intel/compiler: Stop assuming the entrypoint is called "main"
[mesa.git] / src / intel / compiler / brw_vec4_nir.cpp
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_nir.h"
25 #include "brw_vec4.h"
26 #include "brw_vec4_builder.h"
27 #include "brw_vec4_surface_builder.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 namespace brw {
33
34 void
35 vec4_visitor::emit_nir_code()
36 {
37 if (nir->num_uniforms > 0)
38 nir_setup_uniforms();
39
40 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
41 }
42
43 void
44 vec4_visitor::nir_setup_uniforms()
45 {
46 uniforms = nir->num_uniforms / 16;
47 }
48
49 void
50 vec4_visitor::nir_emit_impl(nir_function_impl *impl)
51 {
52 nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
53 for (unsigned i = 0; i < impl->reg_alloc; i++) {
54 nir_locals[i] = dst_reg();
55 }
56
57 foreach_list_typed(nir_register, reg, node, &impl->registers) {
58 unsigned array_elems =
59 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
60 const unsigned num_regs = array_elems * DIV_ROUND_UP(reg->bit_size, 32);
61 nir_locals[reg->index] = dst_reg(VGRF, alloc.allocate(num_regs));
62
63 if (reg->bit_size == 64)
64 nir_locals[reg->index].type = BRW_REGISTER_TYPE_DF;
65 }
66
67 nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
68
69 nir_emit_cf_list(&impl->body);
70 }
71
72 void
73 vec4_visitor::nir_emit_cf_list(exec_list *list)
74 {
75 exec_list_validate(list);
76 foreach_list_typed(nir_cf_node, node, node, list) {
77 switch (node->type) {
78 case nir_cf_node_if:
79 nir_emit_if(nir_cf_node_as_if(node));
80 break;
81
82 case nir_cf_node_loop:
83 nir_emit_loop(nir_cf_node_as_loop(node));
84 break;
85
86 case nir_cf_node_block:
87 nir_emit_block(nir_cf_node_as_block(node));
88 break;
89
90 default:
91 unreachable("Invalid CFG node block");
92 }
93 }
94 }
95
96 void
97 vec4_visitor::nir_emit_if(nir_if *if_stmt)
98 {
99 /* First, put the condition in f0 */
100 src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
101 vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
102 inst->conditional_mod = BRW_CONDITIONAL_NZ;
103
104 /* We can just predicate based on the X channel, as the condition only
105 * goes on its own line */
106 emit(IF(BRW_PREDICATE_ALIGN16_REPLICATE_X));
107
108 nir_emit_cf_list(&if_stmt->then_list);
109
110 /* note: if the else is empty, dead CF elimination will remove it */
111 emit(BRW_OPCODE_ELSE);
112
113 nir_emit_cf_list(&if_stmt->else_list);
114
115 emit(BRW_OPCODE_ENDIF);
116 }
117
118 void
119 vec4_visitor::nir_emit_loop(nir_loop *loop)
120 {
121 emit(BRW_OPCODE_DO);
122
123 nir_emit_cf_list(&loop->body);
124
125 emit(BRW_OPCODE_WHILE);
126 }
127
128 void
129 vec4_visitor::nir_emit_block(nir_block *block)
130 {
131 nir_foreach_instr(instr, block) {
132 nir_emit_instr(instr);
133 }
134 }
135
136 void
137 vec4_visitor::nir_emit_instr(nir_instr *instr)
138 {
139 base_ir = instr;
140
141 switch (instr->type) {
142 case nir_instr_type_load_const:
143 nir_emit_load_const(nir_instr_as_load_const(instr));
144 break;
145
146 case nir_instr_type_intrinsic:
147 nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
148 break;
149
150 case nir_instr_type_alu:
151 nir_emit_alu(nir_instr_as_alu(instr));
152 break;
153
154 case nir_instr_type_jump:
155 nir_emit_jump(nir_instr_as_jump(instr));
156 break;
157
158 case nir_instr_type_tex:
159 nir_emit_texture(nir_instr_as_tex(instr));
160 break;
161
162 case nir_instr_type_ssa_undef:
163 nir_emit_undef(nir_instr_as_ssa_undef(instr));
164 break;
165
166 default:
167 unreachable("VS instruction not yet implemented by NIR->vec4");
168 }
169 }
170
171 static dst_reg
172 dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
173 unsigned base_offset, nir_src *indirect)
174 {
175 dst_reg reg;
176
177 reg = v->nir_locals[nir_reg->index];
178 if (nir_reg->bit_size == 64)
179 reg.type = BRW_REGISTER_TYPE_DF;
180 reg = offset(reg, 8, base_offset);
181 if (indirect) {
182 reg.reladdr =
183 new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
184 BRW_REGISTER_TYPE_D,
185 1));
186 }
187 return reg;
188 }
189
190 dst_reg
191 vec4_visitor::get_nir_dest(const nir_dest &dest)
192 {
193 if (dest.is_ssa) {
194 dst_reg dst =
195 dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(dest.ssa.bit_size, 32)));
196 if (dest.ssa.bit_size == 64)
197 dst.type = BRW_REGISTER_TYPE_DF;
198 nir_ssa_values[dest.ssa.index] = dst;
199 return dst;
200 } else {
201 return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
202 dest.reg.indirect);
203 }
204 }
205
206 dst_reg
207 vec4_visitor::get_nir_dest(const nir_dest &dest, enum brw_reg_type type)
208 {
209 return retype(get_nir_dest(dest), type);
210 }
211
212 dst_reg
213 vec4_visitor::get_nir_dest(const nir_dest &dest, nir_alu_type type)
214 {
215 return get_nir_dest(dest, brw_type_for_nir_type(devinfo, type));
216 }
217
218 src_reg
219 vec4_visitor::get_nir_src(const nir_src &src, enum brw_reg_type type,
220 unsigned num_components)
221 {
222 dst_reg reg;
223
224 if (src.is_ssa) {
225 assert(src.ssa != NULL);
226 reg = nir_ssa_values[src.ssa->index];
227 }
228 else {
229 reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
230 src.reg.indirect);
231 }
232
233 reg = retype(reg, type);
234
235 src_reg reg_as_src = src_reg(reg);
236 reg_as_src.swizzle = brw_swizzle_for_size(num_components);
237 return reg_as_src;
238 }
239
240 src_reg
241 vec4_visitor::get_nir_src(const nir_src &src, nir_alu_type type,
242 unsigned num_components)
243 {
244 return get_nir_src(src, brw_type_for_nir_type(devinfo, type),
245 num_components);
246 }
247
248 src_reg
249 vec4_visitor::get_nir_src(const nir_src &src, unsigned num_components)
250 {
251 /* if type is not specified, default to signed int */
252 return get_nir_src(src, nir_type_int32, num_components);
253 }
254
255 src_reg
256 vec4_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
257 {
258 nir_src *offset_src = nir_get_io_offset_src(instr);
259 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
260
261 if (const_value) {
262 /* The only constant offset we should find is 0. brw_nir.c's
263 * add_const_offset_to_base() will fold other constant offsets
264 * into instr->const_index[0].
265 */
266 assert(const_value->u32[0] == 0);
267 return src_reg();
268 }
269
270 return get_nir_src(*offset_src, BRW_REGISTER_TYPE_UD, 1);
271 }
272
273 static src_reg
274 setup_imm_df(const vec4_builder &bld, double v)
275 {
276 const gen_device_info *devinfo = bld.shader->devinfo;
277 assert(devinfo->gen >= 7);
278
279 if (devinfo->gen >= 8)
280 return brw_imm_df(v);
281
282 /* gen7.5 does not support DF immediates straighforward but the DIM
283 * instruction allows to set the 64-bit immediate value.
284 */
285 if (devinfo->is_haswell) {
286 const vec4_builder ubld = bld.exec_all();
287 const dst_reg dst = bld.vgrf(BRW_REGISTER_TYPE_DF);
288 ubld.DIM(dst, brw_imm_df(v));
289 return swizzle(src_reg(dst), BRW_SWIZZLE_XXXX);
290 }
291
292 /* gen7 does not support DF immediates */
293 union {
294 double d;
295 struct {
296 uint32_t i1;
297 uint32_t i2;
298 };
299 } di;
300
301 di.d = v;
302
303 /* Write the low 32-bit of the constant to the X:UD channel and the
304 * high 32-bit to the Y:UD channel to build the constant in a VGRF.
305 * We have to do this twice (offset 0 and offset 1), since a DF VGRF takes
306 * two SIMD8 registers in SIMD4x2 execution. Finally, return a swizzle
307 * XXXX so any access to the VGRF only reads the constant data in these
308 * channels.
309 */
310 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
311 for (unsigned n = 0; n < 2; n++) {
312 const vec4_builder ubld = bld.exec_all().group(4, n);
313 ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_X), brw_imm_ud(di.i1));
314 ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_Y), brw_imm_ud(di.i2));
315 }
316
317 return swizzle(src_reg(retype(tmp, BRW_REGISTER_TYPE_DF)), BRW_SWIZZLE_XXXX);
318 }
319
320 void
321 vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
322 {
323 dst_reg reg;
324
325 if (instr->def.bit_size == 64) {
326 reg = dst_reg(VGRF, alloc.allocate(2));
327 reg.type = BRW_REGISTER_TYPE_DF;
328 } else {
329 reg = dst_reg(VGRF, alloc.allocate(1));
330 reg.type = BRW_REGISTER_TYPE_D;
331 }
332
333 const vec4_builder ibld = vec4_builder(this).at_end();
334 unsigned remaining = brw_writemask_for_size(instr->def.num_components);
335
336 /* @FIXME: consider emitting vector operations to save some MOVs in
337 * cases where the components are representable in 8 bits.
338 * For now, we emit a MOV for each distinct value.
339 */
340 for (unsigned i = 0; i < instr->def.num_components; i++) {
341 unsigned writemask = 1 << i;
342
343 if ((remaining & writemask) == 0)
344 continue;
345
346 for (unsigned j = i; j < instr->def.num_components; j++) {
347 if ((instr->def.bit_size == 32 &&
348 instr->value.u32[i] == instr->value.u32[j]) ||
349 (instr->def.bit_size == 64 &&
350 instr->value.f64[i] == instr->value.f64[j])) {
351 writemask |= 1 << j;
352 }
353 }
354
355 reg.writemask = writemask;
356 if (instr->def.bit_size == 64) {
357 emit(MOV(reg, setup_imm_df(ibld, instr->value.f64[i])));
358 } else {
359 emit(MOV(reg, brw_imm_d(instr->value.i32[i])));
360 }
361
362 remaining &= ~writemask;
363 }
364
365 /* Set final writemask */
366 reg.writemask = brw_writemask_for_size(instr->def.num_components);
367
368 nir_ssa_values[instr->def.index] = reg;
369 }
370
371 void
372 vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
373 {
374 dst_reg dest;
375 src_reg src;
376
377 switch (instr->intrinsic) {
378
379 case nir_intrinsic_load_input: {
380 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
381
382 /* We set EmitNoIndirectInput for VS */
383 assert(const_offset);
384
385 dest = get_nir_dest(instr->dest);
386 dest.writemask = brw_writemask_for_size(instr->num_components);
387
388 src = src_reg(ATTR, instr->const_index[0] + const_offset->u32[0],
389 glsl_type::uvec4_type);
390 src = retype(src, dest.type);
391
392 bool is_64bit = nir_dest_bit_size(instr->dest) == 64;
393 if (is_64bit) {
394 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
395 src.swizzle = BRW_SWIZZLE_XYZW;
396 shuffle_64bit_data(tmp, src, false);
397 emit(MOV(dest, src_reg(tmp)));
398 } else {
399 /* Swizzle source based on component layout qualifier */
400 src.swizzle = BRW_SWZ_COMP_INPUT(nir_intrinsic_component(instr));
401 emit(MOV(dest, src));
402 }
403 break;
404 }
405
406 case nir_intrinsic_store_output: {
407 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
408 assert(const_offset);
409
410 int varying = instr->const_index[0] + const_offset->u32[0];
411
412 bool is_64bit = nir_src_bit_size(instr->src[0]) == 64;
413 if (is_64bit) {
414 src_reg data;
415 src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_DF,
416 instr->num_components);
417 data = src_reg(this, glsl_type::dvec4_type);
418 shuffle_64bit_data(dst_reg(data), src, true);
419 src = retype(data, BRW_REGISTER_TYPE_F);
420 } else {
421 src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
422 instr->num_components);
423 }
424
425 unsigned c = nir_intrinsic_component(instr);
426 output_reg[varying][c] = dst_reg(src);
427 output_num_components[varying][c] = instr->num_components;
428
429 unsigned num_components = instr->num_components;
430 if (is_64bit)
431 num_components *= 2;
432
433 output_reg[varying][c] = dst_reg(src);
434 output_num_components[varying][c] = MIN2(4, num_components);
435
436 if (is_64bit && num_components > 4) {
437 assert(num_components <= 8);
438 output_reg[varying + 1][c] = byte_offset(dst_reg(src), REG_SIZE);
439 output_num_components[varying + 1][c] = num_components - 4;
440 }
441 break;
442 }
443
444 case nir_intrinsic_get_buffer_size: {
445 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
446 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
447
448 const unsigned index =
449 prog_data->base.binding_table.ssbo_start + ssbo_index;
450 dst_reg result_dst = get_nir_dest(instr->dest);
451 vec4_instruction *inst = new(mem_ctx)
452 vec4_instruction(SHADER_OPCODE_GET_BUFFER_SIZE, result_dst);
453
454 inst->base_mrf = 2;
455 inst->mlen = 1; /* always at least one */
456 inst->src[1] = brw_imm_ud(index);
457
458 /* MRF for the first parameter */
459 src_reg lod = brw_imm_d(0);
460 int param_base = inst->base_mrf;
461 int writemask = WRITEMASK_X;
462 emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod));
463
464 emit(inst);
465
466 brw_mark_surface_used(&prog_data->base, index);
467 break;
468 }
469
470 case nir_intrinsic_store_ssbo: {
471 assert(devinfo->gen >= 7);
472
473 /* Block index */
474 src_reg surf_index;
475 nir_const_value *const_uniform_block =
476 nir_src_as_const_value(instr->src[1]);
477 if (const_uniform_block) {
478 unsigned index = prog_data->base.binding_table.ssbo_start +
479 const_uniform_block->u32[0];
480 surf_index = brw_imm_ud(index);
481 brw_mark_surface_used(&prog_data->base, index);
482 } else {
483 surf_index = src_reg(this, glsl_type::uint_type);
484 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[1], 1),
485 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
486 surf_index = emit_uniformize(surf_index);
487
488 brw_mark_surface_used(&prog_data->base,
489 prog_data->base.binding_table.ssbo_start +
490 nir->info.num_ssbos - 1);
491 }
492
493 /* Offset */
494 src_reg offset_reg;
495 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
496 if (const_offset) {
497 offset_reg = brw_imm_ud(const_offset->u32[0]);
498 } else {
499 offset_reg = get_nir_src(instr->src[2], 1);
500 }
501
502 /* Value */
503 src_reg val_reg = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F, 4);
504
505 /* Writemask */
506 unsigned write_mask = instr->const_index[0];
507
508 /* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
509 * writes will use SIMD8 mode. In order to hide this and keep symmetry across
510 * typed and untyped messages and across hardware platforms, the
511 * current implementation of the untyped messages will transparently convert
512 * the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it
513 * and enabling only channel X on the SEND instruction.
514 *
515 * The above, works well for full vector writes, but not for partial writes
516 * where we want to write some channels and not others, like when we have
517 * code such as v.xyw = vec3(1,2,4). Because the untyped write messages are
518 * quite restrictive with regards to the channel enables we can configure in
519 * the message descriptor (not all combinations are allowed) we cannot simply
520 * implement these scenarios with a single message while keeping the
521 * aforementioned symmetry in the implementation. For now we de decided that
522 * it is better to keep the symmetry to reduce complexity, so in situations
523 * such as the one described we end up emitting two untyped write messages
524 * (one for xy and another for w).
525 *
526 * The code below packs consecutive channels into a single write message,
527 * detects gaps in the vector write and if needed, sends a second message
528 * with the remaining channels. If in the future we decide that we want to
529 * emit a single message at the expense of losing the symmetry in the
530 * implementation we can:
531 *
532 * 1) For IvyBridge: Only use the red channel of the untyped write SIMD8
533 * message payload. In this mode we can write up to 8 offsets and dwords
534 * to the red channel only (for the two vec4s in the SIMD4x2 execution)
535 * and select which of the 8 channels carry data to write by setting the
536 * appropriate writemask in the dst register of the SEND instruction.
537 * It would require to write a new generator opcode specifically for
538 * IvyBridge since we would need to prepare a SIMD8 payload that could
539 * use any channel, not just X.
540 *
541 * 2) For Haswell+: Simply send a single write message but set the writemask
542 * on the dst of the SEND instruction to select the channels we want to
543 * write. It would require to modify the current messages to receive
544 * and honor the writemask provided.
545 */
546 const vec4_builder bld = vec4_builder(this).at_end()
547 .annotate(current_annotation, base_ir);
548
549 unsigned type_slots = nir_src_bit_size(instr->src[0]) / 32;
550 if (type_slots == 2) {
551 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
552 shuffle_64bit_data(tmp, retype(val_reg, tmp.type), true);
553 val_reg = src_reg(retype(tmp, BRW_REGISTER_TYPE_F));
554 }
555
556 uint8_t swizzle[4] = { 0, 0, 0, 0};
557 int num_channels = 0;
558 unsigned skipped_channels = 0;
559 int num_components = instr->num_components;
560 for (int i = 0; i < num_components; i++) {
561 /* Read components Z/W of a dvec from the appropriate place. We will
562 * also have to adjust the swizzle (we do that with the '% 4' below)
563 */
564 if (i == 2 && type_slots == 2)
565 val_reg = byte_offset(val_reg, REG_SIZE);
566
567 /* Check if this channel needs to be written. If so, record the
568 * channel we need to take the data from in the swizzle array
569 */
570 int component_mask = 1 << i;
571 int write_test = write_mask & component_mask;
572 if (write_test) {
573 /* If we are writing doubles we have to write 2 channels worth of
574 * of data (64 bits) for each double component.
575 */
576 swizzle[num_channels++] = (i * type_slots) % 4;
577 if (type_slots == 2)
578 swizzle[num_channels++] = (i * type_slots + 1) % 4;
579 }
580
581 /* If we don't have to write this channel it means we have a gap in the
582 * vector, so write the channels we accumulated until now, if any. Do
583 * the same if this was the last component in the vector, if we have
584 * enough channels for a full vec4 write or if we have processed
585 * components XY of a dvec (since components ZW are not in the same
586 * SIMD register)
587 */
588 if (!write_test || i == num_components - 1 || num_channels == 4 ||
589 (i == 1 && type_slots == 2)) {
590 if (num_channels > 0) {
591 /* We have channels to write, so update the offset we need to
592 * write at to skip the channels we skipped, if any.
593 */
594 if (skipped_channels > 0) {
595 if (offset_reg.file == IMM) {
596 offset_reg.ud += 4 * skipped_channels;
597 } else {
598 emit(ADD(dst_reg(offset_reg), offset_reg,
599 brw_imm_ud(4 * skipped_channels)));
600 }
601 }
602
603 /* Swizzle the data register so we take the data from the channels
604 * we need to write and send the write message. This will write
605 * num_channels consecutive dwords starting at offset.
606 */
607 val_reg.swizzle =
608 BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
609 emit_untyped_write(bld, surf_index, offset_reg, val_reg,
610 1 /* dims */, num_channels /* size */,
611 BRW_PREDICATE_NONE);
612
613 /* If we have to do a second write we will have to update the
614 * offset so that we jump over the channels we have just written
615 * now.
616 */
617 skipped_channels = num_channels;
618
619 /* Restart the count for the next write message */
620 num_channels = 0;
621 }
622
623 /* If we didn't write the channel, increase skipped count */
624 if (!write_test)
625 skipped_channels += type_slots;
626 }
627 }
628
629 break;
630 }
631
632 case nir_intrinsic_load_ssbo: {
633 assert(devinfo->gen >= 7);
634
635 nir_const_value *const_uniform_block =
636 nir_src_as_const_value(instr->src[0]);
637
638 src_reg surf_index;
639 if (const_uniform_block) {
640 unsigned index = prog_data->base.binding_table.ssbo_start +
641 const_uniform_block->u32[0];
642 surf_index = brw_imm_ud(index);
643
644 brw_mark_surface_used(&prog_data->base, index);
645 } else {
646 surf_index = src_reg(this, glsl_type::uint_type);
647 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], 1),
648 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
649 surf_index = emit_uniformize(surf_index);
650
651 /* Assume this may touch any UBO. It would be nice to provide
652 * a tighter bound, but the array information is already lowered away.
653 */
654 brw_mark_surface_used(&prog_data->base,
655 prog_data->base.binding_table.ssbo_start +
656 nir->info.num_ssbos - 1);
657 }
658
659 src_reg offset_reg;
660 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
661 if (const_offset) {
662 offset_reg = brw_imm_ud(const_offset->u32[0]);
663 } else {
664 offset_reg = get_nir_src(instr->src[1], 1);
665 }
666
667 /* Read the vector */
668 const vec4_builder bld = vec4_builder(this).at_end()
669 .annotate(current_annotation, base_ir);
670
671 src_reg read_result;
672 dst_reg dest = get_nir_dest(instr->dest);
673 if (type_sz(dest.type) < 8) {
674 read_result = emit_untyped_read(bld, surf_index, offset_reg,
675 1 /* dims */, 4 /* size*/,
676 BRW_PREDICATE_NONE);
677 } else {
678 src_reg shuffled = src_reg(this, glsl_type::dvec4_type);
679
680 src_reg temp;
681 temp = emit_untyped_read(bld, surf_index, offset_reg,
682 1 /* dims */, 4 /* size*/,
683 BRW_PREDICATE_NONE);
684 emit(MOV(dst_reg(retype(shuffled, temp.type)), temp));
685
686 if (offset_reg.file == IMM)
687 offset_reg.ud += 16;
688 else
689 emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16)));
690
691 temp = emit_untyped_read(bld, surf_index, offset_reg,
692 1 /* dims */, 4 /* size*/,
693 BRW_PREDICATE_NONE);
694 emit(MOV(dst_reg(retype(byte_offset(shuffled, REG_SIZE), temp.type)),
695 temp));
696
697 read_result = src_reg(this, glsl_type::dvec4_type);
698 shuffle_64bit_data(dst_reg(read_result), shuffled, false);
699 }
700
701 read_result.type = dest.type;
702 read_result.swizzle = brw_swizzle_for_size(instr->num_components);
703 emit(MOV(dest, read_result));
704 break;
705 }
706
707 case nir_intrinsic_ssbo_atomic_add: {
708 int op = BRW_AOP_ADD;
709 const nir_const_value *const val = nir_src_as_const_value(instr->src[2]);
710
711 if (val != NULL) {
712 if (val->i32[0] == 1)
713 op = BRW_AOP_INC;
714 else if (val->i32[0] == -1)
715 op = BRW_AOP_DEC;
716 }
717
718 nir_emit_ssbo_atomic(op, instr);
719 break;
720 }
721 case nir_intrinsic_ssbo_atomic_imin:
722 nir_emit_ssbo_atomic(BRW_AOP_IMIN, instr);
723 break;
724 case nir_intrinsic_ssbo_atomic_umin:
725 nir_emit_ssbo_atomic(BRW_AOP_UMIN, instr);
726 break;
727 case nir_intrinsic_ssbo_atomic_imax:
728 nir_emit_ssbo_atomic(BRW_AOP_IMAX, instr);
729 break;
730 case nir_intrinsic_ssbo_atomic_umax:
731 nir_emit_ssbo_atomic(BRW_AOP_UMAX, instr);
732 break;
733 case nir_intrinsic_ssbo_atomic_and:
734 nir_emit_ssbo_atomic(BRW_AOP_AND, instr);
735 break;
736 case nir_intrinsic_ssbo_atomic_or:
737 nir_emit_ssbo_atomic(BRW_AOP_OR, instr);
738 break;
739 case nir_intrinsic_ssbo_atomic_xor:
740 nir_emit_ssbo_atomic(BRW_AOP_XOR, instr);
741 break;
742 case nir_intrinsic_ssbo_atomic_exchange:
743 nir_emit_ssbo_atomic(BRW_AOP_MOV, instr);
744 break;
745 case nir_intrinsic_ssbo_atomic_comp_swap:
746 nir_emit_ssbo_atomic(BRW_AOP_CMPWR, instr);
747 break;
748
749 case nir_intrinsic_load_vertex_id:
750 unreachable("should be lowered by lower_vertex_id()");
751
752 case nir_intrinsic_load_vertex_id_zero_base:
753 case nir_intrinsic_load_base_vertex:
754 case nir_intrinsic_load_instance_id:
755 case nir_intrinsic_load_base_instance:
756 case nir_intrinsic_load_draw_id:
757 case nir_intrinsic_load_invocation_id:
758 unreachable("should be lowered by brw_nir_lower_vs_inputs()");
759
760 case nir_intrinsic_load_uniform: {
761 /* Offsets are in bytes but they should always be multiples of 4 */
762 assert(nir_intrinsic_base(instr) % 4 == 0);
763
764 dest = get_nir_dest(instr->dest);
765
766 src = src_reg(dst_reg(UNIFORM, nir_intrinsic_base(instr) / 16));
767 src.type = dest.type;
768
769 /* Uniforms don't actually have to be vec4 aligned. In the case that
770 * it isn't, we have to use a swizzle to shift things around. They
771 * do still have the std140 alignment requirement that vec2's have to
772 * be vec2-aligned and vec3's and vec4's have to be vec4-aligned.
773 *
774 * The swizzle also works in the indirect case as the generator adds
775 * the swizzle to the offset for us.
776 */
777 const int type_size = type_sz(src.type);
778 unsigned shift = (nir_intrinsic_base(instr) % 16) / type_size;
779 assert(shift + instr->num_components <= 4);
780
781 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
782 if (const_offset) {
783 /* Offsets are in bytes but they should always be multiples of 4 */
784 assert(const_offset->u32[0] % 4 == 0);
785
786 src.swizzle = brw_swizzle_for_size(instr->num_components);
787 dest.writemask = brw_writemask_for_size(instr->num_components);
788 unsigned offset = const_offset->u32[0] + shift * type_size;
789 src.offset = ROUND_DOWN_TO(offset, 16);
790 shift = (offset % 16) / type_size;
791 assert(shift + instr->num_components <= 4);
792 src.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
793
794 emit(MOV(dest, src));
795 } else {
796 /* Uniform arrays are vec4 aligned, because of std140 alignment
797 * rules.
798 */
799 assert(shift == 0);
800
801 src_reg indirect = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1);
802
803 /* MOV_INDIRECT is going to stomp the whole thing anyway */
804 dest.writemask = WRITEMASK_XYZW;
805
806 emit(SHADER_OPCODE_MOV_INDIRECT, dest, src,
807 indirect, brw_imm_ud(instr->const_index[1]));
808 }
809 break;
810 }
811
812 case nir_intrinsic_load_ubo: {
813 nir_const_value *const_block_index = nir_src_as_const_value(instr->src[0]);
814 src_reg surf_index;
815
816 dest = get_nir_dest(instr->dest);
817
818 if (const_block_index) {
819 /* The block index is a constant, so just emit the binding table entry
820 * as an immediate.
821 */
822 const unsigned index = prog_data->base.binding_table.ubo_start +
823 const_block_index->u32[0];
824 surf_index = brw_imm_ud(index);
825 brw_mark_surface_used(&prog_data->base, index);
826 } else {
827 /* The block index is not a constant. Evaluate the index expression
828 * per-channel and add the base UBO index; we have to select a value
829 * from any live channel.
830 */
831 surf_index = src_reg(this, glsl_type::uint_type);
832 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int32,
833 instr->num_components),
834 brw_imm_ud(prog_data->base.binding_table.ubo_start)));
835 surf_index = emit_uniformize(surf_index);
836
837 /* Assume this may touch any UBO. It would be nice to provide
838 * a tighter bound, but the array information is already lowered away.
839 */
840 brw_mark_surface_used(&prog_data->base,
841 prog_data->base.binding_table.ubo_start +
842 nir->info.num_ubos - 1);
843 }
844
845 src_reg offset_reg;
846 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
847 if (const_offset) {
848 offset_reg = brw_imm_ud(const_offset->u32[0] & ~15);
849 } else {
850 offset_reg = src_reg(this, glsl_type::uint_type);
851 emit(MOV(dst_reg(offset_reg),
852 get_nir_src(instr->src[1], nir_type_uint32, 1)));
853 }
854
855 src_reg packed_consts;
856 if (nir_dest_bit_size(instr->dest) == 32) {
857 packed_consts = src_reg(this, glsl_type::vec4_type);
858 emit_pull_constant_load_reg(dst_reg(packed_consts),
859 surf_index,
860 offset_reg,
861 NULL, NULL /* before_block/inst */);
862 } else {
863 src_reg temp = src_reg(this, glsl_type::dvec4_type);
864 src_reg temp_float = retype(temp, BRW_REGISTER_TYPE_F);
865
866 emit_pull_constant_load_reg(dst_reg(temp_float),
867 surf_index, offset_reg, NULL, NULL);
868 if (offset_reg.file == IMM)
869 offset_reg.ud += 16;
870 else
871 emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16u)));
872 emit_pull_constant_load_reg(dst_reg(byte_offset(temp_float, REG_SIZE)),
873 surf_index, offset_reg, NULL, NULL);
874
875 packed_consts = src_reg(this, glsl_type::dvec4_type);
876 shuffle_64bit_data(dst_reg(packed_consts), temp, false);
877 }
878
879 packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
880 if (const_offset) {
881 unsigned type_size = type_sz(dest.type);
882 packed_consts.swizzle +=
883 BRW_SWIZZLE4(const_offset->u32[0] % 16 / type_size,
884 const_offset->u32[0] % 16 / type_size,
885 const_offset->u32[0] % 16 / type_size,
886 const_offset->u32[0] % 16 / type_size);
887 }
888
889 emit(MOV(dest, retype(packed_consts, dest.type)));
890
891 break;
892 }
893
894 case nir_intrinsic_memory_barrier: {
895 const vec4_builder bld =
896 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
897 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
898 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
899 ->size_written = 2 * REG_SIZE;
900 break;
901 }
902
903 case nir_intrinsic_shader_clock: {
904 /* We cannot do anything if there is an event, so ignore it for now */
905 const src_reg shader_clock = get_timestamp();
906 const enum brw_reg_type type = brw_type_for_base_type(glsl_type::uvec2_type);
907
908 dest = get_nir_dest(instr->dest, type);
909 emit(MOV(dest, shader_clock));
910 break;
911 }
912
913 default:
914 unreachable("Unknown intrinsic");
915 }
916 }
917
918 void
919 vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr)
920 {
921 dst_reg dest;
922 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
923 dest = get_nir_dest(instr->dest);
924
925 src_reg surface;
926 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
927 if (const_surface) {
928 unsigned surf_index = prog_data->base.binding_table.ssbo_start +
929 const_surface->u32[0];
930 surface = brw_imm_ud(surf_index);
931 brw_mark_surface_used(&prog_data->base, surf_index);
932 } else {
933 surface = src_reg(this, glsl_type::uint_type);
934 emit(ADD(dst_reg(surface), get_nir_src(instr->src[0]),
935 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
936
937 /* Assume this may touch any UBO. This is the same we do for other
938 * UBO/SSBO accesses with non-constant surface.
939 */
940 brw_mark_surface_used(&prog_data->base,
941 prog_data->base.binding_table.ssbo_start +
942 nir->info.num_ssbos - 1);
943 }
944
945 src_reg offset = get_nir_src(instr->src[1], 1);
946 src_reg data1;
947 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
948 data1 = get_nir_src(instr->src[2], 1);
949 src_reg data2;
950 if (op == BRW_AOP_CMPWR)
951 data2 = get_nir_src(instr->src[3], 1);
952
953 /* Emit the actual atomic operation operation */
954 const vec4_builder bld =
955 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
956
957 src_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
958 data1, data2,
959 1 /* dims */, 1 /* rsize */,
960 op,
961 BRW_PREDICATE_NONE);
962 dest.type = atomic_result.type;
963 bld.MOV(dest, atomic_result);
964 }
965
966 static unsigned
967 brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
968 {
969 return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
970 }
971
972 static enum brw_conditional_mod
973 brw_conditional_for_nir_comparison(nir_op op)
974 {
975 switch (op) {
976 case nir_op_flt:
977 case nir_op_ilt:
978 case nir_op_ult:
979 return BRW_CONDITIONAL_L;
980
981 case nir_op_fge:
982 case nir_op_ige:
983 case nir_op_uge:
984 return BRW_CONDITIONAL_GE;
985
986 case nir_op_feq:
987 case nir_op_ieq:
988 case nir_op_ball_fequal2:
989 case nir_op_ball_iequal2:
990 case nir_op_ball_fequal3:
991 case nir_op_ball_iequal3:
992 case nir_op_ball_fequal4:
993 case nir_op_ball_iequal4:
994 return BRW_CONDITIONAL_Z;
995
996 case nir_op_fne:
997 case nir_op_ine:
998 case nir_op_bany_fnequal2:
999 case nir_op_bany_inequal2:
1000 case nir_op_bany_fnequal3:
1001 case nir_op_bany_inequal3:
1002 case nir_op_bany_fnequal4:
1003 case nir_op_bany_inequal4:
1004 return BRW_CONDITIONAL_NZ;
1005
1006 default:
1007 unreachable("not reached: bad operation for comparison");
1008 }
1009 }
1010
1011 bool
1012 vec4_visitor::optimize_predicate(nir_alu_instr *instr,
1013 enum brw_predicate *predicate)
1014 {
1015 if (!instr->src[0].src.is_ssa ||
1016 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
1017 return false;
1018
1019 nir_alu_instr *cmp_instr =
1020 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
1021
1022 switch (cmp_instr->op) {
1023 case nir_op_bany_fnequal2:
1024 case nir_op_bany_inequal2:
1025 case nir_op_bany_fnequal3:
1026 case nir_op_bany_inequal3:
1027 case nir_op_bany_fnequal4:
1028 case nir_op_bany_inequal4:
1029 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1030 break;
1031 case nir_op_ball_fequal2:
1032 case nir_op_ball_iequal2:
1033 case nir_op_ball_fequal3:
1034 case nir_op_ball_iequal3:
1035 case nir_op_ball_fequal4:
1036 case nir_op_ball_iequal4:
1037 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1038 break;
1039 default:
1040 return false;
1041 }
1042
1043 unsigned size_swizzle =
1044 brw_swizzle_for_size(nir_op_infos[cmp_instr->op].input_sizes[0]);
1045
1046 src_reg op[2];
1047 assert(nir_op_infos[cmp_instr->op].num_inputs == 2);
1048 for (unsigned i = 0; i < 2; i++) {
1049 nir_alu_type type = nir_op_infos[cmp_instr->op].input_types[i];
1050 unsigned bit_size = nir_src_bit_size(cmp_instr->src[i].src);
1051 type = (nir_alu_type) (((unsigned) type) | bit_size);
1052 op[i] = get_nir_src(cmp_instr->src[i].src, type, 4);
1053 unsigned base_swizzle =
1054 brw_swizzle_for_nir_swizzle(cmp_instr->src[i].swizzle);
1055 op[i].swizzle = brw_compose_swizzle(size_swizzle, base_swizzle);
1056 op[i].abs = cmp_instr->src[i].abs;
1057 op[i].negate = cmp_instr->src[i].negate;
1058 }
1059
1060 emit(CMP(dst_null_d(), op[0], op[1],
1061 brw_conditional_for_nir_comparison(cmp_instr->op)));
1062
1063 return true;
1064 }
1065
1066 static void
1067 emit_find_msb_using_lzd(const vec4_builder &bld,
1068 const dst_reg &dst,
1069 const src_reg &src,
1070 bool is_signed)
1071 {
1072 vec4_instruction *inst;
1073 src_reg temp = src;
1074
1075 if (is_signed) {
1076 /* LZD of an absolute value source almost always does the right
1077 * thing. There are two problem values:
1078 *
1079 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
1080 * 0. However, findMSB(int(0x80000000)) == 30.
1081 *
1082 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
1083 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
1084 *
1085 * For a value of zero or negative one, -1 will be returned.
1086 *
1087 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
1088 * findMSB(-(1<<x)) should return x-1.
1089 *
1090 * For all negative number cases, including 0x80000000 and
1091 * 0xffffffff, the correct value is obtained from LZD if instead of
1092 * negating the (already negative) value the logical-not is used. A
1093 * conditonal logical-not can be achieved in two instructions.
1094 */
1095 temp = src_reg(bld.vgrf(BRW_REGISTER_TYPE_D));
1096
1097 bld.ASR(dst_reg(temp), src, brw_imm_d(31));
1098 bld.XOR(dst_reg(temp), temp, src);
1099 }
1100
1101 bld.LZD(retype(dst, BRW_REGISTER_TYPE_UD),
1102 retype(temp, BRW_REGISTER_TYPE_UD));
1103
1104 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
1105 * from the LSB side. Subtract the result from 31 to convert the MSB count
1106 * into an LSB count. If no bits are set, LZD will return 32. 31-32 = -1,
1107 * which is exactly what findMSB() is supposed to return.
1108 */
1109 inst = bld.ADD(dst, retype(src_reg(dst), BRW_REGISTER_TYPE_D),
1110 brw_imm_d(31));
1111 inst->src[0].negate = true;
1112 }
1113
1114 void
1115 vec4_visitor::emit_conversion_from_double(dst_reg dst, src_reg src,
1116 bool saturate)
1117 {
1118 /* BDW PRM vol 15 - workarounds:
1119 * DF->f format conversion for Align16 has wrong emask calculation when
1120 * source is immediate.
1121 */
1122 if (devinfo->gen == 8 && dst.type == BRW_REGISTER_TYPE_F &&
1123 src.file == BRW_IMMEDIATE_VALUE) {
1124 vec4_instruction *inst = emit(MOV(dst, brw_imm_f(src.df)));
1125 inst->saturate = saturate;
1126 return;
1127 }
1128
1129 enum opcode op;
1130 switch (dst.type) {
1131 case BRW_REGISTER_TYPE_D:
1132 op = VEC4_OPCODE_DOUBLE_TO_D32;
1133 break;
1134 case BRW_REGISTER_TYPE_UD:
1135 op = VEC4_OPCODE_DOUBLE_TO_U32;
1136 break;
1137 case BRW_REGISTER_TYPE_F:
1138 op = VEC4_OPCODE_DOUBLE_TO_F32;
1139 break;
1140 default:
1141 unreachable("Unknown conversion");
1142 }
1143
1144 dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
1145 emit(MOV(temp, src));
1146 dst_reg temp2 = dst_reg(this, glsl_type::dvec4_type);
1147 emit(op, temp2, src_reg(temp));
1148
1149 emit(VEC4_OPCODE_PICK_LOW_32BIT, retype(temp2, dst.type), src_reg(temp2));
1150 vec4_instruction *inst = emit(MOV(dst, src_reg(retype(temp2, dst.type))));
1151 inst->saturate = saturate;
1152 }
1153
1154 void
1155 vec4_visitor::emit_conversion_to_double(dst_reg dst, src_reg src,
1156 bool saturate)
1157 {
1158 dst_reg tmp_dst = dst_reg(src_reg(this, glsl_type::dvec4_type));
1159 src_reg tmp_src = retype(src_reg(this, glsl_type::vec4_type), src.type);
1160 emit(MOV(dst_reg(tmp_src), src));
1161 emit(VEC4_OPCODE_TO_DOUBLE, tmp_dst, tmp_src);
1162 vec4_instruction *inst = emit(MOV(dst, src_reg(tmp_dst)));
1163 inst->saturate = saturate;
1164 }
1165
1166 void
1167 vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
1168 {
1169 vec4_instruction *inst;
1170
1171 nir_alu_type dst_type = (nir_alu_type) (nir_op_infos[instr->op].output_type |
1172 nir_dest_bit_size(instr->dest.dest));
1173 dst_reg dst = get_nir_dest(instr->dest.dest, dst_type);
1174 dst.writemask = instr->dest.write_mask;
1175
1176 src_reg op[4];
1177 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1178 nir_alu_type src_type = (nir_alu_type)
1179 (nir_op_infos[instr->op].input_types[i] |
1180 nir_src_bit_size(instr->src[i].src));
1181 op[i] = get_nir_src(instr->src[i].src, src_type, 4);
1182 op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
1183 op[i].abs = instr->src[i].abs;
1184 op[i].negate = instr->src[i].negate;
1185 }
1186
1187 switch (instr->op) {
1188 case nir_op_imov:
1189 case nir_op_fmov:
1190 inst = emit(MOV(dst, op[0]));
1191 inst->saturate = instr->dest.saturate;
1192 break;
1193
1194 case nir_op_vec2:
1195 case nir_op_vec3:
1196 case nir_op_vec4:
1197 unreachable("not reached: should be handled by lower_vec_to_movs()");
1198
1199 case nir_op_i2f32:
1200 case nir_op_u2f32:
1201 inst = emit(MOV(dst, op[0]));
1202 inst->saturate = instr->dest.saturate;
1203 break;
1204
1205 case nir_op_f2f32:
1206 case nir_op_f2i32:
1207 case nir_op_f2u32:
1208 if (nir_src_bit_size(instr->src[0].src) == 64)
1209 emit_conversion_from_double(dst, op[0], instr->dest.saturate);
1210 else
1211 inst = emit(MOV(dst, op[0]));
1212 break;
1213
1214 case nir_op_f2f64:
1215 case nir_op_i2f64:
1216 case nir_op_u2f64:
1217 emit_conversion_to_double(dst, op[0], instr->dest.saturate);
1218 break;
1219
1220 case nir_op_iadd:
1221 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1222 /* fall through */
1223 case nir_op_fadd:
1224 inst = emit(ADD(dst, op[0], op[1]));
1225 inst->saturate = instr->dest.saturate;
1226 break;
1227
1228 case nir_op_fmul:
1229 inst = emit(MUL(dst, op[0], op[1]));
1230 inst->saturate = instr->dest.saturate;
1231 break;
1232
1233 case nir_op_imul: {
1234 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1235 if (devinfo->gen < 8) {
1236 nir_const_value *value0 = nir_src_as_const_value(instr->src[0].src);
1237 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
1238
1239 /* For integer multiplication, the MUL uses the low 16 bits of one of
1240 * the operands (src0 through SNB, src1 on IVB and later). The MACH
1241 * accumulates in the contribution of the upper 16 bits of that
1242 * operand. If we can determine that one of the args is in the low
1243 * 16 bits, though, we can just emit a single MUL.
1244 */
1245 if (value0 && value0->u32[0] < (1 << 16)) {
1246 if (devinfo->gen < 7)
1247 emit(MUL(dst, op[0], op[1]));
1248 else
1249 emit(MUL(dst, op[1], op[0]));
1250 } else if (value1 && value1->u32[0] < (1 << 16)) {
1251 if (devinfo->gen < 7)
1252 emit(MUL(dst, op[1], op[0]));
1253 else
1254 emit(MUL(dst, op[0], op[1]));
1255 } else {
1256 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1257
1258 emit(MUL(acc, op[0], op[1]));
1259 emit(MACH(dst_null_d(), op[0], op[1]));
1260 emit(MOV(dst, src_reg(acc)));
1261 }
1262 } else {
1263 emit(MUL(dst, op[0], op[1]));
1264 }
1265 break;
1266 }
1267
1268 case nir_op_imul_high:
1269 case nir_op_umul_high: {
1270 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1271 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1272
1273 if (devinfo->gen >= 8)
1274 emit(MUL(acc, op[0], retype(op[1], BRW_REGISTER_TYPE_UW)));
1275 else
1276 emit(MUL(acc, op[0], op[1]));
1277
1278 emit(MACH(dst, op[0], op[1]));
1279 break;
1280 }
1281
1282 case nir_op_frcp:
1283 inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
1284 inst->saturate = instr->dest.saturate;
1285 break;
1286
1287 case nir_op_fexp2:
1288 inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
1289 inst->saturate = instr->dest.saturate;
1290 break;
1291
1292 case nir_op_flog2:
1293 inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
1294 inst->saturate = instr->dest.saturate;
1295 break;
1296
1297 case nir_op_fsin:
1298 inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
1299 inst->saturate = instr->dest.saturate;
1300 break;
1301
1302 case nir_op_fcos:
1303 inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
1304 inst->saturate = instr->dest.saturate;
1305 break;
1306
1307 case nir_op_idiv:
1308 case nir_op_udiv:
1309 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1310 emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
1311 break;
1312
1313 case nir_op_umod:
1314 case nir_op_irem:
1315 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1316 * appears that our hardware just does the right thing for signed
1317 * remainder.
1318 */
1319 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1320 emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1321 break;
1322
1323 case nir_op_imod: {
1324 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1325 inst = emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1326
1327 /* Math instructions don't support conditional mod */
1328 inst = emit(MOV(dst_null_d(), src_reg(dst)));
1329 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1330
1331 /* Now, we need to determine if signs of the sources are different.
1332 * When we XOR the sources, the top bit is 0 if they are the same and 1
1333 * if they are different. We can then use a conditional modifier to
1334 * turn that into a predicate. This leads us to an XOR.l instruction.
1335 *
1336 * Technically, according to the PRM, you're not allowed to use .l on a
1337 * XOR instruction. However, emperical experiments and Curro's reading
1338 * of the simulator source both indicate that it's safe.
1339 */
1340 src_reg tmp = src_reg(this, glsl_type::ivec4_type);
1341 inst = emit(XOR(dst_reg(tmp), op[0], op[1]));
1342 inst->predicate = BRW_PREDICATE_NORMAL;
1343 inst->conditional_mod = BRW_CONDITIONAL_L;
1344
1345 /* If the result of the initial remainder operation is non-zero and the
1346 * two sources have different signs, add in a copy of op[1] to get the
1347 * final integer modulus value.
1348 */
1349 inst = emit(ADD(dst, src_reg(dst), op[1]));
1350 inst->predicate = BRW_PREDICATE_NORMAL;
1351 break;
1352 }
1353
1354 case nir_op_ldexp:
1355 unreachable("not reached: should be handled by ldexp_to_arith()");
1356
1357 case nir_op_fsqrt:
1358 inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
1359 inst->saturate = instr->dest.saturate;
1360 break;
1361
1362 case nir_op_frsq:
1363 inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
1364 inst->saturate = instr->dest.saturate;
1365 break;
1366
1367 case nir_op_fpow:
1368 inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
1369 inst->saturate = instr->dest.saturate;
1370 break;
1371
1372 case nir_op_uadd_carry: {
1373 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1374 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1375
1376 emit(ADDC(dst_null_ud(), op[0], op[1]));
1377 emit(MOV(dst, src_reg(acc)));
1378 break;
1379 }
1380
1381 case nir_op_usub_borrow: {
1382 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1383 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1384
1385 emit(SUBB(dst_null_ud(), op[0], op[1]));
1386 emit(MOV(dst, src_reg(acc)));
1387 break;
1388 }
1389
1390 case nir_op_ftrunc:
1391 inst = emit(RNDZ(dst, op[0]));
1392 inst->saturate = instr->dest.saturate;
1393 break;
1394
1395 case nir_op_fceil: {
1396 src_reg tmp = src_reg(this, glsl_type::float_type);
1397 tmp.swizzle =
1398 brw_swizzle_for_size(instr->src[0].src.is_ssa ?
1399 instr->src[0].src.ssa->num_components :
1400 instr->src[0].src.reg.reg->num_components);
1401
1402 op[0].negate = !op[0].negate;
1403 emit(RNDD(dst_reg(tmp), op[0]));
1404 tmp.negate = true;
1405 inst = emit(MOV(dst, tmp));
1406 inst->saturate = instr->dest.saturate;
1407 break;
1408 }
1409
1410 case nir_op_ffloor:
1411 inst = emit(RNDD(dst, op[0]));
1412 inst->saturate = instr->dest.saturate;
1413 break;
1414
1415 case nir_op_ffract:
1416 inst = emit(FRC(dst, op[0]));
1417 inst->saturate = instr->dest.saturate;
1418 break;
1419
1420 case nir_op_fround_even:
1421 inst = emit(RNDE(dst, op[0]));
1422 inst->saturate = instr->dest.saturate;
1423 break;
1424
1425 case nir_op_fquantize2f16: {
1426 /* See also vec4_visitor::emit_pack_half_2x16() */
1427 src_reg tmp16 = src_reg(this, glsl_type::uvec4_type);
1428 src_reg tmp32 = src_reg(this, glsl_type::vec4_type);
1429 src_reg zero = src_reg(this, glsl_type::vec4_type);
1430
1431 /* Check for denormal */
1432 src_reg abs_src0 = op[0];
1433 abs_src0.abs = true;
1434 emit(CMP(dst_null_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1435 BRW_CONDITIONAL_L));
1436 /* Get the appropriately signed zero */
1437 emit(AND(retype(dst_reg(zero), BRW_REGISTER_TYPE_UD),
1438 retype(op[0], BRW_REGISTER_TYPE_UD),
1439 brw_imm_ud(0x80000000)));
1440 /* Do the actual F32 -> F16 -> F32 conversion */
1441 emit(F32TO16(dst_reg(tmp16), op[0]));
1442 emit(F16TO32(dst_reg(tmp32), tmp16));
1443 /* Select that or zero based on normal status */
1444 inst = emit(BRW_OPCODE_SEL, dst, zero, tmp32);
1445 inst->predicate = BRW_PREDICATE_NORMAL;
1446 inst->saturate = instr->dest.saturate;
1447 break;
1448 }
1449
1450 case nir_op_imin:
1451 case nir_op_umin:
1452 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1453 /* fall through */
1454 case nir_op_fmin:
1455 inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]);
1456 inst->saturate = instr->dest.saturate;
1457 break;
1458
1459 case nir_op_imax:
1460 case nir_op_umax:
1461 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1462 /* fall through */
1463 case nir_op_fmax:
1464 inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]);
1465 inst->saturate = instr->dest.saturate;
1466 break;
1467
1468 case nir_op_fddx:
1469 case nir_op_fddx_coarse:
1470 case nir_op_fddx_fine:
1471 case nir_op_fddy:
1472 case nir_op_fddy_coarse:
1473 case nir_op_fddy_fine:
1474 unreachable("derivatives are not valid in vertex shaders");
1475
1476 case nir_op_ilt:
1477 case nir_op_ult:
1478 case nir_op_ige:
1479 case nir_op_uge:
1480 case nir_op_ieq:
1481 case nir_op_ine:
1482 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1483 /* Fallthrough */
1484 case nir_op_flt:
1485 case nir_op_fge:
1486 case nir_op_feq:
1487 case nir_op_fne: {
1488 enum brw_conditional_mod conditional_mod =
1489 brw_conditional_for_nir_comparison(instr->op);
1490
1491 if (nir_src_bit_size(instr->src[0].src) < 64) {
1492 emit(CMP(dst, op[0], op[1], conditional_mod));
1493 } else {
1494 /* Produce a 32-bit boolean result from the DF comparison by selecting
1495 * only the low 32-bit in each DF produced. Do this in a temporary
1496 * so we can then move from there to the result using align16 again
1497 * to honor the original writemask.
1498 */
1499 dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
1500 emit(CMP(temp, op[0], op[1], conditional_mod));
1501 dst_reg result = dst_reg(this, glsl_type::bvec4_type);
1502 emit(VEC4_OPCODE_PICK_LOW_32BIT, result, src_reg(temp));
1503 emit(MOV(dst, src_reg(result)));
1504 }
1505 break;
1506 }
1507
1508 case nir_op_ball_iequal2:
1509 case nir_op_ball_iequal3:
1510 case nir_op_ball_iequal4:
1511 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1512 /* Fallthrough */
1513 case nir_op_ball_fequal2:
1514 case nir_op_ball_fequal3:
1515 case nir_op_ball_fequal4: {
1516 unsigned swiz =
1517 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1518
1519 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1520 brw_conditional_for_nir_comparison(instr->op)));
1521 emit(MOV(dst, brw_imm_d(0)));
1522 inst = emit(MOV(dst, brw_imm_d(~0)));
1523 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1524 break;
1525 }
1526
1527 case nir_op_bany_inequal2:
1528 case nir_op_bany_inequal3:
1529 case nir_op_bany_inequal4:
1530 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1531 /* Fallthrough */
1532 case nir_op_bany_fnequal2:
1533 case nir_op_bany_fnequal3:
1534 case nir_op_bany_fnequal4: {
1535 unsigned swiz =
1536 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1537
1538 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1539 brw_conditional_for_nir_comparison(instr->op)));
1540
1541 emit(MOV(dst, brw_imm_d(0)));
1542 inst = emit(MOV(dst, brw_imm_d(~0)));
1543 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1544 break;
1545 }
1546
1547 case nir_op_inot:
1548 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1549 if (devinfo->gen >= 8) {
1550 op[0] = resolve_source_modifiers(op[0]);
1551 }
1552 emit(NOT(dst, op[0]));
1553 break;
1554
1555 case nir_op_ixor:
1556 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1557 if (devinfo->gen >= 8) {
1558 op[0] = resolve_source_modifiers(op[0]);
1559 op[1] = resolve_source_modifiers(op[1]);
1560 }
1561 emit(XOR(dst, op[0], op[1]));
1562 break;
1563
1564 case nir_op_ior:
1565 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1566 if (devinfo->gen >= 8) {
1567 op[0] = resolve_source_modifiers(op[0]);
1568 op[1] = resolve_source_modifiers(op[1]);
1569 }
1570 emit(OR(dst, op[0], op[1]));
1571 break;
1572
1573 case nir_op_iand:
1574 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1575 if (devinfo->gen >= 8) {
1576 op[0] = resolve_source_modifiers(op[0]);
1577 op[1] = resolve_source_modifiers(op[1]);
1578 }
1579 emit(AND(dst, op[0], op[1]));
1580 break;
1581
1582 case nir_op_b2i:
1583 case nir_op_b2f:
1584 if (nir_dest_bit_size(instr->dest.dest) > 32) {
1585 assert(dst.type == BRW_REGISTER_TYPE_DF);
1586 emit_conversion_to_double(dst, negate(op[0]), false);
1587 } else {
1588 emit(MOV(dst, negate(op[0])));
1589 }
1590 break;
1591
1592 case nir_op_f2b:
1593 if (nir_src_bit_size(instr->src[0].src) == 64) {
1594 /* We use a MOV with conditional_mod to check if the provided value is
1595 * 0.0. We want this to flush denormalized numbers to zero, so we set a
1596 * source modifier on the source operand to trigger this, as source
1597 * modifiers don't affect the result of the testing against 0.0.
1598 */
1599 src_reg value = op[0];
1600 value.abs = true;
1601 vec4_instruction *inst = emit(MOV(dst_null_df(), value));
1602 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1603
1604 src_reg one = src_reg(this, glsl_type::ivec4_type);
1605 emit(MOV(dst_reg(one), brw_imm_d(~0)));
1606 inst = emit(BRW_OPCODE_SEL, dst, one, brw_imm_d(0));
1607 inst->predicate = BRW_PREDICATE_NORMAL;
1608 } else {
1609 emit(CMP(dst, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1610 }
1611 break;
1612
1613 case nir_op_i2b:
1614 emit(CMP(dst, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1615 break;
1616
1617 case nir_op_fnoise1_1:
1618 case nir_op_fnoise1_2:
1619 case nir_op_fnoise1_3:
1620 case nir_op_fnoise1_4:
1621 case nir_op_fnoise2_1:
1622 case nir_op_fnoise2_2:
1623 case nir_op_fnoise2_3:
1624 case nir_op_fnoise2_4:
1625 case nir_op_fnoise3_1:
1626 case nir_op_fnoise3_2:
1627 case nir_op_fnoise3_3:
1628 case nir_op_fnoise3_4:
1629 case nir_op_fnoise4_1:
1630 case nir_op_fnoise4_2:
1631 case nir_op_fnoise4_3:
1632 case nir_op_fnoise4_4:
1633 unreachable("not reached: should be handled by lower_noise");
1634
1635 case nir_op_unpack_half_2x16_split_x:
1636 case nir_op_unpack_half_2x16_split_y:
1637 case nir_op_pack_half_2x16_split:
1638 unreachable("not reached: should not occur in vertex shader");
1639
1640 case nir_op_unpack_snorm_2x16:
1641 case nir_op_unpack_unorm_2x16:
1642 case nir_op_pack_snorm_2x16:
1643 case nir_op_pack_unorm_2x16:
1644 unreachable("not reached: should be handled by lower_packing_builtins");
1645
1646 case nir_op_pack_uvec4_to_uint:
1647 unreachable("not reached");
1648
1649 case nir_op_pack_uvec2_to_uint: {
1650 dst_reg tmp1 = dst_reg(this, glsl_type::uint_type);
1651 tmp1.writemask = WRITEMASK_X;
1652 op[0].swizzle = BRW_SWIZZLE_YYYY;
1653 emit(SHL(tmp1, op[0], src_reg(brw_imm_ud(16u))));
1654
1655 dst_reg tmp2 = dst_reg(this, glsl_type::uint_type);
1656 tmp2.writemask = WRITEMASK_X;
1657 op[0].swizzle = BRW_SWIZZLE_XXXX;
1658 emit(AND(tmp2, op[0], src_reg(brw_imm_ud(0xffffu))));
1659
1660 emit(OR(dst, src_reg(tmp1), src_reg(tmp2)));
1661 break;
1662 }
1663
1664 case nir_op_pack_64_2x32_split: {
1665 dst_reg result = dst_reg(this, glsl_type::dvec4_type);
1666 dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1667 emit(MOV(tmp, retype(op[0], BRW_REGISTER_TYPE_UD)));
1668 emit(VEC4_OPCODE_SET_LOW_32BIT, result, src_reg(tmp));
1669 emit(MOV(tmp, retype(op[1], BRW_REGISTER_TYPE_UD)));
1670 emit(VEC4_OPCODE_SET_HIGH_32BIT, result, src_reg(tmp));
1671 emit(MOV(dst, src_reg(result)));
1672 break;
1673 }
1674
1675 case nir_op_unpack_64_2x32_split_x:
1676 case nir_op_unpack_64_2x32_split_y: {
1677 enum opcode oper = (instr->op == nir_op_unpack_64_2x32_split_x) ?
1678 VEC4_OPCODE_PICK_LOW_32BIT : VEC4_OPCODE_PICK_HIGH_32BIT;
1679 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
1680 emit(MOV(tmp, op[0]));
1681 dst_reg tmp2 = dst_reg(this, glsl_type::uvec4_type);
1682 emit(oper, tmp2, src_reg(tmp));
1683 emit(MOV(dst, src_reg(tmp2)));
1684 break;
1685 }
1686
1687 case nir_op_unpack_half_2x16:
1688 /* As NIR does not guarantee that we have a correct swizzle outside the
1689 * boundaries of a vector, and the implementation of emit_unpack_half_2x16
1690 * uses the source operand in an operation with WRITEMASK_Y while our
1691 * source operand has only size 1, it accessed incorrect data producing
1692 * regressions in Piglit. We repeat the swizzle of the first component on the
1693 * rest of components to avoid regressions. In the vec4_visitor IR code path
1694 * this is not needed because the operand has already the correct swizzle.
1695 */
1696 op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle);
1697 emit_unpack_half_2x16(dst, op[0]);
1698 break;
1699
1700 case nir_op_pack_half_2x16:
1701 emit_pack_half_2x16(dst, op[0]);
1702 break;
1703
1704 case nir_op_unpack_unorm_4x8:
1705 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1706 emit_unpack_unorm_4x8(dst, op[0]);
1707 break;
1708
1709 case nir_op_pack_unorm_4x8:
1710 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1711 emit_pack_unorm_4x8(dst, op[0]);
1712 break;
1713
1714 case nir_op_unpack_snorm_4x8:
1715 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1716 emit_unpack_snorm_4x8(dst, op[0]);
1717 break;
1718
1719 case nir_op_pack_snorm_4x8:
1720 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1721 emit_pack_snorm_4x8(dst, op[0]);
1722 break;
1723
1724 case nir_op_bitfield_reverse:
1725 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1726 emit(BFREV(dst, op[0]));
1727 break;
1728
1729 case nir_op_bit_count:
1730 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1731 emit(CBIT(dst, op[0]));
1732 break;
1733
1734 case nir_op_ufind_msb:
1735 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1736 emit_find_msb_using_lzd(vec4_builder(this).at_end(), dst, op[0], false);
1737 break;
1738
1739 case nir_op_ifind_msb: {
1740 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1741 vec4_builder bld = vec4_builder(this).at_end();
1742 src_reg src(dst);
1743
1744 if (devinfo->gen < 7) {
1745 emit_find_msb_using_lzd(bld, dst, op[0], true);
1746 } else {
1747 emit(FBH(retype(dst, BRW_REGISTER_TYPE_UD), op[0]));
1748
1749 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1750 * count from the LSB side. If FBH didn't return an error
1751 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1752 * count into an LSB count.
1753 */
1754 bld.CMP(dst_null_d(), src, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1755
1756 inst = bld.ADD(dst, src, brw_imm_d(31));
1757 inst->predicate = BRW_PREDICATE_NORMAL;
1758 inst->src[0].negate = true;
1759 }
1760 break;
1761 }
1762
1763 case nir_op_find_lsb: {
1764 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1765 vec4_builder bld = vec4_builder(this).at_end();
1766
1767 if (devinfo->gen < 7) {
1768 dst_reg temp = bld.vgrf(BRW_REGISTER_TYPE_D);
1769
1770 /* (x & -x) generates a value that consists of only the LSB of x.
1771 * For all powers of 2, findMSB(y) == findLSB(y).
1772 */
1773 src_reg src = src_reg(retype(op[0], BRW_REGISTER_TYPE_D));
1774 src_reg negated_src = src;
1775
1776 /* One must be negated, and the other must be non-negated. It
1777 * doesn't matter which is which.
1778 */
1779 negated_src.negate = true;
1780 src.negate = false;
1781
1782 bld.AND(temp, src, negated_src);
1783 emit_find_msb_using_lzd(bld, dst, src_reg(temp), false);
1784 } else {
1785 bld.FBL(dst, op[0]);
1786 }
1787 break;
1788 }
1789
1790 case nir_op_ubitfield_extract:
1791 case nir_op_ibitfield_extract:
1792 unreachable("should have been lowered");
1793 case nir_op_ubfe:
1794 case nir_op_ibfe:
1795 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1796 op[0] = fix_3src_operand(op[0]);
1797 op[1] = fix_3src_operand(op[1]);
1798 op[2] = fix_3src_operand(op[2]);
1799
1800 emit(BFE(dst, op[2], op[1], op[0]));
1801 break;
1802
1803 case nir_op_bfm:
1804 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1805 emit(BFI1(dst, op[0], op[1]));
1806 break;
1807
1808 case nir_op_bfi:
1809 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1810 op[0] = fix_3src_operand(op[0]);
1811 op[1] = fix_3src_operand(op[1]);
1812 op[2] = fix_3src_operand(op[2]);
1813
1814 emit(BFI2(dst, op[0], op[1], op[2]));
1815 break;
1816
1817 case nir_op_bitfield_insert:
1818 unreachable("not reached: should have been lowered");
1819
1820 case nir_op_fsign:
1821 assert(!instr->dest.saturate);
1822 if (op[0].abs) {
1823 /* Straightforward since the source can be assumed to be either
1824 * strictly >= 0 or strictly <= 0 depending on the setting of the
1825 * negate flag.
1826 */
1827 inst = emit(MOV(dst, op[0]));
1828 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1829
1830 inst = (op[0].negate)
1831 ? emit(MOV(dst, brw_imm_f(-1.0f)))
1832 : emit(MOV(dst, brw_imm_f(1.0f)));
1833 inst->predicate = BRW_PREDICATE_NORMAL;
1834 } else if (type_sz(op[0].type) < 8) {
1835 /* AND(val, 0x80000000) gives the sign bit.
1836 *
1837 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
1838 * zero.
1839 */
1840 emit(CMP(dst_null_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1841
1842 op[0].type = BRW_REGISTER_TYPE_UD;
1843 dst.type = BRW_REGISTER_TYPE_UD;
1844 emit(AND(dst, op[0], brw_imm_ud(0x80000000u)));
1845
1846 inst = emit(OR(dst, src_reg(dst), brw_imm_ud(0x3f800000u)));
1847 inst->predicate = BRW_PREDICATE_NORMAL;
1848 dst.type = BRW_REGISTER_TYPE_F;
1849 } else {
1850 /* For doubles we do the same but we need to consider:
1851 *
1852 * - We use a MOV with conditional_mod instead of a CMP so that we can
1853 * skip loading a 0.0 immediate. We use a source modifier on the
1854 * source of the MOV so that we flush denormalized values to 0.
1855 * Since we want to compare against 0, this won't alter the result.
1856 * - We need to extract the high 32-bit of each DF where the sign
1857 * is stored.
1858 * - We need to produce a DF result.
1859 */
1860
1861 /* Check for zero */
1862 src_reg value = op[0];
1863 value.abs = true;
1864 inst = emit(MOV(dst_null_df(), value));
1865 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1866
1867 /* AND each high 32-bit channel with 0x80000000u */
1868 dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1869 emit(VEC4_OPCODE_PICK_HIGH_32BIT, tmp, op[0]);
1870 emit(AND(tmp, src_reg(tmp), brw_imm_ud(0x80000000u)));
1871
1872 /* Add 1.0 to each channel, predicated to skip the cases where the
1873 * channel's value was 0
1874 */
1875 inst = emit(OR(tmp, src_reg(tmp), brw_imm_ud(0x3f800000u)));
1876 inst->predicate = BRW_PREDICATE_NORMAL;
1877
1878 /* Now convert the result from float to double */
1879 emit_conversion_to_double(dst, retype(src_reg(tmp),
1880 BRW_REGISTER_TYPE_F),
1881 false);
1882 }
1883 break;
1884
1885 case nir_op_isign:
1886 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
1887 * -> non-negative val generates 0x00000000.
1888 * Predicated OR sets 1 if val is positive.
1889 */
1890 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1891 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G));
1892 emit(ASR(dst, op[0], brw_imm_d(31)));
1893 inst = emit(OR(dst, src_reg(dst), brw_imm_d(1)));
1894 inst->predicate = BRW_PREDICATE_NORMAL;
1895 break;
1896
1897 case nir_op_ishl:
1898 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1899 emit(SHL(dst, op[0], op[1]));
1900 break;
1901
1902 case nir_op_ishr:
1903 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1904 emit(ASR(dst, op[0], op[1]));
1905 break;
1906
1907 case nir_op_ushr:
1908 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1909 emit(SHR(dst, op[0], op[1]));
1910 break;
1911
1912 case nir_op_ffma:
1913 if (type_sz(dst.type) == 8) {
1914 dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
1915 emit(MUL(mul_dst, op[1], op[0]));
1916 inst = emit(ADD(dst, src_reg(mul_dst), op[2]));
1917 inst->saturate = instr->dest.saturate;
1918 } else {
1919 op[0] = fix_3src_operand(op[0]);
1920 op[1] = fix_3src_operand(op[1]);
1921 op[2] = fix_3src_operand(op[2]);
1922
1923 inst = emit(MAD(dst, op[2], op[1], op[0]));
1924 inst->saturate = instr->dest.saturate;
1925 }
1926 break;
1927
1928 case nir_op_flrp:
1929 inst = emit_lrp(dst, op[0], op[1], op[2]);
1930 inst->saturate = instr->dest.saturate;
1931 break;
1932
1933 case nir_op_bcsel:
1934 enum brw_predicate predicate;
1935 if (!optimize_predicate(instr, &predicate)) {
1936 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1937 switch (dst.writemask) {
1938 case WRITEMASK_X:
1939 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_X;
1940 break;
1941 case WRITEMASK_Y:
1942 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Y;
1943 break;
1944 case WRITEMASK_Z:
1945 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Z;
1946 break;
1947 case WRITEMASK_W:
1948 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_W;
1949 break;
1950 default:
1951 predicate = BRW_PREDICATE_NORMAL;
1952 break;
1953 }
1954 }
1955 inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]);
1956 inst->predicate = predicate;
1957 break;
1958
1959 case nir_op_fdot_replicated2:
1960 inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]);
1961 inst->saturate = instr->dest.saturate;
1962 break;
1963
1964 case nir_op_fdot_replicated3:
1965 inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]);
1966 inst->saturate = instr->dest.saturate;
1967 break;
1968
1969 case nir_op_fdot_replicated4:
1970 inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]);
1971 inst->saturate = instr->dest.saturate;
1972 break;
1973
1974 case nir_op_fdph_replicated:
1975 inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]);
1976 inst->saturate = instr->dest.saturate;
1977 break;
1978
1979 case nir_op_iabs:
1980 case nir_op_ineg:
1981 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1982 /* fall through */
1983 case nir_op_fabs:
1984 case nir_op_fneg:
1985 case nir_op_fsat:
1986 unreachable("not reached: should be lowered by lower_source mods");
1987
1988 case nir_op_fdiv:
1989 unreachable("not reached: should be lowered by DIV_TO_MUL_RCP in the compiler");
1990
1991 case nir_op_fmod:
1992 unreachable("not reached: should be lowered by MOD_TO_FLOOR in the compiler");
1993
1994 case nir_op_fsub:
1995 case nir_op_isub:
1996 unreachable("not reached: should be handled by ir_sub_to_add_neg");
1997
1998 default:
1999 unreachable("Unimplemented ALU operation");
2000 }
2001
2002 /* If we need to do a boolean resolve, replace the result with -(x & 1)
2003 * to sign extend the low bit to 0/~0
2004 */
2005 if (devinfo->gen <= 5 &&
2006 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) ==
2007 BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
2008 dst_reg masked = dst_reg(this, glsl_type::int_type);
2009 masked.writemask = dst.writemask;
2010 emit(AND(masked, src_reg(dst), brw_imm_d(1)));
2011 src_reg masked_neg = src_reg(masked);
2012 masked_neg.negate = true;
2013 emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg));
2014 }
2015 }
2016
2017 void
2018 vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
2019 {
2020 switch (instr->type) {
2021 case nir_jump_break:
2022 emit(BRW_OPCODE_BREAK);
2023 break;
2024
2025 case nir_jump_continue:
2026 emit(BRW_OPCODE_CONTINUE);
2027 break;
2028
2029 case nir_jump_return:
2030 /* fall through */
2031 default:
2032 unreachable("unknown jump");
2033 }
2034 }
2035
2036 static enum ir_texture_opcode
2037 ir_texture_opcode_for_nir_texop(nir_texop texop)
2038 {
2039 enum ir_texture_opcode op;
2040
2041 switch (texop) {
2042 case nir_texop_lod: op = ir_lod; break;
2043 case nir_texop_query_levels: op = ir_query_levels; break;
2044 case nir_texop_texture_samples: op = ir_texture_samples; break;
2045 case nir_texop_tex: op = ir_tex; break;
2046 case nir_texop_tg4: op = ir_tg4; break;
2047 case nir_texop_txb: op = ir_txb; break;
2048 case nir_texop_txd: op = ir_txd; break;
2049 case nir_texop_txf: op = ir_txf; break;
2050 case nir_texop_txf_ms: op = ir_txf_ms; break;
2051 case nir_texop_txl: op = ir_txl; break;
2052 case nir_texop_txs: op = ir_txs; break;
2053 case nir_texop_samples_identical: op = ir_samples_identical; break;
2054 default:
2055 unreachable("unknown texture opcode");
2056 }
2057
2058 return op;
2059 }
2060
2061 static const glsl_type *
2062 glsl_type_for_nir_alu_type(nir_alu_type alu_type,
2063 unsigned components)
2064 {
2065 return glsl_type::get_instance(brw_glsl_base_type_for_nir_type(alu_type),
2066 components, 1);
2067 }
2068
2069 void
2070 vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
2071 {
2072 unsigned texture = instr->texture_index;
2073 unsigned sampler = instr->sampler_index;
2074 src_reg texture_reg = brw_imm_ud(texture);
2075 src_reg sampler_reg = brw_imm_ud(sampler);
2076 src_reg coordinate;
2077 const glsl_type *coord_type = NULL;
2078 src_reg shadow_comparator;
2079 src_reg offset_value;
2080 src_reg lod, lod2;
2081 src_reg sample_index;
2082 src_reg mcs;
2083
2084 const glsl_type *dest_type =
2085 glsl_type_for_nir_alu_type(instr->dest_type,
2086 nir_tex_instr_dest_size(instr));
2087 dst_reg dest = get_nir_dest(instr->dest, instr->dest_type);
2088
2089 /* The hardware requires a LOD for buffer textures */
2090 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
2091 lod = brw_imm_d(0);
2092
2093 /* Load the texture operation sources */
2094 uint32_t constant_offset = 0;
2095 for (unsigned i = 0; i < instr->num_srcs; i++) {
2096 switch (instr->src[i].src_type) {
2097 case nir_tex_src_comparator:
2098 shadow_comparator = get_nir_src(instr->src[i].src,
2099 BRW_REGISTER_TYPE_F, 1);
2100 break;
2101
2102 case nir_tex_src_coord: {
2103 unsigned src_size = nir_tex_instr_src_size(instr, i);
2104
2105 switch (instr->op) {
2106 case nir_texop_txf:
2107 case nir_texop_txf_ms:
2108 case nir_texop_samples_identical:
2109 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D,
2110 src_size);
2111 coord_type = glsl_type::ivec(src_size);
2112 break;
2113
2114 default:
2115 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2116 src_size);
2117 coord_type = glsl_type::vec(src_size);
2118 break;
2119 }
2120 break;
2121 }
2122
2123 case nir_tex_src_ddx:
2124 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2125 nir_tex_instr_src_size(instr, i));
2126 break;
2127
2128 case nir_tex_src_ddy:
2129 lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2130 nir_tex_instr_src_size(instr, i));
2131 break;
2132
2133 case nir_tex_src_lod:
2134 switch (instr->op) {
2135 case nir_texop_txs:
2136 case nir_texop_txf:
2137 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2138 break;
2139
2140 default:
2141 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1);
2142 break;
2143 }
2144 break;
2145
2146 case nir_tex_src_ms_index: {
2147 sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2148 break;
2149 }
2150
2151 case nir_tex_src_offset: {
2152 nir_const_value *const_offset =
2153 nir_src_as_const_value(instr->src[i].src);
2154 if (!const_offset ||
2155 !brw_texture_offset(const_offset->i32,
2156 nir_tex_instr_src_size(instr, i),
2157 &constant_offset)) {
2158 offset_value =
2159 get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2);
2160 }
2161 break;
2162 }
2163
2164 case nir_tex_src_texture_offset: {
2165 /* The highest texture which may be used by this operation is
2166 * the last element of the array. Mark it here, because the generator
2167 * doesn't have enough information to determine the bound.
2168 */
2169 uint32_t array_size = instr->texture_array_size;
2170 uint32_t max_used = texture + array_size - 1;
2171 if (instr->op == nir_texop_tg4) {
2172 max_used += prog_data->base.binding_table.gather_texture_start;
2173 } else {
2174 max_used += prog_data->base.binding_table.texture_start;
2175 }
2176
2177 brw_mark_surface_used(&prog_data->base, max_used);
2178
2179 /* Emit code to evaluate the actual indexing expression */
2180 src_reg src = get_nir_src(instr->src[i].src, 1);
2181 src_reg temp(this, glsl_type::uint_type);
2182 emit(ADD(dst_reg(temp), src, brw_imm_ud(texture)));
2183 texture_reg = emit_uniformize(temp);
2184 break;
2185 }
2186
2187 case nir_tex_src_sampler_offset: {
2188 /* Emit code to evaluate the actual indexing expression */
2189 src_reg src = get_nir_src(instr->src[i].src, 1);
2190 src_reg temp(this, glsl_type::uint_type);
2191 emit(ADD(dst_reg(temp), src, brw_imm_ud(sampler)));
2192 sampler_reg = emit_uniformize(temp);
2193 break;
2194 }
2195
2196 case nir_tex_src_projector:
2197 unreachable("Should be lowered by do_lower_texture_projection");
2198
2199 case nir_tex_src_bias:
2200 unreachable("LOD bias is not valid for vertex shaders.\n");
2201
2202 default:
2203 unreachable("unknown texture source");
2204 }
2205 }
2206
2207 if (instr->op == nir_texop_txf_ms ||
2208 instr->op == nir_texop_samples_identical) {
2209 assert(coord_type != NULL);
2210 if (devinfo->gen >= 7 &&
2211 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
2212 mcs = emit_mcs_fetch(coord_type, coordinate, texture_reg);
2213 } else {
2214 mcs = brw_imm_ud(0u);
2215 }
2216 }
2217
2218 /* Stuff the channel select bits in the top of the texture offset */
2219 if (instr->op == nir_texop_tg4) {
2220 if (instr->component == 1 &&
2221 (key_tex->gather_channel_quirk_mask & (1 << texture))) {
2222 /* gather4 sampler is broken for green channel on RG32F --
2223 * we must ask for blue instead.
2224 */
2225 constant_offset |= 2 << 16;
2226 } else {
2227 constant_offset |= instr->component << 16;
2228 }
2229 }
2230
2231 ir_texture_opcode op = ir_texture_opcode_for_nir_texop(instr->op);
2232
2233 emit_texture(op, dest, dest_type, coordinate, instr->coord_components,
2234 shadow_comparator,
2235 lod, lod2, sample_index,
2236 constant_offset, offset_value, mcs,
2237 texture, texture_reg, sampler_reg);
2238 }
2239
2240 void
2241 vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr)
2242 {
2243 nir_ssa_values[instr->def.index] =
2244 dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(instr->def.bit_size, 32)));
2245 }
2246
2247 /* SIMD4x2 64bit data is stored in register space like this:
2248 *
2249 * r0.0:DF x0 y0 z0 w0
2250 * r1.0:DF x1 y1 z1 w1
2251 *
2252 * When we need to write data such as this to memory using 32-bit write
2253 * messages we need to shuffle it in this fashion:
2254 *
2255 * r0.0:DF x0 y0 x1 y1 (to be written at base offset)
2256 * r0.0:DF z0 w0 z1 w1 (to be written at base offset + 16)
2257 *
2258 * We need to do the inverse operation when we read using 32-bit messages,
2259 * which we can do by applying the same exact shuffling on the 64-bit data
2260 * read, only that because the data for each vertex is positioned differently
2261 * we need to apply different channel enables.
2262 *
2263 * This function takes 64bit data and shuffles it as explained above.
2264 *
2265 * The @for_write parameter is used to specify if the shuffling is being done
2266 * for proper SIMD4x2 64-bit data that needs to be shuffled prior to a 32-bit
2267 * write message (for_write = true), or instead we are doing the inverse
2268 * operation and we have just read 64-bit data using a 32-bit messages that we
2269 * need to shuffle to create valid SIMD4x2 64-bit data (for_write = false).
2270 *
2271 * If @block and @ref are non-NULL, then the shuffling is done after @ref,
2272 * otherwise the instructions are emitted normally at the end. The function
2273 * returns the last instruction inserted.
2274 *
2275 * Notice that @src and @dst cannot be the same register.
2276 */
2277 vec4_instruction *
2278 vec4_visitor::shuffle_64bit_data(dst_reg dst, src_reg src, bool for_write,
2279 bblock_t *block, vec4_instruction *ref)
2280 {
2281 assert(type_sz(src.type) == 8);
2282 assert(type_sz(dst.type) == 8);
2283 assert(!regions_overlap(dst, 2 * REG_SIZE, src, 2 * REG_SIZE));
2284 assert(!ref == !block);
2285
2286 const vec4_builder bld = !ref ? vec4_builder(this).at_end() :
2287 vec4_builder(this).at(block, ref->next);
2288
2289 /* Resolve swizzle in src */
2290 vec4_instruction *inst;
2291 if (src.swizzle != BRW_SWIZZLE_XYZW) {
2292 dst_reg data = dst_reg(this, glsl_type::dvec4_type);
2293 inst = bld.MOV(data, src);
2294 src = src_reg(data);
2295 }
2296
2297 /* dst+0.XY = src+0.XY */
2298 inst = bld.group(4, 0).MOV(writemask(dst, WRITEMASK_XY), src);
2299
2300 /* dst+0.ZW = src+1.XY */
2301 inst = bld.group(4, for_write ? 1 : 0)
2302 .MOV(writemask(dst, WRITEMASK_ZW),
2303 swizzle(byte_offset(src, REG_SIZE), BRW_SWIZZLE_XYXY));
2304
2305 /* dst+1.XY = src+0.ZW */
2306 inst = bld.group(4, for_write ? 0 : 1)
2307 .MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_XY),
2308 swizzle(src, BRW_SWIZZLE_ZWZW));
2309
2310 /* dst+1.ZW = src+1.ZW */
2311 inst = bld.group(4, 1)
2312 .MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_ZW),
2313 byte_offset(src, REG_SIZE));
2314
2315 return inst;
2316 }
2317
2318 }