intel/compiler: Silence unused parameter warning in brw_interpolation_map.c
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
97
98 /**
99 * Apply workarounds for SIN and COS output range problems.
100 * This can negatively impact performance.
101 */
102 bool precise_trig;
103
104 /**
105 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
106 * Base Address? (If not, it's a normal GPU address.)
107 */
108 bool constant_buffer_0_is_relative;
109
110 /**
111 * Whether or not the driver supports pull constants. If not, the compiler
112 * will attempt to push everything.
113 */
114 bool supports_pull_constants;
115
116 /**
117 * Whether or not the driver supports NIR shader constants. This controls
118 * whether nir_opt_large_constants will be run.
119 */
120 bool supports_shader_constants;
121 };
122
123 /**
124 * We use a constant subgroup size of 32. It really only needs to be a
125 * maximum and, since we do SIMD32 for compute shaders in some cases, it
126 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
127 * subgroup size of 32 but will act as if 16 or 24 of those channels are
128 * disabled.
129 */
130 #define BRW_SUBGROUP_SIZE 32
131
132 /**
133 * Program key structures.
134 *
135 * When drawing, we look for the currently bound shaders in the program
136 * cache. This is essentially a hash table lookup, and these are the keys.
137 *
138 * Sometimes OpenGL features specified as state need to be simulated via
139 * shader code, due to a mismatch between the API and the hardware. This
140 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
141 * in the program key so it's considered when searching for a program. If
142 * we haven't seen a particular combination before, we have to recompile a
143 * new specialized version.
144 *
145 * Shader compilation should not look up state in gl_context directly, but
146 * instead use the copy in the program key. This guarantees recompiles will
147 * happen correctly.
148 *
149 * @{
150 */
151
152 enum PACKED gen6_gather_sampler_wa {
153 WA_SIGN = 1, /* whether we need to sign extend */
154 WA_8BIT = 2, /* if we have an 8bit format needing wa */
155 WA_16BIT = 4, /* if we have a 16bit format needing wa */
156 };
157
158 /**
159 * Sampler information needed by VS, WM, and GS program cache keys.
160 */
161 struct brw_sampler_prog_key_data {
162 /**
163 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
164 */
165 uint16_t swizzles[MAX_SAMPLERS];
166
167 uint32_t gl_clamp_mask[3];
168
169 /**
170 * For RG32F, gather4's channel select is broken.
171 */
172 uint32_t gather_channel_quirk_mask;
173
174 /**
175 * Whether this sampler uses the compressed multisample surface layout.
176 */
177 uint32_t compressed_multisample_layout_mask;
178
179 /**
180 * Whether this sampler is using 16x multisampling. If so fetching from
181 * this sampler will be handled with a different instruction, ld2dms_w
182 * instead of ld2dms.
183 */
184 uint32_t msaa_16;
185
186 /**
187 * For Sandybridge, which shader w/a we need for gather quirks.
188 */
189 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
190
191 /**
192 * Texture units that have a YUV image bound.
193 */
194 uint32_t y_u_v_image_mask;
195 uint32_t y_uv_image_mask;
196 uint32_t yx_xuxv_image_mask;
197 uint32_t xy_uxvx_image_mask;
198 uint32_t ayuv_image_mask;
199 uint32_t xyuv_image_mask;
200
201 /* Scale factor for each texture. */
202 float scale_factors[32];
203 };
204
205 /**
206 * The VF can't natively handle certain types of attributes, such as GL_FIXED
207 * or most 10_10_10_2 types. These flags enable various VS workarounds to
208 * "fix" attributes at the beginning of shaders.
209 */
210 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
211 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
212 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
213 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
214 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
215
216 /**
217 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
218 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
219 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
220 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
221 */
222 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
223 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
224
225 /** The program key for Vertex Shaders. */
226 struct brw_vs_prog_key {
227 unsigned program_string_id;
228
229 /**
230 * Per-attribute workaround flags
231 *
232 * For each attribute, a combination of BRW_ATTRIB_WA_*.
233 *
234 * For OpenGL, where we expose a maximum of 16 user input atttributes
235 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
236 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
237 * expose up to 28 user input vertex attributes that are mapped to slots
238 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
239 * enough to hold this many slots.
240 */
241 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
242
243 bool copy_edgeflag:1;
244
245 bool clamp_vertex_color:1;
246
247 /**
248 * How many user clipping planes are being uploaded to the vertex shader as
249 * push constants.
250 *
251 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
252 * clip distances.
253 */
254 unsigned nr_userclip_plane_consts:4;
255
256 /**
257 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
258 * are going to be replaced with point coordinates (as a consequence of a
259 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
260 * our SF thread requires exact matching between VS outputs and FS inputs,
261 * these texture coordinates will need to be unconditionally included in
262 * the VUE, even if they aren't written by the vertex shader.
263 */
264 uint8_t point_coord_replace;
265
266 struct brw_sampler_prog_key_data tex;
267 };
268
269 /** The program key for Tessellation Control Shaders. */
270 struct brw_tcs_prog_key
271 {
272 unsigned program_string_id;
273
274 GLenum tes_primitive_mode;
275
276 unsigned input_vertices;
277
278 /** A bitfield of per-patch outputs written. */
279 uint32_t patch_outputs_written;
280
281 /** A bitfield of per-vertex outputs written. */
282 uint64_t outputs_written;
283
284 bool quads_workaround;
285
286 struct brw_sampler_prog_key_data tex;
287 };
288
289 /** The program key for Tessellation Evaluation Shaders. */
290 struct brw_tes_prog_key
291 {
292 unsigned program_string_id;
293
294 /** A bitfield of per-patch inputs read. */
295 uint32_t patch_inputs_read;
296
297 /** A bitfield of per-vertex inputs read. */
298 uint64_t inputs_read;
299
300 struct brw_sampler_prog_key_data tex;
301 };
302
303 /** The program key for Geometry Shaders. */
304 struct brw_gs_prog_key
305 {
306 unsigned program_string_id;
307
308 struct brw_sampler_prog_key_data tex;
309 };
310
311 enum brw_sf_primitive {
312 BRW_SF_PRIM_POINTS = 0,
313 BRW_SF_PRIM_LINES = 1,
314 BRW_SF_PRIM_TRIANGLES = 2,
315 BRW_SF_PRIM_UNFILLED_TRIS = 3,
316 };
317
318 struct brw_sf_prog_key {
319 uint64_t attrs;
320 bool contains_flat_varying;
321 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
322 uint8_t point_sprite_coord_replace;
323 enum brw_sf_primitive primitive:2;
324 bool do_twoside_color:1;
325 bool frontface_ccw:1;
326 bool do_point_sprite:1;
327 bool do_point_coord:1;
328 bool sprite_origin_lower_left:1;
329 bool userclip_active:1;
330 };
331
332 enum brw_clip_mode {
333 BRW_CLIP_MODE_NORMAL = 0,
334 BRW_CLIP_MODE_CLIP_ALL = 1,
335 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
336 BRW_CLIP_MODE_REJECT_ALL = 3,
337 BRW_CLIP_MODE_ACCEPT_ALL = 4,
338 BRW_CLIP_MODE_KERNEL_CLIP = 5,
339 };
340
341 enum brw_clip_fill_mode {
342 BRW_CLIP_FILL_MODE_LINE = 0,
343 BRW_CLIP_FILL_MODE_POINT = 1,
344 BRW_CLIP_FILL_MODE_FILL = 2,
345 BRW_CLIP_FILL_MODE_CULL = 3,
346 };
347
348 /* Note that if unfilled primitives are being emitted, we have to fix
349 * up polygon offset and flatshading at this point:
350 */
351 struct brw_clip_prog_key {
352 uint64_t attrs;
353 bool contains_flat_varying;
354 bool contains_noperspective_varying;
355 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
356 unsigned primitive:4;
357 unsigned nr_userclip:4;
358 bool pv_first:1;
359 bool do_unfilled:1;
360 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
361 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
362 bool offset_cw:1;
363 bool offset_ccw:1;
364 bool copy_bfc_cw:1;
365 bool copy_bfc_ccw:1;
366 enum brw_clip_mode clip_mode:3;
367
368 float offset_factor;
369 float offset_units;
370 float offset_clamp;
371 };
372
373 /* A big lookup table is used to figure out which and how many
374 * additional regs will inserted before the main payload in the WM
375 * program execution. These mainly relate to depth and stencil
376 * processing and the early-depth-test optimization.
377 */
378 enum brw_wm_iz_bits {
379 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
380 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
381 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
382 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
383 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
384 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
385 BRW_WM_IZ_BIT_MAX = 0x40
386 };
387
388 enum brw_wm_aa_enable {
389 BRW_WM_AA_NEVER,
390 BRW_WM_AA_SOMETIMES,
391 BRW_WM_AA_ALWAYS
392 };
393
394 /** The program key for Fragment/Pixel Shaders. */
395 struct brw_wm_prog_key {
396 /* Some collection of BRW_WM_IZ_* */
397 uint8_t iz_lookup;
398 bool stats_wm:1;
399 bool flat_shade:1;
400 unsigned nr_color_regions:5;
401 bool replicate_alpha:1;
402 bool clamp_fragment_color:1;
403 bool persample_interp:1;
404 bool multisample_fbo:1;
405 bool frag_coord_adds_sample_pos:1;
406 enum brw_wm_aa_enable line_aa:2;
407 bool high_quality_derivatives:1;
408 bool force_dual_color_blend:1;
409 bool coherent_fb_fetch:1;
410
411 uint8_t color_outputs_valid;
412 uint64_t input_slots_valid;
413 unsigned program_string_id;
414 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
415 float alpha_test_ref;
416
417 struct brw_sampler_prog_key_data tex;
418 };
419
420 struct brw_cs_prog_key {
421 uint32_t program_string_id;
422 struct brw_sampler_prog_key_data tex;
423 };
424
425 /* brw_any_prog_key is any of the keys that map to an API stage */
426 union brw_any_prog_key {
427 struct brw_vs_prog_key vs;
428 struct brw_tcs_prog_key tcs;
429 struct brw_tes_prog_key tes;
430 struct brw_gs_prog_key gs;
431 struct brw_wm_prog_key wm;
432 struct brw_cs_prog_key cs;
433 };
434
435 /*
436 * Image metadata structure as laid out in the shader parameter
437 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
438 * able to use them. That's okay because the padding and any unused
439 * entries [most of them except when we're doing untyped surface
440 * access] will be removed by the uniform packing pass.
441 */
442 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
443 #define BRW_IMAGE_PARAM_SIZE_OFFSET 4
444 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
445 #define BRW_IMAGE_PARAM_TILING_OFFSET 12
446 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
447 #define BRW_IMAGE_PARAM_SIZE 20
448
449 struct brw_image_param {
450 /** Offset applied to the X and Y surface coordinates. */
451 uint32_t offset[2];
452
453 /** Surface X, Y and Z dimensions. */
454 uint32_t size[3];
455
456 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
457 * pixels, vertical slice stride in pixels.
458 */
459 uint32_t stride[4];
460
461 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
462 uint32_t tiling[3];
463
464 /**
465 * Right shift to apply for bit 6 address swizzling. Two different
466 * swizzles can be specified and will be applied one after the other. The
467 * resulting address will be:
468 *
469 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
470 * (addr >> swizzling[1])))
471 *
472 * Use \c 0xff if any of the swizzles is not required.
473 */
474 uint32_t swizzling[2];
475 };
476
477 /** Max number of render targets in a shader */
478 #define BRW_MAX_DRAW_BUFFERS 8
479
480 /**
481 * Max number of binding table entries used for stream output.
482 *
483 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
484 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
485 *
486 * On Gen6, the size of transform feedback data is limited not by the number
487 * of components but by the number of binding table entries we set aside. We
488 * use one binding table entry for a float, one entry for a vector, and one
489 * entry per matrix column. Since the only way we can communicate our
490 * transform feedback capabilities to the client is via
491 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
492 * worst case, in which all the varyings are floats, so we use up one binding
493 * table entry per component. Therefore we need to set aside at least 64
494 * binding table entries for use by transform feedback.
495 *
496 * Note: since we don't currently pack varyings, it is currently impossible
497 * for the client to actually use up all of these binding table entries--if
498 * all of their varyings were floats, they would run out of varying slots and
499 * fail to link. But that's a bug, so it seems prudent to go ahead and
500 * allocate the number of binding table entries we will need once the bug is
501 * fixed.
502 */
503 #define BRW_MAX_SOL_BINDINGS 64
504
505 /**
506 * Binding table index for the first gen6 SOL binding.
507 */
508 #define BRW_GEN6_SOL_BINDING_START 0
509
510 /**
511 * Stride in bytes between shader_time entries.
512 *
513 * We separate entries by a cacheline to reduce traffic between EUs writing to
514 * different entries.
515 */
516 #define BRW_SHADER_TIME_STRIDE 64
517
518 struct brw_ubo_range
519 {
520 uint16_t block;
521 uint8_t start;
522 uint8_t length;
523 };
524
525 /* We reserve the first 2^16 values for builtins */
526 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
527
528 enum brw_param_builtin {
529 BRW_PARAM_BUILTIN_ZERO,
530
531 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
532 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
533 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
534 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
535 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
536 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
537 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
538 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
539 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
540 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
541 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
542 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
543 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
544 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
545 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
546 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
547 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
548 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
549 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
550 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
551 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
552 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
553 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
554 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
555 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
556 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
557 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
558 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
559 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
560 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
561 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
562 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
563
564 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
565 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
566 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
567 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
568 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
569 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
570
571 BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
572
573 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
574 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
575 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
576 BRW_PARAM_BUILTIN_SUBGROUP_ID,
577 };
578
579 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
580 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
581
582 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
583 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
584 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
585
586 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
587 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
588
589 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
590 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
591
592 struct brw_stage_prog_data {
593 struct {
594 /** size of our binding table. */
595 uint32_t size_bytes;
596
597 /** @{
598 * surface indices for the various groups of surfaces
599 */
600 uint32_t pull_constants_start;
601 uint32_t texture_start;
602 uint32_t gather_texture_start;
603 uint32_t ubo_start;
604 uint32_t ssbo_start;
605 uint32_t image_start;
606 uint32_t shader_time_start;
607 uint32_t plane_start[3];
608 /** @} */
609 } binding_table;
610
611 struct brw_ubo_range ubo_ranges[4];
612
613 GLuint nr_params; /**< number of float params/constants */
614 GLuint nr_pull_params;
615
616 unsigned curb_read_length;
617 unsigned total_scratch;
618 unsigned total_shared;
619
620 unsigned program_size;
621
622 /**
623 * Register where the thread expects to find input data from the URB
624 * (typically uniforms, followed by vertex or fragment attributes).
625 */
626 unsigned dispatch_grf_start_reg;
627
628 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
629
630 /* 32-bit identifiers for all push/pull parameters. These can be anything
631 * the driver wishes them to be; the core of the back-end compiler simply
632 * re-arranges them. The one restriction is that the bottom 2^16 values
633 * are reserved for builtins defined in the brw_param_builtin enum defined
634 * above.
635 */
636 uint32_t *param;
637 uint32_t *pull_param;
638 };
639
640 static inline uint32_t *
641 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
642 unsigned nr_new_params)
643 {
644 unsigned old_nr_params = prog_data->nr_params;
645 prog_data->nr_params += nr_new_params;
646 prog_data->param = reralloc(ralloc_parent(prog_data->param),
647 prog_data->param, uint32_t,
648 prog_data->nr_params);
649 return prog_data->param + old_nr_params;
650 }
651
652 enum brw_barycentric_mode {
653 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
654 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
655 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
656 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
657 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
658 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
659 BRW_BARYCENTRIC_MODE_COUNT = 6
660 };
661 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
662 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
663 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
664 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
665
666 enum brw_pixel_shader_computed_depth_mode {
667 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
668 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
669 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
670 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
671 };
672
673 /* Data about a particular attempt to compile a program. Note that
674 * there can be many of these, each in a different GL state
675 * corresponding to a different brw_wm_prog_key struct, with different
676 * compiled programs.
677 */
678 struct brw_wm_prog_data {
679 struct brw_stage_prog_data base;
680
681 GLuint num_varying_inputs;
682
683 uint8_t reg_blocks_8;
684 uint8_t reg_blocks_16;
685 uint8_t reg_blocks_32;
686
687 uint8_t dispatch_grf_start_reg_16;
688 uint8_t dispatch_grf_start_reg_32;
689 uint32_t prog_offset_16;
690 uint32_t prog_offset_32;
691
692 struct {
693 /** @{
694 * surface indices the WM-specific surfaces
695 */
696 uint32_t render_target_read_start;
697 /** @} */
698 } binding_table;
699
700 uint8_t computed_depth_mode;
701 bool computed_stencil;
702
703 bool early_fragment_tests;
704 bool post_depth_coverage;
705 bool inner_coverage;
706 bool dispatch_8;
707 bool dispatch_16;
708 bool dispatch_32;
709 bool dual_src_blend;
710 bool persample_dispatch;
711 bool uses_pos_offset;
712 bool uses_omask;
713 bool uses_kill;
714 bool uses_src_depth;
715 bool uses_src_w;
716 bool uses_sample_mask;
717 bool has_render_target_reads;
718 bool has_side_effects;
719 bool pulls_bary;
720
721 bool contains_flat_varying;
722 bool contains_noperspective_varying;
723
724 /**
725 * Mask of which interpolation modes are required by the fragment shader.
726 * Used in hardware setup on gen6+.
727 */
728 uint32_t barycentric_interp_modes;
729
730 /**
731 * Mask of which FS inputs are marked flat by the shader source. This is
732 * needed for setting up 3DSTATE_SF/SBE.
733 */
734 uint32_t flat_inputs;
735
736 /* Mapping of VUE slots to interpolation modes.
737 * Used by the Gen4-5 clip/sf/wm stages.
738 */
739 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
740
741 /**
742 * Map from gl_varying_slot to the position within the FS setup data
743 * payload where the varying's attribute vertex deltas should be delivered.
744 * For varying slots that are not used by the FS, the value is -1.
745 */
746 int urb_setup[VARYING_SLOT_MAX];
747 };
748
749 /** Returns the SIMD width corresponding to a given KSP index
750 *
751 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
752 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
753 * kernel start pointer (KSP) indices that is based on what dispatch widths
754 * are enabled. This function provides, effectively, the reverse mapping.
755 *
756 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
757 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
758 */
759 static inline unsigned
760 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
761 bool simd16_enabled, bool simd32_enabled)
762 {
763 /* This function strictly ignores contiguous dispatch */
764 switch (ksp_idx) {
765 case 0:
766 return simd8_enabled ? 8 :
767 (simd16_enabled && !simd32_enabled) ? 16 :
768 (simd32_enabled && !simd16_enabled) ? 32 : 0;
769 case 1:
770 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
771 case 2:
772 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
773 default:
774 unreachable("Invalid KSP index");
775 }
776 }
777
778 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
779 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
780 (wm_state)._16PixelDispatchEnable, \
781 (wm_state)._32PixelDispatchEnable)
782
783 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
784 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
785
786 static inline uint32_t
787 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
788 unsigned simd_width)
789 {
790 switch (simd_width) {
791 case 8: return 0;
792 case 16: return prog_data->prog_offset_16;
793 case 32: return prog_data->prog_offset_32;
794 default: return 0;
795 }
796 }
797
798 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
799 _brw_wm_prog_data_prog_offset(prog_data, \
800 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
801
802 static inline uint8_t
803 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
804 unsigned simd_width)
805 {
806 switch (simd_width) {
807 case 8: return prog_data->base.dispatch_grf_start_reg;
808 case 16: return prog_data->dispatch_grf_start_reg_16;
809 case 32: return prog_data->dispatch_grf_start_reg_32;
810 default: return 0;
811 }
812 }
813
814 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
815 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
816 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
817
818 static inline uint8_t
819 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
820 unsigned simd_width)
821 {
822 switch (simd_width) {
823 case 8: return prog_data->reg_blocks_8;
824 case 16: return prog_data->reg_blocks_16;
825 case 32: return prog_data->reg_blocks_32;
826 default: return 0;
827 }
828 }
829
830 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
831 _brw_wm_prog_data_reg_blocks(prog_data, \
832 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
833
834 struct brw_push_const_block {
835 unsigned dwords; /* Dword count, not reg aligned */
836 unsigned regs;
837 unsigned size; /* Bytes, register aligned */
838 };
839
840 struct brw_cs_prog_data {
841 struct brw_stage_prog_data base;
842
843 unsigned local_size[3];
844 unsigned simd_size;
845 unsigned threads;
846 bool uses_barrier;
847 bool uses_num_work_groups;
848
849 struct {
850 struct brw_push_const_block cross_thread;
851 struct brw_push_const_block per_thread;
852 struct brw_push_const_block total;
853 } push;
854
855 struct {
856 /** @{
857 * surface indices the CS-specific surfaces
858 */
859 uint32_t work_groups_start;
860 /** @} */
861 } binding_table;
862 };
863
864 /**
865 * Enum representing the i965-specific vertex results that don't correspond
866 * exactly to any element of gl_varying_slot. The values of this enum are
867 * assigned such that they don't conflict with gl_varying_slot.
868 */
869 typedef enum
870 {
871 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
872 BRW_VARYING_SLOT_PAD,
873 /**
874 * Technically this is not a varying but just a placeholder that
875 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
876 * builtin variable to be compiled correctly. see compile_sf_prog() for
877 * more info.
878 */
879 BRW_VARYING_SLOT_PNTC,
880 BRW_VARYING_SLOT_COUNT
881 } brw_varying_slot;
882
883 /**
884 * We always program SF to start reading at an offset of 1 (2 varying slots)
885 * from the start of the vertex URB entry. This causes it to skip:
886 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
887 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
888 */
889 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
890
891 /**
892 * Bitmask indicating which fragment shader inputs represent varyings (and
893 * hence have to be delivered to the fragment shader by the SF/SBE stage).
894 */
895 #define BRW_FS_VARYING_INPUT_MASK \
896 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
897 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
898
899 /**
900 * Data structure recording the relationship between the gl_varying_slot enum
901 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
902 * single octaword within the VUE (128 bits).
903 *
904 * Note that each BRW register contains 256 bits (2 octawords), so when
905 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
906 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
907 * in a vertex shader), each register corresponds to a single VUE slot, since
908 * it contains data for two separate vertices.
909 */
910 struct brw_vue_map {
911 /**
912 * Bitfield representing all varying slots that are (a) stored in this VUE
913 * map, and (b) actually written by the shader. Does not include any of
914 * the additional varying slots defined in brw_varying_slot.
915 */
916 uint64_t slots_valid;
917
918 /**
919 * Is this VUE map for a separate shader pipeline?
920 *
921 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
922 * without the linker having a chance to dead code eliminate unused varyings.
923 *
924 * This means that we have to use a fixed slot layout, based on the output's
925 * location field, rather than assigning slots in a compact contiguous block.
926 */
927 bool separate;
928
929 /**
930 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
931 * not stored in a slot (because they are not written, or because
932 * additional processing is applied before storing them in the VUE), the
933 * value is -1.
934 */
935 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
936
937 /**
938 * Map from VUE slot to gl_varying_slot value. For slots that do not
939 * directly correspond to a gl_varying_slot, the value comes from
940 * brw_varying_slot.
941 *
942 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
943 */
944 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
945
946 /**
947 * Total number of VUE slots in use
948 */
949 int num_slots;
950
951 /**
952 * Number of per-patch VUE slots. Only valid for tessellation control
953 * shader outputs and tessellation evaluation shader inputs.
954 */
955 int num_per_patch_slots;
956
957 /**
958 * Number of per-vertex VUE slots. Only valid for tessellation control
959 * shader outputs and tessellation evaluation shader inputs.
960 */
961 int num_per_vertex_slots;
962 };
963
964 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
965
966 /**
967 * Convert a VUE slot number into a byte offset within the VUE.
968 */
969 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
970 {
971 return 16*slot;
972 }
973
974 /**
975 * Convert a vertex output (brw_varying_slot) into a byte offset within the
976 * VUE.
977 */
978 static inline
979 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
980 {
981 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
982 }
983
984 void brw_compute_vue_map(const struct gen_device_info *devinfo,
985 struct brw_vue_map *vue_map,
986 uint64_t slots_valid,
987 bool separate_shader);
988
989 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
990 uint64_t slots_valid,
991 uint32_t is_patch);
992
993 /* brw_interpolation_map.c */
994 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
995 struct nir_shader *nir,
996 struct brw_wm_prog_data *prog_data);
997
998 enum shader_dispatch_mode {
999 DISPATCH_MODE_4X1_SINGLE = 0,
1000 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1001 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1002 DISPATCH_MODE_SIMD8 = 3,
1003 };
1004
1005 /**
1006 * @defgroup Tessellator parameter enumerations.
1007 *
1008 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1009 * as part of the tessellation evaluation shader.
1010 *
1011 * @{
1012 */
1013 enum brw_tess_partitioning {
1014 BRW_TESS_PARTITIONING_INTEGER = 0,
1015 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1016 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1017 };
1018
1019 enum brw_tess_output_topology {
1020 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1021 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1022 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1023 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1024 };
1025
1026 enum brw_tess_domain {
1027 BRW_TESS_DOMAIN_QUAD = 0,
1028 BRW_TESS_DOMAIN_TRI = 1,
1029 BRW_TESS_DOMAIN_ISOLINE = 2,
1030 };
1031 /** @} */
1032
1033 struct brw_vue_prog_data {
1034 struct brw_stage_prog_data base;
1035 struct brw_vue_map vue_map;
1036
1037 /** Should the hardware deliver input VUE handles for URB pull loads? */
1038 bool include_vue_handles;
1039
1040 GLuint urb_read_length;
1041 GLuint total_grf;
1042
1043 uint32_t clip_distance_mask;
1044 uint32_t cull_distance_mask;
1045
1046 /* Used for calculating urb partitions. In the VS, this is the size of the
1047 * URB entry used for both input and output to the thread. In the GS, this
1048 * is the size of the URB entry used for output.
1049 */
1050 GLuint urb_entry_size;
1051
1052 enum shader_dispatch_mode dispatch_mode;
1053 };
1054
1055 struct brw_vs_prog_data {
1056 struct brw_vue_prog_data base;
1057
1058 GLbitfield64 inputs_read;
1059 GLbitfield64 double_inputs_read;
1060
1061 unsigned nr_attribute_slots;
1062
1063 bool uses_vertexid;
1064 bool uses_instanceid;
1065 bool uses_is_indexed_draw;
1066 bool uses_firstvertex;
1067 bool uses_baseinstance;
1068 bool uses_drawid;
1069 };
1070
1071 struct brw_tcs_prog_data
1072 {
1073 struct brw_vue_prog_data base;
1074
1075 /** Number vertices in output patch */
1076 int instances;
1077 };
1078
1079
1080 struct brw_tes_prog_data
1081 {
1082 struct brw_vue_prog_data base;
1083
1084 enum brw_tess_partitioning partitioning;
1085 enum brw_tess_output_topology output_topology;
1086 enum brw_tess_domain domain;
1087 };
1088
1089 struct brw_gs_prog_data
1090 {
1091 struct brw_vue_prog_data base;
1092
1093 unsigned vertices_in;
1094
1095 /**
1096 * Size of an output vertex, measured in HWORDS (32 bytes).
1097 */
1098 unsigned output_vertex_size_hwords;
1099
1100 unsigned output_topology;
1101
1102 /**
1103 * Size of the control data (cut bits or StreamID bits), in hwords (32
1104 * bytes). 0 if there is no control data.
1105 */
1106 unsigned control_data_header_size_hwords;
1107
1108 /**
1109 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1110 * if the control data is StreamID bits, or
1111 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1112 * Ignored if control_data_header_size is 0.
1113 */
1114 unsigned control_data_format;
1115
1116 bool include_primitive_id;
1117
1118 /**
1119 * The number of vertices emitted, if constant - otherwise -1.
1120 */
1121 int static_vertex_count;
1122
1123 int invocations;
1124
1125 /**
1126 * Gen6: Provoking vertex convention for odd-numbered triangles
1127 * in tristrips.
1128 */
1129 GLuint pv_first:1;
1130
1131 /**
1132 * Gen6: Number of varyings that are output to transform feedback.
1133 */
1134 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1135
1136 /**
1137 * Gen6: Map from the index of a transform feedback binding table entry to the
1138 * gl_varying_slot that should be streamed out through that binding table
1139 * entry.
1140 */
1141 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1142
1143 /**
1144 * Gen6: Map from the index of a transform feedback binding table entry to the
1145 * swizzles that should be used when streaming out data through that
1146 * binding table entry.
1147 */
1148 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1149 };
1150
1151 struct brw_sf_prog_data {
1152 uint32_t urb_read_length;
1153 uint32_t total_grf;
1154
1155 /* Each vertex may have upto 12 attributes, 4 components each,
1156 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1157 * rows.
1158 *
1159 * Actually we use 4 for each, so call it 12 rows.
1160 */
1161 unsigned urb_entry_size;
1162 };
1163
1164 struct brw_clip_prog_data {
1165 uint32_t curb_read_length; /* user planes? */
1166 uint32_t clip_mode;
1167 uint32_t urb_read_length;
1168 uint32_t total_grf;
1169 };
1170
1171 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1172 union brw_any_prog_data {
1173 struct brw_stage_prog_data base;
1174 struct brw_vue_prog_data vue;
1175 struct brw_vs_prog_data vs;
1176 struct brw_tcs_prog_data tcs;
1177 struct brw_tes_prog_data tes;
1178 struct brw_gs_prog_data gs;
1179 struct brw_wm_prog_data wm;
1180 struct brw_cs_prog_data cs;
1181 };
1182
1183 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1184 static inline struct brw_##stage##_prog_data * \
1185 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1186 { \
1187 return (struct brw_##stage##_prog_data *) prog_data; \
1188 }
1189 DEFINE_PROG_DATA_DOWNCAST(vue)
1190 DEFINE_PROG_DATA_DOWNCAST(vs)
1191 DEFINE_PROG_DATA_DOWNCAST(tcs)
1192 DEFINE_PROG_DATA_DOWNCAST(tes)
1193 DEFINE_PROG_DATA_DOWNCAST(gs)
1194 DEFINE_PROG_DATA_DOWNCAST(wm)
1195 DEFINE_PROG_DATA_DOWNCAST(cs)
1196 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1197 DEFINE_PROG_DATA_DOWNCAST(clip)
1198 DEFINE_PROG_DATA_DOWNCAST(sf)
1199 #undef DEFINE_PROG_DATA_DOWNCAST
1200
1201 /** @} */
1202
1203 struct brw_compiler *
1204 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1205
1206 /**
1207 * Returns a compiler configuration for use with disk shader cache
1208 *
1209 * This value only needs to change for settings that can cause different
1210 * program generation between two runs on the same hardware.
1211 *
1212 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1213 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1214 */
1215 uint64_t
1216 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1217
1218 unsigned
1219 brw_prog_data_size(gl_shader_stage stage);
1220
1221 unsigned
1222 brw_prog_key_size(gl_shader_stage stage);
1223
1224 /**
1225 * Compile a vertex shader.
1226 *
1227 * Returns the final assembly and the program's size.
1228 */
1229 const unsigned *
1230 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1231 void *mem_ctx,
1232 const struct brw_vs_prog_key *key,
1233 struct brw_vs_prog_data *prog_data,
1234 struct nir_shader *shader,
1235 int shader_time_index,
1236 char **error_str);
1237
1238 /**
1239 * Compile a tessellation control shader.
1240 *
1241 * Returns the final assembly and the program's size.
1242 */
1243 const unsigned *
1244 brw_compile_tcs(const struct brw_compiler *compiler,
1245 void *log_data,
1246 void *mem_ctx,
1247 const struct brw_tcs_prog_key *key,
1248 struct brw_tcs_prog_data *prog_data,
1249 struct nir_shader *nir,
1250 int shader_time_index,
1251 char **error_str);
1252
1253 /**
1254 * Compile a tessellation evaluation shader.
1255 *
1256 * Returns the final assembly and the program's size.
1257 */
1258 const unsigned *
1259 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1260 void *mem_ctx,
1261 const struct brw_tes_prog_key *key,
1262 const struct brw_vue_map *input_vue_map,
1263 struct brw_tes_prog_data *prog_data,
1264 struct nir_shader *shader,
1265 struct gl_program *prog,
1266 int shader_time_index,
1267 char **error_str);
1268
1269 /**
1270 * Compile a vertex shader.
1271 *
1272 * Returns the final assembly and the program's size.
1273 */
1274 const unsigned *
1275 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1276 void *mem_ctx,
1277 const struct brw_gs_prog_key *key,
1278 struct brw_gs_prog_data *prog_data,
1279 struct nir_shader *shader,
1280 struct gl_program *prog,
1281 int shader_time_index,
1282 char **error_str);
1283
1284 /**
1285 * Compile a strips and fans shader.
1286 *
1287 * This is a fixed-function shader determined entirely by the shader key and
1288 * a VUE map.
1289 *
1290 * Returns the final assembly and the program's size.
1291 */
1292 const unsigned *
1293 brw_compile_sf(const struct brw_compiler *compiler,
1294 void *mem_ctx,
1295 const struct brw_sf_prog_key *key,
1296 struct brw_sf_prog_data *prog_data,
1297 struct brw_vue_map *vue_map,
1298 unsigned *final_assembly_size);
1299
1300 /**
1301 * Compile a clipper shader.
1302 *
1303 * This is a fixed-function shader determined entirely by the shader key and
1304 * a VUE map.
1305 *
1306 * Returns the final assembly and the program's size.
1307 */
1308 const unsigned *
1309 brw_compile_clip(const struct brw_compiler *compiler,
1310 void *mem_ctx,
1311 const struct brw_clip_prog_key *key,
1312 struct brw_clip_prog_data *prog_data,
1313 struct brw_vue_map *vue_map,
1314 unsigned *final_assembly_size);
1315
1316 /**
1317 * Compile a fragment shader.
1318 *
1319 * Returns the final assembly and the program's size.
1320 */
1321 const unsigned *
1322 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1323 void *mem_ctx,
1324 const struct brw_wm_prog_key *key,
1325 struct brw_wm_prog_data *prog_data,
1326 struct nir_shader *shader,
1327 struct gl_program *prog,
1328 int shader_time_index8,
1329 int shader_time_index16,
1330 int shader_time_index32,
1331 bool allow_spilling,
1332 bool use_rep_send, struct brw_vue_map *vue_map,
1333 char **error_str);
1334
1335 /**
1336 * Compile a compute shader.
1337 *
1338 * Returns the final assembly and the program's size.
1339 */
1340 const unsigned *
1341 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1342 void *mem_ctx,
1343 const struct brw_cs_prog_key *key,
1344 struct brw_cs_prog_data *prog_data,
1345 const struct nir_shader *shader,
1346 int shader_time_index,
1347 char **error_str);
1348
1349 static inline uint32_t
1350 encode_slm_size(unsigned gen, uint32_t bytes)
1351 {
1352 uint32_t slm_size = 0;
1353
1354 /* Shared Local Memory is specified as powers of two, and encoded in
1355 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1356 *
1357 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1358 * -------------------------------------------------------------------
1359 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1360 * -------------------------------------------------------------------
1361 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1362 */
1363 assert(bytes <= 64 * 1024);
1364
1365 if (bytes > 0) {
1366 /* Shared Local Memory Size is specified as powers of two. */
1367 slm_size = util_next_power_of_two(bytes);
1368
1369 if (gen >= 9) {
1370 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1371 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1372 } else {
1373 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1374 slm_size = MAX2(slm_size, 4096) / 4096;
1375 }
1376 }
1377
1378 return slm_size;
1379 }
1380
1381 /**
1382 * Return true if the given shader stage is dispatched contiguously by the
1383 * relevant fixed function starting from channel 0 of the SIMD thread, which
1384 * implies that the dispatch mask of a thread can be assumed to have the form
1385 * '2^n - 1' for some n.
1386 */
1387 static inline bool
1388 brw_stage_has_packed_dispatch(MAYBE_UNUSED const struct gen_device_info *devinfo,
1389 gl_shader_stage stage,
1390 const struct brw_stage_prog_data *prog_data)
1391 {
1392 /* The code below makes assumptions about the hardware's thread dispatch
1393 * behavior that could be proven wrong in future generations -- Make sure
1394 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1395 * the NIR front-end before changing this assertion.
1396 */
1397 assert(devinfo->gen <= 11);
1398
1399 switch (stage) {
1400 case MESA_SHADER_FRAGMENT: {
1401 /* The PSD discards subspans coming in with no lit samples, which in the
1402 * per-pixel shading case implies that each subspan will either be fully
1403 * lit (due to the VMask being used to allow derivative computations),
1404 * or not dispatched at all. In per-sample dispatch mode individual
1405 * samples from the same subspan have a fixed relative location within
1406 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1407 * general and we should return false.
1408 */
1409 const struct brw_wm_prog_data *wm_prog_data =
1410 (const struct brw_wm_prog_data *)prog_data;
1411 return !wm_prog_data->persample_dispatch;
1412 }
1413 case MESA_SHADER_COMPUTE:
1414 /* Compute shaders will be spawned with either a fully enabled dispatch
1415 * mask or with whatever bottom/right execution mask was given to the
1416 * GPGPU walker command to be used along the workgroup edges -- In both
1417 * cases the dispatch mask is required to be tightly packed for our
1418 * invocation index calculations to work.
1419 */
1420 return true;
1421 default:
1422 /* Most remaining fixed functions are limited to use a packed dispatch
1423 * mask due to the hardware representation of the dispatch mask as a
1424 * single counter representing the number of enabled channels.
1425 */
1426 return true;
1427 }
1428 }
1429
1430 /**
1431 * Computes the first varying slot in the URB produced by the previous stage
1432 * that is used in the next stage. We do this by testing the varying slots in
1433 * the previous stage's vue map against the inputs read in the next stage.
1434 *
1435 * Note that:
1436 *
1437 * - Each URB offset contains two varying slots and we can only skip a
1438 * full offset if both slots are unused, so the value we return here is always
1439 * rounded down to the closest multiple of two.
1440 *
1441 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1442 * part of the vue header, so if these are read we can't skip anything.
1443 */
1444 static inline int
1445 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1446 const struct brw_vue_map *prev_stage_vue_map)
1447 {
1448 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1449 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1450 int varying = prev_stage_vue_map->slot_to_varying[i];
1451 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1452 return ROUND_DOWN_TO(i, 2);
1453 }
1454 }
1455
1456 return 0;
1457 }
1458
1459 #ifdef __cplusplus
1460 } /* extern "C" */
1461 #endif
1462
1463 #endif /* BRW_COMPILER_H */