intel: Add helper to calculate GPGPU_WALKER::RightExecutionMask
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned barycentrics we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_bary_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 bool use_tcs_8_patch;
97 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
98
99 /**
100 * Apply workarounds for SIN and COS output range problems.
101 * This can negatively impact performance.
102 */
103 bool precise_trig;
104
105 /**
106 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
107 * Base Address? (If not, it's a normal GPU address.)
108 */
109 bool constant_buffer_0_is_relative;
110
111 /**
112 * Whether or not the driver supports pull constants. If not, the compiler
113 * will attempt to push everything.
114 */
115 bool supports_pull_constants;
116
117 /**
118 * Whether or not the driver supports NIR shader constants. This controls
119 * whether nir_opt_large_constants will be run.
120 */
121 bool supports_shader_constants;
122
123 /**
124 * Whether or not the driver wants uniform params to be compacted by the
125 * back-end compiler.
126 */
127 bool compact_params;
128
129 /**
130 * Whether or not the driver wants variable group size to be lowered by the
131 * back-end compiler.
132 */
133 bool lower_variable_group_size;
134 };
135
136 /**
137 * We use a constant subgroup size of 32. It really only needs to be a
138 * maximum and, since we do SIMD32 for compute shaders in some cases, it
139 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
140 * subgroup size of 32 but will act as if 16 or 24 of those channels are
141 * disabled.
142 */
143 #define BRW_SUBGROUP_SIZE 32
144
145 /**
146 * Program key structures.
147 *
148 * When drawing, we look for the currently bound shaders in the program
149 * cache. This is essentially a hash table lookup, and these are the keys.
150 *
151 * Sometimes OpenGL features specified as state need to be simulated via
152 * shader code, due to a mismatch between the API and the hardware. This
153 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
154 * in the program key so it's considered when searching for a program. If
155 * we haven't seen a particular combination before, we have to recompile a
156 * new specialized version.
157 *
158 * Shader compilation should not look up state in gl_context directly, but
159 * instead use the copy in the program key. This guarantees recompiles will
160 * happen correctly.
161 *
162 * @{
163 */
164
165 enum PACKED gen6_gather_sampler_wa {
166 WA_SIGN = 1, /* whether we need to sign extend */
167 WA_8BIT = 2, /* if we have an 8bit format needing wa */
168 WA_16BIT = 4, /* if we have a 16bit format needing wa */
169 };
170
171 /**
172 * Sampler information needed by VS, WM, and GS program cache keys.
173 */
174 struct brw_sampler_prog_key_data {
175 /**
176 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
177 */
178 uint16_t swizzles[MAX_SAMPLERS];
179
180 uint32_t gl_clamp_mask[3];
181
182 /**
183 * For RG32F, gather4's channel select is broken.
184 */
185 uint32_t gather_channel_quirk_mask;
186
187 /**
188 * Whether this sampler uses the compressed multisample surface layout.
189 */
190 uint32_t compressed_multisample_layout_mask;
191
192 /**
193 * Whether this sampler is using 16x multisampling. If so fetching from
194 * this sampler will be handled with a different instruction, ld2dms_w
195 * instead of ld2dms.
196 */
197 uint32_t msaa_16;
198
199 /**
200 * For Sandybridge, which shader w/a we need for gather quirks.
201 */
202 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
203
204 /**
205 * Texture units that have a YUV image bound.
206 */
207 uint32_t y_u_v_image_mask;
208 uint32_t y_uv_image_mask;
209 uint32_t yx_xuxv_image_mask;
210 uint32_t xy_uxvx_image_mask;
211 uint32_t ayuv_image_mask;
212 uint32_t xyuv_image_mask;
213
214 /* Scale factor for each texture. */
215 float scale_factors[32];
216 };
217
218 /** An enum representing what kind of input gl_SubgroupSize is. */
219 enum PACKED brw_subgroup_size_type
220 {
221 BRW_SUBGROUP_SIZE_API_CONSTANT, /**< Default Vulkan behavior */
222 BRW_SUBGROUP_SIZE_UNIFORM, /**< OpenGL behavior */
223 BRW_SUBGROUP_SIZE_VARYING, /**< VK_EXT_subgroup_size_control */
224
225 /* These enums are specifically chosen so that the value of the enum is
226 * also the subgroup size. If any new values are added, they must respect
227 * this invariant.
228 */
229 BRW_SUBGROUP_SIZE_REQUIRE_8 = 8, /**< VK_EXT_subgroup_size_control */
230 BRW_SUBGROUP_SIZE_REQUIRE_16 = 16, /**< VK_EXT_subgroup_size_control */
231 BRW_SUBGROUP_SIZE_REQUIRE_32 = 32, /**< VK_EXT_subgroup_size_control */
232 };
233
234 struct brw_base_prog_key {
235 unsigned program_string_id;
236
237 enum brw_subgroup_size_type subgroup_size_type;
238
239 struct brw_sampler_prog_key_data tex;
240 };
241
242 /**
243 * The VF can't natively handle certain types of attributes, such as GL_FIXED
244 * or most 10_10_10_2 types. These flags enable various VS workarounds to
245 * "fix" attributes at the beginning of shaders.
246 */
247 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
248 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
249 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
250 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
251 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
252
253 /**
254 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
255 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
256 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
257 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
258 */
259 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
260 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
261
262 /** The program key for Vertex Shaders. */
263 struct brw_vs_prog_key {
264 struct brw_base_prog_key base;
265
266 /**
267 * Per-attribute workaround flags
268 *
269 * For each attribute, a combination of BRW_ATTRIB_WA_*.
270 *
271 * For OpenGL, where we expose a maximum of 16 user input atttributes
272 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
273 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
274 * expose up to 28 user input vertex attributes that are mapped to slots
275 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
276 * enough to hold this many slots.
277 */
278 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
279
280 bool copy_edgeflag:1;
281
282 bool clamp_vertex_color:1;
283
284 /**
285 * How many user clipping planes are being uploaded to the vertex shader as
286 * push constants.
287 *
288 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
289 * clip distances.
290 */
291 unsigned nr_userclip_plane_consts:4;
292
293 /**
294 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
295 * are going to be replaced with point coordinates (as a consequence of a
296 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
297 * our SF thread requires exact matching between VS outputs and FS inputs,
298 * these texture coordinates will need to be unconditionally included in
299 * the VUE, even if they aren't written by the vertex shader.
300 */
301 uint8_t point_coord_replace;
302 };
303
304 /** The program key for Tessellation Control Shaders. */
305 struct brw_tcs_prog_key
306 {
307 struct brw_base_prog_key base;
308
309 GLenum tes_primitive_mode;
310
311 unsigned input_vertices;
312
313 /** A bitfield of per-patch outputs written. */
314 uint32_t patch_outputs_written;
315
316 /** A bitfield of per-vertex outputs written. */
317 uint64_t outputs_written;
318
319 bool quads_workaround;
320 };
321
322 /** The program key for Tessellation Evaluation Shaders. */
323 struct brw_tes_prog_key
324 {
325 struct brw_base_prog_key base;
326
327 /** A bitfield of per-patch inputs read. */
328 uint32_t patch_inputs_read;
329
330 /** A bitfield of per-vertex inputs read. */
331 uint64_t inputs_read;
332
333 /**
334 * How many user clipping planes are being uploaded to the tessellation
335 * evaluation shader as push constants.
336 *
337 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
338 * clip distances.
339 */
340 unsigned nr_userclip_plane_consts:4;
341 };
342
343 /** The program key for Geometry Shaders. */
344 struct brw_gs_prog_key
345 {
346 struct brw_base_prog_key base;
347
348 /**
349 * How many user clipping planes are being uploaded to the geometry shader
350 * as push constants.
351 *
352 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
353 * clip distances.
354 */
355 unsigned nr_userclip_plane_consts:4;
356 };
357
358 enum brw_sf_primitive {
359 BRW_SF_PRIM_POINTS = 0,
360 BRW_SF_PRIM_LINES = 1,
361 BRW_SF_PRIM_TRIANGLES = 2,
362 BRW_SF_PRIM_UNFILLED_TRIS = 3,
363 };
364
365 struct brw_sf_prog_key {
366 uint64_t attrs;
367 bool contains_flat_varying;
368 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
369 uint8_t point_sprite_coord_replace;
370 enum brw_sf_primitive primitive:2;
371 bool do_twoside_color:1;
372 bool frontface_ccw:1;
373 bool do_point_sprite:1;
374 bool do_point_coord:1;
375 bool sprite_origin_lower_left:1;
376 bool userclip_active:1;
377 };
378
379 enum brw_clip_mode {
380 BRW_CLIP_MODE_NORMAL = 0,
381 BRW_CLIP_MODE_CLIP_ALL = 1,
382 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
383 BRW_CLIP_MODE_REJECT_ALL = 3,
384 BRW_CLIP_MODE_ACCEPT_ALL = 4,
385 BRW_CLIP_MODE_KERNEL_CLIP = 5,
386 };
387
388 enum brw_clip_fill_mode {
389 BRW_CLIP_FILL_MODE_LINE = 0,
390 BRW_CLIP_FILL_MODE_POINT = 1,
391 BRW_CLIP_FILL_MODE_FILL = 2,
392 BRW_CLIP_FILL_MODE_CULL = 3,
393 };
394
395 /* Note that if unfilled primitives are being emitted, we have to fix
396 * up polygon offset and flatshading at this point:
397 */
398 struct brw_clip_prog_key {
399 uint64_t attrs;
400 bool contains_flat_varying;
401 bool contains_noperspective_varying;
402 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
403 unsigned primitive:4;
404 unsigned nr_userclip:4;
405 bool pv_first:1;
406 bool do_unfilled:1;
407 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
408 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
409 bool offset_cw:1;
410 bool offset_ccw:1;
411 bool copy_bfc_cw:1;
412 bool copy_bfc_ccw:1;
413 enum brw_clip_mode clip_mode:3;
414
415 float offset_factor;
416 float offset_units;
417 float offset_clamp;
418 };
419
420 /* A big lookup table is used to figure out which and how many
421 * additional regs will inserted before the main payload in the WM
422 * program execution. These mainly relate to depth and stencil
423 * processing and the early-depth-test optimization.
424 */
425 enum brw_wm_iz_bits {
426 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
427 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
428 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
429 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
430 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
431 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
432 BRW_WM_IZ_BIT_MAX = 0x40
433 };
434
435 enum brw_wm_aa_enable {
436 BRW_WM_AA_NEVER,
437 BRW_WM_AA_SOMETIMES,
438 BRW_WM_AA_ALWAYS
439 };
440
441 /** The program key for Fragment/Pixel Shaders. */
442 struct brw_wm_prog_key {
443 struct brw_base_prog_key base;
444
445 /* Some collection of BRW_WM_IZ_* */
446 uint8_t iz_lookup;
447 bool stats_wm:1;
448 bool flat_shade:1;
449 unsigned nr_color_regions:5;
450 bool alpha_test_replicate_alpha:1;
451 bool alpha_to_coverage:1;
452 bool clamp_fragment_color:1;
453 bool persample_interp:1;
454 bool multisample_fbo:1;
455 bool frag_coord_adds_sample_pos:1;
456 enum brw_wm_aa_enable line_aa:2;
457 bool high_quality_derivatives:1;
458 bool force_dual_color_blend:1;
459 bool coherent_fb_fetch:1;
460
461 uint8_t color_outputs_valid;
462 uint64_t input_slots_valid;
463 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
464 float alpha_test_ref;
465 };
466
467 struct brw_cs_prog_key {
468 struct brw_base_prog_key base;
469 };
470
471 /* brw_any_prog_key is any of the keys that map to an API stage */
472 union brw_any_prog_key {
473 struct brw_base_prog_key base;
474 struct brw_vs_prog_key vs;
475 struct brw_tcs_prog_key tcs;
476 struct brw_tes_prog_key tes;
477 struct brw_gs_prog_key gs;
478 struct brw_wm_prog_key wm;
479 struct brw_cs_prog_key cs;
480 };
481
482 /*
483 * Image metadata structure as laid out in the shader parameter
484 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
485 * able to use them. That's okay because the padding and any unused
486 * entries [most of them except when we're doing untyped surface
487 * access] will be removed by the uniform packing pass.
488 */
489 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
490 #define BRW_IMAGE_PARAM_SIZE_OFFSET 4
491 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
492 #define BRW_IMAGE_PARAM_TILING_OFFSET 12
493 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
494 #define BRW_IMAGE_PARAM_SIZE 20
495
496 struct brw_image_param {
497 /** Offset applied to the X and Y surface coordinates. */
498 uint32_t offset[2];
499
500 /** Surface X, Y and Z dimensions. */
501 uint32_t size[3];
502
503 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
504 * pixels, vertical slice stride in pixels.
505 */
506 uint32_t stride[4];
507
508 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
509 uint32_t tiling[3];
510
511 /**
512 * Right shift to apply for bit 6 address swizzling. Two different
513 * swizzles can be specified and will be applied one after the other. The
514 * resulting address will be:
515 *
516 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
517 * (addr >> swizzling[1])))
518 *
519 * Use \c 0xff if any of the swizzles is not required.
520 */
521 uint32_t swizzling[2];
522 };
523
524 /** Max number of render targets in a shader */
525 #define BRW_MAX_DRAW_BUFFERS 8
526
527 /**
528 * Max number of binding table entries used for stream output.
529 *
530 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
531 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
532 *
533 * On Gen6, the size of transform feedback data is limited not by the number
534 * of components but by the number of binding table entries we set aside. We
535 * use one binding table entry for a float, one entry for a vector, and one
536 * entry per matrix column. Since the only way we can communicate our
537 * transform feedback capabilities to the client is via
538 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
539 * worst case, in which all the varyings are floats, so we use up one binding
540 * table entry per component. Therefore we need to set aside at least 64
541 * binding table entries for use by transform feedback.
542 *
543 * Note: since we don't currently pack varyings, it is currently impossible
544 * for the client to actually use up all of these binding table entries--if
545 * all of their varyings were floats, they would run out of varying slots and
546 * fail to link. But that's a bug, so it seems prudent to go ahead and
547 * allocate the number of binding table entries we will need once the bug is
548 * fixed.
549 */
550 #define BRW_MAX_SOL_BINDINGS 64
551
552 /**
553 * Binding table index for the first gen6 SOL binding.
554 */
555 #define BRW_GEN6_SOL_BINDING_START 0
556
557 /**
558 * Stride in bytes between shader_time entries.
559 *
560 * We separate entries by a cacheline to reduce traffic between EUs writing to
561 * different entries.
562 */
563 #define BRW_SHADER_TIME_STRIDE 64
564
565 struct brw_ubo_range
566 {
567 uint16_t block;
568 uint8_t start;
569 uint8_t length;
570 };
571
572 /* We reserve the first 2^16 values for builtins */
573 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
574
575 enum brw_param_builtin {
576 BRW_PARAM_BUILTIN_ZERO,
577
578 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
579 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
580 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
581 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
582 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
583 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
584 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
585 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
586 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
587 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
588 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
589 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
590 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
591 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
592 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
593 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
594 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
595 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
596 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
597 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
598 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
599 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
600 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
601 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
602 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
603 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
604 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
605 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
606 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
607 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
608 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
609 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
610
611 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
612 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
613 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
614 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
615 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
616 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
617
618 BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
619
620 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
621 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
622 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
623 BRW_PARAM_BUILTIN_SUBGROUP_ID,
624 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X,
625 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Y,
626 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z,
627 };
628
629 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
630 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
631
632 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
633 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
634 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
635
636 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
637 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
638
639 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
640 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
641
642 struct brw_stage_prog_data {
643 struct {
644 /** size of our binding table. */
645 uint32_t size_bytes;
646
647 /** @{
648 * surface indices for the various groups of surfaces
649 */
650 uint32_t pull_constants_start;
651 uint32_t texture_start;
652 uint32_t gather_texture_start;
653 uint32_t ubo_start;
654 uint32_t ssbo_start;
655 uint32_t image_start;
656 uint32_t shader_time_start;
657 uint32_t plane_start[3];
658 /** @} */
659 } binding_table;
660
661 struct brw_ubo_range ubo_ranges[4];
662
663 GLuint nr_params; /**< number of float params/constants */
664 GLuint nr_pull_params;
665
666 /* zero_push_reg is a bitfield which indicates what push registers (if any)
667 * should be zeroed by SW at the start of the shader. The corresponding
668 * push_reg_mask_param specifies the param index (in 32-bit units) where
669 * the actual runtime 64-bit mask will be pushed. The shader will zero
670 * push reg i if
671 *
672 * reg_used & zero_push_reg & ~*push_reg_mask_param & (1ull << i)
673 *
674 * If this field is set, brw_compiler::compact_params must be false.
675 */
676 uint64_t zero_push_reg;
677 unsigned push_reg_mask_param;
678
679 unsigned curb_read_length;
680 unsigned total_scratch;
681 unsigned total_shared;
682
683 unsigned program_size;
684
685 /** Does this program pull from any UBO or other constant buffers? */
686 bool has_ubo_pull;
687
688 /**
689 * Register where the thread expects to find input data from the URB
690 * (typically uniforms, followed by vertex or fragment attributes).
691 */
692 unsigned dispatch_grf_start_reg;
693
694 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
695
696 /* 32-bit identifiers for all push/pull parameters. These can be anything
697 * the driver wishes them to be; the core of the back-end compiler simply
698 * re-arranges them. The one restriction is that the bottom 2^16 values
699 * are reserved for builtins defined in the brw_param_builtin enum defined
700 * above.
701 */
702 uint32_t *param;
703 uint32_t *pull_param;
704
705 /* Whether shader uses atomic operations. */
706 bool uses_atomic_load_store;
707 };
708
709 static inline uint32_t *
710 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
711 unsigned nr_new_params)
712 {
713 unsigned old_nr_params = prog_data->nr_params;
714 prog_data->nr_params += nr_new_params;
715 prog_data->param = reralloc(ralloc_parent(prog_data->param),
716 prog_data->param, uint32_t,
717 prog_data->nr_params);
718 return prog_data->param + old_nr_params;
719 }
720
721 enum brw_barycentric_mode {
722 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
723 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
724 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
725 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
726 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
727 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
728 BRW_BARYCENTRIC_MODE_COUNT = 6
729 };
730 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
731 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
732 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
733 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
734
735 enum brw_pixel_shader_computed_depth_mode {
736 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
737 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
738 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
739 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
740 };
741
742 /* Data about a particular attempt to compile a program. Note that
743 * there can be many of these, each in a different GL state
744 * corresponding to a different brw_wm_prog_key struct, with different
745 * compiled programs.
746 */
747 struct brw_wm_prog_data {
748 struct brw_stage_prog_data base;
749
750 GLuint num_varying_inputs;
751
752 uint8_t reg_blocks_8;
753 uint8_t reg_blocks_16;
754 uint8_t reg_blocks_32;
755
756 uint8_t dispatch_grf_start_reg_16;
757 uint8_t dispatch_grf_start_reg_32;
758 uint32_t prog_offset_16;
759 uint32_t prog_offset_32;
760
761 struct {
762 /** @{
763 * surface indices the WM-specific surfaces
764 */
765 uint32_t render_target_read_start;
766 /** @} */
767 } binding_table;
768
769 uint8_t computed_depth_mode;
770 bool computed_stencil;
771
772 bool early_fragment_tests;
773 bool post_depth_coverage;
774 bool inner_coverage;
775 bool dispatch_8;
776 bool dispatch_16;
777 bool dispatch_32;
778 bool dual_src_blend;
779 bool persample_dispatch;
780 bool uses_pos_offset;
781 bool uses_omask;
782 bool uses_kill;
783 bool uses_src_depth;
784 bool uses_src_w;
785 bool uses_sample_mask;
786 bool has_render_target_reads;
787 bool has_side_effects;
788 bool pulls_bary;
789
790 bool contains_flat_varying;
791 bool contains_noperspective_varying;
792
793 /**
794 * Mask of which interpolation modes are required by the fragment shader.
795 * Used in hardware setup on gen6+.
796 */
797 uint32_t barycentric_interp_modes;
798
799 /**
800 * Mask of which FS inputs are marked flat by the shader source. This is
801 * needed for setting up 3DSTATE_SF/SBE.
802 */
803 uint32_t flat_inputs;
804
805 /**
806 * The FS inputs
807 */
808 uint64_t inputs;
809
810 /* Mapping of VUE slots to interpolation modes.
811 * Used by the Gen4-5 clip/sf/wm stages.
812 */
813 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
814
815 /**
816 * Map from gl_varying_slot to the position within the FS setup data
817 * payload where the varying's attribute vertex deltas should be delivered.
818 * For varying slots that are not used by the FS, the value is -1.
819 */
820 int urb_setup[VARYING_SLOT_MAX];
821
822 /**
823 * Cache structure into the urb_setup array above that contains the
824 * attribute numbers of active varyings out of urb_setup.
825 * The actual count is stored in urb_setup_attribs_count.
826 */
827 uint8_t urb_setup_attribs[VARYING_SLOT_MAX];
828 uint8_t urb_setup_attribs_count;
829 };
830
831 /** Returns the SIMD width corresponding to a given KSP index
832 *
833 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
834 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
835 * kernel start pointer (KSP) indices that is based on what dispatch widths
836 * are enabled. This function provides, effectively, the reverse mapping.
837 *
838 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
839 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
840 */
841 static inline unsigned
842 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
843 bool simd16_enabled, bool simd32_enabled)
844 {
845 /* This function strictly ignores contiguous dispatch */
846 switch (ksp_idx) {
847 case 0:
848 return simd8_enabled ? 8 :
849 (simd16_enabled && !simd32_enabled) ? 16 :
850 (simd32_enabled && !simd16_enabled) ? 32 : 0;
851 case 1:
852 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
853 case 2:
854 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
855 default:
856 unreachable("Invalid KSP index");
857 }
858 }
859
860 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
861 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
862 (wm_state)._16PixelDispatchEnable, \
863 (wm_state)._32PixelDispatchEnable)
864
865 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
866 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
867
868 static inline uint32_t
869 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
870 unsigned simd_width)
871 {
872 switch (simd_width) {
873 case 8: return 0;
874 case 16: return prog_data->prog_offset_16;
875 case 32: return prog_data->prog_offset_32;
876 default: return 0;
877 }
878 }
879
880 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
881 _brw_wm_prog_data_prog_offset(prog_data, \
882 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
883
884 static inline uint8_t
885 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
886 unsigned simd_width)
887 {
888 switch (simd_width) {
889 case 8: return prog_data->base.dispatch_grf_start_reg;
890 case 16: return prog_data->dispatch_grf_start_reg_16;
891 case 32: return prog_data->dispatch_grf_start_reg_32;
892 default: return 0;
893 }
894 }
895
896 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
897 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
898 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
899
900 static inline uint8_t
901 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
902 unsigned simd_width)
903 {
904 switch (simd_width) {
905 case 8: return prog_data->reg_blocks_8;
906 case 16: return prog_data->reg_blocks_16;
907 case 32: return prog_data->reg_blocks_32;
908 default: return 0;
909 }
910 }
911
912 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
913 _brw_wm_prog_data_reg_blocks(prog_data, \
914 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
915
916 struct brw_push_const_block {
917 unsigned dwords; /* Dword count, not reg aligned */
918 unsigned regs;
919 unsigned size; /* Bytes, register aligned */
920 };
921
922 struct brw_cs_prog_data {
923 struct brw_stage_prog_data base;
924
925 unsigned local_size[3];
926 unsigned slm_size;
927
928 /* Program offsets for the 8/16/32 SIMD variants. Multiple variants are
929 * kept when using variable group size, and the right one can only be
930 * decided at dispatch time.
931 */
932 unsigned prog_offset[3];
933
934 /* Bitmask indicating which program offsets are valid. */
935 unsigned prog_mask;
936
937 /* Bitmask indicating which programs have spilled. */
938 unsigned prog_spilled;
939
940 bool uses_barrier;
941 bool uses_num_work_groups;
942
943 struct {
944 struct brw_push_const_block cross_thread;
945 struct brw_push_const_block per_thread;
946 } push;
947
948 struct {
949 /** @{
950 * surface indices the CS-specific surfaces
951 */
952 uint32_t work_groups_start;
953 /** @} */
954 } binding_table;
955 };
956
957 static inline uint32_t
958 brw_cs_prog_data_prog_offset(const struct brw_cs_prog_data *prog_data,
959 unsigned dispatch_width)
960 {
961 assert(dispatch_width == 8 ||
962 dispatch_width == 16 ||
963 dispatch_width == 32);
964 const unsigned index = dispatch_width / 16;
965 assert(prog_data->prog_mask & (1 << index));
966 return prog_data->prog_offset[index];
967 }
968
969 /**
970 * Enum representing the i965-specific vertex results that don't correspond
971 * exactly to any element of gl_varying_slot. The values of this enum are
972 * assigned such that they don't conflict with gl_varying_slot.
973 */
974 typedef enum
975 {
976 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
977 BRW_VARYING_SLOT_PAD,
978 /**
979 * Technically this is not a varying but just a placeholder that
980 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
981 * builtin variable to be compiled correctly. see compile_sf_prog() for
982 * more info.
983 */
984 BRW_VARYING_SLOT_PNTC,
985 BRW_VARYING_SLOT_COUNT
986 } brw_varying_slot;
987
988 /**
989 * We always program SF to start reading at an offset of 1 (2 varying slots)
990 * from the start of the vertex URB entry. This causes it to skip:
991 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
992 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
993 */
994 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
995
996 /**
997 * Bitmask indicating which fragment shader inputs represent varyings (and
998 * hence have to be delivered to the fragment shader by the SF/SBE stage).
999 */
1000 #define BRW_FS_VARYING_INPUT_MASK \
1001 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
1002 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
1003
1004 /**
1005 * Data structure recording the relationship between the gl_varying_slot enum
1006 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
1007 * single octaword within the VUE (128 bits).
1008 *
1009 * Note that each BRW register contains 256 bits (2 octawords), so when
1010 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
1011 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
1012 * in a vertex shader), each register corresponds to a single VUE slot, since
1013 * it contains data for two separate vertices.
1014 */
1015 struct brw_vue_map {
1016 /**
1017 * Bitfield representing all varying slots that are (a) stored in this VUE
1018 * map, and (b) actually written by the shader. Does not include any of
1019 * the additional varying slots defined in brw_varying_slot.
1020 */
1021 uint64_t slots_valid;
1022
1023 /**
1024 * Is this VUE map for a separate shader pipeline?
1025 *
1026 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
1027 * without the linker having a chance to dead code eliminate unused varyings.
1028 *
1029 * This means that we have to use a fixed slot layout, based on the output's
1030 * location field, rather than assigning slots in a compact contiguous block.
1031 */
1032 bool separate;
1033
1034 /**
1035 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
1036 * not stored in a slot (because they are not written, or because
1037 * additional processing is applied before storing them in the VUE), the
1038 * value is -1.
1039 */
1040 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
1041
1042 /**
1043 * Map from VUE slot to gl_varying_slot value. For slots that do not
1044 * directly correspond to a gl_varying_slot, the value comes from
1045 * brw_varying_slot.
1046 *
1047 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
1048 */
1049 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
1050
1051 /**
1052 * Total number of VUE slots in use
1053 */
1054 int num_slots;
1055
1056 /**
1057 * Number of per-patch VUE slots. Only valid for tessellation control
1058 * shader outputs and tessellation evaluation shader inputs.
1059 */
1060 int num_per_patch_slots;
1061
1062 /**
1063 * Number of per-vertex VUE slots. Only valid for tessellation control
1064 * shader outputs and tessellation evaluation shader inputs.
1065 */
1066 int num_per_vertex_slots;
1067 };
1068
1069 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
1070
1071 /**
1072 * Convert a VUE slot number into a byte offset within the VUE.
1073 */
1074 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
1075 {
1076 return 16*slot;
1077 }
1078
1079 /**
1080 * Convert a vertex output (brw_varying_slot) into a byte offset within the
1081 * VUE.
1082 */
1083 static inline
1084 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
1085 {
1086 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
1087 }
1088
1089 void brw_compute_vue_map(const struct gen_device_info *devinfo,
1090 struct brw_vue_map *vue_map,
1091 uint64_t slots_valid,
1092 bool separate_shader,
1093 uint32_t pos_slots);
1094
1095 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
1096 uint64_t slots_valid,
1097 uint32_t is_patch);
1098
1099 /* brw_interpolation_map.c */
1100 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
1101 struct nir_shader *nir,
1102 struct brw_wm_prog_data *prog_data);
1103
1104 enum shader_dispatch_mode {
1105 DISPATCH_MODE_4X1_SINGLE = 0,
1106 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1107 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1108 DISPATCH_MODE_SIMD8 = 3,
1109
1110 DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
1111 DISPATCH_MODE_TCS_8_PATCH = 2,
1112 };
1113
1114 /**
1115 * @defgroup Tessellator parameter enumerations.
1116 *
1117 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1118 * as part of the tessellation evaluation shader.
1119 *
1120 * @{
1121 */
1122 enum brw_tess_partitioning {
1123 BRW_TESS_PARTITIONING_INTEGER = 0,
1124 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1125 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1126 };
1127
1128 enum brw_tess_output_topology {
1129 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1130 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1131 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1132 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1133 };
1134
1135 enum brw_tess_domain {
1136 BRW_TESS_DOMAIN_QUAD = 0,
1137 BRW_TESS_DOMAIN_TRI = 1,
1138 BRW_TESS_DOMAIN_ISOLINE = 2,
1139 };
1140 /** @} */
1141
1142 struct brw_vue_prog_data {
1143 struct brw_stage_prog_data base;
1144 struct brw_vue_map vue_map;
1145
1146 /** Should the hardware deliver input VUE handles for URB pull loads? */
1147 bool include_vue_handles;
1148
1149 GLuint urb_read_length;
1150 GLuint total_grf;
1151
1152 uint32_t clip_distance_mask;
1153 uint32_t cull_distance_mask;
1154
1155 /* Used for calculating urb partitions. In the VS, this is the size of the
1156 * URB entry used for both input and output to the thread. In the GS, this
1157 * is the size of the URB entry used for output.
1158 */
1159 GLuint urb_entry_size;
1160
1161 enum shader_dispatch_mode dispatch_mode;
1162 };
1163
1164 struct brw_vs_prog_data {
1165 struct brw_vue_prog_data base;
1166
1167 GLbitfield64 inputs_read;
1168 GLbitfield64 double_inputs_read;
1169
1170 unsigned nr_attribute_slots;
1171
1172 bool uses_vertexid;
1173 bool uses_instanceid;
1174 bool uses_is_indexed_draw;
1175 bool uses_firstvertex;
1176 bool uses_baseinstance;
1177 bool uses_drawid;
1178 };
1179
1180 struct brw_tcs_prog_data
1181 {
1182 struct brw_vue_prog_data base;
1183
1184 /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1185 bool include_primitive_id;
1186
1187 /** Number vertices in output patch */
1188 int instances;
1189
1190 /** Track patch count threshold */
1191 int patch_count_threshold;
1192 };
1193
1194
1195 struct brw_tes_prog_data
1196 {
1197 struct brw_vue_prog_data base;
1198
1199 enum brw_tess_partitioning partitioning;
1200 enum brw_tess_output_topology output_topology;
1201 enum brw_tess_domain domain;
1202 };
1203
1204 struct brw_gs_prog_data
1205 {
1206 struct brw_vue_prog_data base;
1207
1208 unsigned vertices_in;
1209
1210 /**
1211 * Size of an output vertex, measured in HWORDS (32 bytes).
1212 */
1213 unsigned output_vertex_size_hwords;
1214
1215 unsigned output_topology;
1216
1217 /**
1218 * Size of the control data (cut bits or StreamID bits), in hwords (32
1219 * bytes). 0 if there is no control data.
1220 */
1221 unsigned control_data_header_size_hwords;
1222
1223 /**
1224 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1225 * if the control data is StreamID bits, or
1226 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1227 * Ignored if control_data_header_size is 0.
1228 */
1229 unsigned control_data_format;
1230
1231 bool include_primitive_id;
1232
1233 /**
1234 * The number of vertices emitted, if constant - otherwise -1.
1235 */
1236 int static_vertex_count;
1237
1238 int invocations;
1239
1240 /**
1241 * Gen6: Provoking vertex convention for odd-numbered triangles
1242 * in tristrips.
1243 */
1244 GLuint pv_first:1;
1245
1246 /**
1247 * Gen6: Number of varyings that are output to transform feedback.
1248 */
1249 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1250
1251 /**
1252 * Gen6: Map from the index of a transform feedback binding table entry to the
1253 * gl_varying_slot that should be streamed out through that binding table
1254 * entry.
1255 */
1256 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1257
1258 /**
1259 * Gen6: Map from the index of a transform feedback binding table entry to the
1260 * swizzles that should be used when streaming out data through that
1261 * binding table entry.
1262 */
1263 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1264 };
1265
1266 struct brw_sf_prog_data {
1267 uint32_t urb_read_length;
1268 uint32_t total_grf;
1269
1270 /* Each vertex may have upto 12 attributes, 4 components each,
1271 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1272 * rows.
1273 *
1274 * Actually we use 4 for each, so call it 12 rows.
1275 */
1276 unsigned urb_entry_size;
1277 };
1278
1279 struct brw_clip_prog_data {
1280 uint32_t curb_read_length; /* user planes? */
1281 uint32_t clip_mode;
1282 uint32_t urb_read_length;
1283 uint32_t total_grf;
1284 };
1285
1286 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1287 union brw_any_prog_data {
1288 struct brw_stage_prog_data base;
1289 struct brw_vue_prog_data vue;
1290 struct brw_vs_prog_data vs;
1291 struct brw_tcs_prog_data tcs;
1292 struct brw_tes_prog_data tes;
1293 struct brw_gs_prog_data gs;
1294 struct brw_wm_prog_data wm;
1295 struct brw_cs_prog_data cs;
1296 };
1297
1298 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1299 static inline struct brw_##stage##_prog_data * \
1300 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1301 { \
1302 return (struct brw_##stage##_prog_data *) prog_data; \
1303 } \
1304 static inline const struct brw_##stage##_prog_data * \
1305 brw_##stage##_prog_data_const(const struct brw_stage_prog_data *prog_data) \
1306 { \
1307 return (const struct brw_##stage##_prog_data *) prog_data; \
1308 }
1309 DEFINE_PROG_DATA_DOWNCAST(vue)
1310 DEFINE_PROG_DATA_DOWNCAST(vs)
1311 DEFINE_PROG_DATA_DOWNCAST(tcs)
1312 DEFINE_PROG_DATA_DOWNCAST(tes)
1313 DEFINE_PROG_DATA_DOWNCAST(gs)
1314 DEFINE_PROG_DATA_DOWNCAST(wm)
1315 DEFINE_PROG_DATA_DOWNCAST(cs)
1316 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1317 DEFINE_PROG_DATA_DOWNCAST(clip)
1318 DEFINE_PROG_DATA_DOWNCAST(sf)
1319 #undef DEFINE_PROG_DATA_DOWNCAST
1320
1321 struct brw_compile_stats {
1322 uint32_t dispatch_width; /**< 0 for vec4 */
1323 uint32_t instructions;
1324 uint32_t sends;
1325 uint32_t loops;
1326 uint32_t cycles;
1327 uint32_t spills;
1328 uint32_t fills;
1329 };
1330
1331 /** @} */
1332
1333 struct brw_compiler *
1334 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1335
1336 /**
1337 * Returns a compiler configuration for use with disk shader cache
1338 *
1339 * This value only needs to change for settings that can cause different
1340 * program generation between two runs on the same hardware.
1341 *
1342 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1343 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1344 */
1345 uint64_t
1346 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1347
1348 unsigned
1349 brw_prog_data_size(gl_shader_stage stage);
1350
1351 unsigned
1352 brw_prog_key_size(gl_shader_stage stage);
1353
1354 void
1355 brw_prog_key_set_id(union brw_any_prog_key *key, gl_shader_stage, unsigned id);
1356
1357 /**
1358 * Compile a vertex shader.
1359 *
1360 * Returns the final assembly and the program's size.
1361 */
1362 const unsigned *
1363 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1364 void *mem_ctx,
1365 const struct brw_vs_prog_key *key,
1366 struct brw_vs_prog_data *prog_data,
1367 struct nir_shader *shader,
1368 int shader_time_index,
1369 struct brw_compile_stats *stats,
1370 char **error_str);
1371
1372 /**
1373 * Compile a tessellation control shader.
1374 *
1375 * Returns the final assembly and the program's size.
1376 */
1377 const unsigned *
1378 brw_compile_tcs(const struct brw_compiler *compiler,
1379 void *log_data,
1380 void *mem_ctx,
1381 const struct brw_tcs_prog_key *key,
1382 struct brw_tcs_prog_data *prog_data,
1383 struct nir_shader *nir,
1384 int shader_time_index,
1385 struct brw_compile_stats *stats,
1386 char **error_str);
1387
1388 /**
1389 * Compile a tessellation evaluation shader.
1390 *
1391 * Returns the final assembly and the program's size.
1392 */
1393 const unsigned *
1394 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1395 void *mem_ctx,
1396 const struct brw_tes_prog_key *key,
1397 const struct brw_vue_map *input_vue_map,
1398 struct brw_tes_prog_data *prog_data,
1399 struct nir_shader *shader,
1400 int shader_time_index,
1401 struct brw_compile_stats *stats,
1402 char **error_str);
1403
1404 /**
1405 * Compile a vertex shader.
1406 *
1407 * Returns the final assembly and the program's size.
1408 */
1409 const unsigned *
1410 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1411 void *mem_ctx,
1412 const struct brw_gs_prog_key *key,
1413 struct brw_gs_prog_data *prog_data,
1414 struct nir_shader *shader,
1415 struct gl_program *prog,
1416 int shader_time_index,
1417 struct brw_compile_stats *stats,
1418 char **error_str);
1419
1420 /**
1421 * Compile a strips and fans shader.
1422 *
1423 * This is a fixed-function shader determined entirely by the shader key and
1424 * a VUE map.
1425 *
1426 * Returns the final assembly and the program's size.
1427 */
1428 const unsigned *
1429 brw_compile_sf(const struct brw_compiler *compiler,
1430 void *mem_ctx,
1431 const struct brw_sf_prog_key *key,
1432 struct brw_sf_prog_data *prog_data,
1433 struct brw_vue_map *vue_map,
1434 unsigned *final_assembly_size);
1435
1436 /**
1437 * Compile a clipper shader.
1438 *
1439 * This is a fixed-function shader determined entirely by the shader key and
1440 * a VUE map.
1441 *
1442 * Returns the final assembly and the program's size.
1443 */
1444 const unsigned *
1445 brw_compile_clip(const struct brw_compiler *compiler,
1446 void *mem_ctx,
1447 const struct brw_clip_prog_key *key,
1448 struct brw_clip_prog_data *prog_data,
1449 struct brw_vue_map *vue_map,
1450 unsigned *final_assembly_size);
1451
1452 /**
1453 * Compile a fragment shader.
1454 *
1455 * Returns the final assembly and the program's size.
1456 */
1457 const unsigned *
1458 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1459 void *mem_ctx,
1460 const struct brw_wm_prog_key *key,
1461 struct brw_wm_prog_data *prog_data,
1462 struct nir_shader *shader,
1463 int shader_time_index8,
1464 int shader_time_index16,
1465 int shader_time_index32,
1466 bool allow_spilling,
1467 bool use_rep_send, struct brw_vue_map *vue_map,
1468 struct brw_compile_stats *stats, /**< Array of three stats */
1469 char **error_str);
1470
1471 /**
1472 * Compile a compute shader.
1473 *
1474 * Returns the final assembly and the program's size.
1475 */
1476 const unsigned *
1477 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1478 void *mem_ctx,
1479 const struct brw_cs_prog_key *key,
1480 struct brw_cs_prog_data *prog_data,
1481 const struct nir_shader *shader,
1482 int shader_time_index,
1483 struct brw_compile_stats *stats,
1484 char **error_str);
1485
1486 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1487 gl_shader_stage stage,
1488 const struct brw_base_prog_key *old_key,
1489 const struct brw_base_prog_key *key);
1490
1491 static inline uint32_t
1492 encode_slm_size(unsigned gen, uint32_t bytes)
1493 {
1494 uint32_t slm_size = 0;
1495
1496 /* Shared Local Memory is specified as powers of two, and encoded in
1497 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1498 *
1499 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1500 * -------------------------------------------------------------------
1501 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1502 * -------------------------------------------------------------------
1503 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1504 */
1505 assert(bytes <= 64 * 1024);
1506
1507 if (bytes > 0) {
1508 /* Shared Local Memory Size is specified as powers of two. */
1509 slm_size = util_next_power_of_two(bytes);
1510
1511 if (gen >= 9) {
1512 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1513 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1514 } else {
1515 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1516 slm_size = MAX2(slm_size, 4096) / 4096;
1517 }
1518 }
1519
1520 return slm_size;
1521 }
1522
1523 unsigned
1524 brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
1525 unsigned threads);
1526
1527 unsigned
1528 brw_cs_simd_size_for_group_size(const struct gen_device_info *devinfo,
1529 const struct brw_cs_prog_data *cs_prog_data,
1530 unsigned group_size);
1531
1532 /**
1533 * Calculate the RightExecutionMask field used in GPGPU_WALKER.
1534 */
1535 static inline unsigned
1536 brw_cs_right_mask(unsigned group_size, unsigned simd_size)
1537 {
1538 const uint32_t remainder = group_size & (simd_size - 1);
1539 if (remainder > 0)
1540 return ~0u >> (32 - remainder);
1541 else
1542 return ~0u >> (32 - simd_size);
1543 }
1544
1545 /**
1546 * Return true if the given shader stage is dispatched contiguously by the
1547 * relevant fixed function starting from channel 0 of the SIMD thread, which
1548 * implies that the dispatch mask of a thread can be assumed to have the form
1549 * '2^n - 1' for some n.
1550 */
1551 static inline bool
1552 brw_stage_has_packed_dispatch(ASSERTED const struct gen_device_info *devinfo,
1553 gl_shader_stage stage,
1554 const struct brw_stage_prog_data *prog_data)
1555 {
1556 /* The code below makes assumptions about the hardware's thread dispatch
1557 * behavior that could be proven wrong in future generations -- Make sure
1558 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1559 * the NIR front-end before changing this assertion.
1560 */
1561 assert(devinfo->gen <= 12);
1562
1563 switch (stage) {
1564 case MESA_SHADER_FRAGMENT: {
1565 /* The PSD discards subspans coming in with no lit samples, which in the
1566 * per-pixel shading case implies that each subspan will either be fully
1567 * lit (due to the VMask being used to allow derivative computations),
1568 * or not dispatched at all. In per-sample dispatch mode individual
1569 * samples from the same subspan have a fixed relative location within
1570 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1571 * general and we should return false.
1572 */
1573 const struct brw_wm_prog_data *wm_prog_data =
1574 (const struct brw_wm_prog_data *)prog_data;
1575 return !wm_prog_data->persample_dispatch;
1576 }
1577 case MESA_SHADER_COMPUTE:
1578 /* Compute shaders will be spawned with either a fully enabled dispatch
1579 * mask or with whatever bottom/right execution mask was given to the
1580 * GPGPU walker command to be used along the workgroup edges -- In both
1581 * cases the dispatch mask is required to be tightly packed for our
1582 * invocation index calculations to work.
1583 */
1584 return true;
1585 default:
1586 /* Most remaining fixed functions are limited to use a packed dispatch
1587 * mask due to the hardware representation of the dispatch mask as a
1588 * single counter representing the number of enabled channels.
1589 */
1590 return true;
1591 }
1592 }
1593
1594 /**
1595 * Computes the first varying slot in the URB produced by the previous stage
1596 * that is used in the next stage. We do this by testing the varying slots in
1597 * the previous stage's vue map against the inputs read in the next stage.
1598 *
1599 * Note that:
1600 *
1601 * - Each URB offset contains two varying slots and we can only skip a
1602 * full offset if both slots are unused, so the value we return here is always
1603 * rounded down to the closest multiple of two.
1604 *
1605 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1606 * part of the vue header, so if these are read we can't skip anything.
1607 */
1608 static inline int
1609 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1610 const struct brw_vue_map *prev_stage_vue_map)
1611 {
1612 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1613 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1614 int varying = prev_stage_vue_map->slot_to_varying[i];
1615 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1616 return ROUND_DOWN_TO(i, 2);
1617 }
1618 }
1619
1620 return 0;
1621 }
1622
1623 #ifdef __cplusplus
1624 } /* extern "C" */
1625 #endif
1626
1627 #endif /* BRW_COMPILER_H */