intel/compiler: Remove surface_idx from brw_image_param
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
97
98 /**
99 * Apply workarounds for SIN and COS output range problems.
100 * This can negatively impact performance.
101 */
102 bool precise_trig;
103
104 /**
105 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
106 * Base Address? (If not, it's a normal GPU address.)
107 */
108 bool constant_buffer_0_is_relative;
109
110 /**
111 * Whether or not the driver supports pull constants. If not, the compiler
112 * will attempt to push everything.
113 */
114 bool supports_pull_constants;
115
116 /**
117 * Whether or not the driver supports NIR shader constants. This controls
118 * whether nir_opt_large_constants will be run.
119 */
120 bool supports_shader_constants;
121 };
122
123 /**
124 * We use a constant subgroup size of 32. It really only needs to be a
125 * maximum and, since we do SIMD32 for compute shaders in some cases, it
126 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
127 * subgroup size of 32 but will act as if 16 or 24 of those channels are
128 * disabled.
129 */
130 #define BRW_SUBGROUP_SIZE 32
131
132 /**
133 * Program key structures.
134 *
135 * When drawing, we look for the currently bound shaders in the program
136 * cache. This is essentially a hash table lookup, and these are the keys.
137 *
138 * Sometimes OpenGL features specified as state need to be simulated via
139 * shader code, due to a mismatch between the API and the hardware. This
140 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
141 * in the program key so it's considered when searching for a program. If
142 * we haven't seen a particular combination before, we have to recompile a
143 * new specialized version.
144 *
145 * Shader compilation should not look up state in gl_context directly, but
146 * instead use the copy in the program key. This guarantees recompiles will
147 * happen correctly.
148 *
149 * @{
150 */
151
152 enum PACKED gen6_gather_sampler_wa {
153 WA_SIGN = 1, /* whether we need to sign extend */
154 WA_8BIT = 2, /* if we have an 8bit format needing wa */
155 WA_16BIT = 4, /* if we have a 16bit format needing wa */
156 };
157
158 /**
159 * Sampler information needed by VS, WM, and GS program cache keys.
160 */
161 struct brw_sampler_prog_key_data {
162 /**
163 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
164 */
165 uint16_t swizzles[MAX_SAMPLERS];
166
167 uint32_t gl_clamp_mask[3];
168
169 /**
170 * For RG32F, gather4's channel select is broken.
171 */
172 uint32_t gather_channel_quirk_mask;
173
174 /**
175 * Whether this sampler uses the compressed multisample surface layout.
176 */
177 uint32_t compressed_multisample_layout_mask;
178
179 /**
180 * Whether this sampler is using 16x multisampling. If so fetching from
181 * this sampler will be handled with a different instruction, ld2dms_w
182 * instead of ld2dms.
183 */
184 uint32_t msaa_16;
185
186 /**
187 * For Sandybridge, which shader w/a we need for gather quirks.
188 */
189 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
190
191 /**
192 * Texture units that have a YUV image bound.
193 */
194 uint32_t y_u_v_image_mask;
195 uint32_t y_uv_image_mask;
196 uint32_t yx_xuxv_image_mask;
197 uint32_t xy_uxvx_image_mask;
198 };
199
200 /**
201 * The VF can't natively handle certain types of attributes, such as GL_FIXED
202 * or most 10_10_10_2 types. These flags enable various VS workarounds to
203 * "fix" attributes at the beginning of shaders.
204 */
205 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
206 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
207 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
208 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
209 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
210
211 /**
212 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
213 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
214 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
215 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
216 */
217 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
218 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
219
220 /** The program key for Vertex Shaders. */
221 struct brw_vs_prog_key {
222 unsigned program_string_id;
223
224 /**
225 * Per-attribute workaround flags
226 *
227 * For each attribute, a combination of BRW_ATTRIB_WA_*.
228 *
229 * For OpenGL, where we expose a maximum of 16 user input atttributes
230 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
231 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
232 * expose up to 28 user input vertex attributes that are mapped to slots
233 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
234 * enough to hold this many slots.
235 */
236 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
237
238 bool copy_edgeflag:1;
239
240 bool clamp_vertex_color:1;
241
242 /**
243 * How many user clipping planes are being uploaded to the vertex shader as
244 * push constants.
245 *
246 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
247 * clip distances.
248 */
249 unsigned nr_userclip_plane_consts:4;
250
251 /**
252 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
253 * are going to be replaced with point coordinates (as a consequence of a
254 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
255 * our SF thread requires exact matching between VS outputs and FS inputs,
256 * these texture coordinates will need to be unconditionally included in
257 * the VUE, even if they aren't written by the vertex shader.
258 */
259 uint8_t point_coord_replace;
260
261 struct brw_sampler_prog_key_data tex;
262 };
263
264 /** The program key for Tessellation Control Shaders. */
265 struct brw_tcs_prog_key
266 {
267 unsigned program_string_id;
268
269 GLenum tes_primitive_mode;
270
271 unsigned input_vertices;
272
273 /** A bitfield of per-patch outputs written. */
274 uint32_t patch_outputs_written;
275
276 /** A bitfield of per-vertex outputs written. */
277 uint64_t outputs_written;
278
279 bool quads_workaround;
280
281 struct brw_sampler_prog_key_data tex;
282 };
283
284 /** The program key for Tessellation Evaluation Shaders. */
285 struct brw_tes_prog_key
286 {
287 unsigned program_string_id;
288
289 /** A bitfield of per-patch inputs read. */
290 uint32_t patch_inputs_read;
291
292 /** A bitfield of per-vertex inputs read. */
293 uint64_t inputs_read;
294
295 struct brw_sampler_prog_key_data tex;
296 };
297
298 /** The program key for Geometry Shaders. */
299 struct brw_gs_prog_key
300 {
301 unsigned program_string_id;
302
303 struct brw_sampler_prog_key_data tex;
304 };
305
306 enum brw_sf_primitive {
307 BRW_SF_PRIM_POINTS = 0,
308 BRW_SF_PRIM_LINES = 1,
309 BRW_SF_PRIM_TRIANGLES = 2,
310 BRW_SF_PRIM_UNFILLED_TRIS = 3,
311 };
312
313 struct brw_sf_prog_key {
314 uint64_t attrs;
315 bool contains_flat_varying;
316 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
317 uint8_t point_sprite_coord_replace;
318 enum brw_sf_primitive primitive:2;
319 bool do_twoside_color:1;
320 bool frontface_ccw:1;
321 bool do_point_sprite:1;
322 bool do_point_coord:1;
323 bool sprite_origin_lower_left:1;
324 bool userclip_active:1;
325 };
326
327 enum brw_clip_mode {
328 BRW_CLIP_MODE_NORMAL = 0,
329 BRW_CLIP_MODE_CLIP_ALL = 1,
330 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
331 BRW_CLIP_MODE_REJECT_ALL = 3,
332 BRW_CLIP_MODE_ACCEPT_ALL = 4,
333 BRW_CLIP_MODE_KERNEL_CLIP = 5,
334 };
335
336 enum brw_clip_fill_mode {
337 BRW_CLIP_FILL_MODE_LINE = 0,
338 BRW_CLIP_FILL_MODE_POINT = 1,
339 BRW_CLIP_FILL_MODE_FILL = 2,
340 BRW_CLIP_FILL_MODE_CULL = 3,
341 };
342
343 /* Note that if unfilled primitives are being emitted, we have to fix
344 * up polygon offset and flatshading at this point:
345 */
346 struct brw_clip_prog_key {
347 uint64_t attrs;
348 bool contains_flat_varying;
349 bool contains_noperspective_varying;
350 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
351 unsigned primitive:4;
352 unsigned nr_userclip:4;
353 bool pv_first:1;
354 bool do_unfilled:1;
355 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
356 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
357 bool offset_cw:1;
358 bool offset_ccw:1;
359 bool copy_bfc_cw:1;
360 bool copy_bfc_ccw:1;
361 enum brw_clip_mode clip_mode:3;
362
363 float offset_factor;
364 float offset_units;
365 float offset_clamp;
366 };
367
368 /* A big lookup table is used to figure out which and how many
369 * additional regs will inserted before the main payload in the WM
370 * program execution. These mainly relate to depth and stencil
371 * processing and the early-depth-test optimization.
372 */
373 enum brw_wm_iz_bits {
374 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
375 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
376 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
377 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
378 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
379 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
380 BRW_WM_IZ_BIT_MAX = 0x40
381 };
382
383 enum brw_wm_aa_enable {
384 BRW_WM_AA_NEVER,
385 BRW_WM_AA_SOMETIMES,
386 BRW_WM_AA_ALWAYS
387 };
388
389 /** The program key for Fragment/Pixel Shaders. */
390 struct brw_wm_prog_key {
391 /* Some collection of BRW_WM_IZ_* */
392 uint8_t iz_lookup;
393 bool stats_wm:1;
394 bool flat_shade:1;
395 unsigned nr_color_regions:5;
396 bool replicate_alpha:1;
397 bool clamp_fragment_color:1;
398 bool persample_interp:1;
399 bool multisample_fbo:1;
400 bool frag_coord_adds_sample_pos:1;
401 enum brw_wm_aa_enable line_aa:2;
402 bool high_quality_derivatives:1;
403 bool force_dual_color_blend:1;
404 bool coherent_fb_fetch:1;
405
406 uint8_t color_outputs_valid;
407 uint64_t input_slots_valid;
408 unsigned program_string_id;
409 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
410 float alpha_test_ref;
411
412 struct brw_sampler_prog_key_data tex;
413 };
414
415 struct brw_cs_prog_key {
416 uint32_t program_string_id;
417 struct brw_sampler_prog_key_data tex;
418 };
419
420 /* brw_any_prog_key is any of the keys that map to an API stage */
421 union brw_any_prog_key {
422 struct brw_vs_prog_key vs;
423 struct brw_tcs_prog_key tcs;
424 struct brw_tes_prog_key tes;
425 struct brw_gs_prog_key gs;
426 struct brw_wm_prog_key wm;
427 struct brw_cs_prog_key cs;
428 };
429
430 /*
431 * Image metadata structure as laid out in the shader parameter
432 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
433 * able to use them. That's okay because the padding and any unused
434 * entries [most of them except when we're doing untyped surface
435 * access] will be removed by the uniform packing pass.
436 */
437 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
438 #define BRW_IMAGE_PARAM_SIZE_OFFSET 4
439 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
440 #define BRW_IMAGE_PARAM_TILING_OFFSET 12
441 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
442 #define BRW_IMAGE_PARAM_SIZE 20
443
444 struct brw_image_param {
445 /** Offset applied to the X and Y surface coordinates. */
446 uint32_t offset[2];
447
448 /** Surface X, Y and Z dimensions. */
449 uint32_t size[3];
450
451 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
452 * pixels, vertical slice stride in pixels.
453 */
454 uint32_t stride[4];
455
456 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
457 uint32_t tiling[3];
458
459 /**
460 * Right shift to apply for bit 6 address swizzling. Two different
461 * swizzles can be specified and will be applied one after the other. The
462 * resulting address will be:
463 *
464 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
465 * (addr >> swizzling[1])))
466 *
467 * Use \c 0xff if any of the swizzles is not required.
468 */
469 uint32_t swizzling[2];
470 };
471
472 /** Max number of render targets in a shader */
473 #define BRW_MAX_DRAW_BUFFERS 8
474
475 /**
476 * Max number of binding table entries used for stream output.
477 *
478 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
479 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
480 *
481 * On Gen6, the size of transform feedback data is limited not by the number
482 * of components but by the number of binding table entries we set aside. We
483 * use one binding table entry for a float, one entry for a vector, and one
484 * entry per matrix column. Since the only way we can communicate our
485 * transform feedback capabilities to the client is via
486 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
487 * worst case, in which all the varyings are floats, so we use up one binding
488 * table entry per component. Therefore we need to set aside at least 64
489 * binding table entries for use by transform feedback.
490 *
491 * Note: since we don't currently pack varyings, it is currently impossible
492 * for the client to actually use up all of these binding table entries--if
493 * all of their varyings were floats, they would run out of varying slots and
494 * fail to link. But that's a bug, so it seems prudent to go ahead and
495 * allocate the number of binding table entries we will need once the bug is
496 * fixed.
497 */
498 #define BRW_MAX_SOL_BINDINGS 64
499
500 /**
501 * Binding table index for the first gen6 SOL binding.
502 */
503 #define BRW_GEN6_SOL_BINDING_START 0
504
505 /**
506 * Stride in bytes between shader_time entries.
507 *
508 * We separate entries by a cacheline to reduce traffic between EUs writing to
509 * different entries.
510 */
511 #define BRW_SHADER_TIME_STRIDE 64
512
513 struct brw_ubo_range
514 {
515 uint16_t block;
516 uint8_t start;
517 uint8_t length;
518 };
519
520 /* We reserve the first 2^16 values for builtins */
521 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
522
523 enum brw_param_builtin {
524 BRW_PARAM_BUILTIN_ZERO,
525
526 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
527 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
528 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
529 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
530 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
531 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
532 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
533 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
534 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
535 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
536 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
537 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
538 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
539 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
540 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
541 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
542 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
543 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
544 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
545 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
546 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
547 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
548 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
549 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
550 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
551 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
552 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
553 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
554 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
555 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
556 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
557 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
558
559 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
560 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
561 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
562 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
563 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
564 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
565
566 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
567 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
568 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
569 BRW_PARAM_BUILTIN_SUBGROUP_ID,
570 };
571
572 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
573 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
574
575 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
576 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
577 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
578
579 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
580 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
581
582 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
583 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
584
585 struct brw_stage_prog_data {
586 struct {
587 /** size of our binding table. */
588 uint32_t size_bytes;
589
590 /** @{
591 * surface indices for the various groups of surfaces
592 */
593 uint32_t pull_constants_start;
594 uint32_t texture_start;
595 uint32_t gather_texture_start;
596 uint32_t ubo_start;
597 uint32_t ssbo_start;
598 uint32_t image_start;
599 uint32_t shader_time_start;
600 uint32_t plane_start[3];
601 /** @} */
602 } binding_table;
603
604 struct brw_ubo_range ubo_ranges[4];
605
606 GLuint nr_params; /**< number of float params/constants */
607 GLuint nr_pull_params;
608
609 unsigned curb_read_length;
610 unsigned total_scratch;
611 unsigned total_shared;
612
613 unsigned program_size;
614
615 /**
616 * Register where the thread expects to find input data from the URB
617 * (typically uniforms, followed by vertex or fragment attributes).
618 */
619 unsigned dispatch_grf_start_reg;
620
621 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
622
623 /* 32-bit identifiers for all push/pull parameters. These can be anything
624 * the driver wishes them to be; the core of the back-end compiler simply
625 * re-arranges them. The one restriction is that the bottom 2^16 values
626 * are reserved for builtins defined in the brw_param_builtin enum defined
627 * above.
628 */
629 uint32_t *param;
630 uint32_t *pull_param;
631 };
632
633 static inline uint32_t *
634 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
635 unsigned nr_new_params)
636 {
637 unsigned old_nr_params = prog_data->nr_params;
638 prog_data->nr_params += nr_new_params;
639 prog_data->param = reralloc(ralloc_parent(prog_data->param),
640 prog_data->param, uint32_t,
641 prog_data->nr_params);
642 return prog_data->param + old_nr_params;
643 }
644
645 static inline void
646 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
647 unsigned surf_index)
648 {
649 /* A binding table index is 8 bits and the top 3 values are reserved for
650 * special things (stateless and SLM).
651 */
652 assert(surf_index <= 252);
653
654 prog_data->binding_table.size_bytes =
655 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
656 }
657
658 enum brw_barycentric_mode {
659 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
660 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
661 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
662 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
663 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
664 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
665 BRW_BARYCENTRIC_MODE_COUNT = 6
666 };
667 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
668 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
669 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
670 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
671
672 enum brw_pixel_shader_computed_depth_mode {
673 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
674 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
675 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
676 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
677 };
678
679 /* Data about a particular attempt to compile a program. Note that
680 * there can be many of these, each in a different GL state
681 * corresponding to a different brw_wm_prog_key struct, with different
682 * compiled programs.
683 */
684 struct brw_wm_prog_data {
685 struct brw_stage_prog_data base;
686
687 GLuint num_varying_inputs;
688
689 uint8_t reg_blocks_8;
690 uint8_t reg_blocks_16;
691 uint8_t reg_blocks_32;
692
693 uint8_t dispatch_grf_start_reg_16;
694 uint8_t dispatch_grf_start_reg_32;
695 uint32_t prog_offset_16;
696 uint32_t prog_offset_32;
697
698 struct {
699 /** @{
700 * surface indices the WM-specific surfaces
701 */
702 uint32_t render_target_read_start;
703 /** @} */
704 } binding_table;
705
706 uint8_t computed_depth_mode;
707 bool computed_stencil;
708
709 bool early_fragment_tests;
710 bool post_depth_coverage;
711 bool inner_coverage;
712 bool dispatch_8;
713 bool dispatch_16;
714 bool dispatch_32;
715 bool dual_src_blend;
716 bool persample_dispatch;
717 bool uses_pos_offset;
718 bool uses_omask;
719 bool uses_kill;
720 bool uses_src_depth;
721 bool uses_src_w;
722 bool uses_sample_mask;
723 bool has_render_target_reads;
724 bool has_side_effects;
725 bool pulls_bary;
726
727 bool contains_flat_varying;
728 bool contains_noperspective_varying;
729
730 /**
731 * Mask of which interpolation modes are required by the fragment shader.
732 * Used in hardware setup on gen6+.
733 */
734 uint32_t barycentric_interp_modes;
735
736 /**
737 * Mask of which FS inputs are marked flat by the shader source. This is
738 * needed for setting up 3DSTATE_SF/SBE.
739 */
740 uint32_t flat_inputs;
741
742 /* Mapping of VUE slots to interpolation modes.
743 * Used by the Gen4-5 clip/sf/wm stages.
744 */
745 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
746
747 /**
748 * Map from gl_varying_slot to the position within the FS setup data
749 * payload where the varying's attribute vertex deltas should be delivered.
750 * For varying slots that are not used by the FS, the value is -1.
751 */
752 int urb_setup[VARYING_SLOT_MAX];
753 };
754
755 /** Returns the SIMD width corresponding to a given KSP index
756 *
757 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
758 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
759 * kernel start pointer (KSP) indices that is based on what dispatch widths
760 * are enabled. This function provides, effectively, the reverse mapping.
761 *
762 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
763 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
764 */
765 static inline unsigned
766 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
767 bool simd16_enabled, bool simd32_enabled)
768 {
769 /* This function strictly ignores contiguous dispatch */
770 switch (ksp_idx) {
771 case 0:
772 return simd8_enabled ? 8 :
773 (simd16_enabled && !simd32_enabled) ? 16 :
774 (simd32_enabled && !simd16_enabled) ? 32 : 0;
775 case 1:
776 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
777 case 2:
778 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
779 default:
780 unreachable("Invalid KSP index");
781 }
782 }
783
784 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
785 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
786 (wm_state)._16PixelDispatchEnable, \
787 (wm_state)._32PixelDispatchEnable)
788
789 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
790 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
791
792 static inline uint32_t
793 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
794 unsigned simd_width)
795 {
796 switch (simd_width) {
797 case 8: return 0;
798 case 16: return prog_data->prog_offset_16;
799 case 32: return prog_data->prog_offset_32;
800 default: return 0;
801 }
802 }
803
804 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
805 _brw_wm_prog_data_prog_offset(prog_data, \
806 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
807
808 static inline uint8_t
809 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
810 unsigned simd_width)
811 {
812 switch (simd_width) {
813 case 8: return prog_data->base.dispatch_grf_start_reg;
814 case 16: return prog_data->dispatch_grf_start_reg_16;
815 case 32: return prog_data->dispatch_grf_start_reg_32;
816 default: return 0;
817 }
818 }
819
820 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
821 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
822 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
823
824 static inline uint8_t
825 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
826 unsigned simd_width)
827 {
828 switch (simd_width) {
829 case 8: return prog_data->reg_blocks_8;
830 case 16: return prog_data->reg_blocks_16;
831 case 32: return prog_data->reg_blocks_32;
832 default: return 0;
833 }
834 }
835
836 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
837 _brw_wm_prog_data_reg_blocks(prog_data, \
838 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
839
840 struct brw_push_const_block {
841 unsigned dwords; /* Dword count, not reg aligned */
842 unsigned regs;
843 unsigned size; /* Bytes, register aligned */
844 };
845
846 struct brw_cs_prog_data {
847 struct brw_stage_prog_data base;
848
849 unsigned local_size[3];
850 unsigned simd_size;
851 unsigned threads;
852 bool uses_barrier;
853 bool uses_num_work_groups;
854
855 struct {
856 struct brw_push_const_block cross_thread;
857 struct brw_push_const_block per_thread;
858 struct brw_push_const_block total;
859 } push;
860
861 struct {
862 /** @{
863 * surface indices the CS-specific surfaces
864 */
865 uint32_t work_groups_start;
866 /** @} */
867 } binding_table;
868 };
869
870 /**
871 * Enum representing the i965-specific vertex results that don't correspond
872 * exactly to any element of gl_varying_slot. The values of this enum are
873 * assigned such that they don't conflict with gl_varying_slot.
874 */
875 typedef enum
876 {
877 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
878 BRW_VARYING_SLOT_PAD,
879 /**
880 * Technically this is not a varying but just a placeholder that
881 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
882 * builtin variable to be compiled correctly. see compile_sf_prog() for
883 * more info.
884 */
885 BRW_VARYING_SLOT_PNTC,
886 BRW_VARYING_SLOT_COUNT
887 } brw_varying_slot;
888
889 /**
890 * We always program SF to start reading at an offset of 1 (2 varying slots)
891 * from the start of the vertex URB entry. This causes it to skip:
892 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
893 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
894 */
895 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
896
897 /**
898 * Bitmask indicating which fragment shader inputs represent varyings (and
899 * hence have to be delivered to the fragment shader by the SF/SBE stage).
900 */
901 #define BRW_FS_VARYING_INPUT_MASK \
902 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
903 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
904
905 /**
906 * Data structure recording the relationship between the gl_varying_slot enum
907 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
908 * single octaword within the VUE (128 bits).
909 *
910 * Note that each BRW register contains 256 bits (2 octawords), so when
911 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
912 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
913 * in a vertex shader), each register corresponds to a single VUE slot, since
914 * it contains data for two separate vertices.
915 */
916 struct brw_vue_map {
917 /**
918 * Bitfield representing all varying slots that are (a) stored in this VUE
919 * map, and (b) actually written by the shader. Does not include any of
920 * the additional varying slots defined in brw_varying_slot.
921 */
922 uint64_t slots_valid;
923
924 /**
925 * Is this VUE map for a separate shader pipeline?
926 *
927 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
928 * without the linker having a chance to dead code eliminate unused varyings.
929 *
930 * This means that we have to use a fixed slot layout, based on the output's
931 * location field, rather than assigning slots in a compact contiguous block.
932 */
933 bool separate;
934
935 /**
936 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
937 * not stored in a slot (because they are not written, or because
938 * additional processing is applied before storing them in the VUE), the
939 * value is -1.
940 */
941 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
942
943 /**
944 * Map from VUE slot to gl_varying_slot value. For slots that do not
945 * directly correspond to a gl_varying_slot, the value comes from
946 * brw_varying_slot.
947 *
948 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
949 */
950 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
951
952 /**
953 * Total number of VUE slots in use
954 */
955 int num_slots;
956
957 /**
958 * Number of per-patch VUE slots. Only valid for tessellation control
959 * shader outputs and tessellation evaluation shader inputs.
960 */
961 int num_per_patch_slots;
962
963 /**
964 * Number of per-vertex VUE slots. Only valid for tessellation control
965 * shader outputs and tessellation evaluation shader inputs.
966 */
967 int num_per_vertex_slots;
968 };
969
970 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
971
972 /**
973 * Convert a VUE slot number into a byte offset within the VUE.
974 */
975 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
976 {
977 return 16*slot;
978 }
979
980 /**
981 * Convert a vertex output (brw_varying_slot) into a byte offset within the
982 * VUE.
983 */
984 static inline
985 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
986 {
987 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
988 }
989
990 void brw_compute_vue_map(const struct gen_device_info *devinfo,
991 struct brw_vue_map *vue_map,
992 uint64_t slots_valid,
993 bool separate_shader);
994
995 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
996 uint64_t slots_valid,
997 uint32_t is_patch);
998
999 /* brw_interpolation_map.c */
1000 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
1001 struct nir_shader *nir,
1002 struct brw_wm_prog_data *prog_data,
1003 const struct gen_device_info *devinfo);
1004
1005 enum shader_dispatch_mode {
1006 DISPATCH_MODE_4X1_SINGLE = 0,
1007 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1008 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1009 DISPATCH_MODE_SIMD8 = 3,
1010 };
1011
1012 /**
1013 * @defgroup Tessellator parameter enumerations.
1014 *
1015 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1016 * as part of the tessellation evaluation shader.
1017 *
1018 * @{
1019 */
1020 enum brw_tess_partitioning {
1021 BRW_TESS_PARTITIONING_INTEGER = 0,
1022 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1023 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1024 };
1025
1026 enum brw_tess_output_topology {
1027 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1028 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1029 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1030 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1031 };
1032
1033 enum brw_tess_domain {
1034 BRW_TESS_DOMAIN_QUAD = 0,
1035 BRW_TESS_DOMAIN_TRI = 1,
1036 BRW_TESS_DOMAIN_ISOLINE = 2,
1037 };
1038 /** @} */
1039
1040 struct brw_vue_prog_data {
1041 struct brw_stage_prog_data base;
1042 struct brw_vue_map vue_map;
1043
1044 /** Should the hardware deliver input VUE handles for URB pull loads? */
1045 bool include_vue_handles;
1046
1047 GLuint urb_read_length;
1048 GLuint total_grf;
1049
1050 uint32_t clip_distance_mask;
1051 uint32_t cull_distance_mask;
1052
1053 /* Used for calculating urb partitions. In the VS, this is the size of the
1054 * URB entry used for both input and output to the thread. In the GS, this
1055 * is the size of the URB entry used for output.
1056 */
1057 GLuint urb_entry_size;
1058
1059 enum shader_dispatch_mode dispatch_mode;
1060 };
1061
1062 struct brw_vs_prog_data {
1063 struct brw_vue_prog_data base;
1064
1065 GLbitfield64 inputs_read;
1066 GLbitfield64 double_inputs_read;
1067
1068 unsigned nr_attribute_slots;
1069
1070 bool uses_vertexid;
1071 bool uses_instanceid;
1072 bool uses_is_indexed_draw;
1073 bool uses_firstvertex;
1074 bool uses_baseinstance;
1075 bool uses_drawid;
1076 };
1077
1078 struct brw_tcs_prog_data
1079 {
1080 struct brw_vue_prog_data base;
1081
1082 /** Number vertices in output patch */
1083 int instances;
1084 };
1085
1086
1087 struct brw_tes_prog_data
1088 {
1089 struct brw_vue_prog_data base;
1090
1091 enum brw_tess_partitioning partitioning;
1092 enum brw_tess_output_topology output_topology;
1093 enum brw_tess_domain domain;
1094 };
1095
1096 struct brw_gs_prog_data
1097 {
1098 struct brw_vue_prog_data base;
1099
1100 unsigned vertices_in;
1101
1102 /**
1103 * Size of an output vertex, measured in HWORDS (32 bytes).
1104 */
1105 unsigned output_vertex_size_hwords;
1106
1107 unsigned output_topology;
1108
1109 /**
1110 * Size of the control data (cut bits or StreamID bits), in hwords (32
1111 * bytes). 0 if there is no control data.
1112 */
1113 unsigned control_data_header_size_hwords;
1114
1115 /**
1116 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1117 * if the control data is StreamID bits, or
1118 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1119 * Ignored if control_data_header_size is 0.
1120 */
1121 unsigned control_data_format;
1122
1123 bool include_primitive_id;
1124
1125 /**
1126 * The number of vertices emitted, if constant - otherwise -1.
1127 */
1128 int static_vertex_count;
1129
1130 int invocations;
1131
1132 /**
1133 * Gen6: Provoking vertex convention for odd-numbered triangles
1134 * in tristrips.
1135 */
1136 GLuint pv_first:1;
1137
1138 /**
1139 * Gen6: Number of varyings that are output to transform feedback.
1140 */
1141 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1142
1143 /**
1144 * Gen6: Map from the index of a transform feedback binding table entry to the
1145 * gl_varying_slot that should be streamed out through that binding table
1146 * entry.
1147 */
1148 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1149
1150 /**
1151 * Gen6: Map from the index of a transform feedback binding table entry to the
1152 * swizzles that should be used when streaming out data through that
1153 * binding table entry.
1154 */
1155 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1156 };
1157
1158 struct brw_sf_prog_data {
1159 uint32_t urb_read_length;
1160 uint32_t total_grf;
1161
1162 /* Each vertex may have upto 12 attributes, 4 components each,
1163 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1164 * rows.
1165 *
1166 * Actually we use 4 for each, so call it 12 rows.
1167 */
1168 unsigned urb_entry_size;
1169 };
1170
1171 struct brw_clip_prog_data {
1172 uint32_t curb_read_length; /* user planes? */
1173 uint32_t clip_mode;
1174 uint32_t urb_read_length;
1175 uint32_t total_grf;
1176 };
1177
1178 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1179 union brw_any_prog_data {
1180 struct brw_stage_prog_data base;
1181 struct brw_vue_prog_data vue;
1182 struct brw_vs_prog_data vs;
1183 struct brw_tcs_prog_data tcs;
1184 struct brw_tes_prog_data tes;
1185 struct brw_gs_prog_data gs;
1186 struct brw_wm_prog_data wm;
1187 struct brw_cs_prog_data cs;
1188 };
1189
1190 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1191 static inline struct brw_##stage##_prog_data * \
1192 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1193 { \
1194 return (struct brw_##stage##_prog_data *) prog_data; \
1195 }
1196 DEFINE_PROG_DATA_DOWNCAST(vue)
1197 DEFINE_PROG_DATA_DOWNCAST(vs)
1198 DEFINE_PROG_DATA_DOWNCAST(tcs)
1199 DEFINE_PROG_DATA_DOWNCAST(tes)
1200 DEFINE_PROG_DATA_DOWNCAST(gs)
1201 DEFINE_PROG_DATA_DOWNCAST(wm)
1202 DEFINE_PROG_DATA_DOWNCAST(cs)
1203 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1204 DEFINE_PROG_DATA_DOWNCAST(clip)
1205 DEFINE_PROG_DATA_DOWNCAST(sf)
1206 #undef DEFINE_PROG_DATA_DOWNCAST
1207
1208 /** @} */
1209
1210 struct brw_compiler *
1211 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1212
1213 /**
1214 * Returns a compiler configuration for use with disk shader cache
1215 *
1216 * This value only needs to change for settings that can cause different
1217 * program generation between two runs on the same hardware.
1218 *
1219 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1220 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1221 */
1222 uint64_t
1223 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1224
1225 unsigned
1226 brw_prog_data_size(gl_shader_stage stage);
1227
1228 unsigned
1229 brw_prog_key_size(gl_shader_stage stage);
1230
1231 /**
1232 * Compile a vertex shader.
1233 *
1234 * Returns the final assembly and the program's size.
1235 */
1236 const unsigned *
1237 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1238 void *mem_ctx,
1239 const struct brw_vs_prog_key *key,
1240 struct brw_vs_prog_data *prog_data,
1241 const struct nir_shader *shader,
1242 int shader_time_index,
1243 char **error_str);
1244
1245 /**
1246 * Compile a tessellation control shader.
1247 *
1248 * Returns the final assembly and the program's size.
1249 */
1250 const unsigned *
1251 brw_compile_tcs(const struct brw_compiler *compiler,
1252 void *log_data,
1253 void *mem_ctx,
1254 const struct brw_tcs_prog_key *key,
1255 struct brw_tcs_prog_data *prog_data,
1256 const struct nir_shader *nir,
1257 int shader_time_index,
1258 char **error_str);
1259
1260 /**
1261 * Compile a tessellation evaluation shader.
1262 *
1263 * Returns the final assembly and the program's size.
1264 */
1265 const unsigned *
1266 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1267 void *mem_ctx,
1268 const struct brw_tes_prog_key *key,
1269 const struct brw_vue_map *input_vue_map,
1270 struct brw_tes_prog_data *prog_data,
1271 const struct nir_shader *shader,
1272 struct gl_program *prog,
1273 int shader_time_index,
1274 char **error_str);
1275
1276 /**
1277 * Compile a vertex shader.
1278 *
1279 * Returns the final assembly and the program's size.
1280 */
1281 const unsigned *
1282 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1283 void *mem_ctx,
1284 const struct brw_gs_prog_key *key,
1285 struct brw_gs_prog_data *prog_data,
1286 const struct nir_shader *shader,
1287 struct gl_program *prog,
1288 int shader_time_index,
1289 char **error_str);
1290
1291 /**
1292 * Compile a strips and fans shader.
1293 *
1294 * This is a fixed-function shader determined entirely by the shader key and
1295 * a VUE map.
1296 *
1297 * Returns the final assembly and the program's size.
1298 */
1299 const unsigned *
1300 brw_compile_sf(const struct brw_compiler *compiler,
1301 void *mem_ctx,
1302 const struct brw_sf_prog_key *key,
1303 struct brw_sf_prog_data *prog_data,
1304 struct brw_vue_map *vue_map,
1305 unsigned *final_assembly_size);
1306
1307 /**
1308 * Compile a clipper shader.
1309 *
1310 * This is a fixed-function shader determined entirely by the shader key and
1311 * a VUE map.
1312 *
1313 * Returns the final assembly and the program's size.
1314 */
1315 const unsigned *
1316 brw_compile_clip(const struct brw_compiler *compiler,
1317 void *mem_ctx,
1318 const struct brw_clip_prog_key *key,
1319 struct brw_clip_prog_data *prog_data,
1320 struct brw_vue_map *vue_map,
1321 unsigned *final_assembly_size);
1322
1323 /**
1324 * Compile a fragment shader.
1325 *
1326 * Returns the final assembly and the program's size.
1327 */
1328 const unsigned *
1329 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1330 void *mem_ctx,
1331 const struct brw_wm_prog_key *key,
1332 struct brw_wm_prog_data *prog_data,
1333 const struct nir_shader *shader,
1334 struct gl_program *prog,
1335 int shader_time_index8,
1336 int shader_time_index16,
1337 int shader_time_index32,
1338 bool allow_spilling,
1339 bool use_rep_send, struct brw_vue_map *vue_map,
1340 char **error_str);
1341
1342 /**
1343 * Compile a compute shader.
1344 *
1345 * Returns the final assembly and the program's size.
1346 */
1347 const unsigned *
1348 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1349 void *mem_ctx,
1350 const struct brw_cs_prog_key *key,
1351 struct brw_cs_prog_data *prog_data,
1352 const struct nir_shader *shader,
1353 int shader_time_index,
1354 char **error_str);
1355
1356 static inline uint32_t
1357 encode_slm_size(unsigned gen, uint32_t bytes)
1358 {
1359 uint32_t slm_size = 0;
1360
1361 /* Shared Local Memory is specified as powers of two, and encoded in
1362 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1363 *
1364 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1365 * -------------------------------------------------------------------
1366 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1367 * -------------------------------------------------------------------
1368 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1369 */
1370 assert(bytes <= 64 * 1024);
1371
1372 if (bytes > 0) {
1373 /* Shared Local Memory Size is specified as powers of two. */
1374 slm_size = util_next_power_of_two(bytes);
1375
1376 if (gen >= 9) {
1377 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1378 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1379 } else {
1380 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1381 slm_size = MAX2(slm_size, 4096) / 4096;
1382 }
1383 }
1384
1385 return slm_size;
1386 }
1387
1388 /**
1389 * Return true if the given shader stage is dispatched contiguously by the
1390 * relevant fixed function starting from channel 0 of the SIMD thread, which
1391 * implies that the dispatch mask of a thread can be assumed to have the form
1392 * '2^n - 1' for some n.
1393 */
1394 static inline bool
1395 brw_stage_has_packed_dispatch(MAYBE_UNUSED const struct gen_device_info *devinfo,
1396 gl_shader_stage stage,
1397 const struct brw_stage_prog_data *prog_data)
1398 {
1399 /* The code below makes assumptions about the hardware's thread dispatch
1400 * behavior that could be proven wrong in future generations -- Make sure
1401 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1402 * the NIR front-end before changing this assertion.
1403 */
1404 assert(devinfo->gen <= 11);
1405
1406 switch (stage) {
1407 case MESA_SHADER_FRAGMENT: {
1408 /* The PSD discards subspans coming in with no lit samples, which in the
1409 * per-pixel shading case implies that each subspan will either be fully
1410 * lit (due to the VMask being used to allow derivative computations),
1411 * or not dispatched at all. In per-sample dispatch mode individual
1412 * samples from the same subspan have a fixed relative location within
1413 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1414 * general and we should return false.
1415 */
1416 const struct brw_wm_prog_data *wm_prog_data =
1417 (const struct brw_wm_prog_data *)prog_data;
1418 return !wm_prog_data->persample_dispatch;
1419 }
1420 case MESA_SHADER_COMPUTE:
1421 /* Compute shaders will be spawned with either a fully enabled dispatch
1422 * mask or with whatever bottom/right execution mask was given to the
1423 * GPGPU walker command to be used along the workgroup edges -- In both
1424 * cases the dispatch mask is required to be tightly packed for our
1425 * invocation index calculations to work.
1426 */
1427 return true;
1428 default:
1429 /* Most remaining fixed functions are limited to use a packed dispatch
1430 * mask due to the hardware representation of the dispatch mask as a
1431 * single counter representing the number of enabled channels.
1432 */
1433 return true;
1434 }
1435 }
1436
1437 /**
1438 * Computes the first varying slot in the URB produced by the previous stage
1439 * that is used in the next stage. We do this by testing the varying slots in
1440 * the previous stage's vue map against the inputs read in the next stage.
1441 *
1442 * Note that:
1443 *
1444 * - Each URB offset contains two varying slots and we can only skip a
1445 * full offset if both slots are unused, so the value we return here is always
1446 * rounded down to the closest multiple of two.
1447 *
1448 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1449 * part of the vue header, so if these are read we can't skip anything.
1450 */
1451 static inline int
1452 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1453 const struct brw_vue_map *prev_stage_vue_map)
1454 {
1455 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1456 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1457 int varying = prev_stage_vue_map->slot_to_varying[i];
1458 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1459 return ROUND_DOWN_TO(i, 2);
1460 }
1461 }
1462
1463 return 0;
1464 }
1465
1466 #ifdef __cplusplus
1467 } /* extern "C" */
1468 #endif
1469
1470 #endif /* BRW_COMPILER_H */