anv: Store prog data in pipeline cache stream
[mesa.git] / src / intel / vulkan / anv_pipeline_cache.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "util/mesa-sha1.h"
25 #include "util/debug.h"
26 #include "anv_private.h"
27
28 /* Remaining work:
29 *
30 * - Compact binding table layout so it's tight and not dependent on
31 * descriptor set layout.
32 *
33 * - Review prog_data struct for size and cacheability: struct
34 * brw_stage_prog_data has binding_table which uses a lot of uint32_t for 8
35 * bit quantities etc; param, pull_param, and image_params are pointers, we
36 * just need the compation map. use bit fields for all bools, eg
37 * dual_src_blend.
38 */
39
40 void
41 anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
42 struct anv_device *device)
43 {
44 cache->device = device;
45 anv_state_stream_init(&cache->program_stream,
46 &device->instruction_block_pool);
47 pthread_mutex_init(&cache->mutex, NULL);
48
49 cache->kernel_count = 0;
50 cache->total_size = 0;
51 cache->table_size = 1024;
52 const size_t byte_size = cache->table_size * sizeof(cache->hash_table[0]);
53 cache->hash_table = malloc(byte_size);
54
55 /* We don't consider allocation failure fatal, we just start with a 0-sized
56 * cache. */
57 if (cache->hash_table == NULL)
58 cache->table_size = 0;
59 else
60 memset(cache->hash_table, 0xff, byte_size);
61 }
62
63 void
64 anv_pipeline_cache_finish(struct anv_pipeline_cache *cache)
65 {
66 anv_state_stream_finish(&cache->program_stream);
67 pthread_mutex_destroy(&cache->mutex);
68 free(cache->hash_table);
69 }
70
71 struct cache_entry {
72 unsigned char sha1[20];
73 uint32_t prog_data_size;
74 uint32_t kernel_size;
75 char prog_data[0];
76
77 /* kernel follows prog_data at next 64 byte aligned address */
78 };
79
80 static uint32_t
81 entry_size(struct cache_entry *entry)
82 {
83 /* This returns the number of bytes needed to serialize an entry, which
84 * doesn't include the alignment padding bytes.
85 */
86
87 return sizeof(*entry) + entry->prog_data_size + entry->kernel_size;
88 }
89
90 void
91 anv_hash_shader(unsigned char *hash, const void *key, size_t key_size,
92 struct anv_shader_module *module,
93 const char *entrypoint,
94 const VkSpecializationInfo *spec_info)
95 {
96 struct mesa_sha1 *ctx;
97
98 ctx = _mesa_sha1_init();
99 _mesa_sha1_update(ctx, key, key_size);
100 _mesa_sha1_update(ctx, module->sha1, sizeof(module->sha1));
101 _mesa_sha1_update(ctx, entrypoint, strlen(entrypoint));
102 /* hash in shader stage, pipeline layout? */
103 if (spec_info) {
104 _mesa_sha1_update(ctx, spec_info->pMapEntries,
105 spec_info->mapEntryCount * sizeof spec_info->pMapEntries[0]);
106 _mesa_sha1_update(ctx, spec_info->pData, spec_info->dataSize);
107 }
108 _mesa_sha1_final(ctx, hash);
109 }
110
111 uint32_t
112 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
113 const unsigned char *sha1,
114 const struct brw_stage_prog_data **prog_data)
115 {
116 const uint32_t mask = cache->table_size - 1;
117 const uint32_t start = (*(uint32_t *) sha1);
118
119 for (uint32_t i = 0; i < cache->table_size; i++) {
120 const uint32_t index = (start + i) & mask;
121 const uint32_t offset = cache->hash_table[index];
122
123 if (offset == ~0)
124 return NO_KERNEL;
125
126 struct cache_entry *entry =
127 cache->program_stream.block_pool->map + offset;
128 if (memcmp(entry->sha1, sha1, sizeof(entry->sha1)) == 0) {
129 if (prog_data)
130 *prog_data = (const struct brw_stage_prog_data *) entry->prog_data;
131
132 const uint32_t preamble_size =
133 align_u32(sizeof(*entry) + entry->prog_data_size, 64);
134
135 return offset + preamble_size;
136 }
137 }
138
139 return NO_KERNEL;
140 }
141
142 static void
143 anv_pipeline_cache_add_entry(struct anv_pipeline_cache *cache,
144 struct cache_entry *entry, uint32_t entry_offset)
145 {
146 const uint32_t mask = cache->table_size - 1;
147 const uint32_t start = (*(uint32_t *) entry->sha1);
148
149 /* We'll always be able to insert when we get here. */
150 assert(cache->kernel_count < cache->table_size / 2);
151
152 for (uint32_t i = 0; i < cache->table_size; i++) {
153 const uint32_t index = (start + i) & mask;
154 if (cache->hash_table[index] == ~0) {
155 cache->hash_table[index] = entry_offset;
156 break;
157 }
158 }
159
160 cache->total_size += entry_size(entry);
161 cache->kernel_count++;
162 }
163
164 static VkResult
165 anv_pipeline_cache_grow(struct anv_pipeline_cache *cache)
166 {
167 const uint32_t table_size = cache->table_size * 2;
168 const uint32_t old_table_size = cache->table_size;
169 const size_t byte_size = table_size * sizeof(cache->hash_table[0]);
170 uint32_t *table;
171 uint32_t *old_table = cache->hash_table;
172
173 table = malloc(byte_size);
174 if (table == NULL)
175 return VK_ERROR_OUT_OF_HOST_MEMORY;
176
177 cache->hash_table = table;
178 cache->table_size = table_size;
179 cache->kernel_count = 0;
180 cache->total_size = 0;
181
182 memset(cache->hash_table, 0xff, byte_size);
183 for (uint32_t i = 0; i < old_table_size; i++) {
184 const uint32_t offset = old_table[i];
185 if (offset == ~0)
186 continue;
187
188 struct cache_entry *entry =
189 cache->program_stream.block_pool->map + offset;
190 anv_pipeline_cache_add_entry(cache, entry, offset);
191 }
192
193 free(old_table);
194
195 return VK_SUCCESS;
196 }
197
198 uint32_t
199 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
200 const unsigned char *sha1,
201 const void *kernel, size_t kernel_size,
202 const struct brw_stage_prog_data **prog_data,
203 size_t prog_data_size)
204 {
205 pthread_mutex_lock(&cache->mutex);
206 struct cache_entry *entry;
207
208 const uint32_t preamble_size =
209 align_u32(sizeof(*entry) + prog_data_size, 64);
210
211 const uint32_t size = preamble_size + kernel_size;
212
213 assert(size < cache->program_stream.block_pool->block_size);
214 const struct anv_state state =
215 anv_state_stream_alloc(&cache->program_stream, size, 64);
216
217 entry = state.map;
218 entry->prog_data_size = prog_data_size;
219 memcpy(entry->prog_data, *prog_data, prog_data_size);
220 *prog_data = (const struct brw_stage_prog_data *) entry->prog_data;
221 entry->kernel_size = kernel_size;
222
223 if (sha1 && env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", false)) {
224 assert(anv_pipeline_cache_search(cache, sha1, NULL) == NO_KERNEL);
225
226 memcpy(entry->sha1, sha1, sizeof(entry->sha1));
227 if (cache->kernel_count == cache->table_size / 2)
228 anv_pipeline_cache_grow(cache);
229
230 /* Failing to grow that hash table isn't fatal, but may mean we don't
231 * have enough space to add this new kernel. Only add it if there's room.
232 */
233 if (cache->kernel_count < cache->table_size / 2)
234 anv_pipeline_cache_add_entry(cache, entry, state.offset);
235 }
236
237 pthread_mutex_unlock(&cache->mutex);
238
239 memcpy(state.map + preamble_size, kernel, kernel_size);
240
241 if (!cache->device->info.has_llc)
242 anv_state_clflush(state);
243
244 return state.offset + preamble_size;
245 }
246
247 struct cache_header {
248 uint32_t header_size;
249 uint32_t header_version;
250 uint32_t vendor_id;
251 uint32_t device_id;
252 uint8_t uuid[VK_UUID_SIZE];
253 };
254
255 static void
256 anv_pipeline_cache_load(struct anv_pipeline_cache *cache,
257 const void *data, size_t size)
258 {
259 struct anv_device *device = cache->device;
260 struct cache_header header;
261 uint8_t uuid[VK_UUID_SIZE];
262
263 if (size < sizeof(header))
264 return;
265 memcpy(&header, data, sizeof(header));
266 if (header.header_size < sizeof(header))
267 return;
268 if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
269 return;
270 if (header.vendor_id != 0x8086)
271 return;
272 if (header.device_id != device->chipset_id)
273 return;
274 anv_device_get_cache_uuid(uuid);
275 if (memcmp(header.uuid, uuid, VK_UUID_SIZE) != 0)
276 return;
277
278 const void *end = data + size;
279 const void *p = data + header.header_size;
280
281 while (p < end) {
282 /* The kernels aren't 64 byte aligned in the serialized format so
283 * they're always right after the prog_data.
284 */
285 const struct cache_entry *entry = p;
286 const void *kernel = &entry->prog_data[entry->prog_data_size];
287
288 const struct brw_stage_prog_data *prog_data =
289 (const struct brw_stage_prog_data *) entry->prog_data;
290
291 anv_pipeline_cache_upload_kernel(cache, entry->sha1,
292 kernel, entry->kernel_size,
293 &prog_data,
294 entry->prog_data_size);
295 p = kernel + entry->kernel_size;
296 }
297 }
298
299 VkResult anv_CreatePipelineCache(
300 VkDevice _device,
301 const VkPipelineCacheCreateInfo* pCreateInfo,
302 const VkAllocationCallbacks* pAllocator,
303 VkPipelineCache* pPipelineCache)
304 {
305 ANV_FROM_HANDLE(anv_device, device, _device);
306 struct anv_pipeline_cache *cache;
307
308 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO);
309 assert(pCreateInfo->flags == 0);
310
311 cache = anv_alloc2(&device->alloc, pAllocator,
312 sizeof(*cache), 8,
313 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
314 if (cache == NULL)
315 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
316
317 anv_pipeline_cache_init(cache, device);
318
319 if (pCreateInfo->initialDataSize > 0)
320 anv_pipeline_cache_load(cache,
321 pCreateInfo->pInitialData,
322 pCreateInfo->initialDataSize);
323
324 *pPipelineCache = anv_pipeline_cache_to_handle(cache);
325
326 return VK_SUCCESS;
327 }
328
329 void anv_DestroyPipelineCache(
330 VkDevice _device,
331 VkPipelineCache _cache,
332 const VkAllocationCallbacks* pAllocator)
333 {
334 ANV_FROM_HANDLE(anv_device, device, _device);
335 ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
336
337 anv_pipeline_cache_finish(cache);
338
339 anv_free2(&device->alloc, pAllocator, cache);
340 }
341
342 VkResult anv_GetPipelineCacheData(
343 VkDevice _device,
344 VkPipelineCache _cache,
345 size_t* pDataSize,
346 void* pData)
347 {
348 ANV_FROM_HANDLE(anv_device, device, _device);
349 ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
350 struct cache_header *header;
351
352 const size_t size = sizeof(*header) + cache->total_size;
353
354 if (pData == NULL) {
355 *pDataSize = size;
356 return VK_SUCCESS;
357 }
358
359 if (*pDataSize < sizeof(*header)) {
360 *pDataSize = 0;
361 return VK_INCOMPLETE;
362 }
363
364 void *p = pData, *end = pData + *pDataSize;
365 header = p;
366 header->header_size = sizeof(*header);
367 header->header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE;
368 header->vendor_id = 0x8086;
369 header->device_id = device->chipset_id;
370 anv_device_get_cache_uuid(header->uuid);
371 p += header->header_size;
372
373 struct cache_entry *entry;
374 for (uint32_t i = 0; i < cache->table_size; i++) {
375 if (cache->hash_table[i] == ~0)
376 continue;
377
378 entry = cache->program_stream.block_pool->map + cache->hash_table[i];
379 if (end < p + entry_size(entry))
380 break;
381
382 memcpy(p, entry, sizeof(*entry) + entry->prog_data_size);
383 p += sizeof(*entry) + entry->prog_data_size;
384
385 void *kernel = (void *) entry +
386 align_u32(sizeof(*entry) + entry->prog_data_size, 64);
387
388 memcpy(p, kernel, entry->kernel_size);
389 p += entry->kernel_size;
390 }
391
392 *pDataSize = p - pData;
393
394 return VK_SUCCESS;
395 }
396
397 static void
398 anv_pipeline_cache_merge(struct anv_pipeline_cache *dst,
399 struct anv_pipeline_cache *src)
400 {
401 for (uint32_t i = 0; i < src->table_size; i++) {
402 if (src->hash_table[i] == ~0)
403 continue;
404
405 struct cache_entry *entry =
406 src->program_stream.block_pool->map + src->hash_table[i];
407
408 if (anv_pipeline_cache_search(dst, entry->sha1, NULL) != NO_KERNEL)
409 continue;
410
411 const void *kernel = (void *) entry +
412 align_u32(sizeof(*entry) + entry->prog_data_size, 64);
413 const struct brw_stage_prog_data *prog_data =
414 (const struct brw_stage_prog_data *) entry->prog_data;
415
416 anv_pipeline_cache_upload_kernel(dst, entry->sha1,
417 kernel, entry->kernel_size,
418 &prog_data, entry->prog_data_size);
419 }
420 }
421
422 VkResult anv_MergePipelineCaches(
423 VkDevice _device,
424 VkPipelineCache destCache,
425 uint32_t srcCacheCount,
426 const VkPipelineCache* pSrcCaches)
427 {
428 ANV_FROM_HANDLE(anv_pipeline_cache, dst, destCache);
429
430 for (uint32_t i = 0; i < srcCacheCount; i++) {
431 ANV_FROM_HANDLE(anv_pipeline_cache, src, pSrcCaches[i]);
432
433 anv_pipeline_cache_merge(dst, src);
434 }
435
436 return VK_SUCCESS;
437 }