i965/vec4: Fix liveness analysis with BRW_OPCODE_SEL
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_live_variables.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_cfg.h"
29 #include "brw_vec4_live_variables.h"
30
31 using namespace brw;
32
33 /** @file brw_vec4_live_variables.cpp
34 *
35 * Support for computing at the basic block level which variables
36 * (virtual GRFs in our case) are live at entry and exit.
37 *
38 * See Muchnick's Advanced Compiler Design and Implementation, section
39 * 14.1 (p444).
40 */
41
42 /**
43 * Sets up the use[] and def[] arrays.
44 *
45 * The basic-block-level live variable analysis needs to know which
46 * variables get used before they're completely defined, and which
47 * variables are completely defined before they're used.
48 *
49 * We independently track each channel of a vec4. This is because we need to
50 * be able to recognize a sequence like:
51 *
52 * ...
53 * DP4 tmp.x a b;
54 * DP4 tmp.y c d;
55 * MUL result.xy tmp.xy e.xy
56 * ...
57 *
58 * as having tmp live only across that sequence (assuming it's used nowhere
59 * else), because it's a common pattern. A more conservative approach that
60 * doesn't get tmp marked a deffed in this block will tend to result in
61 * spilling.
62 */
63 void
64 vec4_live_variables::setup_def_use()
65 {
66 int ip = 0;
67
68 foreach_block (block, cfg) {
69 assert(ip == block->start_ip);
70 if (block->num > 0)
71 assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
72
73 foreach_inst_in_block(vec4_instruction, inst, block) {
74 struct block_data *bd = &block_data[block->num];
75
76 /* Set use[] for this instruction */
77 for (unsigned int i = 0; i < 3; i++) {
78 if (inst->src[i].file == GRF) {
79 for (unsigned j = 0; j < inst->regs_read(i); j++) {
80 for (int c = 0; c < 4; c++) {
81 const unsigned v =
82 var_from_reg(alloc, offset(inst->src[i], j), c);
83 if (!BITSET_TEST(bd->def, v))
84 BITSET_SET(bd->use, v);
85 }
86 }
87 }
88 }
89 if (inst->reads_flag()) {
90 if (!BITSET_TEST(bd->flag_def, 0)) {
91 BITSET_SET(bd->flag_use, 0);
92 }
93 }
94
95 /* Check for unconditional writes to whole registers. These
96 * are the things that screen off preceding definitions of a
97 * variable, and thus qualify for being in def[].
98 */
99 if (inst->dst.file == GRF &&
100 (!inst->predicate || inst->opcode == BRW_OPCODE_SEL)) {
101 for (unsigned i = 0; i < inst->regs_written; i++) {
102 for (int c = 0; c < 4; c++) {
103 if (inst->dst.writemask & (1 << c)) {
104 const unsigned v =
105 var_from_reg(alloc, offset(inst->dst, i), c);
106 if (!BITSET_TEST(bd->use, v))
107 BITSET_SET(bd->def, v);
108 }
109 }
110 }
111 }
112 if (inst->writes_flag()) {
113 if (!BITSET_TEST(bd->flag_use, 0)) {
114 BITSET_SET(bd->flag_def, 0);
115 }
116 }
117
118 ip++;
119 }
120 }
121 }
122
123 /**
124 * The algorithm incrementally sets bits in liveout and livein,
125 * propagating it through control flow. It will eventually terminate
126 * because it only ever adds bits, and stops when no bits are added in
127 * a pass.
128 */
129 void
130 vec4_live_variables::compute_live_variables()
131 {
132 bool cont = true;
133
134 while (cont) {
135 cont = false;
136
137 foreach_block_reverse (block, cfg) {
138 struct block_data *bd = &block_data[block->num];
139
140 /* Update liveout */
141 foreach_list_typed(bblock_link, child_link, link, &block->children) {
142 struct block_data *child_bd = &block_data[child_link->block->num];
143
144 for (int i = 0; i < bitset_words; i++) {
145 BITSET_WORD new_liveout = (child_bd->livein[i] &
146 ~bd->liveout[i]);
147 if (new_liveout) {
148 bd->liveout[i] |= new_liveout;
149 cont = true;
150 }
151 }
152 BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
153 ~bd->flag_liveout[0]);
154 if (new_liveout) {
155 bd->flag_liveout[0] |= new_liveout;
156 cont = true;
157 }
158 }
159
160 /* Update livein */
161 for (int i = 0; i < bitset_words; i++) {
162 BITSET_WORD new_livein = (bd->use[i] |
163 (bd->liveout[i] &
164 ~bd->def[i]));
165 if (new_livein & ~bd->livein[i]) {
166 bd->livein[i] |= new_livein;
167 cont = true;
168 }
169 }
170 BITSET_WORD new_livein = (bd->flag_use[0] |
171 (bd->flag_liveout[0] &
172 ~bd->flag_def[0]));
173 if (new_livein & ~bd->flag_livein[0]) {
174 bd->flag_livein[0] |= new_livein;
175 cont = true;
176 }
177 }
178 }
179 }
180
181 vec4_live_variables::vec4_live_variables(const simple_allocator &alloc,
182 cfg_t *cfg)
183 : alloc(alloc), cfg(cfg)
184 {
185 mem_ctx = ralloc_context(NULL);
186
187 num_vars = alloc.total_size * 4;
188 block_data = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
189
190 bitset_words = BITSET_WORDS(num_vars);
191 for (int i = 0; i < cfg->num_blocks; i++) {
192 block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
193 block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
194 block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
195 block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
196
197 block_data[i].flag_def[0] = 0;
198 block_data[i].flag_use[0] = 0;
199 block_data[i].flag_livein[0] = 0;
200 block_data[i].flag_liveout[0] = 0;
201 }
202
203 setup_def_use();
204 compute_live_variables();
205 }
206
207 vec4_live_variables::~vec4_live_variables()
208 {
209 ralloc_free(mem_ctx);
210 }
211
212 #define MAX_INSTRUCTION (1 << 30)
213
214 /**
215 * Computes a conservative start/end of the live intervals for each virtual GRF.
216 *
217 * We could expose per-channel live intervals to the consumer based on the
218 * information we computed in vec4_live_variables, except that our only
219 * current user is virtual_grf_interferes(). So we instead union the
220 * per-channel ranges into a per-vgrf range for virtual_grf_start[] and
221 * virtual_grf_end[].
222 *
223 * We could potentially have virtual_grf_interferes() do the test per-channel,
224 * which would let some interesting register allocation occur (particularly on
225 * code-generated GLSL sequences from the Cg compiler which does register
226 * allocation at the GLSL level and thus reuses components of the variable
227 * with distinct lifetimes). But right now the complexity of doing so doesn't
228 * seem worth it, since having virtual_grf_interferes() be cheap is important
229 * for register allocation performance.
230 */
231 void
232 vec4_visitor::calculate_live_intervals()
233 {
234 if (this->live_intervals)
235 return;
236
237 int *start = ralloc_array(mem_ctx, int, this->alloc.total_size * 4);
238 int *end = ralloc_array(mem_ctx, int, this->alloc.total_size * 4);
239 ralloc_free(this->virtual_grf_start);
240 ralloc_free(this->virtual_grf_end);
241 this->virtual_grf_start = start;
242 this->virtual_grf_end = end;
243
244 for (unsigned i = 0; i < this->alloc.total_size * 4; i++) {
245 start[i] = MAX_INSTRUCTION;
246 end[i] = -1;
247 }
248
249 /* Start by setting up the intervals with no knowledge of control
250 * flow.
251 */
252 int ip = 0;
253 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
254 for (unsigned int i = 0; i < 3; i++) {
255 if (inst->src[i].file == GRF) {
256 for (unsigned j = 0; j < inst->regs_read(i); j++) {
257 for (int c = 0; c < 4; c++) {
258 const unsigned v =
259 var_from_reg(alloc, offset(inst->src[i], j), c);
260 start[v] = MIN2(start[v], ip);
261 end[v] = ip;
262 }
263 }
264 }
265 }
266
267 if (inst->dst.file == GRF) {
268 for (unsigned i = 0; i < inst->regs_written; i++) {
269 for (int c = 0; c < 4; c++) {
270 if (inst->dst.writemask & (1 << c)) {
271 const unsigned v =
272 var_from_reg(alloc, offset(inst->dst, i), c);
273 start[v] = MIN2(start[v], ip);
274 end[v] = ip;
275 }
276 }
277 }
278 }
279
280 ip++;
281 }
282
283 /* Now, extend those intervals using our analysis of control flow.
284 *
285 * The control flow-aware analysis was done at a channel level, while at
286 * this point we're distilling it down to vgrfs.
287 */
288 this->live_intervals = new(mem_ctx) vec4_live_variables(alloc, cfg);
289
290 foreach_block (block, cfg) {
291 struct block_data *bd = &live_intervals->block_data[block->num];
292
293 for (int i = 0; i < live_intervals->num_vars; i++) {
294 if (BITSET_TEST(bd->livein, i)) {
295 start[i] = MIN2(start[i], block->start_ip);
296 end[i] = MAX2(end[i], block->start_ip);
297 }
298
299 if (BITSET_TEST(bd->liveout, i)) {
300 start[i] = MIN2(start[i], block->end_ip);
301 end[i] = MAX2(end[i], block->end_ip);
302 }
303 }
304 }
305 }
306
307 void
308 vec4_visitor::invalidate_live_intervals()
309 {
310 ralloc_free(live_intervals);
311 live_intervals = NULL;
312 }
313
314 int
315 vec4_visitor::var_range_start(unsigned v, unsigned n) const
316 {
317 int start = INT_MAX;
318
319 for (unsigned i = 0; i < n; i++)
320 start = MIN2(start, virtual_grf_start[v + i]);
321
322 return start;
323 }
324
325 int
326 vec4_visitor::var_range_end(unsigned v, unsigned n) const
327 {
328 int end = INT_MIN;
329
330 for (unsigned i = 0; i < n; i++)
331 end = MAX2(end, virtual_grf_end[v + i]);
332
333 return end;
334 }
335
336 bool
337 vec4_visitor::virtual_grf_interferes(int a, int b)
338 {
339 return !((var_range_end(4 * alloc.offsets[a], 4 * alloc.sizes[a]) <=
340 var_range_start(4 * alloc.offsets[b], 4 * alloc.sizes[b])) ||
341 (var_range_end(4 * alloc.offsets[b], 4 * alloc.sizes[b]) <=
342 var_range_start(4 * alloc.offsets[a], 4 * alloc.sizes[a])));
343 }