i965: Delete brw_wm_prog_key::drawable_height.
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "common/gen_device_info.h"
29 #include "main/mtypes.h"
30 #include "main/macros.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
97
98 /**
99 * Apply workarounds for SIN and COS output range problems.
100 * This can negatively impact performance.
101 */
102 bool precise_trig;
103
104 /**
105 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
106 * Base Address? (If not, it's a normal GPU address.)
107 */
108 bool constant_buffer_0_is_relative;
109
110 /**
111 * Whether or not the driver supports pull constants. If not, the compiler
112 * will attempt to push everything.
113 */
114 bool supports_pull_constants;
115 };
116
117
118 /**
119 * Program key structures.
120 *
121 * When drawing, we look for the currently bound shaders in the program
122 * cache. This is essentially a hash table lookup, and these are the keys.
123 *
124 * Sometimes OpenGL features specified as state need to be simulated via
125 * shader code, due to a mismatch between the API and the hardware. This
126 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
127 * in the program key so it's considered when searching for a program. If
128 * we haven't seen a particular combination before, we have to recompile a
129 * new specialized version.
130 *
131 * Shader compilation should not look up state in gl_context directly, but
132 * instead use the copy in the program key. This guarantees recompiles will
133 * happen correctly.
134 *
135 * @{
136 */
137
138 enum PACKED gen6_gather_sampler_wa {
139 WA_SIGN = 1, /* whether we need to sign extend */
140 WA_8BIT = 2, /* if we have an 8bit format needing wa */
141 WA_16BIT = 4, /* if we have a 16bit format needing wa */
142 };
143
144 /**
145 * Sampler information needed by VS, WM, and GS program cache keys.
146 */
147 struct brw_sampler_prog_key_data {
148 /**
149 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
150 */
151 uint16_t swizzles[MAX_SAMPLERS];
152
153 uint32_t gl_clamp_mask[3];
154
155 /**
156 * For RG32F, gather4's channel select is broken.
157 */
158 uint32_t gather_channel_quirk_mask;
159
160 /**
161 * Whether this sampler uses the compressed multisample surface layout.
162 */
163 uint32_t compressed_multisample_layout_mask;
164
165 /**
166 * Whether this sampler is using 16x multisampling. If so fetching from
167 * this sampler will be handled with a different instruction, ld2dms_w
168 * instead of ld2dms.
169 */
170 uint32_t msaa_16;
171
172 /**
173 * For Sandybridge, which shader w/a we need for gather quirks.
174 */
175 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
176
177 /**
178 * Texture units that have a YUV image bound.
179 */
180 uint32_t y_u_v_image_mask;
181 uint32_t y_uv_image_mask;
182 uint32_t yx_xuxv_image_mask;
183 uint32_t xy_uxvx_image_mask;
184 };
185
186 /**
187 * The VF can't natively handle certain types of attributes, such as GL_FIXED
188 * or most 10_10_10_2 types. These flags enable various VS workarounds to
189 * "fix" attributes at the beginning of shaders.
190 */
191 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
192 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
193 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
194 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
195 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
196
197 /**
198 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
199 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
200 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
201 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
202 */
203 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
204 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
205
206 /** The program key for Vertex Shaders. */
207 struct brw_vs_prog_key {
208 unsigned program_string_id;
209
210 /**
211 * Per-attribute workaround flags
212 *
213 * For each attribute, a combination of BRW_ATTRIB_WA_*.
214 *
215 * For OpenGL, where we expose a maximum of 16 user input atttributes
216 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
217 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
218 * expose up to 28 user input vertex attributes that are mapped to slots
219 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
220 * enough to hold this many slots.
221 */
222 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
223
224 bool copy_edgeflag:1;
225
226 bool clamp_vertex_color:1;
227
228 /**
229 * How many user clipping planes are being uploaded to the vertex shader as
230 * push constants.
231 *
232 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
233 * clip distances.
234 */
235 unsigned nr_userclip_plane_consts:4;
236
237 /**
238 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
239 * are going to be replaced with point coordinates (as a consequence of a
240 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
241 * our SF thread requires exact matching between VS outputs and FS inputs,
242 * these texture coordinates will need to be unconditionally included in
243 * the VUE, even if they aren't written by the vertex shader.
244 */
245 uint8_t point_coord_replace;
246
247 struct brw_sampler_prog_key_data tex;
248 };
249
250 /** The program key for Tessellation Control Shaders. */
251 struct brw_tcs_prog_key
252 {
253 unsigned program_string_id;
254
255 GLenum tes_primitive_mode;
256
257 unsigned input_vertices;
258
259 /** A bitfield of per-patch outputs written. */
260 uint32_t patch_outputs_written;
261
262 /** A bitfield of per-vertex outputs written. */
263 uint64_t outputs_written;
264
265 bool quads_workaround;
266
267 struct brw_sampler_prog_key_data tex;
268 };
269
270 /** The program key for Tessellation Evaluation Shaders. */
271 struct brw_tes_prog_key
272 {
273 unsigned program_string_id;
274
275 /** A bitfield of per-patch inputs read. */
276 uint32_t patch_inputs_read;
277
278 /** A bitfield of per-vertex inputs read. */
279 uint64_t inputs_read;
280
281 struct brw_sampler_prog_key_data tex;
282 };
283
284 /** The program key for Geometry Shaders. */
285 struct brw_gs_prog_key
286 {
287 unsigned program_string_id;
288
289 struct brw_sampler_prog_key_data tex;
290 };
291
292 enum brw_sf_primitive {
293 BRW_SF_PRIM_POINTS = 0,
294 BRW_SF_PRIM_LINES = 1,
295 BRW_SF_PRIM_TRIANGLES = 2,
296 BRW_SF_PRIM_UNFILLED_TRIS = 3,
297 };
298
299 struct brw_sf_prog_key {
300 uint64_t attrs;
301 bool contains_flat_varying;
302 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
303 uint8_t point_sprite_coord_replace;
304 enum brw_sf_primitive primitive:2;
305 bool do_twoside_color:1;
306 bool frontface_ccw:1;
307 bool do_point_sprite:1;
308 bool do_point_coord:1;
309 bool sprite_origin_lower_left:1;
310 bool userclip_active:1;
311 };
312
313 enum brw_clip_mode {
314 BRW_CLIP_MODE_NORMAL = 0,
315 BRW_CLIP_MODE_CLIP_ALL = 1,
316 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
317 BRW_CLIP_MODE_REJECT_ALL = 3,
318 BRW_CLIP_MODE_ACCEPT_ALL = 4,
319 BRW_CLIP_MODE_KERNEL_CLIP = 5,
320 };
321
322 enum brw_clip_fill_mode {
323 BRW_CLIP_FILL_MODE_LINE = 0,
324 BRW_CLIP_FILL_MODE_POINT = 1,
325 BRW_CLIP_FILL_MODE_FILL = 2,
326 BRW_CLIP_FILL_MODE_CULL = 3,
327 };
328
329 /* Note that if unfilled primitives are being emitted, we have to fix
330 * up polygon offset and flatshading at this point:
331 */
332 struct brw_clip_prog_key {
333 uint64_t attrs;
334 bool contains_flat_varying;
335 bool contains_noperspective_varying;
336 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
337 unsigned primitive:4;
338 unsigned nr_userclip:4;
339 bool pv_first:1;
340 bool do_unfilled:1;
341 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
342 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
343 bool offset_cw:1;
344 bool offset_ccw:1;
345 bool copy_bfc_cw:1;
346 bool copy_bfc_ccw:1;
347 enum brw_clip_mode clip_mode:3;
348
349 float offset_factor;
350 float offset_units;
351 float offset_clamp;
352 };
353
354 /* A big lookup table is used to figure out which and how many
355 * additional regs will inserted before the main payload in the WM
356 * program execution. These mainly relate to depth and stencil
357 * processing and the early-depth-test optimization.
358 */
359 enum brw_wm_iz_bits {
360 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
361 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
362 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
363 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
364 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
365 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
366 BRW_WM_IZ_BIT_MAX = 0x40
367 };
368
369 enum brw_wm_aa_enable {
370 BRW_WM_AA_NEVER,
371 BRW_WM_AA_SOMETIMES,
372 BRW_WM_AA_ALWAYS
373 };
374
375 /** The program key for Fragment/Pixel Shaders. */
376 struct brw_wm_prog_key {
377 /* Some collection of BRW_WM_IZ_* */
378 uint8_t iz_lookup;
379 bool stats_wm:1;
380 bool flat_shade:1;
381 unsigned nr_color_regions:5;
382 bool replicate_alpha:1;
383 bool clamp_fragment_color:1;
384 bool persample_interp:1;
385 bool multisample_fbo:1;
386 bool frag_coord_adds_sample_pos:1;
387 enum brw_wm_aa_enable line_aa:2;
388 bool high_quality_derivatives:1;
389 bool force_dual_color_blend:1;
390 bool coherent_fb_fetch:1;
391
392 uint64_t input_slots_valid;
393 unsigned program_string_id;
394 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
395 float alpha_test_ref;
396
397 struct brw_sampler_prog_key_data tex;
398 };
399
400 struct brw_cs_prog_key {
401 uint32_t program_string_id;
402 struct brw_sampler_prog_key_data tex;
403 };
404
405 /*
406 * Image metadata structure as laid out in the shader parameter
407 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
408 * able to use them. That's okay because the padding and any unused
409 * entries [most of them except when we're doing untyped surface
410 * access] will be removed by the uniform packing pass.
411 */
412 #define BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET 0
413 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 4
414 #define BRW_IMAGE_PARAM_SIZE_OFFSET 8
415 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 12
416 #define BRW_IMAGE_PARAM_TILING_OFFSET 16
417 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 20
418 #define BRW_IMAGE_PARAM_SIZE 24
419
420 struct brw_image_param {
421 /** Surface binding table index. */
422 uint32_t surface_idx;
423
424 /** Offset applied to the X and Y surface coordinates. */
425 uint32_t offset[2];
426
427 /** Surface X, Y and Z dimensions. */
428 uint32_t size[3];
429
430 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
431 * pixels, vertical slice stride in pixels.
432 */
433 uint32_t stride[4];
434
435 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
436 uint32_t tiling[3];
437
438 /**
439 * Right shift to apply for bit 6 address swizzling. Two different
440 * swizzles can be specified and will be applied one after the other. The
441 * resulting address will be:
442 *
443 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
444 * (addr >> swizzling[1])))
445 *
446 * Use \c 0xff if any of the swizzles is not required.
447 */
448 uint32_t swizzling[2];
449 };
450
451 /** Max number of render targets in a shader */
452 #define BRW_MAX_DRAW_BUFFERS 8
453
454 /**
455 * Max number of binding table entries used for stream output.
456 *
457 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
458 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
459 *
460 * On Gen6, the size of transform feedback data is limited not by the number
461 * of components but by the number of binding table entries we set aside. We
462 * use one binding table entry for a float, one entry for a vector, and one
463 * entry per matrix column. Since the only way we can communicate our
464 * transform feedback capabilities to the client is via
465 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
466 * worst case, in which all the varyings are floats, so we use up one binding
467 * table entry per component. Therefore we need to set aside at least 64
468 * binding table entries for use by transform feedback.
469 *
470 * Note: since we don't currently pack varyings, it is currently impossible
471 * for the client to actually use up all of these binding table entries--if
472 * all of their varyings were floats, they would run out of varying slots and
473 * fail to link. But that's a bug, so it seems prudent to go ahead and
474 * allocate the number of binding table entries we will need once the bug is
475 * fixed.
476 */
477 #define BRW_MAX_SOL_BINDINGS 64
478
479 /**
480 * Binding table index for the first gen6 SOL binding.
481 */
482 #define BRW_GEN6_SOL_BINDING_START 0
483
484 /**
485 * Stride in bytes between shader_time entries.
486 *
487 * We separate entries by a cacheline to reduce traffic between EUs writing to
488 * different entries.
489 */
490 #define BRW_SHADER_TIME_STRIDE 64
491
492 struct brw_ubo_range
493 {
494 uint16_t block;
495 uint8_t start;
496 uint8_t length;
497 };
498
499 /* We reserve the first 2^16 values for builtins */
500 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
501
502 enum brw_param_builtin {
503 BRW_PARAM_BUILTIN_ZERO,
504
505 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
506 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
507 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
508 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
509 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
510 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
511 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
512 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
513 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
514 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
515 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
516 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
517 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
518 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
519 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
520 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
521 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
522 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
523 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
524 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
525 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
526 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
527 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
528 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
529 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
530 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
531 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
532 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
533 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
534 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
535 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
536 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
537
538 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
539 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
540 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
541 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
542 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
543 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
544
545 BRW_PARAM_BUILTIN_THREAD_LOCAL_ID,
546 };
547
548 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
549 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
550
551 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
552 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
553 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
554
555 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
556 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
557
558 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
559 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
560
561 struct brw_stage_prog_data {
562 struct {
563 /** size of our binding table. */
564 uint32_t size_bytes;
565
566 /** @{
567 * surface indices for the various groups of surfaces
568 */
569 uint32_t pull_constants_start;
570 uint32_t texture_start;
571 uint32_t gather_texture_start;
572 uint32_t ubo_start;
573 uint32_t ssbo_start;
574 uint32_t abo_start;
575 uint32_t image_start;
576 uint32_t shader_time_start;
577 uint32_t plane_start[3];
578 /** @} */
579 } binding_table;
580
581 struct brw_ubo_range ubo_ranges[4];
582
583 GLuint nr_params; /**< number of float params/constants */
584 GLuint nr_pull_params;
585
586 unsigned curb_read_length;
587 unsigned total_scratch;
588 unsigned total_shared;
589
590 /**
591 * Register where the thread expects to find input data from the URB
592 * (typically uniforms, followed by vertex or fragment attributes).
593 */
594 unsigned dispatch_grf_start_reg;
595
596 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
597
598 /* 32-bit identifiers for all push/pull parameters. These can be anything
599 * the driver wishes them to be; the core of the back-end compiler simply
600 * re-arranges them. The one restriction is that the bottom 2^16 values
601 * are reserved for builtins defined in the brw_param_builtin enum defined
602 * above.
603 */
604 uint32_t *param;
605 uint32_t *pull_param;
606 };
607
608 static inline uint32_t *
609 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
610 unsigned nr_new_params)
611 {
612 unsigned old_nr_params = prog_data->nr_params;
613 prog_data->nr_params += nr_new_params;
614 prog_data->param = reralloc(ralloc_parent(prog_data->param),
615 prog_data->param, uint32_t,
616 prog_data->nr_params);
617 return prog_data->param + old_nr_params;
618 }
619
620 static inline void
621 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
622 unsigned surf_index)
623 {
624 /* A binding table index is 8 bits and the top 3 values are reserved for
625 * special things (stateless and SLM).
626 */
627 assert(surf_index <= 252);
628
629 prog_data->binding_table.size_bytes =
630 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
631 }
632
633 enum brw_barycentric_mode {
634 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
635 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
636 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
637 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
638 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
639 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
640 BRW_BARYCENTRIC_MODE_COUNT = 6
641 };
642 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
643 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
644 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
645 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
646
647 enum brw_pixel_shader_computed_depth_mode {
648 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
649 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
650 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
651 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
652 };
653
654 /* Data about a particular attempt to compile a program. Note that
655 * there can be many of these, each in a different GL state
656 * corresponding to a different brw_wm_prog_key struct, with different
657 * compiled programs.
658 */
659 struct brw_wm_prog_data {
660 struct brw_stage_prog_data base;
661
662 GLuint num_varying_inputs;
663
664 uint8_t reg_blocks_0;
665 uint8_t reg_blocks_2;
666
667 uint8_t dispatch_grf_start_reg_2;
668 uint32_t prog_offset_2;
669
670 struct {
671 /** @{
672 * surface indices the WM-specific surfaces
673 */
674 uint32_t render_target_start;
675 uint32_t render_target_read_start;
676 /** @} */
677 } binding_table;
678
679 uint8_t computed_depth_mode;
680 bool computed_stencil;
681
682 bool early_fragment_tests;
683 bool post_depth_coverage;
684 bool inner_coverage;
685 bool dispatch_8;
686 bool dispatch_16;
687 bool dual_src_blend;
688 bool persample_dispatch;
689 bool uses_pos_offset;
690 bool uses_omask;
691 bool uses_kill;
692 bool uses_src_depth;
693 bool uses_src_w;
694 bool uses_sample_mask;
695 bool has_render_target_reads;
696 bool has_side_effects;
697 bool pulls_bary;
698
699 bool contains_flat_varying;
700 bool contains_noperspective_varying;
701
702 /**
703 * Mask of which interpolation modes are required by the fragment shader.
704 * Used in hardware setup on gen6+.
705 */
706 uint32_t barycentric_interp_modes;
707
708 /**
709 * Mask of which FS inputs are marked flat by the shader source. This is
710 * needed for setting up 3DSTATE_SF/SBE.
711 */
712 uint32_t flat_inputs;
713
714 /* Mapping of VUE slots to interpolation modes.
715 * Used by the Gen4-5 clip/sf/wm stages.
716 */
717 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
718
719 /**
720 * Map from gl_varying_slot to the position within the FS setup data
721 * payload where the varying's attribute vertex deltas should be delivered.
722 * For varying slots that are not used by the FS, the value is -1.
723 */
724 int urb_setup[VARYING_SLOT_MAX];
725 };
726
727 struct brw_push_const_block {
728 unsigned dwords; /* Dword count, not reg aligned */
729 unsigned regs;
730 unsigned size; /* Bytes, register aligned */
731 };
732
733 struct brw_cs_prog_data {
734 struct brw_stage_prog_data base;
735
736 GLuint dispatch_grf_start_reg_16;
737 unsigned local_size[3];
738 unsigned simd_size;
739 unsigned threads;
740 bool uses_barrier;
741 bool uses_num_work_groups;
742
743 struct {
744 struct brw_push_const_block cross_thread;
745 struct brw_push_const_block per_thread;
746 struct brw_push_const_block total;
747 } push;
748
749 struct {
750 /** @{
751 * surface indices the CS-specific surfaces
752 */
753 uint32_t work_groups_start;
754 /** @} */
755 } binding_table;
756 };
757
758 /**
759 * Enum representing the i965-specific vertex results that don't correspond
760 * exactly to any element of gl_varying_slot. The values of this enum are
761 * assigned such that they don't conflict with gl_varying_slot.
762 */
763 typedef enum
764 {
765 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
766 BRW_VARYING_SLOT_PAD,
767 /**
768 * Technically this is not a varying but just a placeholder that
769 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
770 * builtin variable to be compiled correctly. see compile_sf_prog() for
771 * more info.
772 */
773 BRW_VARYING_SLOT_PNTC,
774 BRW_VARYING_SLOT_COUNT
775 } brw_varying_slot;
776
777 /**
778 * We always program SF to start reading at an offset of 1 (2 varying slots)
779 * from the start of the vertex URB entry. This causes it to skip:
780 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
781 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
782 */
783 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
784
785 /**
786 * Bitmask indicating which fragment shader inputs represent varyings (and
787 * hence have to be delivered to the fragment shader by the SF/SBE stage).
788 */
789 #define BRW_FS_VARYING_INPUT_MASK \
790 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
791 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
792
793 /**
794 * Data structure recording the relationship between the gl_varying_slot enum
795 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
796 * single octaword within the VUE (128 bits).
797 *
798 * Note that each BRW register contains 256 bits (2 octawords), so when
799 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
800 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
801 * in a vertex shader), each register corresponds to a single VUE slot, since
802 * it contains data for two separate vertices.
803 */
804 struct brw_vue_map {
805 /**
806 * Bitfield representing all varying slots that are (a) stored in this VUE
807 * map, and (b) actually written by the shader. Does not include any of
808 * the additional varying slots defined in brw_varying_slot.
809 */
810 uint64_t slots_valid;
811
812 /**
813 * Is this VUE map for a separate shader pipeline?
814 *
815 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
816 * without the linker having a chance to dead code eliminate unused varyings.
817 *
818 * This means that we have to use a fixed slot layout, based on the output's
819 * location field, rather than assigning slots in a compact contiguous block.
820 */
821 bool separate;
822
823 /**
824 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
825 * not stored in a slot (because they are not written, or because
826 * additional processing is applied before storing them in the VUE), the
827 * value is -1.
828 */
829 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
830
831 /**
832 * Map from VUE slot to gl_varying_slot value. For slots that do not
833 * directly correspond to a gl_varying_slot, the value comes from
834 * brw_varying_slot.
835 *
836 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
837 */
838 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
839
840 /**
841 * Total number of VUE slots in use
842 */
843 int num_slots;
844
845 /**
846 * Number of per-patch VUE slots. Only valid for tessellation control
847 * shader outputs and tessellation evaluation shader inputs.
848 */
849 int num_per_patch_slots;
850
851 /**
852 * Number of per-vertex VUE slots. Only valid for tessellation control
853 * shader outputs and tessellation evaluation shader inputs.
854 */
855 int num_per_vertex_slots;
856 };
857
858 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
859
860 /**
861 * Convert a VUE slot number into a byte offset within the VUE.
862 */
863 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
864 {
865 return 16*slot;
866 }
867
868 /**
869 * Convert a vertex output (brw_varying_slot) into a byte offset within the
870 * VUE.
871 */
872 static inline
873 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
874 {
875 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
876 }
877
878 void brw_compute_vue_map(const struct gen_device_info *devinfo,
879 struct brw_vue_map *vue_map,
880 uint64_t slots_valid,
881 bool separate_shader);
882
883 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
884 uint64_t slots_valid,
885 uint32_t is_patch);
886
887 /* brw_interpolation_map.c */
888 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
889 struct nir_shader *nir,
890 struct brw_wm_prog_data *prog_data,
891 const struct gen_device_info *devinfo);
892
893 enum shader_dispatch_mode {
894 DISPATCH_MODE_4X1_SINGLE = 0,
895 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
896 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
897 DISPATCH_MODE_SIMD8 = 3,
898 };
899
900 /**
901 * @defgroup Tessellator parameter enumerations.
902 *
903 * These correspond to the hardware values in 3DSTATE_TE, and are provided
904 * as part of the tessellation evaluation shader.
905 *
906 * @{
907 */
908 enum brw_tess_partitioning {
909 BRW_TESS_PARTITIONING_INTEGER = 0,
910 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
911 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
912 };
913
914 enum brw_tess_output_topology {
915 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
916 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
917 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
918 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
919 };
920
921 enum brw_tess_domain {
922 BRW_TESS_DOMAIN_QUAD = 0,
923 BRW_TESS_DOMAIN_TRI = 1,
924 BRW_TESS_DOMAIN_ISOLINE = 2,
925 };
926 /** @} */
927
928 struct brw_vue_prog_data {
929 struct brw_stage_prog_data base;
930 struct brw_vue_map vue_map;
931
932 /** Should the hardware deliver input VUE handles for URB pull loads? */
933 bool include_vue_handles;
934
935 GLuint urb_read_length;
936 GLuint total_grf;
937
938 uint32_t clip_distance_mask;
939 uint32_t cull_distance_mask;
940
941 /* Used for calculating urb partitions. In the VS, this is the size of the
942 * URB entry used for both input and output to the thread. In the GS, this
943 * is the size of the URB entry used for output.
944 */
945 GLuint urb_entry_size;
946
947 enum shader_dispatch_mode dispatch_mode;
948 };
949
950 struct brw_vs_prog_data {
951 struct brw_vue_prog_data base;
952
953 GLbitfield64 inputs_read;
954 GLbitfield64 double_inputs_read;
955
956 unsigned nr_attribute_slots;
957
958 bool uses_vertexid;
959 bool uses_instanceid;
960 bool uses_basevertex;
961 bool uses_baseinstance;
962 bool uses_drawid;
963 };
964
965 struct brw_tcs_prog_data
966 {
967 struct brw_vue_prog_data base;
968
969 /** Number vertices in output patch */
970 int instances;
971 };
972
973
974 struct brw_tes_prog_data
975 {
976 struct brw_vue_prog_data base;
977
978 enum brw_tess_partitioning partitioning;
979 enum brw_tess_output_topology output_topology;
980 enum brw_tess_domain domain;
981 };
982
983 struct brw_gs_prog_data
984 {
985 struct brw_vue_prog_data base;
986
987 unsigned vertices_in;
988
989 /**
990 * Size of an output vertex, measured in HWORDS (32 bytes).
991 */
992 unsigned output_vertex_size_hwords;
993
994 unsigned output_topology;
995
996 /**
997 * Size of the control data (cut bits or StreamID bits), in hwords (32
998 * bytes). 0 if there is no control data.
999 */
1000 unsigned control_data_header_size_hwords;
1001
1002 /**
1003 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1004 * if the control data is StreamID bits, or
1005 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1006 * Ignored if control_data_header_size is 0.
1007 */
1008 unsigned control_data_format;
1009
1010 bool include_primitive_id;
1011
1012 /**
1013 * The number of vertices emitted, if constant - otherwise -1.
1014 */
1015 int static_vertex_count;
1016
1017 int invocations;
1018
1019 /**
1020 * Gen6: Provoking vertex convention for odd-numbered triangles
1021 * in tristrips.
1022 */
1023 GLuint pv_first:1;
1024
1025 /**
1026 * Gen6: Number of varyings that are output to transform feedback.
1027 */
1028 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1029
1030 /**
1031 * Gen6: Map from the index of a transform feedback binding table entry to the
1032 * gl_varying_slot that should be streamed out through that binding table
1033 * entry.
1034 */
1035 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1036
1037 /**
1038 * Gen6: Map from the index of a transform feedback binding table entry to the
1039 * swizzles that should be used when streaming out data through that
1040 * binding table entry.
1041 */
1042 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1043 };
1044
1045 struct brw_sf_prog_data {
1046 uint32_t urb_read_length;
1047 uint32_t total_grf;
1048
1049 /* Each vertex may have upto 12 attributes, 4 components each,
1050 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1051 * rows.
1052 *
1053 * Actually we use 4 for each, so call it 12 rows.
1054 */
1055 unsigned urb_entry_size;
1056 };
1057
1058 struct brw_clip_prog_data {
1059 uint32_t curb_read_length; /* user planes? */
1060 uint32_t clip_mode;
1061 uint32_t urb_read_length;
1062 uint32_t total_grf;
1063 };
1064
1065 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1066 static inline struct brw_##stage##_prog_data * \
1067 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1068 { \
1069 return (struct brw_##stage##_prog_data *) prog_data; \
1070 }
1071 DEFINE_PROG_DATA_DOWNCAST(vue)
1072 DEFINE_PROG_DATA_DOWNCAST(vs)
1073 DEFINE_PROG_DATA_DOWNCAST(tcs)
1074 DEFINE_PROG_DATA_DOWNCAST(tes)
1075 DEFINE_PROG_DATA_DOWNCAST(gs)
1076 DEFINE_PROG_DATA_DOWNCAST(wm)
1077 DEFINE_PROG_DATA_DOWNCAST(cs)
1078 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1079 DEFINE_PROG_DATA_DOWNCAST(clip)
1080 DEFINE_PROG_DATA_DOWNCAST(sf)
1081 #undef DEFINE_PROG_DATA_DOWNCAST
1082
1083 /** @} */
1084
1085 struct brw_compiler *
1086 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1087
1088 /**
1089 * Compile a vertex shader.
1090 *
1091 * Returns the final assembly and the program's size.
1092 */
1093 const unsigned *
1094 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1095 void *mem_ctx,
1096 const struct brw_vs_prog_key *key,
1097 struct brw_vs_prog_data *prog_data,
1098 const struct nir_shader *shader,
1099 bool use_legacy_snorm_formula,
1100 int shader_time_index,
1101 unsigned *final_assembly_size,
1102 char **error_str);
1103
1104 /**
1105 * Compile a tessellation control shader.
1106 *
1107 * Returns the final assembly and the program's size.
1108 */
1109 const unsigned *
1110 brw_compile_tcs(const struct brw_compiler *compiler,
1111 void *log_data,
1112 void *mem_ctx,
1113 const struct brw_tcs_prog_key *key,
1114 struct brw_tcs_prog_data *prog_data,
1115 const struct nir_shader *nir,
1116 int shader_time_index,
1117 unsigned *final_assembly_size,
1118 char **error_str);
1119
1120 /**
1121 * Compile a tessellation evaluation shader.
1122 *
1123 * Returns the final assembly and the program's size.
1124 */
1125 const unsigned *
1126 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1127 void *mem_ctx,
1128 const struct brw_tes_prog_key *key,
1129 const struct brw_vue_map *input_vue_map,
1130 struct brw_tes_prog_data *prog_data,
1131 const struct nir_shader *shader,
1132 struct gl_program *prog,
1133 int shader_time_index,
1134 unsigned *final_assembly_size,
1135 char **error_str);
1136
1137 /**
1138 * Compile a vertex shader.
1139 *
1140 * Returns the final assembly and the program's size.
1141 */
1142 const unsigned *
1143 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1144 void *mem_ctx,
1145 const struct brw_gs_prog_key *key,
1146 struct brw_gs_prog_data *prog_data,
1147 const struct nir_shader *shader,
1148 struct gl_program *prog,
1149 int shader_time_index,
1150 unsigned *final_assembly_size,
1151 char **error_str);
1152
1153 /**
1154 * Compile a strips and fans shader.
1155 *
1156 * This is a fixed-function shader determined entirely by the shader key and
1157 * a VUE map.
1158 *
1159 * Returns the final assembly and the program's size.
1160 */
1161 const unsigned *
1162 brw_compile_sf(const struct brw_compiler *compiler,
1163 void *mem_ctx,
1164 const struct brw_sf_prog_key *key,
1165 struct brw_sf_prog_data *prog_data,
1166 struct brw_vue_map *vue_map,
1167 unsigned *final_assembly_size);
1168
1169 /**
1170 * Compile a clipper shader.
1171 *
1172 * This is a fixed-function shader determined entirely by the shader key and
1173 * a VUE map.
1174 *
1175 * Returns the final assembly and the program's size.
1176 */
1177 const unsigned *
1178 brw_compile_clip(const struct brw_compiler *compiler,
1179 void *mem_ctx,
1180 const struct brw_clip_prog_key *key,
1181 struct brw_clip_prog_data *prog_data,
1182 struct brw_vue_map *vue_map,
1183 unsigned *final_assembly_size);
1184
1185 /**
1186 * Compile a fragment shader.
1187 *
1188 * Returns the final assembly and the program's size.
1189 */
1190 const unsigned *
1191 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1192 void *mem_ctx,
1193 const struct brw_wm_prog_key *key,
1194 struct brw_wm_prog_data *prog_data,
1195 const struct nir_shader *shader,
1196 struct gl_program *prog,
1197 int shader_time_index8,
1198 int shader_time_index16,
1199 bool allow_spilling,
1200 bool use_rep_send, struct brw_vue_map *vue_map,
1201 unsigned *final_assembly_size,
1202 char **error_str);
1203
1204 /**
1205 * Compile a compute shader.
1206 *
1207 * Returns the final assembly and the program's size.
1208 */
1209 const unsigned *
1210 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1211 void *mem_ctx,
1212 const struct brw_cs_prog_key *key,
1213 struct brw_cs_prog_data *prog_data,
1214 const struct nir_shader *shader,
1215 int shader_time_index,
1216 unsigned *final_assembly_size,
1217 char **error_str);
1218
1219 static inline uint32_t
1220 encode_slm_size(unsigned gen, uint32_t bytes)
1221 {
1222 uint32_t slm_size = 0;
1223
1224 /* Shared Local Memory is specified as powers of two, and encoded in
1225 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1226 *
1227 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1228 * -------------------------------------------------------------------
1229 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1230 * -------------------------------------------------------------------
1231 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1232 */
1233 assert(bytes <= 64 * 1024);
1234
1235 if (bytes > 0) {
1236 /* Shared Local Memory Size is specified as powers of two. */
1237 slm_size = util_next_power_of_two(bytes);
1238
1239 if (gen >= 9) {
1240 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1241 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1242 } else {
1243 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1244 slm_size = MAX2(slm_size, 4096) / 4096;
1245 }
1246 }
1247
1248 return slm_size;
1249 }
1250
1251 /**
1252 * Return true if the given shader stage is dispatched contiguously by the
1253 * relevant fixed function starting from channel 0 of the SIMD thread, which
1254 * implies that the dispatch mask of a thread can be assumed to have the form
1255 * '2^n - 1' for some n.
1256 */
1257 static inline bool
1258 brw_stage_has_packed_dispatch(const struct gen_device_info *devinfo,
1259 gl_shader_stage stage,
1260 const struct brw_stage_prog_data *prog_data)
1261 {
1262 /* The code below makes assumptions about the hardware's thread dispatch
1263 * behavior that could be proven wrong in future generations -- Make sure
1264 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1265 * the NIR front-end before changing this assertion.
1266 */
1267 assert(devinfo->gen <= 10);
1268
1269 switch (stage) {
1270 case MESA_SHADER_FRAGMENT: {
1271 /* The PSD discards subspans coming in with no lit samples, which in the
1272 * per-pixel shading case implies that each subspan will either be fully
1273 * lit (due to the VMask being used to allow derivative computations),
1274 * or not dispatched at all. In per-sample dispatch mode individual
1275 * samples from the same subspan have a fixed relative location within
1276 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1277 * general and we should return false.
1278 */
1279 const struct brw_wm_prog_data *wm_prog_data =
1280 (const struct brw_wm_prog_data *)prog_data;
1281 return !wm_prog_data->persample_dispatch;
1282 }
1283 case MESA_SHADER_COMPUTE:
1284 /* Compute shaders will be spawned with either a fully enabled dispatch
1285 * mask or with whatever bottom/right execution mask was given to the
1286 * GPGPU walker command to be used along the workgroup edges -- In both
1287 * cases the dispatch mask is required to be tightly packed for our
1288 * invocation index calculations to work.
1289 */
1290 return true;
1291 default:
1292 /* Most remaining fixed functions are limited to use a packed dispatch
1293 * mask due to the hardware representation of the dispatch mask as a
1294 * single counter representing the number of enabled channels.
1295 */
1296 return true;
1297 }
1298 }
1299
1300 /**
1301 * Computes the first varying slot in the URB produced by the previous stage
1302 * that is used in the next stage. We do this by testing the varying slots in
1303 * the previous stage's vue map against the inputs read in the next stage.
1304 *
1305 * Note that:
1306 *
1307 * - Each URB offset contains two varying slots and we can only skip a
1308 * full offset if both slots are unused, so the value we return here is always
1309 * rounded down to the closest multiple of two.
1310 *
1311 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1312 * part of the vue header, so if these are read we can't skip anything.
1313 */
1314 static inline int
1315 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1316 const struct brw_vue_map *prev_stage_vue_map)
1317 {
1318 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1319 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1320 int varying = prev_stage_vue_map->slot_to_varying[i];
1321 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1322 return ROUND_DOWN_TO(i, 2);
1323 }
1324 }
1325
1326 return 0;
1327 }
1328
1329 #ifdef __cplusplus
1330 } /* extern "C" */
1331 #endif
1332
1333 #endif /* BRW_COMPILER_H */