iris: add support for gl_ClipVertex in geometry shaders
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 bool use_tcs_8_patch;
97 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
98
99 /**
100 * Apply workarounds for SIN and COS output range problems.
101 * This can negatively impact performance.
102 */
103 bool precise_trig;
104
105 /**
106 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
107 * Base Address? (If not, it's a normal GPU address.)
108 */
109 bool constant_buffer_0_is_relative;
110
111 /**
112 * Whether or not the driver supports pull constants. If not, the compiler
113 * will attempt to push everything.
114 */
115 bool supports_pull_constants;
116
117 /**
118 * Whether or not the driver supports NIR shader constants. This controls
119 * whether nir_opt_large_constants will be run.
120 */
121 bool supports_shader_constants;
122 };
123
124 /**
125 * We use a constant subgroup size of 32. It really only needs to be a
126 * maximum and, since we do SIMD32 for compute shaders in some cases, it
127 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
128 * subgroup size of 32 but will act as if 16 or 24 of those channels are
129 * disabled.
130 */
131 #define BRW_SUBGROUP_SIZE 32
132
133 /**
134 * Program key structures.
135 *
136 * When drawing, we look for the currently bound shaders in the program
137 * cache. This is essentially a hash table lookup, and these are the keys.
138 *
139 * Sometimes OpenGL features specified as state need to be simulated via
140 * shader code, due to a mismatch between the API and the hardware. This
141 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
142 * in the program key so it's considered when searching for a program. If
143 * we haven't seen a particular combination before, we have to recompile a
144 * new specialized version.
145 *
146 * Shader compilation should not look up state in gl_context directly, but
147 * instead use the copy in the program key. This guarantees recompiles will
148 * happen correctly.
149 *
150 * @{
151 */
152
153 enum PACKED gen6_gather_sampler_wa {
154 WA_SIGN = 1, /* whether we need to sign extend */
155 WA_8BIT = 2, /* if we have an 8bit format needing wa */
156 WA_16BIT = 4, /* if we have a 16bit format needing wa */
157 };
158
159 /**
160 * Sampler information needed by VS, WM, and GS program cache keys.
161 */
162 struct brw_sampler_prog_key_data {
163 /**
164 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
165 */
166 uint16_t swizzles[MAX_SAMPLERS];
167
168 uint32_t gl_clamp_mask[3];
169
170 /**
171 * For RG32F, gather4's channel select is broken.
172 */
173 uint32_t gather_channel_quirk_mask;
174
175 /**
176 * Whether this sampler uses the compressed multisample surface layout.
177 */
178 uint32_t compressed_multisample_layout_mask;
179
180 /**
181 * Whether this sampler is using 16x multisampling. If so fetching from
182 * this sampler will be handled with a different instruction, ld2dms_w
183 * instead of ld2dms.
184 */
185 uint32_t msaa_16;
186
187 /**
188 * For Sandybridge, which shader w/a we need for gather quirks.
189 */
190 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
191
192 /**
193 * Texture units that have a YUV image bound.
194 */
195 uint32_t y_u_v_image_mask;
196 uint32_t y_uv_image_mask;
197 uint32_t yx_xuxv_image_mask;
198 uint32_t xy_uxvx_image_mask;
199 uint32_t ayuv_image_mask;
200 uint32_t xyuv_image_mask;
201
202 /* Scale factor for each texture. */
203 float scale_factors[32];
204 };
205
206 /** An enum representing what kind of input gl_SubgroupSize is. */
207 enum PACKED brw_subgroup_size_type
208 {
209 BRW_SUBGROUP_SIZE_API_CONSTANT, /**< Default Vulkan behavior */
210 BRW_SUBGROUP_SIZE_UNIFORM, /**< OpenGL behavior */
211 BRW_SUBGROUP_SIZE_VARYING, /**< VK_EXT_subgroup_size_control */
212
213 /* These enums are specifically chosen so that the value of the enum is
214 * also the subgroup size. If any new values are added, they must respect
215 * this invariant.
216 */
217 BRW_SUBGROUP_SIZE_REQUIRE_8 = 8, /**< VK_EXT_subgroup_size_control */
218 BRW_SUBGROUP_SIZE_REQUIRE_16 = 16, /**< VK_EXT_subgroup_size_control */
219 BRW_SUBGROUP_SIZE_REQUIRE_32 = 32, /**< VK_EXT_subgroup_size_control */
220 };
221
222 struct brw_base_prog_key {
223 unsigned program_string_id;
224
225 enum brw_subgroup_size_type subgroup_size_type;
226
227 struct brw_sampler_prog_key_data tex;
228 };
229
230 /**
231 * The VF can't natively handle certain types of attributes, such as GL_FIXED
232 * or most 10_10_10_2 types. These flags enable various VS workarounds to
233 * "fix" attributes at the beginning of shaders.
234 */
235 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
236 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
237 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
238 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
239 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
240
241 /**
242 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
243 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
244 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
245 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
246 */
247 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
248 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
249
250 /** The program key for Vertex Shaders. */
251 struct brw_vs_prog_key {
252 struct brw_base_prog_key base;
253
254 /**
255 * Per-attribute workaround flags
256 *
257 * For each attribute, a combination of BRW_ATTRIB_WA_*.
258 *
259 * For OpenGL, where we expose a maximum of 16 user input atttributes
260 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
261 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
262 * expose up to 28 user input vertex attributes that are mapped to slots
263 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
264 * enough to hold this many slots.
265 */
266 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
267
268 bool copy_edgeflag:1;
269
270 bool clamp_vertex_color:1;
271
272 /**
273 * How many user clipping planes are being uploaded to the vertex shader as
274 * push constants.
275 *
276 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
277 * clip distances.
278 */
279 unsigned nr_userclip_plane_consts:4;
280
281 /**
282 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
283 * are going to be replaced with point coordinates (as a consequence of a
284 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
285 * our SF thread requires exact matching between VS outputs and FS inputs,
286 * these texture coordinates will need to be unconditionally included in
287 * the VUE, even if they aren't written by the vertex shader.
288 */
289 uint8_t point_coord_replace;
290 };
291
292 /** The program key for Tessellation Control Shaders. */
293 struct brw_tcs_prog_key
294 {
295 struct brw_base_prog_key base;
296
297 GLenum tes_primitive_mode;
298
299 unsigned input_vertices;
300
301 /** A bitfield of per-patch outputs written. */
302 uint32_t patch_outputs_written;
303
304 /** A bitfield of per-vertex outputs written. */
305 uint64_t outputs_written;
306
307 bool quads_workaround;
308 };
309
310 /** The program key for Tessellation Evaluation Shaders. */
311 struct brw_tes_prog_key
312 {
313 struct brw_base_prog_key base;
314
315 /** A bitfield of per-patch inputs read. */
316 uint32_t patch_inputs_read;
317
318 /** A bitfield of per-vertex inputs read. */
319 uint64_t inputs_read;
320 };
321
322 /** The program key for Geometry Shaders. */
323 struct brw_gs_prog_key
324 {
325 struct brw_base_prog_key base;
326
327 /**
328 * How many user clipping planes are being uploaded to the geometry shader
329 * as push constants.
330 *
331 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
332 * clip distances.
333 */
334 unsigned nr_userclip_plane_consts:4;
335 };
336
337 enum brw_sf_primitive {
338 BRW_SF_PRIM_POINTS = 0,
339 BRW_SF_PRIM_LINES = 1,
340 BRW_SF_PRIM_TRIANGLES = 2,
341 BRW_SF_PRIM_UNFILLED_TRIS = 3,
342 };
343
344 struct brw_sf_prog_key {
345 uint64_t attrs;
346 bool contains_flat_varying;
347 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
348 uint8_t point_sprite_coord_replace;
349 enum brw_sf_primitive primitive:2;
350 bool do_twoside_color:1;
351 bool frontface_ccw:1;
352 bool do_point_sprite:1;
353 bool do_point_coord:1;
354 bool sprite_origin_lower_left:1;
355 bool userclip_active:1;
356 };
357
358 enum brw_clip_mode {
359 BRW_CLIP_MODE_NORMAL = 0,
360 BRW_CLIP_MODE_CLIP_ALL = 1,
361 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
362 BRW_CLIP_MODE_REJECT_ALL = 3,
363 BRW_CLIP_MODE_ACCEPT_ALL = 4,
364 BRW_CLIP_MODE_KERNEL_CLIP = 5,
365 };
366
367 enum brw_clip_fill_mode {
368 BRW_CLIP_FILL_MODE_LINE = 0,
369 BRW_CLIP_FILL_MODE_POINT = 1,
370 BRW_CLIP_FILL_MODE_FILL = 2,
371 BRW_CLIP_FILL_MODE_CULL = 3,
372 };
373
374 /* Note that if unfilled primitives are being emitted, we have to fix
375 * up polygon offset and flatshading at this point:
376 */
377 struct brw_clip_prog_key {
378 uint64_t attrs;
379 bool contains_flat_varying;
380 bool contains_noperspective_varying;
381 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
382 unsigned primitive:4;
383 unsigned nr_userclip:4;
384 bool pv_first:1;
385 bool do_unfilled:1;
386 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
387 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
388 bool offset_cw:1;
389 bool offset_ccw:1;
390 bool copy_bfc_cw:1;
391 bool copy_bfc_ccw:1;
392 enum brw_clip_mode clip_mode:3;
393
394 float offset_factor;
395 float offset_units;
396 float offset_clamp;
397 };
398
399 /* A big lookup table is used to figure out which and how many
400 * additional regs will inserted before the main payload in the WM
401 * program execution. These mainly relate to depth and stencil
402 * processing and the early-depth-test optimization.
403 */
404 enum brw_wm_iz_bits {
405 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
406 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
407 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
408 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
409 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
410 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
411 BRW_WM_IZ_BIT_MAX = 0x40
412 };
413
414 enum brw_wm_aa_enable {
415 BRW_WM_AA_NEVER,
416 BRW_WM_AA_SOMETIMES,
417 BRW_WM_AA_ALWAYS
418 };
419
420 /** The program key for Fragment/Pixel Shaders. */
421 struct brw_wm_prog_key {
422 struct brw_base_prog_key base;
423
424 /* Some collection of BRW_WM_IZ_* */
425 uint8_t iz_lookup;
426 bool stats_wm:1;
427 bool flat_shade:1;
428 unsigned nr_color_regions:5;
429 bool alpha_test_replicate_alpha:1;
430 bool alpha_to_coverage:1;
431 bool clamp_fragment_color:1;
432 bool persample_interp:1;
433 bool multisample_fbo:1;
434 bool frag_coord_adds_sample_pos:1;
435 enum brw_wm_aa_enable line_aa:2;
436 bool high_quality_derivatives:1;
437 bool force_dual_color_blend:1;
438 bool coherent_fb_fetch:1;
439
440 uint8_t color_outputs_valid;
441 uint64_t input_slots_valid;
442 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
443 float alpha_test_ref;
444 };
445
446 struct brw_cs_prog_key {
447 struct brw_base_prog_key base;
448 };
449
450 /* brw_any_prog_key is any of the keys that map to an API stage */
451 union brw_any_prog_key {
452 struct brw_base_prog_key base;
453 struct brw_vs_prog_key vs;
454 struct brw_tcs_prog_key tcs;
455 struct brw_tes_prog_key tes;
456 struct brw_gs_prog_key gs;
457 struct brw_wm_prog_key wm;
458 struct brw_cs_prog_key cs;
459 };
460
461 /*
462 * Image metadata structure as laid out in the shader parameter
463 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
464 * able to use them. That's okay because the padding and any unused
465 * entries [most of them except when we're doing untyped surface
466 * access] will be removed by the uniform packing pass.
467 */
468 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
469 #define BRW_IMAGE_PARAM_SIZE_OFFSET 4
470 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
471 #define BRW_IMAGE_PARAM_TILING_OFFSET 12
472 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
473 #define BRW_IMAGE_PARAM_SIZE 20
474
475 struct brw_image_param {
476 /** Offset applied to the X and Y surface coordinates. */
477 uint32_t offset[2];
478
479 /** Surface X, Y and Z dimensions. */
480 uint32_t size[3];
481
482 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
483 * pixels, vertical slice stride in pixels.
484 */
485 uint32_t stride[4];
486
487 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
488 uint32_t tiling[3];
489
490 /**
491 * Right shift to apply for bit 6 address swizzling. Two different
492 * swizzles can be specified and will be applied one after the other. The
493 * resulting address will be:
494 *
495 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
496 * (addr >> swizzling[1])))
497 *
498 * Use \c 0xff if any of the swizzles is not required.
499 */
500 uint32_t swizzling[2];
501 };
502
503 /** Max number of render targets in a shader */
504 #define BRW_MAX_DRAW_BUFFERS 8
505
506 /**
507 * Max number of binding table entries used for stream output.
508 *
509 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
510 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
511 *
512 * On Gen6, the size of transform feedback data is limited not by the number
513 * of components but by the number of binding table entries we set aside. We
514 * use one binding table entry for a float, one entry for a vector, and one
515 * entry per matrix column. Since the only way we can communicate our
516 * transform feedback capabilities to the client is via
517 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
518 * worst case, in which all the varyings are floats, so we use up one binding
519 * table entry per component. Therefore we need to set aside at least 64
520 * binding table entries for use by transform feedback.
521 *
522 * Note: since we don't currently pack varyings, it is currently impossible
523 * for the client to actually use up all of these binding table entries--if
524 * all of their varyings were floats, they would run out of varying slots and
525 * fail to link. But that's a bug, so it seems prudent to go ahead and
526 * allocate the number of binding table entries we will need once the bug is
527 * fixed.
528 */
529 #define BRW_MAX_SOL_BINDINGS 64
530
531 /**
532 * Binding table index for the first gen6 SOL binding.
533 */
534 #define BRW_GEN6_SOL_BINDING_START 0
535
536 /**
537 * Stride in bytes between shader_time entries.
538 *
539 * We separate entries by a cacheline to reduce traffic between EUs writing to
540 * different entries.
541 */
542 #define BRW_SHADER_TIME_STRIDE 64
543
544 struct brw_ubo_range
545 {
546 uint16_t block;
547 uint8_t start;
548 uint8_t length;
549 };
550
551 /* We reserve the first 2^16 values for builtins */
552 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
553
554 enum brw_param_builtin {
555 BRW_PARAM_BUILTIN_ZERO,
556
557 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
558 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
559 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
560 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
561 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
562 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
563 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
564 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
565 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
566 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
567 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
568 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
569 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
570 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
571 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
572 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
573 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
574 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
575 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
576 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
577 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
578 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
579 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
580 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
581 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
582 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
583 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
584 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
585 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
586 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
587 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
588 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
589
590 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
591 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
592 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
593 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
594 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
595 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
596
597 BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
598
599 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
600 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
601 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
602 BRW_PARAM_BUILTIN_SUBGROUP_ID,
603 };
604
605 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
606 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
607
608 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
609 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
610 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
611
612 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
613 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
614
615 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
616 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
617
618 struct brw_stage_prog_data {
619 struct {
620 /** size of our binding table. */
621 uint32_t size_bytes;
622
623 /** @{
624 * surface indices for the various groups of surfaces
625 */
626 uint32_t pull_constants_start;
627 uint32_t texture_start;
628 uint32_t gather_texture_start;
629 uint32_t ubo_start;
630 uint32_t ssbo_start;
631 uint32_t image_start;
632 uint32_t shader_time_start;
633 uint32_t plane_start[3];
634 /** @} */
635 } binding_table;
636
637 struct brw_ubo_range ubo_ranges[4];
638
639 GLuint nr_params; /**< number of float params/constants */
640 GLuint nr_pull_params;
641
642 unsigned curb_read_length;
643 unsigned total_scratch;
644 unsigned total_shared;
645
646 unsigned program_size;
647
648 /**
649 * Register where the thread expects to find input data from the URB
650 * (typically uniforms, followed by vertex or fragment attributes).
651 */
652 unsigned dispatch_grf_start_reg;
653
654 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
655
656 /* 32-bit identifiers for all push/pull parameters. These can be anything
657 * the driver wishes them to be; the core of the back-end compiler simply
658 * re-arranges them. The one restriction is that the bottom 2^16 values
659 * are reserved for builtins defined in the brw_param_builtin enum defined
660 * above.
661 */
662 uint32_t *param;
663 uint32_t *pull_param;
664 };
665
666 static inline uint32_t *
667 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
668 unsigned nr_new_params)
669 {
670 unsigned old_nr_params = prog_data->nr_params;
671 prog_data->nr_params += nr_new_params;
672 prog_data->param = reralloc(ralloc_parent(prog_data->param),
673 prog_data->param, uint32_t,
674 prog_data->nr_params);
675 return prog_data->param + old_nr_params;
676 }
677
678 enum brw_barycentric_mode {
679 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
680 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
681 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
682 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
683 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
684 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
685 BRW_BARYCENTRIC_MODE_COUNT = 6
686 };
687 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
688 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
689 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
690 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
691
692 enum brw_pixel_shader_computed_depth_mode {
693 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
694 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
695 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
696 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
697 };
698
699 /* Data about a particular attempt to compile a program. Note that
700 * there can be many of these, each in a different GL state
701 * corresponding to a different brw_wm_prog_key struct, with different
702 * compiled programs.
703 */
704 struct brw_wm_prog_data {
705 struct brw_stage_prog_data base;
706
707 GLuint num_varying_inputs;
708
709 uint8_t reg_blocks_8;
710 uint8_t reg_blocks_16;
711 uint8_t reg_blocks_32;
712
713 uint8_t dispatch_grf_start_reg_16;
714 uint8_t dispatch_grf_start_reg_32;
715 uint32_t prog_offset_16;
716 uint32_t prog_offset_32;
717
718 struct {
719 /** @{
720 * surface indices the WM-specific surfaces
721 */
722 uint32_t render_target_read_start;
723 /** @} */
724 } binding_table;
725
726 uint8_t computed_depth_mode;
727 bool computed_stencil;
728
729 bool early_fragment_tests;
730 bool post_depth_coverage;
731 bool inner_coverage;
732 bool dispatch_8;
733 bool dispatch_16;
734 bool dispatch_32;
735 bool dual_src_blend;
736 bool replicate_alpha;
737 bool persample_dispatch;
738 bool uses_pos_offset;
739 bool uses_omask;
740 bool uses_kill;
741 bool uses_src_depth;
742 bool uses_src_w;
743 bool uses_sample_mask;
744 bool has_render_target_reads;
745 bool has_side_effects;
746 bool pulls_bary;
747
748 bool contains_flat_varying;
749 bool contains_noperspective_varying;
750
751 /**
752 * Mask of which interpolation modes are required by the fragment shader.
753 * Used in hardware setup on gen6+.
754 */
755 uint32_t barycentric_interp_modes;
756
757 /**
758 * Mask of which FS inputs are marked flat by the shader source. This is
759 * needed for setting up 3DSTATE_SF/SBE.
760 */
761 uint32_t flat_inputs;
762
763 /* Mapping of VUE slots to interpolation modes.
764 * Used by the Gen4-5 clip/sf/wm stages.
765 */
766 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
767
768 /**
769 * Map from gl_varying_slot to the position within the FS setup data
770 * payload where the varying's attribute vertex deltas should be delivered.
771 * For varying slots that are not used by the FS, the value is -1.
772 */
773 int urb_setup[VARYING_SLOT_MAX];
774 };
775
776 /** Returns the SIMD width corresponding to a given KSP index
777 *
778 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
779 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
780 * kernel start pointer (KSP) indices that is based on what dispatch widths
781 * are enabled. This function provides, effectively, the reverse mapping.
782 *
783 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
784 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
785 */
786 static inline unsigned
787 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
788 bool simd16_enabled, bool simd32_enabled)
789 {
790 /* This function strictly ignores contiguous dispatch */
791 switch (ksp_idx) {
792 case 0:
793 return simd8_enabled ? 8 :
794 (simd16_enabled && !simd32_enabled) ? 16 :
795 (simd32_enabled && !simd16_enabled) ? 32 : 0;
796 case 1:
797 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
798 case 2:
799 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
800 default:
801 unreachable("Invalid KSP index");
802 }
803 }
804
805 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
806 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
807 (wm_state)._16PixelDispatchEnable, \
808 (wm_state)._32PixelDispatchEnable)
809
810 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
811 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
812
813 static inline uint32_t
814 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
815 unsigned simd_width)
816 {
817 switch (simd_width) {
818 case 8: return 0;
819 case 16: return prog_data->prog_offset_16;
820 case 32: return prog_data->prog_offset_32;
821 default: return 0;
822 }
823 }
824
825 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
826 _brw_wm_prog_data_prog_offset(prog_data, \
827 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
828
829 static inline uint8_t
830 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
831 unsigned simd_width)
832 {
833 switch (simd_width) {
834 case 8: return prog_data->base.dispatch_grf_start_reg;
835 case 16: return prog_data->dispatch_grf_start_reg_16;
836 case 32: return prog_data->dispatch_grf_start_reg_32;
837 default: return 0;
838 }
839 }
840
841 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
842 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
843 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
844
845 static inline uint8_t
846 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
847 unsigned simd_width)
848 {
849 switch (simd_width) {
850 case 8: return prog_data->reg_blocks_8;
851 case 16: return prog_data->reg_blocks_16;
852 case 32: return prog_data->reg_blocks_32;
853 default: return 0;
854 }
855 }
856
857 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
858 _brw_wm_prog_data_reg_blocks(prog_data, \
859 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
860
861 struct brw_push_const_block {
862 unsigned dwords; /* Dword count, not reg aligned */
863 unsigned regs;
864 unsigned size; /* Bytes, register aligned */
865 };
866
867 struct brw_cs_prog_data {
868 struct brw_stage_prog_data base;
869
870 unsigned local_size[3];
871 unsigned simd_size;
872 unsigned threads;
873 bool uses_barrier;
874 bool uses_num_work_groups;
875
876 struct {
877 struct brw_push_const_block cross_thread;
878 struct brw_push_const_block per_thread;
879 struct brw_push_const_block total;
880 } push;
881
882 struct {
883 /** @{
884 * surface indices the CS-specific surfaces
885 */
886 uint32_t work_groups_start;
887 /** @} */
888 } binding_table;
889 };
890
891 /**
892 * Enum representing the i965-specific vertex results that don't correspond
893 * exactly to any element of gl_varying_slot. The values of this enum are
894 * assigned such that they don't conflict with gl_varying_slot.
895 */
896 typedef enum
897 {
898 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
899 BRW_VARYING_SLOT_PAD,
900 /**
901 * Technically this is not a varying but just a placeholder that
902 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
903 * builtin variable to be compiled correctly. see compile_sf_prog() for
904 * more info.
905 */
906 BRW_VARYING_SLOT_PNTC,
907 BRW_VARYING_SLOT_COUNT
908 } brw_varying_slot;
909
910 /**
911 * We always program SF to start reading at an offset of 1 (2 varying slots)
912 * from the start of the vertex URB entry. This causes it to skip:
913 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
914 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
915 */
916 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
917
918 /**
919 * Bitmask indicating which fragment shader inputs represent varyings (and
920 * hence have to be delivered to the fragment shader by the SF/SBE stage).
921 */
922 #define BRW_FS_VARYING_INPUT_MASK \
923 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
924 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
925
926 /**
927 * Data structure recording the relationship between the gl_varying_slot enum
928 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
929 * single octaword within the VUE (128 bits).
930 *
931 * Note that each BRW register contains 256 bits (2 octawords), so when
932 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
933 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
934 * in a vertex shader), each register corresponds to a single VUE slot, since
935 * it contains data for two separate vertices.
936 */
937 struct brw_vue_map {
938 /**
939 * Bitfield representing all varying slots that are (a) stored in this VUE
940 * map, and (b) actually written by the shader. Does not include any of
941 * the additional varying slots defined in brw_varying_slot.
942 */
943 uint64_t slots_valid;
944
945 /**
946 * Is this VUE map for a separate shader pipeline?
947 *
948 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
949 * without the linker having a chance to dead code eliminate unused varyings.
950 *
951 * This means that we have to use a fixed slot layout, based on the output's
952 * location field, rather than assigning slots in a compact contiguous block.
953 */
954 bool separate;
955
956 /**
957 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
958 * not stored in a slot (because they are not written, or because
959 * additional processing is applied before storing them in the VUE), the
960 * value is -1.
961 */
962 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
963
964 /**
965 * Map from VUE slot to gl_varying_slot value. For slots that do not
966 * directly correspond to a gl_varying_slot, the value comes from
967 * brw_varying_slot.
968 *
969 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
970 */
971 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
972
973 /**
974 * Total number of VUE slots in use
975 */
976 int num_slots;
977
978 /**
979 * Number of per-patch VUE slots. Only valid for tessellation control
980 * shader outputs and tessellation evaluation shader inputs.
981 */
982 int num_per_patch_slots;
983
984 /**
985 * Number of per-vertex VUE slots. Only valid for tessellation control
986 * shader outputs and tessellation evaluation shader inputs.
987 */
988 int num_per_vertex_slots;
989 };
990
991 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
992
993 /**
994 * Convert a VUE slot number into a byte offset within the VUE.
995 */
996 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
997 {
998 return 16*slot;
999 }
1000
1001 /**
1002 * Convert a vertex output (brw_varying_slot) into a byte offset within the
1003 * VUE.
1004 */
1005 static inline
1006 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
1007 {
1008 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
1009 }
1010
1011 void brw_compute_vue_map(const struct gen_device_info *devinfo,
1012 struct brw_vue_map *vue_map,
1013 uint64_t slots_valid,
1014 bool separate_shader);
1015
1016 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
1017 uint64_t slots_valid,
1018 uint32_t is_patch);
1019
1020 /* brw_interpolation_map.c */
1021 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
1022 struct nir_shader *nir,
1023 struct brw_wm_prog_data *prog_data);
1024
1025 enum shader_dispatch_mode {
1026 DISPATCH_MODE_4X1_SINGLE = 0,
1027 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1028 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1029 DISPATCH_MODE_SIMD8 = 3,
1030
1031 DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
1032 DISPATCH_MODE_TCS_8_PATCH = 2,
1033 };
1034
1035 /**
1036 * @defgroup Tessellator parameter enumerations.
1037 *
1038 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1039 * as part of the tessellation evaluation shader.
1040 *
1041 * @{
1042 */
1043 enum brw_tess_partitioning {
1044 BRW_TESS_PARTITIONING_INTEGER = 0,
1045 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1046 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1047 };
1048
1049 enum brw_tess_output_topology {
1050 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1051 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1052 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1053 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1054 };
1055
1056 enum brw_tess_domain {
1057 BRW_TESS_DOMAIN_QUAD = 0,
1058 BRW_TESS_DOMAIN_TRI = 1,
1059 BRW_TESS_DOMAIN_ISOLINE = 2,
1060 };
1061 /** @} */
1062
1063 struct brw_vue_prog_data {
1064 struct brw_stage_prog_data base;
1065 struct brw_vue_map vue_map;
1066
1067 /** Should the hardware deliver input VUE handles for URB pull loads? */
1068 bool include_vue_handles;
1069
1070 GLuint urb_read_length;
1071 GLuint total_grf;
1072
1073 uint32_t clip_distance_mask;
1074 uint32_t cull_distance_mask;
1075
1076 /* Used for calculating urb partitions. In the VS, this is the size of the
1077 * URB entry used for both input and output to the thread. In the GS, this
1078 * is the size of the URB entry used for output.
1079 */
1080 GLuint urb_entry_size;
1081
1082 enum shader_dispatch_mode dispatch_mode;
1083 };
1084
1085 struct brw_vs_prog_data {
1086 struct brw_vue_prog_data base;
1087
1088 GLbitfield64 inputs_read;
1089 GLbitfield64 double_inputs_read;
1090
1091 unsigned nr_attribute_slots;
1092
1093 bool uses_vertexid;
1094 bool uses_instanceid;
1095 bool uses_is_indexed_draw;
1096 bool uses_firstvertex;
1097 bool uses_baseinstance;
1098 bool uses_drawid;
1099 };
1100
1101 struct brw_tcs_prog_data
1102 {
1103 struct brw_vue_prog_data base;
1104
1105 /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1106 bool include_primitive_id;
1107
1108 /** Number vertices in output patch */
1109 int instances;
1110 };
1111
1112
1113 struct brw_tes_prog_data
1114 {
1115 struct brw_vue_prog_data base;
1116
1117 enum brw_tess_partitioning partitioning;
1118 enum brw_tess_output_topology output_topology;
1119 enum brw_tess_domain domain;
1120 };
1121
1122 struct brw_gs_prog_data
1123 {
1124 struct brw_vue_prog_data base;
1125
1126 unsigned vertices_in;
1127
1128 /**
1129 * Size of an output vertex, measured in HWORDS (32 bytes).
1130 */
1131 unsigned output_vertex_size_hwords;
1132
1133 unsigned output_topology;
1134
1135 /**
1136 * Size of the control data (cut bits or StreamID bits), in hwords (32
1137 * bytes). 0 if there is no control data.
1138 */
1139 unsigned control_data_header_size_hwords;
1140
1141 /**
1142 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1143 * if the control data is StreamID bits, or
1144 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1145 * Ignored if control_data_header_size is 0.
1146 */
1147 unsigned control_data_format;
1148
1149 bool include_primitive_id;
1150
1151 /**
1152 * The number of vertices emitted, if constant - otherwise -1.
1153 */
1154 int static_vertex_count;
1155
1156 int invocations;
1157
1158 /**
1159 * Gen6: Provoking vertex convention for odd-numbered triangles
1160 * in tristrips.
1161 */
1162 GLuint pv_first:1;
1163
1164 /**
1165 * Gen6: Number of varyings that are output to transform feedback.
1166 */
1167 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1168
1169 /**
1170 * Gen6: Map from the index of a transform feedback binding table entry to the
1171 * gl_varying_slot that should be streamed out through that binding table
1172 * entry.
1173 */
1174 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1175
1176 /**
1177 * Gen6: Map from the index of a transform feedback binding table entry to the
1178 * swizzles that should be used when streaming out data through that
1179 * binding table entry.
1180 */
1181 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1182 };
1183
1184 struct brw_sf_prog_data {
1185 uint32_t urb_read_length;
1186 uint32_t total_grf;
1187
1188 /* Each vertex may have upto 12 attributes, 4 components each,
1189 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1190 * rows.
1191 *
1192 * Actually we use 4 for each, so call it 12 rows.
1193 */
1194 unsigned urb_entry_size;
1195 };
1196
1197 struct brw_clip_prog_data {
1198 uint32_t curb_read_length; /* user planes? */
1199 uint32_t clip_mode;
1200 uint32_t urb_read_length;
1201 uint32_t total_grf;
1202 };
1203
1204 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1205 union brw_any_prog_data {
1206 struct brw_stage_prog_data base;
1207 struct brw_vue_prog_data vue;
1208 struct brw_vs_prog_data vs;
1209 struct brw_tcs_prog_data tcs;
1210 struct brw_tes_prog_data tes;
1211 struct brw_gs_prog_data gs;
1212 struct brw_wm_prog_data wm;
1213 struct brw_cs_prog_data cs;
1214 };
1215
1216 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1217 static inline struct brw_##stage##_prog_data * \
1218 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1219 { \
1220 return (struct brw_##stage##_prog_data *) prog_data; \
1221 }
1222 DEFINE_PROG_DATA_DOWNCAST(vue)
1223 DEFINE_PROG_DATA_DOWNCAST(vs)
1224 DEFINE_PROG_DATA_DOWNCAST(tcs)
1225 DEFINE_PROG_DATA_DOWNCAST(tes)
1226 DEFINE_PROG_DATA_DOWNCAST(gs)
1227 DEFINE_PROG_DATA_DOWNCAST(wm)
1228 DEFINE_PROG_DATA_DOWNCAST(cs)
1229 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1230 DEFINE_PROG_DATA_DOWNCAST(clip)
1231 DEFINE_PROG_DATA_DOWNCAST(sf)
1232 #undef DEFINE_PROG_DATA_DOWNCAST
1233
1234 /** @} */
1235
1236 struct brw_compiler *
1237 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1238
1239 /**
1240 * Returns a compiler configuration for use with disk shader cache
1241 *
1242 * This value only needs to change for settings that can cause different
1243 * program generation between two runs on the same hardware.
1244 *
1245 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1246 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1247 */
1248 uint64_t
1249 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1250
1251 unsigned
1252 brw_prog_data_size(gl_shader_stage stage);
1253
1254 unsigned
1255 brw_prog_key_size(gl_shader_stage stage);
1256
1257 void
1258 brw_prog_key_set_id(union brw_any_prog_key *key, gl_shader_stage, unsigned id);
1259
1260 /**
1261 * Compile a vertex shader.
1262 *
1263 * Returns the final assembly and the program's size.
1264 */
1265 const unsigned *
1266 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1267 void *mem_ctx,
1268 const struct brw_vs_prog_key *key,
1269 struct brw_vs_prog_data *prog_data,
1270 struct nir_shader *shader,
1271 int shader_time_index,
1272 char **error_str);
1273
1274 /**
1275 * Compile a tessellation control shader.
1276 *
1277 * Returns the final assembly and the program's size.
1278 */
1279 const unsigned *
1280 brw_compile_tcs(const struct brw_compiler *compiler,
1281 void *log_data,
1282 void *mem_ctx,
1283 const struct brw_tcs_prog_key *key,
1284 struct brw_tcs_prog_data *prog_data,
1285 struct nir_shader *nir,
1286 int shader_time_index,
1287 char **error_str);
1288
1289 /**
1290 * Compile a tessellation evaluation shader.
1291 *
1292 * Returns the final assembly and the program's size.
1293 */
1294 const unsigned *
1295 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1296 void *mem_ctx,
1297 const struct brw_tes_prog_key *key,
1298 const struct brw_vue_map *input_vue_map,
1299 struct brw_tes_prog_data *prog_data,
1300 struct nir_shader *shader,
1301 struct gl_program *prog,
1302 int shader_time_index,
1303 char **error_str);
1304
1305 /**
1306 * Compile a vertex shader.
1307 *
1308 * Returns the final assembly and the program's size.
1309 */
1310 const unsigned *
1311 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1312 void *mem_ctx,
1313 const struct brw_gs_prog_key *key,
1314 struct brw_gs_prog_data *prog_data,
1315 struct nir_shader *shader,
1316 struct gl_program *prog,
1317 int shader_time_index,
1318 char **error_str);
1319
1320 /**
1321 * Compile a strips and fans shader.
1322 *
1323 * This is a fixed-function shader determined entirely by the shader key and
1324 * a VUE map.
1325 *
1326 * Returns the final assembly and the program's size.
1327 */
1328 const unsigned *
1329 brw_compile_sf(const struct brw_compiler *compiler,
1330 void *mem_ctx,
1331 const struct brw_sf_prog_key *key,
1332 struct brw_sf_prog_data *prog_data,
1333 struct brw_vue_map *vue_map,
1334 unsigned *final_assembly_size);
1335
1336 /**
1337 * Compile a clipper shader.
1338 *
1339 * This is a fixed-function shader determined entirely by the shader key and
1340 * a VUE map.
1341 *
1342 * Returns the final assembly and the program's size.
1343 */
1344 const unsigned *
1345 brw_compile_clip(const struct brw_compiler *compiler,
1346 void *mem_ctx,
1347 const struct brw_clip_prog_key *key,
1348 struct brw_clip_prog_data *prog_data,
1349 struct brw_vue_map *vue_map,
1350 unsigned *final_assembly_size);
1351
1352 /**
1353 * Compile a fragment shader.
1354 *
1355 * Returns the final assembly and the program's size.
1356 */
1357 const unsigned *
1358 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1359 void *mem_ctx,
1360 const struct brw_wm_prog_key *key,
1361 struct brw_wm_prog_data *prog_data,
1362 struct nir_shader *shader,
1363 struct gl_program *prog,
1364 int shader_time_index8,
1365 int shader_time_index16,
1366 int shader_time_index32,
1367 bool allow_spilling,
1368 bool use_rep_send, struct brw_vue_map *vue_map,
1369 char **error_str);
1370
1371 /**
1372 * Compile a compute shader.
1373 *
1374 * Returns the final assembly and the program's size.
1375 */
1376 const unsigned *
1377 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1378 void *mem_ctx,
1379 const struct brw_cs_prog_key *key,
1380 struct brw_cs_prog_data *prog_data,
1381 const struct nir_shader *shader,
1382 int shader_time_index,
1383 char **error_str);
1384
1385 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1386 gl_shader_stage stage,
1387 const struct brw_base_prog_key *old_key,
1388 const struct brw_base_prog_key *key);
1389
1390 static inline uint32_t
1391 encode_slm_size(unsigned gen, uint32_t bytes)
1392 {
1393 uint32_t slm_size = 0;
1394
1395 /* Shared Local Memory is specified as powers of two, and encoded in
1396 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1397 *
1398 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1399 * -------------------------------------------------------------------
1400 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1401 * -------------------------------------------------------------------
1402 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1403 */
1404 assert(bytes <= 64 * 1024);
1405
1406 if (bytes > 0) {
1407 /* Shared Local Memory Size is specified as powers of two. */
1408 slm_size = util_next_power_of_two(bytes);
1409
1410 if (gen >= 9) {
1411 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1412 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1413 } else {
1414 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1415 slm_size = MAX2(slm_size, 4096) / 4096;
1416 }
1417 }
1418
1419 return slm_size;
1420 }
1421
1422 /**
1423 * Return true if the given shader stage is dispatched contiguously by the
1424 * relevant fixed function starting from channel 0 of the SIMD thread, which
1425 * implies that the dispatch mask of a thread can be assumed to have the form
1426 * '2^n - 1' for some n.
1427 */
1428 static inline bool
1429 brw_stage_has_packed_dispatch(ASSERTED const struct gen_device_info *devinfo,
1430 gl_shader_stage stage,
1431 const struct brw_stage_prog_data *prog_data)
1432 {
1433 /* The code below makes assumptions about the hardware's thread dispatch
1434 * behavior that could be proven wrong in future generations -- Make sure
1435 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1436 * the NIR front-end before changing this assertion.
1437 */
1438 assert(devinfo->gen <= 11);
1439
1440 switch (stage) {
1441 case MESA_SHADER_FRAGMENT: {
1442 /* The PSD discards subspans coming in with no lit samples, which in the
1443 * per-pixel shading case implies that each subspan will either be fully
1444 * lit (due to the VMask being used to allow derivative computations),
1445 * or not dispatched at all. In per-sample dispatch mode individual
1446 * samples from the same subspan have a fixed relative location within
1447 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1448 * general and we should return false.
1449 */
1450 const struct brw_wm_prog_data *wm_prog_data =
1451 (const struct brw_wm_prog_data *)prog_data;
1452 return !wm_prog_data->persample_dispatch;
1453 }
1454 case MESA_SHADER_COMPUTE:
1455 /* Compute shaders will be spawned with either a fully enabled dispatch
1456 * mask or with whatever bottom/right execution mask was given to the
1457 * GPGPU walker command to be used along the workgroup edges -- In both
1458 * cases the dispatch mask is required to be tightly packed for our
1459 * invocation index calculations to work.
1460 */
1461 return true;
1462 default:
1463 /* Most remaining fixed functions are limited to use a packed dispatch
1464 * mask due to the hardware representation of the dispatch mask as a
1465 * single counter representing the number of enabled channels.
1466 */
1467 return true;
1468 }
1469 }
1470
1471 /**
1472 * Computes the first varying slot in the URB produced by the previous stage
1473 * that is used in the next stage. We do this by testing the varying slots in
1474 * the previous stage's vue map against the inputs read in the next stage.
1475 *
1476 * Note that:
1477 *
1478 * - Each URB offset contains two varying slots and we can only skip a
1479 * full offset if both slots are unused, so the value we return here is always
1480 * rounded down to the closest multiple of two.
1481 *
1482 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1483 * part of the vue header, so if these are read we can't skip anything.
1484 */
1485 static inline int
1486 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1487 const struct brw_vue_map *prev_stage_vue_map)
1488 {
1489 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1490 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1491 int varying = prev_stage_vue_map->slot_to_varying[i];
1492 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1493 return ROUND_DOWN_TO(i, 2);
1494 }
1495 }
1496
1497 return 0;
1498 }
1499
1500 #ifdef __cplusplus
1501 } /* extern "C" */
1502 #endif
1503
1504 #endif /* BRW_COMPILER_H */