anv/icl: Set Error Detection Behavior Control Bit in L3CNTLREG
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30
31 #include "common/gen_l3_config.h"
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 static void
36 emit_lrm(struct anv_batch *batch, uint32_t reg, struct anv_address addr)
37 {
38 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
39 lrm.RegisterAddress = reg;
40 lrm.MemoryAddress = addr;
41 }
42 }
43
44 static void
45 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
46 {
47 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
48 lri.RegisterOffset = reg;
49 lri.DataDWord = imm;
50 }
51 }
52
53 #if GEN_IS_HASWELL || GEN_GEN >= 8
54 static void
55 emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
56 {
57 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
58 lrr.SourceRegisterAddress = src;
59 lrr.DestinationRegisterAddress = dst;
60 }
61 }
62 #endif
63
64 void
65 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
66 {
67 struct anv_device *device = cmd_buffer->device;
68
69 /* If we are emitting a new state base address we probably need to re-emit
70 * binding tables.
71 */
72 cmd_buffer->state.descriptors_dirty |= ~0;
73
74 /* Emit a render target cache flush.
75 *
76 * This isn't documented anywhere in the PRM. However, it seems to be
77 * necessary prior to changing the surface state base adress. Without
78 * this, we get GPU hangs when using multi-level command buffers which
79 * clear depth, reset state base address, and then go render stuff.
80 */
81 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
82 pc.DCFlushEnable = true;
83 pc.RenderTargetCacheFlushEnable = true;
84 pc.CommandStreamerStallEnable = true;
85 }
86
87 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
88 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
89 sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
90 sba.GeneralStateBaseAddressModifyEnable = true;
91
92 sba.SurfaceStateBaseAddress =
93 anv_cmd_buffer_surface_base_address(cmd_buffer);
94 sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
95 sba.SurfaceStateBaseAddressModifyEnable = true;
96
97 sba.DynamicStateBaseAddress =
98 (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
99 sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
100 sba.DynamicStateBaseAddressModifyEnable = true;
101
102 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
103 sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
104 sba.IndirectObjectBaseAddressModifyEnable = true;
105
106 sba.InstructionBaseAddress =
107 (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
108 sba.InstructionMemoryObjectControlState = GENX(MOCS);
109 sba.InstructionBaseAddressModifyEnable = true;
110
111 # if (GEN_GEN >= 8)
112 /* Broadwell requires that we specify a buffer size for a bunch of
113 * these fields. However, since we will be growing the BO's live, we
114 * just set them all to the maximum.
115 */
116 sba.GeneralStateBufferSize = 0xfffff;
117 sba.GeneralStateBufferSizeModifyEnable = true;
118 sba.DynamicStateBufferSize = 0xfffff;
119 sba.DynamicStateBufferSizeModifyEnable = true;
120 sba.IndirectObjectBufferSize = 0xfffff;
121 sba.IndirectObjectBufferSizeModifyEnable = true;
122 sba.InstructionBufferSize = 0xfffff;
123 sba.InstructionBuffersizeModifyEnable = true;
124 # endif
125 # if (GEN_GEN >= 9)
126 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) { NULL, 0 };
127 sba.BindlessSurfaceStateMemoryObjectControlState = GENX(MOCS);
128 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
129 sba.BindlessSurfaceStateSize = 0;
130 # endif
131 # if (GEN_GEN >= 10)
132 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
133 sba.BindlessSamplerStateMemoryObjectControlState = GENX(MOCS);
134 sba.BindlessSamplerStateBaseAddressModifyEnable = true;
135 sba.BindlessSamplerStateBufferSize = 0;
136 # endif
137 }
138
139 /* After re-setting the surface state base address, we have to do some
140 * cache flusing so that the sampler engine will pick up the new
141 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
142 * Shared Function > 3D Sampler > State > State Caching (page 96):
143 *
144 * Coherency with system memory in the state cache, like the texture
145 * cache is handled partially by software. It is expected that the
146 * command stream or shader will issue Cache Flush operation or
147 * Cache_Flush sampler message to ensure that the L1 cache remains
148 * coherent with system memory.
149 *
150 * [...]
151 *
152 * Whenever the value of the Dynamic_State_Base_Addr,
153 * Surface_State_Base_Addr are altered, the L1 state cache must be
154 * invalidated to ensure the new surface or sampler state is fetched
155 * from system memory.
156 *
157 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
158 * which, according the PIPE_CONTROL instruction documentation in the
159 * Broadwell PRM:
160 *
161 * Setting this bit is independent of any other bit in this packet.
162 * This bit controls the invalidation of the L1 and L2 state caches
163 * at the top of the pipe i.e. at the parsing time.
164 *
165 * Unfortunately, experimentation seems to indicate that state cache
166 * invalidation through a PIPE_CONTROL does nothing whatsoever in
167 * regards to surface state and binding tables. In stead, it seems that
168 * invalidating the texture cache is what is actually needed.
169 *
170 * XXX: As far as we have been able to determine through
171 * experimentation, shows that flush the texture cache appears to be
172 * sufficient. The theory here is that all of the sampling/rendering
173 * units cache the binding table in the texture cache. However, we have
174 * yet to be able to actually confirm this.
175 */
176 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
177 pc.TextureCacheInvalidationEnable = true;
178 pc.ConstantCacheInvalidationEnable = true;
179 pc.StateCacheInvalidationEnable = true;
180 }
181 }
182
183 static void
184 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
185 struct anv_state state, struct anv_address addr)
186 {
187 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
188
189 VkResult result =
190 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
191 state.offset + isl_dev->ss.addr_offset,
192 addr.bo, addr.offset);
193 if (result != VK_SUCCESS)
194 anv_batch_set_error(&cmd_buffer->batch, result);
195 }
196
197 static void
198 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
199 struct anv_surface_state state)
200 {
201 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
202
203 assert(!anv_address_is_null(state.address));
204 add_surface_reloc(cmd_buffer, state.state, state.address);
205
206 if (!anv_address_is_null(state.aux_address)) {
207 VkResult result =
208 anv_reloc_list_add(&cmd_buffer->surface_relocs,
209 &cmd_buffer->pool->alloc,
210 state.state.offset + isl_dev->ss.aux_addr_offset,
211 state.aux_address.bo, state.aux_address.offset);
212 if (result != VK_SUCCESS)
213 anv_batch_set_error(&cmd_buffer->batch, result);
214 }
215
216 if (!anv_address_is_null(state.clear_address)) {
217 VkResult result =
218 anv_reloc_list_add(&cmd_buffer->surface_relocs,
219 &cmd_buffer->pool->alloc,
220 state.state.offset +
221 isl_dev->ss.clear_color_state_offset,
222 state.clear_address.bo, state.clear_address.offset);
223 if (result != VK_SUCCESS)
224 anv_batch_set_error(&cmd_buffer->batch, result);
225 }
226 }
227
228 static void
229 color_attachment_compute_aux_usage(struct anv_device * device,
230 struct anv_cmd_state * cmd_state,
231 uint32_t att, VkRect2D render_area,
232 union isl_color_value *fast_clear_color)
233 {
234 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
235 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
236
237 assert(iview->n_planes == 1);
238
239 if (iview->planes[0].isl.base_array_layer >=
240 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
241 iview->planes[0].isl.base_level)) {
242 /* There is no aux buffer which corresponds to the level and layer(s)
243 * being accessed.
244 */
245 att_state->aux_usage = ISL_AUX_USAGE_NONE;
246 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
247 att_state->fast_clear = false;
248 return;
249 }
250
251 att_state->aux_usage =
252 anv_layout_to_aux_usage(&device->info, iview->image,
253 VK_IMAGE_ASPECT_COLOR_BIT,
254 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
255
256 /* If we don't have aux, then we should have returned early in the layer
257 * check above. If we got here, we must have something.
258 */
259 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
260
261 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
262 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
263 att_state->input_aux_usage = att_state->aux_usage;
264 } else {
265 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
266 *
267 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
268 * setting is only allowed if Surface Format supported for Fast
269 * Clear. In addition, if the surface is bound to the sampling
270 * engine, Surface Format must be supported for Render Target
271 * Compression for surfaces bound to the sampling engine."
272 *
273 * In other words, we can only sample from a fast-cleared image if it
274 * also supports color compression.
275 */
276 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
277 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
278
279 /* While fast-clear resolves and partial resolves are fairly cheap in the
280 * case where you render to most of the pixels, full resolves are not
281 * because they potentially involve reading and writing the entire
282 * framebuffer. If we can't texture with CCS_E, we should leave it off and
283 * limit ourselves to fast clears.
284 */
285 if (cmd_state->pass->attachments[att].first_subpass_layout ==
286 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
287 anv_perf_warn(device->instance, iview->image,
288 "Not temporarily enabling CCS_E.");
289 }
290 } else {
291 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
292 }
293 }
294
295 assert(iview->image->planes[0].aux_surface.isl.usage &
296 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
297
298 union isl_color_value clear_color = {};
299 anv_clear_color_from_att_state(&clear_color, att_state, iview);
300
301 att_state->clear_color_is_zero_one =
302 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
303 att_state->clear_color_is_zero =
304 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
305
306 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
307 /* Start by getting the fast clear type. We use the first subpass
308 * layout here because we don't want to fast-clear if the first subpass
309 * to use the attachment can't handle fast-clears.
310 */
311 enum anv_fast_clear_type fast_clear_type =
312 anv_layout_to_fast_clear_type(&device->info, iview->image,
313 VK_IMAGE_ASPECT_COLOR_BIT,
314 cmd_state->pass->attachments[att].first_subpass_layout);
315 switch (fast_clear_type) {
316 case ANV_FAST_CLEAR_NONE:
317 att_state->fast_clear = false;
318 break;
319 case ANV_FAST_CLEAR_DEFAULT_VALUE:
320 att_state->fast_clear = att_state->clear_color_is_zero;
321 break;
322 case ANV_FAST_CLEAR_ANY:
323 att_state->fast_clear = true;
324 break;
325 }
326
327 /* Potentially, we could do partial fast-clears but doing so has crazy
328 * alignment restrictions. It's easier to just restrict to full size
329 * fast clears for now.
330 */
331 if (render_area.offset.x != 0 ||
332 render_area.offset.y != 0 ||
333 render_area.extent.width != iview->extent.width ||
334 render_area.extent.height != iview->extent.height)
335 att_state->fast_clear = false;
336
337 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
338 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
339 att_state->fast_clear = false;
340
341 /* We only allow fast clears to the first slice of an image (level 0,
342 * layer 0) and only for the entire slice. This guarantees us that, at
343 * any given time, there is only one clear color on any given image at
344 * any given time. At the time of our testing (Jan 17, 2018), there
345 * were no known applications which would benefit from fast-clearing
346 * more than just the first slice.
347 */
348 if (att_state->fast_clear &&
349 (iview->planes[0].isl.base_level > 0 ||
350 iview->planes[0].isl.base_array_layer > 0)) {
351 anv_perf_warn(device->instance, iview->image,
352 "Rendering with multi-lod or multi-layer framebuffer "
353 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
354 "baseArrayLayer > 0. Not fast clearing.");
355 att_state->fast_clear = false;
356 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
357 anv_perf_warn(device->instance, iview->image,
358 "Rendering to a multi-layer framebuffer with "
359 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
360 }
361
362 if (att_state->fast_clear)
363 *fast_clear_color = clear_color;
364 } else {
365 att_state->fast_clear = false;
366 }
367 }
368
369 static void
370 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
371 struct anv_cmd_state *cmd_state,
372 uint32_t att, VkRect2D render_area)
373 {
374 struct anv_render_pass_attachment *pass_att =
375 &cmd_state->pass->attachments[att];
376 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
377 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
378
379 /* These will be initialized after the first subpass transition. */
380 att_state->aux_usage = ISL_AUX_USAGE_NONE;
381 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
382
383 if (GEN_GEN == 7) {
384 /* We don't do any HiZ or depth fast-clears on gen7 yet */
385 att_state->fast_clear = false;
386 return;
387 }
388
389 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
390 /* If we're just clearing stencil, we can always HiZ clear */
391 att_state->fast_clear = true;
392 return;
393 }
394
395 /* Default to false for now */
396 att_state->fast_clear = false;
397
398 /* We must have depth in order to have HiZ */
399 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
400 return;
401
402 const enum isl_aux_usage first_subpass_aux_usage =
403 anv_layout_to_aux_usage(&device->info, iview->image,
404 VK_IMAGE_ASPECT_DEPTH_BIT,
405 pass_att->first_subpass_layout);
406 if (first_subpass_aux_usage != ISL_AUX_USAGE_HIZ)
407 return;
408
409 if (!blorp_can_hiz_clear_depth(GEN_GEN,
410 iview->planes[0].isl.format,
411 iview->image->samples,
412 render_area.offset.x,
413 render_area.offset.y,
414 render_area.offset.x +
415 render_area.extent.width,
416 render_area.offset.y +
417 render_area.extent.height))
418 return;
419
420 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
421 return;
422
423 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
424 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
425 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
426 * only supports returning 0.0f. Gens prior to gen8 do not support this
427 * feature at all.
428 */
429 return;
430 }
431
432 /* If we got here, then we can fast clear */
433 att_state->fast_clear = true;
434 }
435
436 static bool
437 need_input_attachment_state(const struct anv_render_pass_attachment *att)
438 {
439 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
440 return false;
441
442 /* We only allocate input attachment states for color surfaces. Compression
443 * is not yet enabled for depth textures and stencil doesn't allow
444 * compression so we can just use the texture surface state from the view.
445 */
446 return vk_format_is_color(att->format);
447 }
448
449 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
450 * the initial layout is undefined, the HiZ buffer and depth buffer will
451 * represent the same data at the end of this operation.
452 */
453 static void
454 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
455 const struct anv_image *image,
456 VkImageLayout initial_layout,
457 VkImageLayout final_layout)
458 {
459 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
460 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
461 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
462 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
463 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
464 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
465
466 enum isl_aux_op hiz_op;
467 if (hiz_enabled && !enable_hiz) {
468 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
469 } else if (!hiz_enabled && enable_hiz) {
470 hiz_op = ISL_AUX_OP_AMBIGUATE;
471 } else {
472 assert(hiz_enabled == enable_hiz);
473 /* If the same buffer will be used, no resolves are necessary. */
474 hiz_op = ISL_AUX_OP_NONE;
475 }
476
477 if (hiz_op != ISL_AUX_OP_NONE)
478 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
479 0, 0, 1, hiz_op);
480 }
481
482 #define MI_PREDICATE_SRC0 0x2400
483 #define MI_PREDICATE_SRC1 0x2408
484
485 static void
486 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
487 const struct anv_image *image,
488 VkImageAspectFlagBits aspect,
489 uint32_t level,
490 uint32_t base_layer, uint32_t layer_count,
491 bool compressed)
492 {
493 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
494
495 /* We only have compression tracking for CCS_E */
496 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
497 return;
498
499 for (uint32_t a = 0; a < layer_count; a++) {
500 uint32_t layer = base_layer + a;
501 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
502 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
503 image, aspect,
504 level, layer);
505 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
506 }
507 }
508 }
509
510 static void
511 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
512 const struct anv_image *image,
513 VkImageAspectFlagBits aspect,
514 enum anv_fast_clear_type fast_clear)
515 {
516 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
517 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
518 image, aspect);
519 sdi.ImmediateData = fast_clear;
520 }
521
522 /* Whenever we have fast-clear, we consider that slice to be compressed.
523 * This makes building predicates much easier.
524 */
525 if (fast_clear != ANV_FAST_CLEAR_NONE)
526 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
527 }
528
529 #if GEN_IS_HASWELL || GEN_GEN >= 8
530 static inline uint32_t
531 mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
532 {
533 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
534 .ALUOpcode = opcode,
535 .Operand1 = operand1,
536 .Operand2 = operand2,
537 };
538
539 uint32_t dw;
540 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
541
542 return dw;
543 }
544 #endif
545
546 #define CS_GPR(n) (0x2600 + (n) * 8)
547
548 /* This is only really practical on haswell and above because it requires
549 * MI math in order to get it correct.
550 */
551 #if GEN_GEN >= 8 || GEN_IS_HASWELL
552 static void
553 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
554 const struct anv_image *image,
555 VkImageAspectFlagBits aspect,
556 uint32_t level, uint32_t array_layer,
557 enum isl_aux_op resolve_op,
558 enum anv_fast_clear_type fast_clear_supported)
559 {
560 struct anv_address fast_clear_type_addr =
561 anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect);
562
563 /* Name some registers */
564 const int image_fc_reg = MI_ALU_REG0;
565 const int fc_imm_reg = MI_ALU_REG1;
566 const int pred_reg = MI_ALU_REG2;
567
568 uint32_t *dw;
569
570 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
571 /* In this case, we're doing a full resolve which means we want the
572 * resolve to happen if any compression (including fast-clears) is
573 * present.
574 *
575 * In order to simplify the logic a bit, we make the assumption that,
576 * if the first slice has been fast-cleared, it is also marked as
577 * compressed. See also set_image_fast_clear_state.
578 */
579 struct anv_address compression_state_addr =
580 anv_image_get_compression_state_addr(cmd_buffer->device, image,
581 aspect, level, array_layer);
582 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
583 lrm.RegisterAddress = MI_PREDICATE_SRC0;
584 lrm.MemoryAddress = compression_state_addr;
585 }
586 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
587 sdi.Address = compression_state_addr;
588 sdi.ImmediateData = 0;
589 }
590
591 if (level == 0 && array_layer == 0) {
592 /* If the predicate is true, we want to write 0 to the fast clear type
593 * and, if it's false, leave it alone. We can do this by writing
594 *
595 * clear_type = clear_type & ~predicate;
596 */
597 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
598 lrm.RegisterAddress = CS_GPR(image_fc_reg);
599 lrm.MemoryAddress = fast_clear_type_addr;
600 }
601 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
602 lrr.DestinationRegisterAddress = CS_GPR(pred_reg);
603 lrr.SourceRegisterAddress = MI_PREDICATE_SRC0;
604 }
605
606 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
607 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
608 dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
609 dw[3] = mi_alu(MI_ALU_AND, 0, 0);
610 dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
611
612 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
613 srm.MemoryAddress = fast_clear_type_addr;
614 srm.RegisterAddress = CS_GPR(image_fc_reg);
615 }
616 }
617 } else if (level == 0 && array_layer == 0) {
618 /* In this case, we are doing a partial resolve to get rid of fast-clear
619 * colors. We don't care about the compression state but we do care
620 * about how much fast clear is allowed by the final layout.
621 */
622 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
623 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
624
625 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
626 lrm.RegisterAddress = CS_GPR(image_fc_reg);
627 lrm.MemoryAddress = fast_clear_type_addr;
628 }
629 emit_lri(&cmd_buffer->batch, CS_GPR(image_fc_reg) + 4, 0);
630
631 emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg), fast_clear_supported);
632 emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg) + 4, 0);
633
634 /* We need to compute (fast_clear_supported < image->fast_clear).
635 * We do this by subtracting and storing the carry bit.
636 */
637 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
638 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, fc_imm_reg);
639 dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, image_fc_reg);
640 dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
641 dw[4] = mi_alu(MI_ALU_STORE, pred_reg, MI_ALU_CF);
642
643 /* Store the predicate */
644 emit_lrr(&cmd_buffer->batch, MI_PREDICATE_SRC0, CS_GPR(pred_reg));
645
646 /* If the predicate is true, we want to write 0 to the fast clear type
647 * and, if it's false, leave it alone. We can do this by writing
648 *
649 * clear_type = clear_type & ~predicate;
650 */
651 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
652 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
653 dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
654 dw[3] = mi_alu(MI_ALU_AND, 0, 0);
655 dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
656
657 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
658 srm.RegisterAddress = CS_GPR(image_fc_reg);
659 srm.MemoryAddress = fast_clear_type_addr;
660 }
661 } else {
662 /* In this case, we're trying to do a partial resolve on a slice that
663 * doesn't have clear color. There's nothing to do.
664 */
665 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
666 return;
667 }
668
669 /* We use the first half of src0 for the actual predicate. Set the second
670 * half of src0 and all of src1 to 0 as the predicate operation will be
671 * doing an implicit src0 != src1.
672 */
673 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
674 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
675 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
676
677 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
678 mip.LoadOperation = LOAD_LOADINV;
679 mip.CombineOperation = COMBINE_SET;
680 mip.CompareOperation = COMPARE_SRCS_EQUAL;
681 }
682 }
683 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
684
685 #if GEN_GEN <= 8
686 static void
687 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
688 const struct anv_image *image,
689 VkImageAspectFlagBits aspect,
690 uint32_t level, uint32_t array_layer,
691 enum isl_aux_op resolve_op,
692 enum anv_fast_clear_type fast_clear_supported)
693 {
694 struct anv_address fast_clear_type_addr =
695 anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect);
696
697 /* This only works for partial resolves and only when the clear color is
698 * all or nothing. On the upside, this emits less command streamer code
699 * and works on Ivybridge and Bay Trail.
700 */
701 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
702 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
703
704 /* We don't support fast clears on anything other than the first slice. */
705 if (level > 0 || array_layer > 0)
706 return;
707
708 /* On gen8, we don't have a concept of default clear colors because we
709 * can't sample from CCS surfaces. It's enough to just load the fast clear
710 * state into the predicate register.
711 */
712 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
713 lrm.RegisterAddress = MI_PREDICATE_SRC0;
714 lrm.MemoryAddress = fast_clear_type_addr;
715 }
716 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
717 sdi.Address = fast_clear_type_addr;
718 sdi.ImmediateData = 0;
719 }
720
721 /* We use the first half of src0 for the actual predicate. Set the second
722 * half of src0 and all of src1 to 0 as the predicate operation will be
723 * doing an implicit src0 != src1.
724 */
725 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
726 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
727 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
728
729 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
730 mip.LoadOperation = LOAD_LOADINV;
731 mip.CombineOperation = COMBINE_SET;
732 mip.CompareOperation = COMPARE_SRCS_EQUAL;
733 }
734 }
735 #endif /* GEN_GEN <= 8 */
736
737 static void
738 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
739 const struct anv_image *image,
740 VkImageAspectFlagBits aspect,
741 uint32_t level, uint32_t array_layer,
742 enum isl_aux_op resolve_op,
743 enum anv_fast_clear_type fast_clear_supported)
744 {
745 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
746
747 #if GEN_GEN >= 9
748 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
749 aspect, level, array_layer,
750 resolve_op, fast_clear_supported);
751 #else /* GEN_GEN <= 8 */
752 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
753 aspect, level, array_layer,
754 resolve_op, fast_clear_supported);
755 #endif
756
757 /* CCS_D only supports full resolves and BLORP will assert on us if we try
758 * to do a partial resolve on a CCS_D surface.
759 */
760 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
761 image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
762 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
763
764 anv_image_ccs_op(cmd_buffer, image, aspect, level,
765 array_layer, 1, resolve_op, NULL, true);
766 }
767
768 static void
769 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
770 const struct anv_image *image,
771 VkImageAspectFlagBits aspect,
772 uint32_t array_layer,
773 enum isl_aux_op resolve_op,
774 enum anv_fast_clear_type fast_clear_supported)
775 {
776 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
777 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
778
779 #if GEN_GEN >= 8 || GEN_IS_HASWELL
780 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
781 aspect, 0, array_layer,
782 resolve_op, fast_clear_supported);
783
784 anv_image_mcs_op(cmd_buffer, image, aspect,
785 array_layer, 1, resolve_op, NULL, true);
786 #else
787 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
788 #endif
789 }
790
791 void
792 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
793 const struct anv_image *image,
794 VkImageAspectFlagBits aspect,
795 enum isl_aux_usage aux_usage,
796 uint32_t level,
797 uint32_t base_layer,
798 uint32_t layer_count)
799 {
800 /* The aspect must be exactly one of the image aspects. */
801 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
802
803 /* The only compression types with more than just fast-clears are MCS,
804 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
805 * track the current fast-clear and compression state. This leaves us
806 * with just MCS and CCS_E.
807 */
808 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
809 aux_usage != ISL_AUX_USAGE_MCS)
810 return;
811
812 set_image_compressed_bit(cmd_buffer, image, aspect,
813 level, base_layer, layer_count, true);
814 }
815
816 static void
817 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
818 const struct anv_image *image,
819 VkImageAspectFlagBits aspect)
820 {
821 assert(cmd_buffer && image);
822 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
823
824 set_image_fast_clear_state(cmd_buffer, image, aspect,
825 ANV_FAST_CLEAR_NONE);
826
827 /* The fast clear value dword(s) will be copied into a surface state object.
828 * Ensure that the restrictions of the fields in the dword(s) are followed.
829 *
830 * CCS buffers on SKL+ can have any value set for the clear colors.
831 */
832 if (image->samples == 1 && GEN_GEN >= 9)
833 return;
834
835 /* Other combinations of auxiliary buffers and platforms require specific
836 * values in the clear value dword(s).
837 */
838 struct anv_address addr =
839 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
840
841 if (GEN_GEN >= 9) {
842 for (unsigned i = 0; i < 4; i++) {
843 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
844 sdi.Address = addr;
845 sdi.Address.offset += i * 4;
846 /* MCS buffers on SKL+ can only have 1/0 clear colors. */
847 assert(image->samples > 1);
848 sdi.ImmediateData = 0;
849 }
850 }
851 } else {
852 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
853 sdi.Address = addr;
854 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
855 /* Pre-SKL, the dword containing the clear values also contains
856 * other fields, so we need to initialize those fields to match the
857 * values that would be in a color attachment.
858 */
859 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
860 ISL_CHANNEL_SELECT_GREEN << 22 |
861 ISL_CHANNEL_SELECT_BLUE << 19 |
862 ISL_CHANNEL_SELECT_ALPHA << 16;
863 } else if (GEN_GEN == 7) {
864 /* On IVB, the dword containing the clear values also contains
865 * other fields that must be zero or can be zero.
866 */
867 sdi.ImmediateData = 0;
868 }
869 }
870 }
871 }
872
873 /* Copy the fast-clear value dword(s) between a surface state object and an
874 * image's fast clear state buffer.
875 */
876 static void
877 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
878 struct anv_state surface_state,
879 const struct anv_image *image,
880 VkImageAspectFlagBits aspect,
881 bool copy_from_surface_state)
882 {
883 assert(cmd_buffer && image);
884 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
885
886 struct anv_address ss_clear_addr = {
887 .bo = &cmd_buffer->device->surface_state_pool.block_pool.bo,
888 .offset = surface_state.offset +
889 cmd_buffer->device->isl_dev.ss.clear_value_offset,
890 };
891 const struct anv_address entry_addr =
892 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
893 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
894
895 if (copy_from_surface_state) {
896 genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr,
897 ss_clear_addr, copy_size);
898 } else {
899 genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_clear_addr,
900 entry_addr, copy_size);
901
902 /* Updating a surface state object may require that the state cache be
903 * invalidated. From the SKL PRM, Shared Functions -> State -> State
904 * Caching:
905 *
906 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
907 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
908 * modified [...], the L1 state cache must be invalidated to ensure
909 * the new surface or sampler state is fetched from system memory.
910 *
911 * In testing, SKL doesn't actually seem to need this, but HSW does.
912 */
913 cmd_buffer->state.pending_pipe_bits |=
914 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
915 }
916 }
917
918 /**
919 * @brief Transitions a color buffer from one layout to another.
920 *
921 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
922 * more information.
923 *
924 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
925 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
926 * this represents the maximum layers to transition at each
927 * specified miplevel.
928 */
929 static void
930 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
931 const struct anv_image *image,
932 VkImageAspectFlagBits aspect,
933 const uint32_t base_level, uint32_t level_count,
934 uint32_t base_layer, uint32_t layer_count,
935 VkImageLayout initial_layout,
936 VkImageLayout final_layout)
937 {
938 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
939 /* Validate the inputs. */
940 assert(cmd_buffer);
941 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
942 /* These values aren't supported for simplicity's sake. */
943 assert(level_count != VK_REMAINING_MIP_LEVELS &&
944 layer_count != VK_REMAINING_ARRAY_LAYERS);
945 /* Ensure the subresource range is valid. */
946 uint64_t last_level_num = base_level + level_count;
947 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
948 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
949 assert((uint64_t)base_layer + layer_count <= image_layers);
950 assert(last_level_num <= image->levels);
951 /* The spec disallows these final layouts. */
952 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
953 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
954
955 /* No work is necessary if the layout stays the same or if this subresource
956 * range lacks auxiliary data.
957 */
958 if (initial_layout == final_layout)
959 return;
960
961 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
962
963 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
964 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
965 /* This surface is a linear compressed image with a tiled shadow surface
966 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
967 * we need to ensure the shadow copy is up-to-date.
968 */
969 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
970 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
971 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
972 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
973 assert(plane == 0);
974 anv_image_copy_to_shadow(cmd_buffer, image,
975 base_level, level_count,
976 base_layer, layer_count);
977 }
978
979 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
980 return;
981
982 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
983
984 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
985 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
986 /* A subresource in the undefined layout may have been aliased and
987 * populated with any arrangement of bits. Therefore, we must initialize
988 * the related aux buffer and clear buffer entry with desirable values.
989 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
990 * images with VK_IMAGE_TILING_OPTIMAL.
991 *
992 * Initialize the relevant clear buffer entries.
993 */
994 if (base_level == 0 && base_layer == 0)
995 init_fast_clear_color(cmd_buffer, image, aspect);
996
997 /* Initialize the aux buffers to enable correct rendering. In order to
998 * ensure that things such as storage images work correctly, aux buffers
999 * need to be initialized to valid data.
1000 *
1001 * Having an aux buffer with invalid data is a problem for two reasons:
1002 *
1003 * 1) Having an invalid value in the buffer can confuse the hardware.
1004 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1005 * invalid and leads to the hardware doing strange things. It
1006 * doesn't hang as far as we can tell but rendering corruption can
1007 * occur.
1008 *
1009 * 2) If this transition is into the GENERAL layout and we then use the
1010 * image as a storage image, then we must have the aux buffer in the
1011 * pass-through state so that, if we then go to texture from the
1012 * image, we get the results of our storage image writes and not the
1013 * fast clear color or other random data.
1014 *
1015 * For CCS both of the problems above are real demonstrable issues. In
1016 * that case, the only thing we can do is to perform an ambiguate to
1017 * transition the aux surface into the pass-through state.
1018 *
1019 * For MCS, (2) is never an issue because we don't support multisampled
1020 * storage images. In theory, issue (1) is a problem with MCS but we've
1021 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1022 * theory, be interpreted as something but we don't know that all bit
1023 * patterns are actually valid. For 2x and 8x, you could easily end up
1024 * with the MCS referring to an invalid plane because not all bits of
1025 * the MCS value are actually used. Even though we've never seen issues
1026 * in the wild, it's best to play it safe and initialize the MCS. We
1027 * can use a fast-clear for MCS because we only ever touch from render
1028 * and texture (no image load store).
1029 */
1030 if (image->samples == 1) {
1031 for (uint32_t l = 0; l < level_count; l++) {
1032 const uint32_t level = base_level + l;
1033
1034 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1035 if (base_layer >= aux_layers)
1036 break; /* We will only get fewer layers as level increases */
1037 uint32_t level_layer_count =
1038 MIN2(layer_count, aux_layers - base_layer);
1039
1040 anv_image_ccs_op(cmd_buffer, image, aspect, level,
1041 base_layer, level_layer_count,
1042 ISL_AUX_OP_AMBIGUATE, NULL, false);
1043
1044 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1045 set_image_compressed_bit(cmd_buffer, image, aspect,
1046 level, base_layer, level_layer_count,
1047 false);
1048 }
1049 }
1050 } else {
1051 if (image->samples == 4 || image->samples == 16) {
1052 anv_perf_warn(cmd_buffer->device->instance, image,
1053 "Doing a potentially unnecessary fast-clear to "
1054 "define an MCS buffer.");
1055 }
1056
1057 assert(base_level == 0 && level_count == 1);
1058 anv_image_mcs_op(cmd_buffer, image, aspect,
1059 base_layer, layer_count,
1060 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1061 }
1062 return;
1063 }
1064
1065 const enum isl_aux_usage initial_aux_usage =
1066 anv_layout_to_aux_usage(devinfo, image, aspect, initial_layout);
1067 const enum isl_aux_usage final_aux_usage =
1068 anv_layout_to_aux_usage(devinfo, image, aspect, final_layout);
1069
1070 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1071 * We can handle transitions between CCS_D/E to and from NONE. What we
1072 * don't yet handle is switching between CCS_E and CCS_D within a given
1073 * image. Doing so in a performant way requires more detailed aux state
1074 * tracking such as what is done in i965. For now, just assume that we
1075 * only have one type of compression.
1076 */
1077 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1078 final_aux_usage == ISL_AUX_USAGE_NONE ||
1079 initial_aux_usage == final_aux_usage);
1080
1081 /* If initial aux usage is NONE, there is nothing to resolve */
1082 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1083 return;
1084
1085 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1086
1087 /* If the initial layout supports more fast clear than the final layout
1088 * then we need at least a partial resolve.
1089 */
1090 const enum anv_fast_clear_type initial_fast_clear =
1091 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1092 const enum anv_fast_clear_type final_fast_clear =
1093 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1094 if (final_fast_clear < initial_fast_clear)
1095 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1096
1097 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1098 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1099 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1100
1101 if (resolve_op == ISL_AUX_OP_NONE)
1102 return;
1103
1104 /* Perform a resolve to synchronize data between the main and aux buffer.
1105 * Before we begin, we must satisfy the cache flushing requirement specified
1106 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1107 *
1108 * Any transition from any value in {Clear, Render, Resolve} to a
1109 * different value in {Clear, Render, Resolve} requires end of pipe
1110 * synchronization.
1111 *
1112 * We perform a flush of the write cache before and after the clear and
1113 * resolve operations to meet this requirement.
1114 *
1115 * Unlike other drawing, fast clear operations are not properly
1116 * synchronized. The first PIPE_CONTROL here likely ensures that the
1117 * contents of the previous render or clear hit the render target before we
1118 * resolve and the second likely ensures that the resolve is complete before
1119 * we do any more rendering or clearing.
1120 */
1121 cmd_buffer->state.pending_pipe_bits |=
1122 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1123
1124 for (uint32_t l = 0; l < level_count; l++) {
1125 uint32_t level = base_level + l;
1126
1127 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1128 if (base_layer >= aux_layers)
1129 break; /* We will only get fewer layers as level increases */
1130 uint32_t level_layer_count =
1131 MIN2(layer_count, aux_layers - base_layer);
1132
1133 for (uint32_t a = 0; a < level_layer_count; a++) {
1134 uint32_t array_layer = base_layer + a;
1135 if (image->samples == 1) {
1136 anv_cmd_predicated_ccs_resolve(cmd_buffer, image, aspect,
1137 level, array_layer, resolve_op,
1138 final_fast_clear);
1139 } else {
1140 anv_cmd_predicated_mcs_resolve(cmd_buffer, image, aspect,
1141 array_layer, resolve_op,
1142 final_fast_clear);
1143 }
1144 }
1145 }
1146
1147 cmd_buffer->state.pending_pipe_bits |=
1148 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1149 }
1150
1151 /**
1152 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1153 */
1154 static VkResult
1155 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1156 struct anv_render_pass *pass,
1157 const VkRenderPassBeginInfo *begin)
1158 {
1159 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1160 struct anv_cmd_state *state = &cmd_buffer->state;
1161
1162 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1163
1164 if (pass->attachment_count > 0) {
1165 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1166 pass->attachment_count *
1167 sizeof(state->attachments[0]),
1168 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1169 if (state->attachments == NULL) {
1170 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1171 return anv_batch_set_error(&cmd_buffer->batch,
1172 VK_ERROR_OUT_OF_HOST_MEMORY);
1173 }
1174 } else {
1175 state->attachments = NULL;
1176 }
1177
1178 /* Reserve one for the NULL state. */
1179 unsigned num_states = 1;
1180 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1181 if (vk_format_is_color(pass->attachments[i].format))
1182 num_states++;
1183
1184 if (need_input_attachment_state(&pass->attachments[i]))
1185 num_states++;
1186 }
1187
1188 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1189 state->render_pass_states =
1190 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1191 num_states * ss_stride, isl_dev->ss.align);
1192
1193 struct anv_state next_state = state->render_pass_states;
1194 next_state.alloc_size = isl_dev->ss.size;
1195
1196 state->null_surface_state = next_state;
1197 next_state.offset += ss_stride;
1198 next_state.map += ss_stride;
1199
1200 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1201 if (vk_format_is_color(pass->attachments[i].format)) {
1202 state->attachments[i].color.state = next_state;
1203 next_state.offset += ss_stride;
1204 next_state.map += ss_stride;
1205 }
1206
1207 if (need_input_attachment_state(&pass->attachments[i])) {
1208 state->attachments[i].input.state = next_state;
1209 next_state.offset += ss_stride;
1210 next_state.map += ss_stride;
1211 }
1212 }
1213 assert(next_state.offset == state->render_pass_states.offset +
1214 state->render_pass_states.alloc_size);
1215
1216 if (begin) {
1217 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
1218 assert(pass->attachment_count == framebuffer->attachment_count);
1219
1220 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1221 isl_extent3d(framebuffer->width,
1222 framebuffer->height,
1223 framebuffer->layers));
1224
1225 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1226 struct anv_render_pass_attachment *att = &pass->attachments[i];
1227 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1228 VkImageAspectFlags clear_aspects = 0;
1229 VkImageAspectFlags load_aspects = 0;
1230
1231 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1232 /* color attachment */
1233 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1234 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1235 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1236 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1237 }
1238 } else {
1239 /* depthstencil attachment */
1240 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1241 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1242 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1243 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1244 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1245 }
1246 }
1247 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1248 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1249 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1250 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1251 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1252 }
1253 }
1254 }
1255
1256 state->attachments[i].current_layout = att->initial_layout;
1257 state->attachments[i].pending_clear_aspects = clear_aspects;
1258 state->attachments[i].pending_load_aspects = load_aspects;
1259 if (clear_aspects)
1260 state->attachments[i].clear_value = begin->pClearValues[i];
1261
1262 struct anv_image_view *iview = framebuffer->attachments[i];
1263 anv_assert(iview->vk_format == att->format);
1264
1265 const uint32_t num_layers = iview->planes[0].isl.array_len;
1266 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1267
1268 union isl_color_value clear_color = { .u32 = { 0, } };
1269 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1270 anv_assert(iview->n_planes == 1);
1271 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1272 color_attachment_compute_aux_usage(cmd_buffer->device,
1273 state, i, begin->renderArea,
1274 &clear_color);
1275
1276 anv_image_fill_surface_state(cmd_buffer->device,
1277 iview->image,
1278 VK_IMAGE_ASPECT_COLOR_BIT,
1279 &iview->planes[0].isl,
1280 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1281 state->attachments[i].aux_usage,
1282 &clear_color,
1283 0,
1284 &state->attachments[i].color,
1285 NULL);
1286
1287 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1288 } else {
1289 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1290 state, i,
1291 begin->renderArea);
1292 }
1293
1294 if (need_input_attachment_state(&pass->attachments[i])) {
1295 anv_image_fill_surface_state(cmd_buffer->device,
1296 iview->image,
1297 VK_IMAGE_ASPECT_COLOR_BIT,
1298 &iview->planes[0].isl,
1299 ISL_SURF_USAGE_TEXTURE_BIT,
1300 state->attachments[i].input_aux_usage,
1301 &clear_color,
1302 0,
1303 &state->attachments[i].input,
1304 NULL);
1305
1306 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1307 }
1308 }
1309 }
1310
1311 return VK_SUCCESS;
1312 }
1313
1314 VkResult
1315 genX(BeginCommandBuffer)(
1316 VkCommandBuffer commandBuffer,
1317 const VkCommandBufferBeginInfo* pBeginInfo)
1318 {
1319 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1320
1321 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1322 * command buffer's state. Otherwise, we must *reset* its state. In both
1323 * cases we reset it.
1324 *
1325 * From the Vulkan 1.0 spec:
1326 *
1327 * If a command buffer is in the executable state and the command buffer
1328 * was allocated from a command pool with the
1329 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1330 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1331 * as if vkResetCommandBuffer had been called with
1332 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1333 * the command buffer in the recording state.
1334 */
1335 anv_cmd_buffer_reset(cmd_buffer);
1336
1337 cmd_buffer->usage_flags = pBeginInfo->flags;
1338
1339 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1340 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1341
1342 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1343
1344 /* We sometimes store vertex data in the dynamic state buffer for blorp
1345 * operations and our dynamic state stream may re-use data from previous
1346 * command buffers. In order to prevent stale cache data, we flush the VF
1347 * cache. We could do this on every blorp call but that's not really
1348 * needed as all of the data will get written by the CPU prior to the GPU
1349 * executing anything. The chances are fairly high that they will use
1350 * blorp at least once per primary command buffer so it shouldn't be
1351 * wasted.
1352 */
1353 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
1354 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1355
1356 /* We send an "Indirect State Pointers Disable" packet at
1357 * EndCommandBuffer, so all push contant packets are ignored during a
1358 * context restore. Documentation says after that command, we need to
1359 * emit push constants again before any rendering operation. So we
1360 * flag them dirty here to make sure they get emitted.
1361 */
1362 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1363
1364 VkResult result = VK_SUCCESS;
1365 if (cmd_buffer->usage_flags &
1366 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1367 assert(pBeginInfo->pInheritanceInfo);
1368 cmd_buffer->state.pass =
1369 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1370 cmd_buffer->state.subpass =
1371 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1372
1373 /* This is optional in the inheritance info. */
1374 cmd_buffer->state.framebuffer =
1375 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1376
1377 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1378 cmd_buffer->state.pass, NULL);
1379
1380 /* Record that HiZ is enabled if we can. */
1381 if (cmd_buffer->state.framebuffer) {
1382 const struct anv_image_view * const iview =
1383 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1384
1385 if (iview) {
1386 VkImageLayout layout =
1387 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1388
1389 enum isl_aux_usage aux_usage =
1390 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1391 VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1392
1393 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1394 }
1395 }
1396
1397 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1398 }
1399
1400 return result;
1401 }
1402
1403 /* From the PRM, Volume 2a:
1404 *
1405 * "Indirect State Pointers Disable
1406 *
1407 * At the completion of the post-sync operation associated with this pipe
1408 * control packet, the indirect state pointers in the hardware are
1409 * considered invalid; the indirect pointers are not saved in the context.
1410 * If any new indirect state commands are executed in the command stream
1411 * while the pipe control is pending, the new indirect state commands are
1412 * preserved.
1413 *
1414 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1415 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1416 * commands are only considered as Indirect State Pointers. Once ISP is
1417 * issued in a context, SW must initialize by programming push constant
1418 * commands for all the shaders (at least to zero length) before attempting
1419 * any rendering operation for the same context."
1420 *
1421 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1422 * even though they point to a BO that has been already unreferenced at
1423 * the end of the previous batch buffer. This has been fine so far since
1424 * we are protected by these scratch page (every address not covered by
1425 * a BO should be pointing to the scratch page). But on CNL, it is
1426 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1427 * instruction.
1428 *
1429 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1430 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1431 * context restore, so the mentioned hang doesn't happen. However,
1432 * software must program push constant commands for all stages prior to
1433 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1434 *
1435 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1436 * constants have been loaded into the EUs prior to disable the push constants
1437 * so that it doesn't hang a previous 3DPRIMITIVE.
1438 */
1439 static void
1440 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1441 {
1442 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1443 pc.StallAtPixelScoreboard = true;
1444 pc.CommandStreamerStallEnable = true;
1445 }
1446 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1447 pc.IndirectStatePointersDisable = true;
1448 pc.CommandStreamerStallEnable = true;
1449 }
1450 }
1451
1452 VkResult
1453 genX(EndCommandBuffer)(
1454 VkCommandBuffer commandBuffer)
1455 {
1456 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1457
1458 if (anv_batch_has_error(&cmd_buffer->batch))
1459 return cmd_buffer->batch.status;
1460
1461 /* We want every command buffer to start with the PMA fix in a known state,
1462 * so we disable it at the end of the command buffer.
1463 */
1464 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1465
1466 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1467
1468 emit_isp_disable(cmd_buffer);
1469
1470 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1471
1472 return VK_SUCCESS;
1473 }
1474
1475 void
1476 genX(CmdExecuteCommands)(
1477 VkCommandBuffer commandBuffer,
1478 uint32_t commandBufferCount,
1479 const VkCommandBuffer* pCmdBuffers)
1480 {
1481 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1482
1483 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1484
1485 if (anv_batch_has_error(&primary->batch))
1486 return;
1487
1488 /* The secondary command buffers will assume that the PMA fix is disabled
1489 * when they begin executing. Make sure this is true.
1490 */
1491 genX(cmd_buffer_enable_pma_fix)(primary, false);
1492
1493 /* The secondary command buffer doesn't know which textures etc. have been
1494 * flushed prior to their execution. Apply those flushes now.
1495 */
1496 genX(cmd_buffer_apply_pipe_flushes)(primary);
1497
1498 for (uint32_t i = 0; i < commandBufferCount; i++) {
1499 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1500
1501 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1502 assert(!anv_batch_has_error(&secondary->batch));
1503
1504 if (secondary->usage_flags &
1505 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1506 /* If we're continuing a render pass from the primary, we need to
1507 * copy the surface states for the current subpass into the storage
1508 * we allocated for them in BeginCommandBuffer.
1509 */
1510 struct anv_bo *ss_bo =
1511 &primary->device->surface_state_pool.block_pool.bo;
1512 struct anv_state src_state = primary->state.render_pass_states;
1513 struct anv_state dst_state = secondary->state.render_pass_states;
1514 assert(src_state.alloc_size == dst_state.alloc_size);
1515
1516 genX(cmd_buffer_so_memcpy)(primary,
1517 (struct anv_address) {
1518 .bo = ss_bo,
1519 .offset = dst_state.offset,
1520 },
1521 (struct anv_address) {
1522 .bo = ss_bo,
1523 .offset = src_state.offset,
1524 },
1525 src_state.alloc_size);
1526 }
1527
1528 anv_cmd_buffer_add_secondary(primary, secondary);
1529 }
1530
1531 /* The secondary may have selected a different pipeline (3D or compute) and
1532 * may have changed the current L3$ configuration. Reset our tracking
1533 * variables to invalid values to ensure that we re-emit these in the case
1534 * where we do any draws or compute dispatches from the primary after the
1535 * secondary has returned.
1536 */
1537 primary->state.current_pipeline = UINT32_MAX;
1538 primary->state.current_l3_config = NULL;
1539
1540 /* Each of the secondary command buffers will use its own state base
1541 * address. We need to re-emit state base address for the primary after
1542 * all of the secondaries are done.
1543 *
1544 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1545 * address calls?
1546 */
1547 genX(cmd_buffer_emit_state_base_address)(primary);
1548 }
1549
1550 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1551 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1552 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1553
1554 /**
1555 * Program the hardware to use the specified L3 configuration.
1556 */
1557 void
1558 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1559 const struct gen_l3_config *cfg)
1560 {
1561 assert(cfg);
1562 if (cfg == cmd_buffer->state.current_l3_config)
1563 return;
1564
1565 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1566 intel_logd("L3 config transition: ");
1567 gen_dump_l3_config(cfg, stderr);
1568 }
1569
1570 const bool has_slm = cfg->n[GEN_L3P_SLM];
1571
1572 /* According to the hardware docs, the L3 partitioning can only be changed
1573 * while the pipeline is completely drained and the caches are flushed,
1574 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1575 */
1576 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1577 pc.DCFlushEnable = true;
1578 pc.PostSyncOperation = NoWrite;
1579 pc.CommandStreamerStallEnable = true;
1580 }
1581
1582 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1583 * invalidation of the relevant caches. Note that because RO invalidation
1584 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1585 * command is processed by the CS) we cannot combine it with the previous
1586 * stalling flush as the hardware documentation suggests, because that
1587 * would cause the CS to stall on previous rendering *after* RO
1588 * invalidation and wouldn't prevent the RO caches from being polluted by
1589 * concurrent rendering before the stall completes. This intentionally
1590 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1591 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1592 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1593 * already guarantee that there is no concurrent GPGPU kernel execution
1594 * (see SKL HSD 2132585).
1595 */
1596 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1597 pc.TextureCacheInvalidationEnable = true;
1598 pc.ConstantCacheInvalidationEnable = true;
1599 pc.InstructionCacheInvalidateEnable = true;
1600 pc.StateCacheInvalidationEnable = true;
1601 pc.PostSyncOperation = NoWrite;
1602 }
1603
1604 /* Now send a third stalling flush to make sure that invalidation is
1605 * complete when the L3 configuration registers are modified.
1606 */
1607 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1608 pc.DCFlushEnable = true;
1609 pc.PostSyncOperation = NoWrite;
1610 pc.CommandStreamerStallEnable = true;
1611 }
1612
1613 #if GEN_GEN >= 8
1614
1615 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1616
1617 uint32_t l3cr;
1618 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1619 .SLMEnable = has_slm,
1620 #if GEN_GEN == 11
1621 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1622 * in L3CNTLREG register. The default setting of the bit is not the
1623 * desirable behavior.
1624 */
1625 .ErrorDetectionBehaviorControl = true,
1626 #endif
1627 .URBAllocation = cfg->n[GEN_L3P_URB],
1628 .ROAllocation = cfg->n[GEN_L3P_RO],
1629 .DCAllocation = cfg->n[GEN_L3P_DC],
1630 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1631
1632 /* Set up the L3 partitioning. */
1633 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1634
1635 #else
1636
1637 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1638 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1639 cfg->n[GEN_L3P_ALL];
1640 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1641 cfg->n[GEN_L3P_ALL];
1642 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1643 cfg->n[GEN_L3P_ALL];
1644
1645 assert(!cfg->n[GEN_L3P_ALL]);
1646
1647 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1648 * the matching space on the remaining banks has to be allocated to a
1649 * client (URB for all validated configurations) set to the
1650 * lower-bandwidth 2-bank address hashing mode.
1651 */
1652 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1653 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1654 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1655
1656 /* Minimum number of ways that can be allocated to the URB. */
1657 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1658 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1659
1660 uint32_t l3sqcr1, l3cr2, l3cr3;
1661 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1662 .ConvertDC_UC = !has_dc,
1663 .ConvertIS_UC = !has_is,
1664 .ConvertC_UC = !has_c,
1665 .ConvertT_UC = !has_t);
1666 l3sqcr1 |=
1667 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1668 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1669 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1670
1671 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1672 .SLMEnable = has_slm,
1673 .URBLowBandwidth = urb_low_bw,
1674 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1675 #if !GEN_IS_HASWELL
1676 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1677 #endif
1678 .ROAllocation = cfg->n[GEN_L3P_RO],
1679 .DCAllocation = cfg->n[GEN_L3P_DC]);
1680
1681 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1682 .ISAllocation = cfg->n[GEN_L3P_IS],
1683 .ISLowBandwidth = 0,
1684 .CAllocation = cfg->n[GEN_L3P_C],
1685 .CLowBandwidth = 0,
1686 .TAllocation = cfg->n[GEN_L3P_T],
1687 .TLowBandwidth = 0);
1688
1689 /* Set up the L3 partitioning. */
1690 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1691 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1692 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1693
1694 #if GEN_IS_HASWELL
1695 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1696 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1697 * them disabled to avoid crashing the system hard.
1698 */
1699 uint32_t scratch1, chicken3;
1700 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1701 .L3AtomicDisable = !has_dc);
1702 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1703 .L3AtomicDisableMask = true,
1704 .L3AtomicDisable = !has_dc);
1705 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1706 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1707 }
1708 #endif
1709
1710 #endif
1711
1712 cmd_buffer->state.current_l3_config = cfg;
1713 }
1714
1715 void
1716 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1717 {
1718 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1719
1720 /* Flushes are pipelined while invalidations are handled immediately.
1721 * Therefore, if we're flushing anything then we need to schedule a stall
1722 * before any invalidations can happen.
1723 */
1724 if (bits & ANV_PIPE_FLUSH_BITS)
1725 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1726
1727 /* If we're going to do an invalidate and we have a pending CS stall that
1728 * has yet to be resolved, we do the CS stall now.
1729 */
1730 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1731 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1732 bits |= ANV_PIPE_CS_STALL_BIT;
1733 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1734 }
1735
1736 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1737 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1738 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1739 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1740 pipe.RenderTargetCacheFlushEnable =
1741 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1742
1743 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1744 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1745 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1746
1747 /*
1748 * According to the Broadwell documentation, any PIPE_CONTROL with the
1749 * "Command Streamer Stall" bit set must also have another bit set,
1750 * with five different options:
1751 *
1752 * - Render Target Cache Flush
1753 * - Depth Cache Flush
1754 * - Stall at Pixel Scoreboard
1755 * - Post-Sync Operation
1756 * - Depth Stall
1757 * - DC Flush Enable
1758 *
1759 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1760 * mesa and it seems to work fine. The choice is fairly arbitrary.
1761 */
1762 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1763 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1764 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1765 pipe.StallAtPixelScoreboard = true;
1766 }
1767
1768 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1769 }
1770
1771 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1772 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1773 *
1774 * "If the VF Cache Invalidation Enable is set to a 1 in a
1775 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
1776 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
1777 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
1778 * a 1."
1779 *
1780 * This appears to hang Broadwell, so we restrict it to just gen9.
1781 */
1782 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
1783 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
1784
1785 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1786 pipe.StateCacheInvalidationEnable =
1787 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1788 pipe.ConstantCacheInvalidationEnable =
1789 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1790 pipe.VFCacheInvalidationEnable =
1791 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1792 pipe.TextureCacheInvalidationEnable =
1793 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1794 pipe.InstructionCacheInvalidateEnable =
1795 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1796
1797 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1798 *
1799 * "When VF Cache Invalidate is set “Post Sync Operation” must be
1800 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
1801 * “Write Timestamp”.
1802 */
1803 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
1804 pipe.PostSyncOperation = WriteImmediateData;
1805 pipe.Address =
1806 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
1807 }
1808 }
1809
1810 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1811 }
1812
1813 cmd_buffer->state.pending_pipe_bits = bits;
1814 }
1815
1816 void genX(CmdPipelineBarrier)(
1817 VkCommandBuffer commandBuffer,
1818 VkPipelineStageFlags srcStageMask,
1819 VkPipelineStageFlags destStageMask,
1820 VkBool32 byRegion,
1821 uint32_t memoryBarrierCount,
1822 const VkMemoryBarrier* pMemoryBarriers,
1823 uint32_t bufferMemoryBarrierCount,
1824 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1825 uint32_t imageMemoryBarrierCount,
1826 const VkImageMemoryBarrier* pImageMemoryBarriers)
1827 {
1828 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1829
1830 /* XXX: Right now, we're really dumb and just flush whatever categories
1831 * the app asks for. One of these days we may make this a bit better
1832 * but right now that's all the hardware allows for in most areas.
1833 */
1834 VkAccessFlags src_flags = 0;
1835 VkAccessFlags dst_flags = 0;
1836
1837 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1838 src_flags |= pMemoryBarriers[i].srcAccessMask;
1839 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1840 }
1841
1842 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1843 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1844 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1845 }
1846
1847 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1848 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1849 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1850 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1851 const VkImageSubresourceRange *range =
1852 &pImageMemoryBarriers[i].subresourceRange;
1853
1854 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1855 transition_depth_buffer(cmd_buffer, image,
1856 pImageMemoryBarriers[i].oldLayout,
1857 pImageMemoryBarriers[i].newLayout);
1858 } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1859 VkImageAspectFlags color_aspects =
1860 anv_image_expand_aspects(image, range->aspectMask);
1861 uint32_t aspect_bit;
1862
1863 uint32_t base_layer, layer_count;
1864 if (image->type == VK_IMAGE_TYPE_3D) {
1865 base_layer = 0;
1866 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
1867 } else {
1868 base_layer = range->baseArrayLayer;
1869 layer_count = anv_get_layerCount(image, range);
1870 }
1871
1872 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1873 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1874 range->baseMipLevel,
1875 anv_get_levelCount(image, range),
1876 base_layer, layer_count,
1877 pImageMemoryBarriers[i].oldLayout,
1878 pImageMemoryBarriers[i].newLayout);
1879 }
1880 }
1881 }
1882
1883 cmd_buffer->state.pending_pipe_bits |=
1884 anv_pipe_flush_bits_for_access_flags(src_flags) |
1885 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1886 }
1887
1888 static void
1889 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1890 {
1891 VkShaderStageFlags stages =
1892 cmd_buffer->state.gfx.base.pipeline->active_stages;
1893
1894 /* In order to avoid thrash, we assume that vertex and fragment stages
1895 * always exist. In the rare case where one is missing *and* the other
1896 * uses push concstants, this may be suboptimal. However, avoiding stalls
1897 * seems more important.
1898 */
1899 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1900
1901 if (stages == cmd_buffer->state.push_constant_stages)
1902 return;
1903
1904 #if GEN_GEN >= 8
1905 const unsigned push_constant_kb = 32;
1906 #elif GEN_IS_HASWELL
1907 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1908 #else
1909 const unsigned push_constant_kb = 16;
1910 #endif
1911
1912 const unsigned num_stages =
1913 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1914 unsigned size_per_stage = push_constant_kb / num_stages;
1915
1916 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1917 * units of 2KB. Incidentally, these are the same platforms that have
1918 * 32KB worth of push constant space.
1919 */
1920 if (push_constant_kb == 32)
1921 size_per_stage &= ~1u;
1922
1923 uint32_t kb_used = 0;
1924 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1925 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1926 anv_batch_emit(&cmd_buffer->batch,
1927 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1928 alloc._3DCommandSubOpcode = 18 + i;
1929 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1930 alloc.ConstantBufferSize = push_size;
1931 }
1932 kb_used += push_size;
1933 }
1934
1935 anv_batch_emit(&cmd_buffer->batch,
1936 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1937 alloc.ConstantBufferOffset = kb_used;
1938 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1939 }
1940
1941 cmd_buffer->state.push_constant_stages = stages;
1942
1943 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1944 *
1945 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1946 * the next 3DPRIMITIVE command after programming the
1947 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1948 *
1949 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1950 * pipeline setup, we need to dirty push constants.
1951 */
1952 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1953 }
1954
1955 static const struct anv_descriptor *
1956 anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1957 const struct anv_pipeline_binding *binding)
1958 {
1959 assert(binding->set < MAX_SETS);
1960 const struct anv_descriptor_set *set =
1961 pipe_state->descriptors[binding->set];
1962 const uint32_t offset =
1963 set->layout->binding[binding->binding].descriptor_index;
1964 return &set->descriptors[offset + binding->index];
1965 }
1966
1967 static uint32_t
1968 dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1969 const struct anv_pipeline_binding *binding)
1970 {
1971 assert(binding->set < MAX_SETS);
1972 const struct anv_descriptor_set *set =
1973 pipe_state->descriptors[binding->set];
1974
1975 uint32_t dynamic_offset_idx =
1976 pipe_state->layout->set[binding->set].dynamic_offset_start +
1977 set->layout->binding[binding->binding].dynamic_offset_index +
1978 binding->index;
1979
1980 return pipe_state->dynamic_offsets[dynamic_offset_idx];
1981 }
1982
1983 static VkResult
1984 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1985 gl_shader_stage stage,
1986 struct anv_state *bt_state)
1987 {
1988 struct anv_subpass *subpass = cmd_buffer->state.subpass;
1989 struct anv_cmd_pipeline_state *pipe_state;
1990 struct anv_pipeline *pipeline;
1991 uint32_t bias, state_offset;
1992
1993 switch (stage) {
1994 case MESA_SHADER_COMPUTE:
1995 pipe_state = &cmd_buffer->state.compute.base;
1996 bias = 1;
1997 break;
1998 default:
1999 pipe_state = &cmd_buffer->state.gfx.base;
2000 bias = 0;
2001 break;
2002 }
2003 pipeline = pipe_state->pipeline;
2004
2005 if (!anv_pipeline_has_stage(pipeline, stage)) {
2006 *bt_state = (struct anv_state) { 0, };
2007 return VK_SUCCESS;
2008 }
2009
2010 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2011 if (bias + map->surface_count == 0) {
2012 *bt_state = (struct anv_state) { 0, };
2013 return VK_SUCCESS;
2014 }
2015
2016 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2017 bias + map->surface_count,
2018 &state_offset);
2019 uint32_t *bt_map = bt_state->map;
2020
2021 if (bt_state->map == NULL)
2022 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2023
2024 if (stage == MESA_SHADER_COMPUTE &&
2025 get_cs_prog_data(pipeline)->uses_num_work_groups) {
2026 struct anv_state surface_state;
2027 surface_state =
2028 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2029
2030 const enum isl_format format =
2031 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2032 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2033 format,
2034 cmd_buffer->state.compute.num_workgroups,
2035 12, 1);
2036
2037 bt_map[0] = surface_state.offset + state_offset;
2038 add_surface_reloc(cmd_buffer, surface_state,
2039 cmd_buffer->state.compute.num_workgroups);
2040 }
2041
2042 if (map->surface_count == 0)
2043 goto out;
2044
2045 if (map->image_count > 0) {
2046 VkResult result =
2047 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
2048 if (result != VK_SUCCESS)
2049 return result;
2050
2051 cmd_buffer->state.push_constants_dirty |= 1 << stage;
2052 }
2053
2054 uint32_t image = 0;
2055 for (uint32_t s = 0; s < map->surface_count; s++) {
2056 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2057
2058 struct anv_state surface_state;
2059
2060 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
2061 /* Color attachment binding */
2062 assert(stage == MESA_SHADER_FRAGMENT);
2063 assert(binding->binding == 0);
2064 if (binding->index < subpass->color_count) {
2065 const unsigned att =
2066 subpass->color_attachments[binding->index].attachment;
2067
2068 /* From the Vulkan 1.0.46 spec:
2069 *
2070 * "If any color or depth/stencil attachments are
2071 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2072 * attachments."
2073 */
2074 if (att == VK_ATTACHMENT_UNUSED) {
2075 surface_state = cmd_buffer->state.null_surface_state;
2076 } else {
2077 surface_state = cmd_buffer->state.attachments[att].color.state;
2078 }
2079 } else {
2080 surface_state = cmd_buffer->state.null_surface_state;
2081 }
2082
2083 bt_map[bias + s] = surface_state.offset + state_offset;
2084 continue;
2085 } else if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) {
2086 struct anv_state surface_state =
2087 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2088
2089 struct anv_address constant_data = {
2090 .bo = &pipeline->device->dynamic_state_pool.block_pool.bo,
2091 .offset = pipeline->shaders[stage]->constant_data.offset,
2092 };
2093 unsigned constant_data_size =
2094 pipeline->shaders[stage]->constant_data_size;
2095
2096 const enum isl_format format =
2097 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2098 anv_fill_buffer_surface_state(cmd_buffer->device,
2099 surface_state, format,
2100 constant_data, constant_data_size, 1);
2101
2102 bt_map[bias + s] = surface_state.offset + state_offset;
2103 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2104 continue;
2105 }
2106
2107 const struct anv_descriptor *desc =
2108 anv_descriptor_for_binding(pipe_state, binding);
2109
2110 switch (desc->type) {
2111 case VK_DESCRIPTOR_TYPE_SAMPLER:
2112 /* Nothing for us to do here */
2113 continue;
2114
2115 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2116 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2117 struct anv_surface_state sstate =
2118 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2119 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2120 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2121 surface_state = sstate.state;
2122 assert(surface_state.alloc_size);
2123 add_surface_state_relocs(cmd_buffer, sstate);
2124 break;
2125 }
2126 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2127 assert(stage == MESA_SHADER_FRAGMENT);
2128 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2129 /* For depth and stencil input attachments, we treat it like any
2130 * old texture that a user may have bound.
2131 */
2132 struct anv_surface_state sstate =
2133 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2134 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2135 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2136 surface_state = sstate.state;
2137 assert(surface_state.alloc_size);
2138 add_surface_state_relocs(cmd_buffer, sstate);
2139 } else {
2140 /* For color input attachments, we create the surface state at
2141 * vkBeginRenderPass time so that we can include aux and clear
2142 * color information.
2143 */
2144 assert(binding->input_attachment_index < subpass->input_count);
2145 const unsigned subpass_att = binding->input_attachment_index;
2146 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2147 surface_state = cmd_buffer->state.attachments[att].input.state;
2148 }
2149 break;
2150
2151 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2152 struct anv_surface_state sstate = (binding->write_only)
2153 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2154 : desc->image_view->planes[binding->plane].storage_surface_state;
2155 surface_state = sstate.state;
2156 assert(surface_state.alloc_size);
2157 add_surface_state_relocs(cmd_buffer, sstate);
2158
2159 struct brw_image_param *image_param =
2160 &cmd_buffer->state.push_constants[stage]->images[image++];
2161
2162 *image_param = desc->image_view->planes[binding->plane].storage_image_param;
2163 break;
2164 }
2165
2166 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2167 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2168 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2169 surface_state = desc->buffer_view->surface_state;
2170 assert(surface_state.alloc_size);
2171 add_surface_reloc(cmd_buffer, surface_state,
2172 desc->buffer_view->address);
2173 break;
2174
2175 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2176 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2177 /* Compute the offset within the buffer */
2178 uint32_t dynamic_offset =
2179 dynamic_offset_for_binding(pipe_state, binding);
2180 uint64_t offset = desc->offset + dynamic_offset;
2181 /* Clamp to the buffer size */
2182 offset = MIN2(offset, desc->buffer->size);
2183 /* Clamp the range to the buffer size */
2184 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2185
2186 struct anv_address address =
2187 anv_address_add(desc->buffer->address, offset);
2188
2189 surface_state =
2190 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2191 enum isl_format format =
2192 anv_isl_format_for_descriptor_type(desc->type);
2193
2194 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2195 format, address, range, 1);
2196 add_surface_reloc(cmd_buffer, surface_state, address);
2197 break;
2198 }
2199
2200 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2201 surface_state = (binding->write_only)
2202 ? desc->buffer_view->writeonly_storage_surface_state
2203 : desc->buffer_view->storage_surface_state;
2204 assert(surface_state.alloc_size);
2205 add_surface_reloc(cmd_buffer, surface_state,
2206 desc->buffer_view->address);
2207
2208 struct brw_image_param *image_param =
2209 &cmd_buffer->state.push_constants[stage]->images[image++];
2210
2211 *image_param = desc->buffer_view->storage_image_param;
2212 break;
2213
2214 default:
2215 assert(!"Invalid descriptor type");
2216 continue;
2217 }
2218
2219 bt_map[bias + s] = surface_state.offset + state_offset;
2220 }
2221 assert(image == map->image_count);
2222
2223 out:
2224 anv_state_flush(cmd_buffer->device, *bt_state);
2225
2226 #if GEN_GEN >= 11
2227 /* The PIPE_CONTROL command description says:
2228 *
2229 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
2230 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2231 * Target Cache Flush by enabling this bit. When render target flush
2232 * is set due to new association of BTI, PS Scoreboard Stall bit must
2233 * be set in this packet."
2234 *
2235 * FINISHME: Currently we shuffle around the surface states in the binding
2236 * table based on if they are getting used or not. So, we've to do below
2237 * pipe control flush for every binding table upload. Make changes so
2238 * that we do it only when we modify render target surface states.
2239 */
2240 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2241 pc.RenderTargetCacheFlushEnable = true;
2242 pc.StallAtPixelScoreboard = true;
2243 }
2244 #endif
2245
2246 return VK_SUCCESS;
2247 }
2248
2249 static VkResult
2250 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2251 gl_shader_stage stage,
2252 struct anv_state *state)
2253 {
2254 struct anv_cmd_pipeline_state *pipe_state =
2255 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
2256 &cmd_buffer->state.gfx.base;
2257 struct anv_pipeline *pipeline = pipe_state->pipeline;
2258
2259 if (!anv_pipeline_has_stage(pipeline, stage)) {
2260 *state = (struct anv_state) { 0, };
2261 return VK_SUCCESS;
2262 }
2263
2264 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2265 if (map->sampler_count == 0) {
2266 *state = (struct anv_state) { 0, };
2267 return VK_SUCCESS;
2268 }
2269
2270 uint32_t size = map->sampler_count * 16;
2271 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2272
2273 if (state->map == NULL)
2274 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2275
2276 for (uint32_t s = 0; s < map->sampler_count; s++) {
2277 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2278 const struct anv_descriptor *desc =
2279 anv_descriptor_for_binding(pipe_state, binding);
2280
2281 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2282 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2283 continue;
2284
2285 struct anv_sampler *sampler = desc->sampler;
2286
2287 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2288 * happens to be zero.
2289 */
2290 if (sampler == NULL)
2291 continue;
2292
2293 memcpy(state->map + (s * 16),
2294 sampler->state[binding->plane], sizeof(sampler->state[0]));
2295 }
2296
2297 anv_state_flush(cmd_buffer->device, *state);
2298
2299 return VK_SUCCESS;
2300 }
2301
2302 static uint32_t
2303 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
2304 {
2305 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2306
2307 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2308 pipeline->active_stages;
2309
2310 VkResult result = VK_SUCCESS;
2311 anv_foreach_stage(s, dirty) {
2312 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2313 if (result != VK_SUCCESS)
2314 break;
2315 result = emit_binding_table(cmd_buffer, s,
2316 &cmd_buffer->state.binding_tables[s]);
2317 if (result != VK_SUCCESS)
2318 break;
2319 }
2320
2321 if (result != VK_SUCCESS) {
2322 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2323
2324 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2325 if (result != VK_SUCCESS)
2326 return 0;
2327
2328 /* Re-emit state base addresses so we get the new surface state base
2329 * address before we start emitting binding tables etc.
2330 */
2331 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2332
2333 /* Re-emit all active binding tables */
2334 dirty |= pipeline->active_stages;
2335 anv_foreach_stage(s, dirty) {
2336 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2337 if (result != VK_SUCCESS) {
2338 anv_batch_set_error(&cmd_buffer->batch, result);
2339 return 0;
2340 }
2341 result = emit_binding_table(cmd_buffer, s,
2342 &cmd_buffer->state.binding_tables[s]);
2343 if (result != VK_SUCCESS) {
2344 anv_batch_set_error(&cmd_buffer->batch, result);
2345 return 0;
2346 }
2347 }
2348 }
2349
2350 cmd_buffer->state.descriptors_dirty &= ~dirty;
2351
2352 return dirty;
2353 }
2354
2355 static void
2356 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2357 uint32_t stages)
2358 {
2359 static const uint32_t sampler_state_opcodes[] = {
2360 [MESA_SHADER_VERTEX] = 43,
2361 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2362 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2363 [MESA_SHADER_GEOMETRY] = 46,
2364 [MESA_SHADER_FRAGMENT] = 47,
2365 [MESA_SHADER_COMPUTE] = 0,
2366 };
2367
2368 static const uint32_t binding_table_opcodes[] = {
2369 [MESA_SHADER_VERTEX] = 38,
2370 [MESA_SHADER_TESS_CTRL] = 39,
2371 [MESA_SHADER_TESS_EVAL] = 40,
2372 [MESA_SHADER_GEOMETRY] = 41,
2373 [MESA_SHADER_FRAGMENT] = 42,
2374 [MESA_SHADER_COMPUTE] = 0,
2375 };
2376
2377 anv_foreach_stage(s, stages) {
2378 assert(s < ARRAY_SIZE(binding_table_opcodes));
2379 assert(binding_table_opcodes[s] > 0);
2380
2381 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2382 anv_batch_emit(&cmd_buffer->batch,
2383 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2384 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2385 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2386 }
2387 }
2388
2389 /* Always emit binding table pointers if we're asked to, since on SKL
2390 * this is what flushes push constants. */
2391 anv_batch_emit(&cmd_buffer->batch,
2392 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2393 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2394 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2395 }
2396 }
2397 }
2398
2399 static void
2400 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
2401 VkShaderStageFlags dirty_stages)
2402 {
2403 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2404 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2405
2406 static const uint32_t push_constant_opcodes[] = {
2407 [MESA_SHADER_VERTEX] = 21,
2408 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2409 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2410 [MESA_SHADER_GEOMETRY] = 22,
2411 [MESA_SHADER_FRAGMENT] = 23,
2412 [MESA_SHADER_COMPUTE] = 0,
2413 };
2414
2415 VkShaderStageFlags flushed = 0;
2416
2417 anv_foreach_stage(stage, dirty_stages) {
2418 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2419 assert(push_constant_opcodes[stage] > 0);
2420
2421 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2422 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2423
2424 if (anv_pipeline_has_stage(pipeline, stage)) {
2425 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2426 const struct brw_stage_prog_data *prog_data =
2427 pipeline->shaders[stage]->prog_data;
2428 const struct anv_pipeline_bind_map *bind_map =
2429 &pipeline->shaders[stage]->bind_map;
2430
2431 /* The Skylake PRM contains the following restriction:
2432 *
2433 * "The driver must ensure The following case does not occur
2434 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2435 * buffer 3 read length equal to zero committed followed by a
2436 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2437 * zero committed."
2438 *
2439 * To avoid this, we program the buffers in the highest slots.
2440 * This way, slot 0 is only used if slot 3 is also used.
2441 */
2442 int n = 3;
2443
2444 for (int i = 3; i >= 0; i--) {
2445 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2446 if (range->length == 0)
2447 continue;
2448
2449 const unsigned surface =
2450 prog_data->binding_table.ubo_start + range->block;
2451
2452 assert(surface <= bind_map->surface_count);
2453 const struct anv_pipeline_binding *binding =
2454 &bind_map->surface_to_descriptor[surface];
2455
2456 struct anv_address read_addr;
2457 uint32_t read_len;
2458 if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) {
2459 struct anv_address constant_data = {
2460 .bo = &pipeline->device->dynamic_state_pool.block_pool.bo,
2461 .offset = pipeline->shaders[stage]->constant_data.offset,
2462 };
2463 unsigned constant_data_size =
2464 pipeline->shaders[stage]->constant_data_size;
2465
2466 read_len = MIN2(range->length,
2467 DIV_ROUND_UP(constant_data_size, 32) - range->start);
2468 read_addr = anv_address_add(constant_data,
2469 range->start * 32);
2470 } else {
2471 const struct anv_descriptor *desc =
2472 anv_descriptor_for_binding(&gfx_state->base, binding);
2473
2474 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2475 read_len = MIN2(range->length,
2476 DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start);
2477 read_addr = anv_address_add(desc->buffer_view->address,
2478 range->start * 32);
2479 } else {
2480 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2481
2482 uint32_t dynamic_offset =
2483 dynamic_offset_for_binding(&gfx_state->base, binding);
2484 uint32_t buf_offset =
2485 MIN2(desc->offset + dynamic_offset, desc->buffer->size);
2486 uint32_t buf_range =
2487 MIN2(desc->range, desc->buffer->size - buf_offset);
2488
2489 read_len = MIN2(range->length,
2490 DIV_ROUND_UP(buf_range, 32) - range->start);
2491 read_addr = anv_address_add(desc->buffer->address,
2492 buf_offset + range->start * 32);
2493 }
2494 }
2495
2496 if (read_len > 0) {
2497 c.ConstantBody.Buffer[n] = read_addr;
2498 c.ConstantBody.ReadLength[n] = read_len;
2499 n--;
2500 }
2501 }
2502
2503 struct anv_state state =
2504 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2505
2506 if (state.alloc_size > 0) {
2507 c.ConstantBody.Buffer[n] = (struct anv_address) {
2508 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2509 .offset = state.offset,
2510 };
2511 c.ConstantBody.ReadLength[n] =
2512 DIV_ROUND_UP(state.alloc_size, 32);
2513 }
2514 #else
2515 /* For Ivy Bridge, the push constants packets have a different
2516 * rule that would require us to iterate in the other direction
2517 * and possibly mess around with dynamic state base address.
2518 * Don't bother; just emit regular push constants at n = 0.
2519 */
2520 struct anv_state state =
2521 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2522
2523 if (state.alloc_size > 0) {
2524 c.ConstantBody.Buffer[0].offset = state.offset,
2525 c.ConstantBody.ReadLength[0] =
2526 DIV_ROUND_UP(state.alloc_size, 32);
2527 }
2528 #endif
2529 }
2530 }
2531
2532 flushed |= mesa_to_vk_shader_stage(stage);
2533 }
2534
2535 cmd_buffer->state.push_constants_dirty &= ~flushed;
2536 }
2537
2538 void
2539 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2540 {
2541 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2542 uint32_t *p;
2543
2544 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2545 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
2546 vb_emit |= pipeline->vb_used;
2547
2548 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2549
2550 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2551
2552 genX(flush_pipeline_select_3d)(cmd_buffer);
2553
2554 if (vb_emit) {
2555 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2556 const uint32_t num_dwords = 1 + num_buffers * 4;
2557
2558 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2559 GENX(3DSTATE_VERTEX_BUFFERS));
2560 uint32_t vb, i = 0;
2561 for_each_bit(vb, vb_emit) {
2562 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2563 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2564
2565 struct GENX(VERTEX_BUFFER_STATE) state = {
2566 .VertexBufferIndex = vb,
2567
2568 .VertexBufferMOCS = anv_mocs_for_bo(cmd_buffer->device,
2569 buffer->address.bo),
2570 #if GEN_GEN <= 7
2571 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
2572 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
2573 #endif
2574
2575 .AddressModifyEnable = true,
2576 .BufferPitch = pipeline->vb[vb].stride,
2577 .BufferStartingAddress = anv_address_add(buffer->address, offset),
2578
2579 #if GEN_GEN >= 8
2580 .BufferSize = buffer->size - offset
2581 #else
2582 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
2583 #endif
2584 };
2585
2586 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2587 i++;
2588 }
2589 }
2590
2591 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2592
2593 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2594 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2595
2596 /* The exact descriptor layout is pulled from the pipeline, so we need
2597 * to re-emit binding tables on every pipeline change.
2598 */
2599 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
2600
2601 /* If the pipeline changed, we may need to re-allocate push constant
2602 * space in the URB.
2603 */
2604 cmd_buffer_alloc_push_constants(cmd_buffer);
2605 }
2606
2607 #if GEN_GEN <= 7
2608 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2609 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2610 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2611 *
2612 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2613 * stall needs to be sent just prior to any 3DSTATE_VS,
2614 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2615 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2616 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2617 * PIPE_CONTROL needs to be sent before any combination of VS
2618 * associated 3DSTATE."
2619 */
2620 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2621 pc.DepthStallEnable = true;
2622 pc.PostSyncOperation = WriteImmediateData;
2623 pc.Address =
2624 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
2625 }
2626 }
2627 #endif
2628
2629 /* Render targets live in the same binding table as fragment descriptors */
2630 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2631 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2632
2633 /* We emit the binding tables and sampler tables first, then emit push
2634 * constants and then finally emit binding table and sampler table
2635 * pointers. It has to happen in this order, since emitting the binding
2636 * tables may change the push constants (in case of storage images). After
2637 * emitting push constants, on SKL+ we have to emit the corresponding
2638 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2639 */
2640 uint32_t dirty = 0;
2641 if (cmd_buffer->state.descriptors_dirty)
2642 dirty = flush_descriptor_sets(cmd_buffer);
2643
2644 if (dirty || cmd_buffer->state.push_constants_dirty) {
2645 /* Because we're pushing UBOs, we have to push whenever either
2646 * descriptors or push constants is dirty.
2647 */
2648 dirty |= cmd_buffer->state.push_constants_dirty;
2649 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2650 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2651 }
2652
2653 if (dirty)
2654 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2655
2656 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2657 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2658
2659 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2660 ANV_CMD_DIRTY_PIPELINE)) {
2661 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2662 pipeline->depth_clamp_enable);
2663 }
2664
2665 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
2666 ANV_CMD_DIRTY_RENDER_TARGETS))
2667 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2668
2669 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2670
2671 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2672 }
2673
2674 static void
2675 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2676 struct anv_address addr,
2677 uint32_t size, uint32_t index)
2678 {
2679 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2680 GENX(3DSTATE_VERTEX_BUFFERS));
2681
2682 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2683 &(struct GENX(VERTEX_BUFFER_STATE)) {
2684 .VertexBufferIndex = index,
2685 .AddressModifyEnable = true,
2686 .BufferPitch = 0,
2687 .VertexBufferMOCS = anv_mocs_for_bo(cmd_buffer->device, addr.bo),
2688 #if (GEN_GEN >= 8)
2689 .BufferStartingAddress = addr,
2690 .BufferSize = size
2691 #else
2692 .BufferStartingAddress = addr,
2693 .EndAddress = anv_address_add(addr, size),
2694 #endif
2695 });
2696 }
2697
2698 static void
2699 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2700 struct anv_address addr)
2701 {
2702 emit_vertex_bo(cmd_buffer, addr, 8, ANV_SVGS_VB_INDEX);
2703 }
2704
2705 static void
2706 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2707 uint32_t base_vertex, uint32_t base_instance)
2708 {
2709 struct anv_state id_state =
2710 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2711
2712 ((uint32_t *)id_state.map)[0] = base_vertex;
2713 ((uint32_t *)id_state.map)[1] = base_instance;
2714
2715 anv_state_flush(cmd_buffer->device, id_state);
2716
2717 struct anv_address addr = {
2718 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2719 .offset = id_state.offset,
2720 };
2721
2722 emit_base_vertex_instance_bo(cmd_buffer, addr);
2723 }
2724
2725 static void
2726 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2727 {
2728 struct anv_state state =
2729 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2730
2731 ((uint32_t *)state.map)[0] = draw_index;
2732
2733 anv_state_flush(cmd_buffer->device, state);
2734
2735 struct anv_address addr = {
2736 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2737 .offset = state.offset,
2738 };
2739
2740 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
2741 }
2742
2743 void genX(CmdDraw)(
2744 VkCommandBuffer commandBuffer,
2745 uint32_t vertexCount,
2746 uint32_t instanceCount,
2747 uint32_t firstVertex,
2748 uint32_t firstInstance)
2749 {
2750 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2751 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2752 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2753
2754 if (anv_batch_has_error(&cmd_buffer->batch))
2755 return;
2756
2757 genX(cmd_buffer_flush_state)(cmd_buffer);
2758
2759 if (vs_prog_data->uses_firstvertex ||
2760 vs_prog_data->uses_baseinstance)
2761 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2762 if (vs_prog_data->uses_drawid)
2763 emit_draw_index(cmd_buffer, 0);
2764
2765 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2766 * different views. We need to multiply instanceCount by the view count.
2767 */
2768 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2769
2770 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2771 prim.VertexAccessType = SEQUENTIAL;
2772 prim.PrimitiveTopologyType = pipeline->topology;
2773 prim.VertexCountPerInstance = vertexCount;
2774 prim.StartVertexLocation = firstVertex;
2775 prim.InstanceCount = instanceCount;
2776 prim.StartInstanceLocation = firstInstance;
2777 prim.BaseVertexLocation = 0;
2778 }
2779 }
2780
2781 void genX(CmdDrawIndexed)(
2782 VkCommandBuffer commandBuffer,
2783 uint32_t indexCount,
2784 uint32_t instanceCount,
2785 uint32_t firstIndex,
2786 int32_t vertexOffset,
2787 uint32_t firstInstance)
2788 {
2789 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2790 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2791 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2792
2793 if (anv_batch_has_error(&cmd_buffer->batch))
2794 return;
2795
2796 genX(cmd_buffer_flush_state)(cmd_buffer);
2797
2798 if (vs_prog_data->uses_firstvertex ||
2799 vs_prog_data->uses_baseinstance)
2800 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2801 if (vs_prog_data->uses_drawid)
2802 emit_draw_index(cmd_buffer, 0);
2803
2804 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2805 * different views. We need to multiply instanceCount by the view count.
2806 */
2807 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2808
2809 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2810 prim.VertexAccessType = RANDOM;
2811 prim.PrimitiveTopologyType = pipeline->topology;
2812 prim.VertexCountPerInstance = indexCount;
2813 prim.StartVertexLocation = firstIndex;
2814 prim.InstanceCount = instanceCount;
2815 prim.StartInstanceLocation = firstInstance;
2816 prim.BaseVertexLocation = vertexOffset;
2817 }
2818 }
2819
2820 /* Auto-Draw / Indirect Registers */
2821 #define GEN7_3DPRIM_END_OFFSET 0x2420
2822 #define GEN7_3DPRIM_START_VERTEX 0x2430
2823 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2824 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2825 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2826 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2827
2828 /* MI_MATH only exists on Haswell+ */
2829 #if GEN_IS_HASWELL || GEN_GEN >= 8
2830
2831 /* Emit dwords to multiply GPR0 by N */
2832 static void
2833 build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
2834 {
2835 VK_OUTARRAY_MAKE(out, dw, dw_count);
2836
2837 #define append_alu(opcode, operand1, operand2) \
2838 vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
2839
2840 assert(N > 0);
2841 unsigned top_bit = 31 - __builtin_clz(N);
2842 for (int i = top_bit - 1; i >= 0; i--) {
2843 /* We get our initial data in GPR0 and we write the final data out to
2844 * GPR0 but we use GPR1 as our scratch register.
2845 */
2846 unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
2847 unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
2848
2849 /* Shift the current value left by 1 */
2850 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
2851 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
2852 append_alu(MI_ALU_ADD, 0, 0);
2853
2854 if (N & (1 << i)) {
2855 /* Store ACCU to R1 and add R0 to R1 */
2856 append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
2857 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
2858 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
2859 append_alu(MI_ALU_ADD, 0, 0);
2860 }
2861
2862 append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
2863 }
2864
2865 #undef append_alu
2866 }
2867
2868 static void
2869 emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
2870 {
2871 uint32_t num_dwords;
2872 build_alu_multiply_gpr0(NULL, &num_dwords, N);
2873
2874 uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
2875 build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
2876 }
2877
2878 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2879
2880 static void
2881 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2882 struct anv_address addr,
2883 bool indexed)
2884 {
2885 struct anv_batch *batch = &cmd_buffer->batch;
2886
2887 emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, anv_address_add(addr, 0));
2888
2889 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2890 if (view_count > 1) {
2891 #if GEN_IS_HASWELL || GEN_GEN >= 8
2892 emit_lrm(batch, CS_GPR(0), anv_address_add(addr, 4));
2893 emit_mul_gpr0(batch, view_count);
2894 emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
2895 #else
2896 anv_finishme("Multiview + indirect draw requires MI_MATH; "
2897 "MI_MATH is not supported on Ivy Bridge");
2898 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, anv_address_add(addr, 4));
2899 #endif
2900 } else {
2901 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, anv_address_add(addr, 4));
2902 }
2903
2904 emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, anv_address_add(addr, 8));
2905
2906 if (indexed) {
2907 emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, anv_address_add(addr, 12));
2908 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, anv_address_add(addr, 16));
2909 } else {
2910 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, anv_address_add(addr, 12));
2911 emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2912 }
2913 }
2914
2915 void genX(CmdDrawIndirect)(
2916 VkCommandBuffer commandBuffer,
2917 VkBuffer _buffer,
2918 VkDeviceSize offset,
2919 uint32_t drawCount,
2920 uint32_t stride)
2921 {
2922 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2923 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2924 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2925 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2926
2927 if (anv_batch_has_error(&cmd_buffer->batch))
2928 return;
2929
2930 genX(cmd_buffer_flush_state)(cmd_buffer);
2931
2932 for (uint32_t i = 0; i < drawCount; i++) {
2933 struct anv_address draw = anv_address_add(buffer->address, offset);
2934
2935 if (vs_prog_data->uses_firstvertex ||
2936 vs_prog_data->uses_baseinstance)
2937 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
2938 if (vs_prog_data->uses_drawid)
2939 emit_draw_index(cmd_buffer, i);
2940
2941 load_indirect_parameters(cmd_buffer, draw, false);
2942
2943 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2944 prim.IndirectParameterEnable = true;
2945 prim.VertexAccessType = SEQUENTIAL;
2946 prim.PrimitiveTopologyType = pipeline->topology;
2947 }
2948
2949 offset += stride;
2950 }
2951 }
2952
2953 void genX(CmdDrawIndexedIndirect)(
2954 VkCommandBuffer commandBuffer,
2955 VkBuffer _buffer,
2956 VkDeviceSize offset,
2957 uint32_t drawCount,
2958 uint32_t stride)
2959 {
2960 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2961 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2962 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2963 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2964
2965 if (anv_batch_has_error(&cmd_buffer->batch))
2966 return;
2967
2968 genX(cmd_buffer_flush_state)(cmd_buffer);
2969
2970 for (uint32_t i = 0; i < drawCount; i++) {
2971 struct anv_address draw = anv_address_add(buffer->address, offset);
2972
2973 /* TODO: We need to stomp base vertex to 0 somehow */
2974 if (vs_prog_data->uses_firstvertex ||
2975 vs_prog_data->uses_baseinstance)
2976 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
2977 if (vs_prog_data->uses_drawid)
2978 emit_draw_index(cmd_buffer, i);
2979
2980 load_indirect_parameters(cmd_buffer, draw, true);
2981
2982 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2983 prim.IndirectParameterEnable = true;
2984 prim.VertexAccessType = RANDOM;
2985 prim.PrimitiveTopologyType = pipeline->topology;
2986 }
2987
2988 offset += stride;
2989 }
2990 }
2991
2992 static VkResult
2993 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
2994 {
2995 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2996 struct anv_state surfaces = { 0, }, samplers = { 0, };
2997 VkResult result;
2998
2999 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
3000 if (result != VK_SUCCESS) {
3001 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
3002
3003 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
3004 if (result != VK_SUCCESS)
3005 return result;
3006
3007 /* Re-emit state base addresses so we get the new surface state base
3008 * address before we start emitting binding tables etc.
3009 */
3010 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
3011
3012 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
3013 if (result != VK_SUCCESS) {
3014 anv_batch_set_error(&cmd_buffer->batch, result);
3015 return result;
3016 }
3017 }
3018
3019 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
3020 if (result != VK_SUCCESS) {
3021 anv_batch_set_error(&cmd_buffer->batch, result);
3022 return result;
3023 }
3024
3025 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
3026 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
3027 .BindingTablePointer = surfaces.offset,
3028 .SamplerStatePointer = samplers.offset,
3029 };
3030 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
3031
3032 struct anv_state state =
3033 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
3034 pipeline->interface_descriptor_data,
3035 GENX(INTERFACE_DESCRIPTOR_DATA_length),
3036 64);
3037
3038 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
3039 anv_batch_emit(&cmd_buffer->batch,
3040 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
3041 mid.InterfaceDescriptorTotalLength = size;
3042 mid.InterfaceDescriptorDataStartAddress = state.offset;
3043 }
3044
3045 return VK_SUCCESS;
3046 }
3047
3048 void
3049 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
3050 {
3051 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3052 MAYBE_UNUSED VkResult result;
3053
3054 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
3055
3056 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
3057
3058 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
3059
3060 if (cmd_buffer->state.compute.pipeline_dirty) {
3061 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
3062 *
3063 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
3064 * the only bits that are changed are scoreboard related: Scoreboard
3065 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
3066 * these scoreboard related states, a MEDIA_STATE_FLUSH is
3067 * sufficient."
3068 */
3069 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3070 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3071
3072 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3073 }
3074
3075 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
3076 cmd_buffer->state.compute.pipeline_dirty) {
3077 /* FIXME: figure out descriptors for gen7 */
3078 result = flush_compute_descriptor_set(cmd_buffer);
3079 if (result != VK_SUCCESS)
3080 return;
3081
3082 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3083 }
3084
3085 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
3086 struct anv_state push_state =
3087 anv_cmd_buffer_cs_push_constants(cmd_buffer);
3088
3089 if (push_state.alloc_size) {
3090 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
3091 curbe.CURBETotalDataLength = push_state.alloc_size;
3092 curbe.CURBEDataStartAddress = push_state.offset;
3093 }
3094 }
3095
3096 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3097 }
3098
3099 cmd_buffer->state.compute.pipeline_dirty = false;
3100
3101 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3102 }
3103
3104 #if GEN_GEN == 7
3105
3106 static VkResult
3107 verify_cmd_parser(const struct anv_device *device,
3108 int required_version,
3109 const char *function)
3110 {
3111 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
3112 return vk_errorf(device->instance, device->instance,
3113 VK_ERROR_FEATURE_NOT_PRESENT,
3114 "cmd parser version %d is required for %s",
3115 required_version, function);
3116 } else {
3117 return VK_SUCCESS;
3118 }
3119 }
3120
3121 #endif
3122
3123 static void
3124 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
3125 uint32_t baseGroupX,
3126 uint32_t baseGroupY,
3127 uint32_t baseGroupZ)
3128 {
3129 if (anv_batch_has_error(&cmd_buffer->batch))
3130 return;
3131
3132 VkResult result =
3133 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, MESA_SHADER_COMPUTE,
3134 base_work_group_id);
3135 if (result != VK_SUCCESS) {
3136 cmd_buffer->batch.status = result;
3137 return;
3138 }
3139
3140 struct anv_push_constants *push =
3141 cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
3142 if (push->base_work_group_id[0] != baseGroupX ||
3143 push->base_work_group_id[1] != baseGroupY ||
3144 push->base_work_group_id[2] != baseGroupZ) {
3145 push->base_work_group_id[0] = baseGroupX;
3146 push->base_work_group_id[1] = baseGroupY;
3147 push->base_work_group_id[2] = baseGroupZ;
3148
3149 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3150 }
3151 }
3152
3153 void genX(CmdDispatch)(
3154 VkCommandBuffer commandBuffer,
3155 uint32_t x,
3156 uint32_t y,
3157 uint32_t z)
3158 {
3159 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
3160 }
3161
3162 void genX(CmdDispatchBase)(
3163 VkCommandBuffer commandBuffer,
3164 uint32_t baseGroupX,
3165 uint32_t baseGroupY,
3166 uint32_t baseGroupZ,
3167 uint32_t groupCountX,
3168 uint32_t groupCountY,
3169 uint32_t groupCountZ)
3170 {
3171 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3172 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3173 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3174
3175 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
3176 baseGroupY, baseGroupZ);
3177
3178 if (anv_batch_has_error(&cmd_buffer->batch))
3179 return;
3180
3181 if (prog_data->uses_num_work_groups) {
3182 struct anv_state state =
3183 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
3184 uint32_t *sizes = state.map;
3185 sizes[0] = groupCountX;
3186 sizes[1] = groupCountY;
3187 sizes[2] = groupCountZ;
3188 anv_state_flush(cmd_buffer->device, state);
3189 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
3190 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3191 .offset = state.offset,
3192 };
3193 }
3194
3195 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3196
3197 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
3198 ggw.SIMDSize = prog_data->simd_size / 16;
3199 ggw.ThreadDepthCounterMaximum = 0;
3200 ggw.ThreadHeightCounterMaximum = 0;
3201 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3202 ggw.ThreadGroupIDXDimension = groupCountX;
3203 ggw.ThreadGroupIDYDimension = groupCountY;
3204 ggw.ThreadGroupIDZDimension = groupCountZ;
3205 ggw.RightExecutionMask = pipeline->cs_right_mask;
3206 ggw.BottomExecutionMask = 0xffffffff;
3207 }
3208
3209 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
3210 }
3211
3212 #define GPGPU_DISPATCHDIMX 0x2500
3213 #define GPGPU_DISPATCHDIMY 0x2504
3214 #define GPGPU_DISPATCHDIMZ 0x2508
3215
3216 void genX(CmdDispatchIndirect)(
3217 VkCommandBuffer commandBuffer,
3218 VkBuffer _buffer,
3219 VkDeviceSize offset)
3220 {
3221 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3222 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3223 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3224 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3225 struct anv_address addr = anv_address_add(buffer->address, offset);
3226 struct anv_batch *batch = &cmd_buffer->batch;
3227
3228 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
3229
3230 #if GEN_GEN == 7
3231 /* Linux 4.4 added command parser version 5 which allows the GPGPU
3232 * indirect dispatch registers to be written.
3233 */
3234 if (verify_cmd_parser(cmd_buffer->device, 5,
3235 "vkCmdDispatchIndirect") != VK_SUCCESS)
3236 return;
3237 #endif
3238
3239 if (prog_data->uses_num_work_groups)
3240 cmd_buffer->state.compute.num_workgroups = addr;
3241
3242 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3243
3244 emit_lrm(batch, GPGPU_DISPATCHDIMX, anv_address_add(addr, 0));
3245 emit_lrm(batch, GPGPU_DISPATCHDIMY, anv_address_add(addr, 4));
3246 emit_lrm(batch, GPGPU_DISPATCHDIMZ, anv_address_add(addr, 8));
3247
3248 #if GEN_GEN <= 7
3249 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
3250 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
3251 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
3252 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
3253
3254 /* Load compute_dispatch_indirect_x_size into SRC0 */
3255 emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 0));
3256
3257 /* predicate = (compute_dispatch_indirect_x_size == 0); */
3258 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3259 mip.LoadOperation = LOAD_LOAD;
3260 mip.CombineOperation = COMBINE_SET;
3261 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3262 }
3263
3264 /* Load compute_dispatch_indirect_y_size into SRC0 */
3265 emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 4));
3266
3267 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
3268 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3269 mip.LoadOperation = LOAD_LOAD;
3270 mip.CombineOperation = COMBINE_OR;
3271 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3272 }
3273
3274 /* Load compute_dispatch_indirect_z_size into SRC0 */
3275 emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 8));
3276
3277 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
3278 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3279 mip.LoadOperation = LOAD_LOAD;
3280 mip.CombineOperation = COMBINE_OR;
3281 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3282 }
3283
3284 /* predicate = !predicate; */
3285 #define COMPARE_FALSE 1
3286 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3287 mip.LoadOperation = LOAD_LOADINV;
3288 mip.CombineOperation = COMBINE_OR;
3289 mip.CompareOperation = COMPARE_FALSE;
3290 }
3291 #endif
3292
3293 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
3294 ggw.IndirectParameterEnable = true;
3295 ggw.PredicateEnable = GEN_GEN <= 7;
3296 ggw.SIMDSize = prog_data->simd_size / 16;
3297 ggw.ThreadDepthCounterMaximum = 0;
3298 ggw.ThreadHeightCounterMaximum = 0;
3299 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3300 ggw.RightExecutionMask = pipeline->cs_right_mask;
3301 ggw.BottomExecutionMask = 0xffffffff;
3302 }
3303
3304 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
3305 }
3306
3307 static void
3308 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
3309 uint32_t pipeline)
3310 {
3311 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
3312
3313 if (cmd_buffer->state.current_pipeline == pipeline)
3314 return;
3315
3316 #if GEN_GEN >= 8 && GEN_GEN < 10
3317 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
3318 *
3319 * Software must clear the COLOR_CALC_STATE Valid field in
3320 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
3321 * with Pipeline Select set to GPGPU.
3322 *
3323 * The internal hardware docs recommend the same workaround for Gen9
3324 * hardware too.
3325 */
3326 if (pipeline == GPGPU)
3327 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
3328 #endif
3329
3330 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
3331 * PIPELINE_SELECT [DevBWR+]":
3332 *
3333 * Project: DEVSNB+
3334 *
3335 * Software must ensure all the write caches are flushed through a
3336 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
3337 * command to invalidate read only caches prior to programming
3338 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
3339 */
3340 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3341 pc.RenderTargetCacheFlushEnable = true;
3342 pc.DepthCacheFlushEnable = true;
3343 pc.DCFlushEnable = true;
3344 pc.PostSyncOperation = NoWrite;
3345 pc.CommandStreamerStallEnable = true;
3346 }
3347
3348 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3349 pc.TextureCacheInvalidationEnable = true;
3350 pc.ConstantCacheInvalidationEnable = true;
3351 pc.StateCacheInvalidationEnable = true;
3352 pc.InstructionCacheInvalidateEnable = true;
3353 pc.PostSyncOperation = NoWrite;
3354 }
3355
3356 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
3357 #if GEN_GEN >= 9
3358 ps.MaskBits = 3;
3359 #endif
3360 ps.PipelineSelection = pipeline;
3361 }
3362
3363 #if GEN_GEN == 9
3364 if (devinfo->is_geminilake) {
3365 /* Project: DevGLK
3366 *
3367 * "This chicken bit works around a hardware issue with barrier logic
3368 * encountered when switching between GPGPU and 3D pipelines. To
3369 * workaround the issue, this mode bit should be set after a pipeline
3370 * is selected."
3371 */
3372 uint32_t scec;
3373 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
3374 .GLKBarrierMode =
3375 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
3376 : GLK_BARRIER_MODE_3D_HULL,
3377 .GLKBarrierModeMask = 1);
3378 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
3379 }
3380 #endif
3381
3382 cmd_buffer->state.current_pipeline = pipeline;
3383 }
3384
3385 void
3386 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
3387 {
3388 genX(flush_pipeline_select)(cmd_buffer, _3D);
3389 }
3390
3391 void
3392 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
3393 {
3394 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
3395 }
3396
3397 void
3398 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
3399 {
3400 if (GEN_GEN >= 8)
3401 return;
3402
3403 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
3404 *
3405 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
3406 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
3407 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
3408 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
3409 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
3410 * Depth Flush Bit set, followed by another pipelined depth stall
3411 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
3412 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
3413 * via a preceding MI_FLUSH)."
3414 */
3415 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3416 pipe.DepthStallEnable = true;
3417 }
3418 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3419 pipe.DepthCacheFlushEnable = true;
3420 }
3421 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3422 pipe.DepthStallEnable = true;
3423 }
3424 }
3425
3426 static void
3427 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
3428 {
3429 struct anv_device *device = cmd_buffer->device;
3430 const struct anv_image_view *iview =
3431 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
3432 const struct anv_image *image = iview ? iview->image : NULL;
3433
3434 /* FIXME: Width and Height are wrong */
3435
3436 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
3437
3438 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
3439 device->isl_dev.ds.size / 4);
3440 if (dw == NULL)
3441 return;
3442
3443 struct isl_depth_stencil_hiz_emit_info info = { };
3444
3445 if (iview)
3446 info.view = &iview->planes[0].isl;
3447
3448 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
3449 uint32_t depth_plane =
3450 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
3451 const struct anv_surface *surface = &image->planes[depth_plane].surface;
3452
3453 info.depth_surf = &surface->isl;
3454
3455 info.depth_address =
3456 anv_batch_emit_reloc(&cmd_buffer->batch,
3457 dw + device->isl_dev.ds.depth_offset / 4,
3458 image->planes[depth_plane].address.bo,
3459 image->planes[depth_plane].address.offset +
3460 surface->offset);
3461 info.mocs =
3462 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
3463
3464 const uint32_t ds =
3465 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
3466 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
3467 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
3468 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
3469
3470 info.hiz_address =
3471 anv_batch_emit_reloc(&cmd_buffer->batch,
3472 dw + device->isl_dev.ds.hiz_offset / 4,
3473 image->planes[depth_plane].address.bo,
3474 image->planes[depth_plane].address.offset +
3475 image->planes[depth_plane].aux_surface.offset);
3476
3477 info.depth_clear_value = ANV_HZ_FC_VAL;
3478 }
3479 }
3480
3481 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
3482 uint32_t stencil_plane =
3483 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
3484 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
3485
3486 info.stencil_surf = &surface->isl;
3487
3488 info.stencil_address =
3489 anv_batch_emit_reloc(&cmd_buffer->batch,
3490 dw + device->isl_dev.ds.stencil_offset / 4,
3491 image->planes[stencil_plane].address.bo,
3492 image->planes[stencil_plane].address.offset +
3493 surface->offset);
3494 info.mocs =
3495 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
3496 }
3497
3498 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
3499
3500 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
3501 }
3502
3503 /**
3504 * This ANDs the view mask of the current subpass with the pending clear
3505 * views in the attachment to get the mask of views active in the subpass
3506 * that still need to be cleared.
3507 */
3508 static inline uint32_t
3509 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
3510 const struct anv_attachment_state *att_state)
3511 {
3512 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
3513 }
3514
3515 static inline bool
3516 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
3517 const struct anv_attachment_state *att_state)
3518 {
3519 if (!cmd_state->subpass->view_mask)
3520 return true;
3521
3522 uint32_t pending_clear_mask =
3523 get_multiview_subpass_clear_mask(cmd_state, att_state);
3524
3525 return pending_clear_mask & 1;
3526 }
3527
3528 static inline bool
3529 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
3530 uint32_t att_idx)
3531 {
3532 const uint32_t last_subpass_idx =
3533 cmd_state->pass->attachments[att_idx].last_subpass_idx;
3534 const struct anv_subpass *last_subpass =
3535 &cmd_state->pass->subpasses[last_subpass_idx];
3536 return last_subpass == cmd_state->subpass;
3537 }
3538
3539 static void
3540 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
3541 uint32_t subpass_id)
3542 {
3543 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3544 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
3545 cmd_state->subpass = subpass;
3546
3547 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
3548
3549 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3550 * different views. If the client asks for instancing, we need to use the
3551 * Instance Data Step Rate to ensure that we repeat the client's
3552 * per-instance data once for each view. Since this bit is in
3553 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
3554 * of each subpass.
3555 */
3556 if (GEN_GEN == 7)
3557 cmd_buffer->state.gfx.vb_dirty |= ~0;
3558
3559 /* It is possible to start a render pass with an old pipeline. Because the
3560 * render pass and subpass index are both baked into the pipeline, this is
3561 * highly unlikely. In order to do so, it requires that you have a render
3562 * pass with a single subpass and that you use that render pass twice
3563 * back-to-back and use the same pipeline at the start of the second render
3564 * pass as at the end of the first. In order to avoid unpredictable issues
3565 * with this edge case, we just dirty the pipeline at the start of every
3566 * subpass.
3567 */
3568 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
3569
3570 /* Accumulate any subpass flushes that need to happen before the subpass */
3571 cmd_buffer->state.pending_pipe_bits |=
3572 cmd_buffer->state.pass->subpass_flushes[subpass_id];
3573
3574 VkRect2D render_area = cmd_buffer->state.render_area;
3575 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
3576
3577 bool is_multiview = subpass->view_mask != 0;
3578
3579 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
3580 const uint32_t a = subpass->attachments[i].attachment;
3581 if (a == VK_ATTACHMENT_UNUSED)
3582 continue;
3583
3584 assert(a < cmd_state->pass->attachment_count);
3585 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
3586
3587 struct anv_image_view *iview = fb->attachments[a];
3588 const struct anv_image *image = iview->image;
3589
3590 /* A resolve is necessary before use as an input attachment if the clear
3591 * color or auxiliary buffer usage isn't supported by the sampler.
3592 */
3593 const bool input_needs_resolve =
3594 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
3595 att_state->input_aux_usage != att_state->aux_usage;
3596
3597 VkImageLayout target_layout;
3598 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
3599 !input_needs_resolve) {
3600 /* Layout transitions before the final only help to enable sampling
3601 * as an input attachment. If the input attachment supports sampling
3602 * using the auxiliary surface, we can skip such transitions by
3603 * making the target layout one that is CCS-aware.
3604 */
3605 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
3606 } else {
3607 target_layout = subpass->attachments[i].layout;
3608 }
3609
3610 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3611 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3612
3613 uint32_t base_layer, layer_count;
3614 if (image->type == VK_IMAGE_TYPE_3D) {
3615 base_layer = 0;
3616 layer_count = anv_minify(iview->image->extent.depth,
3617 iview->planes[0].isl.base_level);
3618 } else {
3619 base_layer = iview->planes[0].isl.base_array_layer;
3620 layer_count = fb->layers;
3621 }
3622
3623 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3624 iview->planes[0].isl.base_level, 1,
3625 base_layer, layer_count,
3626 att_state->current_layout, target_layout);
3627 } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3628 transition_depth_buffer(cmd_buffer, image,
3629 att_state->current_layout, target_layout);
3630 att_state->aux_usage =
3631 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
3632 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
3633 }
3634 att_state->current_layout = target_layout;
3635
3636 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
3637 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3638
3639 /* Multi-planar images are not supported as attachments */
3640 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3641 assert(image->n_planes == 1);
3642
3643 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
3644 uint32_t clear_layer_count = fb->layers;
3645
3646 if (att_state->fast_clear &&
3647 do_first_layer_clear(cmd_state, att_state)) {
3648 /* We only support fast-clears on the first layer */
3649 assert(iview->planes[0].isl.base_level == 0);
3650 assert(iview->planes[0].isl.base_array_layer == 0);
3651
3652 union isl_color_value clear_color = {};
3653 anv_clear_color_from_att_state(&clear_color, att_state, iview);
3654 if (iview->image->samples == 1) {
3655 anv_image_ccs_op(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3656 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
3657 &clear_color,
3658 false);
3659 } else {
3660 anv_image_mcs_op(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3661 0, 1, ISL_AUX_OP_FAST_CLEAR,
3662 &clear_color,
3663 false);
3664 }
3665 base_clear_layer++;
3666 clear_layer_count--;
3667 if (is_multiview)
3668 att_state->pending_clear_views &= ~1;
3669
3670 if (att_state->clear_color_is_zero) {
3671 /* This image has the auxiliary buffer enabled. We can mark the
3672 * subresource as not needing a resolve because the clear color
3673 * will match what's in every RENDER_SURFACE_STATE object when
3674 * it's being used for sampling.
3675 */
3676 set_image_fast_clear_state(cmd_buffer, iview->image,
3677 VK_IMAGE_ASPECT_COLOR_BIT,
3678 ANV_FAST_CLEAR_DEFAULT_VALUE);
3679 } else {
3680 set_image_fast_clear_state(cmd_buffer, iview->image,
3681 VK_IMAGE_ASPECT_COLOR_BIT,
3682 ANV_FAST_CLEAR_ANY);
3683 }
3684 }
3685
3686 /* From the VkFramebufferCreateInfo spec:
3687 *
3688 * "If the render pass uses multiview, then layers must be one and each
3689 * attachment requires a number of layers that is greater than the
3690 * maximum bit index set in the view mask in the subpasses in which it
3691 * is used."
3692 *
3693 * So if multiview is active we ignore the number of layers in the
3694 * framebuffer and instead we honor the view mask from the subpass.
3695 */
3696 if (is_multiview) {
3697 assert(image->n_planes == 1);
3698 uint32_t pending_clear_mask =
3699 get_multiview_subpass_clear_mask(cmd_state, att_state);
3700
3701 uint32_t layer_idx;
3702 for_each_bit(layer_idx, pending_clear_mask) {
3703 uint32_t layer =
3704 iview->planes[0].isl.base_array_layer + layer_idx;
3705
3706 anv_image_clear_color(cmd_buffer, image,
3707 VK_IMAGE_ASPECT_COLOR_BIT,
3708 att_state->aux_usage,
3709 iview->planes[0].isl.format,
3710 iview->planes[0].isl.swizzle,
3711 iview->planes[0].isl.base_level,
3712 layer, 1,
3713 render_area,
3714 vk_to_isl_color(att_state->clear_value.color));
3715 }
3716
3717 att_state->pending_clear_views &= ~pending_clear_mask;
3718 } else if (clear_layer_count > 0) {
3719 assert(image->n_planes == 1);
3720 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3721 att_state->aux_usage,
3722 iview->planes[0].isl.format,
3723 iview->planes[0].isl.swizzle,
3724 iview->planes[0].isl.base_level,
3725 base_clear_layer, clear_layer_count,
3726 render_area,
3727 vk_to_isl_color(att_state->clear_value.color));
3728 }
3729 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
3730 VK_IMAGE_ASPECT_STENCIL_BIT)) {
3731 if (att_state->fast_clear && !is_multiview) {
3732 /* We currently only support HiZ for single-layer images */
3733 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3734 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
3735 assert(iview->planes[0].isl.base_level == 0);
3736 assert(iview->planes[0].isl.base_array_layer == 0);
3737 assert(fb->layers == 1);
3738 }
3739
3740 anv_image_hiz_clear(cmd_buffer, image,
3741 att_state->pending_clear_aspects,
3742 iview->planes[0].isl.base_level,
3743 iview->planes[0].isl.base_array_layer,
3744 fb->layers, render_area,
3745 att_state->clear_value.depthStencil.stencil);
3746 } else if (is_multiview) {
3747 uint32_t pending_clear_mask =
3748 get_multiview_subpass_clear_mask(cmd_state, att_state);
3749
3750 uint32_t layer_idx;
3751 for_each_bit(layer_idx, pending_clear_mask) {
3752 uint32_t layer =
3753 iview->planes[0].isl.base_array_layer + layer_idx;
3754
3755 anv_image_clear_depth_stencil(cmd_buffer, image,
3756 att_state->pending_clear_aspects,
3757 att_state->aux_usage,
3758 iview->planes[0].isl.base_level,
3759 layer, 1,
3760 render_area,
3761 att_state->clear_value.depthStencil.depth,
3762 att_state->clear_value.depthStencil.stencil);
3763 }
3764
3765 att_state->pending_clear_views &= ~pending_clear_mask;
3766 } else {
3767 anv_image_clear_depth_stencil(cmd_buffer, image,
3768 att_state->pending_clear_aspects,
3769 att_state->aux_usage,
3770 iview->planes[0].isl.base_level,
3771 iview->planes[0].isl.base_array_layer,
3772 fb->layers, render_area,
3773 att_state->clear_value.depthStencil.depth,
3774 att_state->clear_value.depthStencil.stencil);
3775 }
3776 } else {
3777 assert(att_state->pending_clear_aspects == 0);
3778 }
3779
3780 if (GEN_GEN < 10 &&
3781 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
3782 image->planes[0].aux_surface.isl.size_B > 0 &&
3783 iview->planes[0].isl.base_level == 0 &&
3784 iview->planes[0].isl.base_array_layer == 0) {
3785 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
3786 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3787 image, VK_IMAGE_ASPECT_COLOR_BIT,
3788 false /* copy to ss */);
3789 }
3790
3791 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
3792 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
3793 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
3794 image, VK_IMAGE_ASPECT_COLOR_BIT,
3795 false /* copy to ss */);
3796 }
3797 }
3798
3799 if (subpass->attachments[i].usage ==
3800 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
3801 /* We assume that if we're starting a subpass, we're going to do some
3802 * rendering so we may end up with compressed data.
3803 */
3804 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
3805 VK_IMAGE_ASPECT_COLOR_BIT,
3806 att_state->aux_usage,
3807 iview->planes[0].isl.base_level,
3808 iview->planes[0].isl.base_array_layer,
3809 fb->layers);
3810 } else if (subpass->attachments[i].usage ==
3811 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
3812 /* We may be writing depth or stencil so we need to mark the surface.
3813 * Unfortunately, there's no way to know at this point whether the
3814 * depth or stencil tests used will actually write to the surface.
3815 *
3816 * Even though stencil may be plane 1, it always shares a base_level
3817 * with depth.
3818 */
3819 const struct isl_view *ds_view = &iview->planes[0].isl;
3820 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
3821 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
3822 VK_IMAGE_ASPECT_DEPTH_BIT,
3823 att_state->aux_usage,
3824 ds_view->base_level,
3825 ds_view->base_array_layer,
3826 fb->layers);
3827 }
3828 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
3829 /* Even though stencil may be plane 1, it always shares a
3830 * base_level with depth.
3831 */
3832 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
3833 VK_IMAGE_ASPECT_STENCIL_BIT,
3834 ISL_AUX_USAGE_NONE,
3835 ds_view->base_level,
3836 ds_view->base_array_layer,
3837 fb->layers);
3838 }
3839 }
3840
3841 /* If multiview is enabled, then we are only done clearing when we no
3842 * longer have pending layers to clear, or when we have processed the
3843 * last subpass that uses this attachment.
3844 */
3845 if (!is_multiview ||
3846 att_state->pending_clear_views == 0 ||
3847 current_subpass_is_last_for_attachment(cmd_state, a)) {
3848 att_state->pending_clear_aspects = 0;
3849 }
3850
3851 att_state->pending_load_aspects = 0;
3852 }
3853
3854 cmd_buffer_emit_depth_stencil(cmd_buffer);
3855 }
3856
3857 static void
3858 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
3859 {
3860 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3861 struct anv_subpass *subpass = cmd_state->subpass;
3862 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
3863
3864 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3865
3866 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
3867 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
3868 const uint32_t a = subpass->attachments[i].attachment;
3869 if (a == VK_ATTACHMENT_UNUSED)
3870 continue;
3871
3872 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
3873 continue;
3874
3875 assert(a < cmd_state->pass->attachment_count);
3876 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
3877 struct anv_image_view *iview = fb->attachments[a];
3878 const struct anv_image *image = iview->image;
3879
3880 /* Transition the image into the final layout for this render pass */
3881 VkImageLayout target_layout =
3882 cmd_state->pass->attachments[a].final_layout;
3883
3884 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3885 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3886
3887 uint32_t base_layer, layer_count;
3888 if (image->type == VK_IMAGE_TYPE_3D) {
3889 base_layer = 0;
3890 layer_count = anv_minify(iview->image->extent.depth,
3891 iview->planes[0].isl.base_level);
3892 } else {
3893 base_layer = iview->planes[0].isl.base_array_layer;
3894 layer_count = fb->layers;
3895 }
3896
3897 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3898 iview->planes[0].isl.base_level, 1,
3899 base_layer, layer_count,
3900 att_state->current_layout, target_layout);
3901 } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3902 transition_depth_buffer(cmd_buffer, image,
3903 att_state->current_layout, target_layout);
3904 }
3905 }
3906
3907 /* Accumulate any subpass flushes that need to happen after the subpass.
3908 * Yes, they do get accumulated twice in the NextSubpass case but since
3909 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
3910 * ORing the bits in twice so it's harmless.
3911 */
3912 cmd_buffer->state.pending_pipe_bits |=
3913 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
3914 }
3915
3916 void genX(CmdBeginRenderPass)(
3917 VkCommandBuffer commandBuffer,
3918 const VkRenderPassBeginInfo* pRenderPassBegin,
3919 VkSubpassContents contents)
3920 {
3921 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3922 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
3923 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
3924
3925 cmd_buffer->state.framebuffer = framebuffer;
3926 cmd_buffer->state.pass = pass;
3927 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
3928 VkResult result =
3929 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
3930
3931 /* If we failed to setup the attachments we should not try to go further */
3932 if (result != VK_SUCCESS) {
3933 assert(anv_batch_has_error(&cmd_buffer->batch));
3934 return;
3935 }
3936
3937 genX(flush_pipeline_select_3d)(cmd_buffer);
3938
3939 cmd_buffer_begin_subpass(cmd_buffer, 0);
3940 }
3941
3942 void genX(CmdBeginRenderPass2KHR)(
3943 VkCommandBuffer commandBuffer,
3944 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
3945 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
3946 {
3947 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
3948 pSubpassBeginInfo->contents);
3949 }
3950
3951 void genX(CmdNextSubpass)(
3952 VkCommandBuffer commandBuffer,
3953 VkSubpassContents contents)
3954 {
3955 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3956
3957 if (anv_batch_has_error(&cmd_buffer->batch))
3958 return;
3959
3960 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
3961
3962 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
3963 cmd_buffer_end_subpass(cmd_buffer);
3964 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
3965 }
3966
3967 void genX(CmdNextSubpass2KHR)(
3968 VkCommandBuffer commandBuffer,
3969 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
3970 const VkSubpassEndInfoKHR* pSubpassEndInfo)
3971 {
3972 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
3973 }
3974
3975 void genX(CmdEndRenderPass)(
3976 VkCommandBuffer commandBuffer)
3977 {
3978 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3979
3980 if (anv_batch_has_error(&cmd_buffer->batch))
3981 return;
3982
3983 cmd_buffer_end_subpass(cmd_buffer);
3984
3985 cmd_buffer->state.hiz_enabled = false;
3986
3987 #ifndef NDEBUG
3988 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
3989 #endif
3990
3991 /* Remove references to render pass specific state. This enables us to
3992 * detect whether or not we're in a renderpass.
3993 */
3994 cmd_buffer->state.framebuffer = NULL;
3995 cmd_buffer->state.pass = NULL;
3996 cmd_buffer->state.subpass = NULL;
3997 }
3998
3999 void genX(CmdEndRenderPass2KHR)(
4000 VkCommandBuffer commandBuffer,
4001 const VkSubpassEndInfoKHR* pSubpassEndInfo)
4002 {
4003 genX(CmdEndRenderPass)(commandBuffer);
4004 }