i965: Stop lowering ir_triop_lrp.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_gs.c
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file brw_vec4_gs.c
26 *
27 * State atom for client-programmable geometry shaders, and support code.
28 */
29
30 #include "brw_vec4_gs.h"
31 #include "brw_context.h"
32 #include "brw_vec4_gs_visitor.h"
33 #include "brw_state.h"
34
35
36 static bool
37 do_gs_prog(struct brw_context *brw,
38 struct gl_shader_program *prog,
39 struct brw_geometry_program *gp,
40 struct brw_gs_prog_key *key)
41 {
42 struct brw_stage_state *stage_state = &brw->gs.base;
43 struct brw_gs_compile c;
44 memset(&c, 0, sizeof(c));
45 c.key = *key;
46 c.gp = gp;
47
48 c.prog_data.include_primitive_id =
49 (gp->program.Base.InputsRead & VARYING_BIT_PRIMITIVE_ID) != 0;
50
51 c.prog_data.invocations = gp->program.Invocations;
52
53 /* Allocate the references to the uniforms that will end up in the
54 * prog_data associated with the compiled program, and which will be freed
55 * by the state cache.
56 *
57 * Note: param_count needs to be num_uniform_components * 4, since we add
58 * padding around uniform values below vec4 size, so the worst case is that
59 * every uniform is a float which gets padded to the size of a vec4.
60 */
61 struct gl_shader *gs = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
62 int param_count = gs->num_uniform_components * 4;
63
64 /* We also upload clip plane data as uniforms */
65 param_count += MAX_CLIP_PLANES * 4;
66
67 c.prog_data.base.base.param =
68 rzalloc_array(NULL, const float *, param_count);
69 c.prog_data.base.base.pull_param =
70 rzalloc_array(NULL, const float *, param_count);
71
72 if (gp->program.OutputType == GL_POINTS) {
73 /* When the output type is points, the geometry shader may output data
74 * to multiple streams, and EndPrimitive() has no effect. So we
75 * configure the hardware to interpret the control data as stream ID.
76 */
77 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
78
79 /* However, StreamID is not yet supported, so we output zero bits of
80 * control data per vertex.
81 */
82 c.control_data_bits_per_vertex = 0;
83 } else {
84 /* When the output type is triangle_strip or line_strip, EndPrimitive()
85 * may be used to terminate the current strip and start a new one
86 * (similar to primitive restart), and outputting data to multiple
87 * streams is not supported. So we configure the hardware to interpret
88 * the control data as EndPrimitive information (a.k.a. "cut bits").
89 */
90 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
91
92 /* We only need to output control data if the shader actually calls
93 * EndPrimitive().
94 */
95 c.control_data_bits_per_vertex = gp->program.UsesEndPrimitive ? 1 : 0;
96 }
97 c.control_data_header_size_bits =
98 gp->program.VerticesOut * c.control_data_bits_per_vertex;
99
100 /* 1 HWORD = 32 bytes = 256 bits */
101 c.prog_data.control_data_header_size_hwords =
102 ALIGN(c.control_data_header_size_bits, 256) / 256;
103
104 GLbitfield64 outputs_written = gp->program.Base.OutputsWritten;
105
106 /* In order for legacy clipping to work, we need to populate the clip
107 * distance varying slots whenever clipping is enabled, even if the vertex
108 * shader doesn't write to gl_ClipDistance.
109 */
110 if (c.key.base.userclip_active) {
111 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
112 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
113 }
114
115 brw_compute_vue_map(brw, &c.prog_data.base.vue_map, outputs_written);
116
117 /* Compute the output vertex size.
118 *
119 * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
120 * Size (p168):
121 *
122 * [0,62] indicating [1,63] 16B units
123 *
124 * Specifies the size of each vertex stored in the GS output entry
125 * (following any Control Header data) as a number of 128-bit units
126 * (minus one).
127 *
128 * Programming Restrictions: The vertex size must be programmed as a
129 * multiple of 32B units with the following exception: Rendering is
130 * disabled (as per SOL stage state) and the vertex size output by the
131 * GS thread is 16B.
132 *
133 * If rendering is enabled (as per SOL state) the vertex size must be
134 * programmed as a multiple of 32B units. In other words, the only time
135 * software can program a vertex size with an odd number of 16B units
136 * is when rendering is disabled.
137 *
138 * Note: B=bytes in the above text.
139 *
140 * It doesn't seem worth the extra trouble to optimize the case where the
141 * vertex size is 16B (especially since this would require special-casing
142 * the GEN assembly that writes to the URB). So we just set the vertex
143 * size to a multiple of 32B (2 vec4's) in all cases.
144 *
145 * The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
146 * budget that as follows:
147 *
148 * 512 bytes for varyings (a varying component is 4 bytes and
149 * gl_MaxGeometryOutputComponents = 128)
150 * 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
151 * bytes)
152 * 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
153 * even if it's not used)
154 * 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
155 * whenever clip planes are enabled, even if the shader doesn't
156 * write to gl_ClipDistance)
157 * 16 bytes overhead since the VUE size must be a multiple of 32 bytes
158 * (see below)--this causes up to 1 VUE slot to be wasted
159 * 400 bytes available for varying packing overhead
160 *
161 * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
162 * per interpolation type, so this is plenty.
163 *
164 */
165 unsigned output_vertex_size_bytes = c.prog_data.base.vue_map.num_slots * 16;
166 assert(output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
167 c.prog_data.output_vertex_size_hwords =
168 ALIGN(output_vertex_size_bytes, 32) / 32;
169
170 /* Compute URB entry size. The maximum allowed URB entry size is 32k.
171 * That divides up as follows:
172 *
173 * 64 bytes for the control data header (cut indices or StreamID bits)
174 * 4096 bytes for varyings (a varying component is 4 bytes and
175 * gl_MaxGeometryTotalOutputComponents = 1024)
176 * 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
177 * bytes/vertex and gl_MaxGeometryOutputVertices is 256)
178 * 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
179 * even if it's not used)
180 * 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
181 * whenever clip planes are enabled, even if the shader doesn't
182 * write to gl_ClipDistance)
183 * 4096 bytes overhead since the VUE size must be a multiple of 32
184 * bytes (see above)--this causes up to 1 VUE slot to be wasted
185 * 8128 bytes available for varying packing overhead
186 *
187 * Worst-case varying packing overhead is 3/4 of a varying slot per
188 * interpolation type, which works out to 3072 bytes, so this would allow
189 * us to accommodate 2 interpolation types without any danger of running
190 * out of URB space.
191 *
192 * In practice, the risk of running out of URB space is very small, since
193 * the above figures are all worst-case, and most of them scale with the
194 * number of output vertices. So we'll just calculate the amount of space
195 * we need, and if it's too large, fail to compile.
196 */
197 unsigned output_size_bytes =
198 c.prog_data.output_vertex_size_hwords * 32 * gp->program.VerticesOut;
199 output_size_bytes += 32 * c.prog_data.control_data_header_size_hwords;
200
201 /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
202 * which comes before the control header.
203 */
204 if (brw->gen >= 8)
205 output_size_bytes += 32;
206
207 assert(output_size_bytes >= 1);
208 if (output_size_bytes > GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES)
209 return false;
210
211 /* URB entry sizes are stored as a multiple of 64 bytes. */
212 c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
213
214 c.prog_data.output_topology = prim_to_hw_prim[gp->program.OutputType];
215
216 brw_compute_vue_map(brw, &c.input_vue_map, c.key.input_varyings);
217
218 /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
219 * need to program a URB read length of ceiling(num_slots / 2).
220 */
221 c.prog_data.base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
222
223 void *mem_ctx = ralloc_context(NULL);
224 unsigned program_size;
225 const unsigned *program =
226 brw_gs_emit(brw, prog, &c, mem_ctx, &program_size);
227 if (program == NULL) {
228 ralloc_free(mem_ctx);
229 return false;
230 }
231
232 /* Scratch space is used for register spilling */
233 if (c.base.last_scratch) {
234 perf_debug("Geometry shader triggered register spilling. "
235 "Try reducing the number of live vec4 values to "
236 "improve performance.\n");
237
238 c.prog_data.base.total_scratch
239 = brw_get_scratch_size(c.base.last_scratch*REG_SIZE);
240
241 brw_get_scratch_bo(brw, &stage_state->scratch_bo,
242 c.prog_data.base.total_scratch * brw->max_gs_threads);
243 }
244
245 brw_upload_cache(&brw->cache, BRW_GS_PROG,
246 &c.key, sizeof(c.key),
247 program, program_size,
248 &c.prog_data, sizeof(c.prog_data),
249 &stage_state->prog_offset, &brw->gs.prog_data);
250 ralloc_free(mem_ctx);
251
252 return true;
253 }
254
255
256 static void
257 brw_upload_gs_prog(struct brw_context *brw)
258 {
259 struct gl_context *ctx = &brw->ctx;
260 struct brw_stage_state *stage_state = &brw->gs.base;
261 struct brw_gs_prog_key key;
262 /* BRW_NEW_GEOMETRY_PROGRAM */
263 struct brw_geometry_program *gp =
264 (struct brw_geometry_program *) brw->geometry_program;
265
266 if (gp == NULL) {
267 /* No geometry shader. Vertex data just passes straight through. */
268 if (brw->state.dirty.brw & BRW_NEW_VUE_MAP_VS) {
269 brw->vue_map_geom_out = brw->vue_map_vs;
270 brw->state.dirty.brw |= BRW_NEW_VUE_MAP_GEOM_OUT;
271 }
272
273 /* Other state atoms had better not try to access prog_data, since
274 * there's no GS program.
275 */
276 brw->gs.prog_data = NULL;
277 brw->gs.base.prog_data = NULL;
278
279 return;
280 }
281
282 struct gl_program *prog = &gp->program.Base;
283
284 memset(&key, 0, sizeof(key));
285
286 key.base.program_string_id = gp->id;
287 brw_setup_vec4_key_clip_info(brw, &key.base,
288 gp->program.Base.UsesClipDistanceOut);
289
290 /* _NEW_LIGHT | _NEW_BUFFERS */
291 key.base.clamp_vertex_color = ctx->Light._ClampVertexColor;
292
293 /* _NEW_TEXTURE */
294 brw_populate_sampler_prog_key_data(ctx, prog, stage_state->sampler_count,
295 &key.base.tex);
296
297 /* BRW_NEW_VUE_MAP_VS */
298 key.input_varyings = brw->vue_map_vs.slots_valid;
299
300 if (!brw_search_cache(&brw->cache, BRW_GS_PROG,
301 &key, sizeof(key),
302 &stage_state->prog_offset, &brw->gs.prog_data)) {
303 bool success =
304 do_gs_prog(brw, ctx->Shader.CurrentProgram[MESA_SHADER_GEOMETRY], gp,
305 &key);
306 assert(success);
307 }
308 brw->gs.base.prog_data = &brw->gs.prog_data->base.base;
309
310 if (memcmp(&brw->vs.prog_data->base.vue_map, &brw->vue_map_geom_out,
311 sizeof(brw->vue_map_geom_out)) != 0) {
312 brw->vue_map_geom_out = brw->gs.prog_data->base.vue_map;
313 brw->state.dirty.brw |= BRW_NEW_VUE_MAP_GEOM_OUT;
314 }
315 }
316
317
318 const struct brw_tracked_state brw_gs_prog = {
319 .dirty = {
320 .mesa = (_NEW_LIGHT | _NEW_BUFFERS | _NEW_TEXTURE),
321 .brw = BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_VUE_MAP_VS,
322 },
323 .emit = brw_upload_gs_prog
324 };
325
326
327 bool
328 brw_gs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
329 {
330 struct brw_context *brw = brw_context(ctx);
331 struct brw_gs_prog_key key;
332 uint32_t old_prog_offset = brw->gs.base.prog_offset;
333 struct brw_gs_prog_data *old_prog_data = brw->gs.prog_data;
334 bool success;
335
336 if (!prog->_LinkedShaders[MESA_SHADER_GEOMETRY])
337 return true;
338
339 struct gl_geometry_program *gp = (struct gl_geometry_program *)
340 prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->Program;
341 struct brw_geometry_program *bgp = brw_geometry_program(gp);
342
343 memset(&key, 0, sizeof(key));
344
345 brw_vec4_setup_prog_key_for_precompile(ctx, &key.base, bgp->id, &gp->Base);
346
347 /* Assume that the set of varyings coming in from the vertex shader exactly
348 * matches what the geometry shader requires.
349 */
350 key.input_varyings = gp->Base.InputsRead;
351
352 success = do_gs_prog(brw, prog, bgp, &key);
353
354 brw->gs.base.prog_offset = old_prog_offset;
355 brw->gs.prog_data = old_prog_data;
356
357 return success;
358 }
359
360
361 bool
362 brw_gs_prog_data_compare(const void *in_a, const void *in_b)
363 {
364 const struct brw_gs_prog_data *a = in_a;
365 const struct brw_gs_prog_data *b = in_b;
366
367 /* Compare the base structure. */
368 if (!brw_stage_prog_data_compare(&a->base.base, &b->base.base))
369 return false;
370
371 /* Compare the rest of the struct. */
372 const unsigned offset = sizeof(struct brw_stage_prog_data);
373 if (memcmp(((char *) a) + offset, ((char *) b) + offset,
374 sizeof(struct brw_gs_prog_data) - offset)) {
375 return false;
376 }
377
378 return true;
379 }