loop_break_block;
2112
2113 c->loop_cont_block = qir_new_block(c);
2114 c->loop_break_block = qir_new_block(c);
2115
2116 qir_link_blocks(c->cur_block, c->loop_cont_block);
2117 qir_set_emit_block(c, c->loop_cont_block);
2118 ntq_activate_execute_for_block(c);
2119
2120 ntq_emit_cf_list(c, &loop->body);
2121
2122 /* If anything had explicitly continued, or is here at the end of the
2123 * loop, then we need to loop again. SF updates are masked by the
2124 * instruction's condition, so we can do the OR of the two conditions
2125 * within SF.
2126 */
2127 qir_SF(c, c->execute);
2128 struct qinst *cont_check =
2129 qir_SUB_dest(c,
2130 c->undef,
2131 c->execute,
2132 qir_uniform_ui(c, c->loop_cont_block->index));
2133 cont_check->cond = QPU_COND_ZC;
2134 cont_check->sf = true;
2135
2136 qir_BRANCH(c, QPU_COND_BRANCH_ANY_ZS);
2137 qir_link_blocks(c->cur_block, c->loop_cont_block);
2138 qir_link_blocks(c->cur_block, c->loop_break_block);
2139
2140 qir_set_emit_block(c, c->loop_break_block);
2141 if (was_top_level) {
2142 c->execute = c->undef;
2143 c->last_top_block = c->cur_block;
2144 } else {
2145 ntq_activate_execute_for_block(c);
2146 }
2147
2148 c->loop_break_block = save_loop_break_block;
2149 c->loop_cont_block = save_loop_cont_block;
2150 }
2151
2152 static void
2153 ntq_emit_function(struct vc4_compile *c, nir_function_impl *func)
2154 {
2155 fprintf(stderr, "FUNCTIONS not handled.\n");
2156 abort();
2157 }
2158
2159 static void
2160 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
2161 {
2162 foreach_list_typed(nir_cf_node, node, node, list) {
2163 switch (node->type) {
2164 case nir_cf_node_block:
2165 ntq_emit_block(c, nir_cf_node_as_block(node));
2166 break;
2167
2168 case nir_cf_node_if:
2169 ntq_emit_if(c, nir_cf_node_as_if(node));
2170 break;
2171
2172 case nir_cf_node_loop:
2173 ntq_emit_loop(c, nir_cf_node_as_loop(node));
2174 break;
2175
2176 case nir_cf_node_function:
2177 ntq_emit_function(c, nir_cf_node_as_function(node));
2178 break;
2179
2180 default:
2181 fprintf(stderr, "Unknown NIR node type\n");
2182 abort();
2183 }
2184 }
2185 }
2186
2187 static void
2188 ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
2189 {
2190 ntq_setup_registers(c, &impl->registers);
2191 ntq_emit_cf_list(c, &impl->body);
2192 }
2193
2194 static void
2195 nir_to_qir(struct vc4_compile *c)
2196 {
2197 if (c->stage == QSTAGE_FRAG && c->s->info.fs.uses_discard)
2198 c->discard = qir_MOV(c, qir_uniform_ui(c, 0));
2199
2200 ntq_setup_inputs(c);
2201 ntq_setup_outputs(c);
2202 ntq_setup_uniforms(c);
2203 ntq_setup_registers(c, &c->s->registers);
2204
2205 /* Find the main function and emit the body. */
2206 nir_foreach_function(function, c->s) {
2207 assert(strcmp(function->name, "main") == 0);
2208 assert(function->impl);
2209 ntq_emit_impl(c, function->impl);
2210 }
2211 }
2212
2213 static const nir_shader_compiler_options nir_options = {
2214 .lower_all_io_to_temps = true,
2215 .lower_extract_byte = true,
2216 .lower_extract_word = true,
2217 .lower_ffma = true,
2218 .lower_flrp32 = true,
2219 .lower_fpow = true,
2220 .lower_fsat = true,
2221 .lower_fsqrt = true,
2222 .lower_ldexp = true,
2223 .lower_negate = true,
2224 .native_integers = true,
2225 .max_unroll_iterations = 32,
2226 };
2227
2228 const void *
2229 vc4_screen_get_compiler_options(struct pipe_screen *pscreen,
2230 enum pipe_shader_ir ir,
2231 enum pipe_shader_type shader)
2232 {
2233 return &nir_options;
2234 }
2235
2236 static int
2237 count_nir_instrs(nir_shader *nir)
2238 {
2239 int count = 0;
2240 nir_foreach_function(function, nir) {
2241 if (!function->impl)
2242 continue;
2243 nir_foreach_block(block, function->impl) {
2244 nir_foreach_instr(instr, block)
2245 count++;
2246 }
2247 }
2248 return count;
2249 }
2250
2251 static struct vc4_compile *
2252 vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
2253 struct vc4_key *key, bool fs_threaded)
2254 {
2255 struct vc4_compile *c = qir_compile_init();
2256
2257 c->vc4 = vc4;
2258 c->stage = stage;
2259 c->shader_state = &key->shader_state->base;
2260 c->program_id = key->shader_state->program_id;
2261 c->variant_id =
2262 p_atomic_inc_return(&key->shader_state->compiled_variant_count);
2263 c->fs_threaded = fs_threaded;
2264
2265 c->key = key;
2266 switch (stage) {
2267 case QSTAGE_FRAG:
2268 c->fs_key = (struct vc4_fs_key *)key;
2269 if (c->fs_key->is_points) {
2270 c->point_x = emit_fragment_varying(c, ~0, 0);
2271 c->point_y = emit_fragment_varying(c, ~0, 0);
2272 } else if (c->fs_key->is_lines) {
2273 c->line_x = emit_fragment_varying(c, ~0, 0);
2274 }
2275 break;
2276 case QSTAGE_VERT:
2277 c->vs_key = (struct vc4_vs_key *)key;
2278 break;
2279 case QSTAGE_COORD:
2280 c->vs_key = (struct vc4_vs_key *)key;
2281 break;
2282 }
2283
2284 c->s = nir_shader_clone(c, key->shader_state->base.ir.nir);
2285
2286 if (stage == QSTAGE_FRAG) {
2287 if (c->fs_key->alpha_test_func != COMPARE_FUNC_ALWAYS) {
2288 NIR_PASS_V(c->s, nir_lower_alpha_test,
2289 c->fs_key->alpha_test_func,
2290 c->fs_key->sample_alpha_to_one &&
2291 c->fs_key->msaa);
2292 }
2293 NIR_PASS_V(c->s, vc4_nir_lower_blend, c);
2294 }
2295
2296 struct nir_lower_tex_options tex_options = {
2297 /* We would need to implement txs, but we don't want the
2298 * int/float conversions
2299 */
2300 .lower_rect = false,
2301
2302 .lower_txp = ~0,
2303
2304 /* Apply swizzles to all samplers. */
2305 .swizzle_result = ~0,
2306 };
2307
2308 /* Lower the format swizzle and ARB_texture_swizzle-style swizzle.
2309 * The format swizzling applies before sRGB decode, and
2310 * ARB_texture_swizzle is the last thing before returning the sample.
2311 */
2312 for (int i = 0; i < ARRAY_SIZE(key->tex); i++) {
2313 enum pipe_format format = c->key->tex[i].format;
2314
2315 if (!format)
2316 continue;
2317
2318 const uint8_t *format_swizzle = vc4_get_format_swizzle(format);
2319
2320 for (int j = 0; j < 4; j++) {
2321 uint8_t arb_swiz = c->key->tex[i].swizzle[j];
2322
2323 if (arb_swiz <= 3) {
2324 tex_options.swizzles[i][j] =
2325 format_swizzle[arb_swiz];
2326 } else {
2327 tex_options.swizzles[i][j] = arb_swiz;
2328 }
2329 }
2330
2331 if (util_format_is_srgb(format))
2332 tex_options.lower_srgb |= (1 << i);
2333 }
2334
2335 NIR_PASS_V(c->s, nir_lower_tex, &tex_options);
2336
2337 if (c->fs_key && c->fs_key->light_twoside)
2338 NIR_PASS_V(c->s, nir_lower_two_sided_color);
2339
2340 if (c->vs_key && c->vs_key->clamp_color)
2341 NIR_PASS_V(c->s, nir_lower_clamp_color_outputs);
2342
2343 if (c->key->ucp_enables) {
2344 if (stage == QSTAGE_FRAG) {
2345 NIR_PASS_V(c->s, nir_lower_clip_fs, c->key->ucp_enables);
2346 } else {
2347 NIR_PASS_V(c->s, nir_lower_clip_vs, c->key->ucp_enables);
2348 NIR_PASS_V(c->s, nir_lower_io_to_scalar,
2349 nir_var_shader_out);
2350 }
2351 }
2352
2353 /* FS input scalarizing must happen after nir_lower_two_sided_color,
2354 * which only handles a vec4 at a time. Similarly, VS output
2355 * scalarizing must happen after nir_lower_clip_vs.
2356 */
2357 if (c->stage == QSTAGE_FRAG)
2358 NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_in);
2359 else
2360 NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_out);
2361
2362 NIR_PASS_V(c->s, vc4_nir_lower_io, c);
2363 NIR_PASS_V(c->s, vc4_nir_lower_txf_ms, c);
2364 NIR_PASS_V(c->s, nir_lower_idiv);
2365
2366 vc4_optimize_nir(c->s);
2367
2368 NIR_PASS_V(c->s, nir_convert_from_ssa, true);
2369
2370 if (vc4_debug & VC4_DEBUG_SHADERDB) {
2371 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n",
2372 qir_get_stage_name(c->stage),
2373 c->program_id, c->variant_id,
2374 count_nir_instrs(c->s));
2375 }
2376
2377 if (vc4_debug & VC4_DEBUG_NIR) {
2378 fprintf(stderr, "%s prog %d/%d NIR:\n",
2379 qir_get_stage_name(c->stage),
2380 c->program_id, c->variant_id);
2381 nir_print_shader(c->s, stderr);
2382 }
2383
2384 nir_to_qir(c);
2385
2386 switch (stage) {
2387 case QSTAGE_FRAG:
2388 /* FS threading requires that the thread execute
2389 * QPU_SIG_LAST_THREAD_SWITCH exactly once before terminating
2390 * (with no other THRSW afterwards, obviously). If we didn't
2391 * fetch a texture at a top level block, this wouldn't be
2392 * true.
2393 */
2394 if (c->fs_threaded && !c->last_thrsw_at_top_level) {
2395 c->failed = true;
2396 return c;
2397 }
2398
2399 emit_frag_end(c);
2400 break;
2401 case QSTAGE_VERT:
2402 emit_vert_end(c,
2403 c->vs_key->fs_inputs->input_slots,
2404 c->vs_key->fs_inputs->num_inputs);
2405 break;
2406 case QSTAGE_COORD:
2407 emit_coord_end(c);
2408 break;
2409 }
2410
2411 if (vc4_debug & VC4_DEBUG_QIR) {
2412 fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
2413 qir_get_stage_name(c->stage),
2414 c->program_id, c->variant_id);
2415 qir_dump(c);
2416 fprintf(stderr, "\n");
2417 }
2418
2419 qir_optimize(c);
2420 qir_lower_uniforms(c);
2421
2422 qir_schedule_instructions(c);
2423 qir_emit_uniform_stream_resets(c);
2424
2425 if (vc4_debug & VC4_DEBUG_QIR) {
2426 fprintf(stderr, "%s prog %d/%d QIR:\n",
2427 qir_get_stage_name(c->stage),
2428 c->program_id, c->variant_id);
2429 qir_dump(c);
2430 fprintf(stderr, "\n");
2431 }
2432
2433 qir_reorder_uniforms(c);
2434 vc4_generate_code(vc4, c);
2435
2436 if (vc4_debug & VC4_DEBUG_SHADERDB) {
2437 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
2438 qir_get_stage_name(c->stage),
2439 c->program_id, c->variant_id,
2440 c->qpu_inst_count);
2441 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
2442 qir_get_stage_name(c->stage),
2443 c->program_id, c->variant_id,
2444 c->num_uniforms);
2445 }
2446
2447 ralloc_free(c->s);
2448
2449 return c;
2450 }
2451
2452 static void *
2453 vc4_shader_state_create(struct pipe_context *pctx,
2454 const struct pipe_shader_state *cso)
2455 {
2456 struct vc4_context *vc4 = vc4_context(pctx);
2457 struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
2458 if (!so)
2459 return NULL;
2460
2461 so->program_id = vc4->next_uncompiled_program_id++;
2462
2463 nir_shader *s;
2464
2465 if (cso->type == PIPE_SHADER_IR_NIR) {
2466 /* The backend takes ownership of the NIR shader on state
2467 * creation.
2468 */
2469 s = cso->ir.nir;
2470
2471 NIR_PASS_V(s, nir_lower_io, nir_var_all, type_size,
2472 (nir_lower_io_options)0);
2473 } else {
2474 assert(cso->type == PIPE_SHADER_IR_TGSI);
2475
2476 if (vc4_debug & VC4_DEBUG_TGSI) {
2477 fprintf(stderr, "prog %d TGSI:\n",
2478 so->program_id);
2479 tgsi_dump(cso->tokens, 0);
2480 fprintf(stderr, "\n");
2481 }
2482 s = tgsi_to_nir(cso->tokens, &nir_options);
2483 NIR_PASS_V(s, nir_lower_deref_instrs, ~0);
2484 }
2485
2486 NIR_PASS_V(s, nir_opt_global_to_local);
2487 NIR_PASS_V(s, nir_lower_regs_to_ssa);
2488 NIR_PASS_V(s, nir_normalize_cubemap_coords);
2489
2490 NIR_PASS_V(s, nir_lower_load_const_to_scalar);
2491
2492 vc4_optimize_nir(s);
2493
2494 NIR_PASS_V(s, nir_remove_dead_variables, nir_var_local);
2495
2496 /* Garbage collect dead instructions */
2497 nir_sweep(s);
2498
2499 so->base.type = PIPE_SHADER_IR_NIR;
2500 so->base.ir.nir = s;
2501
2502 if (vc4_debug & VC4_DEBUG_NIR) {
2503 fprintf(stderr, "%s prog %d NIR:\n",
2504 gl_shader_stage_name(s->info.stage),
2505 so->program_id);
2506 nir_print_shader(s, stderr);
2507 fprintf(stderr, "\n");
2508 }
2509
2510 return so;
2511 }
2512
2513 static void
2514 copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
2515 struct vc4_compile *c)
2516 {
2517 int count = c->num_uniforms;
2518 struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
2519
2520 uinfo->count = count;
2521 uinfo->data = ralloc_array(shader, uint32_t, count);
2522 memcpy(uinfo->data, c->uniform_data,
2523 count * sizeof(*uinfo->data));
2524 uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
2525 memcpy(uinfo->contents, c->uniform_contents,
2526 count * sizeof(*uinfo->contents));
2527 uinfo->num_texture_samples = c->num_texture_samples;
2528
2529 vc4_set_shader_uniform_dirty_flags(shader);
2530 }
2531
2532 static void
2533 vc4_setup_compiled_fs_inputs(struct vc4_context *vc4, struct vc4_compile *c,
2534 struct vc4_compiled_shader *shader)
2535 {
2536 struct vc4_fs_inputs inputs;
2537
2538 memset(&inputs, 0, sizeof(inputs));
2539 inputs.input_slots = ralloc_array(shader,
2540 struct vc4_varying_slot,
2541 c->num_input_slots);
2542
2543 bool input_live[c->num_input_slots];
2544
2545 memset(input_live, 0, sizeof(input_live));
2546 qir_for_each_inst_inorder(inst, c) {
2547 for (int i = 0; i < qir_get_nsrc(inst); i++) {
2548 if (inst->src[i].file == QFILE_VARY)
2549 input_live[inst->src[i].index] = true;
2550 }
2551 }
2552
2553 for (int i = 0; i < c->num_input_slots; i++) {
2554 struct vc4_varying_slot *slot = &c->input_slots[i];
2555
2556 if (!input_live[i])
2557 continue;
2558
2559 /* Skip non-VS-output inputs. */
2560 if (slot->slot == (uint8_t)~0)
2561 continue;
2562
2563 if (slot->slot == VARYING_SLOT_COL0 ||
2564 slot->slot == VARYING_SLOT_COL1 ||
2565 slot->slot == VARYING_SLOT_BFC0 ||
2566 slot->slot == VARYING_SLOT_BFC1) {
2567 shader->color_inputs |= (1 << inputs.num_inputs);
2568 }
2569
2570 inputs.input_slots[inputs.num_inputs] = *slot;
2571 inputs.num_inputs++;
2572 }
2573 shader->num_inputs = inputs.num_inputs;
2574
2575 /* Add our set of inputs to the set of all inputs seen. This way, we
2576 * can have a single pointer that identifies an FS inputs set,
2577 * allowing VS to avoid recompiling when the FS is recompiled (or a
2578 * new one is bound using separate shader objects) but the inputs
2579 * don't change.
2580 */
2581 struct set_entry *entry = _mesa_set_search(vc4->fs_inputs_set, &inputs);
2582 if (entry) {
2583 shader->fs_inputs = entry->key;
2584 ralloc_free(inputs.input_slots);
2585 } else {
2586 struct vc4_fs_inputs *alloc_inputs;
2587
2588 alloc_inputs = rzalloc(vc4->fs_inputs_set, struct vc4_fs_inputs);
2589 memcpy(alloc_inputs, &inputs, sizeof(inputs));
2590 ralloc_steal(alloc_inputs, inputs.input_slots);
2591 _mesa_set_add(vc4->fs_inputs_set, alloc_inputs);
2592
2593 shader->fs_inputs = alloc_inputs;
2594 }
2595 }
2596
2597 static struct vc4_compiled_shader *
2598 vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
2599 struct vc4_key *key)
2600 {
2601 struct hash_table *ht;
2602 uint32_t key_size;
2603 bool try_threading;
2604
2605 if (stage == QSTAGE_FRAG) {
2606 ht = vc4->fs_cache;
2607 key_size = sizeof(struct vc4_fs_key);
2608 try_threading = vc4->screen->has_threaded_fs;
2609 } else {
2610 ht = vc4->vs_cache;
2611 key_size = sizeof(struct vc4_vs_key);
2612 try_threading = false;
2613 }
2614
2615 struct vc4_compiled_shader *shader;
2616 struct hash_entry *entry = _mesa_hash_table_search(ht, key);
2617 if (entry)
2618 return entry->data;
2619
2620 struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key, try_threading);
2621 /* If the FS failed to compile threaded, fall back to single threaded. */
2622 if (try_threading && c->failed) {
2623 qir_compile_destroy(c);
2624 c = vc4_shader_ntq(vc4, stage, key, false);
2625 }
2626
2627 shader = rzalloc(NULL, struct vc4_compiled_shader);
2628
2629 shader->program_id = vc4->next_compiled_program_id++;
2630 if (stage == QSTAGE_FRAG) {
2631 vc4_setup_compiled_fs_inputs(vc4, c, shader);
2632
2633 /* Note: the temporary clone in c->s has been freed. */
2634 nir_shader *orig_shader = key->shader_state->base.ir.nir;
2635 if (orig_shader->info.outputs_written & (1 << FRAG_RESULT_DEPTH))
2636 shader->disable_early_z = true;
2637 } else {
2638 shader->num_inputs = c->num_inputs;
2639
2640 shader->vattr_offsets[0] = 0;
2641 for (int i = 0; i < 8; i++) {
2642 shader->vattr_offsets[i + 1] =
2643 shader->vattr_offsets[i] + c->vattr_sizes[i];
2644
2645 if (c->vattr_sizes[i])
2646 shader->vattrs_live |= (1 << i);
2647 }
2648 }
2649
2650 shader->failed = c->failed;
2651 if (c->failed) {
2652 shader->failed = true;
2653 } else {
2654 copy_uniform_state_to_shader(shader, c);
2655 shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts,
2656 c->qpu_inst_count *
2657 sizeof(uint64_t));
2658 }
2659
2660 shader->fs_threaded = c->fs_threaded;
2661
2662 /* Copy the compiler UBO range state to the compiled shader, dropping
2663 * out arrays that were never referenced by an indirect load.
2664 *
2665 * (Note that QIR dead code elimination of an array access still
2666 * leaves that array alive, though)
2667 */
2668 if (c->num_ubo_ranges) {
2669 shader->num_ubo_ranges = c->num_ubo_ranges;
2670 shader->ubo_ranges = ralloc_array(shader, struct vc4_ubo_range,
2671 c->num_ubo_ranges);
2672 uint32_t j = 0;
2673 for (int i = 0; i < c->num_uniform_ranges; i++) {
2674 struct vc4_compiler_ubo_range *range =
2675 &c->ubo_ranges[i];
2676 if (!range->used)
2677 continue;
2678
2679 shader->ubo_ranges[j].dst_offset = range->dst_offset;
2680 shader->ubo_ranges[j].src_offset = range->src_offset;
2681 shader->ubo_ranges[j].size = range->size;
2682 shader->ubo_size += c->ubo_ranges[i].size;
2683 j++;
2684 }
2685 }
2686 if (shader->ubo_size) {
2687 if (vc4_debug & VC4_DEBUG_SHADERDB) {
2688 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d UBO uniforms\n",
2689 qir_get_stage_name(c->stage),
2690 c->program_id, c->variant_id,
2691 shader->ubo_size / 4);
2692 }
2693 }
2694
2695 if ((vc4_debug & VC4_DEBUG_SHADERDB) && stage == QSTAGE_FRAG) {
2696 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d FS threads\n",
2697 qir_get_stage_name(c->stage),
2698 c->program_id, c->variant_id,
2699 1 + shader->fs_threaded);
2700 }
2701
2702 qir_compile_destroy(c);
2703
2704 struct vc4_key *dup_key;
2705 dup_key = rzalloc_size(shader, key_size); /* TODO: don't use rzalloc */
2706 memcpy(dup_key, key, key_size);
2707 _mesa_hash_table_insert(ht, dup_key, shader);
2708
2709 return shader;
2710 }
2711
2712 static void
2713 vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
2714 struct vc4_texture_stateobj *texstate)
2715 {
2716 for (int i = 0; i < texstate->num_textures; i++) {
2717 struct pipe_sampler_view *sampler = texstate->textures[i];
2718 struct vc4_sampler_view *vc4_sampler = vc4_sampler_view(sampler);
2719 struct pipe_sampler_state *sampler_state =
2720 texstate->samplers[i];
2721
2722 if (!sampler)
2723 continue;
2724
2725 key->tex[i].format = sampler->format;
2726 key->tex[i].swizzle[0] = sampler->swizzle_r;
2727 key->tex[i].swizzle[1] = sampler->swizzle_g;
2728 key->tex[i].swizzle[2] = sampler->swizzle_b;
2729 key->tex[i].swizzle[3] = sampler->swizzle_a;
2730
2731 if (sampler->texture->nr_samples > 1) {
2732 key->tex[i].msaa_width = sampler->texture->width0;
2733 key->tex[i].msaa_height = sampler->texture->height0;
2734 } else if (sampler){
2735 key->tex[i].compare_mode = sampler_state->compare_mode;
2736 key->tex[i].compare_func = sampler_state->compare_func;
2737 key->tex[i].wrap_s = sampler_state->wrap_s;
2738 key->tex[i].wrap_t = sampler_state->wrap_t;
2739 key->tex[i].force_first_level =
2740 vc4_sampler->force_first_level;
2741 }
2742 }
2743
2744 key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
2745 }
2746
2747 static void
2748 vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
2749 {
2750 struct vc4_job *job = vc4->job;
2751 struct vc4_fs_key local_key;
2752 struct vc4_fs_key *key = &local_key;
2753
2754 if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2755 VC4_DIRTY_BLEND |
2756 VC4_DIRTY_FRAMEBUFFER |
2757 VC4_DIRTY_ZSA |
2758 VC4_DIRTY_RASTERIZER |
2759 VC4_DIRTY_SAMPLE_MASK |
2760 VC4_DIRTY_FRAGTEX |
2761 VC4_DIRTY_UNCOMPILED_FS |
2762 VC4_DIRTY_UBO_1_SIZE))) {
2763 return;
2764 }
2765
2766 memset(key, 0, sizeof(*key));
2767 vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
2768 key->base.shader_state = vc4->prog.bind_fs;
2769 key->is_points = (prim_mode == PIPE_PRIM_POINTS);
2770 key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
2771 prim_mode <= PIPE_PRIM_LINE_STRIP);
2772 key->blend = vc4->blend->rt[0];
2773 if (vc4->blend->logicop_enable) {
2774 key->logicop_func = vc4->blend->logicop_func;
2775 } else {
2776 key->logicop_func = PIPE_LOGICOP_COPY;
2777 }
2778 if (job->msaa) {
2779 key->msaa = vc4->rasterizer->base.multisample;
2780 key->sample_coverage = (vc4->sample_mask != (1 << VC4_MAX_SAMPLES) - 1);
2781 key->sample_alpha_to_coverage = vc4->blend->alpha_to_coverage;
2782 key->sample_alpha_to_one = vc4->blend->alpha_to_one;
2783 }
2784
2785 if (vc4->framebuffer.cbufs[0])
2786 key->color_format = vc4->framebuffer.cbufs[0]->format;
2787
2788 key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
2789 key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
2790 key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
2791 key->depth_enabled = (vc4->zsa->base.depth.enabled ||
2792 key->stencil_enabled);
2793 if (vc4->zsa->base.alpha.enabled)
2794 key->alpha_test_func = vc4->zsa->base.alpha.func;
2795 else
2796 key->alpha_test_func = COMPARE_FUNC_ALWAYS;
2797
2798 if (key->is_points) {
2799 key->point_sprite_mask =
2800 vc4->rasterizer->base.sprite_coord_enable;
2801 key->point_coord_upper_left =
2802 (vc4->rasterizer->base.sprite_coord_mode ==
2803 PIPE_SPRITE_COORD_UPPER_LEFT);
2804 }
2805
2806 key->ubo_1_size = vc4->constbuf[PIPE_SHADER_FRAGMENT].cb[1].buffer_size;
2807 key->light_twoside = vc4->rasterizer->base.light_twoside;
2808
2809 struct vc4_compiled_shader *old_fs = vc4->prog.fs;
2810 vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
2811 if (vc4->prog.fs == old_fs)
2812 return;
2813
2814 vc4->dirty |= VC4_DIRTY_COMPILED_FS;
2815
2816 if (vc4->rasterizer->base.flatshade &&
2817 (!old_fs || vc4->prog.fs->color_inputs != old_fs->color_inputs)) {
2818 vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
2819 }
2820
2821 if (!old_fs || vc4->prog.fs->fs_inputs != old_fs->fs_inputs)
2822 vc4->dirty |= VC4_DIRTY_FS_INPUTS;
2823 }
2824
2825 static void
2826 vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
2827 {
2828 struct vc4_vs_key local_key;
2829 struct vc4_vs_key *key = &local_key;
2830
2831 if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2832 VC4_DIRTY_RASTERIZER |
2833 VC4_DIRTY_VERTTEX |
2834 VC4_DIRTY_VTXSTATE |
2835 VC4_DIRTY_UNCOMPILED_VS |
2836 VC4_DIRTY_FS_INPUTS))) {
2837 return;
2838 }
2839
2840 memset(key, 0, sizeof(*key));
2841 vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
2842 key->base.shader_state = vc4->prog.bind_vs;
2843 key->fs_inputs = vc4->prog.fs->fs_inputs;
2844 key->clamp_color = vc4->rasterizer->base.clamp_vertex_color;
2845
2846 for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
2847 key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
2848
2849 key->per_vertex_point_size =
2850 (prim_mode == PIPE_PRIM_POINTS &&
2851 vc4->rasterizer->base.point_size_per_vertex);
2852
2853 struct vc4_compiled_shader *vs =
2854 vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
2855 if (vs != vc4->prog.vs) {
2856 vc4->prog.vs = vs;
2857 vc4->dirty |= VC4_DIRTY_COMPILED_VS;
2858 }
2859
2860 key->is_coord = true;
2861 /* Coord shaders don't care what the FS inputs are. */
2862 key->fs_inputs = NULL;
2863 struct vc4_compiled_shader *cs =
2864 vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
2865 if (cs != vc4->prog.cs) {
2866 vc4->prog.cs = cs;
2867 vc4->dirty |= VC4_DIRTY_COMPILED_CS;
2868 }
2869 }
2870
2871 bool
2872 vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
2873 {
2874 vc4_update_compiled_fs(vc4, prim_mode);
2875 vc4_update_compiled_vs(vc4, prim_mode);
2876
2877 return !(vc4->prog.cs->failed ||
2878 vc4->prog.vs->failed ||
2879 vc4->prog.fs->failed);
2880 }
2881
2882 static uint32_t
2883 fs_cache_hash(const void *key)
2884 {
2885 return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
2886 }
2887
2888 static uint32_t
2889 vs_cache_hash(const void *key)
2890 {
2891 return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
2892 }
2893
2894 static bool
2895 fs_cache_compare(const void *key1, const void *key2)
2896 {
2897 return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
2898 }
2899
2900 static bool
2901 vs_cache_compare(const void *key1, const void *key2)
2902 {
2903 return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
2904 }
2905
2906 static uint32_t
2907 fs_inputs_hash(const void *key)
2908 {
2909 const struct vc4_fs_inputs *inputs = key;
2910
2911 return _mesa_hash_data(inputs->input_slots,
2912 sizeof(*inputs->input_slots) *
2913 inputs->num_inputs);
2914 }
2915
2916 static bool
2917 fs_inputs_compare(const void *key1, const void *key2)
2918 {
2919 const struct vc4_fs_inputs *inputs1 = key1;
2920 const struct vc4_fs_inputs *inputs2 = key2;
2921
2922 return (inputs1->num_inputs == inputs2->num_inputs &&
2923 memcmp(inputs1->input_slots,
2924 inputs2->input_slots,
2925 sizeof(*inputs1->input_slots) *
2926 inputs1->num_inputs) == 0);
2927 }
2928
2929 static void
2930 delete_from_cache_if_matches(struct hash_table *ht,
2931 struct vc4_compiled_shader **last_compile,
2932 struct hash_entry *entry,
2933 struct vc4_uncompiled_shader *so)
2934 {
2935 const struct vc4_key *key = entry->key;
2936
2937 if (key->shader_state == so) {
2938 struct vc4_compiled_shader *shader = entry->data;
2939 _mesa_hash_table_remove(ht, entry);
2940 vc4_bo_unreference(&shader->bo);
2941
2942 if (shader == *last_compile)
2943 *last_compile = NULL;
2944
2945 ralloc_free(shader);
2946 }
2947 }
2948
2949 static void
2950 vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
2951 {
2952 struct vc4_context *vc4 = vc4_context(pctx);
2953 struct vc4_uncompiled_shader *so = hwcso;
2954
2955 struct hash_entry *entry;
2956 hash_table_foreach(vc4->fs_cache, entry) {
2957 delete_from_cache_if_matches(vc4->fs_cache, &vc4->prog.fs,
2958 entry, so);
2959 }
2960 hash_table_foreach(vc4->vs_cache, entry) {
2961 delete_from_cache_if_matches(vc4->vs_cache, &vc4->prog.vs,
2962 entry, so);
2963 }
2964
2965 ralloc_free(so->base.ir.nir);
2966 free(so);
2967 }
2968
2969 static void
2970 vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
2971 {
2972 struct vc4_context *vc4 = vc4_context(pctx);
2973 vc4->prog.bind_fs = hwcso;
2974 vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
2975 }
2976
2977 static void
2978 vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
2979 {
2980 struct vc4_context *vc4 = vc4_context(pctx);
2981 vc4->prog.bind_vs = hwcso;
2982 vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
2983 }
2984
2985 void
2986 vc4_program_init(struct pipe_context *pctx)
2987 {
2988 struct vc4_context *vc4 = vc4_context(pctx);
2989
2990 pctx->create_vs_state = vc4_shader_state_create;
2991 pctx->delete_vs_state = vc4_shader_state_delete;
2992
2993 pctx->create_fs_state = vc4_shader_state_create;
2994 pctx->delete_fs_state = vc4_shader_state_delete;
2995
2996 pctx->bind_fs_state = vc4_fp_state_bind;
2997 pctx->bind_vs_state = vc4_vp_state_bind;
2998
2999 vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
3000 fs_cache_compare);
3001 vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
3002 vs_cache_compare);
3003 vc4->fs_inputs_set = _mesa_set_create(pctx, fs_inputs_hash,
3004 fs_inputs_compare);
3005 }
3006
3007 void
3008 vc4_program_fini(struct pipe_context *pctx)
3009 {
3010 struct vc4_context *vc4 = vc4_context(pctx);
3011
3012 struct hash_entry *entry;
3013 hash_table_foreach(vc4->fs_cache, entry) {
3014 struct vc4_compiled_shader *shader = entry->data;
3015 vc4_bo_unreference(&shader->bo);
3016 ralloc_free(shader);
3017 _mesa_hash_table_remove(vc4->fs_cache, entry);
3018 }
3019
3020 hash_table_foreach(vc4->vs_cache, entry) {
3021 struct vc4_compiled_shader *shader = entry->data;
3022 vc4_bo_unreference(&shader->bo);
3023 ralloc_free(shader);
3024 _mesa_hash_table_remove(vc4->vs_cache, entry);
3025 }
3026 }