i965/miptree: Replace is_lossless_compressed with mt->aux_usage checks
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "brw_state.h"
41 #include "compiler/nir/nir.h"
42
43 #include "utils.h"
44 #include "xmlpool.h"
45
46 #ifndef DRM_FORMAT_MOD_INVALID
47 #define DRM_FORMAT_MOD_INVALID ((1ULL<<56) - 1)
48 #endif
49
50 #ifndef DRM_FORMAT_MOD_LINEAR
51 #define DRM_FORMAT_MOD_LINEAR 0
52 #endif
53
54 static const __DRIconfigOptionsExtension brw_config_options = {
55 .base = { __DRI_CONFIG_OPTIONS, 1 },
56 .xml =
57 DRI_CONF_BEGIN
58 DRI_CONF_SECTION_PERFORMANCE
59 DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_ALWAYS_SYNC)
60 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
61 * DRI_CONF_BO_REUSE_ALL
62 */
63 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
64 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
65 DRI_CONF_ENUM(0, "Disable buffer object reuse")
66 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
67 DRI_CONF_DESC_END
68 DRI_CONF_OPT_END
69 DRI_CONF_SECTION_END
70
71 DRI_CONF_SECTION_QUALITY
72 DRI_CONF_FORCE_S3TC_ENABLE("false")
73
74 DRI_CONF_PRECISE_TRIG("false")
75
76 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
77 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
78 "given integer. If negative, then do not clamp.")
79 DRI_CONF_OPT_END
80 DRI_CONF_SECTION_END
81
82 DRI_CONF_SECTION_DEBUG
83 DRI_CONF_NO_RAST("false")
84 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
85 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
86 DRI_CONF_DISABLE_THROTTLING("false")
87 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
88 DRI_CONF_FORCE_GLSL_VERSION(0)
89 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
90 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
91 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
92 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
93 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
94 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
95 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
96
97 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
98 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
99 DRI_CONF_OPT_END
100 DRI_CONF_SECTION_END
101
102 DRI_CONF_SECTION_MISCELLANEOUS
103 DRI_CONF_GLSL_ZERO_INIT("false")
104 DRI_CONF_SECTION_END
105 DRI_CONF_END
106 };
107
108 #include "intel_batchbuffer.h"
109 #include "intel_buffers.h"
110 #include "brw_bufmgr.h"
111 #include "intel_fbo.h"
112 #include "intel_mipmap_tree.h"
113 #include "intel_screen.h"
114 #include "intel_tex.h"
115 #include "intel_image.h"
116
117 #include "brw_context.h"
118
119 #include "i915_drm.h"
120
121 /**
122 * For debugging purposes, this returns a time in seconds.
123 */
124 double
125 get_time(void)
126 {
127 struct timespec tp;
128
129 clock_gettime(CLOCK_MONOTONIC, &tp);
130
131 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
132 }
133
134 static const __DRItexBufferExtension intelTexBufferExtension = {
135 .base = { __DRI_TEX_BUFFER, 3 },
136
137 .setTexBuffer = intelSetTexBuffer,
138 .setTexBuffer2 = intelSetTexBuffer2,
139 .releaseTexBuffer = NULL,
140 };
141
142 static void
143 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
144 __DRIdrawable *dPriv,
145 unsigned flags,
146 enum __DRI2throttleReason reason)
147 {
148 struct brw_context *brw = cPriv->driverPrivate;
149
150 if (!brw)
151 return;
152
153 struct gl_context *ctx = &brw->ctx;
154
155 FLUSH_VERTICES(ctx, 0);
156
157 if (flags & __DRI2_FLUSH_DRAWABLE)
158 intel_resolve_for_dri2_flush(brw, dPriv);
159
160 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
161 brw->need_swap_throttle = true;
162 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
163 brw->need_flush_throttle = true;
164
165 intel_batchbuffer_flush(brw);
166 }
167
168 /**
169 * Provides compatibility with loaders that only support the older (version
170 * 1-3) flush interface.
171 *
172 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
173 */
174 static void
175 intel_dri2_flush(__DRIdrawable *drawable)
176 {
177 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
178 __DRI2_FLUSH_DRAWABLE,
179 __DRI2_THROTTLE_SWAPBUFFER);
180 }
181
182 static const struct __DRI2flushExtensionRec intelFlushExtension = {
183 .base = { __DRI2_FLUSH, 4 },
184
185 .flush = intel_dri2_flush,
186 .invalidate = dri2InvalidateDrawable,
187 .flush_with_flags = intel_dri2_flush_with_flags,
188 };
189
190 static struct intel_image_format intel_image_formats[] = {
191 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
192 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
193
194 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
195 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
196
197 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
198 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
199
200 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
201 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
202
203 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
204 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
205
206 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
207 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
208
209 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
210 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
211
212 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
213 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
214
215 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
216 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
217
218 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
219 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
220
221 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
222 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
223
224 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
225 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
226 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
227 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
228
229 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
230 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
231 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
232 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
233
234 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
235 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
236 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
237 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
238
239 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
240 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
241 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
242 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
243
244 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
245 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
246 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
247 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
248
249 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
250 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
251 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
252 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
253
254 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
255 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
256 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
257 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
258
259 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
260 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
261 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
262 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
263
264 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
265 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
266 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
267 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
268
269 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
270 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
271 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
272 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
273
274 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
275 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
276 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
277
278 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
279 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
280 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
281
282 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
283 * and treat them as planar buffers in the compositors.
284 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
285 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
286 * clusters and places pairs and places U into the G component and
287 * V into A. This lets the texture sampler interpolate the Y
288 * components correctly when sampling from plane 0, and interpolate
289 * U and V correctly when sampling from plane 1. */
290 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
291 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
292 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
293 { __DRI_IMAGE_FOURCC_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
294 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
295 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
296 };
297
298 static const struct {
299 uint32_t tiling;
300 uint64_t modifier;
301 unsigned since_gen;
302 } tiling_modifier_map[] = {
303 { .tiling = I915_TILING_NONE, .modifier = DRM_FORMAT_MOD_LINEAR,
304 .since_gen = 1 },
305 { .tiling = I915_TILING_X, .modifier = I915_FORMAT_MOD_X_TILED,
306 .since_gen = 1 },
307 { .tiling = I915_TILING_Y, .modifier = I915_FORMAT_MOD_Y_TILED,
308 .since_gen = 6 },
309 };
310
311 static bool
312 modifier_is_supported(uint64_t modifier)
313 {
314 int i;
315
316 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
317 if (tiling_modifier_map[i].modifier == modifier)
318 return true;
319 }
320
321 return false;
322 }
323
324 static uint64_t
325 tiling_to_modifier(uint32_t tiling)
326 {
327 int i;
328
329 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
330 if (tiling_modifier_map[i].tiling == tiling)
331 return tiling_modifier_map[i].modifier;
332 }
333
334 unreachable("tiling_to_modifier received unknown tiling mode");
335 }
336
337 static void
338 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
339 {
340 uint32_t tiling, swizzle;
341 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
342
343 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
344 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
345 func, image->offset);
346 }
347 }
348
349 static struct intel_image_format *
350 intel_image_format_lookup(int fourcc)
351 {
352 struct intel_image_format *f = NULL;
353
354 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
355 if (intel_image_formats[i].fourcc == fourcc) {
356 f = &intel_image_formats[i];
357 break;
358 }
359 }
360
361 return f;
362 }
363
364 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
365 {
366 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
367 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
368 *fourcc = intel_image_formats[i].fourcc;
369 return true;
370 }
371 }
372 return false;
373 }
374
375 static __DRIimage *
376 intel_allocate_image(struct intel_screen *screen, int dri_format,
377 void *loaderPrivate)
378 {
379 __DRIimage *image;
380
381 image = calloc(1, sizeof *image);
382 if (image == NULL)
383 return NULL;
384
385 image->screen = screen;
386 image->dri_format = dri_format;
387 image->offset = 0;
388
389 image->format = driImageFormatToGLFormat(dri_format);
390 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
391 image->format == MESA_FORMAT_NONE) {
392 free(image);
393 return NULL;
394 }
395
396 image->internal_format = _mesa_get_format_base_format(image->format);
397 image->data = loaderPrivate;
398
399 return image;
400 }
401
402 /**
403 * Sets up a DRIImage structure to point to a slice out of a miptree.
404 */
405 static void
406 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
407 struct intel_mipmap_tree *mt, GLuint level,
408 GLuint zoffset)
409 {
410 intel_miptree_make_shareable(brw, mt);
411
412 intel_miptree_check_level_layer(mt, level, zoffset);
413
414 image->width = minify(mt->physical_width0, level - mt->first_level);
415 image->height = minify(mt->physical_height0, level - mt->first_level);
416 image->pitch = mt->pitch;
417
418 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
419 &image->tile_x,
420 &image->tile_y);
421
422 brw_bo_unreference(image->bo);
423 image->bo = mt->bo;
424 brw_bo_reference(mt->bo);
425 }
426
427 static __DRIimage *
428 intel_create_image_from_name(__DRIscreen *dri_screen,
429 int width, int height, int format,
430 int name, int pitch, void *loaderPrivate)
431 {
432 struct intel_screen *screen = dri_screen->driverPrivate;
433 __DRIimage *image;
434 int cpp;
435
436 image = intel_allocate_image(screen, format, loaderPrivate);
437 if (image == NULL)
438 return NULL;
439
440 if (image->format == MESA_FORMAT_NONE)
441 cpp = 1;
442 else
443 cpp = _mesa_get_format_bytes(image->format);
444
445 image->width = width;
446 image->height = height;
447 image->pitch = pitch * cpp;
448 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
449 name);
450 if (!image->bo) {
451 free(image);
452 return NULL;
453 }
454 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
455
456 return image;
457 }
458
459 static __DRIimage *
460 intel_create_image_from_renderbuffer(__DRIcontext *context,
461 int renderbuffer, void *loaderPrivate)
462 {
463 __DRIimage *image;
464 struct brw_context *brw = context->driverPrivate;
465 struct gl_context *ctx = &brw->ctx;
466 struct gl_renderbuffer *rb;
467 struct intel_renderbuffer *irb;
468
469 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
470 if (!rb) {
471 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
472 return NULL;
473 }
474
475 irb = intel_renderbuffer(rb);
476 intel_miptree_make_shareable(brw, irb->mt);
477 image = calloc(1, sizeof *image);
478 if (image == NULL)
479 return NULL;
480
481 image->internal_format = rb->InternalFormat;
482 image->format = rb->Format;
483 image->modifier = tiling_to_modifier(irb->mt->tiling);
484 image->offset = 0;
485 image->data = loaderPrivate;
486 brw_bo_unreference(image->bo);
487 image->bo = irb->mt->bo;
488 brw_bo_reference(irb->mt->bo);
489 image->width = rb->Width;
490 image->height = rb->Height;
491 image->pitch = irb->mt->pitch;
492 image->dri_format = driGLFormatToImageFormat(image->format);
493 image->has_depthstencil = irb->mt->stencil_mt? true : false;
494
495 rb->NeedsFinishRenderTexture = true;
496 return image;
497 }
498
499 static __DRIimage *
500 intel_create_image_from_texture(__DRIcontext *context, int target,
501 unsigned texture, int zoffset,
502 int level,
503 unsigned *error,
504 void *loaderPrivate)
505 {
506 __DRIimage *image;
507 struct brw_context *brw = context->driverPrivate;
508 struct gl_texture_object *obj;
509 struct intel_texture_object *iobj;
510 GLuint face = 0;
511
512 obj = _mesa_lookup_texture(&brw->ctx, texture);
513 if (!obj || obj->Target != target) {
514 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
515 return NULL;
516 }
517
518 if (target == GL_TEXTURE_CUBE_MAP)
519 face = zoffset;
520
521 _mesa_test_texobj_completeness(&brw->ctx, obj);
522 iobj = intel_texture_object(obj);
523 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
524 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
525 return NULL;
526 }
527
528 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
529 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
530 return NULL;
531 }
532
533 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
534 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
535 return NULL;
536 }
537 image = calloc(1, sizeof *image);
538 if (image == NULL) {
539 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
540 return NULL;
541 }
542
543 image->internal_format = obj->Image[face][level]->InternalFormat;
544 image->format = obj->Image[face][level]->TexFormat;
545 image->modifier = tiling_to_modifier(iobj->mt->tiling);
546 image->data = loaderPrivate;
547 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
548 image->dri_format = driGLFormatToImageFormat(image->format);
549 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
550 if (image->dri_format == MESA_FORMAT_NONE) {
551 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
552 free(image);
553 return NULL;
554 }
555
556 *error = __DRI_IMAGE_ERROR_SUCCESS;
557 return image;
558 }
559
560 static void
561 intel_destroy_image(__DRIimage *image)
562 {
563 brw_bo_unreference(image->bo);
564 free(image);
565 }
566
567 enum modifier_priority {
568 MODIFIER_PRIORITY_INVALID = 0,
569 MODIFIER_PRIORITY_LINEAR,
570 MODIFIER_PRIORITY_X,
571 MODIFIER_PRIORITY_Y,
572 };
573
574 const uint64_t priority_to_modifier[] = {
575 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
576 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
577 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
578 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
579 };
580
581 static uint64_t
582 select_best_modifier(struct gen_device_info *devinfo,
583 const uint64_t *modifiers,
584 const unsigned count)
585 {
586 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
587
588 for (int i = 0; i < count; i++) {
589 switch (modifiers[i]) {
590 case I915_FORMAT_MOD_Y_TILED:
591 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
592 break;
593 case I915_FORMAT_MOD_X_TILED:
594 prio = MAX2(prio, MODIFIER_PRIORITY_X);
595 break;
596 case DRM_FORMAT_MOD_LINEAR:
597 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
598 break;
599 case DRM_FORMAT_MOD_INVALID:
600 default:
601 break;
602 }
603 }
604
605 return priority_to_modifier[prio];
606 }
607
608 static __DRIimage *
609 intel_create_image_common(__DRIscreen *dri_screen,
610 int width, int height, int format,
611 unsigned int use,
612 const uint64_t *modifiers,
613 unsigned count,
614 void *loaderPrivate)
615 {
616 __DRIimage *image;
617 struct intel_screen *screen = dri_screen->driverPrivate;
618 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
619 bool ok;
620
621 /* Callers of this may specify a modifier, or a dri usage, but not both. The
622 * newer modifier interface deprecates the older usage flags newer modifier
623 * interface deprecates the older usage flags.
624 */
625 assert(!(use && count));
626
627 if (use & __DRI_IMAGE_USE_CURSOR) {
628 if (width != 64 || height != 64)
629 return NULL;
630 modifier = DRM_FORMAT_MOD_LINEAR;
631 }
632
633 if (use & __DRI_IMAGE_USE_LINEAR)
634 modifier = DRM_FORMAT_MOD_LINEAR;
635
636 if (modifier == DRM_FORMAT_MOD_INVALID) {
637 if (modifiers) {
638 /* User requested specific modifiers */
639 modifier = select_best_modifier(&screen->devinfo, modifiers, count);
640 if (modifier == DRM_FORMAT_MOD_INVALID)
641 return NULL;
642 } else {
643 /* Historically, X-tiled was the default, and so lack of modifier means
644 * X-tiled.
645 */
646 modifier = I915_FORMAT_MOD_X_TILED;
647 }
648 }
649
650 image = intel_allocate_image(screen, format, loaderPrivate);
651 if (image == NULL)
652 return NULL;
653
654 const struct isl_drm_modifier_info *mod_info =
655 isl_drm_modifier_get_info(modifier);
656
657 struct isl_surf surf;
658 ok = isl_surf_init(&screen->isl_dev, &surf,
659 .dim = ISL_SURF_DIM_2D,
660 .format = brw_isl_format_for_mesa_format(image->format),
661 .width = width,
662 .height = height,
663 .depth = 1,
664 .levels = 1,
665 .array_len = 1,
666 .samples = 1,
667 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
668 ISL_SURF_USAGE_TEXTURE_BIT |
669 ISL_SURF_USAGE_STORAGE_BIT,
670 .tiling_flags = (1 << mod_info->tiling));
671 assert(ok);
672 if (!ok) {
673 free(image);
674 return NULL;
675 }
676
677 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image", surf.size,
678 isl_tiling_to_i915_tiling(mod_info->tiling),
679 surf.row_pitch, 0);
680 if (image->bo == NULL) {
681 free(image);
682 return NULL;
683 }
684 image->width = width;
685 image->height = height;
686 image->pitch = surf.row_pitch;
687 image->modifier = modifier;
688
689 return image;
690 }
691
692 static __DRIimage *
693 intel_create_image(__DRIscreen *dri_screen,
694 int width, int height, int format,
695 unsigned int use,
696 void *loaderPrivate)
697 {
698 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
699 loaderPrivate);
700 }
701
702 static __DRIimage *
703 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
704 int width, int height, int format,
705 const uint64_t *modifiers,
706 const unsigned count,
707 void *loaderPrivate)
708 {
709 return intel_create_image_common(dri_screen, width, height, format, 0,
710 modifiers, count, loaderPrivate);
711 }
712
713 static GLboolean
714 intel_query_image(__DRIimage *image, int attrib, int *value)
715 {
716 switch (attrib) {
717 case __DRI_IMAGE_ATTRIB_STRIDE:
718 *value = image->pitch;
719 return true;
720 case __DRI_IMAGE_ATTRIB_HANDLE:
721 *value = image->bo->gem_handle;
722 return true;
723 case __DRI_IMAGE_ATTRIB_NAME:
724 return !brw_bo_flink(image->bo, (uint32_t *) value);
725 case __DRI_IMAGE_ATTRIB_FORMAT:
726 *value = image->dri_format;
727 return true;
728 case __DRI_IMAGE_ATTRIB_WIDTH:
729 *value = image->width;
730 return true;
731 case __DRI_IMAGE_ATTRIB_HEIGHT:
732 *value = image->height;
733 return true;
734 case __DRI_IMAGE_ATTRIB_COMPONENTS:
735 if (image->planar_format == NULL)
736 return false;
737 *value = image->planar_format->components;
738 return true;
739 case __DRI_IMAGE_ATTRIB_FD:
740 return !brw_bo_gem_export_to_prime(image->bo, value);
741 case __DRI_IMAGE_ATTRIB_FOURCC:
742 return intel_lookup_fourcc(image->dri_format, value);
743 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
744 *value = 1;
745 return true;
746 case __DRI_IMAGE_ATTRIB_OFFSET:
747 *value = image->offset;
748 return true;
749 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
750 *value = (image->modifier & 0xffffffff);
751 return true;
752 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
753 *value = ((image->modifier >> 32) & 0xffffffff);
754 return true;
755
756 default:
757 return false;
758 }
759 }
760
761 static __DRIimage *
762 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
763 {
764 __DRIimage *image;
765
766 image = calloc(1, sizeof *image);
767 if (image == NULL)
768 return NULL;
769
770 brw_bo_reference(orig_image->bo);
771 image->bo = orig_image->bo;
772 image->internal_format = orig_image->internal_format;
773 image->planar_format = orig_image->planar_format;
774 image->dri_format = orig_image->dri_format;
775 image->format = orig_image->format;
776 image->modifier = orig_image->modifier;
777 image->offset = orig_image->offset;
778 image->width = orig_image->width;
779 image->height = orig_image->height;
780 image->pitch = orig_image->pitch;
781 image->tile_x = orig_image->tile_x;
782 image->tile_y = orig_image->tile_y;
783 image->has_depthstencil = orig_image->has_depthstencil;
784 image->data = loaderPrivate;
785
786 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
787 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
788
789 return image;
790 }
791
792 static GLboolean
793 intel_validate_usage(__DRIimage *image, unsigned int use)
794 {
795 if (use & __DRI_IMAGE_USE_CURSOR) {
796 if (image->width != 64 || image->height != 64)
797 return GL_FALSE;
798 }
799
800 return GL_TRUE;
801 }
802
803 static __DRIimage *
804 intel_create_image_from_names(__DRIscreen *dri_screen,
805 int width, int height, int fourcc,
806 int *names, int num_names,
807 int *strides, int *offsets,
808 void *loaderPrivate)
809 {
810 struct intel_image_format *f = NULL;
811 __DRIimage *image;
812 int i, index;
813
814 if (dri_screen == NULL || names == NULL || num_names != 1)
815 return NULL;
816
817 f = intel_image_format_lookup(fourcc);
818 if (f == NULL)
819 return NULL;
820
821 image = intel_create_image_from_name(dri_screen, width, height,
822 __DRI_IMAGE_FORMAT_NONE,
823 names[0], strides[0],
824 loaderPrivate);
825
826 if (image == NULL)
827 return NULL;
828
829 image->planar_format = f;
830 for (i = 0; i < f->nplanes; i++) {
831 index = f->planes[i].buffer_index;
832 image->offsets[index] = offsets[index];
833 image->strides[index] = strides[index];
834 }
835
836 return image;
837 }
838
839 static __DRIimage *
840 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
841 int width, int height, int fourcc,
842 uint64_t modifier, int *fds, int num_fds,
843 int *strides, int *offsets,
844 void *loaderPrivate)
845 {
846 struct intel_screen *screen = dri_screen->driverPrivate;
847 struct intel_image_format *f;
848 __DRIimage *image;
849 int i, index;
850 bool ok;
851
852 if (fds == NULL || num_fds < 1)
853 return NULL;
854
855 f = intel_image_format_lookup(fourcc);
856 if (f == NULL)
857 return NULL;
858
859 if (modifier != DRM_FORMAT_MOD_INVALID && !modifier_is_supported(modifier))
860 return NULL;
861
862 if (f->nplanes == 1)
863 image = intel_allocate_image(screen, f->planes[0].dri_format,
864 loaderPrivate);
865 else
866 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
867 loaderPrivate);
868
869 if (image == NULL)
870 return NULL;
871
872 image->width = width;
873 image->height = height;
874 image->pitch = strides[0];
875
876 image->planar_format = f;
877
878 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
879 if (image->bo == NULL) {
880 free(image);
881 return NULL;
882 }
883
884 /* We only support all planes from the same bo.
885 * brw_bo_gem_create_from_prime() should return the same pointer for all
886 * fds received here */
887 for (i = 1; i < num_fds; i++) {
888 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
889 brw_bo_unreference(aux);
890 if (aux != image->bo) {
891 brw_bo_unreference(image->bo);
892 free(image);
893 return NULL;
894 }
895 }
896
897 if (modifier != DRM_FORMAT_MOD_INVALID)
898 image->modifier = modifier;
899 else
900 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
901
902 int size = 0;
903 for (i = 0; i < f->nplanes; i++) {
904 index = f->planes[i].buffer_index;
905 image->offsets[index] = offsets[index];
906 image->strides[index] = strides[index];
907
908 const struct isl_drm_modifier_info *mod_info =
909 isl_drm_modifier_get_info(image->modifier);
910
911 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
912
913 struct isl_surf surf;
914 ok = isl_surf_init(&screen->isl_dev, &surf,
915 .dim = ISL_SURF_DIM_2D,
916 .format = brw_isl_format_for_mesa_format(format),
917 .width = image->width >> f->planes[i].width_shift,
918 .height = image->height >> f->planes[i].height_shift,
919 .depth = 1,
920 .levels = 1,
921 .array_len = 1,
922 .samples = 1,
923 .row_pitch = strides[index],
924 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
925 ISL_SURF_USAGE_TEXTURE_BIT |
926 ISL_SURF_USAGE_STORAGE_BIT,
927 .tiling_flags = (1 << mod_info->tiling));
928 if (!ok) {
929 brw_bo_unreference(image->bo);
930 free(image);
931 return NULL;
932 }
933
934 const int end = offsets[index] + surf.size;
935 if (size < end)
936 size = end;
937 }
938
939 /* Check that the requested image actually fits within the BO. 'size'
940 * is already relative to the offsets, so we don't need to add that. */
941 if (image->bo->size == 0) {
942 image->bo->size = size;
943 } else if (size > image->bo->size) {
944 brw_bo_unreference(image->bo);
945 free(image);
946 return NULL;
947 }
948
949 if (f->nplanes == 1) {
950 image->offset = image->offsets[0];
951 intel_image_warn_if_unaligned(image, __func__);
952 }
953
954 return image;
955 }
956
957 static __DRIimage *
958 intel_create_image_from_fds(__DRIscreen *dri_screen,
959 int width, int height, int fourcc,
960 int *fds, int num_fds, int *strides, int *offsets,
961 void *loaderPrivate)
962 {
963 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
964 DRM_FORMAT_MOD_INVALID,
965 fds, num_fds, strides, offsets,
966 loaderPrivate);
967 }
968
969 static __DRIimage *
970 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
971 int width, int height,
972 int fourcc, uint64_t modifier,
973 int *fds, int num_fds,
974 int *strides, int *offsets,
975 enum __DRIYUVColorSpace yuv_color_space,
976 enum __DRISampleRange sample_range,
977 enum __DRIChromaSiting horizontal_siting,
978 enum __DRIChromaSiting vertical_siting,
979 unsigned *error,
980 void *loaderPrivate)
981 {
982 __DRIimage *image;
983 struct intel_image_format *f = intel_image_format_lookup(fourcc);
984
985 if (!f) {
986 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
987 return NULL;
988 }
989
990 image = intel_create_image_from_fds_common(dri_screen, width, height,
991 fourcc, modifier,
992 fds, num_fds, strides, offsets,
993 loaderPrivate);
994
995 /*
996 * Invalid parameters and any inconsistencies between are assumed to be
997 * checked by the caller. Therefore besides unsupported formats one can fail
998 * only in allocation.
999 */
1000 if (!image) {
1001 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1002 return NULL;
1003 }
1004
1005 image->dma_buf_imported = true;
1006 image->yuv_color_space = yuv_color_space;
1007 image->sample_range = sample_range;
1008 image->horizontal_siting = horizontal_siting;
1009 image->vertical_siting = vertical_siting;
1010
1011 *error = __DRI_IMAGE_ERROR_SUCCESS;
1012 return image;
1013 }
1014
1015 static __DRIimage *
1016 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1017 int width, int height, int fourcc,
1018 int *fds, int num_fds,
1019 int *strides, int *offsets,
1020 enum __DRIYUVColorSpace yuv_color_space,
1021 enum __DRISampleRange sample_range,
1022 enum __DRIChromaSiting horizontal_siting,
1023 enum __DRIChromaSiting vertical_siting,
1024 unsigned *error,
1025 void *loaderPrivate)
1026 {
1027 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1028 fourcc, DRM_FORMAT_MOD_INVALID,
1029 fds, num_fds, strides, offsets,
1030 yuv_color_space,
1031 sample_range,
1032 horizontal_siting,
1033 vertical_siting,
1034 error,
1035 loaderPrivate);
1036 }
1037
1038 static GLboolean
1039 intel_query_dma_buf_formats(__DRIscreen *screen, int max,
1040 int *formats, int *count)
1041 {
1042 int i, j = 0;
1043
1044 if (max == 0) {
1045 *count = ARRAY_SIZE(intel_image_formats) - 1; /* not SARGB */
1046 return true;
1047 }
1048
1049 for (i = 0; i < (ARRAY_SIZE(intel_image_formats)) && j < max; i++) {
1050 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888)
1051 continue;
1052 formats[j++] = intel_image_formats[i].fourcc;
1053 }
1054
1055 *count = j;
1056 return true;
1057 }
1058
1059 static GLboolean
1060 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1061 uint64_t *modifiers,
1062 unsigned int *external_only,
1063 int *count)
1064 {
1065 struct intel_screen *screen = _screen->driverPrivate;
1066 struct intel_image_format *f;
1067 int num_mods = 0, i;
1068
1069 f = intel_image_format_lookup(fourcc);
1070 if (f == NULL)
1071 return false;
1072
1073 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
1074 if (screen->devinfo.gen < tiling_modifier_map[i].since_gen)
1075 continue;
1076
1077 num_mods++;
1078 if (max == 0)
1079 continue;
1080
1081 modifiers[num_mods - 1] = tiling_modifier_map[i].modifier;
1082 if (num_mods >= max)
1083 break;
1084 }
1085
1086 if (external_only != NULL) {
1087 for (i = 0; i < num_mods && i < max; i++) {
1088 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1089 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1090 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV) {
1091 external_only[i] = GL_TRUE;
1092 }
1093 else {
1094 external_only[i] = GL_FALSE;
1095 }
1096 }
1097 }
1098
1099 *count = num_mods;
1100 return true;
1101 }
1102
1103 static __DRIimage *
1104 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1105 {
1106 int width, height, offset, stride, dri_format, index;
1107 struct intel_image_format *f;
1108 __DRIimage *image;
1109
1110 if (parent == NULL || parent->planar_format == NULL)
1111 return NULL;
1112
1113 f = parent->planar_format;
1114
1115 if (plane >= f->nplanes)
1116 return NULL;
1117
1118 width = parent->width >> f->planes[plane].width_shift;
1119 height = parent->height >> f->planes[plane].height_shift;
1120 dri_format = f->planes[plane].dri_format;
1121 index = f->planes[plane].buffer_index;
1122 offset = parent->offsets[index];
1123 stride = parent->strides[index];
1124
1125 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1126 if (image == NULL)
1127 return NULL;
1128
1129 if (offset + height * stride > parent->bo->size) {
1130 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
1131 free(image);
1132 return NULL;
1133 }
1134
1135 image->bo = parent->bo;
1136 brw_bo_reference(parent->bo);
1137 image->modifier = parent->modifier;
1138
1139 image->width = width;
1140 image->height = height;
1141 image->pitch = stride;
1142 image->offset = offset;
1143
1144 intel_image_warn_if_unaligned(image, __func__);
1145
1146 return image;
1147 }
1148
1149 static const __DRIimageExtension intelImageExtension = {
1150 .base = { __DRI_IMAGE, 15 },
1151
1152 .createImageFromName = intel_create_image_from_name,
1153 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1154 .destroyImage = intel_destroy_image,
1155 .createImage = intel_create_image,
1156 .queryImage = intel_query_image,
1157 .dupImage = intel_dup_image,
1158 .validateUsage = intel_validate_usage,
1159 .createImageFromNames = intel_create_image_from_names,
1160 .fromPlanar = intel_from_planar,
1161 .createImageFromTexture = intel_create_image_from_texture,
1162 .createImageFromFds = intel_create_image_from_fds,
1163 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1164 .blitImage = NULL,
1165 .getCapabilities = NULL,
1166 .mapImage = NULL,
1167 .unmapImage = NULL,
1168 .createImageWithModifiers = intel_create_image_with_modifiers,
1169 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1170 .queryDmaBufFormats = intel_query_dma_buf_formats,
1171 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1172 };
1173
1174 static uint64_t
1175 get_aperture_size(int fd)
1176 {
1177 struct drm_i915_gem_get_aperture aperture;
1178
1179 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1180 return 0;
1181
1182 return aperture.aper_size;
1183 }
1184
1185 static int
1186 brw_query_renderer_integer(__DRIscreen *dri_screen,
1187 int param, unsigned int *value)
1188 {
1189 const struct intel_screen *const screen =
1190 (struct intel_screen *) dri_screen->driverPrivate;
1191
1192 switch (param) {
1193 case __DRI2_RENDERER_VENDOR_ID:
1194 value[0] = 0x8086;
1195 return 0;
1196 case __DRI2_RENDERER_DEVICE_ID:
1197 value[0] = screen->deviceID;
1198 return 0;
1199 case __DRI2_RENDERER_ACCELERATED:
1200 value[0] = 1;
1201 return 0;
1202 case __DRI2_RENDERER_VIDEO_MEMORY: {
1203 /* Once a batch uses more than 75% of the maximum mappable size, we
1204 * assume that there's some fragmentation, and we start doing extra
1205 * flushing, etc. That's the big cliff apps will care about.
1206 */
1207 const unsigned gpu_mappable_megabytes =
1208 screen->aperture_threshold / (1024 * 1024);
1209
1210 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1211 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1212
1213 if (system_memory_pages <= 0 || system_page_size <= 0)
1214 return -1;
1215
1216 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1217 * (uint64_t) system_page_size;
1218
1219 const unsigned system_memory_megabytes =
1220 (unsigned) (system_memory_bytes / (1024 * 1024));
1221
1222 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1223 return 0;
1224 }
1225 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1226 value[0] = 1;
1227 return 0;
1228 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1229 value[0] = 1;
1230 return 0;
1231 default:
1232 return driQueryRendererIntegerCommon(dri_screen, param, value);
1233 }
1234
1235 return -1;
1236 }
1237
1238 static int
1239 brw_query_renderer_string(__DRIscreen *dri_screen,
1240 int param, const char **value)
1241 {
1242 const struct intel_screen *screen =
1243 (struct intel_screen *) dri_screen->driverPrivate;
1244
1245 switch (param) {
1246 case __DRI2_RENDERER_VENDOR_ID:
1247 value[0] = brw_vendor_string;
1248 return 0;
1249 case __DRI2_RENDERER_DEVICE_ID:
1250 value[0] = brw_get_renderer_string(screen);
1251 return 0;
1252 default:
1253 break;
1254 }
1255
1256 return -1;
1257 }
1258
1259 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1260 .base = { __DRI2_RENDERER_QUERY, 1 },
1261
1262 .queryInteger = brw_query_renderer_integer,
1263 .queryString = brw_query_renderer_string
1264 };
1265
1266 static const __DRIrobustnessExtension dri2Robustness = {
1267 .base = { __DRI2_ROBUSTNESS, 1 }
1268 };
1269
1270 static const __DRIextension *screenExtensions[] = {
1271 &intelTexBufferExtension.base,
1272 &intelFenceExtension.base,
1273 &intelFlushExtension.base,
1274 &intelImageExtension.base,
1275 &intelRendererQueryExtension.base,
1276 &dri2ConfigQueryExtension.base,
1277 &dri2NoErrorExtension.base,
1278 NULL
1279 };
1280
1281 static const __DRIextension *intelRobustScreenExtensions[] = {
1282 &intelTexBufferExtension.base,
1283 &intelFenceExtension.base,
1284 &intelFlushExtension.base,
1285 &intelImageExtension.base,
1286 &intelRendererQueryExtension.base,
1287 &dri2ConfigQueryExtension.base,
1288 &dri2Robustness.base,
1289 &dri2NoErrorExtension.base,
1290 NULL
1291 };
1292
1293 static int
1294 intel_get_param(struct intel_screen *screen, int param, int *value)
1295 {
1296 int ret = 0;
1297 struct drm_i915_getparam gp;
1298
1299 memset(&gp, 0, sizeof(gp));
1300 gp.param = param;
1301 gp.value = value;
1302
1303 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1304 ret = -errno;
1305 if (ret != -EINVAL)
1306 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1307 }
1308
1309 return ret;
1310 }
1311
1312 static bool
1313 intel_get_boolean(struct intel_screen *screen, int param)
1314 {
1315 int value = 0;
1316 return (intel_get_param(screen, param, &value) == 0) && value;
1317 }
1318
1319 static int
1320 intel_get_integer(struct intel_screen *screen, int param)
1321 {
1322 int value = -1;
1323
1324 if (intel_get_param(screen, param, &value) == 0)
1325 return value;
1326
1327 return -1;
1328 }
1329
1330 static void
1331 intelDestroyScreen(__DRIscreen * sPriv)
1332 {
1333 struct intel_screen *screen = sPriv->driverPrivate;
1334
1335 brw_bufmgr_destroy(screen->bufmgr);
1336 driDestroyOptionInfo(&screen->optionCache);
1337
1338 ralloc_free(screen);
1339 sPriv->driverPrivate = NULL;
1340 }
1341
1342
1343 /**
1344 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1345 *
1346 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1347 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1348 * this does not allocate GPU memory.
1349 */
1350 static GLboolean
1351 intelCreateBuffer(__DRIscreen *dri_screen,
1352 __DRIdrawable * driDrawPriv,
1353 const struct gl_config * mesaVis, GLboolean isPixmap)
1354 {
1355 struct intel_renderbuffer *rb;
1356 struct intel_screen *screen = (struct intel_screen *)
1357 dri_screen->driverPrivate;
1358 mesa_format rgbFormat;
1359 unsigned num_samples =
1360 intel_quantize_num_samples(screen, mesaVis->samples);
1361
1362 if (isPixmap)
1363 return false;
1364
1365 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1366 if (!fb)
1367 return false;
1368
1369 _mesa_initialize_window_framebuffer(fb, mesaVis);
1370
1371 if (screen->winsys_msaa_samples_override != -1) {
1372 num_samples = screen->winsys_msaa_samples_override;
1373 fb->Visual.samples = num_samples;
1374 }
1375
1376 if (mesaVis->redBits == 5) {
1377 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1378 : MESA_FORMAT_B5G6R5_UNORM;
1379 } else if (mesaVis->sRGBCapable) {
1380 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1381 : MESA_FORMAT_B8G8R8A8_SRGB;
1382 } else if (mesaVis->alphaBits == 0) {
1383 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1384 : MESA_FORMAT_B8G8R8X8_UNORM;
1385 } else {
1386 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1387 : MESA_FORMAT_B8G8R8A8_SRGB;
1388 fb->Visual.sRGBCapable = true;
1389 }
1390
1391 /* setup the hardware-based renderbuffers */
1392 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1393 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1394
1395 if (mesaVis->doubleBufferMode) {
1396 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1397 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1398 }
1399
1400 /*
1401 * Assert here that the gl_config has an expected depth/stencil bit
1402 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1403 * which constructs the advertised configs.)
1404 */
1405 if (mesaVis->depthBits == 24) {
1406 assert(mesaVis->stencilBits == 8);
1407
1408 if (screen->devinfo.has_hiz_and_separate_stencil) {
1409 rb = intel_create_private_renderbuffer(screen,
1410 MESA_FORMAT_Z24_UNORM_X8_UINT,
1411 num_samples);
1412 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1413 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1414 num_samples);
1415 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1416 } else {
1417 /*
1418 * Use combined depth/stencil. Note that the renderbuffer is
1419 * attached to two attachment points.
1420 */
1421 rb = intel_create_private_renderbuffer(screen,
1422 MESA_FORMAT_Z24_UNORM_S8_UINT,
1423 num_samples);
1424 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1425 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1426 }
1427 }
1428 else if (mesaVis->depthBits == 16) {
1429 assert(mesaVis->stencilBits == 0);
1430 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1431 num_samples);
1432 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1433 }
1434 else {
1435 assert(mesaVis->depthBits == 0);
1436 assert(mesaVis->stencilBits == 0);
1437 }
1438
1439 /* now add any/all software-based renderbuffers we may need */
1440 _swrast_add_soft_renderbuffers(fb,
1441 false, /* never sw color */
1442 false, /* never sw depth */
1443 false, /* never sw stencil */
1444 mesaVis->accumRedBits > 0,
1445 false, /* never sw alpha */
1446 false /* never sw aux */ );
1447 driDrawPriv->driverPrivate = fb;
1448
1449 return true;
1450 }
1451
1452 static void
1453 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1454 {
1455 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1456
1457 _mesa_reference_framebuffer(&fb, NULL);
1458 }
1459
1460 static void
1461 intel_detect_sseu(struct intel_screen *screen)
1462 {
1463 assert(screen->devinfo.gen >= 8);
1464 int ret;
1465
1466 screen->subslice_total = -1;
1467 screen->eu_total = -1;
1468
1469 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1470 &screen->subslice_total);
1471 if (ret < 0 && ret != -EINVAL)
1472 goto err_out;
1473
1474 ret = intel_get_param(screen,
1475 I915_PARAM_EU_TOTAL, &screen->eu_total);
1476 if (ret < 0 && ret != -EINVAL)
1477 goto err_out;
1478
1479 /* Without this information, we cannot get the right Braswell brandstrings,
1480 * and we have to use conservative numbers for GPGPU on many platforms, but
1481 * otherwise, things will just work.
1482 */
1483 if (screen->subslice_total < 1 || screen->eu_total < 1)
1484 _mesa_warning(NULL,
1485 "Kernel 4.1 required to properly query GPU properties.\n");
1486
1487 return;
1488
1489 err_out:
1490 screen->subslice_total = -1;
1491 screen->eu_total = -1;
1492 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1493 }
1494
1495 static bool
1496 intel_init_bufmgr(struct intel_screen *screen)
1497 {
1498 __DRIscreen *dri_screen = screen->driScrnPriv;
1499
1500 if (getenv("INTEL_NO_HW") != NULL)
1501 screen->no_hw = true;
1502
1503 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd, BATCH_SZ);
1504 if (screen->bufmgr == NULL) {
1505 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1506 __func__, __LINE__);
1507 return false;
1508 }
1509
1510 if (!intel_get_boolean(screen, I915_PARAM_HAS_WAIT_TIMEOUT)) {
1511 fprintf(stderr, "[%s: %u] Kernel 3.6 required.\n", __func__, __LINE__);
1512 return false;
1513 }
1514
1515 return true;
1516 }
1517
1518 static bool
1519 intel_detect_swizzling(struct intel_screen *screen)
1520 {
1521 struct brw_bo *buffer;
1522 unsigned flags = 0;
1523 uint32_t aligned_pitch;
1524 uint32_t tiling = I915_TILING_X;
1525 uint32_t swizzle_mode = 0;
1526
1527 buffer = brw_bo_alloc_tiled_2d(screen->bufmgr, "swizzle test",
1528 64, 64, 4, tiling, &aligned_pitch, flags);
1529 if (buffer == NULL)
1530 return false;
1531
1532 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1533 brw_bo_unreference(buffer);
1534
1535 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1536 return false;
1537 else
1538 return true;
1539 }
1540
1541 static int
1542 intel_detect_timestamp(struct intel_screen *screen)
1543 {
1544 uint64_t dummy = 0, last = 0;
1545 int upper, lower, loops;
1546
1547 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1548 * TIMESTAMP register being shifted and the low 32bits always zero.
1549 *
1550 * More recent kernels offer an interface to read the full 36bits
1551 * everywhere.
1552 */
1553 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1554 return 3;
1555
1556 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1557 * upper 32bits for a rapidly changing timestamp.
1558 */
1559 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1560 return 0;
1561
1562 upper = lower = 0;
1563 for (loops = 0; loops < 10; loops++) {
1564 /* The TIMESTAMP should change every 80ns, so several round trips
1565 * through the kernel should be enough to advance it.
1566 */
1567 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1568 return 0;
1569
1570 upper += (dummy >> 32) != (last >> 32);
1571 if (upper > 1) /* beware 32bit counter overflow */
1572 return 2; /* upper dword holds the low 32bits of the timestamp */
1573
1574 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1575 if (lower > 1)
1576 return 1; /* timestamp is unshifted */
1577
1578 last = dummy;
1579 }
1580
1581 /* No advancement? No timestamp! */
1582 return 0;
1583 }
1584
1585 /**
1586 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1587 *
1588 * Some combinations of hardware and kernel versions allow this feature,
1589 * while others don't. Instead of trying to enumerate every case, just
1590 * try and write a register and see if works.
1591 */
1592 static bool
1593 intel_detect_pipelined_register(struct intel_screen *screen,
1594 int reg, uint32_t expected_value, bool reset)
1595 {
1596 if (screen->no_hw)
1597 return false;
1598
1599 struct brw_bo *results, *bo;
1600 uint32_t *batch;
1601 uint32_t offset = 0;
1602 void *map;
1603 bool success = false;
1604
1605 /* Create a zero'ed temporary buffer for reading our results */
1606 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1607 if (results == NULL)
1608 goto err;
1609
1610 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1611 if (bo == NULL)
1612 goto err_results;
1613
1614 map = brw_bo_map(NULL, bo, MAP_WRITE);
1615 if (!map)
1616 goto err_batch;
1617
1618 batch = map;
1619
1620 /* Write the register. */
1621 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1622 *batch++ = reg;
1623 *batch++ = expected_value;
1624
1625 /* Save the register's value back to the buffer. */
1626 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1627 *batch++ = reg;
1628 struct drm_i915_gem_relocation_entry reloc = {
1629 .offset = (char *) batch - (char *) map,
1630 .delta = offset * sizeof(uint32_t),
1631 .target_handle = results->gem_handle,
1632 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1633 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1634 };
1635 *batch++ = reloc.presumed_offset + reloc.delta;
1636
1637 /* And afterwards clear the register */
1638 if (reset) {
1639 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1640 *batch++ = reg;
1641 *batch++ = 0;
1642 }
1643
1644 *batch++ = MI_BATCH_BUFFER_END;
1645
1646 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1647 {
1648 .handle = results->gem_handle,
1649 },
1650 {
1651 .handle = bo->gem_handle,
1652 .relocation_count = 1,
1653 .relocs_ptr = (uintptr_t) &reloc,
1654 }
1655 };
1656
1657 struct drm_i915_gem_execbuffer2 execbuf = {
1658 .buffers_ptr = (uintptr_t) exec_objects,
1659 .buffer_count = 2,
1660 .batch_len = ALIGN((char *) batch - (char *) map, 8),
1661 .flags = I915_EXEC_RENDER,
1662 };
1663
1664 /* Don't bother with error checking - if the execbuf fails, the
1665 * value won't be written and we'll just report that there's no access.
1666 */
1667 __DRIscreen *dri_screen = screen->driScrnPriv;
1668 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1669
1670 /* Check whether the value got written. */
1671 void *results_map = brw_bo_map(NULL, results, MAP_READ);
1672 if (results_map) {
1673 success = *((uint32_t *)results_map + offset) == expected_value;
1674 brw_bo_unmap(results);
1675 }
1676
1677 err_batch:
1678 brw_bo_unreference(bo);
1679 err_results:
1680 brw_bo_unreference(results);
1681 err:
1682 return success;
1683 }
1684
1685 static bool
1686 intel_detect_pipelined_so(struct intel_screen *screen)
1687 {
1688 const struct gen_device_info *devinfo = &screen->devinfo;
1689
1690 /* Supposedly, Broadwell just works. */
1691 if (devinfo->gen >= 8)
1692 return true;
1693
1694 if (devinfo->gen <= 6)
1695 return false;
1696
1697 /* See the big explanation about command parser versions below */
1698 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1699 return true;
1700
1701 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1702 * statistics registers), and we already reset it to zero before using it.
1703 */
1704 return intel_detect_pipelined_register(screen,
1705 GEN7_SO_WRITE_OFFSET(0),
1706 0x1337d0d0,
1707 false);
1708 }
1709
1710 /**
1711 * Return array of MSAA modes supported by the hardware. The array is
1712 * zero-terminated and sorted in decreasing order.
1713 */
1714 const int*
1715 intel_supported_msaa_modes(const struct intel_screen *screen)
1716 {
1717 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1718 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1719 static const int gen7_modes[] = {8, 4, 0, -1};
1720 static const int gen6_modes[] = {4, 0, -1};
1721 static const int gen4_modes[] = {0, -1};
1722
1723 if (screen->devinfo.gen >= 9) {
1724 return gen9_modes;
1725 } else if (screen->devinfo.gen >= 8) {
1726 return gen8_modes;
1727 } else if (screen->devinfo.gen >= 7) {
1728 return gen7_modes;
1729 } else if (screen->devinfo.gen == 6) {
1730 return gen6_modes;
1731 } else {
1732 return gen4_modes;
1733 }
1734 }
1735
1736 static __DRIconfig**
1737 intel_screen_make_configs(__DRIscreen *dri_screen)
1738 {
1739 static const mesa_format formats[] = {
1740 MESA_FORMAT_B5G6R5_UNORM,
1741 MESA_FORMAT_B8G8R8A8_UNORM,
1742 MESA_FORMAT_B8G8R8X8_UNORM,
1743
1744 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
1745 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
1746 * server may disagree on which format the GLXFBConfig represents,
1747 * resulting in swapped color channels.
1748 *
1749 * The problem, as of 2017-05-30:
1750 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
1751 * order and chooses the first __DRIconfig with the expected channel
1752 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
1753 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
1754 *
1755 * EGL does not suffer from this problem. It correctly compares the
1756 * channel masks when matching EGLConfig to __DRIconfig.
1757 */
1758
1759 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
1760 MESA_FORMAT_R8G8B8A8_UNORM,
1761
1762 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
1763 MESA_FORMAT_R8G8B8X8_UNORM,
1764 };
1765
1766 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1767 static const GLenum back_buffer_modes[] = {
1768 GLX_SWAP_UNDEFINED_OML, GLX_NONE,
1769 };
1770
1771 static const uint8_t singlesample_samples[1] = {0};
1772 static const uint8_t multisample_samples[2] = {4, 8};
1773
1774 struct intel_screen *screen = dri_screen->driverPrivate;
1775 const struct gen_device_info *devinfo = &screen->devinfo;
1776 uint8_t depth_bits[4], stencil_bits[4];
1777 __DRIconfig **configs = NULL;
1778
1779 /* Generate singlesample configs without accumulation buffer. */
1780 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1781 __DRIconfig **new_configs;
1782 int num_depth_stencil_bits = 2;
1783
1784 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1785 * buffer that has a different number of bits per pixel than the color
1786 * buffer, gen >= 6 supports this.
1787 */
1788 depth_bits[0] = 0;
1789 stencil_bits[0] = 0;
1790
1791 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1792 depth_bits[1] = 16;
1793 stencil_bits[1] = 0;
1794 if (devinfo->gen >= 6) {
1795 depth_bits[2] = 24;
1796 stencil_bits[2] = 8;
1797 num_depth_stencil_bits = 3;
1798 }
1799 } else {
1800 depth_bits[1] = 24;
1801 stencil_bits[1] = 8;
1802 }
1803
1804 new_configs = driCreateConfigs(formats[i],
1805 depth_bits,
1806 stencil_bits,
1807 num_depth_stencil_bits,
1808 back_buffer_modes, 2,
1809 singlesample_samples, 1,
1810 false, false);
1811 configs = driConcatConfigs(configs, new_configs);
1812 }
1813
1814 /* Generate the minimum possible set of configs that include an
1815 * accumulation buffer.
1816 */
1817 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1818 __DRIconfig **new_configs;
1819
1820 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1821 depth_bits[0] = 16;
1822 stencil_bits[0] = 0;
1823 } else {
1824 depth_bits[0] = 24;
1825 stencil_bits[0] = 8;
1826 }
1827
1828 new_configs = driCreateConfigs(formats[i],
1829 depth_bits, stencil_bits, 1,
1830 back_buffer_modes, 1,
1831 singlesample_samples, 1,
1832 true, false);
1833 configs = driConcatConfigs(configs, new_configs);
1834 }
1835
1836 /* Generate multisample configs.
1837 *
1838 * This loop breaks early, and hence is a no-op, on gen < 6.
1839 *
1840 * Multisample configs must follow the singlesample configs in order to
1841 * work around an X server bug present in 1.12. The X server chooses to
1842 * associate the first listed RGBA888-Z24S8 config, regardless of its
1843 * sample count, with the 32-bit depth visual used for compositing.
1844 *
1845 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
1846 * supported. Singlebuffer configs are not supported because no one wants
1847 * them.
1848 */
1849 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1850 if (devinfo->gen < 6)
1851 break;
1852
1853 __DRIconfig **new_configs;
1854 const int num_depth_stencil_bits = 2;
1855 int num_msaa_modes = 0;
1856
1857 depth_bits[0] = 0;
1858 stencil_bits[0] = 0;
1859
1860 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1861 depth_bits[1] = 16;
1862 stencil_bits[1] = 0;
1863 } else {
1864 depth_bits[1] = 24;
1865 stencil_bits[1] = 8;
1866 }
1867
1868 if (devinfo->gen >= 7)
1869 num_msaa_modes = 2;
1870 else if (devinfo->gen == 6)
1871 num_msaa_modes = 1;
1872
1873 new_configs = driCreateConfigs(formats[i],
1874 depth_bits,
1875 stencil_bits,
1876 num_depth_stencil_bits,
1877 back_buffer_modes, 1,
1878 multisample_samples,
1879 num_msaa_modes,
1880 false, false);
1881 configs = driConcatConfigs(configs, new_configs);
1882 }
1883
1884 if (configs == NULL) {
1885 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
1886 __LINE__);
1887 return NULL;
1888 }
1889
1890 return configs;
1891 }
1892
1893 static void
1894 set_max_gl_versions(struct intel_screen *screen)
1895 {
1896 __DRIscreen *dri_screen = screen->driScrnPriv;
1897 const bool has_astc = screen->devinfo.gen >= 9;
1898
1899 switch (screen->devinfo.gen) {
1900 case 10:
1901 case 9:
1902 case 8:
1903 dri_screen->max_gl_core_version = 45;
1904 dri_screen->max_gl_compat_version = 30;
1905 dri_screen->max_gl_es1_version = 11;
1906 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
1907 break;
1908 case 7:
1909 dri_screen->max_gl_core_version = 33;
1910 if (can_do_pipelined_register_writes(screen)) {
1911 dri_screen->max_gl_core_version = 42;
1912 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
1913 dri_screen->max_gl_core_version = 43;
1914 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
1915 dri_screen->max_gl_core_version = 45;
1916 }
1917 dri_screen->max_gl_compat_version = 30;
1918 dri_screen->max_gl_es1_version = 11;
1919 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
1920 break;
1921 case 6:
1922 dri_screen->max_gl_core_version = 33;
1923 dri_screen->max_gl_compat_version = 30;
1924 dri_screen->max_gl_es1_version = 11;
1925 dri_screen->max_gl_es2_version = 30;
1926 break;
1927 case 5:
1928 case 4:
1929 dri_screen->max_gl_core_version = 0;
1930 dri_screen->max_gl_compat_version = 21;
1931 dri_screen->max_gl_es1_version = 11;
1932 dri_screen->max_gl_es2_version = 20;
1933 break;
1934 default:
1935 unreachable("unrecognized intel_screen::gen");
1936 }
1937 }
1938
1939 /**
1940 * Return the revision (generally the revid field of the PCI header) of the
1941 * graphics device.
1942 *
1943 * XXX: This function is useful to keep around even if it is not currently in
1944 * use. It is necessary for new platforms and revision specific workarounds or
1945 * features. Please don't remove it so that we know it at least continues to
1946 * build.
1947 */
1948 static __attribute__((__unused__)) int
1949 brw_get_revision(int fd)
1950 {
1951 struct drm_i915_getparam gp;
1952 int revision;
1953 int ret;
1954
1955 memset(&gp, 0, sizeof(gp));
1956 gp.param = I915_PARAM_REVISION;
1957 gp.value = &revision;
1958
1959 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
1960 if (ret)
1961 revision = -1;
1962
1963 return revision;
1964 }
1965
1966 static void
1967 shader_debug_log_mesa(void *data, const char *fmt, ...)
1968 {
1969 struct brw_context *brw = (struct brw_context *)data;
1970 va_list args;
1971
1972 va_start(args, fmt);
1973 GLuint msg_id = 0;
1974 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1975 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1976 MESA_DEBUG_TYPE_OTHER,
1977 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
1978 va_end(args);
1979 }
1980
1981 static void
1982 shader_perf_log_mesa(void *data, const char *fmt, ...)
1983 {
1984 struct brw_context *brw = (struct brw_context *)data;
1985
1986 va_list args;
1987 va_start(args, fmt);
1988
1989 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1990 va_list args_copy;
1991 va_copy(args_copy, args);
1992 vfprintf(stderr, fmt, args_copy);
1993 va_end(args_copy);
1994 }
1995
1996 if (brw->perf_debug) {
1997 GLuint msg_id = 0;
1998 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1999 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2000 MESA_DEBUG_TYPE_PERFORMANCE,
2001 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2002 }
2003 va_end(args);
2004 }
2005
2006 static int
2007 parse_devid_override(const char *devid_override)
2008 {
2009 static const struct {
2010 const char *name;
2011 int pci_id;
2012 } name_map[] = {
2013 { "brw", 0x2a02 },
2014 { "g4x", 0x2a42 },
2015 { "ilk", 0x0042 },
2016 { "snb", 0x0126 },
2017 { "ivb", 0x016a },
2018 { "hsw", 0x0d2e },
2019 { "byt", 0x0f33 },
2020 { "bdw", 0x162e },
2021 { "skl", 0x1912 },
2022 { "kbl", 0x5912 },
2023 { "cnl", 0x5a52 },
2024 };
2025
2026 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
2027 if (!strcmp(name_map[i].name, devid_override))
2028 return name_map[i].pci_id;
2029 }
2030
2031 return strtol(devid_override, NULL, 0);
2032 }
2033
2034 /**
2035 * Get the PCI ID for the device. This can be overridden by setting the
2036 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
2037 *
2038 * Returns -1 on ioctl failure.
2039 */
2040 static int
2041 get_pci_device_id(struct intel_screen *screen)
2042 {
2043 if (geteuid() == getuid()) {
2044 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
2045 if (devid_override) {
2046 screen->no_hw = true;
2047 return parse_devid_override(devid_override);
2048 }
2049 }
2050
2051 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
2052 }
2053
2054 /**
2055 * This is the driver specific part of the createNewScreen entry point.
2056 * Called when using DRI2.
2057 *
2058 * \return the struct gl_config supported by this driver
2059 */
2060 static const
2061 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2062 {
2063 struct intel_screen *screen;
2064
2065 if (dri_screen->image.loader) {
2066 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2067 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2068 fprintf(stderr,
2069 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2070 "support required\n");
2071 return NULL;
2072 }
2073
2074 /* Allocate the private area */
2075 screen = rzalloc(NULL, struct intel_screen);
2076 if (!screen) {
2077 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2078 return NULL;
2079 }
2080 /* parse information in __driConfigOptions */
2081 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
2082
2083 screen->driScrnPriv = dri_screen;
2084 dri_screen->driverPrivate = (void *) screen;
2085
2086 screen->deviceID = get_pci_device_id(screen);
2087
2088 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
2089 return NULL;
2090
2091 if (!intel_init_bufmgr(screen))
2092 return NULL;
2093
2094 const struct gen_device_info *devinfo = &screen->devinfo;
2095
2096 brw_process_intel_debug_variable();
2097
2098 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2099 fprintf(stderr,
2100 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2101 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2102 }
2103
2104 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2105 /* Theorectically unlimited! At least for individual objects...
2106 *
2107 * Currently the entire (global) address space for all GTT maps is
2108 * limited to 64bits. That is all objects on the system that are
2109 * setup for GTT mmapping must fit within 64bits. An attempt to use
2110 * one that exceeds the limit with fail in brw_bo_map_gtt().
2111 *
2112 * Long before we hit that limit, we will be practically limited by
2113 * that any single object must fit in physical memory (RAM). The upper
2114 * limit on the CPU's address space is currently 48bits (Skylake), of
2115 * which only 39bits can be physical memory. (The GPU itself also has
2116 * a 48bit addressable virtual space.) We can fit over 32 million
2117 * objects of the current maximum allocable size before running out
2118 * of mmap space.
2119 */
2120 screen->max_gtt_map_object_size = UINT64_MAX;
2121 } else {
2122 /* Estimate the size of the mappable aperture into the GTT. There's an
2123 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2124 * It turns out it's basically always 256MB, though some ancient hardware
2125 * was smaller.
2126 */
2127 uint32_t gtt_size = 256 * 1024 * 1024;
2128
2129 /* We don't want to map two objects such that a memcpy between them would
2130 * just fault one mapping in and then the other over and over forever. So
2131 * we would need to divide the GTT size by 2. Additionally, some GTT is
2132 * taken up by things like the framebuffer and the ringbuffer and such, so
2133 * be more conservative.
2134 */
2135 screen->max_gtt_map_object_size = gtt_size / 4;
2136 }
2137
2138 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
2139
2140 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2141 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2142
2143 isl_device_init(&screen->isl_dev, &screen->devinfo,
2144 screen->hw_has_swizzling);
2145
2146 /* GENs prior to 8 do not support EU/Subslice info */
2147 if (devinfo->gen >= 8) {
2148 intel_detect_sseu(screen);
2149 } else if (devinfo->gen == 7) {
2150 screen->subslice_total = 1 << (devinfo->gt - 1);
2151 }
2152
2153 /* Gen7-7.5 kernel requirements / command parser saga:
2154 *
2155 * - pre-v3.16:
2156 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2157 *
2158 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2159 * all batches secure, allowing them to use any feature with no checking.
2160 * This is effectively equivalent to a command parser version of
2161 * \infinity - everything is possible.
2162 *
2163 * The command parser does not exist, and querying the version will
2164 * return -EINVAL.
2165 *
2166 * - v3.16:
2167 * The kernel enables the command parser by default, for systems with
2168 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2169 * hardware checker is still enabled, so Haswell and Baytrail cannot
2170 * do anything.
2171 *
2172 * Ivybridge goes from "everything is possible" to "only what the
2173 * command parser allows" (if the user boots with i915.cmd_parser=0,
2174 * then everything is possible again). We can only safely use features
2175 * allowed by the supported command parser version.
2176 *
2177 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2178 * implemented by the kernel, even if it's turned off. So, checking
2179 * for version > 0 does not mean that you can write registers. We have
2180 * to try it and see. The version does, however, indicate the age of
2181 * the kernel.
2182 *
2183 * Instead of matching the hardware checker's behavior of converting
2184 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2185 * -EINVAL, making it dangerous to try and use privileged features.
2186 *
2187 * Effective command parser versions:
2188 * - Haswell: 0 (reporting 1, writes don't work)
2189 * - Baytrail: 0 (reporting 1, writes don't work)
2190 * - Ivybridge: 1 (enabled) or infinite (disabled)
2191 *
2192 * - v3.17:
2193 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2194 * effectively version 1 (enabled) or infinite (disabled).
2195 *
2196 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2197 * Command parser v2 supports predicate writes.
2198 *
2199 * - Haswell: 0 (reporting 1, writes don't work)
2200 * - Baytrail: 2 (enabled) or infinite (disabled)
2201 * - Ivybridge: 2 (enabled) or infinite (disabled)
2202 *
2203 * So version >= 2 is enough to know that Ivybridge and Baytrail
2204 * will work. Haswell still can't do anything.
2205 *
2206 * - v4.0: Version 3 happened. Largely not relevant.
2207 *
2208 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2209 * L3 config registers are properly saved and restored as part
2210 * of the hardware context. We can approximately detect this point
2211 * in time by checking if I915_PARAM_REVISION is recognized - it
2212 * landed in a later commit, but in the same release cycle.
2213 *
2214 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2215 * Command parser finally gains secure batch promotion. On Haswell,
2216 * the hardware checker gets disabled, which finally allows it to do
2217 * privileged commands.
2218 *
2219 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2220 * - Haswell: 3 (enabled) or 0 (disabled)
2221 * - Baytrail: 3 (enabled) or infinite (disabled)
2222 * - Ivybridge: 3 (enabled) or infinite (disabled)
2223 *
2224 * Unfortunately, detecting this point in time is tricky, because
2225 * no version bump happened when this important change occurred.
2226 * On Haswell, if we can write any register, then the kernel is at
2227 * least this new, and we can start trusting the version number.
2228 *
2229 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2230 * Command parser reaches version 4, allowing access to Haswell
2231 * atomic scratch and chicken3 registers. If version >= 4, we know
2232 * the kernel is new enough to support privileged features on all
2233 * hardware. However, the user might have disabled it...and the
2234 * kernel will still report version 4. So we still have to guess
2235 * and check.
2236 *
2237 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2238 * Command parser v5 whitelists indirect compute shader dispatch
2239 * registers, needed for OpenGL 4.3 and later.
2240 *
2241 * - v4.8:
2242 * Command parser v7 lets us use MI_MATH on Haswell.
2243 *
2244 * Additionally, the kernel begins reporting version 0 when
2245 * the command parser is disabled, allowing us to skip the
2246 * guess-and-check step on Haswell. Unfortunately, this also
2247 * means that we can no longer use it as an indicator of the
2248 * age of the kernel.
2249 */
2250 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2251 &screen->cmd_parser_version) < 0) {
2252 /* Command parser does not exist - getparam is unrecognized */
2253 screen->cmd_parser_version = 0;
2254 }
2255
2256 /* Kernel 4.13 retuired for exec object capture */
2257 #ifndef I915_PARAM_HAS_EXEC_CAPTURE
2258 #define I915_PARAM_HAS_EXEC_CAPTURE 45
2259 #endif
2260 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2261 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2262 }
2263
2264 if (!intel_detect_pipelined_so(screen)) {
2265 /* We can't do anything, so the effective version is 0. */
2266 screen->cmd_parser_version = 0;
2267 } else {
2268 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2269 }
2270
2271 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2272 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2273
2274 /* Haswell requires command parser version 4 in order to have L3
2275 * atomic scratch1 and chicken3 bits
2276 */
2277 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2278 screen->kernel_features |=
2279 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2280 }
2281
2282 /* Haswell requires command parser version 6 in order to write to the
2283 * MI_MATH GPR registers, and version 7 in order to use
2284 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2285 */
2286 if (devinfo->gen >= 8 ||
2287 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2288 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2289 }
2290
2291 /* Gen7 needs at least command parser version 5 to support compute */
2292 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2293 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2294
2295 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2296 if (force_msaa) {
2297 screen->winsys_msaa_samples_override =
2298 intel_quantize_num_samples(screen, atoi(force_msaa));
2299 printf("Forcing winsys sample count to %d\n",
2300 screen->winsys_msaa_samples_override);
2301 } else {
2302 screen->winsys_msaa_samples_override = -1;
2303 }
2304
2305 set_max_gl_versions(screen);
2306
2307 /* Notification of GPU resets requires hardware contexts and a kernel new
2308 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2309 * supported, calling it with a context of 0 will either generate EPERM or
2310 * no error. If the ioctl is not supported, it always generate EINVAL.
2311 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2312 * extension to the loader.
2313 *
2314 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2315 */
2316 if (devinfo->gen >= 6) {
2317 struct drm_i915_reset_stats stats;
2318 memset(&stats, 0, sizeof(stats));
2319
2320 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2321
2322 screen->has_context_reset_notification =
2323 (ret != -1 || errno != EINVAL);
2324 }
2325
2326 dri_screen->extensions = !screen->has_context_reset_notification
2327 ? screenExtensions : intelRobustScreenExtensions;
2328
2329 screen->compiler = brw_compiler_create(screen, devinfo);
2330 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2331 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2332 screen->compiler->constant_buffer_0_is_relative = devinfo->gen < 8;
2333 screen->program_id = 1;
2334
2335 screen->has_exec_fence =
2336 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2337
2338 intel_screen_init_surface_formats(screen);
2339
2340 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2341 }
2342
2343 struct intel_buffer {
2344 __DRIbuffer base;
2345 struct brw_bo *bo;
2346 };
2347
2348 static __DRIbuffer *
2349 intelAllocateBuffer(__DRIscreen *dri_screen,
2350 unsigned attachment, unsigned format,
2351 int width, int height)
2352 {
2353 struct intel_buffer *intelBuffer;
2354 struct intel_screen *screen = dri_screen->driverPrivate;
2355
2356 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2357 attachment == __DRI_BUFFER_BACK_LEFT);
2358
2359 intelBuffer = calloc(1, sizeof *intelBuffer);
2360 if (intelBuffer == NULL)
2361 return NULL;
2362
2363 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2364 * supports Y tiled and compressed buffers, but there is no way to plumb that
2365 * through to here. */
2366 uint32_t pitch;
2367 int cpp = format / 8;
2368 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2369 "intelAllocateBuffer",
2370 width,
2371 height,
2372 cpp,
2373 I915_TILING_X, &pitch,
2374 BO_ALLOC_FOR_RENDER);
2375
2376 if (intelBuffer->bo == NULL) {
2377 free(intelBuffer);
2378 return NULL;
2379 }
2380
2381 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2382
2383 intelBuffer->base.attachment = attachment;
2384 intelBuffer->base.cpp = cpp;
2385 intelBuffer->base.pitch = pitch;
2386
2387 return &intelBuffer->base;
2388 }
2389
2390 static void
2391 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2392 {
2393 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2394
2395 brw_bo_unreference(intelBuffer->bo);
2396 free(intelBuffer);
2397 }
2398
2399 static const struct __DriverAPIRec brw_driver_api = {
2400 .InitScreen = intelInitScreen2,
2401 .DestroyScreen = intelDestroyScreen,
2402 .CreateContext = brwCreateContext,
2403 .DestroyContext = intelDestroyContext,
2404 .CreateBuffer = intelCreateBuffer,
2405 .DestroyBuffer = intelDestroyBuffer,
2406 .MakeCurrent = intelMakeCurrent,
2407 .UnbindContext = intelUnbindContext,
2408 .AllocateBuffer = intelAllocateBuffer,
2409 .ReleaseBuffer = intelReleaseBuffer
2410 };
2411
2412 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2413 .base = { __DRI_DRIVER_VTABLE, 1 },
2414 .vtable = &brw_driver_api,
2415 };
2416
2417 static const __DRIextension *brw_driver_extensions[] = {
2418 &driCoreExtension.base,
2419 &driImageDriverExtension.base,
2420 &driDRI2Extension.base,
2421 &brw_vtable.base,
2422 &brw_config_options.base,
2423 NULL
2424 };
2425
2426 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2427 {
2428 globalDriverAPI = &brw_driver_api;
2429
2430 return brw_driver_extensions;
2431 }